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Abstract

Rabies is a fatal neurologic disease caused by lyssavirus infection. People are infected

through contact with infected animals. The relative increase of human rabies acquired from

bats calls for a better understanding of lyssavirus infections in their natural hosts. So far,

there is no experimental model that mimics natural lyssavirus infection in the reservoir bat

species. Lagos bat virus is a lyssavirus that is endemic in straw-colored fruit bats (Eidolon

helvum) in Africa. Here we compared the susceptibility of these bats to three strains of

Lagos bat virus (from Senegal, Nigeria, and Ghana) by intracranial inoculation. To allow

comparison between strains, we ensured the same titer of virus was inoculated in the same

location of the brain of each bat. All bats (n = 3 per strain) were infected, and developed neu-

rological signs, and fatal meningoencephalitis with lyssavirus antigen expression in neu-

rons. There were three main differences among the groups. First, time to death was

substantially shorter in the Senegal and Ghana groups (4 to 6 days) than in the Nigeria

group (8 days). Second, each virus strain produced a distinct clinical syndrome. Third, the

spread of virus to peripheral tissues, tested by hemi-nested reverse transcriptase PCR, was

frequent (3 of 3 bats) and widespread (8 to 10 tissues positive of 11 tissues examined) in the

Ghana group, was frequent and less widespread in the Senegal group (3/3 bats, 3 to 6 tis-

sues positive), and was rare and restricted in the Nigeria group (1/3 bats, 2 tissues positive).
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Centrifugal spread of virus from brain to tissue of excretion in the oral cavity is required to

enable lyssavirus transmission. Therefore, the Senegal and Ghana strains seem most suit-

able for further pathogenesis, and for transmission, studies in the straw-colored fruit bat.

Author summary

Rabies is a neurologic disease that causes severe suffering and is almost always fatal. The

disease is caused by infection with a virus of the genus Lyssavirus, of which 16 species are

known. These viruses replicate in neurons, are excreted in the mouth, and are transmitted

by bites. Dogs are the most important source of rabies for humans, but recently there is a

relative increase in people contracting the disease from bats. To better understand the

development of human rabies caused by these bat-acquired viruses, we need to study this

disease in its bat host under controlled circumstances. To do so, we chose a naturally

occurring lyssavirus–host combination: Lagos bat virus in straw-colored fruit bats. We

compared three available strains of Lagos bat virus (all isolated from brains of this bat spe-

cies) for their ability to mimic a natural infection. We used intracranial inoculation to

ensure infection of the brain. All three strains infected brain neurons, resulting in fatal

neurologic disease, however only two of the strains showed the ability to reach the site of

excretion—the mouth—and were considered a suitable virus to use for further studies of

this disease in bats.

Introduction

Rabies is an almost invariably fatal disease caused by rabies virus (RABV) or other members of

the Lyssavirus genus, in the family of Rhabdoviridae of the order Mononegavirales. Rabies is

predominantly transmitted by carnivores, in particular dogs, and causes more than 59,000

human fatalities annually [1]. As terrestrial rabies in domestic and wild carnivores is being

brought under control by vaccination in high and middle income countries, the role of bats as

a source of human infection has become more evident [2–4]. Additionally, although rare, the

transmission of rabies from bats to terrestrial carnivores has been demonstrated as a driver for

the generation of outbreaks in terrestrial mammals, as has been reported several times in

North America [5–7]. Singular spill-over events of lyssaviruses other than RABV from bats to

terrestrial mammals also have been reported [8–13]. Despite their increasing importance, we

know relatively little about the dynamics of lyssavirus infections in bats [14] and how, for

example, pathogenesis might differ from that in carnivores. This makes it difficult to assess the

zoonotic risk of bat lyssavirus infections.

Some aspects of the pathogenesis of lyssavirus infections in bats are known. This knowledge

is mainly based on experimental infections with four lyssaviruses in natural bat reservoir hosts:

rabies virus, Australian bat lyssavirus, and European bat lyssaviruses 1 and 2 [15]. These exper-

imental infections have shown that—like rabies virus in carnivores—these lyssaviruses target

the brains of bats [16–19] with infection typically leading to encephalitis and death [20–23].

Other aspects of the pathogenesis of lyssaviruses in bats are poorly understood, such as

mechanisms of virus excretion and transmission, the nature and duration of clinical signs, and

the duration of virus excretion. An important limiting factor in this pathogenesis research is

that oral excretion of virus is an uncommon event in experimentally infected bats [20–41].
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This study was an initial step to reach our overall goal of developing an experimental model

that mimics natural lyssavirus infection in a natural reservoir bat host. With ‘natural reservoir

host’ we mean a host that is naturally infected and has co-evolved with the pathogen. For the

experimental model, we chose Lagos bat virus (LBV) and the straw-colored fruit bat (Eidolon
helvum). Lagos bat virus, which is divided into four lineages, A to D [15], is endemic in the

straw-colored fruit bat [42], a common and widespread bat species in sub-Saharan Africa,

which is not considered as ‘Threatened’ by the International Union for Conservation of Nature

(www.iucnredlist.org). Infections of LBV in mammals other than bats have been reported spo-

radically [11, 12, 43]. Infection of humans has never been demonstrated, but it should be

noted that diagnostic analysis of human rabies cases in Africa, if undertaken, typically uses

methods that do not distinguish RABV from LBV or other lyssaviruses [15]. While the impact

of LBV on human health is currently unknown, the widespread distribution of the straw-col-

ored fruit bat and the apparent high rate of exposure of this species to LBV across its range

[44], the increasingly close association of people with this bat species [45] and the failure of

rabies vaccination to immunize against LBV [46], indicate that this pathogen has the potential

to be an important public health threat.

The specific goal of this study was to choose the most suitable LBV strain, out of three that

were available to us, for further studies. All three strains originally had been isolated from the

brains of straw-colored fruit bats [47–49]. These strains differ in passage history and ability to

cause infection in laboratory animals [11, 50–54]. To determine their ability to cause in vivo

infection in a reservoir species, we inoculated these LBV strains into the cerebrum of straw-

colored fruit bats. The bats we used were obtained from our closed captive breeding colony

[55]. For each of the three strains, we determined the rate of infection, associated clinical signs,

cell tropism, and pathologic changes.

Materials and methods

Ethics statement

Experimental procedures were approved beforehand by the Wildlife Division of the Forestry

Commission of Ghana, the Zoological Society of London Ethics Committee (license number

WLE638) and the Institutional Review Board of Noguchi Memorial Institute for Medical

Research, University of Ghana, Legon.

Bats were anesthetized with a mixture of ketamine (5 mg/kg body weight [bw]; ketamine

hydrochloride 115.36 mg/ml, Fort Dodge Animal Health Ltd, U.K.) and medetomidine (0.05

mg/kg bw; Laboratories SYVA S. A., Spain). Bats were euthanized by exsanguination under

anesthesia with ketamine (5 mg/kg bw) and medetomidine (0.05 mg/kg bw), followed by cervi-

cal dislocation.

Virus preparation

Virus stocks of three LBV strains were prepared and titrated according to standard methods.

[56] The first virus strain was a lineage A LBV isolated from a bat in Dakar, Senegal in 1985.

[11, 49] This virus was kindly provided as a fourth passage in mouse neuroblastoma cells

(N2A) by M. Lafon, Institut Pasteur, Paris, France, and originally given to Institut Pasteur by

J.P. Digoutte as a seventh passage in mouse brains. The virus was propagated three times in

baby hamster kidney (BHK) cells. It reached an infectious virus titer of 107.25 median tissue

culture infectious dose (TCID50) per ml. The second virus strain was a lineage B LBV isolated

from a bat in Lagos Island, Nigeria in 1956 [48]. It had a very large, but unknown, number of

passages, primarily in BHK cells (including the last four passages). It reached an infectious

virus titer of 105 TCID50 per ml. The third virus strain was a lineage A LBV isolated from a bat
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in Kumasi, Ghana in 2013 [47], and was propagated four times in BHK cells. It reached an

infectious virus titer of 105.7 TCID50 per ml. All viruses were diluted to obtain a final inoculum

dose of 103.5 TCID50 in 30 μl.

Experimental set up

We inoculated each of the three available LBV strains into straw-colored fruit bats in order to

find the most suitable virus strain for the development of a model for LBV infection in a natu-

ral reservoir host. Although not a natural route of infection, we chose intracranial inoculation

because this is the most reliable method to infect the brain, by circumventing the need for the

virus to spread from a peripheral inoculation site (e.g. skeletal muscle) to the brain. If we ini-

tially used peripheral inoculation and no CNS infection occurred, we would not be able to rule

out that the virus was defective. Intracranial inoculation was performed by stereotactic surgery

to minimize variation in the site of inoculation and to minimize damage to the brain. The

course of infection in inoculated bats was followed until general paralysis was reached in order

to provide maximum time for the virus to spread from brain to peripheral sites, including

sites(s) of excretion, and to determine whether bats were able to survive infection.

Bats

Bats were obtained from a captive breeding colony that is maintained in Ghana [55] that had

been closed to new wild-caught bats since January 2010. The animals were held in a double-

walled cage with a solid roof to prevent any direct or indirect contact with free-living bats. All

bats born in this colony had tested negative for antibodies against LBV using a modified ver-

sion of the fluorescent antibody virus neutralization test with a lineage B LBV as the challenge

virus [56]. The bats used in this experiment were all captive-bred and again tested seronegative

at the beginning of the study, which started in October 2013. A month prior to the inoculation,

and throughout the study, each bat used in the experiment was housed individually in a wire-

mesh cage (80 x 80 x 80 cm). These cages were suspended from the roof of the animal house

and separated by approximately two meters of space and tin baffles to prevent direct physical

contact between bats and indirect contact via droplets (urine, secretions, food, water). Bats

received diced mixed fruits (e.g. mango, papaya, banana) and ad lib water, which were

replaced every day. Twelve bats were randomly assigned to one of four groups (three in each).

The age category (juvenile, adult) and the sex of each bat was assessed according to body size

and development of the external reproductive organs (S1 Table). The bats in each of the three

virus groups were inoculated intracerebrally with one of the LBV strains. The bats in the fourth

(control) group were inoculated with 30 μl of cell culture supernatant harvested from unin-

fected BHK-21 cells.

Stereotactic surgery

Bats were anesthetized and their heads were placed in a ‘U’ frame stereotactic instrument

(David Kopf Instruments, 902 Dual model). For pain relief and prevention of secondary bacte-

rial infections, each bat was given a subcutaneous injection of butorphanol (0.2–2 mg/kg bw),

buprenorphine (0.05 mg/kg bw), metacam (0.2 mg/kg bw; Meloxicam 2 mg/ml, Boehringer

Ingelheim Vet medica GmbH, Germany) and enrofloxacin (0.2 ml/kg bw; Baytril 2.5%, Bayer

plc, U.K). The cranium was exposed by skin incision and application of skin retractors. A 0.8

mm diameter dental drill was used to make a perforation in the parietal bone, unilaterally, 2

mm to the right of the midline, level with the lateral canthi of the eyes (approximately A/P, -2

to -4 mm; M/L, 2 mm; D/V, 4 mm from the Bregma point). The inoculum (see above) was

injected at a depth of 5 mm, in a volume of 30 μl using a Hamilton syringe with a 36-gauge
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needle at a speed of 5 μl/min. After injection, the needle was kept in place for an additional 4

min before slow withdrawal. The skin was stitched back in the original position. A transponder

chip for individual identification and for measurement of body temperature was placed subcu-

taneously in the interscapular region (Bio Medic Data system Inc.). Anesthesia was reversed

with atipamezole (0.1 mg/kg bw; Veterinary Essentials, U.K.). Bats were given oral enrofloxa-

cin (0.6 ml/kg bw/day) and metacam (0.1 mg/kg bw/day) for three days after the day of the

surgery.

Clinical examination and sampling

Bats were initially observed twice daily, at 07.00 and at 16.00 GMT for the presence of clinical

signs. After the first occurrence of clinical signs, frequency of observations was increased to

every two hours, day and night. Observers were unaware of the group the bat was in. Oral

swabs (individually wrapped 2.5 mm diameter cotton tip [Fisher Ltd.]) were taken twice per

week until the onset of clinical signs, when they were taken daily until death. This resulted in

oral swabs being taken one to three times per bat in the period of four days prior to death. Oral

swabs were collected in RNAlater (Ambion) for viral RNA detection. Euthanasia was delayed

to a time point of severe clinical signs (generalized paresis) in order to determine whether bats

could survive LBV infection. The mock-inoculated bats were euthanized after the last virus-

infected bat had died (day 9 post inoculation).

Pathological examination

Necropsies and tissue sampling were performed according to a standard protocol as soon as

possible (approximately 1 to 6 hours after death) within a class 2 biological safety cabinet in a

biosafety level 3 laboratory. At necropsy, a standard range of tissues (see below) was collected

(1) fixed in neutral-buffered 10% formalin for histological examination, (2) in plain dry tubes

for virus isolation, and (3) in tubes with RNAlater for RNA extraction. The following 14 tissue

samples were collected: brain (hippocampus, cerebellum, medulla oblongata in separate

tubes), and arbitrarily selected pieces of salivary gland, tongue, heart, lung, liver, kidney,

spleen, submandibular lymph node, duodenum, jejunum and colon. Each tissue was collected

using a new pair of disposable forceps and a new scalpel blade on an individual gauze pad to

prevent possible cross-contamination. For the tissues for histological examination, the forma-

lin was replaced once after two to three days to enhance fixation; the samples were stored at

room temperature. The samples in RNAlater were allowed to fix overnight at 4 ˚C, and then

stored at -70 ˚C until analysis, whereas plain samples in dry tubes were flash-frozen at -70˚C.

Virological examination

A range of tests were performed in biosafety level 3 laboratories at the Animal and Plant

Health Laboratory Agency, U.K. and at the Friedrich Loeffler Institute, Germany, as described

below:

Hemi-nested reverse transcription-PCR. All tissues and oral swabs, were tested with hemi-

nested reverse transcription PCR (hn-RT-PCR) according to a previously-described protocol

[57]. This test has proven to be highly sensitive because amplification from a small number of

target genomes is sufficient for detection [58, 59].

Fluorescent antibody test Touch impressions on glass microscope slides of the three different

parts of frozen brain were made and stained with fluorescein-isothiocyanate (FITC)-conju-

gated anti-rabies mouse monoclonal antibody (Fujirebio Diagnostics, USA, anti-N) [56]. A

rabies-virus-positive mouse brain was used as positive control. The brain of an uninfected

mouse was used as negative control.
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Histology and immunohistochemistry

The formalin-fixed tissues were embedded in paraffin wax, cut in 4-μm-thick serial sections

and routinely stained with hematoxylin and eosin to detect microscopic lesions. Immunohis-

tochemistry was performed to detect lyssaviral antigen [60]. Briefly, tissue slides were prepared

for immunohistochemical staining by leaving slides in hydrogen peroxide 30% for 20 min to

block endogenous peroxidase. Antigen retrieval consisted of boiling in citric acid buffer for 10

min. Virus antigen was detected with a goat anti-rabies N protein IgG (Rabies polyclonal DFA

Reagent Goat IgG FITC conjugate; EMD Millipore; 1:500) as primary antibody, and rabbit

anti-goat IgG-HRP (DAKO; 1:200) as secondary antibody. The brain of a mouse infected

experimentally with silver-haired bat rabies virus (kindly provided by P. Koraka) was included

as a positive control. The test was performed with goat serum (1:500) not containing antibod-

ies against RABV as a negative control. Immunohistochemistry was performed on all tissues

collected. Six coronal brain sections were made at equal intervals from the rostral to the caudal

ends of the fixed brains, to be able to compare antigen presence in similar levels of the brain

areas between bats. These brain sections were scored for frequency of lyssaviral antigen expres-

sion without prior knowledge of the identity of the bats. For this, the number of antigen-posi-

tive neurons relative to the total number of neurons was estimated in each of 10 arbitrarily

selected, 40X objective (Olympus BX51) fields per brain section. The average percentages per

brain section were placed in the following categories: 0–25% (category 1), 26–50% (category

2), 51–75% (category 3) and 76–100% (category 4).

Results

Clinical signs

Bats in the Ghana and Senegal groups died or had to be euthanized earlier (four to six days

after inoculation) than bats in the Nigeria group (8 days after inoculation) (Table 1). The time

from onset of clinical signs to death was similar among all three groups: thus, although group

sizes were small clear differences were observed between the three strains: the Ghana and

Table 1. Presence (+) or absence (-) of clinical signs in bats inoculated with Lagos bat virus.

Inoculum

Group

Bat

no.

Days to

death

Hindleg

paresis

Wing

paresis

Muscle

tremors or

spasms

Lethargy (not

agonal)

Lip

smacking

Foam around

the mouth

Vocalization Aggression Hyperaesthesiac

Control 1 naa - - - - - - - - -

2 na - - - - - - - - -

3 na - - - - - - - - -

Senegal 13 4 - - + - - - - - +

5 6 + - + - - - - - +

6b 5 - - + - - + - - +

Nigeria 7b 8 + + + + - - - - -

8 8 + + + + - + - - -

9 8 + + + + - + - - -

Ghana 10 5 + - - - + - + + -

11 5 + - - - - - + + -

12 6 + - - - - - + + -

a na, not applicable
b Spontaneous death (other bats were euthanized).
c Increased sensitivity to external stimuli.

https://doi.org/10.1371/journal.pntd.0006311.t001
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Senegal strains had shorter incubation periods on average than the Nigeria strain. All virus-

inoculated bats developed clinical signs only during the last 24 hours prior to death, with a

rapid progression of neurological signs. Bats with clinical signs did not eat (9/9). The three

groups differed in clinical presentation, although differences were not statistically significant

due to the small group sizes. One of the initial clinical signs in the Senegal group was a marked

sensitivity to external stimuli, such as approaching of the cage by a person, loud sounds, fast

movement of an object (e.g. experimentator’s hand) near the cage (3 out of 3 bats), but this

was not seen in any of the other groups. Muscle spasms were observed in the Senegal (3/3) and

Nigeria (3/3) groups, but not in the Ghana group (0/3). Increased vocalization (3/3) and

aggression (3/3) were seen only in the Ghana group. Foam around the mouth was seen in the

Nigeria group (2/3) and in the Senegal group (1/3), but not in the Ghana group (0/3). The

Nigeria bats showed lethargy throughout much of the clinical course of illness (3/3), but, if

present, this was an agonal feature in the other bats. None of the bats experienced significant

changes of body temperature except when they developed extreme paresis or paralysis at the

terminal stage of the disease, when their body temperature decreased by 2–3˚C compared to

mock-inoculated bats. All mock inoculated bats remained clinically normal and survived until

the end of the experiment (9 days post-inoculation). There was no apparent correlation

between age or sex and any of the variables analyzed above.

Virological examination

All parts of the brain (hippocampus, cerebellum, medulla oblongata) of all virus-inoculated

bats tested positive by both hn-RT-PCR and fluorescent antibody test for lyssavirus RNA and

antigen respectively, while the brains of all mock-inoculated bats tested negative. The spread

of lyssavirus to organs outside the brain (extra-encephalic), based on hn-RT-PCR testing of 11

extra-encephalic tissues per bat, differed substantially among groups (Table 2). In the Ghana

group, extra-encephalic tissues in three bats tested positive, and these had 8 to 10 positive tis-

sues per bat. In the Senegal group, three bats tested positive, but these had only 3 to 6 positive

extra-encephalic tissues per bat. In the Nigeria group, only one bat tested positive, and it had 2

positive extra-encephalic tissues. Thus the Ghana strain disseminated to more extra-encephalic

tissues than either of the other two strains.

All oral swabs tested negative by hn-RT-PCR. The virus was detected by hn-RT-PCR in sali-

vary gland in all bats from the Senegal group, and in one bat from the Ghana group. However,

virus was detected in just one salivary gland with immunohistochemistry, and this was in a

bat’s salivary gland that had tested negative with hn-RT-PCR (see below).

Pathological examination

At necropsy, no gross lesions were observed in any of the virus-inoculated or mock-inoculated

bats. On histopathological examination, all virus-inoculated bats had diffuse, mild to moderate

meningoencephalitis. This was characterized by the presence of a few to moderate number of

lymphocytes in the meninges, around blood vessels (Fig 1). In the brain parenchyma, there

was a mild increase in the number of glial cells compared to the mock-inoculated bats, and

occasional pyknotic or karyorrhectic cells of undetermined origin (ranging from one to eight

per five 40X objective fields). There were perivascular lymphocytic infiltrates, of up to three

cell layers thick, in most brain sections. Negri bodies were not observed. Outside the brain, the

only nervous tissue lesion seen was in bat 12 (Ghana group): the wall of the colon had a mild

lymphocytic infiltration surrounding a partly necrotic myenteric plexus (plexus of Auerbach),

of which the remaining neurons were not positive by immunohistochemistry (see below). The

colon of this bat, however, did test positive for lyssavirus by hn-RT-PCR (Table 2).
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There were a few lesions in bats 6, 8 and 11, which we considered to be incidental and not

directly caused by LBV infection. Bat 6 (Senegal group) had an acute, mild, multifocal fibrino-

purulent pneumonia, characteristic of aspiration pneumonia. This bat was noted to have had

paresis and muscle spasms during the terminal 24 hours of infection, which could have caused

aspiration of water. This lesion, therefore, might have been indirectly caused by the LBV infec-

tion. Both bat 6 and bat 8 (Nigeria group) had a chronic, mild, multifocal lymphoplasmacytic

interstitial nephritis. Bat 8 had an acute mild focal necropurulent hepatitis. Bat 11 (Ghana

group) had deeply eosinophilic, homogeneous to laminated, irregularly shaped structures

(interpreted as sialoliths) in the lumina of about half of the secretory ducts of the salivary gland.

Occasionally these structures compressed the lining ductular epithelial cells. None of the mock-

inoculated bats had histological lesions in any of the tissues examined, including the brain.

Immunohistochemistry

Cells positive for immunohistochemical staining, and thus positive for lyssavirus antigen, were

found in a number of tissues. In most of these tissues, positively-stained cells could be clearly

identified as neurons based on their morphology. When detected in neurons, antigen was

located in the cytoplasm, with staining consisting of small (pinpoint to approximately 2 μm

diameter) or large (approximately 5 μm diameter) granules. The number of granules per cell

ranged from one to numerous. Neurons with multiple antigen granules were often found adja-

cent to neurons that did not contain any staining. Variation in the size and number of granules

Table 2. Distribution of Lagos bat viral RNA and antigen in tissues of experimentally infected bats.

Inoculum

Group

Bat

no.

Days to

death

Tissue (lyssaviral RNA by hn-RT-PCR/lyssaviral antigen by immunohistochemistry) Total no tissues

positive hn-RT-

PCR/ IHC
Brain Salivary

gland

Tongue Lymph

nodea
Heart Lung Duodenum Jejunum Colon Liver Kidney Spleen

Senegal 13 4 + b /+ +/- c +/- -/- -/- -/- -/- NAd -/- -/- -/- -/- 3/1

5 6 +/+ +/- -/- -/- +/- +/- -/- -/- +/- -/- +/- -/- 6/1

6 5 +/+ +/- -/-e -/- +/+f +/- +/- -/- -/- -/- -/- -/- 5/3

Nigeria 7 8 +/+ -/- -/- -/- -/-g -/- -/- -/- -/- -/- -/- -/- 1/1

8 8 +/+ -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- 1/1

9 8 +/+ -/- -/- -/- -/-g -/- -/- -/- +/- +/- -/- -/- 3/1

Ghana 10 5 +/+ -/- +/-h +/- +/+f +/- +/+i +/+i -/- +/- +/- +/- 10/5

11 5 +/+ +/- -/- -/- +/+f +/- +/+i +/- +/- -/- -/- +/- 8/3

12 6 +/+ -/+j +/+k -/- +/+f +/- +/+i +/- +/- +/- +/- +/- 10/5

Total

positive

9; 9l 4; 1 3; 3 1; 0 5; 4 5; 0 4; 3 3; 1 4; 0 3; 0 3; 0 3; 0

a Submandibular lymph node.
b +, Positive.
c -, Negative.
d NA, Sample not available.
e Taste buds positive, neurons in ganglia not.
f Neurons in ganglia of the heart contained lyssavirus antigen.
g Ganglia were not visible in heart section.
h Surface epithelium positive, neurons in ganglion not.
i Neurons in myenteric plexi positive.
j Neurons in ganglion in the interstitium of the salivary gland positive.
k Taste buds and neurons in ganglia positive.
l x; y, x indicates total number of RNA positives; y indicates total number of antigen positives.

https://doi.org/10.1371/journal.pntd.0006311.t002
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Fig 1. Inflammation in the meninges and brain parenchyma of a bat with Lagos bat virus infection (bat 10, Ghana

strain). H & E staining. Original magnification: x10 (A), x40 (B) A: Perivascular cuffing surrounding blood vessels in

the meninges. Cells surrounding blood vessels are mainly composed of small mononuclear cells with dense chromatin

pattern (lymphocytes). B: Higher magnification of A.

https://doi.org/10.1371/journal.pntd.0006311.g001
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per neuron differed among groups. Stained neurons in the Senegal and Ghana group bats con-

tained only small granules, with a high variation in the number of granules per neuron. In con-

trast, stained neurons in the Nigeria group bats contained large granules with little variation in

the number of granules per neuron (Fig 2). Overall, the Ghana group had significantly fewer

antigen-positive neurons than the Senegal or Nigeria group bats (p = 0.004, paired t-test;

Table 3).

Fig 2. Lyssavirus antigen expression in neurons infected with different strains of Lagos bat virus. All sections immunostained for lyssavirus antigen.

Original magnification: x100 (A, B and C). A: Senegal strain, relatively large number of neurons are infected, small cytoplasmic antigen (red) granules,

infected neurons have variable numbers of granules (Bat 6). B: Nigeria strain, relatively large number of neurons are infected, large cytoplasmic antigen

(red) granules, infected neurons have similar numbers of granules (Bat 9). C: Ghana strain, relatively few neurons infected, small cytoplasmic antigen (red)

granules (Bat 12).

https://doi.org/10.1371/journal.pntd.0006311.g002

Table 3. Distribution of Lagos bat virus antigen in the brains of experimentally infected bats.

Inoculum Group Bat

no.

Days to

death

Category of

antigen-positive

neurons per brain

section

Average category of antigen-positive

neurons per brain

Average category of antigen-positive neurons per

brain, per group

Aa B C D E F

Senegal 13 4 1b 1 2 1 3 3 2

5 6 2 1 2 1 1 3 2

6 5 3 4 3 3 3 3 3 2

Nigeria 7 8 3 2 1 1 4 2 2

8 8 1 1 2 1 3 2 2

9 8 4 3 3 3 2 2 3 2

Ghana 10 5 1 1 1 1 1 3 1

11 5 1 1 1 1 2 3 2

12 6 1 1 1 1 1 2 1 1�

Average 2 2 2 1 2 3

a Brain section A corresponds to the most rostral part, section F to the most caudal part of the brain.
b Category 1: 0–25% of the neurons antigen positive in 10, 40X objective fields arbitrarily selected in this brain section, 2: 26–50%, 3: 51–75%, 4:76–100%.

� Significantly lower than the average score of Nigeria and Senegal groups (p = 0.004, paired t-test).

https://doi.org/10.1371/journal.pntd.0006311.t003
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In the brain, antigen-positive neurons were generally concentrated in the most caudal brain

section examined, otherwise there were no clear patterns within or between groups comparing

percentage of neurons infected across the six brain sections examined for each bat (Table 3).

We could not exclude that a small number of positive cells in the brain were of other cell types,

possibly glial cells. The majority of antigen positive cells in the brain did not show any signs of

degeneration or necrosis; a few neurons showed evidence of cell shrinkage and loss of Nissl

substance.

In the extra-encephalic tissues examined, lyssavirus antigen was detected in neurons.

Antigen-positive neurons were found only in ganglia in salivary gland, tongue, and heart,

and in myenteric plexi (also called Auerbach’s plexi) in duodenum and jejunum (Fig 3A–3C;

Table 4). Submucosal plexi (also called Meissner’s plexi) were visible in all samples of duode-

num, jejunum and colon, but no lyssavirus antigen was detected in their neurons.

In tongue sections, lyssaviral antigen was detected not only in neurons but also in epithelial

cells. Three bats had one to three foci of lyssavirus antigen-positive epithelial cells at the tongue

surface (Table 2). In bat 6 (Senegal group) and bat 12 (Ghana group), the antigen-positive cells

were part of a taste bud. This initiated more detailed investigation for the presence of taste

buds in the tongue sections: the tongue section examined from bat 6 had three taste buds, two

of which were antigen-positive, and that from bat 12 had one taste bud, which was positive.

Three other virus-infected bats also had taste buds present in their tongue sections (bat 13,

two taste buds; bat 7, five taste buds; bat 8, two taste buds), but none were lyssavirus antigen-

positive.

Antigen was not detected in salivary gland epithelial cells of any virus-infected bat, although

salivary gland sections were available for all nine. Antigen was not detected in any other tissues

of the virus-infected bats, and was not detected in any of the tissues examined from the mock-

inoculated bats.

Discussion

Our results show that all three LBV strains are capable of infecting and replicating in the brain

of the straw-colored fruit bat following intracranial inoculation. The predominant detection of

virus in neurons confirms that LBV is neurotropic, similar to RABV and other lyssaviruses in

other host species [61]. In many of our infected bats, virus antigen was detected in a large per-

centage (over 25%) of neurons at different levels throughout the brain at the time of death.

The majority of infected neurons showed no visible pathological changes. The wide dissemina-

tion in the brain, an absence of severe neuronal lesions and the late development of neurologic

signs suggest that, like RABV in other species [61], these LBV strains can replicate in neurons

for some time before negatively affecting their function.

Virus spread from the site of intracranial inoculation to peripheral tissues was detected

most frequently in bats infected with the Senegal and Ghana strains of LBV. The rapidity of

spread from brain to the periphery—centrifugal spread—within a few days post inoculation,

was likely due to the high viral dose inoculated directly into the brain. The extra-encephalic

detection of lyssavirus antigen nearly exclusively in neurons indicates centrifugal spread via

peripheral nerves, and fits with the accepted pathogenesis of lyssavirus infections [61],

although the occurrence of viremia cannot be excluded [62, 63]. The higher frequency of PCR-

positive results than immunohistochemistry-positive results in the peripheral tissues is likely

due to the higher sensitivity of PCR. As a consequence, we only were able to detect immuno-

histochemistry-positive neurons when their cell bodies, aggregated in ganglia, were present in

tissue sections. For this reason, immunohistochemistry and PCR results corresponded better

in those tissues in which ganglia were usually present (heart, intestine). Centrifugal spread is
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Fig 3. Lyssavirus antigen expression in neurons infected with different strains of Lagos bat virus. All sections

immunostained for lyssavirus antigen. Original magnification: x 100 (A, B and C); x40 (D); x100 (inset of D) A: Taste

bud (between short arrows) bordering the lumen of the oral cavity (indicated with asterisk) in cross section of tongue.

Several neuroepithelial cells within the taste bud have small cytoplasmic antigen (red) granules. Epithelial cells directly

adjacent to taste buds also occasionally have antigen granules (indicated with long arrow) (Bat 6). B: Three neurons in

a ganglion within the connective tissue of a salivary gland. One neuron has small cytoplasmic antigen (red) granules

(Bat 12). C: Neurons in a ganglion within the connective tissue of the epicardium (heart). One neuron has abundant

small cytoplasmic antigen (red) granules. Directly adjacent one neuron with less antigen granules (Bat 6). D: Neurons

within the myenteric plexus (intestine) have abundant small cytoplasmic antigen (red) granules. Asterisk indicates the

serosa side of the intestinal wall (bat 11). Inset contains a higher magnification of the image in the square of D.

https://doi.org/10.1371/journal.pntd.0006311.g003
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necessary for lyssaviruses to reach the oral cavity, from where they can be transmitted to new

susceptible individuals via bites. As we could not detect the Nigeria strain of LBV in the

peripheral nervous system by immunohistochemistry, this strain is possibly not suitable for

further pathogenesis studies. A difference between the Nigeria strain and the other two strains

is the large number of in vitro passages it has undergone.

Although no marked lesions were present in the brain at the time of death, neuronal dys-

function was apparent from the neurological disease observed in our virus-inoculated bats.

Although neurologic signs have not been previously described for LBV-infected bats, they cor-

respond to those described previously for bats infected with other lyssaviruses [35, 64–66].

The apparent consistency of the clinical presentation seen within each infection group, and

the differences among the bat groups, suggests a link with the virus strain used. Specifically, all

three bats inoculated with the Senegal strain developed marked sensitivity to external stimuli,

and all three bats inoculated with the Ghana strain developed aggression and excessive vocali-

zation. Interestingly, the Ghana LBV was reported to have been isolated from an apparently

healthy straw-colored fruit bat in the frame of a non-targeted virus isolation study in a large

colony comprising ca. 350,000 animals in Kumasi, Ghana [47]. Here, aggression and vocaliza-

tion may have been overlooked or misinterpreted. All three bats inoculated with the Nigeria

strain developed general weakness, while this was only seen as an agonal feature in the other

groups (Table 1). A correlation between specific clinical signs and virus strain used has been

observed for other lyssavirus infections [67]. In general, the mechanism through which lyssa-

virus infection causes clinical signs is still a subject of debate. Lyssaviruses can have both direct

and indirect effects on the functionality of neurons. These effects can be due to a change in

neuronal electrophysiology, a change in the function of ion channels, a change in neurotrans-

mission, a change in the amount of hormone production, or presumably other, as yet unde-

fined, mechanisms. A combination of these effects might occur at specific anatomical

locations explaining specific neuronal deficits in rabies patients. So far, no single or dominant

mechanism has been identified [61].

Table 4. Neuronal routes different Lagos bat viruses travelled from the intracranial inoculation site to the periphery.

LBV

strain(s)

Peripheral location Deduced route for centrifugal spread of LBVs from intracranial inoculation site to periphery

Origin in CNS Route (nerves & ganglia) Characteristics of neuronal route

Specific nucleus General location

of nucleus in CNS

Number of

synapses to pass

Division of nervous

system involved

Ghana Tongue ganglion Salivatory Motor medulla Chorda tympani and

glossopharyngeal nerves

1 Parasympathetic motor

Ghana Otic ganglion (salivary

gland)

Inferior salivatory Motor medulla Chorda tympani and

glossopharyngeal nerves

1 Parasympathetic motor

Ghana,

Senegal

Cardiac plexi at base of

hearta
Dorsal motor nucleus of

vagus nerve

Motor medulla Vagus nerve 1 Parasympathetic motor

Cranial four to five

segments thoracic

spinal cord

Spinal cord Cervical paravertebral sympathetic

trunk and postganglionic fibers

2 Sympathetic motor

Ghana Myenteric plexi of

duodenum and

jejunuma

Dorsal motor nucleus of

vagus nerve

Motor medulla Vagus nerve 1 Parasympathetic motor

Dorsal horn spinal cord Spinal cord Splanchnic nerve, celiac ganglion,

and postganglionic fibers

2 Sympathetic motor

Ghana,

Senegal

Taste buds on tongue Solitary tract Sensory medulla Geniculate, petrosal and nodosal

ganglia

2 Special sensory

a More than one route possible because of innervation of the nervous plexi by both parasympathetic and sympathetic nervous system.

https://doi.org/10.1371/journal.pntd.0006311.t004

Comparison of three Lagos bat virus strains in straw-colored fruit bats

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006311 March 5, 2018 13 / 19

https://doi.org/10.1371/journal.pntd.0006311.t004
https://doi.org/10.1371/journal.pntd.0006311


All virus-infected, but no mock-inoculated, bats had a lymphocytic meningoencephalitis at

death. This is similar to the histologic lesions seen in mice intracranially inoculated with lyssa-

viruses of different species [68]. The presence of lymphocytes in the absence of other cells,

such as plasma cells or neutrophils, suggests that a Th1 or cell-mediated immune response

occurred in these bats. This is surprising, as the direct inoculation of virus in the brain is not

expected to incite an immune response at all: initiation of T cell responses are unlikely to

occur within the central nervous system as naïve T cells do not cross the blood-brain barrier

and lymph vessels and dendritic cells that are normally involved in picking up exogenous

material are absent in the brain [69]. However, for rats and rabbits it has been shown that the

grey matter interstitial fluid is drained via cervical lymph nodes, where antigen-presenting

cells are triggered and where a subsequent adaptive immune response can develop [70]. It is

also possible that some of the virus particles inoculated into the cerebrum in our bats entered

the interstitial fluid, reached a lymph node, and triggered an adaptive immune response. It

also is possible that the surgical procedure of intra-cranial inoculation damaged the blood-

brain barrier, allowing virus to spill over into the blood, and immune cells from the blood to

infiltrate the brain parenchyma, thus initiating a specific immune response. Whatever the

mechanism of recruitment of lymphocytes to the brain in the virus-inoculated bats, due to our

unnatural inoculation route this inflammatory response does not necessarily reflect the situa-

tion during natural LBV infection in the straw-colored fruit bat.

In our study, several neurons in ganglia and other cells outside the central nervous system

were lyssavirus antigen-positive. We used this information to deduce via which nerves the dif-

ferent LBV strains travelled from site of intracranial inoculation to extra-encephalic tissues

(Table 4). The Ghana strain travelled via parasympathetic motor neurons to reach the tongue

and salivary gland ganglia. The Ghana and Senegal strains travelled via parasympathetic or

sympathetic motor neurons, or both, to reach ganglia in heart and intestine. The Ghana and

Senegal strains also travelled via special sensory neurons to reach taste bud epithelial cells. The

Nigeria strain, however, even with a longer period of time for dissemination, did not travel via

any of these routes.

For a lyssavirus to be suitable for use in pathogenesis studies, and specifically for causing

infection in bats that leads to excretion of virus in the oral cavity, the virus needs to have the

capacity to get to the excretion site. In straw-colored fruit bats that were naturally infected

with LBV, salivary gland epithelial cells and tongue epithelial cells were shown to contain anti-

gen [71]. These two cell types may thus be sites for virus excretion. Salivary gland epithelial

cells are mostly innervated by parasympathetic motor neurons, and to a lesser extent by sym-

pathetic motor neurons and by sensory neurons. Taste bud epithelial cells in the tongue are

innervated by special sensory neurons. Although the salivary gland samples of some bats were

positive by hn-RT-PCR, and the Ghana strain showed the capacity to infect neurons innervat-

ing the salivary gland, none of the infected bats in this study had antigen in salivary gland epi-

thelial cells (Table 2). Possible reasons include the bats dying before the infection could reach

the salivary gland epithelial cells, a different pattern of centrifugal spread to the salivary gland

after intracranial inoculation than after natural infection, and the inability of our LBV strains

to infect salivary gland epithelial cells. Some authors (e.g., [72, 73]) used viruses isolated from

the oral cavity instead of from the brain for experimental infection studies; this may ensure

that viruses are from a population that is able to infect cells important for excretion.

Although virus was found in surface epithelial cells of the tongue of two bats (bats 12 and

13), virus was not detected in any of the oral swabs. There are several possible explanations for

this. First, immunohistochemistry to detect virus antigen in oral tissues may be more sensitive

than hn-RT-PCR to detect viral RNA in oral swabs. Second, although there was virus in tongue

surface epithelium, there may have been no excretion into the oral cavity. This does not fit well
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with what is known of the pathogenesis of other lyssaviral infections. Third, it may be that

excretion was intermittent and swabs were taken at a time when virus was not excreted. Inter-

mittent excretion has been proposed to explain alternating positive and negative results of seri-

ally collected oral swabs in other experimental lyssavirus infections in bats [20]. However,

virus was not detected by hn-RT-PCR in any of our oral swabs. Fourth, there may have been

loss of viral RNA in oral swab samples during transport or processing. This seems less likely as

viral RNA could be detected in tissue samples that were similarly transported and processed.

LBV has been detected in an oral swab of a naturally infected straw-colored fruit bat previously

[71], showing that this is technically possible.

In conclusion, our study showed that intracerebral inoculation of each of three LBV strains

into straw-colored fruit bats caused widespread infection of the brain, associated with menin-

goencephalitis, clinical signs consistent with rabies, progressing quickly to death of all virus-

inoculated bats. Although group sizes were small, different clinical signs were observed and

these were associated with the virus strains used. The distribution of virus antigen in extra-

encephalic tissues indicated that the Ghana and Senegal LBV strains were able to utilize both

sensory and motor neurons for dissemination to the periphery, and to infect epithelial cells of

the tongue as a possible site of excretion. The Nigeria strain was rarely detected in any tissue

outside the brain and may have lost the capability to use certain transport mechanisms in

neurons, possibly due to multiple passages in cell culture. Based on the above results, both the

Senegal and Ghana strains are suitable for further pathogenesis studies of LBV in the straw-

colored fruit bat, a natural host of the virus. Now that we have shown that these strains are suit-

able, our next step will be to use a peripheral inoculation site, and thus a more natural route of

transmission, for further pathogenesis studies in the straw-colored fruit bat.

Supporting information

S1 Table. Sex, age category and body weight of bats inoculated with Lagos bat virus or

mock-inoculated (control).

(XLSX)

Acknowledgments

We thank Meyir Ziekah for veterinary assistance during the experimental procedures; Lon-

neke Leijten and Peter van Run for technical support with processing the formalin-fixed tis-

sues, and Penelope Koraka for providing the positive control tissue for immunohistochemistry

to detect lyssavirus antigen.

Author Contributions

Conceptualization: Daniel L. Horton, Thijs Kuiken, Anthony R. Fooks, Thomas Müller,

James L. N. Wood, Andrew A. Cunningham.

Formal analysis: Richard Suu-Ire, Lineke Begeman, Ashley C. Banyard.

Funding acquisition: Andrew C. Breed, Thijs Kuiken, Anthony R. Fooks, James L. N. Wood,

Andrew A. Cunningham.

Investigation: Richard Suu-Ire, Lineke Begeman, Elisa Eggerbauer, Conrad M. Freuling, Lou-

ise Gibson, Hooman Goharriz, Daisy Jennings, Ivan V. Kuzmin, Denise Marston, Silke

Riesle Sbarbaro, David Selden, Emma L. Wise, Anthony R. Fooks, Andrew A.

Cunningham.

Comparison of three Lagos bat virus strains in straw-colored fruit bats

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006311 March 5, 2018 15 / 19

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006311.s001
https://doi.org/10.1371/journal.pntd.0006311


Methodology: Andrew C. Breed, Daniel L. Horton, Anthony R. Fooks, James L. N. Wood,

Andrew A. Cunningham.

Project administration: Andrew A. Cunningham.

Resources: Richard Suu-Ire, Christian Drosten, Yaa Ntiamoa-Baidu, Anthony R. Fooks,

Thomas Müller, Andrew A. Cunningham.

Supervision: Thijs Kuiken, Anthony R. Fooks, Thomas Müller, James L. N. Wood, Andrew A.

Cunningham.

Visualization: Richard Suu-Ire, Lineke Begeman, Thijs Kuiken, Andrew A. Cunningham.

Writing – original draft: Richard Suu-Ire, Lineke Begeman, Thijs Kuiken, James L. N. Wood,

Andrew A. Cunningham.

Writing – review & editing: Richard Suu-Ire, Lineke Begeman, Ashley C. Banyard, Andrew

C. Breed, Christian Drosten, Elisa Eggerbauer, Conrad M. Freuling, Louise Gibson, Hoo-

man Goharriz, Daniel L. Horton, Daisy Jennings, Ivan V. Kuzmin, Denise Marston, Yaa

Ntiamoa-Baidu, Silke Riesle Sbarbaro, David Selden, Emma L. Wise, Thijs Kuiken,

Anthony R. Fooks, Thomas Müller, James L. N. Wood, Andrew A. Cunningham.

References
1. Hampson K, Coudeville L, Lembo T, Sambo M, Kieffer A, Attlan M, et al. Estimating the global burden of

endemic canine rabies. PLoS Negl Trop Dis. 2015; 9: e0003709. https://doi.org/10.1371/journal.pntd.

0003709 PMID: 25881058

2. Messenger SL, Smith JS, Orciari LA, Yager PA, Rupprecht CE. Emerging pattern of rabies deaths and

increased viral infectivity. Emerg Infect Dis. 2003; 9: 151–154. https://doi.org/10.3201/eid0902.020083

PMID: 12603983
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