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Abstract

In this thesis, we consider steps towards building a useful quantum computer in the

presence of realistic errors.

We start by presenting a novel scheme for fault-tolerant quantum computation

with Rydberg atoms. The scheme uses topological error correction codes to provide

fault-tolerance and utilises electromagnetically induced transparency to perform

entangling gates between qubits. We examine the benefits of this scheme compared

to alternative approaches, and we investigate the errors that are likely to occur and

how these can be managed.

We then consider how to perform quantum computation with a surface code

based quantum computer that has permanently faulty components. We study both

faulty links between qubits, which prevent qubits from interacting, and faulty qubits

themselves; such faults could affect a wide variety of physical implementations,

including schemes that use superconducting qubits and those that use trapped ions.

The approach we propose for dealing with these faulty components requires minimal

modification to the quantum operations required by the surface code and should

therefore be implementable by almost all current and future proposals for surface

code based quantum devices.

Finally, we consider how to perform fault-tolerant quantum computation with

components that fail probabilistically. This section is largely motivated by quantum

computation with linear optics and therefore focuses on quantum computation with

cluster states. We show that these probabilistic failures can be tolerated providing the

failure rate is suitably low, and we present methods for increasing error thresholds

in the presence of such errors.
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Chapter 1

Quantum computation

Quantum computers have the potential to revolutionise the technological world,

opening the door to an exponential increase in processing power compared to current-

day ‘classical’ computers. They will be able to perform tasks such as efficiently

simulating quantum systems and breaking the encryption that underpins secure

communication over the internet. Although quantum computers will initially be

limited to solving very specific problems, the evolution of classical computers from

room-sized code-breaking machines, such as Colossus, to multi-purpose devices

that fit in our pockets serves to show that the greatest benefits offered by quantum

computers are likely yet to be discovered.

The idea of a quantum computer was first proposed during a 1981 talk by

Richard Feynman [Feynman, 1982], where he discussed the concept of a universal

quantum simulator. It is practically impossible to simulate large quantum systems on

current-day classical (non-quantum) computers, even when using the most powerful

supercomputers, with the difficulty being that the resources required to simulate a

quantum system scale exponentially with the size of the system being simulated. It

is therefore believed that a computer that directly exploits quantum phenomena will

be capable of efficiently solving exact quantum simulation problems that cannot be

solved efficiently on a classical computer.

In addition to quantum simulation, quantum computers are expected to solve

other problems for which no efficient classical algorithms are known. For exam-

ple, Shor’s algorithm [Shor, 1997] allows quantum computers to efficiently factor
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numbers and therefore potentially break RSA encryption, while Grover’s unordered-

search algorithm [Grover, 1996] is quadratically faster than the fastest known classi-

cal equivalent. There are also quantum algorithms that outperform the fastest known

classical algorithms for tasks such as Monte Carlo simulation [Montanaro, 2015]

and solving certain problems involving linear systems of equations [Harrow et al.,

2009].

Quantum computation is being pursued with a variety of physical systems in-

cluding linear optics [Knill et al., 2001, Kok et al., 2007, Gimeno-Segovia et al.,

2015], trapped ions [Cirac andZoller, 1995,Häffner et al., 2008], quantumdots [Loss

and DiVincenzo, 1998], Rydberg atoms [Saffman et al., 2010] and superconducting

Josephson junctions [Devoret et al., 2004, Clarke andWilhelm, 2008, Barends et al.,

2014]. Hybrid schemes that combine different systems are also in development [Wal-

lquist et al., 2009], as are distributed schemes that use fibre-optic communication

links to combine small, physically separated quantum units to build a full quantum

computer [Nickerson et al., 2014].

The delicate nature of quantum systems means that all approaches to building

a quantum computer will be vulnerable to errors; a quantum computer that can

still perform reliable quantum computation in the presence of errors is said to be

fault-tolerant.

1.1 Quantum bits and gates

While most classical computers use bits in zero or one states, it is likely that quantum

computers will use quantum bits, or qubits, that exist in a superposition of zero and

one states simultaneously, such as

|ψ〉 = α0 |0〉+ α1 |1〉 . (1.1)

Here |ψ〉 labels the quantum state, and |0〉 and |1〉 are the quantum analogues of

the 0 and 1 binary states used in classical computation. The α coefficients are

complex numbers that represent the mix between the |0〉 and |1〉 states and satisfy
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|α0|2 + |α1|2 = 1. A state involving two qubits is written in the form

|ψ〉 =
1∑

i,j=0

αij |i〉 ⊗ |j〉 = α00 |0〉 ⊗ |0〉+ α01 |0〉 ⊗ |1〉+ . . . , (1.2)

where ⊗ is the tensor product operation, although this will be abbreviated to

|ψ〉 =
1∑

i,j=0

αij |ij〉 . (1.3)

A quantum state can involve any number of qubits, with more qubits generally being

required for more complex calculations.

Several schemes have been suggested for quantum computation, and these can

be broadly divided into a number of equivalent universal schemes [Deutsch, 1985]

(capable of performing arbitrary quantum computations) and non-universal schemes

(which cannot perform arbitrary quantum computations but are still believed to

outperform classical computers for certain tasks).

Examples of universal schemes include the circuit model [Feynman, 1986,

Barenco et al., 1995], adiabatic quantum computation [Farhi et al., 2000], topo-

logical quantum computation [Kitaev, 2003], measurement-based quantum com-

putation [Raussendorf and Briegel, 2001] and quantum walks [Aharonov et al.,

1993]. Examples of non-universal schemes include quantum annealing [Finnila

et al., 1994, Kadowaki and Nishimori, 1998] (used by the D-Wave commercial

quantum computers), boson sampling [Aaronson and Arkhipov, 2011] and the one

clean qubit model [Knill and Laflamme, 1998]. The ideas from different universal

schemes can be combined — for example, topological quantum computation can be

performed using the circuit model, which is the focus of much of this thesis.

1.2 The circuit model of quantum computation
The circuit model of quantum computation is the scheme that bears the most sim-

ilarity to classical computation: in analogy to the logic gates used by classical

computers, one defines a set of quantum gates that is universal for quantum compu-
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tation. A set of gates is universal for quantum computation if that gate set can be

used to perform an arbitrary quantum computation to arbitrary precision [Deutsch,

1985, Barenco et al., 1995].

An example of such a gate set for two or more qubits is the Hadamard, or H ,

gate, the T gate (sometimes called the π/8 gate) and the two-qubit controlled-NOT,

or CNOT, gate [Boykin et al., 1999]. When writing the state of a qubit in column

vector notation,

α0 |0〉+ α1 |1〉 =

α0

α1

 , (1.4)

these gates are represented in matrix form as:

H =
1√
2

1 1

1 −1

 T =

1 0

0 eiπ/4

 CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .

It is possible to efficiently find a sequence of these gates to perform any quan-

tum computation efficiently and to arbitrary accuracy by using the Solovay-Kitaev

algorithm [Kitaev, 1997].

The Pauli X , Y and Z gates are extremely useful in quantum computation, so

although they can be generated from products ofH and T gates, it is often desirable

to implement them directly. The identity gate, I , is also conceptually useful — it is

the gate that leaves a quantum state unchanged. The I, X, Y and Z gates are:

I =

1 0

0 1

 X =

0 1

1 0

 Y =

0 −i
i 0

 Z =

1 0

0 −1

 .
The group generated by 〈X, Y, Z〉 is referred to as the single-qubit Pauli group, and
the group generated by all n-qubit tensor products of Pauli operators is referred to

as the n-qubit Pauli group Pn. Note that XY Z = iI , meaning that ±I and ±iI are
elements of every Pauli group.
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Two other useful gates that can be generated from products ofH , T and CNOT

gates are the phase, or S, gate, and the controlled-Z, or CPHASE, gate:

S =

1 0

0 i

 CPHASE =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 .

The PauliX gate acts much like a classical NOT gate, swapping the |0〉 and |1〉
states of a qubit. The CNOT and CPHASE gates performX andZ gates respectively

on a target qubit depending on the state of a control qubit. If the control qubit is in

the state |1〉 then the respective gate is performed on the target qubit, otherwise the

identity gate is performed on the target qubit.

The eigenvectors of the single qubit Pauli operators each form an orthonormal

basis that can be used to represent the state of a single qubit. For example, the

eigenvectors of theZ operator are |0〉 and |1〉, and the eigenvectors of theX operator

are |+〉 = (|0〉+ |1〉) /
√

2 and |−〉 = (|0〉 − |1〉) /
√

2.

Qubits can be measured in any of these bases to obtain an outcome correspond-

ing to the eigenvalue associated with the eigenvector; this is always ±1 for Pauli

operators. If a qubit is in a superposition of basis states when it is measured then it

will collapse into one of the basis states with a probability given by the square of the

coefficients in equation 1.1. For example, performing a Z measurement on the state

|0〉 will always give the outcome +1, but performing a Z measurement on the state

(1/2) |0〉+ (
√

3/2) |1〉 will give the outcome +1 with probability (1/2)2 = 1/4, or

the outcome −1 with probability (
√

3/2)2 = 3/4; the quantum state then will be

either |0〉 or |1〉 respectively.

Quantum circuit diagrams are used to represent computations using these quan-

tum gates. In these diagrams, a horizontal line is used to represent a qubit, and most

quantum gates are represented by a box intersecting the qubits upon which the gate

acts, with a letter inside the box labelling the gate. Time runs from left to right

in circuit diagrams. For example, Fig. 1.1a shows the circuit diagram for HX |ψ〉
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(applying an X gate and then an H gate to the state |ψ〉) followed by measurement

in the computational Z basis). Controlled gates are represented by a line from the

control qubit to the gate, as shown in Fig. 1.1b. The CNOT and CPHASE gates

are represented slightly differently to most other gates, as shown in Fig. 1.1c and

Fig. 1.1d.

|ψ〉 X H Z

(a) Performing the operationHX |ψ〉 fol-
lowed by measurement in the Z basis.

•
S

(b) Performing an S gate on the bottom
qubit controlled by the top qubit.

•

(c) ACNOT gate with the top qubit as the
control qubit and the bottom qubit as
the target qubit.

•
•

(d) A CPHASE gate between two qubits
(note that the symmetry of the
CPHASE gate means it does not mat-
ter which is the control qubit and
which is the target qubit).

Figure 1.1: Examples of quantum circuit diagrams.

1.3 Clifford gates
The group of gates generated by the H , S and CNOT gates acting on n qubits

is a special group in quantum computation known as the n-qubit Clifford group,

Cn [Gottesman, 1998]. Gates in this group, called Clifford gates, leave the Pauli

group, Pn, fixed under conjugation, i.e.

CPnC† = Pn ∀ C ∈ Cn. (1.5)

Note that the T gate is not a member of the Clifford group.

The Gottesman-Knill theorem [Gottesman, 1998] states that computations con-

sisting only of Clifford group gates and Pauli group measurements can be efficiently

simulated on a classical computer. This means that at least one non-Clifford gate

must be implementable to perform efficient computations that are not possible on a

classical computer. As will be seen in later sections, this theorem has implications
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for the resources required by quantum error correction: it is often the case that

Clifford gates are easier to perform than non-Clifford gates.



Chapter 2

Quantum error correction

Building a working universal quantum computer will almost certainly require the use

of some form of error correction to circumvent the effects of decoherence (qubits

deviating from their intended states). For classical computations, a simple error

correction procedure may involve making multiple copies of the data, performing

the same operations on each copy and comparing the state of the classical bits in

each copy at various stages throughout the computation. Providing the error rate is

low enough, a majority vote can be used to infer the correct state of each bit.

Such a duplication and majority voting scheme cannot be used for quantum

computation for two reasons. Firstly, it is impossible to copy a general quantum

state due to the no-cloning theorem [Wootters and Zurek, 1982]; this means that

qubits cannot be copied during a computation. Secondly, quantum states cannot be

compared during a computation because doing so would require measurement of

the qubits, causing them to collapse into the basis in which they are measured (see

section 1.2); this measurement collapse effectively leaves the qubits in a classical

state and no longer useful for quantum computation. More sophisticated methods

are therefore required to detect and correct errors.

Like classical error correction codes, quantum error correction codes use multi-

ple physical qubits per logical qubit. A computation fails if there is an uncorrectable

logical error on a logical qubit. Quantum error correction also uses the concept

of an error threshold, which is defined as the maximum physical qubit error rate at

which a quantum computation can be performed reliably. The definition of the error
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rate depends on the error model under consideration, but in general it is a parameter

used to quantify the frequency with which errors occur for the chosen model. The

existence of a threshold for quantum error correction was shown in [Aharonov and

Ben-Or, 2008].

If the physical qubit error rate is lower than the threshold, increasing the

number of physical qubits will reduce the logical error rate. If the physical qubit

error rate is higher than the threshold, increasing the number of physical qubits will

not, in general, reduce the logical error rate. This means, in theory, that below the

physical qubit error threshold an arbitrary quantum computation can be performed if

there are enough physical qubits, although this number may be enormous. The exact

relationship between logical error rates and the number of physical qubits per logical

qubit depends on the particular quantum error correction code in question — as an

example, surface code quantum error correction codes are likely to require 103-104

physical qubits per logical qubit [Fowler et al., 2012], and Shor’s algorithm [Shor,

1997] requires O(n) qubits to factorise an n bit number, so factorising a 2048-bit

RSA key would likely require in excess of a million qubits.

2.1 Stabiliser codes
Stabiliser codes are an important class of quantum error correction codes, and they

can be fully described using Pauli operators. A state |ψ〉 is said to be stabilised by

an operator S if

S |ψ〉 = |ψ〉 . (2.1)

For example, the two-qubit state

|Φ+〉 =
1√
2

(|00〉+ |11〉) (2.2)

is stabilised by bothX1⊗X2 (X acting simultaneously on both qubits) and Z1⊗Z2

(Z acting simultaneously on both qubits).

Stabiliser codes are defined as follows [Gottesman, 1997]. Suppose that S is
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a subgroup of the n-qubit Pauli group, Pn, and VS is the set of n-qubit states that

satisfies

S |v〉 = |v〉 ∀S ∈ S, |v〉 ∈ VS . (2.3)

The group S is defined to be the stabiliser of the states in the set VS , and the states

in the set VS define logical qubit states; VS is known as the code space. It can be

seen that −I cannot be in S (because −I |ψ〉 = − |ψ〉), which in turn requires that

±iI is not in S to satisfy group axioms.

In addition to the definition in equation 2.3, the stabiliser S can also be defined

using the group elements that generate it. In general, a minimum generating set

〈g1, . . . , gl〉 of S is chosen such that all gi are independent Pauli operators (no

element gi is a product of the others). Errors can then be detected by measuring

these stabiliser generators.

As Pauli operators have eigenvalues±1, the outcome of any stabiliser generator

measurement will be ±1. Obtaining a ‘−1’ outcome when measuring a stabiliser

generator gi indicates that the qubits are no longer in a superposition of states in VS
because equation 2.3 is not satisfied; this means an error that anticommutes with

gi has occurred. Measuring all stabiliser generators gives a syndrome of outcomes

from which an attempt can be made to determine which error, if any, has occurred,

and a suitable correction can then be applied. Detecting and correcting Pauli errors

alone is sufficient to correct more general errors with stabiliser codes, as arbitrary

errors collapse into Pauli errors when the stabiliser generators are measured [Nielsen

and Chuang, 2000]; this is known as error discretisation.

Any Pauli operator that commutes with all stabiliser generators but is not itself

in the stabiliser will not result in any ‘−1’ outcomes. Such operations are logical

operations that change the state of one or more logical qubits, and logical operations

occurring as a result of errors cannot be corrected and will cause the computation

to fail.

A quantum error correction code that uses n physical qubits to represent k

logical qubits and can reliably correct bd− 1c/2 errors is referred to as an [[n, k, d]]
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code. d is called the distance of the code, and is equal to the weight of the lowest-

weight logical operator, where the weight of an operator is the number of qubits

upon which the operator acts non-trivially (i.e. with any operator other than the

identity gate). For example, the operator X1I2Z3I4X5Y6X7 has weight five1. A

larger code distance means a greater number of physical qubit errors are required to

cause a logical error. The number of stabiliser generators required by an [[n, k, d]]

stabiliser code is given by n− k.

Two of the most common approaches to implementing fault-tolerant quantum

computation with stabiliser codes are code concatenation and topological codes.

Code concatenation [Knill and Laflamme, 1996] involves replacing each physical

qubit in a stabiliser code with a logical qubit of another stabiliser code (poten-

tially the same or a different code), and topological codes encode logical qubits in

such a way that logical states are protected by global topological properties of the

code, with the most common examples being the surface code [Kitaev, 2003] and

colour codes [Bombin and Martin-Delgado, 2006]. It is even possible to combine

topological codes with code concatenation, e.g. [Criger and Terhal, 2016].

Gauge operators

Stabiliser codes can be modified by the introduction of gauge operators, which

are operators that don’t commute with the stabiliser generators but don’t affect the

encoded logical state: they effectively act as logical operators for gauge qubits that

are not used to store useful information [Poulin, 2005]. Gauge operators are useful

as their measurement outcomes can be used to obtain stabiliser operator outcomes

by multiplying them together, in which case the individual outcomes are random

but the product is deterministic; these codes are known as subsystem codes. Using

gauge operators means that lower-weight measurements can be used to effectively

perform higher-weight stabiliser operations, such as in [Bacon, 2006].

1Here X1I2Z3I4X5Y6X7 = X ⊗ I ⊗ Z ⊗ I ⊗X ⊗ Y ⊗X , and this will generally be further
abbreviated toX1I2Z3I4X5Y6X7 = XIZIXY X . The distinction between operator multiplication
and tensor product will be clear from the context.
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2.2 The surface code
The surface code is a topological stabiliser code, with the prototypical example

being the toric code due to Kitaev [Kitaev, 2003]. The surface code is one of the

most promising quantum error correction codes due to its relatively high thresholds

[Wang et al., 2003, Stephens, 2014] and attractive scaling qualities. It is ideally

suited to two-dimensional chip-based implementations, with superconducting qubits

currently at the forefront of progress towards building a surface code quantum

computer [Kelly et al., 2015, Córcoles et al., 2015].

The simplest form of the surface code is the planar code [Bravyi and Yu. Kitaev,

1998], which is defined using a square lattice of data qubits arranged on a planar

surface (or manifold) with dimension L× L. We will consider the planar code as a

quantum memory to explain the key features of the surface code.

Fig. 2.1a shows an example of a planar code lattice with L = 5, where each

edge of the lattice corresponds to a physical data qubit. The boundaries at the left

and right of the code are referred to as rough boundaries and the boundaries at the

top and bottom of the code as smooth boundaries. Each vertex, s, is associated with

a star stabiliser generator, As, on the qubits surrounding the vertex

As =
⊗
i∈s

Xi, (2.4)

and each square, p, is associated with a plaquette stabiliser generator, Bp, on the

qubits surrounding the square

Bp =
⊗
i∈p

Zi. (2.5)

All stabiliser generators involve only neighbouring qubits.

In addition to the lattice configuration in Fig. 2.1a, which we refer to as the

primal lattice, we can also define a dual lattice where the roles of vertices and

plaquettes are swapped but the physical data qubits are unchanged, as shown in

Fig. 2.1b. The concept of primal and dual lattices is useful for describing logical

Pauli operators and for error correction.

LogicalZ andX operators,Z andX , are strings of single-qubitZ (X) operators
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Figure 2.1: Planar code lattices with dimension L = 5. (a) Primal planar code lattice
showing a vertex checkAs, a plaquette checkBP and a logical Z Pauli operator
Z. (b) Dual lattice showing the same checks as (a) and a logical X Pauli
operator X that anticommutes with the logical Z operator in (a).

from the left to right (top to bottom) boundaries on the primal (dual) lattice, as

shown in Fig. 2.1; these logical operators commute with all stabiliser generators

and anticommute with each other. The choice of which operator is logical X and

which is logical Z is arbitrary, although we will stick to the convention of having the

operator consisting of onlyX operations as theX logical operator, and the operator

consisting of only Z operations as the logical Z operator. Note that the logical

operators are not unique: each logical operator can be modified by multiplication

with an element of the stabiliser to form a new logical operator that has the same

effect on the logical state of the code in the absence of errors, i.e.

X |ψ〉 = SX |ψ〉

Z |ψ〉 = SZ |ψ〉

 ∀ S ∈ S, (2.6)

where |ψ〉 represenets the encoded logical state of the code. This means each

logical operator can be redefined by combining it with stabiliser generators such that

they need not be straight paths across the lattice, such as the logical X operator in

Fig. 2.1b. The lowest-weight logical operator on the planar code is one that has a

straight path across the lattice, so the code distance of the planar code is d = L. A
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distance d planar code requires ∼ 2d2 data qubits.

The measurement of a stabiliser generator, for example using the circuit shown

in Fig. 2.2, gives the outcomes ±1 depending on the state of the data qubits. Each

stabiliser generator measurement is referred to as a check, with the ancilla (helper)

qubit used for themeasurement in Fig. 2.2 referred to as a syndrome qubit. Syndrome

qubits are not strictly part of the definition of the planar code, as it is possible to

measure the stabiliser generators using different methods, but we will generally

assume there is a syndrome qubit associated with each star and plaquette check. A

‘−1’ outcome from a check is referred to as an excitation, and the set of excitations

obtained by performing all checks is referred to as the syndrome.

|+〉 • • • • X

Figure 2.2: Circuit for performing a vertex check on the surface code. The top qubit is an
ancilla qubit referred to as the syndrome qubit, and the measurement outcome
of this qubit gives the outcome of the check.

2.2.1 Detecting and correcting errors
X and Z errors can be detected and corrected in an independent and analogous

manner, so this section will now focus on the vertex checks on the primal lattice,

which are used to detect and correct Z errors; the phrase syndrome will therefore

refer only to the excitations detected by the set of vertex checks.

Error detection proceeds by measuring all the stabiliser generators. When

there are no errors, the outcome of all measurements is ‘+1’, and if an error occurs

that anti-commutes with a stabiliser generator, then the outcome of that stabiliser

generator is flipped to ‘−1’. If a string of a single-type of Pauli error occurs, only

the ends of the string are detectable, and different error strings may lead to the same

detection pattern.

As an example, assume that the planar code initially has no errors and is in the

‘+1’ state for all vertex checks, and consider a single Z error occurring on a data
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qubit. This Z error will anticommute with the stabiliser generators of the two vertex

checks it is adjacent to, therefore causing an excitation at each of these vertices,

as shown in Fig. 2.3a. However, if we have a string of adjacent errors such as the

three Z errors shown in Fig. 2.3b, we will only be able to detect the ends of that

string as the errors will commute with all stabiliser generators except those acting

on the qubits at the ends of the string. Therefore, the error string in Fig. 2.3b will

cause excitations in the same locations as the error in Fig. 2.3a. This feature of the

code, where syndromes are not uniquely associated with a particular set of errors,

is referred to as degeneracy — different errors can have the same excitations, so it

is impossible to know for certain which error has occurred. In the case of Fig. 2.3,

applying a Pauli Z to the location of the error in Fig. 2.3a is sufficient to correct

either of the errors, because in the case of Fig. 2.3a the correction will cancel the

error (as Z2 = I), and in the case of Fig. 2.3b the error string and correction will be

equivalent to a plaquette stabiliser generator, so will have no impact on our logical

state.

Z

(a)

Z

Z

Z

(b)

Figure 2.3: Two distinct error strings that result in the same excitations on the surface code.
Errored qubits are grey with the error string highlighted in brown, and red
diamonds represent excitations.

To give a further example, consider the error string in Fig. 2.4a. This can be

corrected by performing Z gates on the exact error locations, as shown in Fig. 2.4b.

Another valid correction string would be to apply Z gates to the locations shown in

Fig. 2.4c. In this case, the error and correction strings combine to leave a closed loop

of Z operations that is equivalent to the product of the shaded plaquette stabiliser

generators. However, Fig. 2.4d shows a correction that combines with the error in
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a way that is equivalent to a logical operation — applying such a correction would

cause an undetectable logical error and likely result in a failed computation.

Z

Z

Z

(a) (b)

Z

Z

Z

Z

Z

Z

(c)

Z

Z

Z Z

ZZ

(d)

Figure 2.4: Examples of successful and unsuccessful error correction strings on the planar
code. (a) An example error string (brown) (errored qubits are grey, excitations
are red diamonds). (b) The error in (a) can be corrected by applying Z gates
to each of the errored qubits (purple). (c) The error can also be corrected
by forming a string of errors and corrections that is equivalent to a product of
stabiliser generators (shaded in pink). (d) shows a correction string that removes
the excitations but is not equivalent to a product of stabiliser generators — it is
equivalent to a logical operator and would therefore cause a logical error.

Homology classes

The error and correction strings in Fig. 2.4 demonstrate the concept of homology

classes. With respect to the surface code, a homology class is a set of operations
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that are equivalent up to multiplication by stabiliser elements, i.e. they all have the

same effect on the encoded logical state.

Fig. 2.4c gives a combined error and correction string that is a product of

stabiliser generators and does not cause a logical error — this string is contractible

and is in the same homology class as the logical identity operator. Any product of

stabiliser generators (including simultaneous products of both plaquette and vertex

generators) is in the same homology class as the identity operator and therefore

causes no excitations or logical errors.

The string in Fig. 2.4d is an uncontractible string in a different homology

class to the identity operator and therefore leads to no excitations but causes an

undetectable logical error, in this case a logical Z error. Any undetectable string of

errors from one side of the lattice to the opposing side is in a different homology

class to the identity operator and acts as a logical operator. There are four distinct

homology classes on the planar lattice in Fig. 2.1: the logical identity (consisting of

contractible strings of Pauli operations that are equivalent to products of stabiliser

generators), logical Z (consisting of strings of Pauli operations from left to right on

the primal lattice), logical X (consisting of strings of Pauli operations from top to

bottom on the dual lattice) and logical Y (strings that are a combination of logical

X and Z operations).

Decoding and correction

After obtaining the syndrome measurements, the values are passed to a decoder,

which is a classical algorithm that finds a correction. When correcting errors, we

want to find the correction that is most likely to result in strings in the same homology

class as the identity operator — a decoder that performs this task perfectly is known

as a maximum-likelihood decoder. However, efficient algorithms for maximum-

likelihood decoding are only known for specific circumstances [Bravyi et al., 2014],

so alternative algorithms must be used to instead find a good approximation to this

optimal correction.

Numerous approaches have been suggested for efficient surface code decoders,

including minimum weight perfect matching decoders [Dennis et al., 2002], renor-
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malization decoders [Duclos-Cianci and Poulin, 2010] and cellular automaton de-

coders [Herold et al., 2015]. Decoders based on minimum weight perfect match-

ing [Dennis et al., 2002] are the most widely used for the surface code as they

achieve relatively high error thresholds. Exact error thresholds vary depending on

the error model and assumptions— [Stephens, 2014] provides thresholds for several

scenarios not specific to any particular implementation, with values varying from

around 0.5% to around 1%. Minimum weight perfect matching decoders work by

pairing the ends of error strings in a way that minimises the total weight of the

correction strings, with each edge of the surface code having a weight assigned to it

related to the probability of an error occurring at that location.

In addition to errors occurring on data qubits, the syndrome measurement

process itself is prone to error, which could lead to an incorrect (false) error detection

event. Therefore, multiple rounds of syndrome measurement, of order O(L) [Wang

et al., 2003], are needed to improve confidence in the syndrome outcomes. The

repeated rounds of syndrome measurements create a three-dimensional syndrome

history that can be processed by the decoder to return a correction on the physical

lattice.

Other types of Pauli error

We have focused on detecting and correcting Pauli Z errors on the primal lattice in

this section. PauliX errors are detected and corrected using an analogous procedure

on the dual lattice. Pauli Y errors are equivalent to anX and a Z error occurring on

the same qubit, so these affect both the primal and dual lattices; decoding methods

that take account of correlations between X and Z errors due to Y errors can be

used to maximise error thresholds [Fowler, 2013b].

2.2.2 Multiple logical qubits and computation

An attractive feature of the surface code is that error correction only requires fixed-

weight local operators, i.e. checks only require interactions between four neighbour-

ing data qubits regardless of the size of the code. However, the planar code only

encodes one logical qubit, so performing computations involving more than two
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logical qubits requires interactions between multiple planes, which will either re-

quire a three-dimensional arrangement or interactions between far-separated qubits.

These problems can be overcome by using codes similar to the planar code but with

distinct rough and smooth defects ’punched’ into them: these are regions where

stabiliser generators are not measured or enforced. Single and multiple qubit logical

operations, such as the logical Pauli operators, logical Hadamard and logical CNOT,

can then be performed fault-tolerantly by combinations of string operators, transver-

sal gates and braiding of defects [Raussendorf and Harrington, 2007, Fowler et al.,

2009].

Non-Clifford gates, such as the T gate, cannot be performed directly in the

surface code, however, it is possible to perform a T gate indirectly by preparing

many noisy copies of the state

|Θ〉 =
1√
2

(
|0〉+ eiπ/4 |1〉

)
, (2.7)

each with some error probability p, and then using a process known as magic state

distillation [Bravyi and Kitaev, 2005] to produce fewer copies of |Θ〉, but each with
a reduced probability of error [Raussendorf and Harrington, 2007]. Note that the

state |Θ〉 cannot be prepared using Clifford gates alone, so it must be prepared in a

non-fault-tolerant manner, hence the use of ‘noisy‘ copies of the state.

Once the probability of error has been sufficiently reduced, a T gate can be

implemented using the circuit shown in Fig. 2.5. This process therefore requires

more time and qubits than Clifford gates.

|Θ〉 • SX T |ψ〉
|ψ〉 Z

Figure 2.5: Circuit for implementing a T gate. This process uses only Clifford gates and a
pre-prepared state |Θ〉 = (|0〉+ eiπ/4 |1〉)/

√
2. |ψ〉 is an arbitrary logical state

and S is the logical S gate (not an element of the stabiliser group). The gate
SX is classically controlled by the outcome of the Z measurement.

In addition to defect-based computation, two other surface code proposals for

fault-tolerant universal quantum computation are lattice surgery [Horsman et al.,
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2012], which involves interacting logical qubits encoded in separate planar codes

by fusing their boundaries, and twists [Bombin, 2010, Hastings and Geller, 2015],

which are similar to defects but deform pairs of stabiliser generators to create logical

qubits.
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Chapter 3

A blueprint for fault-tolerant

quantum computation with Rydberg

atoms

Rydberg atoms are a promising candidate for quantum computation [Saffman et al.,

2010], having desirable properties such as relatively simple entangling gates between

many qubits and the ability to fit thousands of qubits into a very small footprint.

Although there has been much interest in using Rydberg atoms for quantum

computation, including a recent 51-qubit quantum simulator [Bernien et al., 2017],

very little work has considered the steps required to build a fault-tolerant quantum

computer with Rydberg atoms. Previous work on error correction has been limited to

[Brion et al., 2008], which considered error correction within an ensemble of atoms

representing a single qubit, [Crow et al., 2016], which focused on using Rydberg

atoms in measurement-free error correction schemes, and [Isenhower et al., 2011],

which investigated error rates for multiple-controlled CNOT gates using Rydberg

atoms. Additionally, methods for building a universal quantum computer with

Rydberg atoms using a decoherence-free subspace to mitigate the effects of errors

were suggested in [Brion et al., 2007].

In this chapter, we propose a Rydberg atom scheme for performing fault-

tolerant quantum computation with the surface code. Ideas for a Rydberg atom

based quantum simulator using the toric code were considered in [Weimer et al.,
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2010, Weimer et al., 2011], but the work in this chapter goes beyond this to consider

some of the steps required to build a fully-fledged universal Rydberg atom quantum

computer with active error correction. Section 3.1 provides a brief introduction to

Rydberg atoms, and Sections 3.2 and 3.3 provide details of the scheme and error

threshold simulations respectively.

3.1 Quantum computation with Rydberg atoms
Rydberg atoms are neutral atomswith one or more electrons in a highly-excited state,

i.e. with principal quantumnumbern� 1—the alkalimetals, particularly rubidium

and caesium, are the species of atoms most commonly used for Rydberg atom

experiments due to their single valence electrons. One of their most useful features

for quantumcomputation is the dipole blockade, which facilitates the implementation

of entangling gates between multiple atoms.

The dipole blockade effect is shown in Fig. 3.1. When two neighbouring neutral

atoms are in their ground states with separation R, the energy required to excite one

of them to a particular Rydberg state |r〉 is Er. However, once one atom is in its

Rydberg state, the energy required to excite the neighbouring atom to the state |r〉
is increased to Er + ∆E(R); exciting one atom to its Rydberg state effectively

blockades the other. This effect can therefore be used to implement entangling gates

by utilising Rydberg states to mediate interactions between two or more atoms;

one method for this, based around electromagnetically induced transparency, is

introduced in Section 3.2.

The size of this energy shift ∆E(R) generally falls into one of two regimes:

when the atoms are sufficiently close, the dominant interaction is due to the resonant

dipole-dipole interaction, which scales as ∆E(R) ∼ 1/R3. When the atoms are

sufficiently distant from each other, the dominant interaction becomes the van der

Waals interaction, which scales as ∆E(R) ∼ 1/R6. We will favour the van der

Waals regime for our scheme due to the faster decay in interaction strength, which

helps to reduce unwanted interactions between distant atoms. The van der Waals

regime occurs for atomic separations of around 5-50 µm [Saffman et al., 2010] for
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(a) (b)

Figure 3.1: The Rydberg atom dipole blockade. (a) shows the energy levels of a pair
of atoms where neither occupies a Rydberg state, and (b) shows the effective
energy levels when the atom on the left occupies the Rydberg state |r〉: the
Rydberg level of the atom on the right is shifted to |r′〉.

rubidium 87, although exact values depend upon atom species and which Rydberg

state is used.

The interaction strength in the van der Waals regime is given by

∆E(R) =
C6

R6
, (3.1)

where the coefficient C6 scales with n11 and depends on the types and states of the

atoms involved — values were calculated for a variety of configurations in [Singer

et al., 2005].

Experimentally, single-qubit gate fidelities in excess of 99% have been demon-

strated [Xia et al., 2015, Wang et al., 2016], but two-qubit gates are languishing

behind, with the best experiments achieving fidelities of around 80% when post-

selecting for qubit loss [Jau et al., 2015, Maller et al., 2015]; it is to be noted that this

is due to technical limitations rather than a fundamental limit. For a recent summary

of the state of Rydberg atom experiments, we direct the reader to [Saffman, 2016].
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3.2 Proposed scheme
Our scheme involves using individually-addressable optically-trapped neutral atoms

to represent qubits in a planar code, with quantum computation achieved either by

braiding defects or lattice surgery (see Section 2.2.2). The planar code has been

chosen as it has a comparatively high error threshold and requires qubits to be

trapped in a relatively simple lattice geometry with interactions between a small

number of neighbouring physical qubits regardless of code size, which is a desirable

property for scalability and is not generally the case for concatenated codes. The |0〉
and |1〉 states of each physical qubit are represented by hyperfine ground states of

the atoms, and Rydberg states, labelled |r〉, are used to mediate interactions. Note

that atoms involved in an interaction may utilise different Rydberg states such that

|r〉i and |r〉j are not necessarily the same states for atoms i and j.

Multi-qubit gates performed by exploiting electromagnetically induced trans-

parency (EIT) using the methods in [Müller et al., 2009]. This approach has several

desirable features, including parallel operation, the ability to activate local inter-

actions with large contrast via laser addressing as needed, and robustness towards

interactions between target atoms, provided that Rabi frequencies and interaction

strengths involved (i.e. Rydberg states) are chosen appropriately [Müller et al.,

2009].

An overview of the scheme is shown in Fig. 3.2.

3.2.1 EIT gates
Fig. 3.3 shows the process for using EIT to perform a CNOT gate between a control

and a target qubit, as proposed in [Müller et al., 2009]. Initially, the |1〉c state of

the control atom is resonantly coupled to the |r〉c state using a π laser pulse with

Rabi frequency Ωb. A second π pulse with Rabi frequency Ωc is then used to off-

resonantly couple the |0〉t and |1〉t states of the target atom via an off-resonantly

coupled intermediate state |p〉t, before another π pulse with frequency Ωb is applied

to again couple the |1〉c and |r〉c states of the control atom. Throughout this process,

a strong laser with Rabi frequency Ωa, where Ωa � Ωc, is used to off-resonantly

couple the Rydberg state |r〉t of the target to the intermediate state |p〉t and achieve
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Final measurements and final round of 
error correction

Trap atoms in lattice configuration

Measure stabiliser generators using 
EIT to obtain an error syndrome and 

perform computation

Decode error syndrome to obtain a 
correction

Apply correction/track correction 
classically

Leakage detection and reinitialisation 
of leaked qubits (not every time)

ERROR CORRECTION 
& COMPUTATION

INITIALISATION

COMPLETION OF 
COMPUTATION

(at end of 
computation)

Figure 3.2: An overview of our proposed scheme for quantum computation using Rydberg
atoms. Error correction and computation are performed simultaneously, as
computation by lattice surgery or braiding defects are achieved by disabling
specific check operators at set times during the error correction procedure, so
there is no explicit computation step.

EIT. When the control atom starts in the |0〉c state, the initial Ωb pulse has no effect

and the beam Ωa prevents Raman transfer between the |0〉t and |1〉t states on the

target due to EIT. When the control atom starts in the |1〉c state, the |r〉c state of

the control atom becomes populated after the first Ωb pulse, which in turn shifts

the Rydberg state |r〉t 7→ |r′〉t of the target atom, which takes the Ωc beam out

of resonance and removes the EIT condition on the target, leading to an effective

coupling between the |0〉t and |1〉t states.

This method can be used to perform simultaneous CNOT gates between a single

control qubit and multiple target qubits, making it ideal for syndrome measurement

in the surface code using the measurement circuit shown in Fig. 3.4— every star and
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Figure 3.3: Using EIT to perform a CNOT gate with the method in [Müller et al., 2009]
(control qubit always on the left, target qubit always on the right). (a) shows the
order of the pulses, (b) shows EIT blocking the |0〉t ↔ |1〉t transition on the
target qubit and (c) shows the dipole blockade shifting the EIT out of resonance
and allowing the |0〉t ↔ |1〉t transition on the target qubit.

plaquette has an associated syndrome qubit used to measure the stabiliser generators.

The Ωc pulse is of the order of a few 10s of MHz such that the multi-qubit interaction

can be performed in under a millisecond [Müller et al., 2009].

|0〉 H • H

data
qubits


Figure 3.4: Measuring a star operator using a multi-target EIT CNOT gate. The top qubit

is the ancilla syndrome qubit and is used only for syndrome measurement.
The method for measuring a plaquette stabiliser generator involves applying
Hadamard gates to each data qubit before and after the entangling operation but
is otherwise identical.

The fidelity of the process is dependent upon the chosen atom species, Rabi

frequencies and Rydberg states, but to give an indication, [Müller et al., 2009]

calculated that EIT can be used to perform the operation |+000〉 7→ 1/
√

2(|0000〉+
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|1111〉) with a fidelity in excess of 97%with 87Rb. Higher fidelities may be achieved

by an appropriate choice of the laser parameters and Rydberg states, as discussed

in [MacCormick et al., 2016] and [Mansell and Bergamini, 2014], where the gating

parameters were optimised for different spatial arrangements of the target qubits.

Fidelities alone don’t provide details of the underlying error channels so cannot be

mapped to error correction thresholds: leakage errors, for example, can be less

harmful than Pauli errors [Suchara et al., 2015].

3.2.2 Trapping atoms
Our proposal requires that atoms be trapped in a lattice configuration like that shown

in Fig. 3.5. Deterministic loading of traps remains a major hurdle for Rydberg atom

quantum computation, but methods to overcome this have been suggested, including

starting with a partially loaded lattice and rearranging the qubits [Weiss et al., 2004]

— this approach has been successfully used to construct 2D lattice geometries of

∼ 50 qubits [Barredo et al., 2016] with atomic separations of a few µm using optical

tweezers, which would be sufficient for a prototype device.

Z

Z

Z Z

X

XX

X

Figure 3.5: Arrangement of Rydberg atoms for a planar code. Green shaded qubits de-
note ancilla syndrome qubits used to measure stabiliser generators, and solid
black qubits denote data qubits of the planar code. Using different species
of atoms for syndrome and data qubits may help to reduce crosstalk during
measurement [Beterov and Saffman, 2015].

It should be noted that it is not necessary to construct a perfect lattice of qubits:

we will show in Chapter 4 that low rates of missing syndrome and data qubits can

be tolerated without requiring any additional quantum processing, at the cost of a
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reduction in the Pauli error threshold.

3.2.3 Error correction and computation

Once the atoms are trapped, error correction proceeds by repeatedly measuring the

stabiliser generators of the surface code. For example, to measure a star stabiliser

generator, the syndrome qubit is prepared in the |+〉 state, and then the EIT gate

method is used to apply simultaneous CNOT gates controlled by the associated

syndrome qubit, with the four surrounding data qubits as targets. A Hadamard gate

is then applied to the syndrome qubit before it ismeasured in the computational basis.

This process is shown in Fig. 3.4. Measurement of plaquette stabiliser generators is

performed in the same manner, but with Hadamard gates applied to each data qubit

before and after the CNOT gates.

Each data qubit can only be involved in star or plaquette checks at any time,

so measuring a full set of checks will require at least two stages of measurement:

one for stars and one for plaquettes. However, measuring all star or plaquette

operators simultaneously is likely to lead to strong unwanted crosstalk interactions

between qubits involved in neighbouring checks due to the 1/r6 nature of the van der

Waals interaction, which would lead to unreliable measurement outcomes and could

potentially propagate errors across the lattice. We therefore propose measuring the

check operators in at least four separate stages, as shown in Fig. 3.6. It should be

noted that because of the scaling of the van der Waals interaction with distance, the

number of staggered measurement stages may need to be increased further to avoid

crosstalk. This staggered measurement pattern should not impact the overall speed

of the computation significantly, as the readout stage is several orders of magnitude

slower than the interaction stage, and the actual readout from the syndrome qubits

can be performed simultaneously. Should measurement speed be increased, then

the choice of measurement pattern will depend upon the trade-off between errors

accumulating due to the delay between stabiliser generator measurements and errors

occurring due to crosstalk during the EIT gates.

Table 3.1 shows how the strength of crosstalk interactions scales with the

number of measurement stages. The strength of crosstalk interactions depends on
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Figure 3.6: Stabiliser measurement pattern. Stabiliser generators are measured in at least
four stages to ensure that each data qubit is only involved in a single interaction
at any time in order to reduce crosstalk. Each of the subfigures represents one
stage of measurement, with all four stages required for one complete round
of syndrome measurement. (a) and (b) show measurement of star stabiliser
generators, and (c) and (d) showmeasurement of plaquette stabiliser generators.

the shortest distance between syndrome qubits and data qubits of different stabiliser

generators that are being measured, as this will be the strongest unwanted van

der Waals interaction. Measuring in four stages using the measurement pattern

in Fig. 3.6 results in the crosstalk interactions being ∼ 102 times weaker than the

desired interactions within stabiliser generators (i.e. the CNOT or CPHASE gates).

Increasing the number of measurement stages to 8 and 16 steps reduces the strength

of the crosstalk interactions to∼ 103 times and∼ 104 timesweaker than the stabiliser

generator interactions respectively; this rapid decay in crosstalk interaction strength

is due to the 1/r6 scaling of the van der Waals interaction strength. This analysis is
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only a rough indicator of crosstalk strength as it doesn’t take account of additional

factors such as howmany qubits crosstalk is occurring between or the strength of the

next-strongest crosstalk interaction. However, it indicates that increasing the number

of stages of staggered measurements should be effective at suppressing errors caused

by crosstalk if necessary.

Number of mea-
surement stages

Shortest distance, dmin, be-
tween syndrome and data
qubits of different active
stabiliser generators

Ratio between check oper-
ation strength and crosstalk
strength (d6min/r6)

4
√

5r 125
8 3r 729
16 5r 15625

Table 3.1: Crosstalk interaction strength. Here r is the distance between syndrome and data
qubits that are in the same stabiliser generator, i.e. the interaction distance for
the desired van der Waals interactions.

The time taken to perform a single EIT gate is on the order of 1 µs [Müller

et al., 2009], whereas the lifetime of the Rydberg state of a rubidium or caesium

atom is on the order of 100 µs [Beterov et al., 2009]. The control atom only needs

to be in the Rydberg state while the gate is being performed and not while it is being

measured, so spontaneous decay from the Rydberg state during the interaction will

have a small contribution to the overall error rate.

Fast, high-fidelity measurement is another outstanding challenge for Rydberg

atom devices. Quantum nondemolition measurements with arrays of qubits have

only been performed using relatively noisy electron-multiplying CCDs [Alberti

et al., 2016] rather than discrete photon detectors. Such measurements take around

20 ms [Martinez Dorantes, 2016], so this is currently the limiting factor for the clock

speed of our scheme and will limit the computation speed to frequencies on the order

of 10 Hz until improvements are made. As a comparison, the networked trapped-

ion scheme in [Nickerson et al., 2014] would be capable of kilohertz frequencies,

so this is an important bottleneck to overcome if this Rydberg atom scheme is

to provide a competitive clock speed. Crosstalk during measurement poses an

additional problem, although suggestions for reducing crosstalk by using a two-
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species architecture [Beterov and Saffman, 2015] would be ideally suited to a surface

code quantum computer, where rubidium atoms could be used for the frequently-

measured syndrome qubits and caesium atoms could be used for the data qubits.

In addition to syndromemeasurement, performing full quantum computation by

braiding defects or lattice surgery will require the ability to measure individual data

qubits occasionally. This could be achieved by using CNOT gates and measuring

syndrome qubits, therefore removing the requirement to be able to directly measure

the data qubits.

3.2.4 Leakage and loss

Atoms are non-binary systems andwe aremaking extensive use of non-qubit Rydberg

states of atoms, so there is a risk of leakage errors occurring, where the atom leaves

the computational basis. Atom traps are also imperfect and prone to interference

from external sources, so in addition to leakage, atoms may be lost. It is therefore

prudent to include some form of leakage and loss detection and reduction. As the

effects of leakage and loss are similar, we will use the term leakage to refer to both

types or error.

Methods for dealing with leakage in the surface code were considered

in [Suchara et al., 2015], which showed that low levels of leakage can be toler-

ated at the cost of a lower Pauli error threshold. When a qubit leaks, this qubit can

be reset to a known state, e.g. |0〉, and the error correction can proceed as normal,

with the decoder taking account of the increased probability of an error occurring

on the leaked qubit.

Leakage can be detected by using the circuit in Fig. 3.7 periodically [Preskill,

1997]; the syndrome qubits can play the role of the ancilla qubits required by this

method. The frequency with which leakage detection needs to be performed will

depend on the rate at which leakage errors occur; leakage detection will introduce

additional errors so will ideally be performed as infrequently as possible.
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|ψ〉 X • X • |ψ〉

|0〉

Figure 3.7: Leakage detection circuit from [Preskill, 1997]. If the top qubit is in the
computational basis, then the bottom qubit (an ancilla) will be observed in the
|1〉 state. If the top qubit has leaked or been lost, the bottom qubit will be
observed in the |0〉 state. The top qubit can be reinitialised if leakage or loss
occur. In our scheme, the syndrome qubits can be used as the ancilla qubits.

3.3 Threshold simulations
We have performed a simulation of this scheme to obtain an error correction thresh-

old. The simulation uses the planar code as a quantum memory, and simulates

stabiliser generator measurements, as outlined in Section 3.2, in the presence of

errors.

3.3.1 Error model
The error model used in the simulation is based around a single error parameter p and

is summarised in Table 3.2. State preparation andmeasurement are assumed to result

in the preparation or detection of orthogonal states respectively with probability p.

Eachmulti-qubit EIT gate is modelled to act perfectly followed by depolarising noise

with probability p, i.e. for an n qubit gate, each of the possible 4n − 1 non-identity

Pauli operations will occur with probability p/(4n − 1). Single qubit gates, such as

identity gates and Hadamard gates, are assumed to be free from error on the basis

that such operations will generally havemuch lower error rates than other operations.

Operation Error model
State preparation Orthogonal state prepared with probability p
Single-qubit gate Free from error
n-qubit gate, n > 1 One of the 4n − 1 non-identity Pauli operators is applied

with probability p (each Pauli operator is equally likely)
State measurement Incorrect measurement outcome with probability p

Table 3.2: Error model for Rydberg atom scheme simulations.

As mentioned in Section 2.1, measuring the stabiliser generators leads to a

discretisation of errors: a more general error will collapse into a combination of
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Pauli errors. It is non-trivial to performa simulationwith physical errors or to directly

relate physical errors to a simulatable error model. This error model therefore has

been chosen in lieu of knowledge of the exact error channels and associated Pauli

error rates, as is standard when obtaining quantum error correction thresholds; this

allows for a comparison with thresholds obtained for other approaches, such as those

in [Stephens, 2014].

Leakage errors, such as atom loss or excitation of unintended energy levels,

were not considered in the simulation — such a simulation is left for future work.

3.3.2 Simulation methods

Planar codes with code distance d = 8, 10, 12 and 14 were simulated for 2d rounds

of syndrome measurement using the scheme outlined in Sec. 3.2 and the above error

model, and aminimumweight perfectmatching algorithmbased onBlossomV [Kol-

mogorov, 2009] was used for decoding. Fig. 3.8 details the steps performed by the

simulation.

After preliminary simulations to determine an approximate threshold, final

results were obtained by varying Pauli error rates from 1% to 1.5% in steps of

0.05%, and each combination of code distance and Pauli error rate was simulated

105 times — this number was found to be sufficient to give clean results.

3.4 Results and discussion
The results obtained from the simulations are shown in Fig. 3.9. This figure shows

the logical error rates obtained for each configuration of code distance and Pauli

error rate, calculated by

plogical(d, p) =
#failures(d, p)
#runs(d, p)

, (3.2)

where #failures is the number of failures and #runs is the number of runs.

The error threshold is given by the point where the logical error rates for

different code distances intersect [Dennis et al., 2002, Wang et al., 2003], resulting

in a threshold of pth ≈ 1.25% for our scheme with the chosen error model.
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Decode syndrome and apply a 
correction

Create lattice of qubits with code distance 
d, with all data qubits free of error

Measure all stabiliser generators by 
simulating each quantum operation as 

acting perfectly followed by appropriate 
errors, and store measurement outcomes 

and error states of data qubits

Final round of perfect stabiliser 
generator measurements to project 

code into code space

(after 2d  
rounds)

Obtain homology class of final state by 
checking if combined strings of errors 

and corrections anticommute with 
logical operators

Success

equivalent to 
identity operator

not equivalent to 
identity operator

Failure

(repeat 2d times)

Figure 3.8: Steps for simulating error correction with Rydberg atoms.

As mentioned in the previous section, it is non-trivial to directly link Pauli

error thresholds and gate fidelities — to do so requires further investigation, such

as performing process tomography experiments to determine the underlying error

channel and associated error rates. However, we can use the threshold we have

obtained to calculate the fidelity for a particular quantum state in the idealistic

scenario where our error model corresponds to the actual error channel of the gate.
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Figure 3.9: Logical error rates from error simulations for code distances 8, 10, 12 and 14.
The crossing point gives the resulting error threshold of 1.25%.

In this case, our chosen error channel on a pure quantum state |ψ〉, ε(|ψ〉), is [Nielsen
and Chuang, 2000]

ε(|ψ〉) = (1− p)I |ψ〉 〈ψ| I† +
p

4n − 1

∑
Pi∈Pn,Pi 6=I

Pi |ψ〉 〈ψ|P †i , (3.3)

where n is the number of qubits.

We can then calculate the fidelity, F (|ψ〉 , ε(|ψ〉)) using [Nielsen and Chuang,

2000]

F (|ψ〉 , ε(|ψ〉)) =
√
〈ψ| ε(|ψ〉) |ψ〉. (3.4)

Working through this equation using the state |ψ〉 = |+ + + + +〉 as an exam-

ple, and noting that P †i = Pi, we have

F (|ψ〉 , ε(|ψ〉))2 = (1− p) 〈ψ| I |ψ〉2 +
p

45 − 1

∑
Pi∈P5,Pi 6=I

〈ψ|Pi |ψ〉2 (3.5)

= 1− p+
p

45 − 1
(25 − 1) (3.6)

= 1− 32

33
p, (3.7)
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where we arrived at the second line by noticing that |ψ〉 is stabilised by 25 − 1

five-qubit Pauli operators (excluding the identity), where 〈ψ|Pi |ψ〉2 = 1, and the

remaining Pauli operators are not stabiliser operators of |ψ〉 and therefore result in

〈ψ|Pi |ψ〉2 = 0.

This means that our threshold value of p ≈ 1.25% corresponds to a fidelity

of F ≈ 99.4% for a five-qubit acting gate on the state |ψ〉. Caution must be

taken when drawing conclusions from this figure, but such fidelities are currently

well beyond what has been achieved experimentally with multi-qubit Rydberg atom

gates. However, as mentioned in Section 3.2.1, other types of error, such as leakage,

can be less damaging than depolarising Pauli noise, so the required fidelity may be

lower for processes involving such errors.

3.4.1 Correlated errors

The van der Waals interaction between atoms scales with 1/R6, where R is the

separation between atoms. This polynomial decay means that there may be non-

negligible crosstalk between distant qubits during multi-qubit gates, which could

cause correlated errors between non-neighbouring qubits. Similar errors were con-

sidered for the surface code in [Fowler and Martinis, 2014], which found that logical

error suppression could be achieved even in the extreme case of quadratically de-

caying interactions.

3.5 Conclusion
In this chapter, we have proposed a new scheme for fault-tolerant quantum compu-

tation with Rydberg atoms. Our proposal uses electromagnetically induced trans-

parency to performmulti-qubit gates for syndrome extraction, andwe have suggested

methods to mitigate the effects of leakage and qubit loss. We have found a threshold

of 1.25% for an error model based on this scheme, which we hope will provide an

initial target for experimentalists looking to build a prototype quantum computer

with Rydberg atoms. Prospects for initial scalability are good, with arrays with

on the order of 104 atoms being realistically achievable [Saffman, 2016]. Larger

numbers of qubits would be desirable in the long run, but this should be satisfactory
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for early devices attempting to demonstrate quantum speedup.

Experimental results from a recent 51-qubit quantum simulator based on Ry-

dberg atoms [Bernien et al., 2017] give cause for optimism, but this device falls

short of being a fault-tolerant quantum computer. The atoms in this simulator

were arranged in a one-dimensional array, and interactions were performed using

an Ising-type quantum spin model rather than sequences of circuit model quantum

gates. Achieving quantum operations with sufficiently high fidelities and low loss

rates remains a challenge for the field, but this is mostly due to engineering obsta-

cles rather than physical limitations, so we are optimistic that large improvements

will be made. While quantum gates can be performed at MHz frequencies, slow

measurement for arrays of atoms currently limits the potential clock speed of our

scheme to the order of a few tens of Hz, so this is a key area for improvement.

A thorough error analysis of multi-qubit gates based around EIT is required

to determine whether sufficiently low error rates can be achieved — it is likely

that improvements will be needed to achieve the error rates below 1.25% required

for reliable quantum computation. If necessary, the EIT gates in our proposal can

easily be replaced by another multi-qubit interaction without significantly affecting

the rest of the scheme. It should be noted that a threshold alone cannot be used to

verify that a scheme will work for surface code based quantum computation — a

more convincing analysis is to experimentally demonstrate that a larger system has

superior error suppression compared to a smaller system, as has been accomplished

with bit-flip errors on superconducting qubits [Kelly et al., 2015].

Our findings suggest that while there are advantageous features of Rydberg

atoms, gate fidelities need to be improved before fault-tolerant universal quantum

computation can be achieved — experiments based on other implementations of

quantum computation, such as superconducting qubits [Barends et al., 2014] and

trapped ions [Ballance et al., 2016] are currently ahead of Rydberg atoms. We

nonetheless believe Rydberg atoms are a promising candidate for building a scalable

fault-tolerant quantum computer.



Chapter 4

Fault-tolerance thresholds for the

surface code with fabrication errors

Implementing topological quantum error correction codes has become the focus of

many current experiments, with recent advances made in building prototype devices

consisting of a small number of physical qubits with fine-tuned local interactions

[Cory et al., 1998, Kelly et al., 2015, Reed et al., 2012, Chiaverini et al., 2004,

Jin et al., 2012, Córcoles et al., 2015]. However, it is expected that a universal

fault-tolerant topological architecture will have a very large number of physical

components, and for such large-scale machines the production and fine-tuning of

each individual component will undoubtedly suffer from permanent faults resulting

from imperfect manufacturing processes — we refer to such faults as fabrication

errors. As an example, the latest non-universal D-Wave 2X machine has qubit

manufacturing defects (typically fewer than 5%) [King et al., 2015]. Therefore, it

is important that the performance of current schemes is studied against such a static

error.

The construction of topological codes relies on utilising the non-trivial topology

to encode a logical state, such that the encoded state can only be corrupted by global

errors. This construction is vulnerable to the effects of fabrication errors by design, as

fabrication errors directly damage the topology by introducing new unwanted logical

qubits and lowering the code distance for the encoded logical states, see Fig. 4.1.

The threshold performance of the surface code has been extensively studied
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aq bq

Figure 4.1: The impact of fabrication errors on the topology of the surface code. The toric
code (a surface code on a torus) is used here to depict such errors. (a) The
construction of topological codes relies on the fabrication of a perfect topology
in order for the encoded logical state to be globally protected. (b) Fabrication
errors have the effect of damaging the topology by introducing new degrees of
freedom and shortening the distance of the code.

against many noise models, such as for Pauli errors [Wang et al., 2003, Wang et al.,

2011, Stephens, 2014], stochastic qubit loss [Stace et al., 2009, Stace and Barrett,

2010, Fujii and Tokunaga, 2012] and leakage [Suchara et al., 2015, Fowler, 2013a,

Whiteside and Fowler, 2014, Ghosh and Fowler, 2015, Wood and Gambetta, 2017],

but much less focus has been given to errors resulting from imperfect manufacturing

processes.

In this chapter, we investigate the threshold performance of the surface code in

the presence of fabrication errors, and we show that the ability to disable a qubit or an

entangling gate (a link) is sufficient to map any fabrication error into disabled qubits,

hence allowing us to always form larger stabiliser operators, the so-called supercheck

operators [Stace et al., 2009]. The scheme we present does not require anything in

addition to what is already necessary to perform surface code quantum computation

by code deformation or lattice surgery. The techniques presented here are most

relevant to chip-based topological schemes, such as those using superconducting

qubits or quantum dots.

Two recent approaches have been proposed to mitigate the effects of fabrication

errors; the first is to construct a robust topology that tolerates sparse fabrication

errors using additional sacrificial qubits [Tang and Miao, 2016], and the second is to

use primitive SWAP gates in the construction of the syndrome read-out circuit [Na-

gayama et al., 2017]. Our approach differs from these by keeping the construction
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of the surface code unaltered with no additional quantum processing. We show

that by directly measuring the defective stabiliser generators as gauge operators, the

outcome of the supercheck operators can be obtained deterministically.

This chapter is structured as follows. In Section 4.1 we define different types of

fabrication errors and show how to perform the syndrome extraction on a defective

lattice by constructing the outcome of supercheck operators from the gauge qubit

operators. We outline our noise model and simulation parameters in Section 4.2,

and present the fault-tolerant thresholds we obtain in Section 4.3. In the final two

sections, we discuss our approach in comparison to other schemes and conclude.

4.1 Fabrication errors
The stabiliser generators of the surface code are multi-qubit operators that can be

difficult to measure directly, so an ancilla qubit (the syndrome qubit) is associated

with each star and each plaquette to assist with the measurement process; each

stabiliser generator can then be measured by performing a sequence of two-qubit

gates between the ancilla qubits and data qubits, as discussed in Section 2.2. By

performing the two-qubit gates in a z-shaped order, as shown in Fig. 4.2, all the

stabiliser generators can be measured simultaneously in a total of six time-steps:

one for syndrome qubit preparation, four for two-qubit gates and one for syndrome

qubit measurement (it may be possible to combine measurement and initialisation

for some implementations, but we consider them to be separate processes in our

simulations). These six time steps constitute one round of syndrome measurement.

We define fabrication errors as permanent faults to components caused during

the initial chip-manufacturing process of the surface code, or due to failed compo-

nents arising during the lifetime of the chip. It is important to emphasise that the

locations of the fabrication errors are known before the surface code device is used

for computation (i.e. the fabrication errors are known deterministic failed compo-

nents). In addition, we assume that the user of the surface code chip can turn off any

of the components. We consider two types of fabrication error: qubit fabrication

errors and link fabrication errors. A qubit fabrication error is considered to be a
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Figure 4.2: Syndrome extraction circuits for star (left) and plaquette (right) stabiliser gener-
ators. Each syndrome extraction circuit involves six temporal steps: preparation
of the syndrome qubit, four CNOT gates, and syndrome qubit measurement.
The data qubits are idle during the preparation and measurement steps. The
CNOT gates are always applied in a specific order, in this case north (n), west
(w), east (e) then south (s) (forming a zigzag shape), to ensure all stabiliser
generators commute when measured simultaneously.

qubit (either a data qubit or syndrome qubit) that is permanently faulty and cannot

be used to store quantum information reliably. A link fabrication error is considered

to be an error that prevents two qubits from interacting, i.e. it prevents a CNOT or

CPHASE gate from being performed between a syndrome qubit and a data qubit.

Before proceeding, it is useful to introduce some additional terminology to

describe the different types of failed components we will encounter in our analysis.

We use the term faulty to strictly refer to a component with a permanent fabrication

error, and the term disabled to refer to a component that we have chosen to disable.

Moreover, we call a check operator damaged if at least one of its four links or data

qubits suffers a fabrication error.

Both types of fabrication error are potentially detrimental for the surface code

construction and, left unchecked, can introduce new logical qubits and reduce the

code distance. For example, if a syndrome qubit is faulty, one might be tempted to

simply disable the associated stabiliser generator. But a disabled star or plaquette

creates a new logical qubit that can interact with our encoded logical state, therefore
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reducing the code distance. A reduction in code distance alone may not be a problem

in itself, but if we assume fabrication errors are randomly spaced throughout the

code, then the code distance will start to shrink with increasing L, leading to a

pseudo-threshold behaviour for smaller lattice sizes that disappears for larger lattices.

Wewill now show how the detrimental effect of qubit and link fabrication errors

can be mitigated at no additional hardware cost by disabling data qubits.

4.1.1 Measuring supercheck operators and gauge qubits

The idea of using supercheck operators was first introduced to combat lost data

qubits in the toric code [Stace et al., 2009]. This approach works on the basis that

the product of two stabiliser generators is also in the code stabiliser, so when a data

qubit is lost (i.e. an edge is removed from the lattice) the two adjacent damaged

stabiliser generators can be jointly measured— forming a larger supercheck operator

— to avoid the lost data qubit, hence preserving the stabiliser structure of the code.

This same approach can in theory be used for data qubit fabrication errors.

However, measuring a supercheck operator directly is often a non-trivial task as it

may require interaction between arbitrarily separated qubits or involve many SWAP

gates, as was shown in [Nagayama et al., 2017], which can affect measurement

of nearby stabiliser generators. Our approach for handling fabrication errors is

based on the supercheck operator approach, but makes use of gauge qubits. Instead

of measuring the supercheck operators themselves, we use the gauge qubits to

construct the outcomes of the supercheck operators from the direct measurement

outcomes of damaged stabiliser generators, such that all interactions remain as

nearest-neighbour qubit interactions and no SWAP gates are required; any additional

processing required is performed classically.

Consider the simple case of disabling a data qubit as shown in Fig. 4.3; the

adjacent damaged generators will anti-commute, but their supercheck operator prod-

uct remains deterministic. Each disabled data qubit in the surface code (except data

qubits on the edge of the lattice, see Sec. 4.1.4) introduces one degree of freedom,

or gauge qubit, similar to when a stabiliser is turned-off to perform defect-based

computation. The logical Pauli X and Z operators of these gauge qubits are the
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damaged star and plaquette stabilisers — we will refer to them as the gauge oper-

ators. When these anti-commuting gauge operators are measured, the logical state

of the gauge qubit is randomised, but the state of the gauge qubit is unimportant, so

this randomisation is not a problem. Importantly, strings ofX or Z operators cannot

terminate undetectably in this region, unlike when a stabiliser generator is turned

off— these gauge operators reduce the code distance slightly, but code distance still

scales with physical lattice size.

aq

bq cq

Figure 4.3: Forming supercheck operators in the presence of data qubit fabrication errors.
When a data qubit is disabled or faulty (shown in red with a dashed border),
the associated links are disabled (a), resulting in four adjacent damaged check
operators. The product of two stabiliser generators is used to form a supercheck
operator, effectively removing this qubit from the code. This process occurs in
both the primal (b) and dual (c) lattices. Note that the CNOT gates shown in
this figure are those used when measuring the supercheck operators as products
of gauge operators.

The supercheck operator product of damaged stabiliser generators commutes

with every damaged stabiliser generator, so the supercheck operators remain in the

stabiliser group and can be used for error correction during the classical processing
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stage by treating the products of the damaged stars and plaquettes as supercheck

operators.

4.1.2 Mapping fabrication errors to faulty data qubits

We saw in the previous section how in the presence of faulty (or disabled) data

qubits the outcome of a supercheck operator can still deterministically be obtained

by taking the product of the outcomes of the damaged operators. We will exploit

this fact to map both link fabrication errors and syndrome qubit fabrication errors

to disabled data qubits such that supercheck operators can always be formed.

The mapping works as follows. If a link fabrication error occurs, it is mapped

to a disabled qubit on the data qubit to which it connects, so that the data qubit is

disabled along with its associated links, as shown in Fig. 4.4. If a syndrome qubit

fabrication error occurs, it is mapped to disabled qubits on all of the surrounding data

qubits, so that all these data qubits along with their associated links are disabled, as

shown in Fig. 4.5. As a result, we see that syndrome qubit fabrication errors have the

most destructive effect on the lattice in our approach, which highlights an important

bias between data and syndrome qubits.

Figure 4.4: Mapping link fabrication errors to disabled data qubits; faulty and disabled
components are shown in red with a dashed border. When a link fabrication
error occurs (left), the data qubit associated with the link is disabled (middle)
and superstars and superplaquettes are formed on the primal and dual lattices
respectively (right).

4.1.3 Percolation thresholds and effective code distance

The use of supercheck operators is limited by percolation — if a string of faulty or

disabled data qubits percolates the lattice, a logical qubit cannot be encoded as it is
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aq

bq cq

Figure 4.5: Mapping syndrome fabrication errors to disabled data qubits; faulty and disabled
components are shown in red with a dashed border. When a syndrome qubit
fabrication error occurs, all the data qubits involved in the associated stabiliser
generator are disabled (a). Large superstars (b) and superplaquettes (c) are
formed around these disabled data qubits.

impossible to form consistent spanning logical operators and supercheck operators.

Note that it might be possible to use part of the lattice as a smaller code, but we will

consider percolating fabrication defects to be a manufacturing failure as the device

cannot be used in its intended manner, and hence the surface code is discarded.

In percolation theory, one generally considers graphs formed of sites (nodes)

and bonds (edges between nodes), and percolation thresholds can be defined with

regards to each of these. If each site (bond) has a probability p of of existing

for a given graph structure with a size parameter n, the threshold for site (bond)

percolation is the minimum value of p required to guarantee the existence of a path

from one side of the graph to the other as n tends to infinity. Above the percolation

threshold, increasing n increases the probability of a percolating path, and below the

percolation threshold, increasing n decreases the probability of a percolating path.

The square lattice structure of the surface code implies that the qubit percolation

threshold for the surface code is equivalent to the bond percolation threshold for the

square lattice, which is a known analytic value of 50% [Sykes and Essam, 1964].
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By using our mapping to disabled data qubits, we can derive approximate analytic

percolation thresholds in the presence of qubit and link fabrication errors. These

percolation thresholds provide upper bounds for tolerable fabrication error rates

when building surface code devices because increasing the code distance when

fabrication error rates are beyond these threshold values increases the probability

that percolating defects occur, so logical error rates can no longer be reduced by

increasing the code distance.

In the bulk of the lattice, each data qubit has four links. With a link fabrication

error rate of plink, the probability of each data qubit being disabled due to faulty

links is 1− (1− plink)4, i.e. one minus the probability of no faulty links occurring.

This implies that 50% of data qubits will be disabled when 1 − (1 − plink)4 = 0.5,

or equivalently when plink = 1 − 4
√

0.5 ≈ 0.159. This analysis does not account

for qubits at the edges of the planar code having fewer than four links, but the

percolation threshold is an asymptotic behaviour, so this effect can be neglected for

large lattices.

An analogous argument can be used to calculate an approximate threshold for

qubit fabrication errors. A data qubit will be disabled when it is either faulty or

one or more of the four syndrome qubits it is linked to are faulty. The probability

that a particular qubit is disabled when the qubit fabrication error rate is pqubit is

1− (1− pqubit)5. Therefore, the qubit fabrication error percolation threshold occurs
approximately when 1 − (1 − pqubit)5 = 0.5, or pqubit = 1 − 5

√
0.5 ≈ 0.129. This

analysis is less accurate than that for link fabrication errors as it does not account for

the possible correlations between disabled data qubits due to faulty syndrome qubits.

However, localised clusters of disabled qubits are generally less likely to percolate

than data qubits that are disabled at random, so we expect the actual threshold to be

slightly higher.

Results from our numerical simulations for planar code percolation, shown in

Fig. 4.6 and Fig. 4.7 for link and qubit fabrication errors respectively, are in strong

agreement with our above approximations. These simulations modelled the creation

of imperfect planar code lattices with intended code distances of 50, 100 and 200
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and tested for the occurrence of percolation errors, with each code distance and error

rate combination performed for 104 runs. We find the link fabrication threshold,

Fig. 4.6, to be just under 16% and the qubit fabrication threshold, Fig. 4.7, to be

between 14% and 15% (higher than the analytic estimate of 12.9% due to data qubit

loss occurring in localised clusters, as expected).
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Figure 4.6: Percolation rates for link fabrication errors only. The crossing point gives a
threshold of just under 16%.
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Figure 4.7: Percolation rates for qubit fabrication errors only. The crossing point gives a
threshold of around 14.5%.
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Effective code distance

Forming supercheck operators leads to a reduction in the effective code distance

compared to the intended code distance as it reduces the length of the shortest

logical operator. We have analysed how the average effective code distance varies

with link and qubit fabrication errors, as shown in Fig. 4.8 and Fig. 4.9, respectively.

These graphs were produced by simulating the imperfect fabrication of planar code

lattices with intended code distances 7, 9, 11 and 13, with each type of fabrication

error varied independently, and then finding the effective code distance of each lattice

by identifying the weight of the lowest-weight logical operator. The lowest-weight

logical operator is found by using a path finding routine to identify the shortest path

across each of the primal and dual lattices, with the lowest-weight logical operator

being the shortest of these. Each code distance and error rate combination was

repeated 104 times, and the effective code distance was then averaged over all runs,

with the average being calculated using only non-percolated lattices to ensure that

the average effective code distance does not fall below 1.
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Figure 4.8: Average effective code distance for link fabrication errors only.

For an undamaged surface code, the code distance scales linearly with the

dimension L of the lattice. If this relationship holds for lattices with fabrication

errors, we would expect a relationship between effective distance and intended
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Figure 4.9: Average effective code distance for qubit fabrication errors only.

distance to be of the form deffective = c(p)dintended, where c(p) is a number that varies

with the fabrication error rate p, such that the ratio between effective code distance

and intended code distance should be constant for a given fabrication error rate.

Fig. 4.10 and Fig. 4.11 show the how the value of deffective/dintended scales with

link and qubit fabrication error rates respectively; if the effective code distance scales

linearly with the dimension of the lattice then we expect the value of deffective/dintended
to be independent of the intended code distance. As can be seen in the figures,

the value initially seems to be almost independent of intended code distance at

low fabrication error rates. However, as the fabrication error rates increase, the

relationship weakens (this is expected as the effective code distance is asymptotic

to 1 in Fig. 4.8 and Fig. 4.9). The dependence of deffective/dintended on intended code

distance appears to be weaker for the larger lattice sizes, which suggests this may be

a finite-size effect.

4.1.4 Complications

There are two complications that occur when using gauge operators to measure

supercheck operators. The first is that supercheck operators can only be measured

during alternating rounds of syndrome measurement, and the second involves faulty

data qubits at the edge of the lattice.
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Figure 4.10: Ratio between average effective code distance and intended code distance for
link fabrication errors only.
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Figure 4.11: Ratio between average effective code distance and intended code distance for
qubit fabrication errors only.

The interleaved z-shaped measurement pattern that allows all stabiliser gener-

ators to be measured simultaneously on a perfect lattice can no longer be used for

supercheck operators. Ensuring that the product of damaged stabilisers is determin-

istic requires that no anti-commuting operations are performed while the constituent

gauge operators of the supercheck operators are being measured; this is not possible

with the normal measurement pattern, as the example in Fig. 4.12 shows. This prob-
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lem is mitigated by measuring star and plaquette type supercheck operators during

alternating rounds. All undamaged stabiliser generators are measured every round

as normal; this means that supercheck operators are measured half as frequently as

undamaged stabiliser generators, and these measurements therefore have a higher

effective error rate than undamaged stabiliser generator measurements.

a b

c

α

β

γ

Figure 4.12: Effective order of gauge operator measurement with damaged checks. If the
normal z-shaped measurement pattern is used, the effective order in which the
gauge operators are measured is c, γ & β, a & b, α. The anti-commutation
randomises the supercheck operator products, so star and plaquette gauge
operators are instead measured in alternating rounds to ensure the supercheck
operator outcome is deterministic.

The second issue occurs when data qubits are faulty at the edges of the lattice.

If there is a data qubit fault such as that shown in Fig. 4.13, then there is no

corresponding stabiliser generator to pair it with. Therefore, the edge of the lattice

must be redefined by completely disabling the damaged stabiliser generator. This

process must then be repeated if any of the qubits in this new edge are faulty — the

process effectively results in a supercheck operator being disabled.

4.2 Threshold simulations

4.2.1 Error model
The error model used in the simulations is outlined below, and summarised in

Table 4.1.

Every quantum operation is modelled to experience computational errors with

a probability denoted by the parameter pcomp. Each two-qubit gate is assumed to
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Figure 4.13: Dealing with fabrication errors at the edge of the lattice; faulty and disabled
components are shown in red with a dashed border. When data qubits at the
edge of the lattice are disabled (left, middle), the product of gauge operators is
not in the stabiliser, so such stabiliser generators must be disabled rather than
forming supercheck operators (right).

Operation Error model
Qubit fabrication Each qubit is permanently faulty with probability pqubit
Link fabrication Each link is permanently faulty with probability plink
State-preparation Orthogonal state prepared with probability pcomp
Single-qubit gate One of X , Y and Z is applied with probability 4

5
pcomp

(each is equally likely)
Two-qubit gate One of the 15 non-identity Pauli operators is applied with

probability pcomp (each is equally likely)
State measurement Incorrect measurement outcome with probability pcomp

Table 4.1: Error model for surface code simulations with fabrication errors.

act perfectly followed by depolarising Pauli noise with probability pcomp. Single

qubit gates (only the identity gate in our simulations) are assumed to act perfectly

followed by depolarising noise with probability 4pcomp/5. The justification for this

follows that of [Knill, 2005]: 4p/5 is the marginal error rate on each qubit involved

in a two-qubit gate experiencing depolarising noise with probability p. If we were

to choose a single-qubit error rate of pcomp, this would imply that single-qubit gates

are more prone to errors than two-qubit gates, which is unlikely to be the case in

a real device. Preparation is considered to have probability pcomp of preparing the

state in an orthonormal basis, and measurement is considered to have a probability

pcomp of giving the incorrect outcome.

All fabrication errors are considered to occur independently before error correc-

tion is initiated, and the locations of all fabrication errors are assumed to be known.

A qubit fabrication error occurs with probability pqubit for each qubit (syndrome
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and data qubits) and link fabrication errors occur with probability plink for each link.

The parameters pcomp, pqubit and plink are varied independently.

4.2.2 Simulation methods

An overview of the simulation is shown in Fig. 4.14. Each simulation starts by

generating a lattice of qubits and links with the appropriate fabrication error rates.

The fabrication errors are then mapped to data qubit fabrication errors using the

mapping described in Sec. 4.1.2, and suitable logical operators are found by using

a path finding routine on the primal and dual lattices. If a logical operator cannot

be found, then the lattice is percolated by faulty (or disabled) data qubits and the

simulation is terminated.

When a logical operator is found, 2 × L rounds of syndrome measurement

are performed. Each round consists of syndrome qubit initialisation, four stages of

two-qubit gates and then syndrome qubit measurement. Each of these is considered

to take one unit of time, and any qubit that is not involved in a two-qubit gate,

measurement or preparation during a particular time step undergoes an identity

gate.

The code is initialised with a round of perfect star and plaquette measurements

to get the error-free outcomes for each star and plaquette measurement, and the

simulations are capped with a final round of perfect measurement to project the final

state into the code space. All other rounds of stabiliser measurement use the Pauli

error model given above.

We use the CHP stabiliser routine [Aaronson and Gottesman, 2004] to simulate

the quantum state of the lattice during all gates and measurements to ensure that

the gauge operators give the correct outcomes. Once all measurements have been

obtained, a minimum weight perfect matching routine involving Blossom V [Kol-

mogorov, 2009] is used to find a correction based on the obtained syndrome. Edge

weights for the perfect matching routine are set using the same methods as [Bravyi

and Vargo, 2013, Suchara et al., 2015] to optimise the matching, where each edge

weight is inversely proportional to probability of a single error occurring at that

location. Syndrome measurement is simulated on both the primal and dual lattices
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Decode syndrome and apply a 
correction

Create lattice of qubits with code 
distance L, with each qubit having 

probability pqubit of being faulty and 
each two-qubit gate having probability 

plink of being faulty

Measure checks (alternating damaged 
stars and plaquettes) by simulating 

each quantum operation acting 
perfectly followed by appropriate Pauli 
noise, and store measurement outcomes 

and error states of data qubits

Final round of perfect stabiliser 
generator measurements to project 

code into code space

(after 2L  
rounds)

(repeat 2L times)

Obtain homology class of final state by 
checking if combined strings of errors 

and corrections anticommute with 
logical operators

Map faulty links and faulty syndrome 
qubits to disabled data qubits

Success

equivalent to 
identity operator

not equivalent to 
identity operator

Failure

Check for percolating strings of faulty 
and disabled data qubits

Combine gauge measurement 
outcomes to form superchecks

no percolation 
error

percolation 
error

Figure 4.14: Steps for simulating surface code error correction with fabrication errors.
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to allow for accurate error propagation, but error correction is only performed on one

lattice to reduce computation time (the symmetry between primal and dual lattices

means that logical error rates are almost identical). Once a correction has been

found and applied, we test for the occurrence of a logicalX error by checking if the

combined error and correction string commutes with the logical Z operator.

Pauli error rates were varied from pcomp = 0.05% to pcomp = 1.00% in steps of

0.05%, with additional values of 0.001% < pcomp < 0.010% used when the Pauli

error threshold became very small. Each fabrication error rate was separately varied

from 0% in steps of 2% until no threshold could be obtained, with an additional

simulation performed at 5% fabrication error rate to allow for a direct comparison

with [Nagayama et al., 2017]. Each combination of error rates and code distance was

simulated for a minimum of 5× 104 runs, as this was number found to be sufficient

to obtain the required thresholds.

4.3 Results
Our main result is summarised in Fig. 4.16, which shows how the planar code

Pauli error threshold varies with each type of fabrication error. Thresholds for each

fabrication error rate were obtained by finding the intersection of logical error rates

when results for each code distance are plotted on the same graph [Wang et al.,

2003]; an example is shown in Fig. 4.15 for the results obtained when pqubit = 4%,

which results in a threshold pth ≈ 0.45%. Instances in which faulty or disabled data

qubits percolate the lattice, such that a logical qubit cannot be encoded, have been

discounted when calculating the threshold, such that the logical error rate is given

by

plog =
#logical errors

#total runs − #percolation errors
, (4.1)

where #i is used to signify ‘number of i’. This allows us to investigate the com-

putational performance of viable devices only without thresholds being affected by

percolation errors. The percolation graphs in Fig. 4.6 and Fig. 4.7 give an indi-

cation of the frequency of such percolation errors (i.e. the proportion of devices
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manufactured that are not viable to use for computation).
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Figure 4.15: Logical error rates with qubit fabrication error rate pqubit = 4%. The error
threshold is given by the intersection point, in this case pth ≈ 0.45%.
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Figure 4.16: Pauli error thresholds for link, plink, and qubit, pqubit, fabrication errors. An
exponential is fit applied to each dataset: 0.71e−20plink for link fabrication
errors and 0.70e−22pqubit for qubit fabrication errors.

As expected, qubit fabrication errors have a slightly more damaging effect on

the threshold than link fabrication errors. With no fabrication errors, the chosen

error model results in a Pauli error threshold of pcomp ≈ 0.71%. As pqubit and plink
increase, the thresholds of pcomp decrease, with the respective thresholds dropping
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below 0.1%when pqubit & 8% and plink & 10%. It has not been possible to find clean

thresholds to determine the behaviour of the thresholds beyond plink = 10.6% and

pqubit = 8.4%; this is due to effective code distances converging as fabrication error

rates increase — finding thresholds requires a range of code distances, but as shown

in Fig. 4.8 and Fig. 4.9, the average effective code distances for link fabrication error

rates of 12% qubit fabrication error rates of 10% are all . 2 for the lattice sizes

simulated.

An exponential fit of the form α exp(β pfab) to each data set results in fits of

α = 0.70, β = −22 for qubit fabrication errors and α = 0.71, β = −20 for link

fabrication errors. These fits fail close to the percolation threshold but are in good

agreement with the simulation results for pqubit ≤ 0.08 and plink ≤ 0.1.

4.4 Discussion
The logical error rate, plog, depends on both the intended code distance L and

the actual distance L′, such that plog = plog(L,L
′). Fabrication errors mean that

L′ ≤ L. We find that plog(L′, L′) < plog(L,L
′), i.e. fabrication errors degrade the

code performance beyond simply reducing the code distance, as shown in Fig. 4.17

for distance 9 codes. The larger codes perform worse because the higher-weight

supercheck operators are more prone to error and give less-specific information

about the location of an error compared to a native code. This suggests that building

a larger surface code is generally only beneficial if the fabrication error rate does not

increase substantially.

Our thresholds for qubit fabrication errors are slightly lower than that of [Na-

gayama et al., 2017]. This is because a faulty syndrome qubit is more damaging in

our scheme as each syndrome qubit fabrication error is mapped to multiple disabled

data qubits; this results in lower percolation error thresholds and lower effective

code distances for qubit fabrication errors. However, the gauge operator approach

we present may be better for handling data qubit fabrication errors as it requires fewer

logic gates. It is also worth noting that from the point of view of the implementation,

our code does not require the performance of any extra gates, as the approach pre-
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Figure 4.17: Logical error rates for codes with fabrication errors with intended distance
L = 13 and actual distance L′ = 9 compared to native distance 9 codes with
no fabrication errors. The native codes have lower logical error rates.

sented in [Nagayama et al., 2017] does; all the adaptations required by our scheme

involve a change in the measurement order and disabling particular measurements,

which may be a more amenable adaptation for some physical systems. It should

be noted that thresholds are dependent upon the chosen error model, so one cannot

claim that a given approach is definitively better than the other in all circumstances.

Link fabrication errors were not considered in [Nagayama et al., 2017].

4.4.1 Scaling of supercheck operator weight

Additional simulations were performed to investigate the scaling of the weight of the

largest supercheck operator as code distance increases. These simulations modelled

the creation of lattice sizes with code distances 25, 50, 100 and 200 with the same

fabrication error rates used in the main simulations, and for each run the weight of

the largest supercheck operator was determined (no error correction was performed).

Each combination of error rates and code distance was performed for 104 runs.

We find that larger lattice sizes have higher-weight supercheck operators —

Fig. 4.18 shows the results for plink = 10%. This phenomenon can be understood by

considering the similarity between clustering in subcritical percolation, where the

size of the largest cluster scales logarithmically with the size of the system [Bazant,
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2000], and forming supercheck operators on a surface code.
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Figure 4.18: Rate at which highest-weight supercheck operators occur for link fabrication
error rate plink = 10%. The weight of the highest-weight supercheck operator
appears to increase logarithmically with code distance as expected [Bazant,
2000]. In this case, the peaks are at weights of 40, 65, 88 and 115 for code
distance 25, 50, 100 and 200 respectively (a spacing of approximately 25 each
time the code distance doubles), which results in a modal supercheck operator
weight fitting of log1.028(d)− 76.10.

Higher-weight supercheck operators aremore prone to error, so this effectmeans

that the thresholds observed for smaller lattice sizes may not be stable and could

lead to pseudo-threshold behaviour, where the threshold disappears with increasing

lattice size. This is not unique to our approach; it is a feature of any surface code

or topological cluster state code based around the supercheck operators introduced

in [Stace et al., 2009], including [Barrett and Stace, 2010] and [Nagayama et al.,

2017].

We note that existing threshold proofs for the surface code are unlikely to hold

when measuring supercheck operators as products of gauge operators. Indeed, the

scheme in this chapter shares many features with Bacon-Shor codes [Bacon, 2006],

which are subsystem codes where stabiliser operators are formed by multiplying the

outcomes of gauge operators. Bacon-Shor codes do not have true thresholds [Napp

and Preskill, 2013], although they do exhibit error suppression at suitably low code

distances, so it is possible the same is true when measuring supercheck operators of
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the surface code as products of gauge operators.

However, concatenated codes [Knill and Laflamme, 1996], which do have

thresholds, also have check operators that increase in weight with increasing code

distance, so the increase in the weight of the supercheck operators alone does not

rule out the possibility that thresholds exist. Proving or disproving the existence of

a threshold, and finding a way to overcome this problem if necessary, remains an

open problem.

4.5 Conclusion
Wehave presented a full analysis for the threshold performance of the surface code in

the presence of fabrication errors and have showed that the ability to disable qubits or

links (two-qubit gates) is sufficient to map the fabrication errors into lost qubits, such

that the syndrome extraction can be performed without the need of any additional

hardware components. Our method combines the supercheck operator approach

and the concept of gauge qubit operators to deterministically obtain the outcome

of supercheck operators. Interestingly, our approach shows that syndrome qubit

fabrication errors have a more drastic damaging effect on the lattice in comparison

to data qubit fabrication errors, showing that more care is required to fabricate high

quality syndrome qubits.

One advantage of the scheme presented here compared to alternative methods

is that it should be applicable to non-gate-based implementations where SWAP gates

may not be feasible, such as [O’Gorman et al., 2016]. However, in schemes where

the SWAP gate is readily available, the gauge operator scheme presented in this

work and the SWAP gate scheme of [Nagayama et al., 2017] can be complementary

schemes. For data qubit fabrication errors, the scheme presented here requires fewer

quantum operations to obtain syndrome data so would be preferable. However,

the scheme in [Nagayama et al., 2017] may be preferable to deal with syndrome

qubit fabrication errors, as it still allows for the measurement of stabiliser generators

associated with faulty syndrome qubits. Therefore, a hybrid of both approaches

could lead to an improvement in the overall performance.
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The fabrication error model presented here can be expanded to include cases

where the fabrication process results in components of different quality, such that

some components are fabricated with higher chance of being prone to computational

Pauli errors. Such an asymmetry in the quality of fabricated components is to be

expected for large-scale systems, but we leave such analysis for future investigations.



Chapter 5

Fault-tolerant quantum computation

with non-deterministic entangling

gates

There are many current experimental proposals for building a universal quantum

computer, and all of these suffer from the accumulation of errors that arise from

the decoherence of physical quantum operations; these errors can be handled using

standard quantum error correction codes such as the surface code. Some implemen-

tations — such as those that utilise optical components in constructing large-scale

linear optical architectures [Knill et al., 2001, Browne and Rudolph, 2005, Rudolph,

2017, Gimeno-Segovia et al., 2015] or networks of trapped ions [Häffner et al.,

2008, Nickerson et al., 2014] — suffer from an additional problem in the form of

non-deterministic entangling operations, a problem that has not been widely studied.

In this chapter, we show that it is possible to perform fault-tolerant quantum

computation with probabilistic entangling gates using the well-established topolog-

ical cluster state scheme due to Raussendorf [Raussendorf et al., 2006, Raussendorf

et al., 2007] — a three-dimensional measurement-based scheme that supports topo-

logical error correction. We propose two approaches for handling non-deterministic

entanglement generation in Raussendorf’s scheme: a non-adaptive approach, which

involves the same measurement pattern as the original scheme with no additional

quantum processing, and an adaptive approach, which involves changing the basis
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Unit Cell

Figure 5.1: The three-dimensional topological cluster state, constructed from cubic cells
(inset); bulk qubits are hidden for clarity. Only the ends of strings of Z errors
(blue) are detected by check operators (highlighted in red). The correlation
surface (green surface) spans the lattice in the time-like direction (green arrow).

in which some qubits are measured.

The work in this chapter is primarily motivated by linear optical architec-

tures [Knill et al., 2001, Browne and Rudolph, 2005, Rudolph, 2017, Gimeno-

Segovia et al., 2015], but the analysis is sufficiently general that the qualitative results

are relevant to other implementations with non-deterministic entanglement. The ap-

proach we describe relaxes the need for deterministic or repeat-until-success [Lim

et al., 2006] entanglement generation, and we show that Raussendorf’s scheme can

tolerate a degree of failure in the construction of the underlying cluster state bonds.

Previous work along similar lines of research include [Barrett and Stace, 2010,

Whiteside and Fowler, 2014], which considered qubit loss and leakage in topological

cluster states, [Li et al., 2010], which considered the construction of topological

codes with non-deterministic entanglement between multi-qubit resource states,

and [Fowler et al., 2010], which considered surface code based quantum repeaters

with non-deterministic entanglement between nodes but deterministic entanglement

within nodes. The work presented in this chapter differs from that of [Li et al., 2010]

in that we are considering non-deterministic entanglement between all qubits, rather
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than between networks of multi-qubit nodes.

5.1 Topological cluster states
In this chapter, we discuss the cubic topological cluster state (TCS) [Raussendorf

et al., 2006, Raussendorf et al., 2007], which consists of qubits in a lattice con-

figuration based around the unit cell shown in Fig. 5.1; the edges between qubits

in this figure are referred to as bonds. Entanglement is created between carefully-

chosen neighbouring qubits during initialisation to form a highly-entangled cluster

state [Briegel and Raussendorf, 2001], and the error correction and quantum com-

putation then proceed by single-qubit operations alone with no further multi-qubit

measurements or gates required— this scheme is an example of measurement-based

quantum computation [Raussendorf and Briegel, 2001]. Topological protection is

achieved by having the surface code as a substrate at each layer of the cluster state,

such that the two-dimensional logical operators of each surface code are expanded

into to the third dimension to form correlation surfaces that encode logical infor-

mation globally.

The quantum state of the lattice is equivalent to that obtained by preparing every

qubit in the |+〉 state and performing CPHASE gates between qubits linked by bonds,

but the lattice can be created in different but equivalent ways without explicit |+〉
state preparation and CPHASE gates, such as the use of fusion gates [Browne and

Rudolph, 2005] in the linear optics scheme in [Gimeno-Segovia et al., 2015], where

GHZ states are used to form the cluster states and CPHASE gates are not explicitly

performed. TCS quantum computation is qualitatively similar to a defect-based

surface code scheme on a three-dimensional lattice of qubits where one physical

direction acts as a time-like dimension; we will therefore refer to the dimensions

of the lattice as space-like or time-like. This three-dimensional nature means TCS

schemes are less suitable for chip-based quantum computation, but well suited to

schemes based on linear optics. As with the surface code, we will focus mostly on

using topological cluster states as a quantum memory to explain their key features.

The structure of the TCS lattice gives rise to primal and dual lattices that are
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used for error correction — two interleaved cubic lattices, one with the black qubits

from Fig. 5.1 on the centre of each cube face and the other with the red qubits on

the centre of each face. For each qubit, i, in a cluster state, there is an associated

stabiliser operator, Si, of the form

Si = Xi

⊗
j∈N(i)

Zj, (5.1)

where N(i) is the neighbourhood of qubit i (the adjacent qubits). Therefore, for

each cube face, fi, centred on qubit i, there is an associated stabiliser generator Si
with an X operator acting on qubit i and Z operators acting on the adjacent qubits.

By multiplying the six face operators of each cube together, theZ contributions

cancel, leaving a six-body operator withX operators acting on the qubit at the centre

of each face. Stabiliser measurements can therefore be performed bymeasuring each

face qubit inX and multiplying the outcomes to form a parity check associated with

that cube; the term check operator will be used to describe these parity checks.

5.1.1 Detecting and correcting errors

In the absence of errors, all check operators have parity ‘+1’. If a Z error or a

measurement error (incorrect measurement outcome) occurs on a single qubit on

one face of a cube, this flips the parity of the check operator associated with that

cube from ‘+1’ to ‘−1’ and also flips the parity of the corresponding adjacent

cube. Errors on qubits on two faces of a cube will not change the parity of that

cube’s check operator but will be detected by the two adjacent cubes, such that

the check operators detect only the ends of error strings (see Fig. 5.1), much like

in the surface code. Homologically trivial error strings — those that form closed

loops — are equivalent to logical identity operations. Strings of errors spanning the

space-like directions of the lattice result in undetectable and uncorrectable logical

errors, whereas undetectable strings of errors spanning the time-like dimension of

the lattice from the first to the final layer do not affect the logical state of the encoded

qubits so are harmless. The length of the shortest undetectable space-like string

across the lattice gives the code distance, so a lattice with a shortest dimension of n
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unit cells has code distance n+ 1.

Once all qubits have been measured in the X basis, an error syndrome is

obtained by collating the check operator outcomes. This syndrome provides the

locations of the ends of error strings on the primal and dual lattices, and the decoder

attempts to pair these to find a correction that minimises the probability of a logical

error occurring. Much like with the surface code, TCS syndromes are degenerate,

so the syndrome does not uniquely identify the errors that occur: different strings

of errors can result in the same syndrome. However, again like the surface code, it

is only important that the combined error and correction strings are homologically

equivalent to the identity operation, not that the error is exactly inverted. As this is

a measurement-based scheme, the correction is not physically applied to the qubits

— information about the correction is used to update the measurement outcomes

retrospectively, and these corrected measurement outcomes are then used to infer

the logical state of the encoded qubits using correlation surfaces, which will be

introduced shortly.

Syndrome information is obtained for both the primal and dual lattices, but

unlike the surface code, both of these detect only Z errors, as X errors commute

with the measurements used to obtain the syndrome; this is not a problem, as X

errors are harmless to TCS1. This requirement to correct only Z errors can be

understood by considering the equivalence between TCS and a surface code with

repeated syndrome measurements.

In this picture, each TCS layer is equivalent to a surface code, with the black

qubits in Fig. 5.1 representing data qubits and the red qubits representing syndrome

qubits or vice-versa on alternating layers. The structure of the cluster state means

that performing theX measurements on the data-like qubits in a given layer has the

effect of teleporting the surface code onto the next layer and applying transversal

Hadamard gates (i.e. applying a Hadamard gate to every data qubit), and measuring

the syndrome-like qubits has the effect of measuring a surface code plaquette.

1If CPHASE gates are used to create the cluster states then X errors during initialisation may
cause Z errors, so X errors are only harmless once the lattice has been constructed. It is still only
necessary to detect Z errors, however.
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Hadamard gates interchange X and Z operations, so measuring the syndrome-like

qubits in this next layer is now equivalent to measuring the star check operators of

the surface code, and measuring the data qubits is equivalent to a second round of

teleportation and Hadamard gates, therefore restoring the surface code to its original

state (as Hadamard gates are self-inverting); this process is then repeated for each

TCS layer. The similarity between the surface code and TCS means that, in general,

surface code decoders, such as those based on minimum weight perfect matching,

can be readily adapted for decoding TCS syndromes.

One can consider a lattice where a surface code state is input at one end, the

measurements are performed, and a corresponding surface code state is output at the

other end [Raussendorf et al., 2005] — this is essentially a quantum teleportation

scheme for qubits encoded using the surface code. The primal and dual lattices of

the TCS then each have a correlation surface linking the input and output surfaces,

as shown in Fig. 5.1. The combined parity of the error-corrected measurement

outcomes of qubits in each of the correlation surfaces indicates whether a logical

Pauli correction is required on the output state to mitigate the effect of errors.

Each correlation surface can be deformed to a logically equivalent operator by

multiplication with an element of the stabiliser group (i.e. a cube) such that the

correlation surface is not unique.

5.1.2 Logical qubits and computation

Logical qubits in TCS are created in a similar manner to logical qubits in a

defect-based surface code: pairs of one-dimensional defects are carved into the

lattice [Raussendorf et al., 2006, Raussendorf et al., 2007]. Defects are created by

measuring certain qubits in the Z basis to disentangle them from the surrounding

qubits and remove them from the TCS lattice, with the outcome of each Z mea-

surement being used to perform a local Pauli correction on the surrounding physical

qubits. It is possible to prepare logical qubits in eigenstates of either the logicalX or

logical Z operators, and measurement in either basis can be performed by inverting

the preparation procedure.

Correlation surfaces are associated with each pair of defects: there is a corre-
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lation surface given by those surfaces which are topologically equivalent to a planar

surface between the two defects, such as that shown in Fig. 5.2a, and correlation

surfaces topologically equivalent to a cylinder surrounding each defect, such as that

shown in Fig. 5.2b. Logical errors occur when an undetectable string of Z errors

runs between two defects, as shown in Fig. 5.2b, or an undetectable, uncontractible

string of Z errors loops around a defect, as shown in Fig. 5.2a (which of these

causes a logical X error and which of these causes a logical Z error depends on

how the logical basis is defined when logical qubits are created). The code distance

is therefore dependent on the size of the defects and their separation, with larger

defects and greater defect separation required to achieve a larger code distance.

(a) (b)

Figure 5.2: Abstract representation of correlation surfaces and logical errors for defect-
based TCS. Defects are represented by parallel one-dimensional thick black
lines, and correlation surfaces are represented by shaded grey regions. Logical
error strings are represented by red dotted lines. (a) shows an example of a
planar correlation surface between the two defects and a logical error caused
by a string of Z errors surrounding one of the defects. (b) shows an example of
the cylindrical correlation surfaces surrounding each defect and shows a logical
error caused by a string of Z errors between the two defects.

As with the surface code, CNOT operations are performed by braiding defects,

but in three-dimensional space rather than two-dimensional space plus time. To

form a complete universal gate set, logical qubit preparation and measurement and

CNOT gates are complemented bymagic state distillation [Raussendorf et al., 2007].
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5.2 Bond loss
This chapter considers the impact of bond failures in TCS schemes, i.e. when certain

bonds between qubits are never created. Such errors are relevant to any TCS scheme

where entangling operations can fail, particularly linear optics schemes using fusion

gates [Gimeno-Segovia et al., 2015]. Our results also provide qualitative insights for

surface code schemes with non-deterministic two-qubit gates due to the similarity

between TCS and surface codes.

A failed bond has a similar effect to losing the qubits at either end of a successful

bond. Qubit loss in TCS was considered in [Barrett and Stace, 2010], which looked

at TCS schemes in which all bonds were successful but some qubits were lost

before and after bond creation. Lost qubits are handled during the error correction

procedure by combining multiple cubes to form supercheck operators made up of

more than six measurement outcomes: whenever a qubit is lost, the two check

operators associated with the adjacent cubes are multiplied together to remove the

effect of the lost qubit from the parity check. An example of a supercheck is shown

in Fig. 5.3(a). This procedure restores the error correcting properties of the code at

the cost of reduced code distance, and tolerates qubit loss rates up to 24.9%.

Later work by [Whiteside and Fowler, 2014] expanded this analysis by con-

sidering a gate-based TCS scheme experiencing dynamic loss during all stages of

the computation, not just initialisation and measurement. This analysis resulted in

a higher effective loss rate per qubit, and correspondingly lower loss threshold of

2− 5% per operation (rather than per qubit).

Our work mitigates the effect of failed bonds using a similar procedure to [Bar-

rett and Stace, 2010]. To isolate the impact of failed bonds, it is assumed that qubit

loss does not occur, and it is assumed that that the locations of all failed bonds are

known — we refer to this as heralded bond loss. Bond failures are heralded in the

fusion gate scheme of [Gimeno-Segovia et al., 2015], although it is likely that this

scheme would also suffer from qubit loss in realistic scenarios.

We propose two approaches for dealing with failed bonds. In the first method,

called the non-adaptive method, every bulk qubit is measured in X as normal (see
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Fig. 5.3(b)). In the second method, called the adaptive method, certain qubits are

measured in the Z basis to remove them from the lattice (see Fig. 5.3(c)). It should

be noted that both approaches can also handle qubit loss, in which case there will

be a trade-off between tolerable qubit loss rates and bond failure rates; finding the

quantitative details of this trade-off will require additional numerical investigations

and is left for future work.

X
X

X

X
X

Non-adaptive

Z

X

X

X

AdaptiveSuperchecka) b) c)

Figure 5.3: TCS supercheck operators. (a) Multiplying two cubes to form a supercheck
removes the face qubit shared between them and results in a parity check
involving the X measurements associated with the ten remaining face qubits.
(b) In the non-adaptive approach, all bulk qubits are measured in the X basis
in the presence of a failed bond. (c) In the adaptive approach, one of the qubits
incident on the missing bond is randomly chosen to be measured in the Z basis
while the other is measured in the X basis.

5.2.1 Non-adaptive method
In the non-adaptive method, bond failures are mapped onto the qubits by treating the

qubit at each end of the bond as a lost qubit in the picture of [Barrett and Stace, 2010];

this means that all additional processing is performed classically during decoding

and no extra quantum resources are required.

Each bond touches two qubits: one on the primal and one on the dual lattice.

Without loss of generality, we will consider the process of forming superchecks

on the primal lattice using the non-adaptive method (an analogous process can be

performed for the dual lattice). When a bond fails, the associated primal lattice

qubit is removed from the error correction procedure by combining the two incident

check operators to form a supercheck, and this process is repeated until all qubits

involving failed bonds are removed. If a qubit that is adjacent to a lost bond is part

of the correlation surface, the correlation surface is modified by multiplication by an
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appropriate check or supercheck operator to remove the qubit from the correlation

surface. If the removed qubits form a continuous string percolating the primal lattice

such that a correlation surface cannot be formed, a percolation error has occurred

and the code is uncorrectable.

5.2.2 Adaptive method
In the adaptive method, bond failures are mapped onto the qubits by measuring a

qubit at one end of the bond in the Z basis. The qubit to measure in Z is chosen

at random, such that qubits on the primal and dual lattices are equally likely to be

chosen, and a qubit is only measured in Z if the adjacent qubit has not already been

measured in Z.

In this case, the qubits that are measured in Z are treated identically to lost

qubits in [Barrett and Stace, 2010], and formation of superchecks and correlation

surfaces proceeds in the same manner as the non-adaptive scheme except that each

failed bond affects only one of the primal or dual lattice at random, not both. A string

of removed qubits that percolates the primal or dual lattices results in a percolation

error, as in the non-adaptive method, although the rate of percolation errors is lower

due to fewer qubits being removed. This adaptive approach leads to an improved

threshold at the cost of requiring more quantum processing (i.e. the ability to change

measurement basis during the computation).

It should be noted that the adaptive approach remains a measurement-based

quantum computing scheme without any additional entangling gates, and measuring

qubits in the Z basis is already required to perform quantum computation (although

the locations of such Z measurements are generally pre-determined).

5.3 Threshold simulations

5.3.1 Error model
Simulations of bothmethods have been performed using the errormodel summarised

in Table 5.1 to obtain error correction thresholds. In the simulations, each bond has

a probability pbond of failing; a failed bond is considered to have never existed. All

bond failures occur independently and are heralded. Additionally, eachmeasurement



5.3. Threshold simulations 85

outcome has an independent probability pcomp of being incorrect. This model is

chosen to give an indication of the effect of failed bonds without considering a

specific implementation. For example, one could assign a Pauli error probability to

each CPHASE gate when constructing the lattice, but such amodel is not appropriate

for the scheme in [Gimeno-Segovia et al., 2015], where CPHASE gates are not used.

The chosen error model is qualitatively similar to the random-plaquette gauge model

used in [Wang et al., 2003] for the toric code, and gives a similar threshold in the

absence of failed bonds.

Operation Error model
Bond creation Bond creation fails with probability pbond for each bond

except those involving only qubits in the first two or final
two layers. The locations of failed bonds are known to
the decoder.

Qubit measurement Incorrect measurement outcome with probability pcomp,
except red qubits in the first and final layers and black
qubits in the second and penultimate layers

Table 5.1: Error model for TCS simulations with bond failures.

5.3.2 Simulation methods

An overview of the simulation is shown in Fig. 5.4. The simulations use lattices

with a range of code distances d, with the first ‘input’ layer acting as a surface code

state. This layer is followed by 4d − 2 layers of qubits, finishing with an ‘output’

surface code layer (4d− 1 layers in total), giving the lattice a depth of 2d cubes. For

simplicity, we assume that bonds involving only qubits in the first two or final two

layers always succeed, and measurements of the red qubits in the first and final layers

and black qubits in the second and penultimate layers are always perfect; this is to

ensure that the code is projected into a valid surface code state at each end following

all measurements, as is standard with many quantum error correction simulations

(in practice far more than 4d layers would be involved in a computation).

Except for the Z basis measurements in the adaptive scheme, all qubits in the

bulk of the lattice are measured in theX basis. The black qubits of the first and final

layers are not measured as these form the data qubits of the input and output surface
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Decode syndrome and apply a 
correction

Create lattice of qubits with code distance 
L and 4L - 1 layers, and create bonds with 

a failure rate pbond (except those in first 
and final layers)

Perform X measurements with error 
probability pcomp where appropriate, 

and store measurement outcomes

Check for error by determining if first 
and final layers correspond to surface 

codes in a Bell pair state

Percolation error

no Bell pair

Logical error

Map lost bonds to Z measurements

Perform Z measurements with error 
probability pcomp, and perform Z 

operations on neighbouring qubits if 
measurement outcome is -1

Combine measurement outcomes to 
form checks and superchecks

non-adaptive 
scheme adaptive scheme

Success

correct Bell pair incorrect Bell pair

Figure 5.4: Steps for simulating TCS with bond failures.
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codes. This leaves the first and final layers in surface code states, with the encoded

state forming a Bell pair if a percolation error does not occur [Raussendorf et al.,

2005]. The order in which gates are performed and the order in which measurements

are performed are unimportant for the chosen errormodel provided that gates precede

measurements on any particular qubit; the simulation creates bonds in an arbitrary

order and then performs all measurements in an arbitrary order, but it would be

equally valid to alternate rounds of bond creation and measurement.

GraphSim [Anders and Briegel, 2006] is used to track the quantum state of the

TCS. The decoder uses the knowledge of the locations of failed bonds and mappings

outlined above to form superchecks, and a minimum-weight perfect matching algo-

rithm [Raussendorf et al., 2006, Raussendorf et al., 2007] based on Blossom V [Kol-

mogorov, 2009] is used to calculate the required correction, with the edge weights

set using the methods in [Barrett and Stace, 2010]. If the resulting logical Bell pair

between the surface codes of the first and final layers is |Φ+〉L = 1√
2
(|00〉L + |11〉L),

the error correction is deemed successful. If the resulting Bell pair is not |Φ+〉L or

a percolation error occurs, then the error correction is deemed unsuccessful and a

logical error has occurred. For each value of pbond, a computational threshold, pth,

is determined from the intersection point of logical error rates for code distances of

7, 9, 11 and 13 [Wang et al., 2003], much like for the surface code simulations in

the previous chapters. Each combination of d, pcomp and pbond is simulated for a

minimum of 2× 104 runs to obtain clean thresholds.

5.4 Results

Fig. 5.5 shows the threshold results of the simulations for the non-adaptive and

adaptive methods. In the absence of failed bonds, the error model results in a

threshold of pth ≈ 2.9%, in agreement with [Wang et al., 2003]. The threshold

decreases with increasing bond failure rates for both schemes; the non-adaptive

scheme has a fit of pth = 0.029− 0.587pbond + 2.786p2bond applied between pbond =

0% and pbond = 6%, and the adaptive scheme has a fit of pth = 0.029−0.336pbond+

1.071p2bond between pbond = 0% and pbond = 12%. The threshold for the non-
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Figure 5.5: Thresholds in the presence of failed bonds. The shaded regions indicate cor-
rectable error rate combinations. In the absence of bond failures (pbond = 0),
the threshold (red) agrees with [Wang et al., 2003].

adaptive and adaptive schemes disappears at pbond ≈ 6.5% and pbond ≈ 14.5%,

respectively; these limits are due to the percolation threshold for each method.

5.5 Discussion
To link these results to those in [Barrett and Stace, 2010], we consider an approximate

mapping from the 24.9% percolation limit found for qubit loss (our error model

results in an effective loss rate per qubit rather than per operation, so the threshold

in [Barrett and Stace, 2010] is more relevant to our analysis than that in [Whiteside

and Fowler, 2014]). In the non-adaptive approach, each bulk qubit has four bonds,

and qubits with failed bonds are treated equivalently to lost qubits in [Barrett and

Stace, 2010]. The probability of a bulk qubit having one or more failed bonds is

1 − (1 − pbond)4, resulting in an expected percolation threshold when 1 − (1 −
pbond)4 = 0.249, or pbond = 6.9%, which is close to the value obtained.

For the adaptive scheme, each failed bond is mapped to just one of the two

adjacent qubits. Therefore, the probability of a qubit being measured in the Z

basis receives a contribution of 1
2
pbond from each incident bond. The probability

that a particular qubit with four attempted bonds is measured in Z is therefore
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1 − (1 − 1
2
pbond)4, resulting in an expected percolation threshold when 1 − (1 −

1
2
pbond)4 = 0.249, or pbond = 13.8%. This is slightly lower than the value obtained

in the simulations because it does not account for qubits that have multiple lost bonds

(i.e. there is not a one-to-one mapping between the number of missing bonds and

the number of qubits measured in Z — the number of qubits measured in Z will

sometimes be less than the number of lost bonds).

5.5.1 Fault-tolerant linear optical quantum computation

The phenomenological bond loss model assumed in this chapter can be connected

to the microcluster scheme in [Gimeno-Segovia et al., 2015], which generates large-

scale cluster states from elementary three-qubit GHZ resource states by performing

a sequence of probabilistic fusion gates. To do so, we have performed additional

numerical simulations on a modified version of this microcluster scheme to find

the relationship between fusion-gate success rates and bond failure rates. The

simulation involves using fusion gates to repeatedly create TCS lattices (unlike the

brickwork lattice used in the original linear optical proposal) with code distance

d = 6 and fusion-gate success rates ranging from 50% to 99.5% in steps of 0.5%.

The proportion of missing bonds is measured for each lattice, and this is then

averaged over all runs for each fusion-gate success rate to give an effective bond

failure rate.

The results of the simulation, shown in Fig. 5.6, suggest that the adaptive scheme

would require a fusion-gate success rate in excess of 95% to perform fault-tolerant

quantum computation, and the non-adaptive scheme would require a fusion-gate

success rate in excess of 98%. The fusion-gate success rate can be increased to this

level by using larger resources to perform the gate, and although this increases the

resources per fusion gate, it is not clear that this will increase the overall resources

required, as the scheme we present would not require additional procedures to

perform fault-tolerant quantum computation, unlike that in [Gimeno-Segovia et al.,

2015].
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Figure 5.6: Simulation results showing the relationship between fusion-gate success rates
and bond failure rates when building a linear optics device like that in [Gimeno-
Segovia et al., 2015]. The blue and red lines illustrate the minimum fusion-gate
success rates required for the adaptive and non-adaptive methods respectively.

5.6 Conclusion

In this chapter, we have shown that deterministic entangling gates are not required to

perform fault-tolerant universal quantum computation. By adapting TCS schemes,

probabilistic heralded entangling gate failure rates as high as 6.5% can be tolerated

with no additional quantum overhead at the cost of a lower measurement error

threshold, and rates as high as 14.5% can be tolerated if this restriction is relaxed to

allow adaptive measurements.

The error model used in the simulations has been chosen primarily as a toy

model for the linear optics scheme in [Gimeno-Segovia et al., 2015], so our findings

are most relevant to linear optical systems, although the model does not include

qubit loss, which is likely to occur in realistic scenarios. Despite being motivated by

linear optics, our approach for dealing with bond failures is sufficiently general that

it can be applied to any TCS scheme with heralded non-deterministic entangling

gates, albeit with different thresholds, as every scheme will undergo a different noise

model and experience different error propagation.
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Additionally, the shared features of topological codes mean that our results

give a qualitative insight for other topological codes, such as the surface code, with

non-deterministic two-qubit gates; the error model used in this chapter is similar to

a surface code experiencing entanglement failure and data qubit leakage.

Avenues for future work in this area include considering unheralded entangle-

ment failure, where the locations of missing bonds are unknown, and combining

this approach with a scheme such as that of [Nickerson et al., 2014] to attempt to

reduce qubit and time overheads for networks of trapped ions with non-deterministic

entanglement between groups of qubits.



Chapter 6

Summary and outlook

In this thesis, we have considered the challenges involved in performing fault-tolerant

universal quantum computation with realistic error models that take account of

more than just decoherence during computation, and we have suggested methods for

handling such errors with topological error correction schemes.

In Chapter 3, we presented a blueprint for fault-tolerant quantum computation

with Rydberg atoms and outlined some of the benefits and challenges of such

a scheme compared to other physical realisations. We then performed a gate-

based threshold simulation of the scheme to obtain an error threshold of 1.25%

for depolarising noise, a result that suggests gate fidelities need to be improved

substantially before it is viable to build a surface code quantum computer using

Rydberg atoms. Nonetheless, Rydberg atoms remain a promising candidate for

realising fault-tolerant universal quantum computation in the mid- to long-term as

they have good potential for scalability once quantum operations can be performed

with sufficiently low error rates.

In Chapter 4, we introduced a novel method for handling permanent fabrication

errors on the surface code that result from imperfect manufacturing processes. Our

approach is sufficiently general that it can be applied to a surface code quantum com-

puter based on almost any physical system with no additional quantum processing.

Qubit fabrication error rates as high as 8% and entangling gate (link) fabrication

error rates as high as 10% can be tolerated, although both of these come at the cost

of reduced Pauli error thresholds. Combinations of both link and qubit fabrication
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errors can also be handled using this approach, but the trade-off between the two

was not investigated in this thesis and is left for future work.

Finally, in Chapter 5, we showed that it is possible to perform universal fault-

tolerant quantum computation without deterministic entangling gates. We obtained

error thresholds that indicate probabilistic entanglement failure rates as high as 6.5%

can be tolerated without any additional quantum processing, and rates as high as

14.5% can be tolerated by relaxing this requirement and allowing measurement in

an alternative basis. These findings are particularly important for linear optical

schemes and may also be of relevance to implementations based on networks of

trapped ions.

There are several areas for future work to follow up on our findings. One

key area to investigate is unheralded fabrication errors and bond failures, where the

locations of failed components are not known. This is important because it may not

always be possible to determine with certainty whether a component works reliably,

and it may be difficult or impossible to identify components that become faulty

after manufacture or during a computation. Topological cluster state schemes are

likely to be robust enough to handle a level of unheralded bond loss, as this will be

much like using the adaptive method from Chapter 5 without some of the decoder

optimisations and would therefore simply result in a lower computational error

threshold. However, the case is less clear for surface code devices with permanent

unheralded fabrication errors as such faults will create undetectable logical qubits

that may interact with and corrupt the encoded information — these errors would

therefore be extremely damaging, so it is important either to prevent them from

occurring or to find methods to mitigate their effects.

Another area of future work is to find approaches to overcome the problem

of supercheck operator weights increasing with code distance, as identified in Sec-

tion 4.4.1. This problem, which is not unique to our results, means that the su-

percheck approach might not be indefinitely scalable and it is possible that it will

fail for large codes once the supercheck operators become sufficiently large that they

cannot be measured reliably.
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The findings in this thesis demonstrate the versatility of topological error cor-

rection schemes such as the surface code: these schemes were originally proposed to

mitigate the effects of quantum decoherence, but we have shown that, with minimal

modification, they can also handle errors that at first glance appear to undermine

their fundamental topology. As such, these codes remain among the forerunners for

realising fault-tolerant universal quantum computation.

Although parts of this thesis have been motivated by schemes based around

Rydberg atoms and linear optics, the author considers the front-runner for building a

scalable universal fault-tolerant computer to be superconducting qubits, which have

already been used to experimentally demonstrate error suppression with a linear

array of nine qubits [Kelly et al., 2015], albeit only bit-flip errors and not phase-flip

errors.
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