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Abstract—We previously proposed a fast maximum a
posteriori (MAP) algorithm, LBFGS-B-PC, combining
LBFSG-B with diagonal preconditioning. Previous re-
sults have shown in simulations that it converges using
around 40 projections independent of many factors.
The aim of this study is to improve the algorithm fur-
ther by using a better initial image and a modified pre-
conditioner that is less sensitive to noise and data scale.
By initializing the algorithm with the best initial image
(one full iteration of OSEM with 35 subsets), ROI
values can converge almost twice as fast for the same
computation time. Moreover, the new preconditioner
makes the performance more consistent between high
and low count data sets. In addition, we have found a
means to choose the stopping criteria to reach a desired
quantitative accuracy level in the reconstructed image.
Based on the results with patient data, the optimized
LBFGS-B-PC shows promise for clinical imaging.

I. Introduction

We have previously proposed a MAP algorithm LBFGS-
B-PC which combines preconditioning with the use of
a quasi-Newton optimization method based on the con-
strained LBFGS-B approach. Previous results showed that
the algorithm can converge several times faster than re-
laxed SPS and LBFGS-B. Moreover, its performance is in-
dependent of many factors, such as penalty types, penalty
strengths, noise levels and object geometries. The aim of
this study is to make further improvements and practical
demonstrations to increase the algorithm’s robustness.
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Fig. 1: Illustration of the transformation and optimization
process of LBFGS-B-PC using contour-plots of the objec-
tive function.

II. Method
A. Objective function

MAP reconstruction is performed by maximizing a func-
tion Φ consisting of 2 parts, the un-penalized likelihood
L and the penalty function R with a parameter β which
controls the strength of the penalty.

B. LBFGS-B-PC
We proposed to use LBFGS-B in a transformed coordi-

nate system to circumvent its potential slow convergence
and sensitivity to global scale factors [1]. The transforma-
tion was achieved as follows, given x the estimated image
and g the measured data:

x′ = D−1x,

D =
√

diag{P tdiag{ 1
g+1}P · 1 + β∇2R(x)}

(1)

where D represents the preconditioner proposed in [1] and
P is the system matrix. The LBFGS-B optimization is
then performed by maximizing the function Φ at each
iteration along a search line p with the transformed image:

x′new = x′old + δ?p, δ? = arg max
δ≥0

Φ′(x′old + δp), (2)

where Φ′(x′) = Φ(x) and p = H̃ ′−1∇Φ′(x′old) with H̃ ′ the
approximation of the Hessian of Φ at the current iteration.
The overall process is explained in Fig. 1.

C. New preconditioner
Although superior performance of the proposed algo-

rithm has been shown in our previous study [1], we notice
that the “+1” term in the denominator of D in (1) can be
problematic if the data scale is very small. For adapting to
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Fig. 2: Reconstructed image from LBFGS-B-PC2 at the
41st iteration and the corresponding attenuation map for
the cylindrical phantom.

noisy data, we propose a new preconditioner precomputed
by the initial image (xini):

D̃ =
√

diag{P tdiag{ g

(Pxini + r)2 }P · 1 + β∇2R(x)}

(3)
where r is the background events vector. This precon-
ditioner is no longer data scale dependent, however, the
performance could be affected by xini. The preconditioners
(1) and (3) are referred to as PC1 and PC2, respectively.

D. Data
1) Digital cylindrical phantom: The projection data

were generated to simulate the GE Discovery STE in 2D.
A cylindrical phantom containing 4 ROIs, 2 hot spots and
2 cold spots was used. The radius was 26.367 mm for each
of them. The activity ratios of the cold and hot regions to
the background were 0.25 and 2, respectively. For each
group of activity levels, different attenuation materials
simulating the effects of bone and soft tissue were applied
to each spot. The phantom and the attenuation map can
be found in Fig. 2. Two data sets with total counts of 594
K and 29.3 K were generated.

2) Patient data: Three FDG PET/CT data sets were
acquired on a GE Discovery STE. The PET data were
collected in 3D mode with total counts of 255M, 355M
and 181M, all in the thorax region.

E. Algorithm optimization
Choosing an initial image can improve convergence rate

by starting closer to the solution but also by improving
the preconditioner D̃. In our previous study we used
1 iteration of MLEM [2] for initialisation. Here we will
investigate the use of OSEM [3].

To simplify the problem of finding the best initial image,
a two-part study was conducted. The first part tried to
speed up the convergence rate by increasing the number
of ordered-subsets. 8 different subsets (1, 2, 5, 7, 10, 14, 35
and 70) were employed for one full iteration to keep the
same computational burden as one iteration of MLEM.
We then fixed the subsets to the limit found in the first
part and increased the number of full iterations from one
to two to assess if the performance can be improved even

further in the second part of the study. The reconstruction
was then performed by LBFGS-B-PC2 initialized with
various images described above. After finding the best
initial image, we evaluated how the preconditioners change
performance with noisy data. Finally, an example recon-
struction with patient data is shown.

We used the quadratic prior with penalty factor 0.1
for the simulated data and 4 for the patient data. Since
we have proved that the performance of LBFGS-B-PC is
independent of the penalty type and strength in [1], we
did not include other penalty functions or study the per-
formance differences with various penalty strengths. We
used the acquisition model of STIR [4] for the simulated
data, and extracted raw and calibration clinical data from
the Discovery STE raw data files. The implementation was
based on the Fortran LBFGS-B proposed in [5].

F. Analysis
Since the true image is known for simulated data, the

convergence rate of each algorithm was evaluated in terms
of normalized total regional recovery ratio (RRtotal):

RRtotal =

√√√√ 1
n

i=n∑
i=1

( RBRi(f)
RBRi(f true) )2 (4)

where RBRi is the ith-ROI to background ratio, n is
the number of ROIs and f true is the true image. The
ROIs were drawn in the center of the spots with size
of 26.37 mm2. For the patient data, we evaluated the
performance by calculating the recovery ratio of a se-
lected hot spot and a background region with respect to
the converged values (RRconv). Here we considered the
algorithm was converged when no intended update that
satisfies Wolfe conditions could be found. The criteria were
defined as follows:

Φ(k+1) ≤ Φ(k) − λ1αk∇Φ(k)Tpk

|∇Φ(k+1)Tpk| ≤ λ2|∇Φ(k)Tpk|
(5)

where αk is the tested step length during the line search,
pk is the search direction at kth iteration and {λ1, λ2} is
a set of fixed parameters controlling the strength of these
conditions. In this study, the values were set to 10−4 and
0.9, respectively.

G. Stopping criteria
A robust stopping criterion requires a stable relationship

between the relative amount of image change per iteration
(something we can measure) and the closeness of the image
to its convergence value (what we want to know, but
cannot), in order to stop iterations. Using the simulated
data with high counts, we defined metrics F (k) and M(k)
to measure the image change between two iterations and
the distance from the convergence, respectively:

F (k) = (Φ(k)−Φ(k+1))
max(|Φ(k)|,|Φ(k+1)|)

M(k) = T
N

∑j=N
j=1

(x(k)
j
−xconv

j )2

(x̄conv)2

(6)
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Fig. 3: The RRtotal values plotted against projection num-
bers for LBFGS-B-PC2 initialized by one full iteration of
OSEM with various subsets (left) and various full itera-
tions of OSEM with 35 subsets (right). The reconstruction
was performed on the simulated high counts data.

where N is the number of pixels in the image. Instead
of normalizing the objective function Φ with the number
of total counts T, we took into account the data scale
while calculating M(k). Therefore, the comparison of the
convergence rate in terms of M(k) would be normalized to
the same scale. x̄conv is the mean value of all the pixels in
the converged image. We used SPS at 1000th iteration as
the reference since its convergence has been well-proved.

III. Results
As shown in Fig. 3 (left), the convergence rate of the

RRtotal is improved as the number of ordered subsets is
increased. The convergence trend for 70 subsets (there
were only 4 projections in one subset) is quite different
from others. Therefore, we chose 35 as the highest number
of subsets and increased the number of full iterations.
Based on the results in Fig. 3 (right), no significant
improvement was observed after one full iteration. The
performance comparison between the two preconditioners
can be found in Fig. 4. Similar convergence rates were
observed for the high counts data. However, when the
total counts was reduced to a very low level, the pre-
conditioner PC1 compromises the convergence rate. The
linear relationship between the log(F ) and log(M) implies
a power law relationship between M and F (Fig. 5). As
a faster algorithm will make larger improvements in the
objective function per iteration, this plot confirms that
the preconditioners speed-up LBFGS-B. Similar results for
XCAT phantom were obtained (not shown). A slice from
one of the patient data sets and the selected ROIs on it are
shown in Fig. 6 (left) as an example. The recovery ratio
of the selected hot spot and the background region with
respect to the converged values (RRconv) for all patients
are given in Fig. 6 (right). Comparable convergence rate
in both regions are observed among different patients.

IV. Conclusion
The performance and robustness of the previously pro-

posed preconditioned algorithm, LBFGS-B-PC, have been
further improved. The optimized algorithm shows promise
for use in a clinical context.

Fig. 4: The RRtotal values plotted against projection num-
bers for all algorithms with data of 594 K counts (left) and
29.3 K counts (right).

Fig. 5: The M(k) values plotted against the F (k) for all
algorithms. Both x and y-axis of the plot are in log scale.
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Fig. 6: A slice of the patient data reconstructed from
the optimized LBFGS-B-PC2 (left) and the recovery ratio
of the selected hot spot and the background region with
respect to the converged values (right).


