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Abstract Let F1, . . . , FR be quadratic forms with integer coefficients in n
variables. When n ≥ 9R and the variety V (F1, . . . , FR) is a smooth complete
intersection, we prove an asymptotic formula for the number of integer points
in an expanding box at which these forms simultaneously vanish, which in
particular implies the Hasse principle for V (F1, . . . , FR). Previous work in
this direction required n to grow at least quadraticallywith R.We give a similar
result for R forms of degree d, conditional on an upper bound for the number
of solutions to an auxiliary inequality. In principle this result may apply as
soon as n > d2d R. In the case that d ≥ 3, several strategies are available to
prove the necessary upper bound for the auxiliary inequality. In a forthcoming
paper we use these ideas to apply the circle method to nonsingular systems of
forms with real coefficients.
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1 Introduction

1.1 Results

Our goal is to improve the following classic result of Birch.

Theorem 1.1 (Birch [3])Let d ≥ 2 and let F1(x), . . . , FR(x)be homogeneous
forms of degree d, with integer coefficients in n variables x1, . . . , xn. Let B
be a box in R

n, contained in the box [−1, 1]R and having sides of length at
most 1 which are parallel to the coordinate axes. For each P ≥ 1, write

NF1,...,FR (P) = #{x ∈ Z
n : x/P ∈ B, F1(x) = 0, . . . , FR(x) = 0}.

Let W be the projective variety cut out in P
n−1
Q

by the condition that the
R × n Jacobian matrix (∂Fi (x)/∂x j )i j has rank less than R. If

n − 1 − dimW > (d − 1)2d−1R(R + 1), (1.1)

then for all P ≥ 1, some I ≥ 0 depending only on the ci and B and some
S ≥ 0 depending only on the ci , we have

NF1,...,FR (P) = ISPn−dR + O(Pn−dR−δ) (1.2)

where the implicit constant depends only on the forms Fi and δ is a positive
constant depending only on d and R. If the variety V (F1, . . . , FR) cut out in
P
n−1
Q

by the forms Fi has dimension n − 1 − R and a smooth point over Qp
for each prime p thenS > 0, and if it has dimension n − 1− R and a smooth
real point whose homogeneous co-ordinates lie inB then I > 0.

Here I, S are the usual singular integral and series; see (2.35) and (2.25)
below.

We focus in particular on weakening the hypothesis (1.1) on the number of
variables, when the number of forms R is greater than one. Previous improve-
ments of this type have required R = 1 or 2. Our first result, proved in
Sect. 4, is as follows:

Theorem 1.2 When d = 2, we may replace (1.1) with the condition

n − σR > 8R, (1.3)

where σR is the element of {0, . . . , n} defined by

σR = 1 + max
β∈RR\{0}

dim Sing V (β · F), (1.4)
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and V (β · F) is the hypersurface cut out in Pn−1
R

by β1F1 + · · · + βRFR = 0.

Note that (1.3) is equivalent to

min
β∈RR\{0}

rank(β · F) > 8R, (1.5)

where rank(β · F) is the rank of the matrix of the quadratic form β1F1 +
· · · + βRFR . The hypothesis (1.3) is strictly weaker than the case d = 2 of
the condition (1.1) as soon as R ≥ 4. Indeed we have Sing V (β · F) ⊂ W
whenever β ∈ R

R\{0}, and so
σR ≤ 1 + dimW.

Thus (1.3) is weaker than (1.1) whenever 2R(R + 1) < 8R holds, that is for
R ≥ 4.
To obtain the result described in the abstract we can simplify (1.3) with the

following lemma, proved at the end of Sect. 4.

Lemma 1.1 Let d ≥ 2 and let F1, . . . , FR and W be as in Theorem 1.1. If
V (F1, . . . , FR) is smooth with dimension n − 1 − R, then we have

σR ≤ 1 + dimW ≤ R − 1. (1.6)

If V (F1, . . . , FR) is a smooth complete intersection and n ≥ 9R then The-
orem 1.2 and Lemma 1.1 imply that the asymptotic formula (1.2) holds. This
in turn implies that V (F1, . . . , FR) satisfies the Hasse principle, by the last
part of Theorem 1.1. As is usual with the circle method one also obtains weak
approximation for V (F1, . . . , FR) in this case; see the comments after the
proof of Theorem 1.2 in Sect. 4.

The “square-root cancellation” heuristic discussed around formula (1.12)
in Browning and Heath-Brown [7] suggests that the condition n > 4R should
suffice in place of the n ≥ 9R in the previous paragraph. So (1.3) brings us
within a constant factor of square-root cancellation as R grows, while (1.1)
misses by a factor of O(R).

We deduce Theorem 1.2 from the following more general result, proved in
Sect. 4.

Definition 1.1 For each k ∈ N\{0} and t ∈ R
k we write ‖t‖∞ = maxi |ti | for

the supremum norm. Let f (x) be any polynomial of degree d ≥ 2 with real
coefficients in n variables x1, . . . , xn . For i = 1, . . . , n we define

m( f )
i (x(1), . . . , x(d−1)) =

n∑

j1,..., jd−1=1

x (1)
j1

· · · x (d−1)
jd−1

∂d f (x)
∂x j1 · · · ∂x jd−1∂xi

,
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where we write x( j) for a vector of n variables (x ( j)
1 , . . . , x ( j)

n )T . This defines
an n-tuple of multilinear forms

m( f )(x(1), . . . , x(d−1)) ∈ R[x(1), . . . , x(d−1)]n.
Finally, for each B ≥ 1 we put N aux

f (B) for the number of (d − 1)-tuples of

integer n-vectors x(1), . . . , x(d−1) with

‖x(1)‖∞, . . . , ‖x(d−1)‖∞ ≤ B,

‖m( f )(x(1), . . . , x(d−1))‖∞ < ‖ f [d]‖∞Bd−2 (1.7)

where we let ‖ f [d]‖∞ = 1
d! maxj∈{1,...,n}d

∣∣ ∂d f (x)
∂x j1 ···∂x jd

∣∣.

Theorem 1.3 Let the forms Fi and the counting function NF1,...,FR (P) be as
in Theorem 1.1, and let N aux

f (B) be as in Definition 1.1. Suppose that the Fi
are linearly independent and that

N aux
β·F(B) ≤ C0B

(d−1)n−2dC (1.8)

for some C0 ≥ 1, C > dR and all β ∈ R
R and B ≥ 1, where we have written

β · F for β1F1 + · · · + βRFR. Then for all P ≥ 1 we have

NF1,...,FR (P) = ISPn−dR + O(Pn−dR−δ),

where the implicit constant depends at most on C0, C and the Fi , and δ is a
positive constant depending at most on C , d and R. Here I and S are as in
Theorem 1.1.

One trivially has

B(d−2)n �d,n N aux
β·F(B) �d,n B(d−1)n.

So (1.8) requires us to save a factor of P2dC over the trivial upper bound,
while the largest saving possible is of size O(Pn). It follows that we must
have n > d2d R in order for both (1.8) and C > dR to hold.

Counting functions similar to N aux
β·F(B) play a similar role in some other

applications of the circle method, with the equations

m( f )(x(1), . . . , x(d−1)) = 0 (1.9)

in place of the inequality (1.7). The quantitiesM(a1, . . . , ar ; H) from formula
(9) of Dietmann [14], and M f (P) from Lemma 2 of Schindler [32] are both
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of this type. In this setting one needs to save a factor of size BO(R2) over the
trivial bound.

In forthcomingworkwe bound the function N aux
β·F(B) for degrees higher than

2, with the goal of handling systems Fi in roughly d2d R variables. We will
approach this problem variously by using elementarymethods, by generalising
the argument used in Lemma 3 of Davenport [12] to treat the Eq. (1.9), and
by applying the circle method iteratively to the inequalities (1.7). We will
also combine the ideas used here with the variant of the circle method due to
Freeman [15] to give a version of Theorem 1.3 for systems of forms Fi with
real coefficients.

1.2 Related work

Theorem 1 of Müller [29] gives a result with exactly the same number of
variables as Theorem 1.2, but for quadratic inequalities with real coefficients
rather than quadratic equations with rational coefficients. It is in turn founded
on work of Bentkus and Götze [1,2] concerning a single quadratic inequality.
The method of proof is related to ours, see Sects. 2.1 and 3.1 below.

When d = 2, the forms Fi are diagonal and the variety V (F1, . . . , FR) is
smooth, then the conclusions of Theorem 1.1 hold whenever n > 4R. That
is, we have the “square-root cancellation” situation described at the end of
Sect. 1.1. This follows by standard methods from a variant of Hua’s lemma
due to Cook [11].

When d = 2 Dietmann [13], improving work of Schmidt [33], gives
conditions similar to (1.3) under which the asymptotic formula (1.2) holds
and the constant S is positive. In particular it is sufficient that either
minβ∈CR\{0} rank(β · F) > 2R2 + 3R, or that mina∈QR\{0} rank(a · F) >

2R3 + τ(R)R, where τ(R) = 2 if R is odd and 0 otherwise. He also
shows that if d = 2, the variety V (F1, . . . , FR) has a smooth real point and
mina∈QR\{0} rank(a ·F) > 2R3−2R then V (F1, . . . , FR) has a rational point.

Munshi [30] proves the asymptotic formula (1.2) when d = 2, n = 11
and V (F1, F2) is smooth. By contrast using Theorems 1.1 and equation (1.6)
would require n ≥ 14. When d = 2 and R = 1 we have a single quadratic
form F . Heath-Brown [18] then proves such an asymptotic formula whenever
V (F) is smooth and n ≥ 3.

If F is a cubic form,Hooley [20] shows that when n = 8, the variety V (F) is
smooth, andB is a sufficiently small box centred at a point where the Hessian
determinant of F is nonzero, then we have a smoothly weighted asymptotic
formula analogous to (1.2). This result is conditional on a Riemann hypothesis
for a certain modified Hasse-Weil L-function. For n = 9 he proves a similar
resultwithout any such assumption [19],with an error termO(Pn−3(log P)−δ)

instead of the O(Pn−3−δ) in (1.2). In this setting Theorem 1.1 requires n ≥ 17.
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In the case of a single quartic form F such that V (F) is smooth, Hansel-
mann [17] gives the condition n ≥ 40 in place of the n ≥ 49 required to apply
Theorem 1.1. Very recent work of Marmon and Vishe [25] yields n ≥ 30, with
n ≥ 29 expected in the sequel.

When d ≥ 5 and R = 1, a sharper condition than (1.1) is available by
work of Browning and Prendiville [8]. For d ≤ 10 and a smooth hypersurface
V (F) this is essentially a reduction of one quarter in the number of variables
required.

Dietmann [14] and Schindler [32] show that the condition (1.1) may be
replaced with n − σZ > (d − 1)2d−1R(R + 1), where we define

σZ = 1 + max
a∈ZR\{0}

dim Sing V (a · f [d]). (1.10)

Note that the maximum here is over integer points, and so σZ < σR may hold.
Birch’s work [3] is generalised to systems of forms with differing degrees

by Browning andHeath-Brown [7] overQ and by Frei andMadritsch [16] over
number fields. It is extended to linear spaces of solutions by Brandes [5,6].
Versions of the result for function fields are due to Lee [22] and to Browning
and Vishe [9]. A version for bihomogeneous forms is due to Schindler [31],
and Mignot [26,27] further develops these methods for certain trilinear forms
and for hypersurfaces in toric varieties. Liu [23] proves existence of solutions
in prime numbers to a quadratic equation in 10 or more variables. Asymptotic
formulae for systems of equations of the same degree with prime values of the
variables are considered by Cook and Magyar [10] and by Xiao and Yamag-
ishi [34]. Magyar and Titichetrakun [24] extend these results to values of the
variables with a bounded number of prime factors, while Yamagishi [35] treats
systems of equations with differing degrees and prime variables. It is natural
to ask whether similar generalisations exist for Theorem 1.2.

1.3 Notation

Parts of ourwork apply to polynomialswith general real coefficients. Therefore
we let f1(x), . . . , fR(x) be polynomials with real coefficients, of degree d ≥ 2
in n variables x1, . . . , xn , and we write f [d]

1 (x), . . . , f [d]
R (x) for the degree d

parts.
Implicit constants in � and big-O notation are always permitted to depend

on the polynomials fi , and hence on d, n and R. We use scalar product nota-
tion to indicate linear combinations, so that for example α · f = ∑R

i=1 αi fi .
Throughout, ‖t‖∞, ‖ f ‖∞,m( f ) and N aux

f (B) are as in Definition 1.1. We do
not require algebraic varieties to be irreducible, and we use the convention that
dim ∅ = −1.
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By an admissible box we mean a box in Rn contained in the box [−1, 1]R ,
and having sides of length at most 1 which are parallel to the coordinate axes.
We let B be an admissible box. For each α ∈ R

R and P ≥ 1, we define the
exponential sum

S(α; P) =
∑

x∈ Zn
x/P∈B

e(α · f(x)) (1.11)

where e(t) = e2π i t . This depends implicitly on B and the fi . We often write

the expressionmax{P−d‖β‖−1∞ , ‖β‖
1

d−1∞ }, and if β = 0 this quantity is defined
to be +∞.

1.4 Structure of this paper

In Sect. 2 we apply the circle method to a system of degree d polynomials
with integer coefficients, assuming a certain hypothesis (2.1) on S(α; P). In
Sect. 3 we prove this hypothesis on S(α; P) for polynomials with real coeffi-
cients, assuming that the bound (1.8) above holds.We then prove Theorems 1.2
and 1.3 in Sect. 4.

2 The circle method

In this section we apply the circle method, assuming that the bound

min

{∣∣∣∣
S(α; P)

Pn+ε

∣∣∣∣,
∣∣∣∣
S(α + β; P)

Pn+ε

∣∣∣∣

}
≤ C max

{
P−d‖β‖−1∞ , ‖β‖

1
d−1∞

}C (2.1)

holds for all α, β ∈ R
R , P ≥ 1, some C > dR, C ≥ 1 and some small

ε > 0. In particular we will show that (2.1) implies that the set of points α in
R

R where |S(α; P)| is large has small measure. Our goal is the result below,
which will be proved in Sect. 2.5.

Proposition 2.1 Assume that the polynomials fi have integer coefficients, and
that the leading forms f [d]

i (x) are linearly independent. Write

N f1,..., fR (P) = #{x ∈ Z
n : x/P ∈ B, f1(x) = · · · = fR(x) = 0}. (2.2)

Suppose we are given C > dR, C ≥ 1 and ε > 0 such that the bound
(2.1) holds for all α, β ∈ R

R, all P ≥ 1 and all admissible boxes B. If ε is
sufficiently small in terms of C , d and R, then we have
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N f1,..., fR (P) = ISPn−dR + OC, f1,..., fR (P
n−dR−δ)

for all P ≥ 1, all admissible boxesB, and some δ > 0 depending only on C ,
d, R. Here I, S are the usual singular integral and series given by (2.35) and
(2.25) below.

We comment on the role of (2.1). If the fi have integer coefficients, then
we have

N f1,..., fR (P) =
∫

[0,1]R
S(α; P) dα. (2.3)

If both S(α; P) and S(α + β; P) are large then (2.1) implies that one of the

terms P−d‖β‖−1∞ or ‖β‖
1

d−1∞ must be large. In particular, the points α and
α + β must either be very close or somewhat far apart. In this sense (2.1) is a
“repulsion principle” for the sum S(α; P). We can use this fact to bound the
measure of the set where S(α; P) is large, and this will enable us to reduce
(2.3) to an integral over major arcs.

To see the source of the condition C > dR in Proposition 2.1, consider the
case

|S(α; P)| = |S(α + β; P)| = CPn−C+ε. (2.4)

In general we always have

max{P−d‖β‖−1∞ , ‖β‖
1

d−1∞ }C ≥ P−C ,

with equality when ‖β‖∞ = P1−d holds. So in the case (2.4), the assumption
(2.1) is trivial. In other words (2.1) might still be satisfied even if the function
S(α; P) had absolute value Pn−C+ε at every point α in real R-space. This will
lead to an error term of size at least Pn−C+ε in evaluating the integral (2.3).
Hence we require C > dR in the proposition above in order for the error term
to be smaller than the main term.

2.1 Mean values from bounds of the form (2.1)

We show that the bound (2.1) implies upper bounds for the integral of the
function S(α; P) over any bounded measurable set. Müller [29] and Bentkus
and Götze [1,2] previously used similar ideas to treat quadratic forms with
real coefficients.

We begin with a technical lemma.

Lemma 2.1 Let r1 : (0, ∞) → (0, ∞) be a strictly decreasing bijection, and
let r2 : (0, ∞) → (0, ∞) be a strictly increasing bijection. Write r−1

1 and r−1
2

for the inverses of these maps. Let ν > 0 and let E0 be a hypercube in R
R
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whose sides are of length ν and parallel to the coordinate axes. Let E be a
measurable subset of E0 and let ϕ : E → [0, ∞) be a measurable function.

Suppose that for all α, β ∈ R
R such that α ∈ E and α + β ∈ E, we have

min{ϕ(α), ϕ(α + β)} ≤ max
{
r−1
1 (‖β‖∞), r−1

2 (‖β‖∞)
}
. (2.5)

Then, for any integers k and � with k < �, we have

∫

E
ϕ(α) dα �R νR2k +

�−1∑

i=k

2i
(

νr1(2i )

min{r2(2i ), ν}
)R

+
(

νr1(2�)

min{r2(2�), ν}
)R

sup
α∈E

ϕ(α), (2.6)

where the implicit constant depends only on R.

Note that if we choose

ϕ(α) = |S(α; P)|/CPn+ε, r1(t) = P−d t−1/C , r2(t) = t (d−1)/C ,

then the hypotheses (2.1) and (2.5) become identical. This will enable us to
apply Lemma 2.1 to bound the integral

∫
mP,d,

S(α; P) dα, where mP,d, is
a set of minor arcs on which S(α; P) is somewhat small.

Proof The strategy of proof is as follows. We deduce from (2.5) that if both
ϕ(α) ≥ t and ϕ(α + β) ≥ t hold, then either ‖β‖∞ ≤ r1(t) or ‖β‖∞ ≥ r2(t)
must hold. From this we will show that the set of points α satisfying the bound
ϕ(α) ≥ t can be covered by a collection of hypercubes of side 2r1(t), each
of which is separated from the others by a gap of size 1

2r2(t). The lemma
will follow upon bounding the total Lebesgue measure of this collection of
hypercubes.

For each t > 0 we set

D(t) = {α ∈ E : ϕ(α) ≥ t}. (2.7)

Observe that if α and α + β both belong to D(t), then (2.5) implies that

max
{
r−1
1 (‖β‖∞), r−1

2 (‖β‖∞)
} ≥ t,

from which it follows that either ‖β‖∞ ≤ r1(t) or ‖β‖∞ ≥ r2(t) must hold.
Let b be any hypercube in RR whose sides are of length 1

2r2(t) and parallel
to the coordinate axes. We claim that b ∩ D(t) is contained in a hypercubeB
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whose sides are of length 2r1(t). To see this let α be any fixed vector lying in
b ∩ D(t), and set

B = {α + β : β ∈ R
R, ‖β‖∞ ≤ r1(t)}.

If α+β belongs to b∩D(t), then by definition of b the bound ‖β‖∞ ≤ 1
2r2(t)

must hold. In particular ‖β‖∞ < r2(t), so by the comments after (2.7), the
bound ‖β‖∞ ≤ r1(t) must hold. This shows that α + β ∈ B, and hence that
b ∩ D(t) ⊂ B, as claimed. In particular the Lebesgue measure of b ∩ D(t) is
at most (2r1(t))R .

The set D(t) is contained in E0, a hypercube of side ν. So in order to cover
the set D(t) with boxes b of side 1

2r2(t) one needs at most

�R
νR

min{r2(t), ν}R

boxes. Summing over all the boxes b, it follows that

L(t) �R

(
νr1(t)

min{r2(t), ν}
)R

, (2.8)

where we write L(t) for the Lebesgue measure of D(t). So we have

∫

E
ϕ(α) dα =

∫

E\D(2k)

ϕ(α) dα +
�−1∑

i=k

∫

E∩(D(2i )\D(2i+1))

ϕ(α) dα

+
∫

E∩D(2�)

ϕ(α) dα

≤ νR2k +
�−1∑

i=k

2i+1L(2i ) + L(2�) sup
α∈E

ϕ(α).

With (2.8) this yields (2.6). �
We now apply Lemma 2.1 to deduce mean values from bounds of the form

(2.1). The following result is stated in greater generality than is strictly required
here, to facilitate future applications to forms with real coefficients.

Lemma 2.2 Let T be a complex-valuedmeasurable function onRR. Let E0 be
a hypercube in RR whose sides are of length ν and parallel to the coordinate
axes, and let E be a measurable subset of E0. Suppose that the inequality
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min

{∣∣∣∣
T (α)

Pn

∣∣∣∣,
∣∣∣∣
T (α + β)

Pn

∣∣∣∣

}
≤ max

{
P−d‖β‖−1∞ , ‖β‖

1
d−1∞

}C (2.9)

holds for some P ≥ 1 and C > 0 and all α, β ∈ R
R. Suppose further that

sup
α∈E

|T (α)| ≤ Pn−δ (2.10)

for some δ ≥ 0. Then we have
∫

E
T (α) dα

�C ,d,R

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

νR Pn−C + Pn−C−(d−1)R if C < R
νR Pn−C + Pn−dR log P if C = R

νR Pn−C + Pn−dR−δ(1− R
C ) if R < C < dR

νR Pn−C log P + Pn−dR−δ(1− R
C ) if C = dR

νR Pn−dR−δ(1− dR
C ) + Pn−dR−δ(1− R

C ) if C > dR.

(2.11)

Later we will take T (α) = C−1P−εS(α; P) where C is as in Proposi-
tion 2.1. We will take E to be a set of minor arcsmP,d,, and we will interpret
the integral

∫
mP,d,

S(α; P) dα as an error term, which will need to be smaller

than a main term of size around Pn−dR . As a result, only the case C > dR of
the bound (2.11) will be satisfactory for the present application.

Proof We apply Lemma 2.1 with

ϕ(α) = |T (α)|
Pn

, r1(t) = P−d t−1/C , r2(t) = t (d−1)/C , (2.12)

noting that the bound (2.5) then follows from (2.9).
It remains to choose the parameters k and � from (2.6).Wewill choose these

so that the right-hand side of (2.6) is dominated by the sum
∑�−1

i=k , rather than
either of the other two terms. More precisely, take

k = �log2 P−C �, � = �log2 P−δ�, (2.13)

observing that

1
2 P

−C < 2k ≤ P−C , P−δ ≤ 2� < 2P−δ. (2.14)

We may assume that C > δ, for otherwise the bound
∫
E T (α) dα ≤ νR Pn−δ ,

which follows from (2.10), is stronger than any of the bounds listed in (2.11).
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We then have k < � and so this choice of k, � is admissible in Lemma 2.1.
Hence (2.6) holds, and substituting in our choices (2.12) for the parameters
yields

∫

E

|T (α)|
Pn

dα �R νR2k +
�−1∑

i=k

2i
(

νP−d2−i/C

min{2(d−1)i/C , ν}
)R

+
(

νP−d2−�/C

min{2(d−1)�/C , ν}
)R

sup
α∈E

|T (α)|
Pn

. (2.15)

By (2.10) and (2.14) we have supα∈E
|T (α)|
Pn ≤ 2�, and so we may extend the

sum in (2.15) from
∑�−1

i=k to
∑�

i=k to obtain

∫

E

|T (α)|
Pn

dα �R νR2k +
�∑

i=k

2i
(

νP−d2−i/C

min{2(d−1)i/C , ν}
)R

.

Since
P−d2−i/C

min{2(d−1)i/C , ν} ≤ P−d2−di/C + ν−1P−d2−i/C ,

we deduce that

∫

E

|T (α)|
Pn

dα �R νR2k +
�∑

i=k

νR P−dR2i(1−dR/C ) +
�∑

i=k

P−dR2i(1−R/C ).

(2.16)
Note that

�∑

i=k

2i(1−dR/C ) �C ,d,R

⎧
⎪⎨

⎪⎩

2k(1−dR/C ) if C < dR

� − k if C = dR

2�(1−dR/C ) if C > dR.

Recall from (2.14) that we have 2k ≥ 1
2 P

−C and 2� ≤ 2P−δ , and observe that
by (2.13) the bound � − k ≤ 2 + C log2 P holds. It follows that

�∑

i=k

2i(1−dR/C ) �C ,d,R

⎧
⎪⎨

⎪⎩

PC−dR if C < dR

log P if C = dR

P−δ(1−dR/C ) if C > dR,
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and reasoning similarly for
∑�

i=k 2
i(1−R/C ), we deduce from (2.16) that

∫

E

|T (α)|
Pn

dα

�

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

νR2k + νR P−C + Pn−C−(d−1)R if C < R
νR2k + νR P−C +P−dR log P if C = R
νR2k + νR P−C + P−dR−δ(1−R/C ) if R < C < dR
νR2k + νR P−C log P + P−dR−δ(1−R/C ) if C = dR
νR2k + νR P−dR−δ(1−dR/C ) + P−dR−δ(1−R/C ) if C > dR,

with an implicit constant depending only onC , d, and R. One final application
of the bound 2k ≤ P−C from (2.14) completes the proof of (2.11). �

2.2 Notation for the circle method

We split the domain [0, 1]R into two regions. Let  ∈ (0, 1) and set

MP,d, =
⋃

q∈N
q≤P

⋃

0≤a1,...,aR≤q
(a1,...,aR,q)=1

{
α ∈ [0, 1)R : ∥∥α − a

q

∥∥∞ < P−d},

mP,d, = [0, 1]R\MP,d,. (2.17)

We give local analogues of S(α; P) and of the integral
∫
MP,d,

S(α; P) dα.
We set

Sq(a) = q−n
∑

y∈{1,...,q}n
e
( a
q · f(y))

for each q ∈ N and a ∈ Z
R , and we put

S(P) =
∑

q≤P

∑

a∈{1,...,q}R
(a1,...,aR,q)=1

Sq(a).

For each γ ∈ R
R , set

S∞(γ ) =
∫

B
e
(
γ · f [d](t)

)
dt,

and let

I(P) =
∫

α∈RR

‖α‖∞≤P−d

PnS∞(Pdα) dα.
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Finally we define a quantity δ0 which in some sense measure the extent to
which the system fi is singular. Let σZ ∈ {0, . . . , n} be as in (1.10), and let

δ0 = n − σZ

(d − 1)2d−1R
.

2.3 The minor arcs

On the minor arcs mP,d, we have the following bound, compare (2.10) in
Lemma 2.2.

Lemma 2.3 (Dietmann [14], Schindler [32]) Suppose that the polynomials fi
have integer coefficients. Let,mP,d, and δ0 be as in Sect. 2.2, and let ε > 0.
Let the sum S(α; P) be as in (1.11). Then we have

sup
α∈mP,d,

|S(α; P)| �ε Pn−δ0+ε (2.18)

where the implicit constant depends only on d, n, R, and ε. The constant δ0

satisfies δ0 ≥ 1
(d−1)2d−1R

whenever the forms f [d]
i are linearly independent.

Proof The bound (2.18) follows either from Lemma 4 in Dietmann [14], or
fromLemma 2.2 in Schindler [32], by setting the parameter θ in either author’s
work to be

θ =  − ε

(d − 1)R
,

and taking P �ε 1 sufficiently large. Provided the forms f [d]
i are linearly

independent, the variety V (a · f [d]) is a proper subvariety of Pn−1
Q

for each a ∈
Z
R\{0}, and so σZ ≤ n−1 holds, by (1.10). This implies that δ0 ≥ 1

(d−1)2d−1R
,

as claimed. �

2.4 The major arcs

In this section we estimate
∫
MP,d,

S(α; P) dα, the integral over the major
arcs.

Lemma 2.4 Suppose that the polynomials fi have integer coefficients. Let ,
MP,d,, S∞(γ ), Sq(a),S(P) and I(P) be as in Sect. 2.2. Then for all a ∈ Z

R

and all q ∈ N such that q ≤ P, we have

S
( a
q + α; P) = PnSq(a)S∞(Pdα) + O(qPn−1(1 + Pd‖α‖∞)), (2.19)
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and it follows that
∫

MP,d,

S(α; P) dα = S(P)I(P) + O
(
Pn−dR+(2R+3)−1). (2.20)

Proof To show (2.19) we follow the proof of Lemma 5.1 in Birch [3]. First
observe that α · f(x) = α · f [d](x) + O(‖x‖d−1∞ ‖α‖∞), and so

S( aq + α; P) =
∑

1≤y1,...,yn≤q

e
( a
q · f(y))

∑

x∈Zn

x/P∈B
x≡ymod q

e(α · f [d](x))

+ O(Pn+d−1‖α‖∞). (2.21)

If ψ is any differentiable complex-valued function on Rn , then we have

ψ(x) = q−n
∫

u∈Rn

‖u‖∞≤q/2

ψ(x + u) du + On

(
q max

u∈Rn

‖u‖∞≤q/2

‖∇uψ(x + u)‖∞
)
.

Setting ψ(x) = e(α · f [d](x)), we deduce that
∑

x∈Zn

x/P∈B
x≡ymod q

e(α · f [d](x)) = q−n
∫

v∈Rn

v/P∈B
e(α · f [d](v)) dv

+ O(q1−n Pn+d−1‖α‖∞ + q1−n Pn−1),

where the term q1−n Pn−1 allows for errors in approximating the boundary of
the box B. Substituting into (2.21) shows that

S( aq + α; P) = Sq(a)
∫

v∈Rn

v/P∈B
e(α · f [d](v)) dv + O(qPn−1(1 + Pd‖α‖∞)).

To complete the proof of (2.19) it suffices to set u = Pt and use the definition
of S∞(γ ) from Sect. 2.2. Now (2.20) follows from (2.19) by the definition
(2.17) of MP,d,. �

We remark that in the case when a = 0 and q = 1, the proof of (2.19) is
valid whether or not the polynomials fi have integer coefficients. That is, we
always have

S(α; P) = PnS∞(Pdα) + O(Pn−1(1 + Pd‖α‖∞)) (2.22)

for any fi with real cofficients. Next we treat the quantityS(P) from (2.20).
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Lemma 2.5 Let the polynomials fi have integer coefficients, let the box B
from Sect. 1.3 be [0, 1]n and let Sq(a) be as in Sect. 2.2. Suppose we are given
ε ≥ 0 and C ≥ 1, such that for all α, β ∈ R

R and all P ≥ 1 the bound (2.1)
holds. Then:

(i) There is ε′ ≥ 0 such that ε′ = OC (ε) and

min
{|Sq(a)|, |Sq ′(a′)|} �C (q ′ + q)ε

∥∥ a
q − a′

q ′
∥∥C −ε′

d−1∞ (2.23)

for all a ∈ {1, . . . , q}R and a′ ∈ {1, . . . , q}R such that a′
q ′ �= a

q .
(ii) If C > ε′, then for all t > 0 and q0 ∈ N we have

#{ aq ∈ Q
R ∩ [0, 1)R : q ≤ q0, |Sq(a)| ≥ t} �C (qε

0 t)
− (d−1)R

C −ε′ ,

where it is understood that the fractions a
q are in lowest terms.

(iii) Let δ0 be as in Sect. 2.2 and let ε′′ > 0. For all q ∈ N and all a ∈ Z
R

such that (a1, . . . , aR, q) = 1, we have

|Sq(a)| �ε′′ q−δ0+ε′′
.

(iv) Let  andS(P) be as in Sect. 2.2. Suppose that ε is sufficiently small in
terms of C , d and R. Provided the inequality C > (d − 1)R holds and
the forms f [d]

i are linearly independent, we have

S(P) − S �C,C P−δ1 (2.24)

for someS ∈ C and some δ1 > 0 depending at most on C , d and R. We
have

S =
∏

p

lim
k→∞

1
pk(n−R) #

{
b ∈ {1, 2, . . . , pk}n :

f1(b) ≡ 0, . . . , fR(b) ≡ 0 mod pk
}

(2.25)

where the product is over primes p and converges absolutely.

Proof of part (i) Provided P is sufficiently large, Lemma 2.4 will allow us to
approximate the sum Sq(a) by a multiple of S

(
a/q; P)

. This will enable us to
transform (2.1) into the bound (2.23). Let P ≥ 1 be a parameter, to be chosen
later. Then (2.1) gives
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min

⎧
⎨

⎩

∣∣∣∣∣
S
( a
q ; P)

Pn+ε

∣∣∣∣∣,

∣∣∣∣∣∣

S
( a′
q ′ ; P

)

Pn+ε

∣∣∣∣∣∣

⎫
⎬

⎭ ≤ C max{P−d
∥∥ a′
q ′ − a

q

∥∥−1
∞ ,

∥∥ a′
q ′ − a

q

∥∥ 1
d−1∞ }C .

(2.26)
SinceB = [0, 1]n the equality S∞(0) = 1 holds, and so (2.19) implies that

S
( a
q ; P)

Pn
= Sq(a) + O(qP−1),

S
( a′
q ′ ; P

)

Pn
= Sq ′(a′) + O(q ′P−1).

(2.27)
Together (2.26) and (2.27) yield

min
{|Sq(a)|, |Sq ′(a′)|}

≤ CPε−C d
∥∥ a′
q ′ − a

q

∥∥−C

∞ + CPε
∥∥ a′
q ′ − a

q

∥∥ C
d−1∞ + O((q ′ + q)P−1). (2.28)

Observe that for P sufficiently large the termCPε‖ a′
q ′ − a

q ‖C /(d−1)∞ dominates
the right-hand side of (2.28). We claim this is the case for

P = (q ′ + q)
∥∥ a′
q ′ − a

q

∥∥− 1+C
d−1∞ . (2.29)

Indeed, since ‖ a′
q ′ − a

q ‖∞ ≤ 1, it follows from (2.29) and (2.28) that

min
{|Sq(a)|, |Sq ′(a′)|}

≤ CPε(q ′ + q)−C d
∥∥ a′
q ′ − a

q

∥∥C +C 2d
d−1∞ + CPε

∥∥ a′
q ′ − a

q

∥∥ C
d−1∞

+ O
(∥∥ a′

q ′ − a
q

∥∥ 1+C
d−1∞

)

�C Pε
∥∥ a′
q ′ − a

q

∥∥ C
d−1∞ ,

which proves the result. �
Proof of part (ii) If ε′ < C is small, then by part (i), the points in the set

{ aq ∈ Q
R ∩ [0, 1)R : q ≤ q0, |Sq(a)| ≥ t}

are separated by gaps of size

‖ a′
q ′ − a

q ‖∞ �C (q−ε
0 t)

d−1
C −ε′ .

At most OC (qε
0 t)

− (d−1)R
C −ε′ such points fit in the box [0, 1)R , proving the

claim. �
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Proof of part (iii) This follows from Lemma 2.3 by an argument which is now
standard, see the proof of Lemma 5.4 in Birch [3]. �
Proof of part (iv) In this part of the proof, whenever we write a/q it is under-
stood that a ∈ Z

R and q ∈ N with (a1, . . . , aR, q) = 1. We will show below
that

s(Q) =
∑

a/q∈[0,1)R
Q<q≤2Q

|Sq(a)| �C,C Q−δ1 (2.30)

for all Q ≥ 1, and some δ1 > 0 depending only on C , d and R. Since

∣∣∣∣S(P) −
∑

a/q∈[0,1)R
Sq(a)

∣∣∣∣ ≤
∑

a/q∈[0,1)R
q>P

|Sq(a)|

=
∑

Q=2k P

k=0,1,...

s(Q),

this proves (2.24) with
S =

∑

a/q∈[0,1)R
Sq(a), (2.31)

where this sum is absolutely convergent. Then (2.25) follows as in §7 of
Birch [3].

We prove (2.30). Let � ∈ Z. We have

s(Q) =
∑

a/q∈[0,1)R
|Sq (a)|≥2−�

Q<q≤2Q

|Sq(a)| +
∞∑

i=�

∑

a/q∈[0,1)R
2−i>|Sq (a)|≥2−i−1

Q<q≤2Q

|Sq(a)|

≤ #{ aq ∈ Q
R ∩ [0, 1)R : q ≤ 2Q, |Sq(a)| ≥ 2−�} · sup

q>Q
|Sq(a)|

+
∞∑

i=�

#{ aq ∈ Q
R ∩ [0, 1)R : q ≤ 2Q, |Sq(a)| ≥ 2−i−1} · 2−i .

(2.32)

Now parts (ii) and (iii) show that

#{ aq ∈ Q
R ∩ [0, 1)R : q ≤ 2Q, |Sq(a)| ≥ t} �C (Qεt)−

(d−1)R
C −ε′
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and that
sup
q>Q

|Sq(a)| � Q−δ0/2.

Substituting these bounds into (2.32) gives

s(Q) �C QOC (ε)−δ0/22�
(d−1)R
C −ε′ + QOC (ε)

∞∑

i=�

2(i+1)
(

(d−1)R
C −ε′

)
−i

.

We have C > (d − 1)R and we have assumed that ε′ is small in terms of C ,
d and R, so we may assume that the bound C > (d − 1)R + ε′ holds. So we
may sum the geometric progression to find that

s(Q) �C,C QOC (ε)2�
(d−1)R
C −ε′

(
Q−δ0/2 + 2−�

)
.

Picking � = �log2 Qδ0/2� shows that

s(Q) �C,C Q−δ0
(d−1)R−C

2C +OC (ε).

The forms f [d]
i are linearly independent, so δ0 ≥ 1

(d−1)2d−1R
, by Lemma 2.4.

As ε is small in terms ofC , d and R it follows that s(Q) �C,C Q−δ1 for some
δ1 > 0 depending only on C , d and R. This proves (2.30). �

We estimate the integral I(P) from (2.20).

Lemma 2.6 Let S∞(γ ),  and I(P) be as in Sect. 2.2.

(i) Suppose that the bound (2.1) holds for some C ≥ 1, C > 0 and ε ≥ 0 and
all α, β ∈ R

R and P ≥ 1. Then for all γ ∈ R
R we have

S∞(γ ) �C ‖γ ‖−C+ε′
∞ , (2.33)

for some ε′ ≥ 0 such that ε′ = OC (ε).
(ii) If the conclusion of part (i) holds and C − ε′ > R, then there exists I ∈ C

such that for all P ≥ 1 we have

1
Pn−dR I(P) − I �C ,C,ε′ P−(C−ε′−R). (2.34)

Furthermore we have

I = lim
P→∞

1
Pn−dR λ

{
t ∈ R

n : 1
P t ∈ B, | f [d]

1 (t)| ≤ 1
2 , . . . , | f [d]

R (t)| ≤ 1
2

}

(2.35)
where λ{ · } denotes the Lebesgue measure.

123



S. L. Rydin Myerson

Proof of part (i) First, for all β ∈ R
R we have |S(β; P)| ≤ S(0; P), from the

definition (1.11). Consequently, taking α = 0, β = P−dγ in our hypothesis
(2.1) shows that

|S(P−dγ ; P)| ≤ CPn+ε max{‖γ ‖−1∞ , P− d
d−1 ‖γ ‖

1
d−1∞ }C .

Together with the case α = P−dγ of the bound (2.22), this yields

S∞(γ ) �C Pε max{‖γ ‖−1∞ , P− d
d−1 ‖γ ‖

1
d−1∞ }C + P−1 + P−1‖γ ‖∞. (2.36)

If we have ‖γ ‖∞ ≤ 1, then we set P = 1 and (i) follows at once. Otherwise
we put P = max{1, ‖γ ‖1+C∞ }, and the result follows since (2.36) then implies

S∞(γ ) �C Pε max
{‖γ ‖−1∞ , ‖γ ‖−1− C d

d−1∞
}C + ‖γ ‖−1−C∞ + ‖γ ‖−C∞

≤ 3‖γ ‖−C+(1+C )ε∞ . �
Proof of part (ii) If the inequality C − ε′ > R holds, then by (2.33) we have

( ∫

γ∈RR

Pn−dRS∞(γ ) dγ

)
− I(P) =

∫

γ∈RR

‖γ ‖∞>P

Pn−dRS∞(γ ) dγ

�C ,C,ε′ Pn−dR−(C−ε′−R),

where the integrals converge absolutely. This proves (2.34) with

I =
∫

γ∈RR

S∞(γ ) dγ . (2.37)

It remains to prove (2.35). Let χ : RR → [0, 1] be the indicator function of
the box [−1

2 ,
1
2 ]R . We must evaluate the limit

lim
P→∞

1
Pn−dR λ

{
t ∈ R

n : 1
P t ∈ B, | f [d]

1 (t)| ≤ 1
2 , . . . , | f [d]

R (t)| ≤ 1
2

}

= lim
P→∞

1
Pn−dR

∫

t∈Rn

t/P∈B
χ

(
f [d]
1 (t), . . . , f [d]

R (t)
)
dt. (2.38)

Let ϕ be any infinitely differentiable, compactly supported function on R
R ,

taking values in [0, 1]. We evaluate 1
Pn−dR

∫
t/P∈B ϕ( f [d]

1 (t), . . . , f [d]
R (t)) dt,

which we think of as a smoothed version of (2.38). Fourier inversion gives
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∫

t∈Rn

t/P∈B
ϕ
(
f [d]
1 (t), . . . , f [d]

R (t)
)
dt =

∫

t∈Rn

t/P∈B

∫

RR
ϕ̂(α)e(α · f [d](t)) dαdt

=
∫

RR
ϕ̂(α)

∫

t∈Rn

t/P∈B
e(α · f [d](t)) dtdα

=
∫

RR
ϕ̂(α)PnS∞(Pdα)dα (2.39)

where ϕ̂(α) is the Fourier transform
∫
RR ϕ(γ )e(−α · γ ) dγ .

Since C − ε′ > R holds by assumption, it follows from (2.33) that the
function S∞ is Lebesgue integrable. Hence (2.37) implies

ϕ̂(0)I =
∫

RR
ϕ̂(0)S∞(γ ) dγ

= lim
P→∞

∫

RR
ϕ̂(P−dγ )S∞(γ ) dγ

= lim
P→∞ PdR

∫

RR
ϕ̂(α)S∞(Pdα) dα. (2.40)

Together (2.39) and (2.40) show that for any infinitely differentiable, com-
pactly supported ϕ taking values in [0, 1], we have

lim
P→∞

1
Pn−dR

∫

t∈Rn

t/P∈B
ϕ( f [d]

1 (t), . . . , f [d]
R (t)) dt = ϕ̂(0)I. (2.41)

With χ as in (2.38), choose ϕ such that ϕ(γ ) ≤ χ(γ ) for all γ ∈ R
R . Then

by (2.38) and (2.41) we have

lim inf
P→∞

1
Pn−dR λ

{
t ∈ R

n : 1
P t ∈ B, | f [d]

1 (t)| ≤ 1
2 , . . . , | f [d]

R (t)| ≤ 1
2

} ≥ ϕ̂(0)I.

Letting ϕ → χ almost everywhere gives ϕ̂(0) → 1, so I is a lower bound for
the limit inferior in (2.38). Repeating the argument with ϕ(γ ) ≥ χ(γ ) instead
of ϕ(γ ) ≤ χ(γ ) shows that I is also an upper bound for the corresponding
limit superior, so the limit exists and is equal to I. �

2.5 The proof of Proposition 2.1

In this section we deduce Proposition 2.1 from Lemmas 2.2–2.6.
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Proof of Proposition (2.1) Let P ≥ 1 and  = 1
4R+6 . By (2.3) we have

N f1,..., fR (P) =
∫

MP,d,

S(α; P) dα +
∫

mP,d,

S(α; P) dα,

whereMP,d,, mP,d, are as in Sect. 2.2. We apply Lemma 2.2 with

T (α) = C−1P−εS(α; P), E0 = [0, 1]R, E = mP,d,, δ = δ0.

With these choices for T , E0, E and δ we see that (2.9) follows from (2.1).
Lemma 2.3 shows that supα∈mP,d,

CT (α) �ε Pn−δ , and after increasing C
if necessary this gives us (2.10). This verifies the hypotheses of Lemma 2.2.
Since we have C > dR by assumption, (2.11) gives

∫

mP,d,

S(α; P) dα �C,C Pn−dR−δ0(1− dR
C )+ε. (2.42)

For the major arcs, since  = 1
4R+6 we have by Lemma 2.4 that

∫

MP,d,

S(α; P) dα = S(P)I(P) + O
(
Pn−dR− 1

2
)
, (2.43)

where S(P), I(P) are as in Sect. 2.2. Since C > dR holds, the fi (x) are
linearly independent, and ε is small in terms ofC , d and R, both of Lemmas 2.5
and 2.6 apply. In particular (2.24) and (2.34) shows that

S(P)I(P) = SIPn−dR + OC ,C
(
Pn−dR−(C−R)/2) + OC ,C

(
Pn−dR−δ1

)

(2.44)
where δ1 > 0 depends at most on C , d and R. By (2.42), (2.43), and (2.44),
the result holds. �

3 The auxiliary inequality

In this section we verify the hypothesis (2.1), assuming a bound on the number
of solutions to the auxiliary inequality from Definition 1.1. The goal is the
following result, proved at the end of Sect. 3.2.

Proposition 3.1 Let N aux
f (B), ‖ f ‖∞ be as in Definition 1.1. Suppose that we

are given C0 ≥ 1 and C > 0 such that for all β ∈ R
R and B ≥ 1 we have

N aux
β·f (B) ≤ C0B

(d−1)n−2dC . (3.1)
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Further let M > μ > 0 such that for all β ∈ R
R we have

μ‖β‖∞ ≤ ‖β · f [d]‖∞ ≤ M‖β‖∞, (3.2)

noting that some such M, μ exist whenever the forms f [d]
i are linearly inde-

pendent. Let ε > 0. Then there exists C ≥ 1, depending only onC0, d, n, μ, M
and ε, such that the bound (2.1) holds for all P ≥ 1 and all α, β ∈ R

R.

3.1 Weyl differencing

Weprove (2.1) using the following estimate, which combineswork of Birch [3,
Lemma 2.4] and Bentkus and Götze [1, Theorem 5.1].

Definition 3.1 Let f , m( f )(x(1), . . . , x(d−1)) be as in Definition 1.1. Given
B ≥ 1 and δ > 0, we let U f (B, δ) be the number of (d − 1)-tuples of integer
n-vectors x(1), . . . , x(d−1) such that

‖x(1)‖∞, . . . , ‖x(d−1)‖∞ ≤ B, min
v∈Zn

∥∥v − m( f )(x(1), . . . , x(d−1))
∥∥∞ < δ.

Lemma 3.1 Let U f (B, δ) be as in Definition 3.1. For all ε > 0, α, β ∈ R
R

and θ ∈ (0, 1], we have

min

{∣∣∣∣
S(α; P)

Pn+ε

∣∣∣∣,
∣∣∣∣
S(α + β; P)

Pn+ε

∣∣∣∣

}2d

�d,n,ε

Uβ·f(Pθ , P(d−1)θ−d)

P(d−1)θn
(3.3)

where the implicit constant depends only on d, n, ε.

Proof of Proposition 2.1 Observe that (3.3) will follow if we can prove that

∣∣∣∣
S(α; P)S(α + β; P)

P2(n+ε)

∣∣∣∣
2d−1

�d,n,ε

Uβ·f(Pθ , P(d−1)θ−d)

P(d−1)θn
.

First we use an idea from the proof of Theorem5.1 in Bentkus andGötze [1],
also found in Lemma 2.2 of Müller [28], to eliminate α. We have

S(α + β; P)S̄(α; P)

=
∑

x∈Zn

x/P∈B

∑

z∈Zn

(x+z)/P∈B

e
(
(α + β) · f(x) − α · f(x + z)

)
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≤
∑

z∈Zn

‖z‖∞≤P

∣∣∣∣
∑

x∈Zn

x/P∈Bz

e
(
(α + β) · f(x) − α · f(x + z)

)∣∣∣∣

=
∑

z∈Zn

‖z‖∞≤P

∣∣∣∣
∑

x∈Zn

x/P∈Bz

e
(
β · f [d](x) + gα,β,z(x)

)∣∣∣∣

for some real polynomials gα,β,z(x) of degree at most d − 1 in x and some
boxesBz ⊂ B. Now by the special case of Cauchy’s inequality |∑i∈I λi |2 ≤
(#I) · ∑

i∈I |λi |2, we have

|S(α + β; P)S(α; P)|2d−1

≤
( ∑

z∈Zn

‖z‖∞≤P

∣∣∣∣
∑

x∈Zn

x/P∈Bz

e
(
β · f [d](x) + gα,β,z(x)

)∣∣∣∣

)2d−1

� P(2d−1−1)n
∑

z∈Zn

‖z‖∞≤P

∣∣∣∣
∑

x∈Zn

x/P∈Bz

e
(
β · f [d](x) + gα,β,z(x)

)∣∣∣∣
2d−1

. (3.4)

Bentkus and Götze used the double large sieve of Bombieri and Iwaniec [4] to
bound the inner sum in (3.4) in the case when d = 2. We extend the argument
to higher d by employing Lemma 2.4 of Birch [3], which states that1

S(α; P) �d,n,ε P2d−1n−(d−1)nθ+εUα·f(Pθ , P(d−1)θ−d).

The innermost sum in (3.4) has the same form as S(α; P), with Bz in place
ofB and β · f [d](x)+ gα,β,z(x) in place of α · f as the underlying polynomial.
The degree of gα,β,z is at most d − 1, so β · f [d](x) is the leading part of this
polynomial. So applying Birch’s result to the innermost sum in (3.4) shows

∣∣∣∣
∑

x∈Zn

x/P∈Bz

e
(
β · f [d](x) + gα,β,z(x)

)∣∣∣∣
2d−1

�ε P2d−1n−(d−1)θn+εUβ·f [d](x)+gα,β,z(x)(P
θ , P(d−1)θ−d)

= P2d−1n−(d−1)θn+εUβ·f(Pθ , P(d−1)θ−d),

1 Birch writes N (Pθ ; P(d−1)θ−d ; α) for ourUα·f (Pθ , P(d−1)θ−d ) and S(α) for our S(α; P).
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as U f depends only on the degree d part of f . With (3.4) this proves the
result. �

3.2 Proof of Proposition 3.1

Proof of Proposition 3.1 Let us first suppose that for some θ > 0 we have

N aux
β·f (Pθ ) < Uβ·f(Pθ , P(d−1)θ−d). (3.5)

Then there must be a (d − 1)-tuple of vectors x(1), . . . , x(d−1) ∈ Z
n which is

included in the count Uβ·f(Pθ , P(d−1)θ−d) but not in N aux
β·f (Pθ ).

Since the (d−1)-tuple (x(1), . . . , x(d−1)) is countedbyUβ·f(Pθ , P(d−1)θ−d),
the inequality ‖x(i)‖∞ ≤ Pθ holds for each i = 1, . . . , d − 1 and we have the
bound

∥∥v − m(β·f)(x(1), . . . , x(d−1))
∥∥∞ < P(d−1)θ−d , (3.6)

for some v ∈ Z
n . Since this (d − 1)-tuple (x(1), . . . , x(d−1)) is not counted by

N aux
β·f (Pθ ), we must also have

‖m(β·f)(x(1), . . . , x(d−1))‖∞ ≥ ‖β · f [d]‖∞P(d−2)θ . (3.7)

We use (3.6) and (3.7) to relate Pθ and ‖β‖∞. It follows from (3.6) that either

∥∥m(β·f)(x(1), . . . , x(d−1))
∥∥∞ < P(d−1)θ−d (3.8)

or

∥∥m(β·f)(x(1), . . . , x(d−1))
∥∥∞ ≥ 1

2
. (3.9)

When (3.8) holds, then (3.7) implies

‖β · f [d]‖∞ <
P(d−1)θ−d

P(d−2)θ
= Pθ−d . (3.10)

When on the other hand (3.9) holds, then the bound ‖x(i)‖∞ ≤ Pθ implies

‖m(β·f)(x(1), . . . , x(d−1))‖∞ � ‖β · f [d]‖∞P(d−1)θ ,

and it follows by (3.9) that

‖β · f [d]‖∞ � P−(d−1)θ . (3.11)
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Either (3.10) or (3.11) holds. So by rearranging and applying (3.2) we infer

P−θ �μ,M max{P−d‖β‖−1∞ , ‖β‖
1

d−1∞ }. (3.12)

We have shown that (3.5) implies (3.12). Now Lemma 3.1 shows that for
θ ∈ (0, 1] we have

Uβ·f(Pθ , P(d−1)θ−d) �ε P(d−1)θn min

{∣∣∣∣
S(α; P)

Pn+ε

∣∣∣∣,
∣∣∣∣
S(α + β; P)

Pn+ε

∣∣∣∣

}2d

,

and togetherwith our assumption (3.1) this implies that (3.5)will hold provided
that θ ∈ (0, 1] and that

(Pθ )(d−1)n−2dC ≤ C−1
1 P(d−1)θn min

{∣∣∣∣
S(α; P)

Pn+ε

∣∣∣∣,
∣∣∣∣
S(α + β; P)

Pn+ε

∣∣∣∣

}2d

(3.13)
for some C1 ≥ 1 depending only on C0, d, n and ε. Define θ by

Pθ = C1/2dC
1 min

{∣∣∣∣
S(α; P)

Pn+ε

∣∣∣∣,
∣∣∣∣
S(α + β; P)

Pn+ε

∣∣∣∣

}−1/C

, (3.14)

so that equality holds in (3.13). We consider three cases.
The first case is when θ ≤ 0 holds. We can rule this out. If θ ≤ 0 then (3.14)

gives

min

{∣∣∣∣
S(α; P)

Pn+ε

∣∣∣∣,
∣∣∣∣
S(α + β; P)

Pn+ε

∣∣∣∣

}
≥ C−1/2d

1 . (3.15)

To prove (2.1), we can assume without loss of generality that P �ε 1 holds.
But then (3.15) is false, since |S(α; P)| ≤ (P + 1)n by the definition (1.11).

The second case is when 0 < θ ≤ 1 holds. Our choice (3.14) for the
parameter θ then ensures that (3.13) holds.We saw above that when θ ∈ (0, 1],
that bound (3.13) implies the inequality (3.5). We also saw that (3.5) leads to
the estimate (3.12). This estimate (3.12) implies the conclusion (2.1) of the
lemma upon substituting in the value of θ from (3.14) and choosingC to satisfy

the bound C �μ,M C1/2d

1 .
The third and last case is when θ > 1 holds. In this case we have by (3.14)

that

min

{∣∣∣∣
S(α; P)

Pn+ε

∣∣∣∣,
∣∣∣∣
S(α + β; P)

Pn+ε

∣∣∣∣

}
< C1/2d

1 P−C . (3.16)
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Now for any t > 0 we have max{P−d t−1, t
1

d−1 } ≥ P−1, and hence

max{P−d‖β‖−1∞ , ‖β‖
1

d−1∞ }C ≥ P−C .

So (2.1) follows from (3.16) on choosing C such that C ≥ C1/2d

1 holds. �

4 The proof of Theorems 1.2 and 1.3

Proof of Theorem 1.3 Let NF1,...,FR (P) be as in (2.2). Set fi = Fi , and apply
Propositions 2.1 and 3.1. This shows that

N f1,..., fR (P) = SIPn−dR + OC, f1,..., fR (P
n−dR−δ), (4.1)

where δ = δ(C , d, R) is positive. It remains to prove that I andS are positive
under the conditions given in the theorem. Note that since V (F1, . . . , FR) has
dimension n−1−R, a smooth point corresponds to a solution of the equations

F1(x) = 0, . . . , FR(x) = 0 (4.2)

at which the R × n Jacobian matrix (∂Fi (x)/∂x j )i j has full rank.
Let x = r be a real solution to (4.2) at which the matrix (∂Fi (x)/∂x j )i j has

full rank, and for which r ∈ B. Applying the Implicit Function Theorem to
the equations (4.2) at the point r, we find an open set U ⊂ B on which the
solutions to (4.2) form an (n − R) dimensional real manifold. Considering a
small neighbourhood of this manifold shows that for all ε ∈ (0, 1] we have

λ
{
s ∈ U : |F1(s)| ≤ ε, . . . , |FR(s)| ≤ ε

} �F1,...,FR εR

where λ is the Lebesgue measure. Letting t = Ps and ε = 1
2 P

−d , we see that

λ
{
t ∈ R

n : t/P ∈ U, |F1(t)| ≤ 1
2 , . . . , |FR(t)| ≤ 1

2

} �F1,...,FR Pn−dR,

and (2.35) from Lemma 2.6 then shows that I is positive.
To show that S is positive under the conditions given in the theorem we

use a variant of Hensel’s Lemma. Let p be a prime and let a ∈ Z
n
p. Suppose

that x = a is a solution to the system fi (x) = 0 for which the Jacobian
matrix (∂ fi (x)/∂x j )i j is nonsingular. Possibly after permuting the variables
xi if necessary, we can assume that the submatrix M(x) consisting of the last
R columns of (∂ fi (x)/∂x j )i j is nonsingular at x = a.
The so-called valuation theoretic Implicit Function Theorem then applies

to the polynomials fi with the common zero a over the valued field Qp. This
is essentially a version of Hensel’s Lemma; see Kuhlmann [21, Theorem 25].
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If we write |det M(a)|p = p−α , the theorem states that for all p-adic numbers
a′
1, . . . , a

′
n−R ∈ Qp with |a′

i − ai |p < p−2α , there are unique p-adic numbers
a′
n−R+1, . . . , a

′
n ∈ Qp with |a′

i − ai |p < p−α such that each fi (a′) = 0.
Now let a′

1, . . . , a
′
n−R be p-adic integers satisfying a′

i ≡ ai modulo p2α+1.
For each k ∈ N there are p(k−2α−1)(n−R) choices for a′

i which are distinct
modulo pk , and by the theorem above each one extends to a vector of p-adic
integers a satisfying f(a′) = 0.

If this holds for each prime p, then S is positive. For then reducing the
vectors a′ modulo pk gives �f,p pk(n−R) distinct vectors b ∈ {1, . . . , pk}n
satisfying the system of congruences fi (b) ≡ 0 modulo pk . The equality
(2.25) then shows that S > 0. �
Proof of Theorem 1.2 We let C = n−R+1

4 , and apply Theorem 1.3 to the
system of forms Fi . The result will follow if we can show that (1.8) holds,
which is to say that

N aux
β·F(B) � BσR (4.3)

for all β ∈ R
R and all B ≥ 1. Here the quantity σR is defined by (1.4).

For each β ∈ R
R , let the matrix of the quadratic form β · F be M(β). That

is, M(β) is the unique real n × n symmetric matrix with

β · F(x) = xT M(β)x.

Then we have
m(β·F)(u) = 2M(β)u,

so N aux
β (B) counts vectors u ∈ Z

n satisfying

‖u‖∞ ≤ B, ‖M(β)‖∞ ≤ 1
2‖β · F‖∞.

These vectors u are all contained in the box ‖u‖∞ ≤ B, and in the ellipsoid

E(β) = {t ∈ R
n : tT M(β)T M(β)t < n · ‖β · F‖2∞}.

The ellipsoid has principal radii |λ|−1√n‖β · F‖∞ where λ runs over the
eigenvalues of the real symmetric matrix M(β), counted with multiplicity.
Hence

N aux
β·F(B) �n

∏

λ

min{|λ|−1‖β · F‖∞ + 1, B}

where λ is as before. So to prove (4.3) it suffices that n − σR of the λ are of
size |λ| � ‖β · F‖∞ at least.

Suppose for a contradiction that this is false. Then there exists a sequence
β(i) ∈ R

R such that at least σR+1 of the eigenvalues ofM(β(i) ·q) satisfy λ =
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o(‖β(i) ·F‖∞). By passing to a subsequence, we can assume β(i)/‖β(i)‖∞ →
β, and then at least σR + 1 of the eigenvalues of M(β · F) must be zero. In
other words,

dim Sing V (β · F) ≥ σR.

But this contradicts the definition (1.4). So (4.3) holds as claimed. �
As alluded to after Lemma 1.1, the argument used to prove Theorems 1.2

and 1.3 also yields weak approximation for V (F1, . . . , FR) if that variety is
smooth. It suffices to show that if the system Fi (qx−a) = 0 has solutions in the
p-adic integers for each p, then it has integral solutions xwith x

‖x‖∞ arbitrarily
close to r

‖r‖∞ , for any fixed real solution r to the system Fi (r) = 0. For this one
can letB be a sufficiently small box containing r

‖r‖∞ , and repeat the proof of
Theorems 1.2 and 1.3 with the choice fi (x) = Fi (qx − a) instead of fi = Fi
at the start of the proof of Theorem 1.3. Since N aux

β·f (B) = N aux
β·F(B) we obtain

(4.1) as before. Recalling that any real or p-adic point of V (F1, . . . , FR) must
be smooth, the argument to prove that I,S are positive goes through and we
obtain the existence of an integral solution of the required kind.

Proof of Lemma 1.1 We prove the first inequality in (1.6). Let β ∈ R
R\{0}

such that
σR = dim V (β · F).

Without loss of generality we may suppose that βR is nonzero. Then we have

V (F1, . . . , FR) = V (F1, . . . , FR−1, β · F).

Since V (F1, . . . , FR−1) has dimension n − 1 − R, it follows that

V (F1, . . . , FR−1) ∩ Sing V (β · F) ⊂ Sing V (F1, . . . , FR)

and so V (F1, . . . , FR−1) ∩ Sing V (β · F) = ∅, as V (F1, . . . , FR) is smooth.
It follows that dim Sing V (β · F) ≤ R − 1, which proves the first inequality
in (1.6).

The second inequality in (1.6) follows from the work of Browning and
Heath-Brown [7]. In those authors’ formula (1.3), set

D = 2, r1 = 0, r2 = R, Fi,2 = Fi .

Now the R× n Jacobian matrix (∂Fi (x)/∂x j )i j has full rank at every nonzero
solution x ∈ �Qn to F1(x) = · · · = FR(x) = 0, because V (F1, . . . , FR) is
smooth of dimension n − 1 − R. This makes Fi, j a “nonsingular system” in
the sense of Browning and Heath-Brown, as defined in their formula (1.7). The
next step is to replace Fi,d with an “equivalent optimal system”. The comments
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after formula (1.7) of those authors show that in our case this means replacing
Fi with

∑
j Ai j f j , where A is an invertible linear transformation. In particular

this preserves V (F1, . . . , FR) andW . Now their formulae (1.4) and (1.8) show
that B2 ≤ R − 1, where B2 = 1 + dim(W ). This proves (1.6). �
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