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Most super-resolution microscopy techniques depend on steps that can contribute to the 13 
formation of image artefacts, leading to misinterpretation of biological information. We present 14 
NanoJ-SQUIRREL, an ImageJ-based analytical approach that provides quantitative assessment 15 
of super-resolution image quality, capable of guiding researchers in optimising imaging 16 
parameters. By comparing diffraction-limited images and super-resolution equivalents of the 17 
same acquisition volume, this approach generates a quality score and quantitative map of super-18 
resolution defects. 19 
 20 
The quality and resolution of super-resolution images is largely dependent on factors including the 21 
photophysics of fluorophores used, the chemical environment of the sample, imaging conditions, and 22 
analytical approaches used to produce final images [1–5] (Supplementary Note 1). Thus far super-23 
resolution data quality assessment relies on subjective comparison of the data relative to prior 24 
knowledge of the expected structures [6,7] or benchmarking of the data against other high-resolution 25 
imaging methods like electron microscopy [8]. An exception exists in the Structured Illumination 26 
Microscopy (SIM) field [9], where analytical frameworks exist for quantitative evaluation of image 27 
quality [10,11]. 28 
 29 
The simplest, most robust way to visually identify defects in super-resolution images is the direct 30 
comparison of diffraction-limited and super-resolved images of the sample. For images that represent 31 
the same focal volume, the super-resolution version should provide an improved resolution 32 
representation of the reference diffraction-limited one. When this analysis is performed empirically it 33 
is subject to human bias and interpretation. Here we present a new analytical approach named 34 
SQUIRREL (super-resolution quantitative image rating and reporting of error locations), which allows 35 
for quantitative mapping of local image errors thereby providing a framework to assist in their 36 
reduction. This is implemented as an easy-to-use open-source ImageJ and Fiji [12] plugin (named 37 
NanoJ-SQUIRREL), exploiting high-performance GPU-enabled computing. 38 
 39 
SQUIRREL is formed solely on the premise that a super-resolution image should be a high-precision 40 
representation of the underlying nanoscale position and photon emission of the imaged fluorophores. 41 
Although based on the principle of comparing conventional and super-resolution images, in contrast to 42 
other approaches it requires no prior knowledge of the expected properties of the sample or label. 43 
Assuming an imaged field-of-view has a spatially-invariant point spread function (PSF), application of 44 
a resolution rescaling transfer function to the super-resolution image should produce an image with a 45 
high degree of similarity to the original diffraction-limited one. Variance between these images 46 
beyond a noise floor can be used as a quantitative indicator of local macro-anomalies in the super-47 
resolution representation (Fig. 1, Supplementary Fig. 1). The algorithm requires three inputs: a 48 



reference image (generally diffraction-limited), a super-resolution image and a representative 49 
resolution scaling function (RSF) image. The RSF can be provided by the user or automatically 50 
estimated through optimisation (Supplementary Note 2, Supplementary Fig. 2). 51 
 52 
The stages involved in error mapping are: 1) Correcting for any analytical or optical spatial offsets 53 
between the super-resolution and reference images; 2) iterative estimation of the RSF and linear 54 
rescaling coefficients to convert the super-resolution image into its diffraction-limited equivalent (the 55 
‘resolution-scaled image’); 3) calculation of the pixel-wise absolute difference between the reference 56 
and resolution-scaled image to generate the final error map (Fig. 1a). In addition to local quality 57 
assessment, two global image quality metrics are calculated: the RSE (Resolution Scaled Error), 58 
representing the root-mean-square-error between the reference and resolution-scaled image; and the 59 
RSP (Resolution Scaled Pearson coefficient), which is the Pearson correlation coefficient between the 60 
reference and resolution-scaled images with values truncated between -1 and 1. The RSE is more 61 
sensitive to differences in contrast and brightness than the RSP, whereas RSP provides a score of 62 
image quality that can be compared across different super-resolution imaging modalities. A full 63 
description of the SQUIRREL algorithm is provided in Supplementary Note 3. 64 
 65 
To demonstrate the capacity of SQUIRREL to identify defects in super-resolution images, we acquired 66 
total internal reflectance fluorescence (TIRF) microscopy images of immunolabelled microtubules 67 
(Fig 1b) and a corresponding dSTORM [4] dataset. From these we produced an error map indicating 68 
regions of high dissimilarity (Fig. 1c). Regions surrounding filament junctions and overlapping 69 
filaments, where the increased local density of fluorophores limits the capacity for single-molecule 70 
localisations, were particularly dissimilar. Based on this we generated two simulated optical and 71 
photophysical realistic datasets using the SuReSim software [13] (Fig. 1d): a diffraction-limited 72 
reference dataset containing all the traced filaments; and a structural artefact dSTORM dataset in 73 
which a filament was removed. SQUIRREL analysis of the reference and artefactual super-resolution 74 
images produced an error map that clearly highlights the absence of the selected filament (Fig. 1d). 75 
These results exemplify the power of SQUIRREL to identify large-scale image artefacts in instances 76 
where subjective comparison of the widefield (i.e. Simulated Reference) and super-resolution (i.e. 77 
Simulated SR) images would be insufficient. 78 
 79 
SQUIRREL is not only sensitive to disappearance of structures. It can also identify common super-80 
resolution artefacts including merged structures and bright aggregates (Supplementary Note 1, 81 
Supplementary Fig. 1). The software is not limited to single molecule localisation microscopy 82 
(SMLM), and we have demonstrated that for SIM images it provides complementary information to 83 
SIMcheck [10] (Supplementary Note 4, Supplementary Fig. 3). Although SQUIRREL cannot 84 



highlight errors in the axial direction, Supplementary Note 5 and Supplementary Figs. 4-6 explore 85 
how out-of-focus information affects SQUIRREL metrics. For example, using widefield references of 86 
thick samples compromises the metrics’ fidelity, which can be minimized by using optical-sectioning 87 
systems such as TIRF (Fig. 1, Supplementary Fig. 6), confocal and lattice light sheet microscopes. 88 
We estimate that SQUIRREL is capable of accurately identifying 2D image artefacts within a ~600 nm 89 
focal volume. The major limitation of SQUIRREL is that small-scale artefacts cannot be identified due 90 
to the diffraction-limited reference image. To define this limit we carried out simulations of an 8-91 
molecule ring structure of varying diameter; for typical signal-to-noise ratios encountered in super-92 
resolution microscopy SQUIRREL can quantify image anomalies as small as 150 nm (Supplementary 93 
Note 6, Supplementary Fig. 7). This limit is set by the resolution of the reference image, and so using 94 
a higher resolution image as the reference (acquired using another super-resolution modality) can 95 
provide smaller-scale artefact detection and cross-validation. To demonstrate this, correlative SMLM, 96 
SIM, Super-Resolution Radial Fluctuations (SRRF) [14] and Stimulated Emission Depletion (STED) 97 
microscopy were performed on vaccinia virus (VACV) lateral bodies [15], structures separated by < 98 
200 nm. Using SQUIRREL to cross-validate different super-resolution techniques, we found that 99 
artefacts not discernable using a diffraction-limited reference image were highlighted (Supplementary 100 
Note 7, Supplementary Fig. 8). 101 
 102 
Image resolution is commonly used as a reporter of image quality, although in super-resolution studies 103 
these factors weakly correlate [6,7,16]. One popular method for quantifying image resolution in super-104 
resolution and electron microscopy is Fourier Ring Correlation (FRC) [16]. Conventional FRC 105 
measurements represent the global resolution of an image; within the NanoJ-SQUIRREL package we 106 
have implemented block-wise FRC resolution mapping to provide local resolution measurements 107 
(Supplementary Fig. 9). In Fig. 2 we map the local FRC-estimated resolution of a dSTORM dataset 108 
and compare it against the SQUIRREL error map. Highlighting various regions of the dataset (Fig. 2a-109 
b), we show that high resolution does not necessarily correlate with low error (Fig. 2c-f). Thus 110 
SQUIRREL error mapping allows for direct visual detection of structural anomalies without coupling 111 
quality to a description of resolution.  112 
 113 
By providing an assessment of image quality, SQUIRREL can be used as a tool to improve various 114 
aspects of super-resolution image acquisition. One of these is the choice of analytical method for 115 
SMLM image reconstruction. As dozens of high-performing algorithms are available [5] it can be 116 
challenging to determine which will be most appropriate for a given dataset. We acquired a dSTORM 117 
dataset of immunolabelled microtubules and analysed it using three distinct algorithms: 118 
ThunderSTORM using a multi-emitter maximum likelihood estimator engine [17], SRRF, and 119 
QuickPALM [18]. SQUIRREL error maps and quality metrics were generated for these three super-120 



resolution images (Fig. 3a,b) using the same diffraction-limited reference image for each (Fig. 3c). In 121 
addition to providing the means to ‘rank’ the quality of each reconstruction, the error maps provide 122 
spatial details on the local accuracy of each algorithm. By converting these into weights (Fig. 3d, 123 
Supplementary Note 8) a new composite image with minimal defects can be generated using the 124 
lowest error features of each reconstruction (Fig. 3e). SQUIRREL can also be used to empirically 125 
optimise super-resolution images, as exemplified by determining the optimal DNA-PAINT imaging 126 
conditions for clathrin-coated pits (Supplementary Note 9, Supplementary Fig. 10), and number of 127 
frames for dSTORM imaging of neuronal actin rings along axons (Supplementary Note 10, 128 
Supplementary Figs. 11-12). 129 
In conclusion, SQUIRREL is a quick and easy approach to immediately improve super-resolution data 130 
acquisition and quality. Being an open-source ImageJ plugin, NanoJ-SQUIRREL is highly accessible 131 
to super-resolution users. We envisage that eventually SQUIRREL will be implemented for continual 132 
monitoring of super-resolution image quality during acquisition. By pairing such a feedback approach 133 
with automated adaptation of acquisition parameters users could ensure optimal image quality, shorten 134 
acquisition times, and reduce data storage requirements. 135 136 
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FIGURE LEGENDS 219 
 220 
Figure 1. Overview of quantitative error mapping with SQUIRREL 221 
a) Representative workflow for SQUIRREL error mapping. b) Fixed microtubules labelled with Alexa 222 
Fluor 647 imaged in TIRF. c) Raw - single frame from raw dSTORM acquisition of structure in b, SR 223 
- super-resolution reconstruction of dSTORM data set, Convolved SR - super-resolution image 224 
convolved with appropriate RSF, Error map - quantitative map of errors between the reference and 225 
convolved SR images. d) SuReSim [13] filament tracing used to generate e, yellow filament is made to 226 
be present in reference image but absent in super-resolution image. e) Simulated reference image, 227 
super-resolution image, and super-resolution image convolved with RSF and error map. Yellow 228 
arrowheads indicate position of yellow filament seen in d. Scale bars = 1 µm. b-d represents data from 229 
1 of 5 independent experiments showing similar results. 230 
 231 
Figure 2. Error mapping and FRC analysis 232 
a) Super-resolution image of fixed Alexa Fluor 647-labelled microtubules reconstructed via MLE. 233 
Scale bar = 5 µm. b) Corresponding TIRF image. Scale bar = 5 µm. c) Error map for super-resolution 234 
image in a using b as the reference. d) Local mapping of FRC values for the super-resolution image in 235 
a. e) Left: Merge of FRC map (magenta) and error map (green, binned to match FRC map). Right: 236 
Map of error-resolution space showing where the four boxed regions are located. f) Enlargements of 237 
the super-resolution (left) and widefield (right) boxed regions indicated on panels a-e. Scale bars = 1 238 
µm. Figure represents data from 1 of 5 independent experiments showing similar results. 239 
 240 
Figure 3. Image fusion of SMLM data using SQUIRREL 241 
a) Workflow for generating fused images from different super-resolution images from the same 242 
SMLM data set. b) Top row: Three super-resolution images generated from the same dSTORM dataset 243 
using different algorithms. MLE = maximum likelihood estimator with multi-emitter fitting, SRRF = 244 
super-resolution radial fluctuations, CoM = centre of mass. Bottom row: Corresponding error maps 245 
with the widefield image shown in c used as the reference. d) Contributions of different images to the 246 
final fused images, colour coded as in the top row of b. e) Top: Fused image, Bottom: Error map of 247 
fused image with c again used as the reference image. Values in solid line boxes indicate the quality 248 
metrics of the whole images, values in dashed boxes represent quality values from highlighted inset 249 
region only. Scale bars = 1 µm. b-e represents data from 1 of 5 independent experiments showing 250 
similar results. 251 252 



ONLINE METHODS 253 
 254 
Super-resolution image simulation with SuReSim 255 
In order to simulate disappearance of a filament from a realistic microtubule network, a real super-256 
resolution image of microtubules (Fig. 1c) was used as a support for SuReSim data simulation. Raw 257 
data of blinking Alexa 647-labelled microtubules imaged using TIRF were reconstructed using 258 
ThunderSTORM maximum likelihood multi-emitter fitting and then loaded into the SuReSim software 259 
and all filaments were traced using the editor function and the WIMP file saved. SuReSim was used to 260 
generate a simulated super-resolution reconstruction of all filaments, which was then convolved by a 261 
Gaussian PSF to generate a simulated reference image. The object in the WIMP file corresponding to 262 
the filament highlighted in Fig. 1d-e was deleted, and SuReSim was used again to render a simulated 263 
super-resolution reconstruction, except this time missing a filament. SuReSim was also used for the 264 
simulations in Sup. Fig. 1. 265 
 266 
Cell lines and primary cells  267 
HeLa cells (Figs. 1-2) were kindly provided by Prof Mark Marsh, MRC LMCB, UCL and cultured in 268 
phenol-red free DMEM (Gibco) supplemented with 2 mM GlutaMAX (Gibco), 50 U/ml penicillin, 50 269 
µg/ml streptomycin and 10% fetal bovine serum (FBS; Gibco). CHO cells (Fig. 3) were cultured in 270 
phenol red-free Minimum Essential Medium Alpha (MEMα; Gibco) supplemented with 10% FBS 271 
(Gibco) and 1% penicillin/streptomycin (Sigma). 272 
Rat hippocampal neurons and glial cells (Sup. Figs. 10-11) were harvested from embryonic day 18 273 
pups, following established guidelines of the European Animal Care and Use Committee 274 
(86/609/CEE) and approval of the local ethics committee (agreement D13-055-8), and cultured in 275 
Neurobasal medium (Gibco) supplemented with 2 mM GlutaMAX-I (Gibco) and B27 supplement 276 
(Gibco). All cells were grown at 37°C in a 5% CO2 humidified incubator.  277 
 278 
Sample preparation for fixed microtubules 279 
 For TIRF-SMLM imaging of microtubules (Figs. 1-2), 13 mm diameter, thickness #1.5 coverslips 280 
were washed overnight in 1:1 HCl:methanol and washed 5 times in ddH2O and twice in 90% 281 
isopropyl alcohol. Coverslips were then incubated overnight in poly-L-lysine (0.01%) (Sigma Aldrich) 282 
and rinsed twice in PBS. HeLa cells were seeded on these coverslips and grown overnight in 12-well 283 
plates. Cells were fixed with 4% PFA in cytoskeleton buffer (10 mM MES, pH 6.1, 150 mM NaCl, 5 284 
mM EGTA, 5 mM glucose, 5 mM MgCl2) for 15 min at 37°C, washed 3x with PBS, then 285 
permeabilised with 0.1% Triton X-100 in PBS for 10 min and blocked in 2.5% BSA in PBS for a 286 
further 30 min. Samples were then labelled with 2 µg/ml anti-α-tubulin (DM1A mouse monoclonal, 287 
Sigma Aldrich) in 2.5% BSA in PBS for 1 hour, followed by 3x washes with PBS and labelling with 288 



Alexa Fluor 647-labelled goat anti-mouse secondary antibody (Invitrogen) (2µg/ml in 2.5% BSA in 289 
PBS) for 1 hour. Samples were washed 3x with PBS and fixed again in 4% PFA in cytoskeleton buffer 290 
for 10 min, before being washed 3x with PBS. Samples were mounted on a parafilm-formed gasket [3] 291 
in STORM buffer (150 mM TRIS, pH 8, 10 mM NaCl, 1 % glycerol, 1 % glucose, 1 % BME), sealed 292 
with clear nail varnish (Maybelline) and imaged within 3 hours of mounting. 293 
 294 
For imaging in different focal volumes (Sup. Fig. 6) COS cells were fixed with glutaraldehyde and 295 
labelled with two monoclonal mouse anti-alpha tubulin antibodies (DM1A and B-5-1-2, both from 296 
Sigma) and a goat anti-mouse Alexa Fluor-647-labelled secondary antibody (Thermo Fisher 297 
Scientific). Samples were mounted in Smart Buffer (Abbelight) for imaging.  298 
 299 
For widefield super-resolution imaging of microtubules (Fig. 3), CHO cells were seeded on ultra-clean 300 
[3] 8 mm diameter thickness #1.5 coverslips (Zeiss) at a density of 0.1×106 per 35 mm dish. Fixation 301 
was performed with 4% PFA in a modified version of cytoskeleton stabilising buffer (CSB) (5 mM 302 
KCl, 0.1 mM NaCl, 4 mM NaHCO3, 11 mM Na2HPO4, 2 mM MgCl2, 5 mM PIPES, 2 mM EGTA, pH 303 
6.9) for 15 min at 37°C, followed by washing with the same CSB (without PFA). Additional 304 
permeabilization was performed (0.05% Triton X-100 in CSB) for 5 min followed by three washing 305 
steps using 0.05% Tween-20 in the modified version of CSB and blocking in 5% BSA (Sigma) for 40 306 
min. Microtubules were stained and submitted to a secondary fixation step as described above. 100 nm 307 
TetraSpeck beads (Life Technologies) were added at a dilution of 1:1000 in PBS for 10 min to each 308 
coverslip. Coverslips were mounted on clean microscope slides [3] in 100 mM mercaptoethylamine 309 
(Sigma) at pH 7.3 and all imaging was performed within 3 hours of mounting. 310 
 311 
Fixed microtubule imaging 312 
Fixed microtubule samples were imaged by TIRF-SMLM (Figs. 1-2) on a N-STORM microscope 313 
(Nikon Instruments), using a 100× TIRF objective (Plan-APOCHROMAT 100×/1.49 Oil, Nikon) with 314 
additional 1.5× magnification. A reference TIRF image was acquired with 5% power 647 nm laser 315 
illumination and 100 ms exposure time, before SMLM data acquisition of 40 000 frames at 100% 316 
power 647 nm illumination with 405 nm stimulation and an exposure time of 30 ms per frame. 317 
 318 
Imaging with different illumination regimes (Sup. Fig. 6) was performed on an N-STORM 319 
microscope using a 100x, 1.49NA objective as above, but with no additional magnification and an 320 
exposure time of 15 ms. Prior to dSTORM imaging a reference image was acquired using a high-321 
pressure mercury lamp (Intensilight, Nikon) with a Cy5 filter cube (Nikon); the filter cube was then 322 
switched and the laser illumination set to either vertical (i.e. widefield), HILO, or TIRF. A second 323 



reference image was then acquired, this time with laser illumination. A cylindrical lens was inserted 324 
into the detection path and 60,000 frame dSTORM dataset acquired at this angle. 325 
 326 
Widefield and super-resolution imaging for fusion (Fig. 3) was carried out on a Zeiss Elyra PS.1 327 
inverted microscope system, using a 100× TIRF objective (PlanAPOCHROMAT 100×/1.46 Oil, 328 
Zeiss) and additional 1.6× magnification. The sample was illuminated with a 642 nm laser operating at 329 
100% laser power. 45000 frames were acquired with a 20 ms exposure time per frame. 330 
 331 
Reconstruction algorithms for dSTORM data 332 
The freely available software packages ThunderSTORM [17] (Figs. 1-3, Sup. Figs. 6, 8, 10), SRRF  333 
(Fig. 3, Sup. Figs. 8, 10) and QuickPALM [18] (Fig. 3, Sup. Fig. 10) were used for super-resolution 334 
image reconstruction. Images labelled ‘MLE’ were reconstructed with ThunderSTORM with the 335 
integrated PSF method with maximum likelihood fitting and multi-emitter fitting enabled. Drift 336 
correction was performed post-localization and images were rendered using a normalized 20 nm 337 
Gaussian. Images labelled ‘SRRF’ were analysed with the most appropriate parameters for each 338 
individual data set and drift corrected during analysis. Images labelled ‘CoM’ were reconstructed 339 
using QuickPALM with the default parameters, following drift correction of the raw data using the 340 
NanoJ-SRRF package. The particle tables from QuickPALM were then loaded into ThunderSTORM 341 
for rendering using a normalized 20 nm Gaussian.  342 
 343 
SIM imaging 344 
For SQUIRREL analysis of SIM images (Sup. Fig. 3), FluoCells prepared slide #2 (Invitrogen) with 345 
BPAE cells stained with Texas Red-X phalloidin and Alexa Fluor 488-tubulin was imaged on a Zeiss 346 
Elyra PS.1 system, using a 63x NA 1.4 objective with additional 1.6x magnification for SIM and 347 
widefield acquisition. For actin imaging, ‘Low SNR’ images were acquired with a 561 nm laser at 0.05 348 
% laser power, using 100 ms exposure time, and 5 grid rotations. ‘High SNR’ images were acquired 349 
with a 561 nm laser at 5 % laser power, 100 ms exposure, 5 grid rotations. Widefield images were 350 
acquired with a 561 nm laser at 0.2 % laser power, 100 ms exposure time. SIM reconstructions were 351 
generated with the Zeiss Elyra Zen software using automatic settings. For microtubule imaging, raw 352 
SIM data was acquired with a 488 nm laser at 10 % laser power using 100 ms exposure time and 3 grid 353 
rotations. The SIM reconstruction was generated using FairSIM [19]. 354 
 355 
Generation and analysis of synthetic data at different z-positions 356 
The bead images used in Sup. Fig. 4 were obtained from the open source dataset ‘z-stack-Bead-2D-357 
Exp-as-stack’ available to download from the SMLMS Challenge 2016 website,  358 



http://bigwww.epfl.ch/smlm/challenge2016/datasets/Beads/Data/data.html (data used here was 359 
downloaded on 4th September 2017). This dataset comprises 151 slices of an image of six fluorescent 360 
beads covering the z-range -750 nm to 750 nm (step size = 10 nm). The central x,y location of each of 361 
the six beads in this was determined at the central plane of the z-stack, and this was used to define the 362 
centre of a 3.3 μm x 3.3 μm region about each bead. For generation of the dataset containing PSFs 363 
from all z-positions in each frame, these regions were pasted into an image where the x,y coordinates 364 
mapped to a specific z-position from the bead image stack. The target x,y coordinates for pasting the 365 
images were spaced such that there was 5 μm between adjacent bead centres, and regions were 366 
randomly from the six original bead images. This was repeated 1000 times to generate a 1000-frame 367 
dataset. Gaussian-Poisson noise was then added to the image stack to mask the edges of the pasted 368 
bead images. This dataset was then analysed with SRRF and ThunderSTORM (default software 369 
settings in both cases) to produce a single super-resolution image for each algorithm. The reference 370 
image was an average projection of all 1000 frames. For generation of the dataset containing constant 371 
z-positions in each frame, regions from the bead z-stack were again selected and pasted but this time z 372 
was varied between slices as opposed to the x,y position within each frame. 10 frames were produced 373 
for each z-position, and noise was added again as above. ThunderSTORM and SRRF analyses (default 374 
settings) were then run on this image stack 10 slices at a time to generate a single super-resolution 375 
image for each z-position. The reference was the average of the 10 frames corresponding to z=0 nm.  376 
For assessing the impact of out-of-focus fluorescence on defect detection (Sup. Fig. 5), a test structure 377 
was simulated consisting of three semicircles of radius 500 nm and axial tilt ranging from -750 nm to 378 
+750 nm. A widefield representation of this structures was produced via convolution with a 3D PSF 379 
generated using the ImageJ PSF Generator plugin [20] with the following settings: Born and Wolf 380 
optical model, numerical aperture 1.4, wavelength 640 nm, z-range 1500 nm, z-step size 2 nm. Single 381 
molecule blinking data sets were generated with custom-written simulation software with the same 382 
PSF used for rendering molecule appearances, and were binned into 100 nm ‘camera’ pixels with 383 
Gaussian-Poisson noise. This was performed for both the defect-free structure and an artefactual 384 
equivalent where 100 nm stretches of the structure had been deleted. These data sets were analysed 385 
using weighted-least-squares fitting in ThunderSTORM.  386 
 387 
VACV sample preparation and imaging 388 
2.5 x 106 VACV particles (WR strain, EGFP-F18 in tk locus [21]) were diluted in 100 μl 1 mM TRIS, 389 
pH 8, sonicated for 3x 30 s and incubated on gridded #1.5 glass-bottom petri dishes (Zell-Kontakt 390 
GmbH) for 1 hour at room temperature and fixed with 4 % PFA in PBS for 15 min. Samples were 391 
quenched with 50 mM NH4Cl in PBS for 10 min, washed in PBS, and incubated in 392 
permeabilization/blocking buffer (1% Triton X-100, 5% BSA, 1% FBS in PBS) for 30 min. Samples 393 
were labelled in blocking/permeabilisation buffer overnight at 4 °C or 2 hours at room temperature 394 



with anti-GFP nanobodies (Chromotek), labelled in-house with Alexa Fluor 647 NHS-ester (Life 395 
Technologies) with a dye-to- protein ratio of approximately 1, as previously described [22]. Samples 396 
were then washed 3x with PBS, fixed in 4% PFA in PBS for 10 min, quenched with 50 mM NH4Cl in 397 
PBS for 10 min and washed in PBS.  398 
VACV samples were imaged in STORM buffer on a Zeiss Elyra PS.1 system, using a 100x TIRF 399 
objective with additional 1.6x magnification (as above) for SIM, SRRF and SMLM acquisition (Sup. 400 
Fig. 5). Buffer was exchanged to PBS and STED images were acquired on a Leica SP8, re-localising 401 
the same region of interest based on the grid. SMLM data acquisition parameters were 30,000 frames 402 
at 100% laser power 647 nm illumination with 405 nm stimulation and an exposure time of 33 ms per 403 
frame.  404 
 405 
Clathrin coated pits sample preparation and imaging 406 
Rat glial cells (from embryonic day 18 pups) were cultured on 18-mm coverslips at a density of 4000 407 
/cm2, respectively. After 9 days in culture, samples were fixed using 4% PFA in PEM (80 mM PIPES, 408 
2 mM MgCl2, 5 mM EGTA, pH 6.8) for 10 min. For PAINT imaging [23] of clathrin coated pits 409 
(CCPs) in glial cells, fixed samples were incubated with a rabbit anti-clathrin primary antibody 410 
(abCam, catalogue #21679) overnight at 4 °C, then with an anti-rabbit DNA-conjugated secondary 411 
antibody (Ultivue) for 1 hour at room temperature.  412 
DNA-PAINT imaging of CCPs in glial cells (Sup. Fig. 10) was performed on a N-STORM 413 
microscope using a 100x objective as above. The same glial cell (present in low numbers in 414 
hippocampal cultures) was imaged in serial dilutions of Imager-650 (2 mM stock, from lower to higher 415 
concentration) in Imaging Buffer (Ultivue). The sample was illuminated at 647 nm (50% laser power) 416 
and a sequence of 20,000 images at 33 Hz was acquired for each Imager-650 dilution, before 417 
switching to a higher concentration of Imager-650 in Imaging Buffer.  418 
 419 
Actin rings sample preparation and imaging 420 
Rat hippocampal neurons (from embryonic day 18 pups) were cultured on 18-mm coverslips at a 421 
density of 10,000 After 9 days in culture, samples were fixed using 4% PFA in PEM (80 mM PIPES, 2 422 
mM MgCl2, 5 mM EGTA, pH 6.8) for 10 min. Preparation of actin-stained neurons for SMLM was 423 
performed similarly to the protocol described in [24], with minor modifications. After blocking, 424 
neurons were incubated with a mouse anti-map2 primary antibody (Sigma Aldrich, catalogue #M4403) 425 
for 1h30 at RT, then with a Alexa Fluor 488 labelled donkey anti-mouse secondary antibody (Thermo 426 
Fisher) for 45 min at RT, then with 0.5 mM phalloidin-Alexa Fluor 647 (Thermo-Fisher) overnight at 427 
4 °C. Neurons were mounted in a modified STORM buffer (50 mM Tris, pH 8, 10 mM NaCl, 10% 428 
glucose, 100 mM mercaptoethylamine, 3.5 U/ml pyranose oxidase, 40 μg/mL catalase) complemented 429 



with 0.05 mM phalloidin-Alexa Fluor 647, to mitigate phalloidin unbinding during acquisition and 430 
imaged immediately.  431 
Neuron samples were imaged on a N-STORM microscope using a 100x objective as above (Sup. Fig. 432 
11). The sample was illuminated at 100% laser power at 647 nm. A sequence of 60,000 images at 67 433 
Hz was acquired. Images were rendered with ThunderSTORM using a normalized 20 nm Gaussian 434 
from particle tables generated with SMAP, a MATLAB based software package developed by the Ries 435 
group at the EMBL, Heidelberg. Localizations were determined using a probability based method after 436 
background subtraction by wavelet filtering and lateral drift was corrected by cross-correlation.  437 
 438 
Visibility analysis 439 
To quantify the quality of the super-resolution reconstructions of parallel actin rings (Sup. Fig. 11i), a 440 
normalized visibility similar to that described in Geissbuehler et al. [25] was calculated as follows. 441 
Average intensity profiles were plotted for a 0.5 x 1 μm stretch of axon containing 5 actin rings (region 442 
shown in Sup. Fig. 11h) for each of the 120 reconstructed images. The MATLAB function 443 
findpeaks was used to find the 5 peak positions in the average profile measured from the 60,000 444 
frames reconstruction, and mean pairwise visibility was calculated as follows.  445 

ݒ̅ = 12  ቆܫmax, − max,ܫmin,→ାଵܫ + min,→ାଵܫ + max,ାଵܫ − max,ାଵܫmin,→ାଵܫ + min,→ାଵቇସܫ
ୀଵ  

max,ܫ  and ܫmax,ାଵ  are the intensities at peak positions ݅  and ݅ + 1 respectively, where ݅  denotes the 446 
index of the actin ring in the sampled regions and ܫmin,→ାଵ is the intensity at the midpoint of two 447 
adjacent peaks. Higher visibilities correspond to a greater ability to differentiate between two 448 
structures up to a maximum value of ̅ݒ = 0.5. 449 
Colour maps 450 
Colour maps used for displaying images (‘NanoJ-Orange’), error maps (‘SQUIRREL-errors’) and 451 
FRC maps (‘SQUIRREL-FRC’) are provided in the NanoJ-SQUIRREL software package. 452 453 



SOFTWARE AVAILABILITY 454 
NanoJ-SQUIRREL can be downloaded and installed in ImageJ and Fiji automatically by following the 455 
instructions in the manual, available here: https://bitbucket.org/rhenriqueslab/nanoj-squirrel. Source 456 
code is also available at the same website. 457 
 458 
DATA AVAILABILITY 459 
The data that support the findings of this study are available from the corresponding authors upon 460 
reasonable request. Sample datasets can be downloaded from 461 
https://bitbucket.org/rhenriqueslab/nanoj-squirrel. 462 
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