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Abstract—The Software-Defined Networking (SDN) paradigm
can allow network management solutions to automatically and
frequently reconfigure network resources. When developing SDN-
based management architectures, it is of paramount importance
to design a monitoring system that can provide frequent and
consistent updates to heterogeneous management applications.
For the monitoring functionality to scale according to the require-
ments of large-scale networks a distributed monitoring approach
is required. In this paper we present a decentralized approach
for resource monitoring in SDN, which is designed to support a
wide range of measurement tasks and requirements in terms of
monitoring rates and information granularity levels. Our solution
leverages effective processing of the monitoring requests to reduce
the consumption of limited resources, such as the control plane
bandwidth of OpenFlow switches. To demonstrate the benefits of
the proposed approach, our evaluation is based on a realistic and
demanding use case, where a distributed management application
coordinates a content distribution service in an ISP network.

I. INTRODUCTION

Efficient resource monitoring is a fundamental requirement
for any network management system. Accurate and timely
updates are needed to support resource reconfigurations and
to warrant precision when troubleshooting failures or detecting
anomalies. Over the last few years current practices in network
management have been challenged by the advent of Software
Defined Networks (SDNs). SDN technologies have emerged
as promising solutions to improve and simplify the operator’s
tasks [1] as they enable the development of applications that
reconfigure the network automatically [3][4]. These advances
pose new requirements on the monitoring functionality es-
pecially in terms of measurement frequency and information
granularity.

Recent research on SDN monitoring investigated the im-
plementation of task-specific measurements [12][13] and their
adaptation with respect to traffic workloads and resource
conditions [14][15]. However, these solutions rely on the
assumption of a centrally-managed network, which is an
important limiting factor for the case of large-scale network
topologies, as identified in [6][10]. Centralized approaches
have considerable scalability limitations, due to the amount
of traffic and processing burden converging to a single con-
troller/manager. In addition, they cannot support applications
for which the time between each execution is comparable with
the time to collect, compute and disseminate the results [6].
While several decentralized solutions have been proposed in
the literature, e.g. [5][9][8], their main focus was on the control
plane (i.e. routing functionality), devoting less attention to
monitoring, which was reduced to periodically synchronizing
topology databases. Distributing the monitoring functionality

introduces a fundamental challenge: how monitoring entities
can efficiently extract local views and share this information,
while striking the right balance between accuracy and overhead
for a wide range of applications.

In this paper we propose a decentralized monitoring system
for large scale SDNs that achieves the goal of high reconfigu-
ration reactivity with acceptable accuracy and small overhead.
Our approach involves multiple monitoring entities, each able
to perform monitoring tasks autonomously without relying on
a central manager and without maintaining a global view of
the network run-time state. Although decentralized monitoring
is not a new topic in network management, previous solutions
like [7][11] are not directly applicable to the new domain of
software-defined networks due to: i) the technological novelty
of SDN, ii) the shift towards new measurement enablers and
iii) the heterogenous requirements of management applications
that can reconfigure the network at a wide range of timescales
and granularity levels (e.g. up to a single TCP flow).

The proposed approach is designed to operate within
a distributed management environment such as the one in
[6], where local managers, hosting the application logic, can
adaptively reconfigure the network resources under their scope
of responsibility at short timescales. Our solution can support
the monitoring requirements of a wide range of management
applications by relying on a flexible high-level interface and
effectively aggregating new measurement tasks to limit the
amount of resources consumed at the switches. To deal with the
diversity of controller implementations and improve configura-
tion flexibility, we abstract most of the monitoring functionality
from the control plane and rely on measurement primitives
as well as minimal interface(s), which could be extended
to support new control software without requiring significant
changes.

In this work, we investigate the benefits of the proposed
decentralized monitoring system based on a realistic and de-
manding use case, where a distributed management application
coordinates a content distribution service in an ISP network.
We compare its performance in terms of monitoring latencies,
as well as traffic overhead, to the one obtained with a central-
ized solution and show the impact of distributed monitoring
on the application performance. In addition, by following an
approach similar to the one presented in [10], we investigate
possible tradeoff(s) between application reactivity/accuracy
and monitoring scalability/overhead. The results show that our
monitoring solution can reduce the monitoring delays by up to
69% compared to a centralized approach, which translates into
more reactive control loops. We also show that while additional
overhead is incurred by a distributed solution, this can be
reduced by configuring the monitoring parameters without



significantly affecting the application’s performance.
The remainder of this paper is organized as follows. Section

II provides background information on the distributed network
management framework considered in the paper and presents
the main monitoring techniques used in SDN environments. In
Section III, we describe in detail the design of the proposed
architecture. Section IV describes the use case application
considered for the evaluation of our solution. Experiment setup
and evaluation results are presented in Section V. Section VI
describes related work and Section VII concludes the paper.

II. BACKGROUND

In this section, we provide background information about
the SDN-based resource management framework considered
for the design of our monitoring solution, as well as an
overview of the techniques used to measure SDN networks.

A. Distributed Resource Management Framework

In [6], co-authors of this paper present a novel SDN-based
network management and control framework that supports
dynamic resource management applications in fixed backbone
infrastructures. In this paper we adopt the design principles
of the relevant architecture, which separates management and
control functionality, allowing the two to evolve independently.
A set of local managers (LMs), distributed over the network,
hosts various management applications (MAs) that implement
the necessary logic to decide on network (re)configurations.
MAs are instantiated on the local managers as modules em-
bedding information data structures and running on a common
execution environment offered by the LMs. Each MA can
execute in all LMs or in a subset of them (e.g. ones operating
at the edge of the network). Configuration decisions taken by
LMs are provided to local controllers (LCs), which define and
plan the sequence of actions to be enforced for updating the
network parameters.

Monitoring is an essential component of LMs. First, it
is concerned with extracting raw statistics from the physical
resources and generating useful information for applications. In
this context, each LM needs to implement the necessary capa-
bilities to collect the status of variables (e.g. links, traffic flows)
within its local scope and make this information available to
local MA instances. Second, since MA instances operating
at different locations may need monitoring data gathered
from outside their local scope, the monitoring functionality is
therefore also concerned with disseminating frequent network
state updates to remote LMs. In a SDN environment such
a synchronization phase is essential for reconfiguring the
network parameters based on a global, unified network view.
This information can be exchanged between instances of a
distributed MA through the signaling framework proposed in
[33].

B. Monitoring Software-Defined Networks

Compared to traditional computer networks, where mon-
itoring solutions require ad-hoc software installation / con-
figuration and low-level tools, SDN has introduced a set of
simple and reusable primitives for the collection of network
variables at different granularity levels, which make them
suitable to a wide range of management tasks. SDN flow-based
switches (e.g. OpenFlow) allow network operators to flexibly

specify the flows to monitor based on different packet fields
(e.g., source and/or destination IP addresses), and to count
the number of bytes or packets for these flows. Counters are
fetched by polling a switch using ad-hoc Read State messages.
The switch flow rules can be adapted or replaced depending
on the analysis performed on the corresponding counters or
according to predefined expiration timeouts.

This measurement approach is affected by several hardware
technology issues. First, flow-based counters are maintained
in expensive and power-hungry TCAMs and, as such, only
a limited number of entries can be used for measurements.
Another issue is the limited bandwidth between the switch
and the SDN controller, which limits flow fetching to no
more than a few thousand per second [27]. Finally, OpenFlow
switches may also exhibit inaccuracies when updating the flow
counters. For example, as discussed in [30], some devices do
not update the counters every time a new packet matches a
rule, but perform the updates periodically instead. Further-
more, devices from different vendors introduce different biases
in measurements and may even present some limitations in
terms of protocol support. Despite these open issues, our
proposal relies on the counting approach due to its implemen-
tation simplicity, the wide support by different vendors, and
configuration flexibility in terms of information granularity
and measurement frequency. Alternative methods, such as
hashing techniques (e.g. sketches) and mechanisms leveraging
increased programmability at the switch [20][21][19], have still
none or very limited support on devices, which makes their
applicability uncertain.

III. SYSTEM ARCHITECTURE

This section presents the proposed monitoring system and
motivates the design principles of the associated architecture.
Our solution leverages a decentralized approach where each of
the local managers described in Section II hosts a monitoring
entity, called the monitoring module (MM), which is respon-
sible for gathering information within the scope of the LM.
Scalability for coping with a large number of network devices
and their geographical span was the main driver for selecting
a distributed approach.

A. Design Requirements

Effective design of distributed monitoring functionality has
to take into account a number of key issues. If very intrusive,
monitoring operations can adversely affect the network perfor-
mance. At the same time, these operations need to be frequent
and fast to enable management applications to operate at short
timescales. In addition, they should provide accurate and high-
granularity information to support configuration decisions. The
impact of these issues is amplified in the case of large-scale
SDNs, since configuration decisions might be taken far away
from the locations where monitoring is performed. We identify
below the three main requirements that have been taken into
account for the design of the proposed monitoring approach.

Scalability: The monitoring system should be able to cope
with a large number of information sources. As the number of
physical resources under the scope of a single MM increases,
the monitoring traffic converging to it, as well as the associ-
ated computational load, could drastically impact the system
reactivity, as was shown in [8][27]. While in dense networks



with small diameter (e.g. data centers) this drawback can be
mitigated through replication or by investing more CPU cycles
and memory, in wide area networks (WANs) the monitoring
responsiveness is significantly affected by network latencies.
Based on the same motivation for distributing the SDN
control plane [5], i.e. switch-to-controller latency reduction,
we consider a decentralized monitoring solution for reducing
monitoring delays and avoiding processing bottlenecks.

Programmability: The frequency and granularity of mea-
surements have to be highly configurable based on the re-
quirements of heterogeneous management applications. While
some applications, such as elephant-flow detection, need fine-
grained flow-based measurements, others only require aggre-
gate statistics. In such a case, low-granularity measurements,
which can be retrieved at a lower cost would be preferable
(e.g. switch port measurements as opposed to individual flow
measurements).

Responsiveness: MAs can change their monitoring re-
quirements based, for example, on the analysis of measured
metrics. The MM should be responsive in adapting mea-
surement parameters, such as the polling frequency or the
flow-level granularity, according to new requirements. Fast
adaptations, as argued in [23][15], are essential for warranting
acceptable information accuracy and can additionally reduce
the monitoring overhead.

B. Monitoring Module

Figure 1 presents the architecture of the MM, which sits
between MA instances and controller software. Applications
use a common interface, e.g. a RESTful interface, offered
by the MM for both injecting new monitoring requirements
and receiving the corresponding measurement results. The
positioning of the MM allows to abstract the application mon-
itoring requirements from specific controller implementations.
In addition, applications can communicate their needs in a
high-level form, agnostic of the measurement techniques used
or their implementation.

Each MM relies on a modular composition to maximize the
system extensibility and improve the overall flexibility of the
solution. The modular structure allows to decouple the logic
involved in the processing of the application requirements from
the one operating on the raw measurement primitives. This
reduces the deployment effort when new types of require-
ments need to be supported, or new measurement mechanisms
become available. The various components of the MM are
described below.

Persistent Data Repository This component maintains
network information which is not updated frequently, such as
the topology graph representation (e.g. switches and links) and
the current setup of paths between pairs of edge nodes. Such
information can be represented through transactional databases
and can be flexibly accessed/modified by a SQL-like querying
mechanism.

Requirements Processor The first task of this component
is to parse new monitoring requirements received from applica-
tions. These are registered in a local data store (Requirements
Table, c.f. Figure 1), with each requirement represented as a
tuple:

〈 Req_id, MA_id, Task, HL_targets, Mon_times 〉
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Fig. 1. Monitoring module architecture.

Req id and MA id are the unique identifiers of the monitoring
requirement and the requesting management application. Task
represents the overall goal of the measurements, for example
the utilization of one or a set of links. HL targets is the list
of targets (high-level identifiers in the application’s abstract
view of the network) of the monitoring task, for instance, in
case of a path utilization request, the corresponding list of
paths. Mon times can be a single parameter, i.e. the polling
period, or an explicit sequence of measurement intervals. This
allows to support both fixed polling periods and variable-rate
measurements.

Recent proposals have enriched monitoring with the logic
for performing sampling rate adaptations, which can be used,
for example, to reduce the measurement overhead or mit-
igate route flapping [12]. However, most of these adaptive
techniques are tailored to a specific measurement task, e.g.
algorithms based on linear regression have been specifically
developed for flow counting [15]. For this reason, we find more
convenient for such logic to be implemented at each MA and
not in the MM. This feature incurs additional communication
cost between the MAs and the underlying MM, for example
to enable reactive reconfigurations of the measurement times.
On the other hand, it considerably improves flexibility, since
different MAs can implement and tune ad-hoc adaptation
algorithms, based on their monitoring needs.

The next procedure performed by this component is a
translation routine, based on the Task specification, that maps
each new table entry into one or more Low-level targets.
Any extension of the MM-MA interface to accommodate new
monitoring tasks needs to be reflected into one or more ad-
ditional translation routines. Each low-level target (LL target)
can identify a specific physical resource, e.g. a switch port, or
map a set of flow rules, i.e. a specific subset of the switch flow
table. These entities are stored in the Low-level targets table
with the following format:

〈 LL_target, Op_type, [Req_id], Sched_state 〉
Op type indicates what type of measurement operation should
be performed, for example collecting the average traffic rate
of a specific switch interface. [Req id] is the list of pointers
to the corresponding application requirements, used for the



reverse translation. Sched state is a flag indicating whether the
low-level target refers to a new monitoring requirement (i.e.
measurement operations have to be scheduled from scratch),
or to a previous task for which some adaptation is required
(i.e. operations have to be re-scheduled).

Before the insertion of a new low-level target, the table is
looked up for similar entries. An existing entry is considered
similar if the target is equivalent or included, e.g. two targets
with the same Task and Mon times attributes are similar if one
refers to the flows matching source IP address 128.40.200.1
and the other corresponds to the flows for any source IP
in the subnet 128.40.200.0/24. In such a case, the MM will
merge the two low-level targets and the corresponding mea-
surement times will be accordingly updated to satisfy both
requests. Effective aggregation of the application requirements
can achieve considerable reduction of the measurement traffic
and alleviate the burden on the switch CPU. This is very
important when monitoring processes compete with other
control plane operations, such as flow setup, for accessing the
switch resources.

Scheduler This component is in charge of generating and
managing the individual measurement procedures (e.g. the
ones requiring a single message exchange with a switch),
which are executed as threads. It is called on every insertion
in the Low-level targets table, and on any modification of
existing tuples involving the measurement times. Scheduling
new measurements indiscriminately can lead to none of them
getting enough switch resources. As such, once invoked, the
scheduler executes an admission control routine, in which it
verifies, depending on the current measurement load, whether
the measurement procedures for the new low-level target
can be performed. In case there are not enough resources
available to accommodate the new measurement procedures,
these are rejected and the corresponding MAs are notified
so that monitoring requirements can be renegotiated. The
measurement load for a specific switch is defined by the
expected monitoring bandwidth, which is estimated on a time-
window basis given the list of the low-level targets already
scheduled. This metric depends on the current measurement
rates (i.e., the polling frequency) and on the number of flow (or
switch port) records returned for each measurement procedure
in the corresponding OpenFlow Statistics Reply messages. In
this respect, our approach differs from recent proposals, which
focus on the limited flow table TCAM space [14] rather than
the control bandwidth. Once accepted, the new low-level target
is mapped onto a set of events, each one associated with a timer
to trigger the new measurement thread. Each thread finally
generates a call to the measurement engine.

Measurements Engine This operates as an interface be-
tween the measurement thread under execution and the mea-
surement mechanisms implemented at the controller. It assigns
individual measurement procedures to one of the available
primitives offered by the controller and supported by the
underlying device. Such an interface is essential to allow most
of the monitoring operations to remain independent of the
specific controller implementation.

Results Processor This component receives the raw mea-
surement results, for example messages of type OpenFlow
statistic reply, from the controller. These are parsed (e.g.
into JSON format) and the Low-level targets table is looked

up for the corresponding target(s). Based on the operation
type specified in matching table entries, the measurements
are filtered to select the required counters. These are stored
in corresponding data structures (hash-tables) and used for
computing the metrics of interest. The number of samples
kept in memory for each counter depends on the metric
required by the applications, e.g. a single sample is enough
for computing the average bandwidth. Finally, the processed
results are associated to the relevant high-level targets and
delivered to MAs through update messages.

C. Workflow Examples

As concrete examples of the MM workflow, we consider
two simple monitoring procedures:

1. Average link utilization The requirements processor
registers a requirement of type link utilization, with a fixed
measurement period, for a set of links l1, l2, ..ln. Each of these
is translated into a low-level target sx:py , where sx identifies
the switch and py the port on which the bitrate should be
measured. According to the specified measurement period, for
each target the scheduler periodically generates measurement
threads, each calling the controller to create an OpenFlow Port
Statistics Request and send it to sx. The results processor
receives the corresponding Port Statistics Reply messages from
the controller, together with the measurement timestamps, and
extracts the current byte counters (tx bytes, rx bytes). It then
uses the new sample and the previous one, which is stored in a
hash-table, to compute the average link utilization, and finally
returns the value to the application.

2. Average flow throughput We consider an application
requiring the throughput of the flow identified by source IP
y and destination IP z. The requirements processor translates
this into a low-level target sx:srcy:dstz , where sx identifies
the switch from which the flow counters should be fetched. By
default, the ingress switch for that flow is selected as the mea-
surement target. Then, the scheduler generates periodic calls to
the SDN controller to build a Flow Statistics Request and sends
it to the target switch. As the corresponding Flow Statistics
Reply is received by the controller, the result processor extracts
the current flow byte count and duration. By comparing two
consecutive samples, it computes the average flow throughput,
and reports this to the application.

IV. USE CASE: CONTENT DISTRIBUTION

To demonstrate the capabilities of the proposed approach,
we consider a distributed SDN network environment where an
ISP operates a content distribution service. In this scenario, a
set of content items is cached within the ISP. The network
management system periodically updates (e.g. in the order
of hours) the content placement and the paths between user
locations and content servers. Following an approach similar
to the one proposed in [31], it reconfigures in real-time the
routing of user requests by selecting an appropriate path
between the user location and one of the available content
servers, based on the current path utilization. The objective is
to avoid congestion in the network and, as such, prevent poten-
tial Quality of Experience (QoE) degradation. To enforce the
redirection decisions, the management system uses a method
similar to the one proposed in [26]. The OpenFlow-enabled



forwarding hardware at the edge of the network is programmed
in real-time to rewrite fields of the IP packet header (e.g. the
destination address) in order to redirect the content requests to
the selected server transparently to the client. The enforcement
of the path selection decisions is part of the header rewriting
operations. For example, the path selection can be encoded in
the packet ToS field.
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Fig. 2. Example representation of the use case (two network partitions).

Figure 2 exemplifies the use case. The network is divided
into partitions, each under the control of a local manager. In
addition, a controller is assigned to each partition and interacts
with the network devices in the corresponding area. Each
manager hosts an instance of a distributed Load Balancing
(LB) application, which implements the necessary logic for
reconfiguring, for each user location, the content server from
which a requested content is retrieved and the path through
which it is delivered. For simplicity, we assume the request
and delivery paths to be symmetric. For each network edge
switch mapped to a user location, the application keeps a list
of available setups 〈Content Server, Path〉 indicating how the
incoming requests should be routed. Each LB instance operates
periodically on a short timescale, i.e. every few seconds. At
each execution, it obtains two statistics from the monitoring
system.

The first statistic is the average link utilization for the
links included in the local paths, i.e. the paths emanating
from a client location within the scope of the relevant LM.
Statistics for the links located in the local scope are directly
collected and exposed by the underlying MM at each execution
of the application. To this end, the MM periodically executes
Procedure 1 as described in Section III-C. The monitoring of
remote links is delegated to the LB instance operating on the
relevant partition that registers the corresponding monitoring
requirements on its MM and periodically synchronizes the
results with the other LB instances.

The second statistic is the average rate of the content
traffic originated by users in the local network partition. More
specifically, each LB instance obtains the average throughput
of all the flows matching the source IP address of one of the
content servers and the destination IP address of one of the
users. This measurement is used to determine the volume of
traffic by which congested paths can be offloaded. The required
statistics are generated by the local MM based on Procedure
2 as described in Section III-C.

In case of link congestion (e.g. average utilization exceed-
ing a predefined threshold), the LB application is respon-
sible for offloading part of the traffic from the congested
link in order to bring its utilization below the threshold.

Some flows are removed from the congested paths (paths
including the congested link) and are (equally) assigned to
alternative, non-congested, options represented by the 2-tuple
〈Content Server, Path〉. The new configurations are enforced
on the ingress OpenFlow switches. If a congested path spans
multiple network partitions, the corresponding LB instances
operate iteratively, as in the solution presented in [32]. The
first decision is taken by the LB instance directly associated
with the congested link based on the bandwidth availability on
the alternative paths. The result is then communicated to the
next LB instance until the process terminates.

V. EVALUATION

We evaluate our monitoring system based on the use case
described in Section IV by focusing on the performance in
terms of latency and traffic overhead, as well as on the impact
on the LB application. In addition, we investigate the gain
that can be achieved through the processing of monitoring
requirements, as described in Section III-B, at each MM. In
the experiments we have used Mininet to emulate the network
topology, including hosts, i.e. clients and content servers, and
OpenFlow switches. The LM, including the MM and the LB
application logic, has been implemented as a set of Python
modules. Finally, we have reused a small set of APIs from
the SDN controller POX [35] to implement the controller
functionality.

A. Experiment Setup

We use the topology depicted in Figure 2 with 10
OpenFlow-enabled switches. All links have 10 Mbps band-
width and 10 ms latency. Clients are distributed over two user
locations u1, u2. Each client can reach two servers (s1, s2),
each being accessed using one path only. Each experiment has
a duration of 5 minutes and is preceded by a short startup phase
in which paths are installed and the MM and LB application
are initialized. The placement of LMs is provided as an input
and used to compute the relevant hop-count and corresponding
latencies between pairs of LMs. After the startup, each client
starts generating content requests following a pattern derived
from the one used in [34]. The content size has been scaled
down in accordance to the reduced link bandwidth. The total
bandwidth required for content distribution is on average 2
Mbps (20% of link capacity). In addition to video traffic, we
use fixed-rate UDP flows generated with Iperf from the server
locations to emulate background traffic.

The LB application reconfigures the flow routing in case
of link congestion, as described in Section IV, based on local
knowledge, including the utilization of local links and the
throughput of local video-traffic flows (if any), as well as
information about remote links, which is accessed through
periodic synchronization. For simplicity, all LB instances run
simultaneously (same frequency and clock reference). For each
experiment, we configure two parameters: pl is the period of
local measurements performed by each MM, and ps is the
synchronization period of link status between the LB instances,
with ps ≥ pl. Link congestion is generated by spikes of content
demand. To adjust the number of congestion episodes, as well
as their duration, we act on the volume of UDP traffic which
we set to 70% of the link capacity (7 Mbps). Another key
parameter is the congestion threshold since it has a direct



impact on the flow (re)scheduling operated by LB. We set
it to 85% of the link capacity in accordance to [22]. Such
settings allow to avoid excessive route flapping and keep the
average period of route reconfigurations (at least) one order
of magnitude higher than the content download times, which
fall between 0.5 and 1 second. These values are in line with
traditional end-user redirection practices [29].

B. Performance of Decentralized Monitoring

In this subsection, we compare our decentralized monitor-
ing approach with a centralized solution where the full state
of the network is collected by a single management entity. We
first focus on the monitoring latency, a measure of reactivity,
defined as the delay between the time the measurement starts
(e.g. the corresponding procedure is selected by the scheduler)
and the time the requested information is made available to the
LB instance performing the flow routing reconfigurations. We
evaluate the monitoring latency for the link utilization mea-
surements in 4 different setups: Centralized (single manager),
2 LMs, 3 LMs and Fully distributed, in which one LM is
assigned to every single switch. For the centralized, 2 LMs
and 3 LMs cases, we perform 5 experiments, each with a
different manager allocation, and average the results. We fix
ps = pl = 5sec, i.e. the link status is synchronized between
LB instances with every new measurement, and we configure
each LM to synchronize with every other LM in the topology.
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Fig. 3. Monitoring delay for different LMs setups.

Figure 3 depicts the average monitoring latency for 3
cases: i) Minimum distance: reconfigurations are computed
close to where raw statistics are extracted, i.e. the closest
LM; ii) Maximum distance: reconfigurations are computed by
the farthest LM from where the statistics are collected and
iii) Variable distance: reconfigurations are computed with the
same probability by any of the available LMs. The perfor-
mance obtained with the centralized setup (baseline scenario)
is almost constant as the monitoring information is always
processed at the central manager independently from where
the statistics are gathered. For the decentralized setups, we
observe a significant delay reduction by up to the 69% for
minimum distance in comparison to the centralized scenario,
while we notice a smaller reduction (up to 22%) for maximum
distance. As expected, the higher the percentage of reconfig-
urations computed close to where the relevant knowledge is
collected, the higher the reduction in terms of control-loop
delays achieved with the decentralized approach.

In addition, we evaluate the cost of a decentralized solution
in terms of monitoring overhead, which we define for each

experiment as the generated monitoring traffic, e.g. sum of
the size of each packet multiplied by the path length (number
of hops). The results are shown in Figure 4. As can be
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Fig. 4. Monitoring overhead for different LMs setups.

observed, the average overhead significantly increases (by
more than a factor 4) when moving from the centralized to the
fully distributed setup due to the increasing amount of traffic
required for distributing the monitoring information between
LMs. However, given the small size of the link utilization
update messages, the resulting overhead is at most 2 KB/sec.

C. Monitoring Information Distribution

In the considered decentralized management framework
[6], instances of a distributed application can take decisions
based on information extracted at a remote location. In this
subsection we investigate the effects of the dissemination of
monitoring information between LMs on the performance of
the LB application for the Fully distributed setup. Episodes
of congestion are taken into account on a specific link l,
located under the scope of a LB instance called local LB. The
offloading decisions are made outside the local partition by
another application instance called remote LB. We fix pl = 1
second (minimum value in the current MM implementation)
and let ps vary in the range (1, 10) seconds.
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Fig. 5. Link utilization timeseries at Local LB and Remote LB for ps = 10.

Figure 5 illustrates the link utilization exposed to the local
and remote LB instances for the worst-case scenario, i.e. ps =
10 seconds. We observe that, with such a high synchronization
period, the remote LB fails to catch utilization spikes of short
duration. In this specific case, no action is performed for 53%
of the congestion events. Table I reports the error between the
local and remote LB views of link utilization.

To measure the effect of relaxed synchronization, we use
the RMSE (root-mean-square error), where a RMSE of 0 cor-
responds to perfect synchronization. As expected, the RMSE



TABLE I. AVERAGE UTILIZATION ERROR AND RMSE

Info. Distr. Period ps(sec.) Avg Util. Error RMSE
2 0.44501 0.78
4 0.65137 1.0096
6 0.73237 1.0298
8 0.90245 1.1952
10 1.30 1.5448

increases as the information dissemination period increases,
which indicates an increase in terms of inconsistency between
the views of the two LB instances. To quantify how the LB
application is affected by the inconsistency, we sample the
utilization of link l at rate 1/pl (i.e., every 1 second) throughout
the duration of the experiment. In addition, we collect the time
to first byte, i.e. the response time for all the requested contents,
as a measure of the user’s QoE, from the set of users in the
scope of the remote LB. In order for the results not to be
affected by network latencies, the selected users are served
through paths of equal lengths. Due to space limitations, we
do not report the performance obtained with other user metrics,
such as the average download speed or the total download time.
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Fig. 6. Load Balancing application performance

Results are shown in Figure 6 in the form of boxplots, with
the whiskers extending from the box (first and third quantile
boundaries) to the 95 percentiles. It can be observed that the
utilization of l is significantly affected by the synchronization
period. For low values, such as ps = 1, 2, the utilization is
kept below the congestion threshold for more than half of
the total duration of the experiment. Starting from ps = 4,
larger values of RMSE lead to a noticeable increase of the
utilization median. This is reflected on the user perceived
quality. For ps = 1, almost the totality of the requests start
being served within 0.5sec. For ps ≥ 4, the increasing degree
of inconsistency has an impact on up to 50% of content
requests. For example, in the case ps = 8, more than 25%
of the requests get a first response in more than 0.6sec.
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Fig. 7. Monitoring overhead vs. Information distribution period

Finally we also evaluate the monitoring overhead in terms
of monitoring traffic as defined in Section V-B. As shown
in Figure 7, the overhead is split in two components: i)

the measurements overhead, i.e. the traffic incurred by the
collection of the raw statistics from the physical devices, and ii)
the traffic incurred by the distribution of the link status between
the LB instances that linearly increases with the frequency
of the information distribution. We can first observe that the
generated traffic is dominated by the dissemination of monitor-
ing information, even for limited synchronization frequencies,
which is in accordance to the results reported in Section V-B.
We also observe that significant overhead reductions can be
obtained by trading off a bit the LB performance. A saving
of 42% can be achieved with ps = 2 compared to with
ps = 1, while incurring limited disruption on the application
performance, as shown in Figure 6.

D. Measurements Aggregation

The acquisition of statistics via a pull-based mechanism
consumes a significant amount of switch control bandwidth,
which is a scarce resource in OpenFlow-enabled switches.
To mitigate this issue, our solution leverages the aggrega-
tion of different monitoring tasks. This is performed by the
Requirements Processor (c.f. Section III-B). Such a feature
provides advantages for MAs requiring flow measurements
at similar times, and/or for similar portions of the switch
flow space, in particular. To evaluate the gain that can be
achieved through aggregation, we implement a scenario where
3 monitoring requirements m1,m2,m3 are registered at the
same time and on the same MM by three different MAs. The
execution of the measurements associated with each mi results
in fetching a fixed number of flow table entries k at a period
pi ∈ [1, 2, ..7, 8] from the same switch. Two parameters α
and β are associated with each set. Parameter α represents
the level of temporal concurrency of the required measure-
ments, which ranges from 0 (lowest level of concurrency, e.g.
[p1, p2, p3] = [6, 7, 8]) to 4 (maximum level of concurrency,
i.e. p1 = p2 = p3). Parameter β represents the level of overlap
in terms of similar flow entries required from the switch. β = 0
represents no overlap. For β = 1, there exists an overlap of
50% between the requirements of two MAs. For β = 2, the
three MAs share 50% of requests. For β = 3, two MAs have
completely overlapping requirements and share 50% with the
third one. β = 4 represents an overlap of 100% between the
three MAs. Figure 8 shows the resulting savings in terms of
switch control bandwidth. The case β = 0 is not represented
as it does not result to any savings.
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Fig. 8. Reduction of switch control bandwidth by requirement aggregation.

Significant reductions can be achieved when β ≥ 2. For
example, for β = 2, an average reduction close to 20% is



obtained. Such savings can allow to increase the overall mea-
surement rate, thus enhancing the reconfiguration reactivity.
For example, assuming that for β = 0 the bandwidth between
the switch CPU and the controller is fully saturated, an increase
of the monitoring rate by up to a factor of 3 can be achieved
by using aggregation.

VI. RELATED WORK

The de-facto monitoring standard of today’s IP network is
NetFlow, which is based on packet sampling. Netflow samples
packets with the same probability and aggregates them into
flows. However, as discussed in [28], several studies have
shown the limitations of packet sampling to perform fine-
grained monitoring (e.g. biases toward sampling larger flows)
making it unsuitable for many management applications.

The advent of SDN has empowered network monitoring
with new measurement enablers as OpenFlow switches can
keep track of active flows in the network and update per
flow counters. A number of proposals have recently exploited
this feature to provide direct and precise flow measurements
without resorting to packet sampling. In OpenTM [24] the
SDN controller pulls, at fixed intervals, the switch counters
collected by explicitly polling the switches in order to period-
ically generate traffic matrices. In [25] the authors propose
FlowSense, an approach where the network utilization is
measured using a different, push-based, approach. This uses
the messages generated during the setup and eviction of flows
from the switch flow table. Compared to the technique used
in our paper that leverages explicit switch polling, the solution
in [25] can reduce the measurement overhead but suffers from
limited flexibility since it only works with short-lived flows.

While most of the recent proposals have focused on specific
measurements or a very limited set of measurement tasks, the
approaches presented in [18] and [23] provide a measurement
API for supporting a wide range of tasks. OpenSketch [18]
relies on a clean-slate approach where a novel processing
pipeline is used on the switch to support many different
measurement tasks. In addition, a library is developed for the
control-plane to reconfigure the pipeline. Payless [23] resem-
bles more the approach adopted in this paper as it provides
an API to serve different monitoring requests, all executed
through pull-based measurements. However, the monitoring
system comes with a single algorithm for polling-rate adap-
tation. In our architecture the monitoring adaptation logic is
implemented at each MA, thus increasing the flexibility, while
the role of monitoring entities is to responsively absorb the
new parameters to reconfigure the measurement scheduling.

In contrast to our approach, all the aforementioned propos-
als are mainly tailored to early SDN solutions that rely on a
physically centralized control infrastructure. This assumption
has been questioned in [8] and [5] where distributed control
planes have been proposed to overcome scalability issues such
as processing bottlenecks at the central controller and large
control latencies. However, the main focus of these papers
is on how distributed controllers can unify their local views
of the network, paying little attention to measurement issues.
In [5] Tootoonchian et al. present a controller-to-controller
communication mechanism based on a pub/sub paradigm.
In [8], Koponen et al. propose a distributed database for

the dissemination of slowly changing network state and a
distributed hash table for exchanging volatile information.
Another important work is [10], which investigates the main
issues posed by state distribution in a logically centralized,
physically distributed SDN architecture. One of these issues,
i.e. the trade-off between performance optimality and state
distribution overhead, has been considered in Section V-C,
where we have evaluated how the timeliness of synchronized
monitoring information impacts the MA performance and the
overhead in terms of additional monitoring traffic. In a less
recent work [11], the authors introduce a model, called A-Gap,
for adaptive reduction of the traffic overhead in distributed
monitoring based on filtering. However, this technique ad-
dresses a different, hierarchical, monitoring architecture where
the information is aggregated and transmitted on a spanning
tree toward a central management station.

VII. CONCLUSION

In this paper we have presented a novel monitoring ap-
proach for SDNs that can provide heterogeneous management
applications with frequent and consistent network state up-
dates, thus enabling fast and effective reconfigurations. Our
solution relies on a decentralized architecture satisfying the
requirements of large-scale networks with a high number of
geographically dispersed devices. To reduce the consumption
of the switch control bandwidth, it performs effective pro-
cessing of heterogeneous monitoring requirements and flexible
measurement scheduling.

The evaluation, which is based on a realistic use case, has
shown that a decentralized monitoring approach can improve
the reconfiguration reactivity by significantly reducing the
control-loop delays, in particular when a large percentage of re-
configuration decisions can be taken close to where the relevant
statistics are collected. However, decentralizing the monitoring
functionality incurs additional communication overhead, which
increases proportionally with the frequency of the monitoring
information distribution between local managers. Experiments
conducted using a realistic distributed management appli-
cation have highlighted that some overhead reductions can
be achieved obtained through limited synchronization while
maintaining acceptable application performance.

The results encourage us to explore in the future tech-
niques to obtain further overhead reductions, while warranting
acceptable consistency levels, for a large set of management
tasks. Furthermore, we envision to empower our distributed
framework with the necessary mechanisms to mitigate the
TCAM utilization at individual OpenFlow switches and avoid
additional bottlenecks. To investigate these issues, we plan
to extend our virtual testbed to support larger topologies,
different traffic characteristics and implement a wider set of
management applications.
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