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Abstract 33 

Molecular motion under confinement has important implications for a variety of applications 34 

including gas recovery and catalysis. Propane confined in mesoporous silica aerogel as studied 35 

using quasielastic neutron scattering (QENS) showed anomalous pressure dependence in its 36 

diffusion coefficient (J. Phys. Chem. C 119 (2015) 18188). Molecular dynamics (MD) 37 

simulations are often employed to complement the information obtained from QENS 38 

experiments. Here, we report an MD simulation study to probe the anomalous pressure 39 

dependence of propane diffusion in silica aerogel. Comparison is attempted based on the self-40 

diffusion coefficients and on the time scales of the decay of the simulated intermediate scattering 41 

functions. While the self-diffusion coefficients obtained from the simulated mean squared 42 

displacement profiles do not exhibit the anomalous pressure dependence observed in the 43 

experiments, the time scales of the decay of the intermediate scattering functions calculated from 44 

the simulation data match the corresponding quantities obtained in the QENS experiment and 45 

thus confirm the anomalous pressure dependence of the diffusion coefficient. The origin of the 46 

anomaly in pressure dependence lies in the presence of an adsorbed layer of propane molecules 47 

that seems to dominate the confined propane dynamics at low pressure, thereby lowering the 48 

diffusion coefficient. Further, time scales for rotational motion obtained from the simulations 49 

explain the absence of rotational contribution to the QENS spectra in the experiments. In 50 

particular, the rotational motion of the simulated propane molecules is found to exhibit large 51 

angular jumps at lower pressure. The present MD simulation work thus reveals important new 52 

insights into the origin of anomalous pressure dependence of propane diffusivity in silica 53 

mesopores and supplements the information obtained experimentally by QENS data.  54 

 55 

 56 

 57 
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1. Introduction 58 

Molecular motion under confinement is an interesting topic of research as it entails a variety of 59 

peculiar phenomena1-18. Anomalous size and loading dependence of molecular dynamics of 60 

confined fluids in porous media have been reported6-8, suggesting the need of better 61 

understanding how confinement affects not only the structure but also the transport-properties of 62 

confined fluids. Apart from a fundamental interest, a study of molecular motion in confinement 63 

is important because it promises to enhance our understanding of industrial processes that 64 

depend on confined fluids, for example, catalysis, gas separation and recovery of subsurface 65 

gases1-3 all depend on the ability of fluids to migrate through porous media. Porous materials are 66 

classified on the basis of pore sizes19 into microporous, with pore size less than or equal to 2 nm, 67 

mesoporous, with pore size between 2 and 50 nm; and macroporous, with pore size larger than 68 

50 nm. The behavior of fluids confined within micropores stems from a strict geometrical 69 

confinement that can put a severe restriction on the degrees of freedom of the confined molecule 70 

along the direction of confinement. The behavior of meso-confined fluids, on the other hand, can 71 

be thought of as an overlap of approaching fluid substrate interfacial structures20. In larger meso-72 

pores the confined fluid may even exhibit interfacial and bulk like properties simultaneously21.  73 

Although much is known about the loading dependence of the diffusive motion of micro-74 

confined fluids6,7, studies addressing loading dependence of meso-confined fluids have been 75 

relatively scarce. The few studies on this topic reveal interesting and sometimes anomalous 76 

loading dependencies. For example, methane confined in carbon aerogel has been found to 77 

exhibit a maximum in the diffusion coefficient as a function of loading22. In a quasielastic 78 

neutron scattering (QENS) study of propane confined in mesoporous silica aerogel, propane 79 

diffusion was enhanced at higher loading23. It was also found that a relatively large amount of 80 

propane molecules were almost immobile at low loadings.  81 

QENS provides spatio-temporal information on the stochastic motion of molecules24. It is often 82 

complemented by molecular dynamics (MD) simulations25-33. Self-diffusion coefficients 83 

obtained from MD simulations can be compared directly with those obtained from QENS 84 

experiments. In addition, molecular trajectories obtained from simulations provide the 85 

opportunity to go a step further by directly calculating quantities that are related to those 86 

measured in the experiments. For example, intermediate scattering functions, which are the 87 
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inverse Fourier transforms of the dynamic structure factor that can be obtained from a QENS 88 

experiment, can be calculated from the simulated molecular trajectories25-32. Moreover, given the 89 

ability to calculate functions from distinct molecular species separately, MD simulations provide 90 

an opportunity to obtain information inaccessible to experiments, and can thus aid in the 91 

interpretation of experimental data. This paper stems from the hypothesis that these intermediate 92 

scattering functions provide a direct link between experiments and simulation.  93 

We report here a direct comparison of MD simulation of propane in a slit-shaped mesopore 94 

obtained from silica solid substrates against QENS experiments on propane in mesoporous silica 95 

aerogel that show anomalous loading dependence of propane diffusion. Decay rates of the 96 

intermediate scattering functions corresponding to the translation motion of propane calculated 97 

from the simulations are compared with the spectral quasielastic widths obtained from the 98 

experiment yielding a semi-quantitative agreement and therefore validating the simulation using 99 

the experimental data. Building on this validation, various structural and dynamical properties 100 

are calculated to aid and explain the experimental observations. Following this approach we 101 

show here that simulation data reveal important new insights into the origin of the anomalous 102 

pressure dependence of diffusivity observed in the experiments.  103 

The manuscript is organized as follows. After describing the simulation details in section 2, we 104 

discuss the validation of the simulation in section 3. Structural information is provided in section 105 

4. More information on the translational and rotational motion of propane is provided in section 106 

5, after which we summarize our concluding remarks in section 6. 107 

 108 

2. Simulation details 109 

2.1 Silica model 110 

The QENS experiments were conducted in mesoporous silica aerogels of pore size 15-20 nm. In 111 

pores of such size it is expected, based on prior simulation results, that the interface between the 112 

solid substrate and the confined fluid is responsible for deviations in the fluid behavior compared 113 

to bulk observations34,35. To quantify the molecular-level interactions at the interface between 114 

solid and fluid it is possible to simulate the fluids confined in slit-shaped pores of width large 115 

enough that one solid-fluid interface does not interfere with the other solid-fluid interface across 116 
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the pore volume. The pores considered in the present work were of width 20 nm. The geometry 117 

of the pores in silica aerogels is approximately cylindrical, thus it is an approximation to describe 118 

the pores as slit-shaped in our simulations. However at the molecular –level, it is expected that 119 

the curvature of the experimental substrates is much lower than the propane molecular size, and 120 

therefore a flat solid-fluid interface is considered a reasonable approximation for the simulation 121 

system. Finally, the silica aerogel is an amorphous material. However, because propane-silica 122 

interactions are not expected to be dominated by preferential interactions such as hydrogen 123 

bonds, we expect that the atomic-structure of the solid substrate is not an important parameter in 124 

dictating solid-propane interactions provided that the atomic density of the solid substrate is 125 

comparable to that of the experimental substrate. Building on out prior research the silica model 126 

used in this work was obtained by cutting the β-cristobalite SiO2 crystal along the (1 1 1) 127 

crystallographic face. A detailed description of the solid morphology has been provided 128 

elsewhere36, 37. The simulation box dimensions were 4.37×4.79×23.3 nm3. Because of periodic 129 

boundary conditions, the system considered is composed by SiO2 slabs that are infinitely long 130 

along the X and Y directions, and separated along the Z direction by the slit-shaped pore. The 131 

solid substrate bears no net charge, and all the non-bridging O atoms on the pore surfaces are 132 

fully protonated, yielding a high density of surface –OH groups. Figure 1 shows the solid 133 

substrate from different coordinate planes and Figure 2 gives a sample snapshot of the simulated 134 

system at 337 K and at pressures of 8 and 58 bar, respectively. 135 

 136 

Figure 1. Models of the hydroxylated β-cristobalite SiO2 crystal along different axis. (a) OH-terminated 137 
silica surfaces; only the upper 2 atomic layers are shown for clarity. (b), (c) Side views of silica slabs 138 

along X-Z and Y-Z axis, respectively. Red spheres are O, white is H, and yellow is Si. 139 

 140 
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 141 

Figure 2. Representative snapshot of the simulation box consisting of (a) 127 propane molecules at T = 142 
337 K and P = 8 bar and (b) 2305 propane molecules at T = 337 K and P = 58 bar within a 20 nm silica 143 
slit pore. The solid silica slabs are continuous along both X and Y directions. No bulk region exists. The 144 
color scheme is the same as that used in Figure 1 for the solid substrate. Propane molecules are shown in 145 

cyan, with each sphere representing either a CH2 or CH3 group. 146 

 147 

2.2 Molecular models 148 

Propane molecules are modeled using the TraPPE-UA force field.38 In this force-field, methyl 149 

(CH3) and ethyl (CH2) groups are treated within the united-atom formalism. The bond lengths 150 

are fixed while the CH3-CH2-CH3 angle undergoes bending motion constrained by a harmonic 151 

potential. The total system energy is obtained as the sum of dispersive (van der Waals), 152 

electrostatic, bond length and angle interactions: 153 

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐸𝐸𝑉𝑉𝑉𝑉𝑉𝑉 + 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ +  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏      (1) 154 

EVDW and Eelectrostatic are expressed by 12-6 Lennard-Jones and Coulombic potentials, 155 

respectively. Lennard-Jones parameters for non-like components were obtained using Lorentz-156 

Berthelot mixing rules39-41. The CLAYFF force field42 was implemented to simulate the silica 157 

substrate. The hydrocarbon does not bear partial charges. All atoms on the solid silica, except for 158 
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H of the surface –OH groups, remain rigid throughout the whole length of the simulations. The 159 

O-H bond is allowed to move (flexible bond length and orientation) with a harmonic potential. 160 

The potential cutoff was set at 1.4 nm in accordance with the TraPPE-UA force field, with no 161 

long range correction applied. 162 

2.3 Simulation methodology 163 

First, Gibbs ensemble Monte Carlo (GEMC) simulations were conducted to determine the 164 

equilibrium configurations and densities of the absorbed propane phase within the silica pore at T 165 

= 337 K and P = 8 and 58 bars, conditions which mimic the experimental studies. For each 166 

simulation, 3375 propane molecules were initially placed in a bulk phase, at a desired pressure, 167 

which is set to be in equilibrium with the pore phase that consists of empty silica pore (no 168 

confined propane). Molecular exchanges of propane between the two phases were allowed to 169 

occur for 2×106 moves during equilibration, after which the production phases were initiated and 170 

the averages were analyzed for 1×106 moves. Equilibration was considered achieved based on 171 

chemical potential equality for the bulk phase and the confined phase.  172 

Next, MD simulations were carried out to investigate the kinetic properties of the systems using 173 

as initial configurations the equilibrated ensembles from the GEMC simulations. In the QENS 174 

experiment, a monolithic sample that fit tightly in the sample cell was used. As a result the 175 

contribution of fluid not adsorbed in the pores to the spectra was less than 10%. To achieve 176 

consistent comparison, only the contribution from propane molecules simulated inside the pore 177 

was considered for the data analysis discussed below. This corresponded to 2305 propane 178 

molecules at 58 bar and 127 molecules at 8 bar. All MD simulations were carried out within 179 

orthorhombic simulation boxes in the NVT ensemble with periodic boundary conditions. 180 

Temperatures of silica and fluid were controlled separately by two Nosé-Hoover thermostats43, 44 181 

with relaxation times of 200 fs each. Corrections for long-range electrostatic interactions were 182 

taken into account by the particle-mesh Ewald summation45. The MD simulations were 183 

conducted using the Groningen Machine for Chemical Simulations (GROMACS) simulation 184 

package, version 5.0.446, 47. The leapfrog algorithm48 with time steps of 1 fs was implemented to 185 

integrate the equations of motion. Simulations were conducted for 50 ns for all systems 186 

investigated. MD simulations at the temperature of 365 K were carried out by heating the 187 

configurations at 337 K while keeping the number of molecules fixed. This is consistent with the 188 
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experimental procedure, wherein the temperature was raised while the sample was isolated and 189 

exchanged no propane molecules with the environment. Data analysis was carried out over the 190 

final 1 ns trajectories of each MD simulation.  191 

 192 

3. Validation of the simulation with QENS data 193 

In a QENS experiment on a hydrogen bearing sample, the measured signal is proportional to the 194 

incoherent dynamic structure factor Sinc(Q,ω) where ħQ=|ħQ| and ħω are, respectively, the 195 

momentum and energy transferred between the sample and the scattered neutron in the scattering 196 

event and ħ is the reduced Planck constant. This quantity contains spatio-temporal information 197 

on the sample by virtue of its dependence on space and time. In general this quantity consists of 198 

two parts – an elastic component and a quasielastic component. Thus one can write, 199 

𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖(𝑄𝑄,𝜔𝜔) = 𝐴𝐴(𝑄𝑄)𝛿𝛿(𝜔𝜔) + [1 − 𝐴𝐴(𝑄𝑄)]𝑓𝑓(𝑄𝑄,𝜔𝜔) (2) 200 

In Eq. (2), the first term on the right hand side is the elastic contribution and the second term is 201 

the quasielastic contribution. The prefactor A(Q) gives the fraction of total scattering that is 202 

elastic and is therefore called elastic incoherent structure factor (EISF). The quasielastic 203 

broadening is represented by the function f(Q,ω). In case of diffusive motion, this function has a 204 

Lorentzian profile, which, ignoring a constant multiplier, can be given as 205 

 𝑓𝑓(𝑄𝑄,𝜔𝜔) = 𝐿𝐿(𝛤𝛤(𝑄𝑄),𝜔𝜔) = 𝛤𝛤(𝑄𝑄)
(𝛤𝛤2(𝑄𝑄)+4𝜔𝜔2)

 (3) 206 

where Γ(Q) is the half-width at half-maximum of the peak profile. 207 

In the QENS measurements in Ref. 23, the QENS signal was fitted with a model Sinc(Q,ω) 208 

convoluted with instrument resolution. The model Sinc(Q,ω) combined Eq. 2 with Eq. 3 plus an 209 

addition term that accounted for the background, yielding. 210 

𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖(𝑄𝑄,𝜔𝜔) = {𝐴𝐴(𝑄𝑄)𝛿𝛿(𝜔𝜔) + [1 − 𝐴𝐴(𝑄𝑄)]𝐿𝐿(𝛤𝛤(𝑄𝑄),𝜔𝜔) + 𝐵𝐵(𝑄𝑄,𝜔𝜔)} ⊗𝑅𝑅(𝑄𝑄,𝜔𝜔) (4) 211 

Representative experimental spectra at two pressures fitted with Eq. 4 are shown in Figure 3. It 212 

can be seen that the Lorentzian component of the fit at higher pressure is broader, indicating a 213 

faster diffusion. Also, the relative contribution of the elastic component shown by blue dotted 214 

line can be seen to be lower at higher pressure, which means a lower value of A(Q) at high 215 
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pressure. The fitting parameters, A(Q) and Γ(Q) obtained by fitting the experimental spectra with 216 

Eq. 4 were analyzed further. For a given pressure, the values of A(Q) obtained from the fits were 217 

found to be constant in Q. This indicated the presence of molecules that were immobile on the 218 

time scales accessible to the instrument. Further, it indicated that the contribution to the QENS 219 

signal came from translational diffusion and not from a localized motion like rotation or two-site 220 

jump.  221 

 222 

Figure 3. Representative experimental QENS spectra collected at 337 K for propane in silica aerogel and 223 
fits with Equation 4 at different pressures and at Q=0.9 Å-1.23 Experimental data are represented with open 224 
circle symbols while the total fit and fit components are represented by lines. Solid red line represents the 225 
total fit while the solid magenta and green lines represent the quasielastic component with Lorentzian 226 
profile and background contributions respectively. The elastic component is shown with a blue dotted 227 
line.   228 

One can see that Eq. 2 with f(Q,ω) given by Eq. 3 can be obtained by taking a Fourier transform 229 

of the equation  230 

𝐼𝐼(𝑄𝑄, 𝑡𝑡) = 𝐴𝐴(𝑄𝑄) + 𝐵𝐵(𝑄𝑄)𝑒𝑒−𝑡𝑡/𝜏𝜏(𝑄𝑄)    (5) 231 

In Eq. (5), τ is related to Γ(Q) by the relation 232 
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𝛤𝛤(𝑄𝑄) = ħ
𝜏𝜏(𝑄𝑄)

   (6) 233 

The quantity I(Q,t) is the self-intermediate scattering function corresponding to hydrogen atoms 234 

and is the inverse Fourier transform of Sinc(Q,ω). B(Q) is a time independent prefactor of the 235 

exponential. Thus, EISF (A(Q)) can also be seen as the time independent value of I(Q,t) at long 236 

times. The quantity I(Q,t) can be calculated directly from the MD simulations as 237 

𝐼𝐼(𝑄𝑄, 𝑡𝑡) = 〈exp (𝑖𝑖𝑸𝑸. [𝒓𝒓(𝑡𝑡 + 𝑡𝑡0) − 𝒓𝒓(𝑡𝑡0)])〉 (7) 238 

In Eq. (7) r(t + t0) and r(t0) are the positions of a given entity in the simulation at times t + t0 and 239 

t0 respectively and i=√-1. Averages are carried out over all molecules and all time origins t0 and 240 

different Q with the same magnitude. The last averaging is the powder averaging necessary to 241 

compare with the experiments on a powder sample with no preferred orientation. Further, this 242 

function can be calculated for contributions from translational motion and rotational motions by 243 

separating the co-ordinates of an interaction site (for example CH3) (r) into co-ordinates of the 244 

center of mass (COM) of the molecules (rCOM) and co-ordinates of that site in the center of mass 245 

frame (d). Thus 246 

𝒓𝒓 = 𝒓𝒓𝐶𝐶𝐶𝐶𝐶𝐶 + 𝒅𝒅     (8) 247 

Purely translational motion of the molecules can be studied by following the evolution of rCOM in 248 

time, whereas rotational motion can be studied by following the evolution of a unit vector (e) 249 

along d in time. Self-intermediate scattering functions for the two motions can be calculated by 250 

replacing r in Eq. 7 by rCOM to obtain the translational intermediate scattering function (TISF) 251 

and by e to obtain rotational intermediate scattering function (RISF).  252 

Some representative TISF for 3 different Q values are shown in Figure 4. These curves are 253 

extracted from the simulated MD trajectories of propane in the slit pore of Figure 1. Three 254 

regimes can be identified from the results shown in Figure 4. Initially the TISFs decay at a fast 255 

rate up to a few picoseconds. This is the short-time range corresponding to very fast motion 256 

inaccessible to the backscattering instrument, BASIS used in the QENS experiment.  A second 257 

regime can be identified at the time scales from a few picoseconds to a few tens of picoseconds. 258 

This is the intermediate time regime with time scales accessible to the QENS instrument 259 

employed in Ref. 23. After a few tens of picoseconds, the TISF data are very noisy. However, in 260 
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spite of this noise a very slow decay of the TISF can be seen that indicates very slow motions 261 

accessible only to a neutron spin echo instrument with a high resolving power. It can be seen that 262 

in the sub-picosecond time range, the TISFs obtained from the lower pressure MD simulation 263 

data decay faster than those obtained from simulations at higher pressure, indicating that the 264 

corresponding molecular motion is faster at low pressures. In the intermediate time range, which 265 

is accessible to the QENS instrument of Ref. 23, one can see that the TISF calculated from the 266 

MD simulations decay faster at higher pressure than at low pressure. This observation suggests 267 

faster motion at high pressure, in agreement with the experimental findings. Moreover, we can 268 

also observe that the simulated TISFs do not decay completely within the intermediate time 269 

range (range accessible to the instrument used in Ref 23) indicating that the corresponding 270 

experimental spectra could be expected to have a finite elastic component with non-zero EISF 271 

values. In this time range, TISF values for the low-pressure data are higher than the high-272 

pressure ones. This would imply a higher EISF at low pressures. This was indeed found to be the 273 

case in QENS data analysis. However, the EISF values obtained in the experiments cannot be 274 

compared quantitatively here as the EISF obtained in the experiment was only relative. The 275 

absolute values were not extracted as no background subtraction was carried out23.  276 

The qualitative information obtained from the behavior of the TISF curves obtained from the 277 

simulations can be quantified by modeling the behavior of TISF in the time range accessible to 278 

the experiments. As stated above, the experimental data were fitted with Eq. 4, so, ignoring the 279 

background terma, one can expect that the corresponding TISF should be describable by Eq. 5. 280 

The relevant portion of the TISF (~ 5 to ~ 25 ps) was modeled with an exponential decay 281 

function as shown in Figure 5. The decay constants of the exponential decay functions used to 282 

model the TISFs at intermediate times were converted to the energy scale using Eq. 6 and were 283 

directly compared with Γ(Q) obtained from the experiments (see Figure 6). There is a good 284 

agreement between experimental and simulation data although the dispersion in the Γ(Q) values 285 

obtained from the simulation exhibits a less systematic trend as compared to the experimental 286 

data. A major contribution of this noise can be traced to the difficulty in modeling a small 287 

quantity. It can be seen that the TISF have already decayed to a hundredth in the time range 288 

accessible to the instrument. This small value of TISF is prone to large relative errors, which 289 

then propagate to the Γ(Q)  values obtained from fitting. However, the variation of Γ(Q) with 290 

pressure is unambiguous and it is in semi-quantitative agreement with the experimental data.  291 
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Having thus validated our simulation data by a direct comparison with the experiments, we 292 

discuss below other quantities calculated from the simulations. 293 

 294 

Figure 4. TISFs at (a) 337 K and (b) 365 K, 8 and 58 bar (lines and symbols respectively) at three Q 295 
values – 0.3 (black), 1.2 (blue) and 1.8 Å-1 (olive). It can be seen that the behavior of TISFs at sub 296 

picosecond time scale is different from the long time behavior. 297 

298 

 299 
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Figure 5. Fits of the intermediate time range of TISF at Q = 1.15 Å-1 with exponential decay function (red 300 
lines). 301 

    302 

Figure 6. Comparison of the Γ(Q) values obtained using Eq. 6 from fits of the TISF from the simulation 303 
with exponential decay functions (open symbols) against the Γ(Q)  values (solid symbols) obtained from 304 

fitting of the experimental spectra23. Red symbols denote results obtained at 58 bar while the black 305 
symbols are for the data at 8 bar. Panel (a) for 337 K and the panel (b) for 365 K. 306 

 307 

4. Structure 308 

To probe a possible relation between structural and dynamical properties of propane in the SiO2 309 

mesopore, we calculated the fraction of total molecules found within a bin of 0.01 nm in the z 310 

direction, as a function of their position in the pore. This is shown in Figure 7. A larger fraction 311 

of propane molecules lies close to the walls at lower pressure. Further, as can be seen in the inset 312 

of Figure 7, there is an indication of formation of a second layer of molecules close to the pore 313 

wall. Motion of the propane molecules that are close to the walls is expected to be slow due to 314 

relatively strong interactions with the wall, and therefore will contribute little to the overall 315 

diffusivity of confined propane. At higher pressure (greater loading), the fraction of molecules 316 

close to the wall is comparatively small relative to the entire pore, and consequently the number 317 

of more mobile molecules is larger. This change in the fraction of molecules adsorbed near the 318 

pore surface vs. those in the pore center enhances the diffusivity at high pressure. The variation 319 

in this distribution (adsorbed near the walls vs. near the pore center) at the two temperatures 320 

sampled is smaller than that observed when the pressure is varied. Moreover, this variation in 321 

temperature gets further diminished at higher pressure. At low pressures, the extra kinetic energy 322 

provided to the system in the form of a raised temperature helps some adsorbed molecules 323 
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overcome the attractive interactions due to the surface and move away from the pore wall. This 324 

phenomenon results in a decrease in the fraction of molecules residing close to the pore wall as 325 

the temperature increases. At higher pressure the temperature effect is smaller due to a large total 326 

number of molecules. The distribution of propane molecules along the direction of confinement 327 

across the pore facilitates classification into interfacial and non-interfacial molecules. In what 328 

follows we shall refer to the propane molecules that lie within a distance of 0.3 nm from the pore 329 

surface, on both sides, as interfacial molecules and the rest as non-interfacial molecules.  330 

The distribution of interfacial molecules in the XY plane shows some positional ordering, but 331 

only at high pressure (Figure S1 in supplementary material). This ordering originates from the 332 

crystalline positional ordering of the atoms within the solid SiO2 matrix. We also calculated the 333 

orientational ordering by calculating the cosine of the angle made by the CH3-COM vector with 334 

the Z-direction (Figure S2 in supplementary material). Here again, an ordering is relatively more 335 

clearly seen at higher pressure. It is expected that on an amorphous surface the ordering of the 336 

adsorbed propane molecules will be less pronounced. However, the enhanced density of propane 337 

at the solid-fluid interface is expected both on crystalline and amorphous substrates. 338 
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 339 

Figure 7. Fraction of total number of molecules occupying the pore as a function of the position within 340 
the direction perpendicular to the pore surfaces for 8 bar (top) and 58 bar (bottom). The pore space is 341 

between the two grey regions. The region between z=1.0 to 4.0 nm is shown in the inset to highlight the 342 
difference in the layering at two pressures. 343 

 344 

To quantify whether an overall preferred orientation of propane molecules exists throughout the 345 

pore we calculated the orientational distribution of interfacial and non-interfacial propane 346 

molecules. Figure 8 shows the distribution of the orientation of a CH3 site in the molecular frame 347 

of reference with respect to the three Cartesian directions. For reference the distribution function 348 

expected when there is no orientational ordering (i. e. isotropic distribution) is also shown with a 349 

thick cyan line. It can be seen that in the center of the pore the distribution is isotropic whereas 350 

there seems to be a tendency towards orientational ordering among interfacial molecules. This is 351 

revealed by the distribution with respect to Z-direction, which becomes sharper at right angle and 352 

those with respect to the X and Y-directions that get suppressed at right angle. This means that 353 
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interfacial propane molecules have a slight weak preference to orient in such a way that the CH3-354 

CH2 bond is aligned parallel to the pore surface. To quantify this preference we define an 355 

anisotropy parameter as a measure of deviation from isotropic behavior as 356 

𝜑𝜑 = �1
𝑁𝑁
∑ �𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖(𝜃𝜃𝑖𝑖) − 𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝜃𝜃𝑖𝑖)�

2𝑁𝑁
𝑖𝑖   (9) 357 

where g is the orientational distribution function and the subscripts iso and prop stand for the 358 

isotropic case and the observed case of propane in silica slit pore, respectively. The sum is taken 359 

over N=3151 different values of the angle θi between 0 and 180° for which the distribution 360 

functions were calculated. Values of this anisotropy parameter with respect to the three Cartesian 361 

directions, for interfacial and non-interfacial molecules are listed in Table 1. A higher value of φ 362 

signifies a stronger preference for a particular orientation. In general, anisotropy is higher at 363 

lower pressure and for interfacial molecules. This is to be expected as the interfacial molecules 364 

interact closely with the pore surface and hence follow the ordered structure of the pore surface 365 

thereby showing a stronger tendency for orientational ordering. At higher pressure, the number 366 

of molecules is larger than that can be accommodated with the orientational ordering and the 367 

excess molecules occupy random orientations thereby decreasing the relative anisotropy. A 368 

similar decrease in anisotropy at higher loadings has been found in ethane confined in ZSM-5 369 

zeolite49. This behavior has consequences for the rotational motion of propane molecules at 370 

different pressures. Note that the anisotropy of the orientation of interfacial molecules is due to 371 

both the atomic arrangement of the substrate and the packing of the propane molecules at the 372 

interface, which would occur also on an amorphous substrate. 373 

 374 

Table 1. Anisotropy parameter φ (×10-6) as defined in Eq. 9 for propane molecules at 337 K. 375 

Pressure 
Interfacial molecules Non-interfacial molecules 

X Y Z X Y Z 

8 23.36 21.35 32.11 7.76 7.74 7.97 

58 8.02 3.52 13.40 1.75 1.75 1.79 

 376 
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 377 

 378 

Figure 8. (a) Schematic showing the angle made by the CH3 position vector in the molecular (COM) 379 
frame of reference with the Cartesian directions denoted by a cyan line. (b) Orientational distribution of 380 
the angle defined in (a) with respect to the Cartesian directions X (black), Y (red) and Z (blue) at 337 K 381 
and 8 bar (top) and 58 bar (bottom). Left panels show the distribution for interfacial molecules whereas 382 
the right panels show the distribution for non-interfacial molecules. For reference the expected curve for 383 

an ideal isotropic distribution is shown as a thick yellow line in all panels.  384 

 385 

5. Dynamics 386 

1. Translational motion 387 

Information about the overall translational motion can be obtained by studying the evolution of 388 

mean squared displacement (MSD) with time. We calculated MSD using the COM trajectories of 389 

the propane molecules as  390 
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𝑀𝑀𝑀𝑀𝑀𝑀 = 〈|𝒓𝒓𝑪𝑪𝑪𝑪𝑪𝑪(𝑡𝑡 + 𝑡𝑡𝑜𝑜) − 𝒓𝒓𝑪𝑪𝑪𝑪𝑪𝑪(𝑡𝑡0)|2〉 (10) 391 

In Eq. (10) the ensemble average is taken over all molecules and time origins t0. Figure 9 shows 392 

the MSD variation for the four conditions of temperature and pressure. The MSD at lower 393 

pressure is an order of magnitude higher than that at high pressure. The variation with 394 

temperature is less pronounced than that observed due to pressure changes, and it becomes 395 

weaker at high pressure. This could be an effect of a crowded environment at higher pressure. 396 

Another interesting feature that can be observed is the change in behavior of MSD with time. 397 

The initial short time ballistic motion, where a molecule moves free of collisions, extends up to 398 

about 30 ps at lower pressures while it lasts less than 1 ps at higher pressure. This is also a 399 

consequence of molecular crowding, as a higher number of neighboring molecules at high 400 

pressure makes intermolecular collisions more frequent. At the time when ballistic motion turns 401 

diffusive (marked with arrows in Figure 9, a typical molecule would have covered a distance 402 

equal to the mean free path. Assessing the MSD values at times where ballistic motion turns 403 

diffusive, the mean free path can be estimated to be ~ 10 nm at low pressures and about 0.3 nm 404 

at high pressure. Thus at high pressure, propane seems to behave as a viscous fluid while at low 405 

pressure it is close to transition between a viscous fluid and a Knudsen fluid.50  406 

Self-diffusion coefficients (Ds) are obtained, from the slope of the MSD versus time at long 407 

enough times where the motion is diffusive, using the relation 408 

𝐷𝐷𝑠𝑠 = lim
𝑡𝑡→∞

𝑀𝑀𝑀𝑀𝑀𝑀
2𝑛𝑛𝑑𝑑𝑡𝑡

  (11) 409 

where nd=3 is the number of degrees of freedom. Our results are enlisted in Table 2. The 410 

diffusion coefficients obtained from MSD plots are 3 orders of magnitude faster than those 411 

obtained from the QENS experiments23. This might be due to the geometry of the pores used in 412 

our simulations, which is an over-simplification compared to the aerogels used in the 413 

experiments, and could also be due to the limitations of the force fields implemented. These 414 

diffusion coefficients are however comparable to the planar diffusion coefficient of propane in a 415 

silica slit pore of 2.8 nm obtained earlier36. The large order of magnitude difference between the 416 

experiments and the present simulations can also be explained as a consequence of the 417 

limitations of the experiment. In QENS, the diffusion coefficient is obtained from fitting the 418 

dispersion in quasielastic widths (Γ(Q)) obtained from the experiment with a model. Each QENS 419 
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instrument has a limited energy transfer window and a finite resolution, which results in 420 

detection of only those molecules that exhibit energies over a finite range. The contribution from 421 

faster molecules to the QENS spectra would lead to a very broad feature that appears as a flat 422 

background. This contribution would therefore not be included in the Γ(Q) obtained from fitting 423 

the spectra with a Lorentzian profile. In the case of a very large pore, some molecules, especially 424 

at low pressures would move faster than the detectable energy range and be invisible to the 425 

QENS instrument even though they do contribute to the mean squared displacement in the 426 

simulation. Another limitation stems from the Q dependence of the experimental data. As Q is a 427 

vector in reciprocal space, its magnitude has dimensions of (length)-1 and thus encodes 428 

information on length scales. The Q dependence of TISFs in the simulation and scattering law in 429 

the experiment limits detection of motion within a finite range of length scales, whereas MSD 430 

being a function of only time captures motion at all length scales.  431 

Table 2. Self-diffusion Coefficients obtained from the variation of MSD with time. 432 

 433 

Temperature (K) Pressure (bar) Self-diffusion Coefficient (×10-10 m2/s) 

337 8 5738.36±0.31 

58 331.22±0.09 

365 8 6333.03±0.92 

58 332.20±0.16 
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 434 

Figure 9. Mean squared displacement (MSD) curves for propane in silica slit pore at 337 K (black) and 435 
365 K (red) at the two pressures, 8 bar (top) and 58 bar (bottom). Transition from ballistic to diffusive 436 

regimes is indicated by arrows. 437 

 438 

To study the effect of interaction with the pore walls we obtained the trajectories of 10 molecules 439 

that spent 50 ps at a time in the interfacial and non-interfacial regions (see Figure S3, 440 

Supplementary material) for the two simulations at 337 K. Several properties were calculated 441 

from these short trajectories including MSD (see Figure S4).  442 

2. Rotational Motion 443 

The rotational molecular motion of propane was probed by following the evolution of a unit 444 

vector (e) attached to the position vector of a CH3 site in the molecular frame of reference. In 445 

particular we calculated the orientational correlation functions (OCF) of order 1 and 2.  446 
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𝐶𝐶𝑙𝑙(𝑡𝑡) = 〈𝑃𝑃𝑙𝑙[𝒆𝒆(𝑡𝑡 + 𝑡𝑡0). 𝒆𝒆(𝑡𝑡0)]〉 (12) 447 

where Cl(t) is the OCF of order l and Pl(x) is the Legendre’s polynomial of order l. The first of 448 

these functions (l=1) is the dipole correlation function and is often used to study rotational 449 

motion51-53. The second order component (l=2) is related to the Fourier transform of spectral 450 

density measurable in NMR experiments. Figure 10 shows the OCF for the four MD simulations. 451 

As in the case of translational motion, the variation of OCF as a function of pressure is dominant 452 

over the effect of temperature. The first order OCF at low pressures shows a conspicuous 453 

negative dip. This is a signature of a rotational motion characterized by large angular jumps. The 454 

time scales of rotational motion can be obtained by integrating the OCF up to times long enough 455 

for these functions to decay to zero51. We integrated the OCF up to 40 ps to obtain the time 456 

scales from OCF of order 1 and 2. They are listed below in Table 3. The rotational motion gets 457 

faster at higher pressures. A similar enhancement of rotational motion with increase in loading 458 

has been observed for ethane in ZSM-5 both in simulations49 as well as in experiments54, as also 459 

for propane in TiO251. Further, in Ref. 49, this enhancement of rotational motion was explained 460 

on the basis of a reduced anisotropy at higher loadings. The pressure dependence of rotational 461 

motion in the present case of propane in silica pore bears the same correlation with the pressure 462 

dependence of anisotropy as can be seen from Tables 1 and 3. Also listed in Table 3 are the 463 

ratios of the two time scales of rotational motion. The Debye model of rotational model predicts 464 

a value of 3.0 for this ratio55. Our results differ significantly from this expectation. The deviation 465 

is further enhanced at low pressures. These time scales have the same order of magnitude as 466 

obtained for propane in 4 nm cylindrical pores of TiO251. We note that these time scales indicate 467 

a very fast rotation which convert to an energy scale of ~ 1 meV (see Eq. 6). This means that the 468 

quasielastic broadening from the rotational motion of propane molecules in 20 nm silica pores 469 

would be too strong to be seen with the BASIS instrument with an energy window of ±0.12 470 

meV, used in Ref. 23. This justifies the assumption made in the analysis of QENS data that the 471 

signal represented only the translational motion of propane molecules. 472 

Table 3. Time scales of rotational motion. 473 

T; P τ1(ps) τ2(ps) τ1/τ2 

337 K; 8 bar 0.631 0.818 0.7714 

365 K; 8 bar 0.635 0.813 0.7811 
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337 K; 58 bar 0.355 0.203 1.749 

365 K; 58 bar 0.33 0.19 1.737 

 474 

 475 

Figure 10. Orientational Correlation Functions (OCF) for different temperatures and pressures. 476 

The orientational dynamics of interfacial and non-interfacial propane molecules was probed 477 

using the OCF corresponding to the 10 representative molecules from the two populations 478 

separately (Supplementary material, Figure S5). Compared to the OCF of non-interfacial 479 

molecules, those of interfacial molecules were found to decay slowly indicating a slower rotation 480 

of interfacial molecules as is expected due to the strong fluid-surface interactions.   481 

In addition to the OCF, the rotational intermediate scattering functions (RISF) for propane in 482 

silica pore were also calculated. These functions for 6 different Q values at two temperatures and 483 

two pressures are shown in Figure 11. The overall qualitative information content in these 484 

functions is similar to that in the OCF. However, these functions provide additional information 485 
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on the geometry of rotational motion by their long time behavior, which is identical to the elastic 486 

incoherent structure factor EISF. The variation of EISF in Q can reveal the geometry of motion. 487 

It should be noted that the EISF obtained from simulated RISF only represents the rotational 488 

motion, and are thus different from the EISF values obtained in the experiment, which can have 489 

contribution from rotational as well as localized translational motion. For clarity, we use REISF 490 

to signify the EISF obtained from the simulated RISF. Results in Figure 11 indicate that the 491 

differences in RISFs for different temperatures and pressures are limited to very short times up to 492 

20 ps. After this time, the RISF for a given Q value for different T and P conditions converge 493 

implying that the REISF values and hence the geometry of rotational motion remains unchanged 494 

between different T and P conditions. The variation of REISF obtained is shown in Figure 12. 495 

Also shown in Figure 12 is the calculated REISF for a unit vector undergoing isotropic rotational 496 

diffusion. The match between the calculated REISF for this model and the REISF values 497 

obtained from the simulation is very good. This is to be expected as the propane molecules near 498 

the pore center exhibit little preference for a particular orientation and would therefore freely 499 

span the whole orientational space corresponding to isotropic rotation.  500 

The RISF were also calculated for the interfacial and non-interfacial molecules separately (see 501 

Figure S6 in supplementary material). No change in the REISF values was observed as the 502 

pressure or the location of propane molecules is changed. This means that the geometry of 503 

rotational motion remains unchanged for all the simulation conditions, for all molecules. This 504 

can be expected as very little orientational ordering is observed from the orientational 505 

distribution function for all simulations. The only change that comes about the rotational motion 506 

is thus a change in the speed of rotation and the extent of angular jumps.  507 

 508 
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 509 

Figure 11. Rotational Intermediate Scattering Functions (RISFs) for different temperatures and pressures 510 
for Q values between 0.29 and 4.6 Å-1 (top to bottom at 0.1 ps). Low pressure data is represented by lines 511 
whereas symbols are used to show the high pressure data. Thick lines and solid symbols represent 337 K 512 

data while the 365 K data is shown by thin lines and open symbols. 513 
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 514 

Figure 12. REISF obtained from the long time values of RISFs from the simulation (symbols). Solid red 515 
line is the calculated REISF variation for a unit vector undergoing isotropic rotational diffusion. 516 

 517 

6. Conclusions 518 

We reported a direct comparison of molecular dynamics (MD) simulations of propane in 20 nm 519 

slit pore of silica with QENS experiments carried out on propane in silica aerogel with ~20 nm 520 

pores. Time scales obtained from the intermediate scattering functions from these simulations 521 

agree well with the experimental data. Although the simulated mean square displacement curves 522 

do not seem to agree with the experimental finding of an enhanced diffusion at higher pressures, 523 

the latter is corroborated with the time scales obtained from TISFs. It is important to note that 524 

while MSD curves give a length scale averaged contribution to diffusivity, the TISFs take into 525 

account motion at different length scales by the virtue of their Q dependence. This difference in 526 

MSD and TISFs might help explain the discrepancy observed in the pressure dependence of time 527 

scales obtained from these quantities. A larger fraction of propane molecules residing close to 528 
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the pore wall at low pressure explains the enhancement of diffusivity at high pressure observed 529 

in the QENS experiments23. Overall, the rotational motion of propane molecules is isotropic at 530 

all temperatures and pressures, and in all the regions of the pore. The time scales obtained from 531 

the simulation suggest that the rotational motion of propane molecules in the pore is too fast to 532 

be captured by the QENS instrument used in the experiment reported in Ref. 23 and thus justifies 533 

modeling the QENS spectra with translational motion alone. Rotational motion also shows a 534 

slight enhancement at higher loading similar to findings elsewhere49,51,54. This is correlated with 535 

a higher degree of orientational anisotropy at lower loading which provides an explanation to this 536 

anomalous behavior. Although the simulated system is an oversimplification of the experimental 537 

one, our analysis suggests that MD simulations reported here reveal important new insight about 538 

anomalous loading dependence of propane dynamics in silica mesopores.  539 
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Notes 553 

a The background term in the experiment would signify contributions from several sources 554 

including the silica aerogel. The TISF calculated from the simulated trajectories on the other 555 

hand has contribution from the center of mass motion of propane molecules alone and so would 556 
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not have any contribution analogous to the background contribution in the experiment. The 557 

background term should therefore be ignored. 558 

 559 
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