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Abstract. In recent years, the key principles behind Separation Logic
have been generalized to generate formalisms for a number of verification
tasks in program analysis via the formulation of ‘non-standard’ mod-
els utilizing notions of separation distinct from heap disjointness. These
models can typically be characterized by a separation theory, a collection
of first-order axioms in the signature of the model’s underlying ordered
monoid. While all separation theories are interpreted by models that
instantiate a common mathematical structure, many are undefinable in
Separation Logic and determine different classes of valid formulae, lead-
ing to incompleteness for existing proof systems. Generalizing systems
utilized in the proof theory of bunched logics, we propose a framework of
tableaux calculi that are generically extendable by rules that correspond
to separation theories axiomatized by coherent formulas. This class cov-
ers all separation theories in the literature—for both classical and intu-
itionistic Separation Logic—as well as axioms for a number of related
formalisms appropriate for reasoning about complex systems, security,
and concurrency. Parametric soundness and completeness of the frame-
work is proved by a novel representation of tableaux systems as coherent
theories, suggesting a strategy for implementation and a tentative first
step towards a new logical framework for non-classical logics.
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1 Introduction

Separation Logic [39], introduced by Ishtiaq and O’Hearn [32], Reynolds [44],
Yang and O’Hearn [50], is a Hoare-style program logic suitable for reasoning
about programs that mutate data structures. In its original formulation, the
assertion language of Separation Logic is based on a model of O’Hearn and
Pym’s logic of bunched implications [40] formulated by considering heaps as
possible worlds with internal structure that allows their decomposition into sep-
arate pieces of memory. This decomposition is witnessed in the logic by the
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separating conjunction ∗, with φ ∗ ψ informally read as ‘the heap can be split
into separate parts; one satisfying φ and the other satisfying ψ’.

Calcagno et al. [13] abstract the details of the heap model to a structure called
a separation algebra, a partial-deterministic and cancellative monoid model of
the Boolean logic of bunched implications (BBI), which can be used to generate
bespoke separation logics suitable for program analysis tasks beyond that of the
original formalism. Conflicting definitions of separation algebra have since been
given by adding/removing first-order properties or strengthening/weakening the
monoid properties [10,14,21,24]. These mutually exclusive definitions can be
encompassed in a framework of separation theories [10], collections of first-order
axioms (separation properties) common to separation logic models which the
definition of (B)BI model can be extended by. All separation logics in the lit-
erature can be seen to be models of separation theories, while the frameworks
Views [21] and Iris [33] explicitly implement the idea of generating program
logics parametrically by separation theory.

Recent work has revealed an expressivity gap between the logic of bunched
implications and common separation theories in the literature, however. Broth-
erston and Villard [10], Larchey-Wendling and Galmiche [36] show that separa-
tion properties like indivisibility of units and partial deterministic composition
determine distinct sets of valid BBI formulae, leading to the incompleteness of
standard proof systems with respect to typical classes of memory models. To
make matters worse, Brotherston and Villard additionally show that many sep-
aration properties (among them partial determinism) are undefinable in BBI,
and thus cannot be axiomatized by the logic. These results also hold for BI,
the intuitionistic logic of bunched implications. This is an increasingly relevant
issue given the growing number of intuitionistic separation logics, most promi-
nent amongst them Iris, a framework that utilizes a ‘later’ modality [37] that
can only be nontrivially defined in intuitionistic systems.

This expressivity gap is a significant problem for Separation Logic. A theorem
prover for deriving assertions satisfied by the underlying model is a necessary
component of any implementation of a separation logic, with the deployable
proof theory of the standard formalism crucial for its scalability to large code
bases [12,50]. Standard implementations are model-specific, however, and only
suitable for the heap model. In order to account for the large numbers of bespoke
separation logics, as well as Views/Iris-style frameworks, we require tools that
support parametrization by separation theory.

Technical Approach. The present work generalizes methods pioneered on
tableaux systems for a range of logics including and related to BI and BBI
[20,22,28,34] to specify modular tableaux calculi for the breadth of separation
theories in the literature, proved sound and complete uniformly and parametri-
cally in choice of separation theory. While previous systems implicitly implement
a systematic method for constructing tableaux proof theory for bunched logics,
subtle but significant changes must be made to additionally capture separation
theories. Past systems can be formulated as particular instances of our frame-
work, thus making the systematic method explicit.
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First, we specify tableaux proof systems for BI and BBI, the propositional
basis for Separation Logic. The key difference between our calculi and tableaux
systems previously given in the literature is that we do not outsource any part
of the derivation of proofs to an algebra of labels or auxilliary proof system
for constraints. Instead, we utilize frame expansion rules that are of the same
form as the standard logical expansion rules of the system. These rules capture
the same structural properties (and more) but can also be added/removed in
a modular fashion. Crucially, this ensures separation properties—for example,
partial determinism—are not hard-coded into the basic systems via the structure
of labels, and facilitates the parametricity of our completeness theorem.

We extend these systems with a rule schema for separation properties that are
axiomatized by coherent formulae; a subset of first-order formulae with a special
syntactic form. This set contains every separation property that can be found
in the literature and is expressive enough to include virtually any axiom that
might be utilized in future. The strength of this statement can be justified by a
folklore result recently reconstructed by Dyckhoff and Negri [25] that shows that
every first-order axiom can be reconstructed as an equivalent system of coherent
formulae. We thus obtain a modular framework of (B)BI +Σ-tableaux systems,
where Σ is an arbitrary collection of coherent axioms.

In order to prove soundness and completeness of the system, we utilize a novel
representation of labelled tableaux systems as theories of coherent logic. The key
insight here is that the translation of coherent formulae into tableaux rules is
not one way: tableaux rules can naturally be seen as coherent formulae in a
signature augmented with special predicate symbols. The parametric soundness
and completeness of the framework can then be reduced to proving the soundness
and completeness of Tarskian truth for coherent logic with respect to a meta-
tableaux method, a problem positively resolved by Bezem and Coquand [4]. To
our knowledge, the application of this technique to labelled tableaux is new,
although, in the aforementioned work, Bezem and Coquand show how to encode
the tableaux method for first-order classical logic as a coherent theory, and trace
the idea of abbreviating formulae with predicate symbols to Skolem [47].

Contributions. We identify three principal contributions.

1. A sound and complete proof theory for the full breadth of separation theories
in the literature. Notably, this includes the first proof theoretic treatment of
separation theories for intuitionistic Separation Logic.

2. A new technique for constructing proof systems for essentially any logic inter-
preted on Kripke structures that are axiomatized by coherent theories.

3. The identification of tableaux systems with theories of coherent logic.

On points 2 and 3, we believe many tableaux systems in the literature are sub-
sumed by this method, with their respective ‘Hintikka set’ completeness proofs
actually localized instances of the parametric completeness theorem given here.
This suggests the possibility of a logical framework for non-classical logics via the
representation of tableaux systems as coherent theories. This may be related to
Schmitt and Tishkovsky’s [45] technique for automatically synthesising tableaux
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calculi for logics that can be presented as first-order theories in a particular form.
We believe the “rule refinement” post-processing their tableau rules undergo
after synthesis can be made redundant by instead synthesising from coherent
theories, but we defer such an investigation to another occasion.

Related Work. While much work has been done on the proof theory of BI
and BBI [9,28,29,41], as well as proof systems for the concrete heap model
of Separation Logic [5,27,30], very little exists for separation theories. A key
exception to this is Hóu et al.’s [31] labelled sequent calculi for propositional
abstract separation logic. There, a labelled sequent calculus for BBI is extended
with rules corresponding to the most common separation properties – partial
determinism, cancellativity, indivisible unit and disjointness – and completeness
and cut elimination is proved. In Hóu’s PhD dissertation [29] the properties
cross-split and splittability are additionally handled, although completeness for
these new rules requires ‘non-trivial changes’ to the previous proofs.

The classes of model captured by our systems strictly extend those of Hóu
et al. [31]—in particular, by additionally considering classes of BI models that
are appropriate for intuitionistic separation logics—and our calculi are proved
complete uniformly. Our systems are also generically extendable according to
a rule schema, meaning the framework should be suitable for new separation
theories devised in the future. A deficiency of our approach with respect to Hóu
et al.’s is a lack of implementation, though we note that the representation of our
systems as theories of coherent logic suggests off-the-shelf coherent logic provers
(cf. [43]) could be used to give naive implementations of our framework.

Brotherston and Villard [10] deal with the undefinability of separation the-
ories by defining a conservative extension of BBI called HyBBI, extending the
syntax with nominals, satisfaction operators and binders. This extra expressiv-
ity leads to the axiomatizability of the undefinable separation properties. This
work is not specifically concerned with proof theory, giving only a Hilbert-style
system for HyBBI, and has the defect of requiring modifications to the syntax
of Separation Logic. In addition, a significant theoretical reformulation would
be required to capture intuitionistic separation theories this way. In contrast, in
our work the necessary machinery is internalized within the proof system and
both Boolean and intuitionistic cases are taken care of uniformly.

Finally, we connect our work to a line of research in proof theory investigating
the generation of proof rules from coherent theories. Simpson [46] and Braüner
[8] have used this technique to produce natural deduction rules, while Negri
[38] has extensively developed it to generate (systems of) labelled sequent rules
from frame conditions axiomatized by (generalized) coherent formulae. To our
knowledge the present work is the first application of these ideas to the tableaux
method. In addition, we believe the encoding of the proof systems themselves as
coherent theories is novel.
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2 Preliminaries

The Logics of Bunched Implications. We first recall O’Hearn and Pym’s
logics of bunched implications BI and BBI [40], the propositional basis of Separa-
tion Logic’s assertion language. BI and BBI are archetypal examples of bunched
logics; systems given by combining the standard additives of classical or intution-
istic propositional logic with the multiplicatives of a substructural logic. This idea
has been developed to give logics for reasoning about concurrency [23] and the
layering structure of complex systems [17,18,22], Hennessey-Milner-style pro-
cess logics for reasoning about security and systems modelling [1,19] and modal
and epistemic systems for reasoning about reachability/knowledge subject to the
availability of resources [20,26].

Let Prop be a set of atomic propositions, ranged over by p. The set of all
formulae of (B)BI is generated by the following grammar:

φ ::= p | � | ⊥ | I | φ ∧ φ | φ ∨ φ | φ → φ | φ ∗ φ | φ −∗ φ.

For BI, the standard connectives are interpreted intuitionistically; in BBI, clas-
sically. Negation is defined by ¬φ := φ → ⊥. Figure 1 gives Hilbert rules for the
multiplicative fragment of the logics.

ξ � φ η � ψ

ξ ∗ η � φ ∗ ψ

η ∗ φ � ψ

η � φ −∗ ψ

ξ � φ −∗ ψ η � φ

ξ ∗ η � ψ

(φ ∗ ψ) ∗ ξ � φ ∗ (ψ ∗ ξ) φ ∗ ψ � ψ ∗ φ φ ∗ I �� φ

Fig. 1. Rules for the multiplicative fragment of (B)BI.

A BI frame is given by a tuple X = (X,≤, ◦, E), where (X,≤) is a partial
order, ◦ : X2 → P(X) a binary composition (where P(X) denotes the power set
of X) and E ⊆ X a set of units for ◦. This structure must satisfy the following
axioms, where the outermost universal quantification is left implicit:

(Comm) z ∈ x ◦ y → z ∈ y ◦ x (Up) e ∈ E ∧ e ≤ e′ → e′ ∈ E
(Unit 1) ∃e ∈ E(x ∈ x ◦ e) (Unit 2) x ∈ y ◦ e ∧ e ∈ E → y ≤ x
(Assoc) t′ ≥ t ∈ x ◦ y ∧ w ∈ t′ ◦ z → ∃s, s′, w′(s′ ≥ s ∈ y ◦ z ∧ w ≥ w′ ∈ x ◦ s′).

The axioms formalize intuitive ideas about the composition of generic resources;
for example, that the composition satisfies a generalized associativity that is com-
patible with the comparison order. This analysis is known as resource semantics.

A sound interpretation of BI is given by extending the standard poset seman-
tics for propositional intuitionistic logic. This requires a persistent valuation: a
map V : Prop → P(X) such that x ∈ V(p) and x ≤ y entail y ∈ V(p). We
call a BI frame X together with a persistent valuation V a Kripke BI model.
The satisfaction relation �V is given in Fig. 2. As is standard for intuitionistic
logics, persistence extends to all formulae of BI. Kripke BBI models and their
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r � p iff r ∈ V(p) r � � r �� ⊥
r � φ ∧ ψ iff r � φ and r � rψ � φ ∨ ψ iff r � φ or r � ψ

r � φ → ψ iff for all r′ ≥ r, r′ � φ implies r′ � ψ; r � I iff r ∈ E

r � φ ∗ ψ iff there exists r′, s, t such that r ≥ r′ ∈ s ◦ t, s � φ and t � ψ

r � φ −∗ ψ iff for all r′, s, t: r ≤ r′, t ∈ r′ ◦ s and s � φ implies t � ψ

Fig. 2. Satisfaction for (B)BI. BBI is the case where ≤ is substituted with =.

associated semantics are given by the special case of the definitions for BI when
the partial order ≤ is equality.

Coherent Logic. Coherent logic is the fragment of first-order logic consisting
of formulae of the form A1(⇀x)∧· · ·∧An(⇀x) → ∃⇀y1B1(⇀x, ⇀y1)∨· · ·∨∃⇀ymBm(⇀x,⇀ym),
for n,m ≥ 0, where each Ai is an atomic formula involving only variables from
the vector ⇀x, and each Bi is the conjunction of atomic formulae involving only
variables from the vectors ⇀x and ⇀yi. In a coherent formula, the variables ⇀x are
implicitly universally quantified (with scope the whole formula) and both ⇀x and
⇀yi may be empty. The case n = 0 is a consequent that is always true—� →
∃⇀y1B1(⇀x, ⇀y1) ∨ · · · ∨ ∃⇀ymBm(⇀x,⇀ym)—similarly, the case m = 0 is an antecedent
that is always false: A1(⇀x) ∧ · · · ∧ An(⇀x) → ⊥.

This fragment of first-order logic is sometimes referred to as geometric logic;
however, we reserve this name for the generalization of the definition given here
that permits the consequent to be an infinite disjunction. In turn, coherent logic
generalizes—via the case m = 1 with empty ⇀y1—the Horn clause fragment of
first-order logic utilized in logic programming and first-order theorem provers
based on the resolution method.

We call a set of coherent formulae Φ a coherent theory. Models of coherent
theories are given in a way standard for first-order logic: a Tarskian model of Φ
is a non-empty set X together with an interpretation I, which assigns to every n-
ary relation symbol R in the signature a set RI ⊆ Xn such that for each coherent
formulae in Φ, for all ⇀x ∈ X, the consequent ∃⇀y1 ∈ X(BI(⇀x, ⇀y1)) ∨ · · · ∨ ∃⇀ym ∈
X(BI(⇀x,⇀ym)) is true whenever the antecedent AI

1 (⇀x) ∧ · · · ∧ AI
n(⇀x) is true.

Many common mathematical structures are axiomatized by coherent theo-
ries. For example, algebraic structures like groups, rings, lattices, and fields, as
well as total, partial, and linear orders. Further examples are found in the the-
ory of confluence for term rewriting systems [4,48]. Of interest for our purposes,
(B)BI frames are axiomatized by coherent theories. As we will see, every known
separation property is given directly as a coherent axiom, with the exception of
Splittability, which can be rewritten as a coherent theory.

3 Modular Tableaux Calculi for Separation Theories

The Base Tableaux Systems. We begin with tableaux systems designed for
the semantics of (B)BI as outlined in Sect. 2. As is standard for tableaux systems,
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Logical expansion rules

〈T∧〉 Tφ ∧ ψ : x ∈ F
〈{Tφ : x,Tψ : x}, ∅〉 〈F∧〉 Fφ ∧ ψ : x ∈ F

〈{Fφ : x}, ∅〉 | 〈{Fψ : x}, ∅〉

〈T∨〉 Tφ ∨ ψ : x ∈ F
〈{Tφ : x}, ∅〉 | 〈{Tψ : x}, ∅〉 〈F∨〉 Fφ ∨ ψ : x ∈ F

〈{Fφ : x,Fψ : x}, ∅〉

〈TI〉 TI : x ∈ F
〈∅, {Ex}〉

Frame expansion rules

〈Ref〉 Expr(x) ∈ C ∪ F
〈∅, {x ∼ x}〉 〈Trans〉 x ∼ y, y ∼ z ∈ C

〈∅, {x ∼ z}〉

〈Cong〉 x ∼ y, y ∼ x, Expr(x) ∈ C
〈∅, {Expr(y/x)}〉 〈Comm〉 R∗xyz ∈ C

〈∅, {R∗yxz}〉

〈Unit 1〉 Expr(x) ∈ F ∪ C
〈∅, {Eci, R∗xcix}〉 〈Unit 2〉 R∗xyz, Ey ∈ C

〈∅, {x ∼ z}〉

with ci a fresh label and Expr(x) any expression in which x occurs.

Fig. 3. Shared rules for the tableaux systems.

derivations in our calculi are implicit attempts to construct a countermodel for
the formula φ to be proved. This is done via the derivation of syntactic expres-
sions that give partial specifications of a (B)BI model that can be realized as a
real model if the formula is invalid. If every possible countermodel construction
(i.e., every branch of a tableau) results in a contradiction, then we may conclude
that no countermodel exists and call such a tableau a proof of φ.

The calculi work with two types of syntactic expression. First we have labelled
formulae Sφ : x, given by a sign S ∈ {T,F} together with a (B)BI formula φ
and a label x ∈ {ci | i ∈ N}. A labelled formula states that a (B)BI formula φ
is true (T) or false (F) at the state represented by the label x. The other type
are called constraints, and encode a partial specification of the structure of a
(B)BI frame. For labels x, y, z ∈ {ci | i ∈ N}, a constraint is an expression of the
form x ∼ y, R∗xyz or Ex, corresponding to the state represented by x being ≤
that represented by y, the state represented by z being a composition of those
represented by x and y, or the state represented by x being a unit, respectively.

Unlike other bunched logic tableaux systems, we only utilize atomic labels,
as opposed to a monoidal algebra of labels that encodes properties of the multi-
plicative connectives. New constraints are derived only by frame expansion rules
(which directly reflect the axioms that define (B)BI frames and equality), rather
than through the properties of a label algebra and a separate proof system for
constraints. A constrained set of statements (CSS) is a pair 〈F , C〉, where F is a
set of labelled formulae and C is a set of constraints. It is finite if F and C are.

Informally, tableaux are trees annotated with finite CSSs. Each branch deter-
mines a CSS 〈F , C〉 where F (respectively C) is the union of the formula (con-
straint) sets that occur on the branch. Figures 3 and 4 give rules dictating the
expansion of tableaux: Fig. 3 gives rules shared by both the BI and BBI systems,
while Fig. 4 gives rules exclusive to each system. While ci, cj , ck denote concrete
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fresh labels, x, y, z etc. are label variables. An instance of a rule is triggered for
a branch CSS when a concrete substitution instance of the premiss holds of it,
and the same label substitutions carry through to the (branching) CSS(s) that
the conclusion dictates are added to the tree. We now define (B)BI tableaux
formally, with ⊕ giving concatenation of lists.

Logical expansion rules for BI

〈T →〉 Tφ → ψ : x ∈ F and x ∼ y ∈ C
〈{Fφ : y}, ∅〉 | 〈{Tψ : y}, ∅〉 〈F →〉 Fφ → ψ : x ∈ F

〈{Tφ : ci,Fψ : ci}, {x ∼ ci}〉

〈T∗〉 Tφ ∗ ψ : x ∈ F
〈{Tφ : ci,Tψ : cj}, {R∗cicjck, ck ∼ x}〉 〈F∗〉 Fφ ∗ ψ : x ∈ F and R∗yzw, w ∼ x ∈ C

〈{Fφ : y}, ∅〉 | 〈{Fψ : z}, ∅〉

〈T−∗〉 Tφ −∗ ψ : x ∈ F and x ∼ w, R∗wyz ∈ C
〈{Fφ : y}, ∅〉 | 〈{Tψ : z}, ∅〉 〈F−∗〉 Fφ −∗ ψ : x ∈ F

〈{Tφ : cj ,Fψ : ck}, {x ∼ ci, R∗cicjck}〉

Frame expansion rules for BI

〈Assoc〉 t ∼ t′, R∗xyt, R∗t′zw ∈ C
〈∅, {ci ∼ cj , ck ∼ w, R∗yzci, R∗xcjck}〉 〈Up〉 Ex, x ∼ y ∈ C

〈∅, {Ey}〉

Logical expansion rules for BBI

〈T¬〉 T¬φ : x ∈ F
〈{Fφ : x}, ∅〉 〈F¬〉 F¬φ : x ∈ F

〈{Tφ : x}, ∅〉

〈T →〉 Tφ → ψ : x ∈ F
〈{Fφ : x}, ∅〉 | 〈{Tψ : x}, ∅〉 〈F →〉 Fφ → ψ : x ∈ F

〈{Tφ : x,Fψ : x}, ∅〉

〈T∗〉 Tφ ∗ ψ : x ∈ F
〈{Tφ : ci,Tψ : cj}, {R∗cicjx}〉 〈F∗〉 Fφ ∗ ψ : x ∈ F and R∗yzx ∈ C

〈{Fφ : y}, ∅〉 | 〈{Fψ : z}, ∅〉

〈T−∗〉 Tφ −∗ ψ : x ∈ F and R∗xyz ∈ C
〈{Fφ : y}, ∅〉 | 〈{Tψ : z}, ∅〉 〈F−∗〉 Fφ −∗ ψ : x ∈ F

〈{Tφ : ci,Fψ : cj}, {R∗xcicj}〉

Frame expansion rules for BBI

〈Assoc〉 R∗xyt, R∗tzw ∈ C
〈∅, {R∗yzci, R∗xciw}〉 〈Sym〉 x ∼ y ∈ C

〈∅, {y ∼ x}〉

with ci, cj , ck fresh labels, Expr(x) any expression in which x occurs.

Fig. 4. Tableaux rules for (B)BI

Definition 1 (Tableau). A (B)BI tableau for a finite CSS 〈F0, C0〉 is a list of
CSSs, called branches, built inductively according to the following rules:

1. The one branch list [〈F0, C0〉] is a tableau for 〈F0, C0〉;
2. If the list Tm ⊕ [〈F , C〉] ⊕ Tn is a tableau for 〈F0, C0〉 and

Premiss
〈F1, C1〉 | . . . | 〈Fk, Ck〉

is a (B)BI expansion rule from Figs. 3 or 4 for which a concrete instance of
Premiss is fulfilled by 〈F , C〉, then the list Tm ⊕ [〈F ∪ F1, C ∪ C1〉; . . . ; 〈F ∪
Fk, C ∪ Ck〉] ⊕ Tn is a tableau for 〈F0, C0〉.

A (B)BI tableau for φ is a (B)BI tableau for 〈{Fφ : c0}, ∅〉. ��
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Partial Determinism z ∈ x ◦ y ∧ z′ ∈ x ◦ y → z = z′

Total ∃z(z ∈ x ◦ y)
Cancellativity z ∈ x ◦ y ∧ z ∈ x ◦ y′ → y = y′

Single Unit x ∈ E ∧ x′ ∈ E → x = x′

Indivisible Units x ∈ y ◦ z ∧ x ∈ E → y ∈ E

Disjointness x ∈ y ◦ y → y ∈ E

Splittability x ∈ E ∧ x ∈ E → ⊥, x ∈ E ∨ x ∈ E, x ∈ E → ∃y, z(y ∈ E ∧ z ∈ E ∧ x ∈ y ◦ z)
Cross-Split x ∈ t ◦ u ∧ x ∈ v ◦ w → ∃a, b, c, d(t ∈ a ◦ b ∧ u ∈ c ◦ d ∧ v ∈ a ◦ c ∧ w ∈ b ◦ d)
Upwards-Closed z ∈ x ◦ y ∧ z ≤ z′ → ∃x′, y′(z′ ∈ x′ ◦ y′ ∧ x ≤ x′ ∧ y ≤ y′)
Downwards-Closed z ∈ x ◦ y ∧ x′ ≤ x ∧ y′ ≤ y → ∃z′(z′ ∈ x′ ◦ y′ ∧ z′ ≤ z)
Non-Branching x ≤ y ∧ x ≤ y′ → y ≤ y′ ∨ y′ ≤ y

Always-Joins x ≤ y ∧ x ≤ y′ → ∃z(y ≤ z ∧ y′ ≤ z)
Increasing z ∈ x ◦ y → y ≤ z

Unit Self Joining Ex → x ∈ x ◦ x

Normal Increasing z ∈ x ◦ y ∧ Ez → x ≤ z

Fig. 5. Separation properties.

Definition 2 (Closed Tableau/Proof). A CSS 〈F , C〉 is closed if one of the
following closure conditions holds: (1) Tφ : x ∈ F , Fφ : y ∈ F and x ∼ y ∈ C;
(2) F� : x ∈ F ; (3) T⊥ : x ∈ F ; (4) FI : x ∈ F and Ex ∈ C. A CSS is open iff
it is not closed. A tableau is closed iff all its branches are closed. A proof for a
formula φ is a closed tableau for φ. ��

We note that we could simply add 〈T¬〉, 〈F¬〉, and 〈Sym〉 to the BI system
and obtain one for BBI. However, this causes a significant amount of redundancy
in the production of labels and constraints while requiring many more derivation
steps in proofs, something that does not arise with the BBI rules given.

Extension with Separation Theories. A separation property is a first-order
axiom in the language of (B)BI Kripke frames. Figure 5 gives separation prop-
erties taken from across the Separation Logic literature [10,13,14,24], presented
as coherent formulae. A separation theory is thus a collection Σ of axioms from
Fig. 5. The syntactic form of coherent formulae enables a uniform translation of
separation properties into tableaux expansion rules and closure conditions. First,
each first-order atomic formula is translated into constraints: Tr(z ∈ x ◦ y) =
R∗xyz, Tr(x ∈ E) = Ex, Tr(x ≤ y) = x ∼ y and Tr(x = x′) = x ∼ x′, x′ ∼ x.
Given A1(⇀x) ∧ · · · ∧ An(⇀x) → ∃⇀y1B1(⇀x, ⇀y1) ∨ · · · ∨ ∃⇀ymBm(⇀x,⇀ym) with n,m �= 0,
we obtain the frame expansion rule

Tr(A1(⇀x)), . . . , T r(An(⇀x)) ∈ C
〈∅, C1〉 | . . . | 〈∅, Cm〉

,

where each Ci is the set of constraints translated from the conjuncts of Bi, using
fresh labels ⇀ci in place of the previously quantified ⇀yi. For example, the separation
properties Cross-Split and Non-Branching are translated to the rules

R∗tux, R∗vwx ∈ C
〈∅, {R∗cicjt, R∗ckclu, R∗cickv, R∗cjclw}〉 and

x ∼ y, x ∼ y′ ∈ C
〈∅, {y ∼ y′}〉 | 〈∅, {y′ ∼ y}〉 ,
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where ci, cj , ck, cl are fresh labels. The special case n = 0 gives a rule with premiss
Expr1(x1), . . . , Exprp(xp) ∈ F ∪ C, where each Expri(xi) is any expression
in which xi occurs and the xi are the universally quantified variables in the
original formula. The case m = 0 gives a new closure condition consisting of the
conjunction of constraints translated from the antecedent of the original formula.

Note that the property Splittability is defined by a system of coherent axioms.
These axioms force the new predicate E to be interpreted as the complement of
E. When translated into tableaux rules, x ∈ E gives a new constraint Ex.

Given a separation theory Σ, a (B)BI + Σ-tableau/proof is defined in the
same way as Definitions 1 and 2, except that a tableau can also be expanded by
translated Σ-rules, and any new closure properties obtained from Σ can factor
into the closure of a tableau and thus into proofs.

We give an example of a tableau proof in Fig. 6. The formula (¬I −∗ ⊥) → I
is valid in BBI models satisfying Total, but not in all BBI models [35], and
Fig. 6—written, for clarity, using the traditional representation of tableaux and
using ⊗ to denote closed branches—shows that the tableaux system for BBI +
Total proves it. The left-hand branch is closed because both FI : c0, TI : c0 and
c0 ∼ c0 occur, while the right is closed because T⊥ : c1 occurs.

4 Applications to Separation Logics

A separation logic can be determined by an assertion logic to describe machine
state—a theory of (B)BI generated by validity in a concrete model of (B)BI +
Σ for some separation theory Σ—and a specification logic to describe changes
to machine state following program execution—typically a logic of Hoare triples
{φ}C{ψ}, where φ and ψ are formulas of the assertion language and C is a
program in some programming language. Soundness of the frame rule,

{φ }C {ψ }
{φ ∗ χ }C {ψ ∗ χ } ,

where χ does not include any free variables modified by the program C, witnesses
the coherence of these different aspects, and facilitates Separation Logic’s char-
acteristic ‘local reasoning’, which allows conclusions about a program’s effect on
the global state to be derived from reasoning on just the resource it accesses.

(1)
(2)
(3)

(4)
(5)
(6)

〈{F(¬I −∗ ⊥) → I : c0}, ∅〉
〈{T¬I −∗ ⊥ : c0, FI : c0},∅〉

〈∅, {R∗c0c0c1}〉

〈{F¬I : c0}, ∅〉
〈{TI : c0}, ∅〉
〈∅, {c0 ∼ c0}〉

⊗

〈{T⊥ : c1}, ∅〉
⊗

Premiss
〈F →〉, from (1)
Total, from (1)

〈T−∗〉, from (2), (3)
〈F¬〉, from (4)
〈Ref〉, from (5)

Fig. 6. Tableau proof of (¬I −∗ ⊥) → I in the BBI + Total system.
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To demonstrate the wide applicability of our framework we now give a num-
ber of separation logics that are models of separation theories. We note that our
systems can be incomplete with respect to a given concrete model, but this is
as expected for any proof system: the benefit versus a standard (B)BI system—
which will be incomplete with respect to the class of models of a given separation
theory—is the capability to make inferences based on the additional structure the
model carries. Because of space constraints this selection is demonstrative rather
than exhaustive. Other examples include Petri nets [13]; step-indexed models for
storable locks [11] and the Iris framework [33]; separation logics incorporating
named [42] and fractional [7] permissions; and separation logics designed for
message passing [49] and amortized resource analysis [3].

Heaps. Our first example is given by the standard memory models of Separation
Logic [32]. A heap is a partial function h : N → Z, representing an allocation
of memory addresses to values. Given heaps h, h′, h#h′ denotes that dom(h) ∩
dom(h′) = ∅; h · h′ denotes the union of functions with disjoint domains, which
is defined iff h#h′. The empty heap, [], is defined nowhere.

Let H denote the set of all heaps. Then HeapBBI = (H, ·, {[]}) is a BBI
frame. Letting h � h′ denote that h′ extends h, HeapBI = (H,�, ·,H) defines a
BI frame. These frames generate the standard classical and intuitionistic mod-
els of Separation Logic. HeapBBI satisfies Partial Determinism, Cancellativity,
Single Unit, Indivisible Units, Cross-Split and Unit Self Joining; HeapBI addi-
tionally satisfies Splittability, Upwards-Closed, Downwards-Closed, Increasing
and Normal Increasing while dropping Single Unit and Unit Self Joining.

One property distinguishing the standard memory models is that ∗-
elimination—φ∗ψ → ψ, useful for reasoning about garbage-collected languages—
is valid in the intuitionistic heap model but not the classical. Cao et al. [14] show
that this corresponds to the separation property Increasing. Figure 7—written
with a traditional tableau presentation—shows a single branch tableaux proof
of φ ∗ ψ → ψ for BI + Increasing, closed because Tψ : c4, Fψ : c1 and c4 ∼ c1

occur.

Permissions. Permissions are incorporated into variants of separation logics
that are designed to reason about certain kinds of concurrent algorithms and
more fine-grained notions of memory disjointness: for example, disjointness mod-
ulo shared read permission. Hóu [29] reports a schema of Clouston that encom-
passes many such models: we recall it, with two concrete instances.

Let V be a set of values and � : V 2 → V an associative and commutative
partial function. Denote by HV the set of V-valued heaps h : N → V . Then
HeapV = (HV , ◦�, {[]}) is a BBI frame, where ◦� is defined by

h1 ◦� h2(n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h1(n) � h2(n) if n ∈ dom(h1) ∩ dom(h2) and h1(n) � h2(n) ↓
h1(n) if n ∈ dom(h1) \ dom(h2)
h2(n) if n ∈ dom(h2) \ dom(h1)
undefined otherwise.
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(1)
(2)
(3)
(4)
(5)

〈{Fφ ∗ ψ → ψ : c0}, ∅〉
〈{Tφ ∗ ψ : c1, Fψ : c1},{c0 ∼ c1}〉

〈{Tφ : c3, Tψ : c4}, {R∗c3c4c2, c2 ∼ c1}〉
〈∅, {c4 ∼ c2}〉
〈∅, {c4 ∼ c1}〉

⊗

Premiss
〈F →〉, from (1)
〈T∗〉, from (2)
Increasing, from (3)
〈Trans〉, from (2), (3)

Fig. 7. Tableau proof of φ ∗ ψ → ψ in the BI + Increasing system.

Hóu defines Bornat et al.’s [6] counting permissions model with V = Z
2 and

(x, i) � (y, j) =

⎧
⎪⎨

⎪⎩

(x, i + j) if x = y, i < 0 and j < 0
(x, i + j) if x = y, i + j ≥ 0 and (i < 0 or j < 0)
undefined otherwise.

This frame satisfies Partial Determinism, Cancellativity, Indivisible Units, Single
Unit, Cross-Split and Unit Self Joining.

Hóu defines Dockins et al.’s [24] binary tree model by considering the set T
of non-empty binary trees with leaves labelled � or ⊥ that are quotiented by the
smallest congruence that identifies any subtree in which all leaves have the same
label with a single leaf carrying that label. Then V = Z × T , and � is defined,
where ∨ (∧) denotes pointwise disjunction (conjunction) of equivalent trees, by

(x, [t]) � (y, [t′]) =

{
(x, [t ∨ t′]) if x = y and [t ∧ t′] = [⊥]
undefined otherwise.

This frame satisfies Partial Determinism, Cancellativity, Single Unit, Indivisible
Units, Disjointness, Splittability, Cross-Split and Unit Self Joining.

Crash Hoare Logic. Chen et al. [16] use a separation logic to verify that the
FSCQ file system meets its specification and secures its data under any sequence
of crashes. Cao et. al. [14] give the underlying model as the following BI frame.
Let V + be the set of non-empty lists over a set V and ε the empty list. Buffer
heaps are defined to be heaps h : N → V +. Let Hbuff be the set of all buffer
heaps. Then Heapbuff = (Hbuff ,≤, ·, {[]}) is a BI frame, where · is the usual heap
composition, and h1 ≤ h2 iff dom(h1) = dom(h2) and ∀x ∈ N, ∃l ∈ V +∪{ε} such
that h1(x) = l ⊕ h2(x). This frame satisfies Partial Determinism, Cancellativity,
Single Unit, Indivisible Units, Cross-Split, Upwards-Closed, Downwards-Closed,
Always-Joins, Non-Branching, Unit Self Joining, and Normal Increasing.

Typed Heaps. Cao et al. [14] give an example derived from the handling of
multibyte locks in Appel’s [2] Verified System Toolchain separation logic for
CompCert C. Let a typed heap be a partial map h : N → {char, short1, short2}
such that h(n) = short1 implies h(n+1) = short2. Let Htyp denote the set of all
typed heaps. Then HeapTyp = (Htyp,≤, ◦,Htyp) is a BI frame, where h1 ≤ h2

iff, for all n ∈ dom(h1) either n ∈ dom(h2) and h1(n) = h2(n) or h1(n) = char,
and h ∈ h1 ◦h2 iff h1 ·h2 ≤ h. This frame satisfies Indivisible Units, Disjointness,
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Splittability, Cross-Split, Upwards-Closed, Downwards-Closed, Non-Branching,
Increasing, and Normal Increasing.

5 Metatheory

Tableaux Systems as Coherent Theories. Just as coherent formulae yield
tableaux rules, tableaux rules yield coherent formulae, allowing a complete spec-
ification of our calculi as coherent theories. Our framework determines a first-
order signature: for each formula φ of (B)BI, we have unary relation symbols Tφ
and Fφ, together with the unary relation symbol E, the binary relation symbol
∼ and the ternary relation symbol R∗.

Given a rule premiss ‘Sφ : x ∈ F and A1x
1
1 . . . x1

k1
, . . . , Amxm

1 . . . xm
km

∈ C’ we
obtain the coherent antecedent C(⇀x) ≡ Sφ(x) ∧

∧
i Aix

i
1 . . . xi

ki
. For the j − th

conclusion 〈Fj , Cj〉 of the rule we obtain ∃⇀yjCj(⇀x, ⇀yj), where Cj is the conjunction
of atomic formulae translated from the constraints in Fj ∪ Cj , with any fresh
labels ⇀c that occurred substituted with ⇀yj . The translated rule is thus C(⇀x) →
∃⇀y1C1(⇀x, ⇀y1)∨ · · · ∨∃⇀ynCn(⇀x,⇀yn). For example, the instance of the BI rule 〈F−∗〉
for φ−∗ψ becomes Fφ−∗ψ(x) → ∃y1, y2, y3(Tφ(y2)∧Fψ(y3)∧x∼y1 ∧R∗y1y2y3).

There are some special cases to pay attention to. For tableaux rules with
premiss Expr(x) ∈ F ∪ C the antecedent of the translated coherent formula
is �. This is not the case for rules with premiss Expr(x) ∈ C: these must be
translated into a separate rule for each of the finitely many ways x can occur
in each constraint. Finally, each closure condition ‘S1φ1 : x1, . . . ,Snφn : xn,
A1y

1
1 . . . y1

k1
, . . ., and Amym

1 . . . ym
km

’ gives
∧

i Siφi(xi) ∧
∧

i Aiy
i
1 . . . yi

ki
→ ⊥.

Given a (B)BI formula φ, the finite coherent theory Φ
(B)BI+Σ
φ is given by the

translated (B)BI + Σ-frame expansion rules, the translated closure conditions
and the instances of translated logical expansion rules for subformulae of φ. We
note that we could specify the whole tableaux system for (B)BI + Σ as an infinite
coherent theory (similar to the axiomatization of a Hintikka set in standard
tableaux completeness proofs), but finiteness is required for our argument.

Soundness and Completeness. We now prove soundness and completeness
of the tableaux method via an analogous result for the Tarskian semantics of
coherent logic. First, we show that the existence of a Kripke (B)BI + Σ-model
with a state that doesn’t satisfy φ is equivalent to the existence of a Tarskian
model of Φ

(B)BI+Σ
φ ∪ {∃x.Fφ(x)}.

Definition 3 (Induced Kripke Model of M). Given a Tarskian model M
of Φ

(B)BI+Σ
φ , define [a] = {b | a ∼I b, b ∼I a} and XM = {[a] | a ∈ X}.

Then [a] ≤M [b] iff a ∼I b, [c] ∈ [a] ◦M [b] iff RI
∗ abc, and EM = {[a] | EIa}.

VM(p) = {[a] | ∃b(b ∼I a and TpI(b))}.

1. If M is a model of ΦBI+Σ
φ , the induced Kripke frame is given by XM =

(XM,≤M, ◦M, EM); the induced Kripke model is given by (XM,VM).
2. If M is a model of ΦBBI+Σ

φ , the induced Kripke frame is given by XM =
(XM, ◦M, EM); the induced Kripke model is given by (XM,VM).
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The induced Kripke frame is a well-defined structure because of the frame
tableaux rules, with [−] forming equivalence classes and ≤M, ◦M, and EM
independent from the choice of representatives due to 〈Cong〉. The (B)BI + Σ-
frame properties for the induced frame follow from their correspondent rules in
the tableaux and the valuation VM is independent of choice of representative
and persistent for induced Kripke BI + Σ-models.

Lemma 1. Given a Tarskian model M of Φ
(B)BI+Σ
φ , the induced Kripke model

XM is a Kripke (B)BI + Σ-model. ��

The significance of this model is that satisfiability of subformulae ψ of φ
is determined by the interpretation of the relation symbols Sψ in the original
Tarskian model. A simple proof by induction yields the next lemma.

Lemma 2. Let M be a Tarskian model of the coherent theory Φ
(B)BI+Σ
φ , ψ a

subformula of φ and a ∈ X. 1. If TψI(a) holds in M, then [a] �VM ψ; 2. If
FψI(a) holds in M, then [a] ��VM ψ. ��

We can also induce Tarskian models from Kripke models. Let (X ,V) be a
Kripke (B)BI + Σ-model. We define the induced Tarskian model by taking X
to be the carrier, and defining the interpretation I by ∼I = ≤, RI

∗ = {(a, b, c) |
c ∈ a ◦ b}, EI = E, TψI = {x | x �V ψ} and FψI = {x | x ��V ψ}.

Lemma 3. Every Kripke (B)BI+Σ-model (X ,V) with a state x (not) satisfying
φ induces a model of Φ

(B)BI+Σ
φ ∪ {∃x.Tφ(x)} (Φ(B)BI+Σ

φ ∪ {∃x.Fφ(x)}). ��

We now connect the existence of a closed tableaux to Bezem and Coquand’s
[4] breadth-first forward reasoning proof system for coherent logic. In their sys-
tem, judgments of the form X �Φ D are derived, where X is a set of atomic
first-order sentences, Φ a finite coherent theory and D a closed coherent disjunc-
tion; a first-order sentence with the same syntactic shape as the consequent of a
coherent formula. The derivation of the judgment X �Φ D is defined inductively:

1. (Base): X �Φ D holds if for one of the disjuncts ∃⇀y.C of D, there are constants
⇀a such that all conjuncts of C[⇀y := ⇀a] occur in X;

2. (Inductive Step): Consider all closed instances Ci → Di of Φ-axioms such
that the conjuncts of Ci occur in X but the conjuncts of no disjunct Ci,j

of Di do. There exist finitely many, with their consequents thus enumerated
D0, . . . , Dn. Let ∃⇀yi,j .Ci,j denote the j-th of the mi disjuncts of Di, and
denote by Ci,j the substitution of ⇀yi,j with fresh constants. Infer X �Φ D
from ∀j0 ∈ {1, . . . , m0}, . . . ,∀jn ∈ {1, . . . , mn}(X,C0,j0 , . . . , Cn,jn

�Φ D).
Importantly, if a Di is ⊥, then mi = 0, and X �Φ D is trivially inferred.

A derivation can be seen as a kind of tableau, branching at each stage by
adding every possible consequence of Φ obtainable from the atomic first-order
sentences at the current node. A semi-decidable procedure is given to systemat-
ically search for a derivation of X �Φ D. First check the base case. If it doesn’t
hold, apply the inductive step to any Φ-axioms fireable from X. If there are
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none, X forms an Herbrand countermodel of Φ against D. If the inductive step
can be applied, apply the search procedure recursively to all premisses. Bezem
and Coquand show that successful termination corresponds to Tarskian truth.

Theorem 1 ([4]). X �Φ D is derivable iff the search procedure successfully
terminates for X �Φ D iff D is true in all Tarskian models of X ∪ Φ. ��

It is straightforward that the search procedure for {Fφ(a)} �Φ
(B)BI+Σ
φ ⊥

corresponds precisely to an exhaustive search for a closed tableau for φ.

Lemma 4. There exists a closed (B)BI + Σ-tableaux for φ iff the search pro-

cedure for {Fφ(a)} �Φ
(B)BI+Σ
φ ⊥ successfully terminates. ��

Hence if a closed (B)BI + Σ-tableaux does not exist for φ, there exists a
Tarskian model M of Φ

(B)BI+Σ
φ ∪{∃x.Fφ(x)}. By Lemma 2, the induced Kripke

model XM has a state [a] such that [a] ��VM φ, establishing that φ fails to be
valid for Kripke (B)BI + Σ-models. Conversely, if a closed tableaux does exist,
then there is no Tarskian model of M of Φ

(B)BI+Σ
φ ∪ {∃x.Fφ(x)}. By Lemma 3,

φ is valid in Kripke (B)BI + Σ-models, as otherwise any countermodel would
generate a Tarskian model M of Φ

(B)BI+Σ
φ ∪ {∃x.Fφ(x)}, a contradiction.

Theorem 2 (Soundness and Completeness for (B)BI+Σ-Tableaux). φ
is valid in Kripke (B)BI +Σ-models iff φ is provable in the (B)BI +Σ-tableaux
system. ��

6 Conclusions and Further Work

We have given a framework of tableaux systems that exhaustively captures the
breadth of separation theories in the literature. Our framework is proven sound
and complete parametrically by a novel representation of tableaux systems as
coherent theories that allows us to apply existing theory from coherent logic.
This resolves the expressivity gap between the logics of bunched implications
and the separation logics defined upon them, and provides proof theory for the
assertion languages of a wide array of program logics.

The completeness of tableaux systems is usually proved by defining a notion
of a Hintikka set : a saturated set of (labelled) formulae (and possibly constraints)
that specifies a term model of the logic. The existence of a Hintikka set is then
shown to follow from non-existence of a tableau proof. Our method is a gener-
alization of this idea, implemented parametrically by choice of tableaux system.
While we have focused on Separation Logic, this technique is adaptable to vir-
tually any logic interpreted on relational structures, including the breadth of
bunched and modal logics. This suggests the significance of the coherent logic
fragment extends beyond the generation of proof rules for frame conditions.

The implementation of our systems is of principal importance for future
work. Our tableaux representation suggests existing coherent logic provers (see
[43] for a survey) may already be suitable, though tactics designed specifically
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for tableaux coherent theories may have to be developed to make this efficient.
A closely related goal is the development of parametric Separation Logic imple-
mentations that utilize our systems as assertion language provers. Finally, our
results suggest interesting theoretical work. Coherent logic has close connections
to topos theory, and Caramello [15] has developed techniques to transfer results
between mathematical fields via bridges between the classifying topoi of coher-
ent theories. We wish to investigate if any results of logical interest can be found
in this way by utilizing the representation of tableaux as coherent theories.

References

1. Anderson, G., Pym, D.: A calculus and logic of bunched resources and processes.
Theoret. Comput. Sci. 614, 63–96 (2016)

2. Appel, A.W.: Program Logics for Certified Compilers. CUP (2014)
3. Atkey, R.: Amortised resource analysis with separation logic. Log. Methods Com-

put. Sci. 2(17), 1–33 (2011)
4. Bezem, M., Coquand, T.: Automating coherent logic. In: Sutcliffe, G., Voronkov,

A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 246–260. Springer, Heidelberg
(2005). https://doi.org/10.1007/11591191 18

5. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: modular automatic asser-
tion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006). https://doi.org/10.1007/11804192 6

6. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: Proceedings of POPL 2005, pp. 259–270. ACM (2005)

7. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-44898-5 4
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