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Machine learning (ML) algorithms have proven highly accurate for identifying

Randomized Controlled Trials (RCTs) but are not used much in practice, in part

because the best way to make use of the technology in a typical workflow is

unclear. In this work, we evaluate ML models for RCT classification (support

vector machines, convolutional neural networks, and ensemble approaches).

We trained and optimized support vector machine and convolutional neural net-

work models on the titles and abstracts of the Cochrane Crowd RCT set. We eval-

uated the models on an external dataset (Clinical Hedges), allowing direct

comparison with traditional database search filters. We estimated area under

receiver operating characteristics (AUROC) using the Clinical Hedges dataset.

We demonstrate that ML approaches better discriminate between RCTs and

non‐RCTs than widely used traditional database search filters at all sensitivity

levels; our best‐performing model also achieved the best results to date for

ML in this task (AUROC 0.987, 95% CI, 0.984‐0.989). We provide practical guid-

ance on the role of ML in (1) systematic reviews (high‐sensitivity strategies) and

(2) rapid reviews and clinical question answering (high‐precision strategies)

together with recommended probability cutoffs for each use case. Finally, we

provide open‐source software to enable these approaches to be used in practice.
†These filters are often derived from statistical analyses of term counts in
1 | INTRODUCTION

Randomized Controlled Trials (RCTs) are regarded as the
gold standard of evidence on of the effectiveness of health
interventions.1 Yet these articles are a small minority of
the available medical literature. As of 2016, PubMed
contained 26.6 million articles, of which 423 000 (1.6%)
were labeled as being RCTs.* A key task in systematic
reviews in health care (and in evidence‐based medicine
more widely) is identifying RCTs from large research
databases. Current standard practice for identifying RCTs
- - - - - - - - - - - - - - - - - - - - - - - - - -
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involves using an established database filter, which can
automatically exclude a large proportion of non‐RCT arti-
cles; the remaining articles are being manually screened.2

Database filters contain combinations of text strings and
database tags and have been developed by information
specialists who combine search terms (see example,
Box 1).†

Automated text classification has been widely studied
in natural language processing (NLP) and machine
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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relevant and irrelevant articles, which may be iteratively combined to
find an optimal sensitivity/specificity balance; in some cases, they are
based on the opinion of expert librarians.
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Box 1 Cochrane Highly Sensitive Search
Strategy, 2008 PubMed version2

#1 randomized controlled trial [pt]
#2 controlled clinical trial [pt]
#3 randomized [tiab]
#4 placebo [tiab]
#5 drug therapy [sh]
#5 randomly [tiab]
#6 trial [tiab]
#7 groups [tiab]
#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8
# 10 animals [mh] NOT humans [mh]
#9 NOT #10
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learning (ML).3,4 In the past, discriminative linear models
induced over sparse, bag of words (BoW)‡ document rep-
resentations had been the prevailing approach. For exam-
ple, linear‐kernel support vector machines (SVMs) were
until recently considered state‐of‐the‐art text classifiers.3

In the past few years, neural models have come to domi-
nate NLP generally and text classification specifically.5

Convolutional neural networks (CNNs), originally used
for image classification, in particular have emerged as
state‐of‐the‐art models for text categorization: evaluations
on a range of datasets have found improvements
in performance compared with linear SVM‐based
approaches.6,7 In their 2015 evaluation, Cohen and col-
leagues reported that an SVM‐based classifier achieved
very high accuracy for RCT classification.8 However, the
role of ML in systematic review workflows is still ill‐
defined, and how ML compares with current standard
practice (ie, the use of database filters) is unclear.
1.1. | Aims

This paper seeks to evaluate ML as a strategy for identify-
ing RCTs from health research databases. We aim to
evaluate ML approaches (CNNs, SVMs, and ensembles§)
of these approaches for RCT identification on an external
gold standard dataset (the Clinical Hedges set). This
allows direct comparison of ML against standard database
filters. We then provide practical guidance on how ML
‡This scheme represents a text as long, sparse vector in which each ele-
ment corresponds to the presence or absence of a word in the vocabulary.
In the simplest case, a text is described by a sequence of 1s and 0s deter-
mined by whether each unique word in the overall corpus is present in
the document of interest or not.
§The process of combining multiple models with the aim of increasing
performance over any individual model.
models might be used in practice in real‐world scenarios,
specifically (1) systematic reviews (ie, high‐sensitivity
search) and for (2) rapid reviews or clinical question
answering (high‐precision search). Finally, we present
open‐source software, which implements these methods
to facilitate their use in practice.
1.2. | Use cases for RCT identification

Here, we describe 2 common use cases for an ML RCT
classifier, and the performance requirements for each.
Although defining discrete cutoffs in this way is some-
what arbitrary, they illustrate how ML compares with tra-
ditional database filters in common use cases. Note that
one advantage of automated approaches is the ability to
select a threshold suitable for a given search application;
this is not possible using conventional database filters.
1.2.1. | Systematic review/high‐sensitivity
search

The current best‐performing filters achieve near perfect
sensitivity (an essential quality considering the goal of
most systematic review is to retrieve all RCTs evaluating
an intervention), but at the cost of comparatively low
specificity. For this use case, we have chosen the
Cochrane Highly Sensitive Search Strategy RCT filter
(hereafter referred to as the Cochrane HSSS) as a compar-
ator.2 The Cochrane HSSS has been found to have 98.4%
sensitivity9 and is the standard approach for retrieving
RCTs from MEDLINE currently used across the Cochrane
collaboration.

Given that reports of RCTs constitute a small minority
of all article types, specificity contributes substantially
more to the absolute number of errors. Figure 1 shows
that these performance metrics lead to a very high num-
ber of false positives in practice when searching
MEDLINE. This phenomenon occurs in all search filters
and ML approaches aiming to detect a minority class. Per-
haps counter‐intuitively, a filter with 77.9% specificity
may produce output in which only 7% of retrieved articles
are genuine RCTs (see Figure 1). An effective ML strategy
would maintain the 98.4% sensitivity of the Cochrane
HSSS but achieve higher specificity than conventional
database filters, thus reducing the burden imposed by
false positives.
1.2.2. | Rapid review search/clinical ques-
tion answering

Systematic reviews aim to be comprehensive but are time
consuming to produce; it takes a median of 2 years to
complete a Cochrane review from start to finish.10 Rapid



#Being articles that met all 3 of the criteria: (1) original articles (reviews
were excluded), (2) assessing the effects of a treatment/intervention, and

FIGURE 1 Tree diagram: The false positive burden associated with using a high‐sensitivity search compounded by RCTs being a minority

class. Illustrative figures, assuming that 1.6% of all articles are RCTs (based on PubMed search; approximately 423 000 in total), and a search

filter with 98.4% sensitivity and 77.9% specificity (the performance of the Cochrane HSSS based on data from McKibbon et al9). The 2 blue

shaded boxes together represent the search retrieval. The search filter thus retrieves a total of 6 201 349 articles, of which only 416 232 (or 6.7%)

are actually RCTs (being the precision statistic) [Colour figure can be viewed at wileyonlinelibrary.com]

MARSHALL ET AL. 3
reviewing describes a review in which the very strict meth-
odological rigor of a systematic review is relaxed in
exchange for faster turnaround. An appealing search filter
for a rapid review, therefore, would accept modestly lower
sensitivity with the trade‐off of (much) improved specific-
ity. To act as the comparator in this scenario, we used the
PubMed publication‐type (PT) tag used as a single search
term (93.7% sensitivity, 97.6% specificity).9 The PT tag is
manually applied by PubMed staff, and fewer than half
of retrieved articles are not RCTs (56.4% precision9). A
high‐precision strategy such as this is also well suited for
real‐time question answering by clinicians, who are
unlikely to have the time to manually assess large num-
bers of erroneously retrieved articles. Since it is a manual
process, there is currently a lag time of around 250 days
from publication until the PT tag is applied, although this
is likely to reduce substantially in future as the original
article publishers are able to supply their own PT labels.¶

The sensitivity of the PT tag improves gradually with time
from article publication, since some retrospective correc-
tion occurs; including adding the PT tag to the missed
RCTs based on data fed back by the Cochrane Collabora-
tion.11 The PT tag forms a core part of all the best‐
performing traditional search filters; strategies that rely
heavily on this information may therefore miss recent
articles that have not yet been indexed. The evaluation
described above by Cohen and colleagues used the
PubMed PT tag as a gold standard for training and evalu-
ation.8 Although the PT tag has imperfect accuracy, it has
been applied manually and at scale. Indeed, via a manual
¶Personal communication, Dina Demner Fushman, National Library of
Medicine
screen of apparent false positive errors, Cohen's team were
able to show that their model had actually identified a
number RCTs incorrectly tagged by PubMed.
2 | MATERIALS AND METHODS

2.1 | Datasets

2.1.1 | Clinical Hedges

The Clinical Hedges team has described their dataset in
detail previously.12 In brief, this dataset comprises 49 028
articles from 170 journals including the full year 2000,
and part of 2001. Each article was reviewed in full text by
a research assistant and classified by article type. The
Hedges team conducted a systematic review to identify
boolean database search strategies, which were then eval-
uated on the Clinical Hedges set. For the purposes of the
evaluation, we use the same definition of RCT as used in
the Hedges team review.# Use of this dataset thus allows
a direct comparison with the performance of search strat-
egies that are in widespread current use. The key strength
of the Clinical Hedges dataset is that experienced
researchers manually annotated full text papers. We there-
fore use these data as our gold standard for evaluation.

The Clinical Hedges team supplied a list of PubMed
identifiers together with their classifications for this
(3) meeting criteria for rigor (specifically random allocation of partici-
pants to arms, 80% of participants randomized included in at least one
outcome analysis, and analysis being performed consistently with study
design).

http://wileyonlinelibrary.com


FIGURE 2 Receiver operating

characteristic scatterplot for conventional

database filters (based on data published

by McKibbon et al,9 with the 2 comparator

strategies from this analysis labeled. RCT

PT tag, the single‐term strategy based on

the manually applied PT tag (the high‐

precision comparator); Cochrane HSSS,

the Cochrane Highly Sensitive Search

Strategy (the high‐sensitivity comparator)

[Colour figure can be viewed at

wileyonlinelibrary.com]
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analysis; we excluded 3 articles that were no longer acces-
sible in PubMed, leaving a total of 49 025 articles for this
analysis. Since this same dataset has been used by the
Clinical Hedges team for systematic evaluation of avail-
able database filters (see Figure 2), we may therefore
directly compare ML performance against these filters.
2.1.2 | Cochrane crowd dataset

The Cochrane Collaboration maintains the Cochrane Cen-
tral Register of Controlled Trials (CENTRAL), which aims
to include complete citation records for all controlled tri-
als; this database is populated both from research data-
bases (MEDLINE and EMBASE) and other published
and unpublished sources.13 The current pipeline for identi-
fying RCTs from EMBASE is a hybrid system, which
FIGURE 3 The Cochrane Crowd/EMBASE project pipeline. Source articles (titles and abstracts) are identified via a sensitive databas

search filter. Articles already tagged as being RCTs (via Emtree PT tag) are sent directly to CENTRAL. Articles predicted to have <10%

probability of being RCTs via an SVM classifier are directly excluded. The remaining articles are considered by the crowd
incorporates a sensitive search filter, an ML classifier
(SVM), and finally, a crowd of volunteer annotators (see
Figure 3). The Cochrane Crowd may be considered a
dataset of difficult to classify articles, since obvious RCTs
and obvious non‐RCTs are removed in advance through
this process.

The Cochrane Crowd project was established with the
aim of improving the identification of RCTs from
EMBASE. As with other databases, the proportion of RCTs
in EMBASE compared with other records is very low, and
in sensitive search, only approximately 4% of records are
RCTs. Bibliographic records are sent to the Cochrane
Crowd crowdsourcing platform (http://crowd.cochrane.
org/index.html) where approximately 4000 volunteers
inspect titles and abstracts, and categorize citations as
describing an RCT or not. As of October 2016, nearly 1 mil-
lion individual classifications have led, through a crowd
e

http://crowd.cochrane.org/index.html
http://crowd.cochrane.org/index.html
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consensus algorithm, to the identification of 22 000 RCTs
out of approximately 280 000 records screened. An evalua-
tion of the Cochrane Crowd output against double assess-
ment by experienced researchers found that sensitivity
and specificity exceeded 99%.14

Since January 2016, an ML algorithm has been added
to identify and discard citations, which were most likely
to be irrelevant. An SVM classifier was built, and citations
that were predicted to have <10% probability of being an
RCT are discarded. An internal evaluation found that the
classifier enable 40% of citations to be discarded from the
set sent to the crowd while maintaining 99.9% sensitivity.
2.2 | Machine learning algorithms

2.2.1 | Linear kernel support vector
machine

Support vector machines aim to identify a plane that sepa-
rates examples from the respective classes in some (typically
high‐dimensional) feature space. An infinite set of such
separating planes may exist; SVMs favor those that induce
the largest margin between examples from the 2 classes.
This intuition is depicted schematically in Figure 4.

For text classification using linear models, one typically
encodes the pieces of text to be classified (here, abstracts)
via the aforementioned BoW encoding. In this scheme, an
abstract is represented as a (very) long, sparse vector in
which each index corresponds to a particular word
(unigram) or pair of adjacent words (bigram) and is nonzero
only if said unigram or bigram appears in the abstract. A
linear kernel SVM then aims to identify a hyperplane in this
high‐dimensional space that separates texts belonging to
the respective categories (here, RCTs versus non‐RCTs).
FIGURE 4 Schematic illustrating separating plane in support

vector machines, here depicted in 2 dimensions. Here, the

separating plane (a straight line in this two‐dimensional case) is

depicted as the black line and the margin are depicted in gray. The

instances nearest to the margin (support vectors) are highlighted in

white
2.2.2 | Convolutional neural network

Neural models have recently been shown to outperform
alternative statistical models for many NLP tasks, including
text classification.5 CNNs, in particular, have achieved state‐
of‐the‐art results for text classification generally,6,7 and for
biomedical text classification tasks in particular.15 In place
of BoW encodings, CNNs use (relatively) low‐dimensional,
continuous vectors to represent words, ie,word embeddings,
which may be induced using large amounts of unlabeled
data.16,17 Here, we use a set of embeddings that were
induced using all abstracts indexed by PubMed.18

To represent a piece of text (a title and abstract), one
stacks the embeddings of the constituent words, forming
a matrix with dimensions equal to the length of the
abstract (word count) by the length of the word embed-
ding dimension (typically a few hundreds). The CNNs
work by then passing linear filters parameterized by corre-
sponding weight vectors over one or more adjacent word
embeddings, starting at the beginning of the text and
moving downward. In this way, each filter will produce
a vector of scalar outputs of size proportional to the input
text length. Filter outputs are then combined by
performing max‐pooling on each filter output vector, ie,
extracting the maximum value. Thus, each filter will ulti-
mately generate a single scalar output. Finally, these are
concatenated to form a vector representation of the entire
abstract, which then becomes the input to a “softmax”
classification layer, which predicts whether the study is
or is not an RCT. Figure 5 depicts this schematically.
2.3 | Data preprocessing, model features,
and hyperparameter choices

For both SVMs and CNNs, we tokenized titles and
abstracts into words and removed stopwords (common
wordswith low informational content, eg, this, and, or the).

Each model type can be run with a very wide range of
settings (known as hyperparameters), which can dramati-
cally affect performance. These hyperparameters include
not only unigrams through trigrams but also how much
the model should be penalized for missing RCTs, and a
large number of statistical parameters that affect model
training (these are described in full in the Appendix).

For both SVMs and CNNs, we optimized associated
model hyperparameters, evaluating performance on a
withheld portion of the training data (20%). The single
best‐performing set of hyperparameters for each model
type at this stage was put forward for the final validation
on the Hedges data. In all model types, we compensated
for the class imbalance (see the section below) through
both class weighting (adjusting the algorithm penalty for
missing an RCT) and undersampling (altering the balance



FIGURE 5 Schematic illustrating convolutional neural network architecture for text classification. Here, yi is the label (RCT or not) for

document i,w is a weight vector associated with the classification layer, and xi is the vector representation of document i induced by the CNN

Box 2 Hyperparameters used for the final
SVM

Class weighting: RCTs: 12.4, non‐RCTs: 1.0
Sampling ratio: 9.2 non‐RCTs for each 1 RCT
Regularization type: L2
Regularization strength (alpha): 0.00092
Ngrams: 1
Number of iterations: 66
Loss type: Hinge

Box 3 Hyperparameters used for the final
CNN

Class weighting: RCTs: 3.86, non‐RCTs: 1.0
Sampling ratio: 6.0 non‐RCTs for each 1 RCT
Dropout: 0.160
Filter sizes: 1, 3, 5
Number of additional hidden layers: 0
Number of filters: 150
L2 normalization constant: 3.33
Maximum token features: 12500
Number of epochs: 2
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of the training set by random sampling so that it includes
fewer non‐RCTs than RCTs).

Since the number of hyperparameter combinations is
vast (we conservatively estimate at 3 billion unique possi-
bilities for our CNN design), and each trial may take
several hours to run, evaluating all possible combina-
tions is not feasible. We therefore chose an approach
known as Bayesian hyperparameter selection, which is
the state‐of‐the‐art for this task.

For all models, we optimized hyperparameters using
the hyperopt package using a Tree of Parzen Estimators
algorithm with 500 iterations.19 For the final evaluations,
we used the single best‐performing hyperparameters and
trained on the entire Cochrane Crowd set. These best‐
performing models were then evaluated on the Hedges
dataset.

For SVMs, at the optimization stage, we compared
unigrams, bigrams, and trigrams, each with and without
the use of additional indicator features for words that
appeared in the title. We evaluated the performance of
raw token counts versus the use of term frequency/inverse
document frequency weighting.20 We additionally opti-
mized class weighting, the undersampling ratio, and L2
regularization strength.21 The optimal parameters chosen
are shown in Box 2; the full details of the search space are
provided in the Appendix.

For CNNs, using the same process as the SVMs, we
optimized the class weighting, the sampling ratio, and
the L2 regularization strength. We additionally examined
the effect of different numbers and sizes of filters (based
on the ranges suggested by Zhang et al7) and differing
ratios of dropout (where a proportion of units and connec-
tions are dropped at random during training; a widely
used strategy to prevent overfitting in neural networks22).
Finally, CNNs require a fixed vocabulary size; we exam-
ined the effect varying this size (where words were
included in order of frequency in the training corpus).
The final chosen hyperparameters are given in Box 3;
the search spaces are provided in the Appendix.
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2.3.1. | Handling class imbalance

There are far fewer RCTs than there are non‐RCTs.
Such class imbalance can pose problems for standard
learning algorithms, which typically aim to maximize
overall predictive accuracy; in imbalanced scenarios,
overall accuracy may be achieved by simply uniformly
predicting the majority class. For both ML approaches,
we used a balanced sampling technique, which aims to
improve sensitivity in problems with class imbalance
(noting that RCTs form a small minority of all arti-
cles).23,24 In short, multiple training data sets are con-
structed from the available training data. Here, we
construct such sets to include all RCT articles, but only
a random subsample of the non‐RCTs (aiming to fully, or
partially, balance the numbers of RCTs and non‐RCTs in
the constructed set). To reduce the variance of model pre-
dictions and to make full use of the negative examples in
the training data, this process is repeated to generate mul-
tiple models (25 in this analysis), and a final classification
decided from the mean probability score across the models
(known as bagging25).
TABLE 1 Area under receiver operating characteristics (ROC)

curves for the ML strategies evaluated

Model Area Under ROC Curve (95% CI)

SVM 0.975 (0.972‐0.979)

CNN 0.978 (0.974‐0.982)
2.4 | Ensembling

Ensembling is the strategy of using multiple ML models
together, deriving a final decision through a voting
scheme.26 Ensembles of models frequently perform better
than their individual components. In addition to balanced
sample bagging to compensate for class imbalance
(described above), we make use of and evaluate
ensembling in the following ways. First, we evaluate
SVMs and CNNs both individually and as an ensemble.
Second, to make use of the PubMed PT tag (which does
not occur in the training data), we treat this tag as an
additional binary classifier, so that the presence of the
tag counts as a vote for the RCT class. The final ensemble
score was the sum of normalized output scores|| from the
component models. Scores were left as continuous for the
primary analysis (areas under the receiver‐operating char-
acteristics curves). Our secondary analysis comprised
direct comparisons versus conventional database filters
(being (1) PubMed PT and (2) Cochrane HSSS). In each
case, we used a score cutoff that matched the performance
of the comparison filter (matching the specificity of the
PubMed PT and matching the sensitivity of the Cochrane
HSSS).
||The scores produced by each model type are on different scales (CNNs
producing probabilities between 0 and 1; SVMs producing
non‐probability, unconstrained decision scores). We therefore used a
simple normalization strategy based on the results from the training
set: scores from each model type were centralized by subtracting the
mean, and scales standardized by dividing by the standard deviation.
2.5 | Evaluation methods

Our primary outcomes were sensitivity and specificity at
different threshold points, plotted as receiver operating
characteristics (ROC) curves. Our evaluation dataset was
the Clinical Hedges dataset. We reran the 2 principle con-
trol search filters (the Cochrane HSSS plus the PubMed
PT tag) in January 2017, both to ensure the evaluation
denominators matched exactly and also to make use of
retrospective corrections of the PT tag, which would have
taken place since the analysis of McKibbon et al.9
2.5.1 | Statistical analysis

Analyses were conducted in R, with area under the receiver
operating characteristics (AUROC) curves and confidence
intervals calculated using pROC package27; confidence
intervals for differences in sensitivities and specificities ver-
sus controls were estimated using the modified Wald
approach for differences in proportions withmatched pairs,
implemented in the PropCIs package.28 As a secondary
measure, we present the number needed to screen (NNS) sta-
tistic.29 The NNS is analagous to the widely used Number
Needed to Treat30 and is defined as the number of algo-
rithm‐positive articles, which would need to be screened
manually on average to retrieve one true RCT.
3 | RESULTS

Overall performance of the evaluated models on the Clin-
ical Hedges dataset are presented in Table 1 (areas under
the AUROC curves, with 95% confidence intervals) and in
Figures 6–8.

Overall, the ensemble SVM + CNN + PT model dis-
criminated best between RCTs and non‐RCTs (AUROC
0.987, 95% CI, 0.984‐0.989) The best‐performing model
that did not require PT information was the SVM + CNN
ensemble (AUROC 0.982, 95% CI, 0.979‐0.985).
SVM + CNN 0.982 (0.979‐0.985)

SVM + PT 0.987 (0.983‐0.989)

CNN + PT 0.984 (0.980‐0.988)

SVM + CNN + PT 0.987 (0.984‐0.989)

Bold text signifies best performing model.



FIGURE 6 Receiver operating characteristics of the machine learning algorithms trained on plain text alone, (1) support vector machine, (2)

convolutional neural network both single model, and bagged result of 10 models (each trained on all RCTs and a different random sample of

non‐RCTs). The points depict the 3 conventional database filters, which use plain text only and do not require use of MeSH/PT tags. The blue

shaded area in the left part of the figure is enlarged on the right‐side bottom section [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 Left: Receiver operating characteristics curve (zoomed to accentuate variance); effects of balanced sampling: The individual

models are depicted in light blue; the magenta curve depicts the performance of the consensus classification (the mean probability score of

being an RCT from the component models). Right: Cumulative performance (area under receiver operating characteristics curve) of bagging

multiple models trained on balanced samples. Performance increases until approximately 6 models are included, then is static afterwards

[Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 6 shows ROC curves for the SVM and CNN
models alone, alongside point estimates from the 3 com-
petitor database filters (being those from McKibbon9 that
did not require PT information). Visual inspection of ROC
curves demonstrates subtly different characteristics of the
CNN and SVMmodel: although both have high predictive
performance. The CNN achieved better sensitivity at high
specificity cutoffs (left part of curve), whereas the SVM
achieved better sensitivity with lower specificity cutoffs
(top part of curve).

The effects of sampling and bagging are shown in
more detail in Figures 6 and 7. For the SVM model,
bagging did not change the overall performance
(Figure 6). For the CNN model, performance increased

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 8 Receiver operating characteristics curve: Hybrid/ensembledmodels including use of the manually applied PT tag. The area bounded

by the blue shaded area on the left‐hand plot is enlarged on the right to illustrate differences betweenmodels and conventional database filters. Note

that the RCT PT tag has become more sensitive from 20099 to 2017 (the reanalysis conducted here), reflecting the late application of the tag to

missed RCTs including through data provided to PubMed by the Cochrane Collaboration11 [Colour figure can be viewed atwileyonlinelibrary.com]

TABLE 2 Performance on highly sensitive (systematic review) task, with comparison to conventional database filters

Sensitivitya Specificity Precision Number Needed to Screen

SVM 98.5 (97.8‐99.0) 71.7 (71.3‐72.1) 10.4 (9.9‐10.9) 9.6

CNN 98.5 (97.8‐99.0) 61.2 (60.7‐61.6) 7.8 (7.5‐8.2) 12.8

SVM + CNN 98.5 (97.8‐99.0) 68.8 (68.4‐69.3) 9.6 (9.1‐10.0) 10.4

SVM + PT 98.5 (97.8‐99.0) 87.6 (87.3‐87.9) 21.0 (20.1‐22.0) 4.8

CNN + PT 98.5 (97.8‐99.0) 82.1 (81.7‐82.4) 15.5 (14.8‐16.2) 6.5

SVM + CNN + PT 98.5 (97.8‐99.0) 84.0 (83.6‐84.3) 17.1 (16.3‐17.8) 5.8

Cochrane HSSS 98.5 (97.8‐99.0) 76.9 (76.6‐77.3) 12.5 (11.9‐13.1) 8.0

Abbreviation: Cochrane HSSS, the Cochrane Highly Sensitive Search Strategy.
aFor the machine learning approaches, a predictive cutoff was chosen to achieve a fixed sensitivity of around 99%; better‐performing classifiers will achieve better

specificity (ie, retrieve fewer non‐RCTs) at this sensitivity level. Bold text signifies best performing model.

TABLE 3 Performance on highly specific search task, with comparison to conventional database filters

Sensitivity Specificitya Precision Number needed to screen

SVM 82.3 (80.3‐84.1) 97.5 (97.4‐97.7) 52.5 (50.5‐54.5) 1.9

CNN 93.4 (92.0‐94.6) 97.5 (97.3‐97.6) 55.4 (53.5‐57.3) 1.8

SVM + CNN 93.3 (91.9‐94.4) 97.5 (97.4‐97.6) 55.6 (53.6‐57.5) 1.8

SVM + PT 95.1 (94.0‐96.2) 97.5 (97.3‐97.6) 55.8 (53.9‐57.7) 1.8

CNN + PT 95.7 (94.5‐96.6) 97.5 (97.3‐97.6) 55.9 (54.0‐57.8) 1.8

SVM + CNN + PT 95.1 (94.0‐96.2) 97.5 (97.3‐97.6) 55.8 (53.9‐57.7) 1.8

Pubmed PT tag as single search term 94.8 (93.6‐95.9) 97.5 (97.3‐97.6) 55.7 (53.8‐57.5) 1.8

Abbreviation: PubMed PT, Randomized Controlled Trial publication‐type tag as a single search term.
aFor the machine learning approaches, a predictive cutoff was chosen to achieve a fixed specificity of 97.5%; better‐performing classifiers will achieve better sen-
sitivity (ie, miss fewer RCTs) at this specificity level. Bold text signifies best performing model.
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for each model added until 6 to 7 models; additional
models added at this point did not improve performance
(Figure 7).

Figure 8 shows the ROC curves for all of the ensemble
strategies that incorporated PT information achieved
greater accuracy than any of the database filters evaluated
by McKibbon et al.9
3.1 | Comparison with traditional filters

We present the sensitivity and specificity along with 95%
confidence intervals of each evaluated model, using
high‐sensitivity and high‐precision decision cutoffs in
Tables 2 and 3.

The evaluation of the high‐sensitivity strategies is
shown in Table 1. The best‐performing model (the
hybrid SVM model incorporating information from the
PT tag [SVM + PT]) had significantly improved specific-
ity compared with the Cochrane HSSS search filter: dif-
ference in specificity: 10.8% (95% CI, 10.5%‐11.2%),
which corresponds to a precision of 21.0% versus
12.5%, and an NNS of 4.8 versus 8.0. In absolute terms,
the SVM + PT model retrieved 5123 fewer of the
47 438 non‐RCTs in the Clinical Hedges set.

The best‐performing high‐precision ML strategy that
did not require the PT tag (the SVM) had identical sensi-
tivity, and 5.0% point inferior specificity to the Cochrane
HSSS (95% CI, −5.4% to −4.5%). This corresponds to a
reduced precision (10.4% versus 12.5%) and an NNS of
9.6 versus 8.0.

The evaluation of the highly specific strategies is
shown in Table 2. The best‐performing model (the hybrid
CNN model incorporating information from the PubMed
PT tag) had a small increase in sensitivity compared with
the Pubmed PT tag used alone; the difference was statisti-
cally significant (0.6%, 95% CI, 0.2%‐1.1%). In absolute
terms, the best ML model retrieved an additional 10 of
the 1587 RCTs from the Clinical Hedges dataset.

The best‐performing high‐precision ML strategy that
did not require the PT tag (the CNN) had identical specific-
ity, and 1.5% point inferior sensitivity to the PT tag alone.
This corresponds to a reduced retrieval of 25/1587 RCTs.
**https://github.com/ijmarshall/robotsearch
††https://robotreviewer.vortext.systems/
4 | DISCUSSION

We have presented an evaluation of RCT identification
using state‐of‐the‐art ML approaches for text classifica-
tion. Through analysis of ROC curves, we have shown
that ML approaches outperform traditional database fil-
ters. For systematic reviews, ML leads to a substantial
improvement in specificity compared to the Cochrane
Highly Sensitive Search Strategy without harming
sensitivity. For rapid reviews/high‐precision searching,
ML has a (modestly) higher sensitivity than using the
PubMed PT tag, without reducing specificity.

The ML‐based approaches to RCT identification have
some appealing characteristics. First, where PT informa-
tion is absent, they can be used with only the text from
the title and abstract with only small reduction in perfor-
mance. Second, the cutoff is very simply adjusted; partic-
ular needs of sensitivity versus specificity can be met
from a single system. Third, given the ML system can pre-
dict probabilities, the articles may be ranked from highest
to lowest probability (rather than a binary classification of
being an RCT or not). For uses where a manual screening
stage is still important, the researcher could screen a list
of articles sorted from highest to lowest probability.31

The researcher may then make an informed decision to
stop early based on either low likelihood that the remain-
der contains RCTs (for example in a conventional system-
atic review), or when resources (time or money) have
been spent (for example in a rapid review).
4.1 | Using the validated algorithms in
practice

The results presented here suggest that an ensemble
approach incorporating SVMs, CNNs, and PT informa-
tion achieves the highest performance (measured as area
under the ROC curve). The direct comparisons suggest
that an SVM + PT ensemble may be best for high‐sensitiv-
ity search, and CNN + PT ensemble best for high‐preci-
sion searches. We found that under sampling non‐RCTs
from the training data improved performance for all
models; that bagging up to 6 to 7 CNN classifiers
improved performance, but that there was no benefit for
bagging SVMs.

To facilitate the use of ML in practice, we have made
the algorithms and strategies evaluated above available
as open‐source software. RobotSearch** may be used as a
substitute for traditional search filters. The user conducts
their database search with the clinical terms using their
preferred tool, but without using a traditional search fil-
ter. RobotSearch takes the search result (in RIS format)
as input and generates a filtered list containing only arti-
cles classified as RCTs. By using widely accepted RIS for-
mat files, users can continue to use their usual
bibliographic management tools for the other parts of
their workflow.

We have additionally added the best‐performing high‐
precision ML classifier to RobotReviewer,†† to verify
whether uploaded articles are RCTs or not (and therefore

https://github.com/ijmarshall/robotsearch
https://robotreviewer.vortext.systems


FIGURE 9 PubMed PT information is used where present; where

not, the best‐performing text‐alone approach is automatically used,

with a modest reduction in accuracy
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whether they are eligible for further RCT‐specific process-
ing, such as use of the Cochrane Risk of Bias tool). Cur-
rently, widely used versions of MEDLINE (eg, PubMed
and Ovid) allow preset traditional filters to be applied at
a click of a button. Ideally, ML approaches should be sim-
ilarly easy to use: We encourage database producers to
incorporate ML filters to facilitate this.

We have presented 2 common use cases to illustrate
ML performance. However, any point may be chosen
from the ROC curves depending on the use case—one
key benefit of ML over database filters. For example, if a
systematic reviewer required higher sensitivity than the
Cochrane HSSS, a cutoff may be chosen to give 99.1% sen-
sitivity and 77.2% specificity (compared with the 98.5%
sensitivity, 76.9% specifity of the Cochrane HSSS: ML
used with these parameters miss fewer RCTs and without
harming later manual workload). We have provided a
spreadsheet of the sensitivty and specificity of ML at var-
ious cutoff points as Supporting Information.
4.2 | Strategies that include the
publication‐type tag

Currently, the PT tag is applied manually by the PubMed
team, although with a typical lag‐time of 250 days from
publication. This is likely to shorten in future, as pub-
lishers begin to submit their own article classifications
on publication (although this is likely to remain difficult
for all but the largest journals, who have the resources to
use indexing specialists). Therefore, both conventional
filters and ML approaches that rely on this tag will be
impaired for recent research. In instances where the PT
tag is absent, conventional search filters using text alone
are substantially impaired (Figures 2 and 6), whereas
text‐alone ML approaches have only a modest reduction
in performance (AUROC 0.987 with use of PT tag versus
0.982 without). In practice, the better‐performing ML
models incorporating PT information can be used for
most of the articles, with the text‐alone ML models used
as a fallback where the information is absent. We have
implemented this approach in our software (see
Figure 9).
4.3 | Strengths and weaknesses

One consideration is that the Clinical Hedges dataset
comprises articles from a specific 2‐year period, which is
now 15 years old. If there have been systematic changes
in how trials have been reported (in titles and abstracts),
this will affect the actual performance on trials conducted
before and after this time period. A key pressure for
change in reporting comes from the CONSORT guide-
lines, first published in 1996, which advise that RCT
publications must include the term Randomized Con-
trolled Trial in the title.32 Increased explicit reporting
and standardized phrasing would be expected (in theory)
to improve the performance of both ML and traditional
database filters over time; conversely performance of all
strategies may be lower in trials published earlier than
the Hedges dataset.
5 | CONCLUSIONS

We recommend that users of health research move
towards using ML as a replacement for database search
filters, since they have the potential to reduce workload
and increase accuracy. Incorporating machine learning
models, such as the ones presented here, into database
search engines over time will make this process easier;
in the meantime, we encourage the use of our open‐
source software, which implements the approach vali-
dated here.
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Number of epochs: Up to 50, with stopping patience of 1 for
nonincreasing disciminance

Search space for CNN hyperparameters
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therefore perform better.
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