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Halting global biodiversity loss is central to both the Convention on Biological Diversity 28 
(CBD) and United Nations Sustainable Development Goals (SDGs)1,2, but success to date 29 
has been very limited3–5. A critical determinant of overall strategic success (or failure) is 30 
the financing committed to biodiversity6–9; however, financing decisions are still hindered 31 
by considerable uncertainty over what any investment is likely to achieve6–9.. For greater 32 
effectiveness, we need an evidence-based model (EBM)10–12 showing how conservation 33 
spending quantitatively reduces the rate of loss. Here, we empirically quantify how i$14.4 34 
billion of conservation investment reduced biodiversity loss across 109 signatory countries 35 
between 1996 and 2008, by an average 29% per country. We also show that biodiversity 36 
change in signatory countries can be predicted with high accuracy, using a dual model that 37 
combines the positive impact of conservation investment with the negative impact of 38 
economic, agricultural and population growth (i.e. human development pressures)13–18. 39 
Decision-makers can use this dual model to forecast the improvement that any proposed 40 
biodiversity budget would achieve under various scenarios of human development 41 
pressure, comparing those forecasts to any chosen policy target (including the CBD and 42 
SDGs). Importantly, we further find that spending impacts shrink as human development 43 
pressures grow, implying that funding may need to increase over time. The model therefore 44 
offers a flexible tool for balancing the SDGs of human development and biodiversity, by 45 
predicting the dynamic changes needed in conservation finance as human development 46 
proceeds.  47 
 48 
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 49 
The rapid loss of global biodiversity has major consequences for human wellbeing5,19 and so 50 
governments worldwide have committed reducing those losses through multiple international 51 
agreements, including the CBD and SDG frameworks1,2. However, strategic outcomes to date 52 
have been poor: we missed the 2010 CBD target and now seem likely to also miss the 2020 53 
Aichi biodiversity targets3,4. As outlined in Aichi target 20 and SDG17, one of the most 54 
important determinants of policy success is our ability to correctly decide (and secure) the level 55 
of financing needed to resource overall biodiversity-conservation strategies1,2,6–8. A second key 56 
way to improve on currently poor outcomes is to take a more evidence-based approach, in which 57 
decision making is guided by reliable evaluations of past successes and failures (“conservation 58 
impact assessments”)10–12. In many fields, the financing of strategic goals is fundamentally 59 
evidence-based, analysing previous spending outcomes to guide current budget decisions20,21. 60 
Surprisingly, however, no study has yet tested whether global conservation investment has 61 
actually reduced biodiversity decline across CBD signatory countries, nor quantified the 62 
differential impacts of different funding levels.  63 
 64 
A second key policy need is for models that reliably predict biodiversity decline, so that future 65 
losses can be forecast and timely action taken15,22 (as already occurs with climate change23). In 66 
bio-political science, predictive models typically quantify how biodiversity loss is driven by 67 
human socioeconomic pressures, such as economic or agricultural expansion14–16,24. To date, 68 
conservation impact assessments and predictive decline models have largely developed as 69 
separate major fields, despite their outcomes being strongly interdependent. It is rarely possible 70 
to accurately measure the impact of one factor (either spending or pressures) on biodiversity 71 
without accounting for the influence of the other factor3,25. To make accurate predictions for 72 
policy use, we therefore need unified models that treat biodiversity change as the simultaneous 73 
outcome of pressures and their impact, plus conservation and its impact (henceforth, “pressures-74 
and-conservation-impact (PACI) models”). Indeed, one of the core challenges for the SDGs is to 75 
balance (or trade off) the often-conflicting goals of human development (e.g. SDGs 1, 2 & 8) and 76 
biodiversity conservation (SDG 15)2,14–18,24. To measure this trade-off, policymakers need 77 
models that unite these two aspects. Finally, such models need to apply to the key geopolitical 78 
decision-making scale for the CBD and SDGs – sovereign countries – demanding finer 79 
geographic resolution than common planet-scale approaches3,7. 80 
 81 
Here, we use empirical evidence to develop a unified PACI model at the sovereign country scale, 82 
by statistically quantifying how changing human pressures drive biodiversity decline while 83 
conservation spending reduces it. As such, the model informs policymakers not just what 84 
biodiversity losses to expect but more constructively, how changes in conservation resourcing 85 
can reduce those expected losses3. We also show how the impacts of spending and pressures 86 
depend predictably upon national socioeconomic contexts, and thus how they may change over 87 
time.  88 
 89 
A standard policy measure of biodiversity change (usually, decline) is the planet-scale sum of all 90 
changes in individual species’ IUCN Red List status, using well-known taxa as a proxy for 91 
biodiversity3,26. To calculate biodiversity change at the decision-making scale of sovereign 92 
signatory countries (hereafter each country’s “biodiversity decline score” or BDS), we took Red 93 
List status changes for all global bird and mammal species for 1996–2008 (see Methods for 94 
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justification and details) and portioned them out among all countries where each species is found 95 
(treating the few status improvements as negative fractions). We then summed all decline 96 
fractions for each country to calculate BDSs8,26 (Figure 1, Supplementary Table 1). It is 97 
noteworthy that 60% of total BDS for the globe was found in only seven countries: Indonesia, 98 
Malaysia, Papua New Guinea, China, India, Australia, and the USA (principally Hawai’i). Seven 99 
countries had net biodiversity improvements (negative BDSs): Mauritius, Seychelles, Fiji, 100 
Samoa, Tonga, Poland and Ukraine. (See Extended Data Figure 1 for average BDS per species). 101 
 102 
To be useful in policymaking, models of biodiversity change need to have simple generality and 103 
demonstrated forecasting accuracy. Therefore, we first built PACI regression models to predict 104 
known BDS, using national-level data on strict-sense conservation spending (annualised, see 105 
Methods) plus the broad socioeconomic pressures of GDP growth, agricultural expansion (and 106 
its relationship to forest loss), human population growth, and changing governance quality 107 
(Extended Data Table 1, Supplementary Table 2). We then tested forecasting accuracy by using 108 
cross-validation, which repeatedly presents the model with data it has not seen and asks it to 109 
predict a known outcome (see Methods). BDS data were continuous zero-inflated due to multiple 110 
species-poor countries with no status changes, so we used two-part models27 in which the 111 
“continuous” part (n=50) models BDS after truncating the long tail of zeroes, and the “binomial” 112 
part (n=109) models whether BDS is zero or non-zero across all countries. We tested for context 113 
dependence by fitting several hypothesized interactions (Methods, Extended Data Table 1).  114 
 115 
In the best-fitting regression models (Table 1), we found that conservation spending strongly 116 
reduced decline (i.e. BDS, Figure 2), whereas GDP growth and agricultural expansion tended to 117 
increase it (Figure 3). Although forest loss was often significant, the best-fitting predictive model 118 
favoured more generalized terms (Table 1, Supplementary Discussion). Interaction terms 119 
revealed several context-dependent nuances (see Supplementary Discussion). The GDP growth 120 
effect decreased as baseline GDP decreased, becoming non-significant in the poorest countries 121 
(Figure 3). Agricultural expansion had a deleterious impact in countries with relatively low 122 
percentages of land devoted to agriculture (such as Malaysia and Peru), but was not statistically 123 
significant in countries with mid-to-high percentages such as Bangladesh (Figure 3). The 124 
binomial part also suggested that the impact of agricultural expansion could be greatly reduced 125 
by improvements in the quality of national governance (Extended Data Figure 2), and that the 126 
deleterious impact of GDP became stronger as human population growth increased, i.e. the 127 
combined impact of two pressures was greater than the sum of its parts (Table 1). Finally, 128 
conservation spending was more effective in poorer countries than in higher-income ones, and 129 
spending also had a greater impact when more species were threatened in the first place 130 
(Extended Data Figure 3). 131 
 132 
Both model parts accurately predicted historical declines (R2 = 0.85 in the continuous part; 133 
accuracy = 94% in binomial part; Extended Data Figure 4) and were robust to several sensitivity 134 
tests (Supplementary Results, Extended Data Table 4). They also had high forecasting accuracy 135 
in cross-validation (82% continuous part; 85% binomial part). Our PACI models therefore have 136 
immediate application to several major policy needs. They can predict not only future 137 
biodiversity declines15,22, but also how changes to a key policy instrument – the high-level 138 
financial resourcing of biodiversity conservation – will quantifiably reduce the declines 139 
expected. To illustrate this feature, we used the model to predict the impact of spending an extra 140 
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i$5 million in each country (such that the overall global annual budget was increased by 42%, 141 
Supplementary Table 3). Outcomes for all countries are shown in Supplementary Table 3 (see 142 
also Figure 1) but to give an example: in the mega-diverse countries of PNG and Peru, the model 143 
predicted reductions in decline (BDS) of 33% and 54% respectively. We also used the model to 144 
back-predict how much biodiversity loss was prevented by post-Earth Summit conservation 145 
financing8,28, estimating that on average (median), losses per country were 29% less than would 146 
otherwise have occurred (Methods). 147 
 148 
The model could also be used to predict the funding each country needs to achieve specific 149 
biodiversity policy goals, including the CBD and SDG targets. Importantly, however, our results 150 
demonstrate how the cost of meeting any target constantly changes as the levels of 151 
socioeconomic pressure change. For example, if Peru had wanted to achieve 50% less decline by 152 
2008, then with pressures at their 1992-2003 levels, the model predicts that an extra $4.6m 153 
annually would have been needed annually. However, at current (2001-2012 mean) levels of 154 
pressure, that figure would rise to $5.7m (constant international dollars). Our model explicitly 155 
accounts for these changes in socioeconomic context, and so an appropriate policy use would be 156 
to take various scenarios of economic, agricultural and population change, and then predict 157 
biodiversity outcomes at different funding levels for each scenario, comparing them to targets. In 158 
particular, the model can be used to help resolve problems of discordance between the SDGs for 159 
biodiversity and human development, by quantifying how any negative effects of economic and 160 
agricultural growth can be balanced out by short-term increases in conservation funding (thereby 161 
creating a breathing space to develop more sustainable pathways to national growth18.)  162 
 163 
We caution that an unmeasured variable correlated with conservation spending could 164 
conceivably explain some of the spending impact; that the co-benefits of spending for taxa other 165 
than birds and mammals remain unknown; that species declines too small to affect Red List 166 
status will not be accurately predicted and will require different approaches29; and that long-167 
distance effects such as Chinese demand for African ivory30 were beyond the scope of our 168 
model. However, our general PACI approach should be flexible enough to accommodate such 169 
additions in the future.  170 
 171 
At a time when the outlook for biodiversity often seems very bleak4,5, our results present a 172 
constructive opportunity for global biodiversity policy, showing how increases in conservation 173 
investment can lead to major, quantifiable improvements. However, set against this note of 174 
optimism, our model also underlines how conservation spending may need to constantly increase 175 
(or evolve) to counterbalance the continuing intensification of human development 176 
pressures5,18,24. By empirically demonstrating how limited levels of investment have already led 177 
to a partial reduction in biodiversity loss, our findings may ultimately encourage decision-makers 178 
to commit the full finance needed7 to significantly reduce or halt global losses, in line with our 179 
CBD and SDG commitments1,2. 180 
 181 
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FIGURE LEGENDS 389 
 390 
 391 
Figure 1 | Global biodiversity declines and conservation spending impacts. Colours show 392 
percentage of all global declines (total BDS) associated with each country: dark red = >10% 393 
(Indonesia only, 21%); dark, mid and light orange = 5–10, 2.5–5 and 1–2.5% respectively; 394 
yellow = 0–1%; grey indicates BDS = 0; blue indicates a net improvement in national 395 biodiversity status. Pies show the predicted reduction in decline (in black) if spending had 396 been i$5million higher (for selected countries); pie size represents √BDS. Inset shows 397 predicted vs. observed BDS (ln-transformed) for the continuous model (see also Extended 398 Data Figure 4). Country outlines supplied by esri_dm 399 https://www.arcgis.com/home/item.html?id=d86e32ea12a64727b9e94d6f820123a2#ov400 erview 401  402 
 403 
 404 
Figure 2 | The country-scale rate of biodiversity decline (BDS) depends on conservation 405 
spending levels. The continuous part of the model is shown (which focuses on high-decline 406 
countries, n=50 independent countries) and both variables are corrected for all other predictors in 407 
a residual-residual plot (Pearson’s r= –0.69). See Table 1 for spending impact in the binomial 408 
model part. 409 
 410 
 411 
Figure 3 | Conditional impacts of human pressures on biodiversity. (a) Impact of GDP 412 
growth on BDS depends on the existing level of GDP/capita. Red = slow GDP growth (10ile), 413 
blue = fast growth (90ile), “low” GDP/capita = 10ile, “median” = 50ile (effects are still significant 414 
at >50ile). (b) Impact of agricultural expansion on BDS depends on the existing % of land 415 
converted to agriculture: colours as in (a), “low” agricultural expansion = 10ile, “median” = 50ile 416 
(effects are still non-significant at <50ile). Error bars show conditional 95% confidence intervals 417 
from the continuous model-part. N=50 independent countries. Centre is the median. 418 
 419 
 420 
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Table 1 | Best-fit models predicting biodiversity decline. Note that for all terms that 421 
interact, the interaction plots provided must be used to interpret the reported 422 
standardised coefficients correctly (Figure 3 and Extended Data Figures 2-3). “Agric. 423 
land” = mean percentage of agricultural land; t-1 = 1994-2000, t-2 = 1988-1994; GDP 424 
= Gross domestic product per capita PPP; population = rural population density; 425 
governance improvement = change in the government effectiveness score. N=50 426 
independent countries and index parameter = 1.01 in the continuous part, n=109 427 
countries in binomial part with a 42:67 ratio of ones to zeroes. 428 
 429 
Predictor variable Continuous 

model part 
(BDS) 

Binomial 
model part 

(BDSb) 

Conservation spending -0.251 -4.800 
Agricultural growth -0.012 -3.065 
GDP growth  0.035 -0.152 
Population growth NA -2.738 
Declines in period t-1 
Declines in period t-2 

0.024 
0.048 

NA 
NA 

Threatened species richness 0.155 5.421 
Country area NA 8.754 
GDP 0.037 -5.426 
% agric. land 0.049 -1.226 
GDP growth x GDP 0.031 NA 
Spending x GDP NA 5.026 
Spending x threatened species richness -0.247 NA 
Population growth x GDP growth NA 1.044 
Agric. growth x % agric. land -0.045 -10.143 
Spending x % agric. land 0.065 NA 
Agric growth x governance improvement NA -9.603 

 430 
431 
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 432 

Materials and Methods 433 

Country-scale biodiversity decline scores 434 
To quantify biodiversity decline, we used equally-weighted genuine changes in 435 

the IUCN Red List status of all global bird and mammal species up to the last Global 436 
Mammal Assessment in 2008 (i.e. changes in extinction risk between 1996-2008 for 437 
mammals and 2000-2008 for birds, there being no 1996 global bird assessment; the 438 term “genuine” excludes any Red List changes not related to changing extinction 439 risk, in particular those due simply to taxonomic changes)3,31,32. Our approach is 440 
therefore similar to planet-scale Red List Indices (RLI) of global biodiversity change 441 
adopted by governments to measure performance against CBD and SDG targets3,31–33, 442 
but adjusted to allow global declines to be portioned out among signatory countries 443 
while preserving the original magnitude of declines. We focused on birds and 444 
mammals because these received the vast majority of conservation investment and 445 
supply robust, directly-observed data on changes in Red List status3,34; thus, we 446 
excluded the other possible taxon (amphibians) because they received almost no 447 
conservation investment during the study period3, only have modelled (rather than 448 
directly observed) declines available for 1980-20043,35 (whereas robust spending data 449 
are only available from 1992 onwards8), and are also highly data deficient and 450 
“enigmatic” in terms of their declines3,35. 451 

To convert species-based Red List changes into country-level indices of 452 
biodiversity change, we divided up each species change as “decline fractions”, based 453 
on the percentage of the species range pij held by each country8,26. However, decline 454 
fractions are estimates for the underlying responsibility fraction Rij = the proportion of 455 
the status change for species i attributable to country j (see Additional Method Details 456 
at end). For greater accuracy, we therefore corrected these range-based fractions in 457 
two ways. First, the losses underlying a species decline are not homogeneously 458 
distributed in space but instead, are frequently concentrated in some part of the range 459 
where human pressures have suddenly increased36. Both empirically and at random, 460 
those concentrations of pressure-driven loss are unlikely to lie at the range periphery 461 
(Additional Method Details and36). However, a raw range-based algorithm assumes 462 
spatially homogeneous losses right up to the range periphery, and so will often assign 463 
an erroneous and trivial responsibility fraction to any country holding a small range-464 
edge (pij) of a species found almost entirely in a neighbouring country. Formally, Rij 465 
for small pij is often but not always likely to be zero. These small pij values were also 466 
extremely numerous, generating very high noise-to-signal ratios in analysis. To 467 
address these problems of extreme signal loss and bias when an unknown proportion 468 
of small pij were incorrect overestimates of zero Rij, we used Signal Detection 469 
Theory37 and the mathematics of the Red List categories to estimate a range of 470 
theoretically optimal thresholds T such that Rij is set to zero if pij<T, and then carried 471 
out our analyses using three possible thresholds within this range, to account for 472 
uncertainty (see Additional Method Details). The main text shows results for T=0.17 473 
(being the approximate optimal trade-off between noise reduction and sample size, 474 
Additional Method Details) and Supplementary Results and Extended Data Table 4 475 
shows sensitivity tests with alternative thresholds (including the finding that 476 
explanatory power at T=0.17 is considerably stronger than occurs with the other 477 
thresholds).  478 

Second, we analysed the Red List reports for each individual bird and mammal 479 
species and altered the range-based fractions wherever a report suggested a different 480 
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distribution of responsibilities across countries (Supplementary Table 4). We then 481 
calculated the Biodiversity Decline Score (BDS) for each country by summing all 482 
decline fractions for birds and mammals, treating the rare status improvements as 483 
negative fractions8,26. Supplementary Table 1 contains the final BDS scores per 484 
country.  485 

 486 
Predictors of country-scale biodiversity decline scores (BDS)  487 

Conservation models with policy relevance need to have general applicability, 488 
including being able to accurately forecast outcomes when presented with situations 489 
that are different from the original dataset on which they were parameterised. To 490 
achieve this, it is highly advisable to use broad, general variables because more 491 
specific ones often have very poor forecasting performance when used beyond the 492 
original data37. We therefore selected a relatively small set of simple, generalised and 493 
publicly available explanatory variables to represent national-level socioeconomic 494 
pressures, noting that conservation spending also captures overall conservation effort 495 
in a broad, quantifiable and publicly-reported way.  496 

For conservation spending, we took data on average annual conservation 497 
investment levels from a recently-published collation8, adding new data for countries 498 
that had been data-deficient in the original published study e.g. Turkey38. Finance data 499 
were collated at 2005 constant U.S. dollar values (consistent with8) but for analysis, 500 
were converted to “international dollars” (abbreviated as i$ in the main text) at local 501 
purchasing power parity values, where purchasing power parity accounts for 502 
differences in the purchasing power of U.S. dollars (when exchanged) in each 503 
country39. Two types of conservation investment data were available: (a) “strict-504 
sense” funding with direct links to biodiversity conservation, and (b) “mixed funding” 505 
mainly targeted at social and development goals but with potential indirect, long-term, 506 
and often unclear impacts on biodiversity (e.g. school-building or agricultural 507 
assistance in forest communities)28,40. A priori, we hypothesized that strict-sense 508 
biodiversity funding was likely to be the better predictor of rates of decline, whereas 509 
“mixed” development funding (which involves much larger sums than strict-sense 510 
funding) was likely to obscure any effect. “Strict-sense” funding also produced lower 511 
AICc scores in exploratory modelling, and so we used it in our final analysis. 512 

Good governance is also hypothesized to positively affect biodiversity, both 513 
directly (e.g. through reducing conflict) and indirectly (e.g. through making 514 
conservation investment more efficient)16,41–43. Governance has been measured using 515 
multiple indicators44, so we modelled the impact of change in the six indicators 516 
published in the World Governance Indicators dataset44: government effectiveness, 517 
political stability and conflict, rule of law, corruption, regulatory quality (largely a 518 
measure of openness to business activity) and “voice” (a measure of the democratic 519 
accountability of governments). All the governance indicators are very tightly 520 
correlated with each other (r>0.9 for all pairwise combinations) and so to avoid 521 
collinearity, we tested each one individually. Government effectiveness gave the best 522 
fit in exploratory analysis (as in8) and is reported in the results as “governance”.  523 

For the country-level pressures aspect of our PACI model, we followed previous 524 
authors in using national rates of human population growth, economic growth and 525 
agricultural expansion13–15,17,45–53. Such country-level aggregators likely capture the 526 
overall impact of multiple smaller-scale drivers (with agriculture being the main 527 
pressure driving threat24). For example, forest clearance for food production or 528 
commodities would generally cause changes in both area of agricultural land and 529 
economic output, and GDP levels have been associated with both hunting pressure 530 
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and deforestation trends54–56. For economic growth, we used change in GDP/capita 531 
PPP (purchasing power parity). For agricultural growth, we used change in the 532 
percentage of land converted to agriculture; and for population growth, we used 533 
change in human population density (using total and rural population density as 534 
alternatives). Data on GDP, agricultural land and human populations were taken data 535 
from World Bank statistical tables57. We also tested the direct impact of forest loss, 536 
estimated per country for 1990-2000 using FAO statistics58,59 (although we 537 
acknowledge the limitations of this historical dataset60). 538 

The number of declining species in a country (and hence its BDS) is likely to be 539 
strongly influenced by the total number of species present and/or country area, plus 540 
the starting-condition levels of risk and decline. Following previous studies (e.g.61), 541 
we calculated total threatened species richness in the same way as we calculated total 542 
species decline (BDS), i.e. we summed all species fractions in each country, 543 
weighting them by the level of extinction risk as an index of threat. We compiled 544 
country area from8. However, in exploratory analysis, we found that the inclusion of 545 
area in any continuous-part model consistently led to a worse fit (delta AICc >6.5), 546 
likely because species richness absorbed most of the variance explained by area in 547 
this (n=50 countries) sample. In contrast, binomial-part models (n=109 countries) 548 
detected separate area and species richness effects (without collinearity; Extended 549 
Data Tables 2–3). Thus, we included the area term in binomial models, but excluded 550 
it from our final set of continuous-part models. We note, however, that parameter 551 
estimates with and without area were extremely similar.  552 

 553 
Lags between predictors and responses 554 

Conservation investment/action takes at least 5 years, and often over a decade, to 555 
have an impact on biodiversity29,62, especially for taxa such as birds and mammals. 556 
For mammals, the two global Red List assessments from which status changes can be 557 
calculated were in 1996 and 20083. We therefore assumed that changes detected in the 558 
2008 assessment may have been driven by conservation finance allocations occurring 559 
as recently as five years earlier (i.e. 2003) but in all likelihood, could also be 560 
influenced by spending from a decade or more earlier (the early 1990s). Similarly, 561 
changes occurring after 1996 (i.e. starting in 1997) could have been influenced by 562 
spending allocations as early as 1992 (also the year in which global conservation 563 
spending began in earnest with the Rio Earth Summit28) but also by allocations up to 564 
the early 2000s. Following this logic, we used predictor variables for 1992-2003 565 
(annualised values) to model changes in the response value for 1996-2008, using the 566 
same lag for the four different socioeconomic growth variables to avoid the analysis 567 
becoming intractable. We tested an alternative predictor period of 1992-2000 but 568 
preferred 1992-2003 based on lower AICc values.   569 

Technically, therefore, our response variable is a lagged variable63 taking the 570 
form Yt – Yt-n and our socioeconomic change variables are similarly lagged. We 571 
acknowledge that predicting change occurring in a time block using variables from an 572 
earlier time block is necessarily approximate, but year-by-year species changes were 573 
not available. Nevertheless, country-level patterns of change in predictor variables 574 
were strongly correlated across different time periods (e.g. when comparing mean 575 
annual values for 1992-2000 and 1992-2003, the correlations for population growth, 576 
population size, GDP growth and GDP respectively are 0.91, 0.999, 0.89, and 0.999). 577 
These strong correlations imply that the precise choice of year/period seems unlikely 578 
to have an important effect on the results.  579 
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The rate of decline over a fixed period is also likely to be influenced by the 580 
“inertia” from declines in the years immediately preceding that period. To explore 581 
this, we calculated avian BDSs for the two IUCN assessment periods preceding our 582 
study period (1988-1994 and 1994-2000) and added both measures to our candidate 583 
regression models. No earlier-period BDS was available for mammals; however, 584 
mammal and bird BDS are highly correlated in the study period (Pearson’s r = 0.998), 585 
so we assumed earlier-period bird BDSs to be reasonable proxy of combined (bird + 586 
mammal) earlier-period BDSs.  587 

 588 
Statistical analysis 589 

All predictor variables were z-standardized to put effect sizes on a common 590 
scale64. We excluded any countries for which complete, robust data were lacking 591 
(see8), including where reported finance commitments cannot be safely regarded as 592 
strict-sense biodiversity spending. We also excluded countries that had multiple 593 
overseas territories but conservation spending was not disaggregated across those 594 
territories, despite strongly different values for the socioeconomic predictors and rates 595 
of decline across the territories. In particular, the USA, France and the UK were 596 
excluded from regression models under this rubric (and we therefore recommend 597 
greater geo-referenced finance reporting). See Supplementary Table 1 for all 598 
exclusions. The Solomon Islands and New Zealand represented potentially influential 599 
leverage points, so we tested models both with and without these countries. We found 600 
that inclusion of the Solomon Islands had a large impact on binomial outcomes 601 
(causing governance growth to be dropped from the best-fit binomial-part model, 602 
likely due to the extreme value of governance growth for the Solomons), so we 603 
excluded this country from all binomial models. The impact of including the Solomon 604 
Islands was smaller in the continuous part (an identical best-fit model with similar 605 
coefficients was selected whether the country was included or excluded) but for 606 
completeness, we consistently tested all continuous model variations both with and 607 
without the Solomons. Inclusion of New Zealand had a major impact on binomial-part 608 
outcomes, altering most coefficients by~20% and some by >100%, and also greatly 609 
worsened fit in the continuous part, so it was excluded overall. The leverage 610 
associated with including New Zealand may be due to this country having a negative 611 
value for agricultural growth.  612 

We then built candidate PACI models to predict BDS, each testing hypotheses 613 
about how conservation investment and various human pressures might impact on 614 
biodiversity (see Supplementary Table 2 for full list). We included several 615 
interactions to test whether socioeconomic context altered the impact of 616 
socioeconomic change. For example, we hypothesized that in countries that have 617 
already converted much of their land base to agriculture, additional expansion of 618 
farmland may either have a reduced marginal effect on biodiversity due to an 619 
extinction filter65, or a greater impact as the last vestiges of habitat disappear 620 
(Supplementary Discussion). Thus, we further calculated mean annual values of GDP, 621 
population, governance and % agricultural land for 1992-2003 and added these to our 622 
interaction model specifications. Extended Data Table 1 and Supplementary Table 2 623 
show all interactions tested.  624 

The BDS data were non-integer covering both positive and negative values, but 625 
had a relatively dense cloud of values at zero. Although a more limited number of 626 
zeroes does not violate regression assumptions, such a long tail of zeroes can generate 627 
extreme bias64. We therefore used the recommended approach of a two-part model27,66 628 
that creates (a) a “continuous” part (n=50 countries) comprising all countries with a 629 
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non-zero BDS plus informative zeroes; (b) a “binomial” part (n=109) that included all 630 
countries with data (and so all zeroes), but converted BDS to the binary response 631 
BDSb (where BDSb = 1 if BDS>0 and 0 otherwise). For the continuous part 632 
specifically, we sought to optimise the trade-off between information content and bias 633 
by including as many zeroes as possible, in order of their likely informativeness, 634 
without causing clear patterns in regression diagnostic plots (thus extending the 635 
principle of the hurdle models developed for non-negative integer data64 to two-part 636 
analyses). A country that has many species but has experienced no declines, such as 637 
Costa Rica, suggests an important underlying process captured by zero BDS (= higher 638 
informativeness of zero decline). Conversely, when a country is species-poor, there is 639 
a strong random expectation that over a 13-year period, no species will be observed 640 
changing its Red List status (= lower informativeness of the zero). We therefore 641 
defined Ψ as country-level species richness (derived from our prior geographic 642 
analysis) and then, for various possible values of this parameter, heuristically tested 643 
the degree of regression bias arising when we excluded all cases of {BDS=0 and 644 
species richness < Ψ}. We found a tradeoff whereby setting Ψ at 40 or more left 645 
minimal patterns in residual plots but reduced sample size and statistical power, 646 
whereas Ψ values below 20 started to generate strong patterns in plots of residuals 647 
against fitted values. We therefore chose a value of Ψ = 25 (see Supplementary 648 
Results and “Sensitivity Testing” (below) for sensitivity testing on this parameter).  649 

For the continuous part, BDS retained a right skew even after log-transformation 650 
(Extended Data Figure 5) and there was also heteroscedasticity in the errors, so we 651 
tested Generalized Linear Models (GLMs) with the gamma-like Tweedie error 652 
distribution, which uses maximum likelihood to simultaneously model heteroscedastic 653 
variance as a function of the mean67–69 (cplm R package70). We carried out an (X+10) 654 
transformation on BDS to avoid violating gamma assumptions (where the value of 10 655 
was chosen to give flexibility for modelling with future scenarios where more species 656 
recoveries may occur, and where BDS may therefore become more negative). 657 
Tweedie model selection often uses the Gini index for model selection70. However, 658 
the ratio of sample size to the number of parameters is relatively small in the Tweedie 659 
analyses, potentially indicating low power to distinguish among models and a risk of 660 
overfitting. Thus, we initially compared model fit using the Gini index, but then re-ran 661 
model selection using AICc, a technique which penalizes overfitting and is 662 
asymptotically similar to leave-one-out cross validation71, and regarded Gini-selected 663 
models as overfitted if they contained terms that both were excluded in AICc 664 
selection and had p>0.1 Gini and AICc approaches gave identical model selection 665 
results in the main text; in the sensitivity tests for T=0.10 and T=0.25, however (see 666 
Sensitivity Testing, below), we preferred AICc approaches. We also carried out a 667 
power analysis72, which revealed that our best-fitting models had a power of >0.99, 668 
and thus that our sample size was adequate to detect effects among the relatively large 669 
number of parameters.  670 

In the binomial part, exploratory GAMs again suggested that linear modelling 671 
was appropriate, and so we used GLMs with binomial errors, fitting an additional 672 
dispersion parameter to account for strong underdispersion64. Models containing this 673 
extra parameter do not generate AIC values, so we carried out non-automated 674 
binomial model selection, using stepwise backward and forward regression with 675 
likelihood ratio tests64. Explanatory power was measured in the continuous part using 676 
McFadden’s R2 (known to be conservative), and in the binomial part using the 677 
percentage of times that the model correctly predicted BDSb (taking p(BDSb=1) 678 
<50% as a predicted 0, and p(BDSb=1) >50% as a predicted 1).  679 
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 680 
Cross validation to test for forecasting accuracy on unseen data 681 

To test the model’s forecasting accuracy, as would be needed for policy 682 
usefulness, we carried out ten-fold cross-validation, a procedure that repeatedly sets 683 
aside part of the data (as a “fold” of BDS values the model has never seen), 684 
parameterises the model on the remaining subset of data, then tests how well it 685 
forecasts the unseen BDS values37. For the continuous model part, we measured 686 
forecasting accuracy by calculating McFadden’s R2 for the model fit to the unknown 687 
(hold-out) BDS in each of the ten folds. Ideally, the slope of forecast versus known 688 
values should also be close to 1.0 and to test for this, we regressed the complete set of 689 
forecast values (across the ten folds) against the complete set of known values in the 690 
cross-validation, using a Generalized Least Squares regression model with a constant 691 
power function fitted to describe the heteroscedasticity in the residuals. We also 692 
calculated the median absolute deviation, although this is less informative in data with 693 
a large spread of values (note also that percentage deviations, rather than absolute 694 
deviations, are not appropriate metrics for low-volume data containing several zeroes 695 
such as BDS37). For the binomial model part, we tested mean forecasting accuracy 696 
against unknown data using % correct predictions, as we had done in testing binomial 697 
explanatory power.  698 

 699 
Covariate balancing and spatial considerations 700 

An important issue with impact studies is “selection bias”, where the likelihood 701 
of receiving the intervention of interest is non-random25,73. The amount of 702 
conservation investment a country receives is indeed known to be influenced by non-703 
random factors including Red List status itself8, potentially creating endogeneity 704 
problems25,73 and in particular, a potential problem of reverse causality whereby 705 
decline drives changes in conservation spending rather than vice versa.  706 

Our use of a time lag between predictors and responses was designed to reduce 707 
the issue of reverse causality in the analysis. We also note that since greater decline 708 
has been shown to cause greater investment8,28, a simple reverse-causality hypothesis 709 
would imply a positive correlation between spending and decline, whereas we 710 
observed a negative correlation (greater investment was associated with less 711 
subsequent decline). To correct for selection bias and associated endogeneity 712 
problems more generally, we used covariate balancing propensity scores25 for 713 
continuous treatment variables74 (in the R package CBPS75), which minimises the 714 
association (the Pearson correlation) between covariates and the treatment74,75. 715 
Previous studies have explained a high proportion of the variance in conservation 716 
finance allocation using country area, cost (the National Price Level), government 717 
effectiveness, political stability, GDPPPP, the percentage of land that is a protected 718 
area, and the sums of threatened bird and mammal species weighted by their level of 719 
extinction risk8,28. We carried out covariate balancing using data on these variables 720 
(taken from8) plus data on forest loss between 1990 and 2005 (taken from the FAO 721 
data58,59) and data on 1992-2003 growth in GDP per capita PPP (taken from World 722 
Bank data57). Extended Data Figure 6 shows the Pearson correlations between the 723 
treatment and the covariates before and after the covariate balancing propensity score 724 
correction.  725 

Analysing species declines at the country level could potentially generate spatial 726 
structure in model residuals, violating regression assumptions50,64,76,77. We tested for 727 
this effect by fitting four possible structures to the most complete GLM model using 728 
REML (restricted maximum likelihood estimate) and comparing their predictive 729 
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power using AICc. The structures tested were: (i) a fixed effect for Region (see8 and 730 
Supplementary Tables 1-2 for regions and regional intercept differences); (ii) a 731 
GLMM with a SAC (Generalized Additive Mixed model with spatial autocorrelative 732 
structure), where five possible structural models describing the spatial autocorrelative 733 
structure between country centroid coordinates were tested – linear, spherical, 734 
Gaussian, ratio and exponential64; (iii) a GLMM with an SAC as in (ii) plus a fixed 735 
effect for Region; (iv) a GLMM with an SAC plus a random intercept for Region. The 736 
best-fitting structure was (i) and we used this in subsequent modelling. Using Region 737 
as a fixed effect also follows logically from theory, since regional differences are a 738 
potentially important component of decline46. Binomial models including spatial 739 
autocorrelative structures did not converge and regional effects were non-significant, 740 
so we tested for possible spatial effects by plotting residuals from the best-fit binomial 741 
model against both latitude and longitude, and also by exploring the effect of 742 
including the latitude and longitude coordinates of the country centroids in the model 743 
specification. There was no support for models including latitude and longitude and 744 
no visual relationship in the plots against residuals.   745 

Decline drivers in one country may have impacts on biodiversity in neighbouring 746 
countries and statistical “spatial lags” have been used to model such possible 747 
effects50,77. However, statistical techniques to model a mixture of spatial error and 748 
spatial lag in the dependent and independent variables have only recently been 749 
developed for OLS regression78 and to our knowledge, no robust methodology exists 750 
for non-linear generalized models with heteroscedastic Tweedie error structures. We 751 
therefore restricted ourselves to testing and correcting for spatial error structures. 752 
However, by dividing responsibility for declines proportionally among countries, we 753 
have likely removed much of the artefactual spatial lag that arises when neighbouring 754 
countries are given equal responsibility for any declining species that they share. 755 

All statistical analysis was carried out in the R statistical software environment79. 756 
We checked for violations of model assumptions using diagnostic plots of residuals 757 
against fitted values and against all candidate predictors variables64. When removing a 758 
variable in model selection, we also plotted the residuals of each reduced model 759 
against the newly-removed variable, checking for any pattern that the statistical tests 760 
may have missed. Collinearity was checked for using VIF scores (Extended Data 761 
Table 3). 762 

 763 
Predicting the impact of spending and pressure changes 764 

To predict the impact that an extra i$1m or i$5m dollars annually of conservation 765 
spending would have had in each country, we added those amounts to known 766 
financing levels for each country and used the model to re-predict the outcomes. To 767 
predict the effect of changing human pressures on those outcomes, we followed the 768 
same protocol but also replaced the 1992–2003 levels of socioeconomic growth (i.e. 769 
change in pressures) with 2001–2012 levels. To estimate the decline that we may have 770 
avoided as a result of 1992–2003 spending, we used the fact that prior to the 1992 771 
Earth Summit, biodiversity spending for which we have data was flat and often zero 772 
(noting that data becomes sparser prior to the 1990s, and sparser still as one goes back 773 
further in time). We therefore estimated mean annual spending for 1985–1990, then 774 
re-predicted outcomes as if post-1990 annual budgets had only increased in line with 775 
inflation (i.e. no real increase). Although reduced data quality and imputation for the 776 
1985–1990 spending makes these estimates approximate, the median change in BDS 777 
was robust to several different spending estimates, and so the global figure for 778 
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avoided decline (29%) is likely to be a reasonable approximation, although we 779 
acknowledge that the true figure may be higher or lower.  780 

 781 
Sensitivity Testing 782 

We further tested the sensitivity of our original PACI model to various 783 
assumptions. To test for sensitivity to the threshold T (which was set at 0.17 in the 784 
main text, see Additional Method Details, below), we examined the model outcomes 785 
using T = 0.10. and T = 0.25. To test for sensitivity to the Ψ parameter, we repeated 786 
the analysis with multiple variations around the parameter value used in the main 787 
analysis, finding no qualitative differences in the results. To test for the effect of the 788 
influential outliers (Solomon Islands and New Zealand), we ran model selection both 789 
with and without the outliers. To examine whether our results were sensitive to the 790 
variables used to calculate the propensity scores (the correction for non-random 791 
assignment of spending amounts across countries, see “covariate balancing and spatial 792 
considerations” above), we tested the impact of removing various individual variables 793 
or combinations of variables from the list used to calculate the propensity weights for 794 
the regression model.  795 

A further concern was that our model fits might be driven (biased) by a country 796 
or countries with high BDS, since the BDS distribution is skewed (Extended Data 797 
Figure 5). Our tenfold cross-validation test already showed that the omission of 798 
various groups of countries had no substantive impact on results but as a further 799 
check, we carried out a jack-knife leave-one-out test to see how the omission of each 800 
individual country affected parameter estimates. When interactions between 801 
continuous terms are present, parameter estimates are conditional, i.e. they are 802 
different for each country and indeed affect each other. An appropriate measure of 803 
parameter change is therefore the average percentage change in the values of the 804 
conditional expectations across all countries. For example, if a country C (such as 805 
Indonesia) was strongly biasing the model results, then when we re-run the model 806 
without C, we should see a substantial change in the average conditional expectation 807 
of BDS across the remaining countries, indicating a strong shift across the conditional 808 
parameter estimates for the interaction model. With heteroscedastic errors, the median 809 
percentage may also be more informative than the mean, so we considered both.  810 

Even with these tests, there remained the possibility of “joint influence” in the 811 
continuous model part80 where the highest-value BDS countries were driving the 812 
model as a group (for example, the BDS values for the top three countries of 813 
Indonesia, Australia and China are very large, being 272%, 69% and 24% larger than 814 
the fourth-highest BDS value, and so may combine to exert joint leverage on the 815 
model parameters). To test for this, we plotted fitted against observed values for both 816 
the full dataset and the top-three-removed dataset. For completeness, we also 817 
examined changes in the individual conditional coefficients when the top three BDS 818 
countries were omitted.  819 

In impact assessments addressing the impact of a single variable, a further 820 
concern is “missing variable bias”, where there may be a confounding variable closely 821 
correlated with both the studied impact variable and the outcome variable87. In other 822 
words, the observed impact of conservation spending may simply be an artefact of 823 
spending being collinear with an unknown variable that is actually driving the 824 
outcome. When only one explanatory variable is being studied for its impact, hidden 825 
variable bias can be investigated by testing whether the main variable impact is still 826 
observed after an artificially created, collinear dummy variable has been added to the 827 
analysis25. In multiple regression analyses, this is largely infeasible because it would 828 
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also be necessary to artificially generate correlations between the dummy and all the 829 
other (interacting) variables in the regression formula. Nevertheless, we attempted to 830 
take the spirit of the missing variable test by looking for an empirical variable that 831 
was closely correlated with our spending variable (and therefore had a natural co-832 
correlation with all other variables in the regression formula), then adding it into the 833 
regression and testing whether the spending impact disappeared. Using the same 834 
scaling standardization as in the main analysis, we found that mean total population 835 
size had a correlation (Pearson’s r) of 0.45 with spending and mean GDPPPP (i.e. raw 836 
GDP rather than the GDP per capita used in the main analysis) had a correlation of 837 
0.54 with spending. We therefore tested the impact of adding both variables in turn to 838 
our regression formulae (in the second instance, removing GDP per capita and 839 
replacing it with raw GDP, on account of a strong correlation between the two).  840 

Finally, we tested the possible impact of inaccuracy in national conservation 841 
spending data, following the sensitivity tests used in8: in summary, we varied the 842 
spending data for each country by iteratively drawing new spending values for each 843 
country from a normal distribution centred on the original value and with a standard 844 
deviation set to 25% of the original value, and then repeating the regression analysis. 845 
Owing to extremely slow processing times for our complex models, we carried out 846 
100 such permutations.  847 

Detailed results of all these sensitivity tests are shown in the Supplementary 848 
Results, but none affected our conclusions substantively. 849 

 850 
 851 

Additional Method Details: Mathematical calculation of BDS 852 
Although change in Red List status is a standard measure of biodiversity change 853 

used in the CBD and SDG frameworks3,31,32, it applies to species, whereas we wished 854 
to measure change at the level of the sovereign countries that, as signatories to these 855 
agreements, have the principal political responsibility for biodiversity policy and 856 
targets. We therefore created an algorithm to convert species-level change to country-857 
level change. Mathematically, we define Rij = the proportional responsibility that 858 
country j has for a status change in species i, where for each species i: 859 

 860 

Σ Rij = 1.0 861 
  j 862 
 863 

For brevity, we use the phrase “proportional responsibility” (or simply 864 
“responsibility”) to refer to the relative influence that factors in each country had on 865 
the changing conservation status of each species. Proportional responsibilities cannot 866 
be known exactly, and so the algorithm will generate estimates of responsibility with 867 
some error. For predictive modelling, an equally important condition of algorithm 868 
design is that such errors should not bias regression outcomes.  869 

The most commonly used responsibility algorithm simply counts the number of 870 
declining species in each country (usually, the number of species classified as having 871 
some level of threat in global Red List assessments)14,15,45,46,77. Implicitly, such an 872 
algorithm assumes that if two countries share a species, they have equal responsibility 873 
for that species’ decline. This is reasonable if both countries have roughly equal 874 
shares of the species range. However, species are frequently distributed so that one 875 
country holds the bulk of the range (e.g. >80% of the range) and neighbouring 876 
countries hold very small fractions of the remaining range edge (e.g. <5% each) 877 
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(Extended Data Figure 5). In such cases, it would be highly inaccurate (and politically 878 
unfair) to allocate equal shares of responsibility for a species decline across all these 879 
countries. A fairer, more accurate system may be to divide up responsibility according 880 
to the fraction of each species’ range found in each country8,26. Formally, if pij is the 881 
proportion of the range of species i in country j, then the value of pij is an estimate of 882 
the true responsibility Rij, with some error implied in that estimate (formally, the error 883 
is defined as the difference between the pij-based estimate and Rij).  884 

For any observed pij, there is therefore a theoretical probability density function 885 
(PDF) of all possible Rij that it could represent. For example, if a species is split 60:40 886 
between two countries, then for the pij = 0.60 country, the underlying assumption is 887 
that there is an approximately Gaussian PDF for Rij with a central mode at 0.6, such 888 
that the most probable value of Rij is 0.60 or close to it, whereas extreme values such 889 
as 0.0 or 1.0 have a very low theoretical probability.  890 

First imagine that for any country j, all pij = 0.60, and so all Rij follow a Gaussian 891 
distribution around 0.6. The range-based algorithm will generate a series of positive 892 
and negative errors eRij (=overestimates and underestimates of Rij). The same is true 893 
of the country with pij = 0.40. However, the true quantity of interest we wish to 894 
estimate is BDSj (i.e. the sum of Rij rather than each individual Rij). There is therefore 895 
an associated set of errors  896 

 897 

eBDSj  = (Σ eRij) 898 
       i 899 

 900 
For a predictive regression model, the critical question is whether these errors 901 

eBDSj are likely to strongly affect modelling of BDS, for example by creating 902 
artefactual patterns or biased, non-random error distributions. If all range splits that 903 
make up BDSj are relatively symmetric (i.e. similar to 60:40), then it is a reasonable 904 
expectation that the errors, being drawn from an approximately Gaussian distribution, 905 
will overestimate and underestimate with relatively equal frequency, and so the sum 906 
of errors will not depart strongly from zero. Thus, the errors are expected to be 907 
relatively random in their distribution, permitting robust modelling. It is also 908 
particularly unlikely that the errors would create artefactual impacts, since this would 909 
require a consistent, non-random association between large negative errors and 910 
higher-spending countries (sufficiently large, indeed, to strongly depress BDSj), plus 911 
equally large and consistently positive errors for lower-spending countries. 912 

However, when pij is closer to its limits of 0.0 and 1.0, biased errors become 913 
highly likely. Human-induced population losses (leading to species declines and Red 914 
List status changes) are generally focused spatially in the particular part or parts of the 915 
species range where human pressures have most strongly increased and in general, it 916 
is very rare for such hotspots of decline to lie around the range periphery36. Therefore, 917 
a country that holds 3% of the species range will often have zero responsibility rather 918 
than 3% responsibility, and the neighbour with 97% of the range will often be entirely 919 
responsible for a status change. Even in a random process (with limited trials and 920 
therefore stochastic outcomes), spatial clusters of increased mortality dropped at 921 
random onto the range will frequently fall entirely within the 97% country. Formally, 922 
therefore, when pij = 0.03, the associated probability density for Rij will be high at 0 923 
and decline rapidly towards a very low density at Rij = 0.03, giving a PDF with a 924 
strong right skew and a likely 99th percentile at around pij itself. 925 
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In the example where pij = 0.03, therefore, nearly all errors will be overestimates, 926 
and the most common likely scenario is an overestimate of exactly 0.03. Generalising, 927 
whenever pij is small and the PDF is right skewed, a raw or “unadjusted” range-based 928 
algorithm will overestimate responsibility in almost all cases, generating highly 929 
biased errors eRij that will commonly have magnitude +pij. By the same process, using 930 
pij to estimate Rij at high pij, such as 0.9, will tend to underestimate true responsibility 931 
in the great majority of cases. 932 

The critical question is how severely this consistent bias will affect the 933 
regression analysis. We examined the data and found that empirically, a large number 934 
of countries had a BDS composed entirely of a trivially small (e.g. <5%) range edge 935 
fractions (Extended Data Figure 5). Their BDSj estimates were therefore likely to be 936 
made up of multiple small pij that were consistently overestimating responsibility Rij. 937 
In analysing BDSj, the error metric of interest is eBDSj = the sum of eRij, Since the set 938 
of errors eRij was likely to be highly biased and the most common likely scenario was 939 
that eRij = +pij, then eBDSj (as the sum of eRij) would also be highly biased, with a 940 
substantial probability that eBDSj would equal sum (pij). Since all the individual pij 941 
values comprising these BDS scores were both trivially small and likely overestimates 942 
of zero, the associated BDS scores were also likely to be trivially small (and biased) 943 
overestimates of zero. We refer to these cases as range-edge BDS or “reBDS scores”. 944 

We further explored the empirical impact of this suspected bias on the 945 
information signal by making exploratory plots of BDS against its possible predictors. 946 
These plots showed that reBDS scores indeed generated a dense cloud of very small 947 
values, close to the x axis, that was visually distinct from patterns across larger (and 948 
likely more accurate) BDS. In Signal Detection Theory terms37, therefore, reBDS 949 
cases were highly likely to represent strong signal noise that also lay non-randomly to 950 
one side of the main information pattern, in a cloud of such density that the signal-to-951 
noise ratio was extremely low, the ability of regression models to detect predictive 952 
relationships was compromised, and any calculated model parameters were likely to 953 
be strongly biased by the non-random error. Similarly, in the binomial analysis, the 954 
same reBDS issue caused many species-poor countries to have BDSb = 1 purely 955 
because those countries contained trivial range edges of status-changing species found 956 
almost entirely elsewhere.  957 

To reduce these issues of signal noise and bias at small pij, we explored setting 958 
Rij to zero for small pij. Formally, we explored setting a threshold value T, such that 959 
responsibility was set to zero for any country with a range fraction < T, such that  960 

 961 
Rij =     p*ij =  {pij if pij >= T} 962 
   {0 if pij < T} 963 
 (but see below for  pij >= (1-T)). 964 
 965 
To decide on appropriate values for the threshold T, we used Signal Detection 966 

Theory in combination with the mathematics of the Red List criteria. The most 967 
important aspect of this approach that when pij is small (e.g. 0.03), true Rij may often 968 
but not always be zero, but it is impossible to know which range-edge countries 969 
genuinely had a very small responsibility, and which had a true-zero responsibility. 970 
Therefore, reBDS values will often but not always be non-zero overestimates of a true 971 
zero. In Signal Detection Theory, cases where a true zero is wrongly given a non-zero 972 
value represent “false positives”. However, any threshold could also cause the 973 
algorithm to wrongly exclude (set to zero) some cases where the reBDS score 974 
represented a genuine (if small) fractional responsibility, and such incorrect 975 
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exclusions are classed as “false negatives”. The higher the threshold T, the more false 976 
positives will be correctly excluded but the more false negatives will be wrongly 977 
excluded. Theoretical optimisation will therefore seek values of T large enough to 978 
avoid too many false positives (i.e. guarding against picking up too much noise) yet 979 
small enough to avoid too many false negatives (i.e. guarding against throwing away 980 
too much information). A threshold that produces too many false positives is classed 981 
as overly “sensitive” and one that produces too many false negatives is classed as 982 
overly “specific”.  983 

For BDS, the optimal signal detection threshold cannot be precisely estimated 984 
because the proportions of false positives and false negatives at any value of T are not 985 
empirically known, and so the ratio of sensitivity to specificity cannot be calculated. 986 
Appropriate thresholds therefore need to be estimated by theoretically estimating the 987 
optimal sensitivity/specificity trade off. Furthermore, in this analysis, sensitivity and 988 
specificity were likely to have different impacts on analytical bias and outcomes 989 
(making approaches that give equal weight to sensitivity and specificity, or that 990 
require accurate knowledge of the ratio between them e.g. area under the curve37, less 991 
appropriate). The main deleterious effect of excessive sensitivity was to generate large 992 
amounts of biased noise, as already shown. The main impacts of excessive specificity, 993 
on the other hand, were likely to be (a) to slightly underestimate BDS (because a few 994 
small responsibility fractions had been wrongly discarded); (b) to reduce sample size 995 
for the continuous model part (because of removing reBDS countries); and (c) to 996 
change the ratio of ones to zeroes in the binomial analysis (because reBDS countries 997 
have BDS>0 before adjustment and BDS = 0 after adjustment). Since high levels of 998 
noise and bias associated with lack of specificity are likely to have a much stronger 999 
impact than the small underestimates and sample size/binomial ratio effects associated 1000 
with lack of sensitivity, avoiding false positives should take priority. 1001 

To allocate this priority (i.e. to avoid repeatedly replacing true zeroes with 1002 
trivially small values), the algorithm needs to set T such that for all probability 1003 
frequency distributions associated with all p*ij, there is a low probability density at Rij 1004 
= 0.0. Formally, we set a target that for all p*ij, prob (Rij = 0.0) should be <0.5 and 1005 
ideally <<0.5. However, a second consideration is that in range-edge countries, the 1006 
likely probability density at zero is affected by the size of decline implied by a status 1007 
change. To illustrate this, we take the example of a country that holds 10% of a 1008 
species’ range and the most frequent criterion justifying a status change, population 1009 
loss (Red List category A(2-4)3). When population loss occurs, the Red List 1010 
assessment for any particular period is based on a rate of change over time, and so a 1011 
change in Red List status expresses a second-derivative change in the rate of change 1012 
i.e. additional net mortality/disappearance over and above what had occurred in the 1013 
previous assessment period. Clearly, if a status change formally represented a 99% 1014 
increase in mortality/disappearance for the entire species, there would be a strong 1015 
probability that at least some of those additional deaths or disappearances had 1016 
occurred in the 10%-holding country. However, genuine status changes generally 1017 
imply an increase in loss of a few tens of percentage points. For example, a common 1018 
status change is LC to VU, where LC can imply anywhere between zero decline and 1019 
29.9% loss over a period of ten years or three generations, and VU is defined as 1020 
anywhere between 30% and 49.9% loss (depending on the use of the near-threatened 1021 
category by assessors)81. If we take the midpoints of these ranges (15% and 40% 1022 
respectively), then an LC-to-VU change would indicate an average 25 percentage 1023 
point increase in loss (the difference between 40% and 15%), while other changes not 1024 
at the exact midpoints would indicate a difference in decline rates above or below 25.  1025 



 24

Since the additional deaths underlying a status change are generally non-1026 
randomly clustered in geographic space as wave fronts expanding from points of 1027 
increased human pressure36, this 25-point change can be imagined as a small number 1028 
of clusters of additional net loss placed onto a gridded range, where the 10%-holding 1029 
country occupies the leftmost 10% of the grid and another country or countries, the 1030 
rightmost 90%. Often, such spatially-clustered mortality increases might be expected 1031 
to fall entirely within the rightmost 90%, implying that a 10%-holding country will 1032 
frequently have no responsibility. To explore this intuition this more quantitatively, 1033 
we simulated a 25-point population loss as a varying (2-5) number of rectangular 1034 
blocks that covered a total of 25% of a 10x10 gridded range. The first column of the 1035 
grid was then treated as the 10%-holding country and the remaining 9 columns to 1036 
another country or countries: (it is moot whether it is one or several countries in the 9 1037 
columns because the simulation focuses only on the likelihood that the 10% country 1038 
will not have any part of any decline cluster overlapping its territory). The blocks 1039 
were then placed independently of each other, for a limited number of trials (n=100) 1040 
to introduce stochasticity, onto the gridded range and for each placement, we tested 1041 
whether any part of the leftmost column had been overlapped. Overall, we found that 1042 
the probability of any overlap between a block and the leftmost 10% of the grid was 1043 
generally <0.5, varying with the number of blocks. For example: if the decline occurs 1044 
as two independently-placed blocks, the simulated probability of overlap was 0.19, 1045 
giving a 0.81 probability that the range-edge country has Rij = 0 (i.e. an 81% chance 1046 
of a false positive). When the 25-point decline was modelled as five independently 1047 
dropped blocks, the overlap probability rose to 0.41, indicating a 59% chance of a 1048 
false positive – still appreciably greater than our target false-positive rate of <<0.50. 1049 
These values are also conservative because clusters of loss are often not spatially 1050 
independent of each other but rather, may be grouped due to larger-scale spatial 1051 
contagion in threats and associated losses36. Such grouping further reduces the 1052 
random probability of an overlap with the range edge and thus, would increase the 1053 
false positive rate further. Similar outcomes occur for other percentage point increases 1054 
in mortality, as implied by other IUCN status changes.  1055 

Indeed, even if the 25-point population loss is unrealistically (and highly 1056 
conservatively) modelled as spatially homogeneous, then define q = the change in rate 1057 
of species decline required to trigger a change in Red List status (such that in the 1058 
example, q = 0.25). Under an assumption of homogeneity, the theoretical maximum 1059 
responsibility that a 10%-holding country can have for 25% change is ~40%, or 1060 
10/25. More formally, we define the 99th percentile of theoretically probable Rij for 1061 
the 10%-holding country as pij/q = 0.1/0.25 = 0.4. A distribution with a 99th percentile 1062 
at 0.4 is likely to have a relatively strong skew and consequently, a relatively high 1063 
probability density at Rij = 0, since skewness in the theoretical probability distribution 1064 
for Rij increases at an accelerating rate as the entire distribution moves to the left. 1065 

There is therefore a strong likelihood that even for non-trivial pij, such as 10% or 1066 
more, the probability that (Rij = 0) will be greater than the algorithm’s target of <<0.5. 1067 
Therefore, the theoretical expectation is that to avoid false positives to a sufficient 1068 
degree, the threshold T may need to be set at greater than 0.1 and potentially as high 1069 
as 0.2 or more. To further explore this expectation empirically, we further examined 1070 
exploratory biplots of BDS against its predictors when T is varied between 0.05 and 1071 
0.25. We found that as T was reduced, and as expected from our theoretical treatment, 1072 
increasingly large numbers of likely false positives became included in the BDS 1073 
dataset, with noise increasing rapidly at T<0.1 (i.e. an increasingly dense cloud of 1074 
points with trivially small BDS values developed). On the other hand, increasing T 1075 
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from 0.14 to 0.25 caused little variation in Rij values themselves, but progressively 1076 
reduced sample size (and so power) in the continuous analysis, with the drop off in 1077 
sample size being small between T = 0.1 and T=0.17, then larger between T = 0.17 1078 
and T = 0.25 (see Supplementary Results).  1079 

Simulation and probability theory can therefore suggest the approximate range 1080 
for appropriate values of T but the exact optimal value must remain uncertain. To 1081 
account for this uncertainty and its possible impact on model outcomes, we performed 1082 
our final analysis three times for three different values of T: 0.10, 0.17 and an extreme 1083 
value of 0.25. The main text of the paper shows results for T = 0.17, being the 1084 
parameter value where false positives could be reduced as far as possible, and yet 1085 
without the trade-off of sample size reduction becoming severe; results for T = 0.10 1086 
and T = 0.25 are described in Extended Data Table 4 and Supplementary Results.  1087 

In formal summary, for each species j, each country i holds R proportional 1088 
responsibility for the total decline d of j. Decline d can be positive and indicate a 1089 
worsening extinction risk (d>0), it can be negative and indicate a reduction in 1090 
extinction risk (“negative decline” i.e. an improvement, d<0) or it can be constant 1091 
(d=0). Each country’s baseline Biodiversity Decline Score (BDSi) is therefore the net 1092 
sum of all its decline fractions and improvements (negative decline fractions): 1093 

BDSi  =  Σ dj Rij        (1)1094 
    j       1095 

 1096 

where 1097 
 1098 

Rij = p*ij / Σ p*ij        (2) 1099 
                         i       1100 

 1101 
where p* indicates the range proportion of each species j in country i after range 1102 
fractions below the minimum percentage T have been set to zero, or formally: 1103 
 1104 

p* =  {p_obs where p_obs >=T} 1105 
 {0 where p_obs <T} 1106 

 1107 
If a species is split 95:5 between two countries and the responsibility R has been 1108 

set to zero for the 5%-holding country, then for consistency, R for the 95%-holding 1109 
country should be increased from 0.95 to 1.0, and equation (2) indeed performs this 1110 
function. However, a widespread species can be spread in small fractions across 1111 
multiple countries without any one country having a major proportion of the range. In 1112 
such cases, if only one country has a range fraction exceeding the threshold (e.g. 1113 
17.1%) then under equation (2), that country would receive a clearly exaggerated 1114 
100% of responsibility for the change in risk status (whereby p_obs = 0.171 but p* = 1115 
1.0). Such cases as fairly rare (widespread species rarely move out of the Least 1116 
Concern category) but to avoid any such error, we reset the denominator of equation 1117 
(2) to unity whenever a widespread species was scattered in small fractions across 1118 
multiple countries. 1119 

To calculate the pij fractions themselves, we extracted the percentage of the 1120 
geographic range of all global bird and mammal species contained within the national 1121 
borders of each country (the range overlap)26. Range overlap for mammals was 1122 
extracted using ArcGIS utilities on the range maps provided by the IUCN Global 1123 
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Mammal Assessment82 (see8 for details). This procedure gave very exact areas of 1124 
overlap for the taxon Mammalia, but the calculation required us to run twenty 1125 
processors in parallel for nearly a month. For the much larger taxon Aves, therefore, 1126 
we used a slightly different procedure. Bird ranges were obtained as polygons in ESRI 1127 
shapefiles provided by Birdlife International83. Species range areas that were 1128 
designated as non-native or dubious presence were excluded a priori. For each 1129 
species X, we then combined wintering and breeding ranges (because threats to bird 1130 
species can occur in both their breeding and wintering ranges), and gridded all range 1131 
polygons onto a 0.1 degree raster grid, using a cylindrical equal-area projection to 1132 
match the projection of the original vector data. We designated all grid cells that had a 1133 
center point lying inside a range polygon for X as 'presence cells' for X, overlaid each 1134 
presence cell onto a vector dataset of the world's countries84 using the over and 1135 
wrld_simpl functions in R packages 'sp'85 and 'maptools'86, allocated the cell to the 1136 
country found at the cell centre point, and then calculated the fraction of all presence 1137 
cells for X found in each country. Prior to this calculation all countries with coastlines 1138 
were enlarged by a 0.05 degree buffer into the sea to account for responsibility of sea 1139 
bird ranges in coastal waters; coastal marine mammals were treated in a similar way, 1140 
see8. 1141 

As an additional accuracy check, we examined individual Red List reports for 1142 
every declining species to see where the range-based approximation of responsibilities 1143 
was clearly inappropriate, and revised those cases accordingly. Our revisions are 1144 
listed in Supplementary Table 4 and include cases where (i) a decline had majorly 1145 
affected how the geographic range was distributed across countries, including cases 1146 
where a species had once been found in other countries but was now missing from 1147 
them; (ii) the species population distribution across countries was poorly correlated 1148 
with the range distribution; and (iii) specified actions e.g. along migratory routes had 1149 
an impact clearly disproportionate to the percentage of the global range found in the 1150 
country carrying out those actions.  1151 

At a theoretical extreme, a 100% range fraction for a declining species could 1152 
indicate that one country contains the last extant individuals of a species that used to 1153 
be widespread in neighboring countries. The 100%-holding country would then 1154 
represent a final “oasis” at the species’ former range edge, and it would be wholly 1155 
unjust to assign 100% responsibility for the decline to it. However, our assumption is 1156 
that in the mere eight-to-twelve years between our IUCN assessments, there will 1157 
rarely be a case where a species has been extirpated from its main homeland countries 1158 
without some record of this event existing. We applied the BDS adjustments based on 1159 
Red List reports after the adjustments for range edges (reBDS), and so our method 1160 
corrected for any such anomaly. For example, Addax nomasculatus (the rare 1161 
screwhorn antelope) has recently disappeared from Chad and Mali and so we 1162 
incremented the BDS of those two countries to reflect this (Supplementary Table 4).  1163 
 1164 

 1165 
Data availability 1166 
The authors declare that the data supporting the findings of this study are 1167 

available within the Supplementary Information; original socioeconomic data (except 1168 
governance values) can also be sourced from the World Bank 1169 
http://databank.worldbank.org; original governance values can also be sourced from 1170 
the Worldwide Governance Indicators dataset www.govindicators.org (governance 1171 
data). 1172 

 1173 
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Code availability 1174 
R scripts used in analysis are available upon request from the corresponding 1175 

author. 1176 
 1177 

1178 
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 1179 
EXTENDED DATA LEGENDS 1180 
 1181 
 1182 
Extended Data Figure 1 | The average per-species BDS for each country (i.e. BDS/total fractional 1183 
species richness, expressed as a percentage). Dark red = > 5%, dark orange/red = 2.5 – 5%, mid 1184 
orange = 1 – 2.5%, pale yellow = 0 – 1%, grey = 0%, blue = improving (negative percentage), light 1185 
grey hatching = cannot be calculated (zeroes in the denominator). Note that in more species-poor 1186 
countries e.g. much of Europe and the Arab geographic crescent, zeroes are expected at random 1187 
(supplementary methods). See Supplementary Table 1 for precise values per country. Country outlines 1188 
supplied by esri_dm 1189 
https://www.arcgis.com/home/item.html?id=d86e32ea12a64727b9e94d6f820123a2#overview 1190 
 1191 
Extended Data Figure 2 | The effect of agricultural expansion on decline (binomial part, n=109 1192 
independent countries) depends on both governance improvement and the existing percentage of 1193 
land converted.  1194 
The effect (coefficient) of agricultural expansion on the probability of a decline occurring is shown on 1195 
the y axis and varies with the rate of governance improvement on the x axis. Coefficients >0 (above the 1196 
dashed line) indicate that agricultural growth increases the probability of a decline occurring, v.v. for 1197 
<0. However, the coefficient further depends on a second moderator, the % of land converted to 1198 
agriculture: red =50ile of % land conversion, grey =25ile; lines show mean and coloured bands show 1199 
conditional 95% confidence intervals. Note how effects are most strongly deleterious on less heavily 1200 
converted landbases. Rug plot at bottom shows empirical distribution of x-axis values (but note that 1201 
countries with more % agric. land generally have slow governance improvement). All variables are z-1202 
standardised.  1203 
 1204 
Extended Data Figure 3  | The impact of conservation spending on decline depends on threatened 1205 
species richness and on GDP. (a) Spending effect size and threatened species richness (continuous 1206 
part, n=50 independent countries); (b) spending effect size and GDP (binomial part, n=109 independent 1207 
countries). The effect size (coefficient) for spending is shown on the y axis and varies with the value of 1208 
species richness on the x axis. The more negative the coefficient is on the y axis, the more strongly 1209 
spending reduces declines (continuous) or the probability of a decline occurring (binomial). 1210 
Conditional confidence bands are shown; rug plots at bottom show empirical distribution of x-axis 1211 
values. All variables are z-standardised.  1212 
 1213 
Extended Data Figure 4 | Observed declines versus model-predicted declines. (a) BDS versus 1214 
predicted BDS in the continuous part (n=50 independent countries). Both axes are ln-transformed for 1215 
clarity; (b) As (a), but zooming in to the lower-BDS countries only (note axes values in (a) and (b)); (c) 1216 
Observed decline events (BDSb) versus the predicted probabilities of a decline event, from the 1217 
binomial part (n=109 independent countries). Observed decline events on the x axis (0 = no decline 1218 
occurred, 1 = decline occurred) have been jittered for visibility; (d) Change in model prediction when 1219 
top 3 BDS values are excluded: black line = full dataset prediction, dashed red line = prediction with 1220 
exclusions.  1221 
 1222 
Extended Data Figure 5 | Distributions of BDS and species range fractions across countries. (a) 1223 
Index plot of BDS scores. For clarity, BDS has been ln(x+10) transformed, and so the straight line at 1224 
2.3 shows the long tail of zeroes. (b) Distribution of all range fractions in all countries, showing the 1225 
very large number of small, range-edge fractions (<10% of a species is found in a country). (c) 1226 
Distribution of the maximum range fraction for all species, showing how a large number of species 1227 
have >90% of their range in one country. (d) Distribution of the minimum range fraction for all species, 1228 
showing how very many species have a small range edge (<10% of their range) in a second country.  1229 
 1230 
Extended Data Figure 6 | Differences in absolute Pearson’s correlations between conservation 1231 
spending and each of its covariates before and after carrying out covariate balancing propensity 1232 
score weighting (CBPS). (a) continuous analysis; (b) binomial analysis. Upper bars show absolute 1233 
Pearson correlations prior to CBPS, lower bars after CBPS. Box shows interquartile range with the 1234 
median (bold central line). Whiskers show most extreme data point no more than 1.5 times the 1235 
interquartile range. N=50 independent countries. 1236 
 1237 
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 1238 
Extended Data Table 1 | List of regression terms tested. Also shown are the best-fitting four 1239 
models from continuous analysis with their AICc values, Akaike weights and variables (see 1240 
Supplementary Table 2 for full continuous-model results). Spending = conservation spending PPP; 1241 
Agric. = agricultural; governance = government effectiveness indicator. In main body of table, 1 = term 1242 
included, 0 = term not included.  1243 
  1244 
Extended Data Table 2 | Cross correlations between variables. $$ = conservation spending PPP; 1245 
Agric. = agricultural; Pop = population; Gov = governance; Decl = declines; Spp. Rich = threatened 1246 
species richness; For. Loss = % forest loss; Area = country area. 1247 
 1248 
Extended Data Table 3 | Variance inflation factors (VIFs) for the continuous and binomial model 1249 
parts. Spending = conservation spending PPP; Agric. = agricultural; Pop = population; Gov = 1250 
governance; Spp. Rich = threatened species richness; Area = country area.  1251 
 1252 
Extended Data Table 4 | Standardized coefficients for best-fitting models under alternative 1253 
assumptions. Best-fit models that used alternative values of the threshold T are shown. We very 1254 
strongly caution that for interacting variables (marked *), the coefficients shown cannot be interpreted 1255 
by simply reading the table (refer to the Supplementary Results for their complex interpretation). 1256 
“Agric. land” = mean percentage of agricultural land; t-1 = 1994-2000, t-2 = 1988-1994; GDP = Gross 1257 
domestic product per capita PPP. Population = rural population density; governance improvement = 1258 
change in the government effectiveness score. For T=0.10, sample size increased to n=53 independent 1259 
countries in the continuous part (index parameter = 1.99), and the ratio of ones to zeroes was 44:65 in 1260 
the binomial part. Equivalent values for T=0.25 are n=43 independent countries (i.e. a large sample 1261 
size decrease) and a ratio of 37:74. 1262 
 1263 
 1264 
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