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Introduction

Static and two-dimensional (2D) culture systems have been 
used extensively to study human biology. Although those 
systems are facile and cost-effective to use, they lack the 
complexity of the three-dimensional (3D) tissue microenvi-
ronment. As a result, those systems do not accurately model 
tissue physiology and can generate inaccurate datasets. It is 
a well-known phenomenon that cells respond to physical 
and chemical stimuli provided by the tissue niche (Rashidi 
et al. 2014). Therefore, the add-back of human physiology 
to cell based models is of the utmost importance. This will 
likely lead to an improvement in cell phenotype and more 
informative biological readouts from those systems (Godoy 
et al. 2015).

Fluid shear stress is one mechanical stimulus that is 
absent in static culture systems. The role of fluid transport 
is fundamental for organogenesis (Freund et al. 2012), cell 
signalling (Mammoto and Ingber 2010) and normal pat-
terns of organ function (Hahn and Schwartz 2009; Hilde-
brandt et al. 2011). Living cells possess the ability to sense 
mechanical forces and transduce those into biological 
responses (Bao and Suresh 2003; Freund et al. 2012). The 
mechanisms that modulate cell behaviour by fluid shear 
stress is diverse, but is mediated primarily through cell sur-
face receptors (Tzima et al. 2001), cell adhesion molecules 
(Tzima et al. 2005) and heterodimeric G proteins (White 
and Frangos 2007).

The effects of fluid shear stress have also been studied in 
primary hepatocytes and transformed hepatocyte cell lines. 
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In these studies, fluid shear stress has been shown to modu-
late cell viability (Park et al. 2008; Tilles et al. 2001) and sig-
nificantly alter hepatocyte cytochrome P450 gene expression 
(Mufti et al. 1995; Mufti and Shuler 1996; Roy et al. 2001; 
Shvartsman et al. 2009; Vinci et al. 2011). In this study, the 
effect of fluid shear stress on human embryonic stem cell 
(hESC) derived HLC function was evaluated.

Materials and methods

Cell culture

hESCs (H9) were cultured as previously described (Szkol-
nicka et al. 2013, 2014a). Human ESCs were plated onto 
Matrigel®-coated (Corning®) Thermanox™ coverslips 
(Nunc). Monolayer differentiation was initiated at 40 % 
confluence by replacing serum-free medium mTESR1 
(STEMCELL Technologies) with endoderm differentia-
tion medium: RPMI 1640 containing 1 × B27 (Life Tech-
nologies), 100 ng/ml activin A (PeproTech) and 50 ng/ml 
Wnt3a (R&D Systems). The medium was changed every 
24 h for 72 h. On day 4, endoderm differentiation medium 
was replaced with hepatoblast differentiation medium, and 
this was renewed every second day for a further 5 days. The 
medium consisted of knockout (KO)-DMEM (Life Tech-
nologies), serum replacement (Life Technologies), 0.5 % 
Glutamax (Life Technologies), 1 % non-essential amino 
acids (Life Technologies), 0.2 % b-mercaptoethanol (Life 
Technologies) and 1 % DMSO (Sigma). On day 9, differ-
entiating cells were cultured in the hepatocyte maturation 
medium HepatoZYME (Life Technologies) containing 1 % 
Glutamax (Life Technologies), supplemented with 10 ng/ml 
hepatocyte growth factor (PeproTech) and 20 ng/ml oncosta-
tin M (PeproTech) as described previously (Szkolnicka et al. 
2014a). To differentiate HLCs in 3D, a single cell suspension 
of H9 hESCs was prepared as previously described (Szkol-
nicka et al. 2014a). H9s were re-suspended in mTESR1 
medium containing ROCK inhibitor (Merck) at concentra-
tion of 1.9 × 105 cells/ml. To form spheroids, 40 µl of the 
cell suspension was transferred into Perfecta3D® plates (Bio-
matrix, USA) using a multichannel pipette. The following 
day, 3D cell cultures were transferred into Corning® Costar® 
Ultra-Low attachment multiwell plates and differentiated as 
previously described (Szkolnicka et al. 2014a). Spheroids 
were transferred at day 14 into a 24-well plate contain-
ing Matrigel-coated Thermanox™ (Nunc) coverslips and 
allowed to adhere prior to exposure to fluid shear stress.

Quasi‑vivo® system set‑up

Following 18 days of differentiation, HLCs grown on 
Thermanox™ coverslips were transferred into serially 

connected chambers of the Quasi-Vivo® system (Kirkstall 
Limited, UK). The fluid shear stress system was transferred 
into a humidified 37 C, 5 % CO2 incubator, and fluid shear 
stress was applied at 2.9 × 10−5 and 4.7 × 10−5 dynes/cm2 
for 18 h. Following fluid shear stress, cell populations were 
transferred to a 24-well plate for biochemical analysis.

Cytochrome P450 assays

Eighteen hours post-fluid shear stress, Cyp1A2 metabolic 
activity was measured using pGlo technology (Promega) 
and carried out according to the manufacturer’s instructions 
(Cameron et al. 2015). Cyp1A2 activity was expressed as 
relative light units (RLUs) per millilitre of medium per mil-
ligram of protein (BCA assay, Pierce) per 5 h. Levels of 
significance were measured by Student’s t test. The experi-
ments are representative of three biological replicates.

Cell viability assays

Eighteen hours post-fluid shear stress, cell viability was 
measured using Cell Titer Glo (Promega) and carried out 
according to the manufacturer’s instructions (Szkolnicka 
et al. 2014b). ATP levels were expressed as relative light 
units (RLUs) per millilitre of cell culture medium. Lev-
els of significance were measured by Student’s t test. 
The experiments are representative of three biological 
replicates.

Albumin and alpha‑fetoprotein ELISA

Eighteen hours post-fluid shear stress, HLC alpha-feto-
protein and albumin secretion were measured using com-
mercially available ELISA kits (Alpha Diagnostic Interna-
tional). Protein secretion was expressed as microgram of 
protein per millilitre of medium per milligram of protein per 
24 h. Levels of significance were measured by Student’s t 
test. The experiments are representative of three biological 
replicates.

Results

The effect of fluid shear stress (FSS) on stem cell-derived 
HLC metabolic activity was studied using the Quasi-Vivo® 
system (Kirkstall Limited, UK). HLCs were exposed to 
FSS, ranging from 2.9 × 10−5 to 4.7 × 10−5 dyne/cm2. 
After 18 h FSS, HLCs were transferred into a 24-well plate 
for further analysis. Cytochrome P450 (Cyp) metabolic 
activities of two enzymes, Cyp1A2 and Cyp2D6, were 
measured to evaluate the effect of FSS on HLC phenotype. 
Cyp1A2 activity was significantly increased fivefold over 
controls in 2D cultures at 4.7 × 10−5 dyne/cm2 (Fig. 1a). 
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To assess Cyp2D6 activity, a compound (BMS 827278) 
which requires Cyp2D6 metabolic activity to convert it to 
a toxic end point was employed. Post-exposure to BMS 
827278, cell viability was measured and compared to the 
DMSO vehicle control. As expected, microscopic and 
quantitative ATP analysis revealed that BMS 827278 had a 
detrimental effect on the viability of HLCs (Medine et al. 
2013; Villarin et al. 2015). Notably, HLC viability was sig-
nificantly decreased by a further fivefold and ninefold in 
response to FSS at 2.9 × 10−5 and 4.7 × 10−5 dyne/cm2, 
respectively (Fig. 2a). This demonstrates that FSS was an 
important physiological stimulus for metabolic activity in 
human hepatocyte models derived from pluripotent stem 
cells.

To examine the effect of FSS on 3D-cultured HLCs, 
hepatic spheroids were seeded on Matrigel-coated Ther-
manox™ coverslips prior to transfer into the Quasi-Vivo® 
system. Anchored spheroids were then exposed to FSS of 
2.9 × 10−5 and 4.7 × 10−5 dyne/cm2 for 18 h. Contrary to 
2D-cultured HLCs, metabolic activity of Cyp1A2 decreased 
significantly following exposure to 4.7 × 10−5 dyne/cm2 
by approximately twentyfold (Fig. 1b). Similar to 2D-cul-
tured HLCs, 3D spheroids showed sensitivity to BMS 
827278 which was marginally enhanced following FSS. 
The 3D spheroids cultured under static condition showed 
over a threefold increase in sensitivity to BMS 827278 in 
comparison with 2D cultures. This suggests that 3D cul-
tures displayed an improved basal level of Cyp2D6 activ-
ity (Fig. 2b). In addition to metabolic activity, we also 

measured serum protein production under static conditions 
and flow. The production of albumin remained constant in 
2D and 3D models under static conditions and in response 
to FSS (Fig. 3a). In contrast, the production of alpha-feto-
protein (AFP) was significantly reduced in 2D, but not 3D 
HLCs following exposure to FSS (Fig. 3b).

Discussion

The liver is a highly vascular organ, processing ~25–30 % 
of the total blood volume at any given time (Bradley et al. 
1945). Arterial and venous blood enters the liver lobes, 
flowing through the sinusoids towards the central vein 
(Ebrahimkhani et al. 2014). Sinusoids commonly have 
diameters ranging from 7 µm in the periportal to 15 µm in 
pericentral regions (Vollmar and Menger 2009) and experi-
ence fluid shear stresses between 0.1–0.5 dyne/cm2. This is 
lower than fluid shear stresses observed in other capillary 
systems, typically around 15 dyne/cm2 (Koutsiaris et al. 
2007). While it is difficult to gauge the exact level of shear 
stress experienced by hepatocytes (LeCluyse et al. 2012), it 
has been estimated to be several orders of magnitude lower 
than the level of sinusoidal shear stress.

Despite the evidence supporting the importance of 
FSS in cell biology, few studies have addressed this in 
the hepatocyte. In pioneering work, Mufti and colleagues 
showed transient increase in AhR-driven Cyp1A1 expres- 
sion and function following exposure to FSS (Mufti 

Fig. 1  a Cyp1A2 metabolic activity of monolayer hepatocyte-like 
cells (HLCs) under static conditions (black columns) and following 
fluid shear stress (FSS) of 2.9 × 10−5 dynes/cm2 (shaded columns) 
and 4.7 × 10−5 dynes/cm2 (white columns). Data are presented as 
mean of three independent experiments. Error bars represent the 
standard deviation (SD). *p < 0.05, **p < 0.01; two-tailed t test anal-

ysis. b Cyp1A2 metabolic activity of 3D HLCs under static condi-
tions (black columns) and following FSS of 2.9 × 10−5 dynes/cm2 
(shaded columns) and 4.7 × 10−5 dynes/cm2 (white columns). Data 
are presented as mean of three independent experiments. Error bars 
represent SD. *p < 0.05, **p < 0.01; two-tailed t test analysis
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et al. 1995). A later study suggested a potential role of 
arachidonic acid in the induction of Cyp1A1 in HepG2 
cells under hydrodynamic stimulation (Mufti and Shuler 
1996). Along similar lines, the induction of Cyp1A1 
activity has also been reported in rat hepatocytes (Geb-
hardt et al. 1996; Roy et al. 2001). More recently, genes 

involved in human drug metabolism, including CYP1A1, 
1A2, 2B6, 2C9 and 3A4, were shown to be positively reg-
ulated by flow (Vinci et al. 2011). Our data provide fur-
ther evidence to support the importance of FSS on HLC 
metabolic function and serum protein secretion (Figs. 1, 
2, 3).

Fig. 2  a Cell viability assay of monolayer cultured HLCs follow-
ing exposure to DMSO and BMS 827278 under static conditions or 
following exposure to fluid shear stress (FSS). Data are presented 
as mean of three independent experiments. Error bars represent 
the standard deviation (SD). *p < 0.05, **p < 0.01; two-tailed t test 

analysis. b Cell viability assay of 3D cultured HLCs following expo-
sure to DMSO and BMS 827278 under static conditions or follow-
ing exposure to FSS. Data are presented as mean of three independent 
experiments. Error bars represent SD. *p < 0.05, **p < 0.01; two-
tailed t test analysis

Fig. 3  a HLC albumin production was measured by ELISA under 
static conditions or following exposure to fluid shear stress (FSS). 
Albumin secretion is expressed as micrograms of albumin (ALB) 
ml−1 per 24 h per mg protein. Data are presented as mean of three 
independent experiments. Error bars represent the standard deviation 
(SD). *p < 0.05, **p < 0.01; two-tailed t test analysis. b HLC AFP 

production was measured by ELISA under static conditions or under 
FSS. Alpha-fetoprotein (AFP) secretion is expressed as micrograms 
of AFP ml−1 per 24 h per mg protein. Data are presented as mean of 
three independent experiments. Error bars represent SD. *p < 0.05, 
**p < 0.01; two-tailed t test analysis
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Conclusion

In conclusion, a more active and predictive hepatocyte model 
was created after exposure to fluid shear stress. We believe 
that this demonstrates the importance of adding back human 
physiology to improve somatic cell-phenotype in vitro.
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