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Abstract

Photoacoustic tomography relies on the generation of ultrasound due to optical absorp-

tion to produce high resolution images with rich optical absorption-based contrast. In

quantitative photoacoustic tomography, the aim is to estimate the concentration of the

chromophores and thus provide functional information in addition to the structural im-

ages. This is a challenging task due to the unknown and spatially and spectrally varying

light fluence within the tissue, which causes the photoacoustic images to be nonlinearly

related to the chromophore concentrations. This thesis approaches this problem from

two perspectives: Firstly, the conditions under which two linear quantification methods,

linear spectroscopic inversion (SI) and independent component analysis (ICA), provide

accurate results are investigated. Secondly, the statistical independence between the

chromophores is used to improve the robustness and hence the usefulness of nonlinear

model-based inversion methods in experimental settings. Using simulated images of a

mouse brain, SI was shown to estimate the blood oxygenation within 5% error for a large

range of imaging depths (0–9mm) and oxygenation levels (60–100%) if a large number

of evenly spread wavelengths (>17) from the range 670–1000nm were used. Based on

simulated and experimental images of tissue mimicking phantoms, ICA was shown to

estimate the relative concentrations more accurately than SI when the spectral ma-

trix is ill-conditioned and when the absorption of vessel-like features is approximately

0.5mm−1, under the assumption that the chromophores are statistically independent

and a first order fluence correction has been applied. To reduce the sensitivity of model-

based inversion to model-mismatch, a measure of the statistical independence between

the chromophores was included in the error functional in addition to the least-squares

data error. By minimising the new error functional using a gradient-based optimisation

algorithm, more accurate quantification was obtained for both simulated and experi-

mentally acquired phantom images in the presence of experimental uncertainties.



Impact statement

The work in this thesis provides direct benefits for the photoacoustic imaging research

community: The analyses on SI and ICA provide a better understanding of their limi-

tations and enable the researchers to make more effective use of readily available linear

quantification methods. This work is important because multiwavelength photoacous-

tic imaging systems are commercially available and linear methods – SI in particular,

are commonly used in pre-clinical and more recently also clinical studies. The proposed

method of incorporating the mutual information between the independent chromophores

in the model-based inversion helps bringing potentially highly accurate nonlinear meth-

ods into practical use. This contributes towards accurate quantitative imaging of live

animals in conditions where linear methods cannot provide sufficient accuracy. Hence,

the outcomes of this thesis form steps towards realising the full capability of photoa-

coustic tomography as a quantitative, high resolution, functional and molecular imaging

technique. This in turn could have benefits for the wider field of biomedical research

as well as for clinical practice. The technique could provide a powerful tool for imaging

small-animals in order to study disease progression, gene expression and drug deliv-

ery and response. It also has potential clinical applications, such as diagnosing breast

cancer, skin diseases and tissue injuries.

5



Acknowledgements

First of all, I would like to thank my supervisor Dr Ben Cox for his guidance and support

for this project. His patience, encouragement, his expertise in the subject combined with

his ability to explain any complicated concept in a way that makes sense, and last but

not least, his endless positive energy, have all been immensely helpful throughout the

course of my studies. I am very thankful for the opportunity to work with Ben. I

am also grateful to my second supervisor Prof Paul Beard for providing advice and

insightful comments. Furthermore, I would like to thank Prof Simon Arridge for helpful

discussions and suggestions for this work.

Thanks to all the members of the Photoacoustic Imaging Group for their help and

encouragement. They created such a friendly and supportive atmosphere to work in. In

particular I would like to thank Dr Edward Zhang, Dr James Guggenheim, Dr Olumide

Ogunlade, Dr Roman Hochuli and Dr Thomas Allen for their assistance with the exper-

iments, as well as for valuable ideas and suggestions shared over many cups of tea and

biscuits. I also owe my thanks to Dr Emma Malone, Dr Felix Lucka, Dr Robert Ellwood

and Dr Teedah Saratoon who provided computational algorithms and instrumentation

that were crucial to this project. Special thanks to Dr Martina Fonseca, who I worked

closely with – you have been so helpful in so many ways: sharing ideas, discussing liter-

ature, figuring things out in the labs – I am very glad to have you as my colleague and

friend.

I am thankful to have made many new friends at UCL, including Callum Lamont,
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Chapter 1

Introduction

In a general sense, medical imaging refers to the techniques and processes for generat-

ing images of the internal structures in the body or providing information about the

biological functions in living organisms. Medical imaging plays a crucial role in modern

medicine, where it is used for diagnosing and monitoring diseases. It also has important

pre-clinical applications, where it is used for drug development and studying pathological

processes. A number of medical imaging modalities have been developed over the last

century, including X-ray imaging, magnetic resonance imaging (MRI), single-photon

emission computed tomography (SPECT), positron-emission tomography (PET), ul-

trasound imaging and optical imaging. Each imaging modality has unique sources of

image contrast, and comes with its own intrinsic advantages and limitations, hence

making them suitable for different fields of applications. Hybrid imaging modalities

combine two or more imaging techniques to benefit from the advantages of the indi-

vidual imaging techniques and/or to provide complimentary information. Biomedical

photoacoustic imaging is a non-invasive hybrid imaging technique based on the genera-

tion of ultrasound waves due to the absorption of optical energy. It has the advantage

of combining rich optical absorption based contrast which provides high specificity with

the high resolution of ultrasound imaging, and it offers larger penetration depth than

pure optical techniques relying on ballistic photons. Photoacoustic images can be ob-

tained using endogenous contrast from optically absorbing tissue components such as

blood, lipids, water and melanin, or exogenously administered contrast agents, such as

near-infrared dyes and nanoparticles. By exploiting the spectral signature of the in-

dividual optical absorbers using light of different wavelengths, photoacoustic imaging

18



1.1. Biomedical photoacoustic imaging 19

also has the potential to reveal the concentration of each absorber. This quantitative

information would enable us to measure valuable parameters such as the blood oxygena-

tion or map the distribution of certain biomarkers. Obtaining quantitatively accurate

images is a challenging task because the photoacoustic signals are non-linearly related

to the chromophore concentrations. This thesis provides an analysis of the accuracy of

linear quantitative photoacoustic imaging methods and proposes a novel method based

on statistical independence for improving the robustness of a nonlinear model-based

quantification method for photoacoustic imaging.

1.1 Biomedical photoacoustic imaging

Photoacoustic imaging relies on the photoacoustic effect, which refers to the generation

of sound due to the absorption of light. The photoacoustic effect was first discovered by

Alexander Graham Bell in 1880 [1], but it had few applications before the development

of lasers in the 1960s. In the following decades, a range of industrial and scientific ap-

plications of the photoacoustic effect for the analysis of solid and gas phase materials

were developed. The photoacoustic effect was not exploited for biomedical imaging until

the mid-1990s. In the last two decades, biomedical photoacoustic imaging has been a

rapidly growing field of research, with significant development in the instrumentation,

reconstruction algorithms and exogenous contrast agents. Today, compelling 3D photoa-

coustic images can be obtained in vivo and commercial imaging systems are available.

The spatial resolution scales with depth and are typically <10µm at depths of a few

hundred micrometers, <100µm at depths of a few millimetres and <1mm at centimetre

depths [2]. Photoacoustic imaging has been explored for a range of clinical applications,

including breast imaging [3, 4], cardiovascular imaging [5, 6, 7], skin imaging [8, 9] and

endoscopy [10,11], as well as pre-clinical applications using endogenous contrast such as

haemoglobin for imaging the vasculature in the mouse brain [12, 13, 14] and in tumour

models [15, 16, 17], or exogenous contrast agents [18, 19] and reporter genes [20, 21] for

molecular or cellular imaging.

The photoacoustic image acquisition involves illuminating the subject with pulsed

radiation of nanoseconds duration. The optical energy is absorbed by the chromophores

in the tissue and rapidly converted to heat energy, leading to a local rise in temperature

and pressure. This pressure then propagates as an acoustic wave towards the surface

19
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of the tissue where it is detected by ultrasound sensors. The photoacoustic image is

formed by reconstructing the distribution of the initial pressure rise using the time-

resolved recordings of the acoustic waves. This provides a qualitative structural image

of the chromophores. A quantitative image of the chromophore concentrations can be

obtained by acquiring multiple images using excitation light with different wavelengths

and applying spectroscopic analysis. This is known as quantitative photoacoustic imag-

ing and will be described in the next section.

1.2 Quantitative photoacoustic tomography and its chal-

lenges

Quantitative photoacoustic tomography (QPAT) [22] aims to provide functional infor-

mation about the tissue by estimating the concentration of the chromophores that give

rise to the photoacoustic signals detected at different optical wavelengths. The key en-

dogenous chromophores of interest for quantitative photoacoustic tomography are oxy-

and deoxyhaemoglobin, because their concentration ratio defines the blood oxygenation,

sO2:

sO2 =
cHbO2

cHbO2 + cHb
, (1.1)

where cHbO2 and cHb denote the concentrations of oxy- and deoxyhaemoglobin respec-

tively. The potential capability of using photoacoustic imaging to non-invasively map

the sO2 with high spatial resolution has high clinical relevance, because the sO2 is an ex-

tremely important physiological parameter. For example, it has large impact on cancer

diagnosis and treatment, because sO2 is related to angiogenesis and hypermetabolism,

which are well-known indicators of cancer, and it also affects the effectiveness of chemo-

and radiotherapies in cancer treatments [23]. The measurement of sO2 is also useful for

other pre-clinical and clinical applications such as treating burns [24] and wounds [25,26]

and monitoring brain injuries or imaging activities in the brain [12,27].

Other applications of QPAT for endogenous chromophores may include identifying

and quantifying lipids for cardiovascular imaging of plaques [5,28,29,30], and measuring

the melanin content for the diagnoses of skin diseases such as melanomas [31,32].

In addition to quantifying endogenous chromophores, QPAT could also be used for

contrast-enhanced photoacoustic molecular imaging applications, where the detection
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and quantification of the local accumulation of genetically encoded probes and extrinsi-

cally administered contrast agents [33] can provide information on biological processes,

drug delivery, disease development and treatment response.

The quantification of the chromophore concentrations may be achieved to different

extents:

• Identification of the chromophores could be achieved using spectral decompo-

sition methods. The aim is to generate separate images of the locations of the

individual chromophores. This does not provide information about the quantity

of each chromophore but may still be useful for some applications [5, 34].

• The concentration ratio of two chromophores at the same location is mainly

relevant for measuring the sO2 [35,36], which is related to the concentration ratio

of oxyhaemoglobin and deoxyhaemoglobin. There are two factors which make

estimating the ratio less challenging than estimating the absolute concentrations:

Firstly, the scaling factors, such as the system calibration and the thermoelastic

efficiency, do not need to be known or estimated as they will cancel out. Secondly,

the concentration of each chromophore does not necessarily need to be accurate

with respect to other spatial locations for the ratio to be correct. The concentration

ratio is the quantity of interest in Chapter 4.

• The relative concentration will be used in this thesis to refer to chromophore

concentration in arbitrary units. This also does not require knowing the system cal-

ibration factor, but unlike the concentration ratio estimation, it requires accurate

estimation of the concentration of each chromophore with respect to other spa-

tial locations. We distinguish between two types of relative concentrations: 1) The

chromophore concentrations are estimated to the same (uncalibrated) scale [37,38].

2) Each chromophore concentration is estimated to a different scale [39, 40]. In

type 2), the estimated chromophore concentration is still consistent across an im-

age, but the concentration of one chromophore cannot be compared to another

chromophore. This type of relative concentration will be estimated in Chapter 5.

• The absolute concentration is the most challenging quantity to estimate [41,

42]. Estimating the concentrations in the correct units (for example in gL−1) re-

quires a calibration of the imaging system and knowing the thermoelastic efficiency.

21



22 Chapter 1. Introduction

The absolute concentrations will be estimated in Chapter 6.

All types of quantification described above require that the significant chromophores

have unique absorption spectra. This makes it possible to resolve the contribution from

different chromophores using multiwavelength images. However, the photoacoustic im-

age is not a direct representation of the absorption coefficient, but a reconstruction of the

initial pressure, which is a product of the thermoelastic efficiency, the absorption coeffi-

cient and the light fluence. The thermoelastic efficiency is wavelength independent and

varies for different chromophores, but is in some cases dependent on the chromophore

concentrations. The spatially and spectrally varying light fluence poses the main chal-

lenge for QPAT. The fluence is generally unknown because it depends on the scattering

and absorption coefficients, which themselves depend on the chromophore concentra-

tions. As a simple example, in the case where one blood vessel is located directly below

another blood vessel, the fluence reaching the lower blood vessel will depend on the

absorption and scattering of the upper blood vessel. Therefore, the spectral variation

of the initial pressure in the lower blood vessel will be affected, or “coloured”, by the

presence of the upper blood vessel. This is referred to as “spectral colouring”. In fact,

since light can be scattered in any direction, the fluence at a location is not only affected

by the optical features above that location, but also by the absorption and scattering

in other illuminated regions in the tissue. That is to say, the absorbed optical energy

density at the upper vessel may also be affected by the optical properties of the lower

one, if the back-scattering is sufficiently strong.

There are various methods which attempt to account for the spectral colouring.

The simplest ones involve dividing the multiwavelength photoacoustic images by an ap-

proximation of the fluence at each wavelength (Sec. 3.2.1.3). In this way, the effect

of the fluence is approximately corrected for, such that the images represent a linear

sum of chromophore concentrations that can be unmixed using the linear spectroscopic

inversion, as in conventional optical spectroscopy. Some in vivo QPAT studies use this

approach [43, 44], because it is fast and simple. In many other studies, the fluence is

simply assumed to be constant, and no corrections for the spectral colouring are applied

(for example Refs. [45, 46, 47]). Both of these solutions are approximate and provides

accurate results only in certain circumstances. More complex nonlinear methods involve

modelling the light fluence using light transport equations (Sec. 3.2.2–3.2.3). They pro-
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vide more generally applicable solutions to the quantification problem. These methods

are more difficult to implement, because they have high computational demand and can

be sensitive to model-mismatch errors. Therefore, they have mostly been investigated

in theoretical studies or using numerically simulated data.

1.3 Motivation, contributions and structure of the thesis

This thesis first outlines the theories describing the processes from the irradiation of the

tissue to the quantification of the chromophore concentrations and reviews the existing

chromophore quantification methods. Chapter 2 provides a brief overview of light prop-

agation in tissue and the generation, propagation and detection of the photoacoustic

signals. Chapter 3 describes the acoustic inverse problem, which deals with the recon-

struction of the photoacoustic images from the measured signals, and the optical inverse

problem, which involves estimating the chromophore concentrations from the multiwave-

length photoacoustic images. As the optical inverse problem is the main focus of this

thesis, a detailed review of the existing methods for the optical inversion is included in

Chapter 3.

Following the theory and review chapters, the three key research outcomes are pre-

sented in Chapters 4, 5 and 6. The motivation and contribution of these chapters are

described below:

As mentioned in the previous section, simple linear quantification methods are avail-

able and have been used in many in vivo studies to estimate the sO2 or distinguish

biomarkers from the background tissue. While these methods may be suitable in some

circumstances, few efforts have been made to investigate under what conditions they are

likely to provide accurate quantification. A better understanding of the limitations of

these methods would allow us to use them in a more reliable manner. It would also help

us avoid using more complicated nonlinear methods which are typically slower and more

computationally intensive in cases where a simple linear method can provide sufficient

accuracy. The first aim of the thesis is to analyse the accuracy of two linear methods:

linear spectroscopic inversion and independent component analysis.

In Chapter 4, the accuracy of using linear spectroscopic inversion (SI) to estimate

sO2 is investigated as a function of depth, oxygenation level and number of wavelengths

available. Numerically simulated photoacoustic images of a realistic 3D tissue phantom
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24 Chapter 1. Introduction

are used for this study. The results in this chapter demonstrate that accurate sO2

estimates can be obtained for a large range of depths and oxygenation levels, but this

requires using a large number of wavelengths from a certain spectral range. It also

provides an analysis of the optimal wavelength selection and the error of the estimated

sO2.

Independent component analysis (ICA) is a linear unmixing method that has mainly

been used to aid the visualisation of biomarkers by distinguishing them from the back-

ground tissue. In Chapter 5, both numerical and experimental tube phantom images

were used to identify the conditions under which ICA provides accurate quantification.

It was shown that ICA outperforms SI when the inversion is ill-conditioned, and that

ICA is more robust to spectral colouring compared to SI. These results provide guidance

for when ICA can be used instead of SI to obtain higher accuracy while retaining the

simplicity of a linear method.

Chapters 4 and 5 enable us to make better use of linear methods. For cases where

linear methods cannot provide sufficiently accurate results, we need to rely on more com-

plex quantification methods such as the nonlinear model-based inversion scheme. This

type of methods have the potential to provide accurate estimation of the absolute chro-

mophore concentrations in complex tissue structures. However, in practical implemen-

tations, the quantification results may suffer from errors arising from model-mismatch.

Chapter 6 proposes incorporating statistical independence as additional information in

the nonlinear model-based inversion method to reduce quantification errors caused by

inaccurate forward modelling of the fluence. This was shown to improve the robustness

of the inversion scheme for statistically independent chromophores. Hence, the applica-

bility and usefulness of model-based inversion schemes may potentially be increased for

practical imaging studies.

Lastly, the overall conclusions of the thesis are presented in Chapter 7.
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Chapter 2

The forward problem and

photoacoustic data acquisition

In this chapter, firstly, the forward problem in photoacoustic imaging is described. The

forward problem consists of three parts: the diffuse light distribution in tissue (optical

forward problem, Sec. 2.1), the thermalisation of the optical energy which leads to the

generation of the photoacoustic signal (Sec. 2.2), and the propagation of the acoustic

waves in tissue (acoustic forward problem, Sec. 2.3). Secondly, the photoacoustic image

acquisition process is presented in Sec. 2.4, where the advantages and limitations of dif-

ferent imaging modes, scanning geometries and the acoustic signal detection mechanisms

are discussed.

2.1 Light propagation in tissue

When light propagates through the tissue, it may be absorbed or scattered by the

molecules in the tissue. These two processes are described in Sec. 2.1.1 and 2.1.2 respec-

tively. The distribution of the light in tissue as a result of the scattering and absorption

events can be described using the radiative transfer equation (RTE), which is presented

in Sec. 2.1.3. Section 2.1.4 presents an approximation of the RTE which is valid in

the diffusive regime away from the light source or boundaries, known as the diffusion

approximation.
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26 Chapter 2. The forward problem and photoacoustic data acquisition

2.1.1 Absorption

A molecule can absorb an incident photon if the photon energy matches the energy gap

between two energy states of the molecule. The molecule is thus excited to the higher

energy state. The likelihood of absorption occurring per unit length travelled by the

photon is described by the absorption coefficient, µa. It defines the rate of decrease

of the fluence φ as photons propagate along the direction x through a homogeneously

absorbing and non-scattering medium, such that ∂φ
∂x = −µaφ. The absorption coefficient

of a chromophore is given by the product of its specific absorption coefficient, α, and

its concentration, c. If multiple absorbers are present in the tissue, the absorption

coefficient is given by the sum of their individual absorptions, such that

µa(r, λ) =
∑
k

αk(λ)ck(r) (2.1)

at position r and wavelength λ, where ck and αk are the concentration and the specific

absorption coefficient of the kth chromophore.

The absorption coefficients of examples of endogenous tissue chromophores are shown

in Fig. 2.1. In photoacoustic imaging, the wavelength of the excitation light is typically

chosen within the near-infrared window (650 to 1350nm). In this spectral range, the

absorptions of water and blood are relatively low, and therefore light can penetrate into

deeper depths in the tissue.
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Figure 2.1: The absorption coefficient of oxyhaemoglobin (red) [48], deoxyhaemoglobin
(blue) [48], water (purple) [49,50] and lipid (yellow) [51].
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2.1. Light propagation in tissue 27

2.1.2 Scattering

Scattering is the dominant type of light-matter interaction in soft tissue and refers to the

process of the incoming photon being re-radiated by a molecule into a new direction.

On a macroscopic level, scattering is caused by variations in the refractive index of

the tissue. The dominant type of scattering in tissue is elastic scattering, where the

photon energy does not change due to the scattering event. Similar to the absorption

coefficient, the scattering coefficient, µs, describes the likelihood of scattering occurring.

It is related to the decay of the fluence by ∂φ
∂x = −µsφ in a homogeneous scattering

and non-absorbing medium. The direction in which the photon is scattered depends

on the size and shape of the particles in the tissue and the wavelength of the light.

The probability of the photons coming from the direction ŝ being scattered into ŝ′ is

described by the scattering phase function, θ(̂s, ŝ′). Since the scattering phase function

is a probability density function, its integral over all angles must be normalised to one:

∫∫
S2

θ(̂s, ŝ′)dŝ′ = 1. (2.2)

2.1.3 The radiative transfer equation

Light propagation in matter can be described using Maxwell’s electromagnetic equa-

tions, which fully accounts for the wave-like behaviour of light, such as diffraction and

interference. However, due to the high level of heterogeneity in the optical properties of

tissue, this analytical approach does not provide practically useful models for the light

distribution in biological tissue. The radiative transfer equation (RTE) is a more feasible

approach for describing light transport in tissue. The RTE was originally heuristically

derived based on the conservation of energy, but it has since been shown that the RTE

can also be derived from the Maxwell’s equations [52,53]. The light model based on the

RTE neglects the wave-like properties of light and considers only the energy flow carried

by the photons. The RTE can be derived by equating the change of the number of pho-

tons within a small volume to the difference between the number of photons entering

and exiting the volume in a given direction at a given time:

(∆t∆V )
∂Lp
∂t

=(c∆t∆V )µs

∫
S2

θ(̂s, ŝ′)Lp(̂s
′)dŝ′ + (c∆t∆V )qp

− (c∆t∆V )µaLp − (c∆t∆V )µsLp − (c∆t∆V )̂s · ∇Lp
(2.3)
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where c = 3 × 108m/s is the speed of photons and Lp(r, ŝ, t) is the directional photon

density, which is defined as the number of photons per unit volume travelling in direction

ŝ at location r and time t. The left hand side of Eq. (2.3) is the net change in the number

of photons in volume ∆V and time ∆t. The net change is due to the five contributing

factors described by the terms on the right hand side of the equation: The first two terms

represent the positive contributions due to photons travelling in other directions being

scattered into the direction ŝ and the source of photons qp. The remaining terms are

negative contributions from the net outflow of photons due to the absorption of photons,

the scattering of photons out of the direction ŝ and the gradient of the directional photon

density. Equation (2.3) can also be expressed in terms of energy. The energy of a photon

is given by hν, where ν is the frequency of the photon and h is Planck’s constant,

h = 6.62× 10−34m2kg/s. By multiplying both sides of the equation by hν and dividing

through by c∆t∆V , Eq. (2.3) becomes

1

c

∂L(r, ŝ, t)

∂t
= µs(r)

∫
S2

θ(̂s, ŝ′)L(r, ŝ′, t)dŝ′+ q(r, ŝ, t)− (̂s · ∇+ µa(r) + µs(r))L(r, ŝ, t).

(2.4)

where L(r, ŝ, t) = hνcLp(r, ŝ, t) is rate of energy flow per unit area per unit solid angle,

known as the radiance, and q = hνqp is the source of energy.

Since the optical timescales are significantly shorter than the timescales for the acous-

tic propagation under stress confinement (Sec. 2.2), one can assume that the acoustic

propagation does not start until all optical energy from a laser pulse has been absorbed.

Therefore, the quantity of the interest in photoacoustic imaging is the total energy ab-

sorbed per unit volume. Hence, the time independent RTE can be applied, which is

found by integrating Eq. (2.4) with respect to time:

(̂s · ∇+ µa(r) + µs(r))L(r, ŝ) = µs(r)

∫
S2

θ(̂s, ŝ′)L(r, ŝ′)dŝ′ + q(r, ŝ), (2.5)

where L(r, ŝ) is the time-integrated radiance.

The RTE cannot be solved analytically except in a few restricted cases, such as in

a medium consisting of optically homogeneous slabs. In all other cases, it needs to be

solved numerically, which can be computationally intensive. To reduce the computa-

tional burden, in some cases, one can use the diffusion approximation to the RTE, which

is described in the following section.
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2.1.4 The diffusion approximation

The RTE can be simplified by expressing the radiance as a series of spherical harmonics.

By truncating the series after n terms, we obtain the Pn approximations of the RTE. The

diffusion approximation (DA) of the RTE is based on the P1 approximation, where the

angular dependence of the RTE is almost removed completely. The P1 approximation

consists of two coupled equations: one equation is obtained by integrating the RTE over

all angles, and the other is obtained by multiplying the RTE by ŝ and then integrating

over all angles. Using the time-independent RTE, these equations are given by [54]:

∇ · F + µaφ = q0 (2.6)

F = −D∇φ (2.7)

where F is the flux vector defined by F =
∫
S2 ŝL(r, ŝ)dŝ, φ is the fluence defined by

φ =
∫
S2 L(r, ŝ)dŝ, q0 is the isotropic photon source given by q0 =

∫
S2 q(r, ŝ)dŝ (the non-

isotropic photon sources are considered negligible in this approximation), and D is the

optical diffusion coefficient

D =
1

3(µa + µ′s)
. (2.8)

where µ′s = µs(1− g) is the reduced scattering coefficient and g is the anisotropy factor,

which is the average cosine of the angle between ŝ and ŝ′. The anisotropy factor describes

the mean direction of the scattering events in terms of the relative forward and backward

scattering and can take values between -1 and 1. Positive values of g indicate that

the forward scattering dominates, while negative values indicate strong backscattering.

When g = 0, the scattering is isotropic. Biological tissues typically have g ≈ 0.8− 0.98

[55]. The DA is obtained by substituting Eq. (2.7) into Eq. (2.6) [54]:

(µa −∇ ·D∇)φ = q0. (2.9)

The DA assumes that the radiance is nearly isotropic, or diffusive, which means that the

light travels in all directions with almost equal probability. However, when collimated

light enters the tissue, it is initially directional, and it does not becomes diffuse until

after a few scattering events. Therefore, the DA is valid only in a highly scattering

medium (µ′s � µa) at a distance away from the light source and boundaries of the
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medium. This distance is equal to one mean free path of the medium, given by l =

1/(µa + µs(1 − g)). Generic biological tissues typically have an average l ≈ 1mm. The

region well beyond this depth is referred to as the diffusive regime, where the DA can

be used to accurately describe the light distribution. The superficial layer, where the

photons retain some directionality of the light source, is known as the ballistic regime.

Since the DA is not valid in the ballistic regime, it is more accurate to use the RTE for

applications where the superficial layer is of interest. Alternatively, one can also use the

δ-Eddington approximation [56], which includes an extra term in the scattering phase

function that accounts for the forward scattering. In this approximation, the modelled

fluence consists of both a scattered component and a collimated component. The latter

has an exponential decay rate proportional to a modified transport coefficient. The

δ-Eddington approximation is more accurate compared to DA for the ballistic regime.

In the special case of an optically homogeneous semi-infinite medium, the DA can

be solved analytically using the free-space Green’s function [57]. In a one dimensional

case where the illumination source is an infinite plane wave, the solution is given by

φ(z) = φ0exp(−µeffz), (2.10)

where z denotes the depth from the illuminated surface and µeff is the effective atten-

uation coefficient,

µeff =
√

3µa(µa + µ′s). (2.11)

This 1D solution can be used as an approximation to provide a simple estimation of the

fluence for quantitative photoacoustic imaging (Sec. 3.2.1.3).

However, in general, numerical methods are required for solving the DA for realistic

tissues, as analytical solutions do not exist for arbitrary heterogeneous tissue structures.

The finite element method and the Monte Carlo method are two commonly used nu-

merical approaches for light modelling and they will be described briefly in the following

sections.

2.1.5 The finite element method

The finite element method (FEM) can be used to provide approximate numerical so-

lutions to partial differential equations. In the finite element model, the domain is
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discretised into small pieces, known as elements, where the quantities of interest are

continuous and often piecewise linear. The quantities of interest are calculated at the

vertices of the elements, known as the nodes. Using this model, the fluence is approxi-

mated as [58]

φ ≈ φh =

Mn∑
i

φiψi, (2.12)

where ψi are the basis functions, φi are the nodal values of the fluence and Mn is the

number of nodes. The solution in Eq. (2.12) must also be subject to boundary conditions.

In order to use FEM to solve the DA, Eq. (2.9) needs to be expressed in the integral

form, also known as the variational formulation or the weak formulation. The derivation

and the details of the formation are omitted here but can be found in Ref. [58]. The

weak formulation leads to a linear equation which can be solved directly:

Aφh = b, (2.13)

where A is the system matrix with the terms in the weak formulation of the DA and b

is the source term.

2.1.6 The Monte Carlo method

The Monte Carlo (MC) method is a stochastic modelling method for light transport in

tissue. In the MC method, the photons are modelled as energy packets which prop-

agate through tissue by taking a series of incremental steps that form random walks.

The length and direction of each step are randomly chosen but their probabilities are

determined by the scattering properties of the tissue. At each step, some of the energy

is deposited and the amount depends on the absorption coefficient. Each energy packet

continues to travel through the medium until it leaves the volume or until all of the

energy has been absorbed. The sum of the energy deposited by all energy packets forms

a map of the distribution of the absorbed energy density.

The MC method is considered the gold standard modelling method for tissue optics,

because as the number of energy packets in the simulation approaches infinity, the

mapped absorbed energy density distribution approaches the true solution of the RTE.
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2.2 Photoacoustic signal generation

The generation of the photoacoustic signals starts with the optical energy being absorbed

by the chromophores in the tissue. The absorbed optical energy density, H, is given by

H(r, λ) = φ(r, λ)µa(r, λ). (2.14)

The absorption of optical energy excites the molecule to a higher energy state. The

molecule then de-excites either through radiative decay (fluorescence or phosphores-

cence), or through non-radiative vibrational relaxation. It is the latter process that

leads to photoacoustic signal generation. When a molecule undergoes vibrational relax-

ation, it collides with other molecules which raises their kinetic energy. If the time scale

in which this occurs is so short that volume of the absorber does not have time to change,

then the local pressure and temperature will increase. This localised pressure rise is the

source of the photoacoustic signal and referred to as the initial acoustic pressure, p0.

The increase in pressure can be assumed to be proportional to the absorbed optical

energy density provided that the thermal and stress confinements hold. The thermal

confinement requires the timescale at which the heat diffuses to be significantly longer

than timescale of the optical heating, such that the thermal diffusion and acoustic prop-

agation can be decoupled in the derivation of the photoacoustic wave equation. This

requires that the laser pulse must be significantly shorter than the thermal relaxation

time, which is typically tens or hundreds of milliseconds for blood vessels. The stress

confinement sets a more stringent requirement for the duration of the laser pulse: it

must be significantly shorter than the timescale at which the acoustic wave propagates

across the absorber. When the stress confinement holds, the rate of change in pressure

can be assumed to be dominated by conversion of optical energy and this conversion

can be considered instantaneous. For blood vessels, this acoustic timescale, τac, could

be defined as the time required for the pressure wave to move across its vessel diameter,

d, such that τac = d/cs, where cs is the speed of sound, and it is typically in the order

of tens of nanoseconds. To satisfy the thermal and stress confinement conditions, laser

pulses with nanoseconds duration are used for photoacoustic signal generation. Thus,
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assuming that no radiative decay takes place, the initial pressure is related to H by

p0(r, λ) = Γ(r)H(r, λ), (2.15)

where Γ is the Grüneisen parameter, which represents the efficiency of the conversion of

the heat energy to pressure, also known as the thermoelastic efficiency. The Grüneisen

parameter is given by Γ = βc2
s/Cp where β is the isobaric thermal expansion coefficient

and Cp is the isobaric specific heat capacity.

The pressure propagates as an ultrasound wave away from the source and towards

the tissue surface, where it can be detected by ultrasound sensors. The propagation of

the acoustic waves in tissue is described in the next section.

2.3 Acoustic wave propagation

The acoustic wave propagation in the tissue can be described by a wave equation, which

is derived from four coupled equations arising from the adiabatic equation of state and

the conservation of mass, momentum and energy. These equations lead to the heat

diffusion equation and acoustic wave equation, which can be decoupled, provided that

thermal confinements hold, to give the photoacoustic wave equation [59]

∇2p(r, t)− 1

c2
s

∂2p(r, t)

∂t2
= 0. (2.16)

where p(r, t) denotes the pressure at location r and time t. Equation (2.16) assumes that

the medium is acoustically linear and non-attenuating, and that the stress confinement

holds, such that the heating can be assumed to be instantaneous [59]. Solving the wave

equation requires two initial conditions:

p(r, t = 0) = p0(r) (2.17)

and
∂

∂t
p(r, t = 0) = 0. (2.18)

The first condition defines the initial pressure distribution and the second condition

states that there is no motion of the tissue at t = 0. The solution to the wave equation
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subject to the initial conditions can be given by Poisson’s integral [60,61]

p(r, t) =
1

4πcs

∂

∂t

∫
|∆r|=cst

p0(r−∆r)

cst
dS. (2.19)

Equation (2.19) describes the pressure at location r at time t as the sum of contributions

from the sources located at a spherical surface S with radius cst and centred at r.

Analytical solutions for the acoustic forward problem have been derived for photoa-

coustic sources with specific geometries [62,63,64,65]. Numerical methods are available

for solving the time-domain model in Eq. (2.16) for sources with arbitrary distribu-

tions, such as the finite-difference [66, 67] and finite-element [68, 69] methods. Faster

calculations can be achieved using k-space pseudo-spectral methods [59,70], which take

advantage of fast Fourier transforms (FFT). For example, in one k-space method the

acoustic field can be calculated as [59]

p(r, t) =
1

(2π)3

∫
p0(k)cos(cskt)e

ik·rdk, (2.20)

where k = (kx, ky, kz) is the wavenumber vector and p0(k) is the 3D Fourier transform

of the initial pressure given by

p0(k) =

∫
p0(r)e−ik·rdr. (2.21)

For given p0, the pressure field at a later time point can be calculated using Eqs. (2.21)

and (2.20).

2.4 Photoacoustic image acquisition

The methods for tissue irradiation and signal detection depend on the imaging modes

and scanning geometries, which will be described below in Sec. 2.4.1 and 2.4.2 respec-

tively. The properties of the ultrasound sensors used in photoacoustic imaging are

described in Sec. 2.4.3.

2.4.1 Photoacoustic imaging modes

Photoacoustic imaging has two main imaging modes: photoacoustic microscopy and

photoacoustic tomography. In photoacoustic microscopy [71], the tissue surface is in-
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terrogated point-by-point and the measured ultrasound time series are mapped into 1D

depth-resolved initial pressures, known as A-lines, using the speed of sound. The 3D

images are formed directly from the A-lines acquired at each point, without using a

reconstruction algorithm. Photoacoustic microscopy is further separated into optical

resolution photoacoustic microscopy (OR-PAM) and acoustic resolution photoacoustic

microscopy (AR-PAM). In OR-PAM, the photoacoustic signal is generated using tightly

focused laser beams. The lateral resolution is determined by the size of the optical-

diffraction-limited beam focus, which depends on the wavelength and the numerical

aperture of the focusing lens. Typically, using near-infrared wavelengths, the lateral

resolution is in the order of a few micrometres. Since OR-PAM relies on optical fo-

cusing, the imaging depth is limited to one optical transport mean free path, which

is typically only ∼1mm in biological tissue due to the high optical scattering. In this

shallow region, obtaining quantitative estimates of the chromophore concentrations is

relatively straightforward, since the photons are mainly ballistic and the spectral colour-

ing is low. In AR-PAM, the focusing is achieved using focused ultrasound receivers, while

excitation light is wide-field or weakly focused. The lateral resolution is determined by

the size of the acoustic focus, which is larger than the optical focus in OR-PAM because

the acoustic wavelength is longer. This typically results in a resolution of tens of mi-

crometres. Since the imaging depth is not limited by the optical transport mean free

path, it can reach several millimetres.

In photoacoustic tomography, expanded laser beams are used to provide wide-field

illumination of the tissue. The acoustic waves are detected over a surface that is fully or

partially surrounding the tissue, using an array of sensors or by mechanically scanning

the detector. Image reconstruction algorithms are used to form an image of the initial

pressure distribution based on the detected signals. The frequency-dependent ultrasound

attenuation in tissue, which limits the maximum frequency of the detected acoustic

wave, sets the fundamental limit for the highest achievable resolution in photoacoustic

tomography. In practice, however, other factors such as the detector bandwidth, the

aperture of the detecting surface, the spacing between the sensing elements and sound

speed variations within the tissue can limit the spatial resolution.

35
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2.4.2 Tomographic scanning geometries

The geometry of a tomographic scanning system determines the fraction of the pho-

toacoustic wavefronts that will be detected. Therefore it has an effect on both the

qualitative image reconstruction and the accuracy of the chromophore quantification.

A perfect reconstruction of the structures in a region requires that any line that crosses

a point in this region must intersect with the detector surface [72]. This is illustrated

in Fig. 2.2, where the points marked with A can be reconstructed exactly, while recon-

struction artefacts will be present at the points B because there are lines going through

the points that do not meet the detector surface. Points A are said to be within the

“visible region” in a scanning system, which are illustrated with grey in Fig. 2.2. The

edges of structures outside the visible region can also be reconstructed perfectly if a line

along the normal of the edge crosses the detector surface. Examples of this are shown

at points C in Fig. 2.2.

Figure 2.2: The visible region (gray) in arc (left) and orthogonal (right) sensor geome-
tries. The sensor location is marked with red lines. The edges of the structures that can
be reconstructed exactly are illustrated with solid lines, and the edges that will suffer
from limited-view artefacts are illustrated with dashed lines.

In spherical photoacoustic scanning systems, the subject is fully enclosed within

the detector surface and all the acoustic waves generated can be detected. Therefore,

this detection geometry could in theory lead to a perfect reconstruction of the initial

pressure distribution. Spherical scanning systems have been developed for whole-body

small animal imaging [73], where the subject is rotated inside an arc of detector arrays to

achieve signal detection over a spherical surface. Hemispherical scanners have been used

in breast imaging [3,74,75], where the sensor elements are positioned in a bowl that can

be rotated to decrease the spacing between the spatial sampling points. The cylindrical
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scanning geometry [76] is commonly achieved by scanning arrays of detectors in a ring

or an arc with partial angular coverage. Focused ultrasound transducers are commonly

used in cylindrical scanners to avoid detecting out-of-plane signals in order to create a

stack of 2D slice images of the subject. 3D images can be created by concatenating 2D

slices acquired at along the axial direction by moving the subject or the detector array.

The drawback is that axial resolution is limited by the width of the acoustic focal plane.

A simpler version of the cylindrical scanners is the circular scanning method, where a

single transducer is mechanically moved around the subject along a circular path to

detect the acoustic waves [77]. Both spherical and cylindrical/circular systems restrict

the shape of the subject that can be imaged, since the subject needs to be enclosed or

semi-enclosed. Hence, these systems are limited to imaging small animals or parts of

the human body such as the breast or the fingers. Planar scanners [78] do not restrict

the size of the subject as they only require access to one side of the tissue surface and

are therefore more versatile. The disadvantage of planar sensors is the limited detection

aperture which provides no visible region and leads to reconstruction artefacts.

2.4.3 Photoacoustic sensors

The most commonly used photoacoustic sensors are based on piezoelectric detectors,

which have been well-developed for ultrasound imaging and have low cost of fabrication.

Piezoelectric detectors based on polyvinylidene fluoride (PVDF) material can have up

to tens of megahertz bandwidth, which is sufficient to capture the high frequency signals

emitted from the smaller features in the superficial layers. However, the more commonly

used lead zirconate titanate (PZT) detectors typically have narrower bandwidth. The

main disadvantage of piezoelectric detectors is that their sensitivity reduces with element

size. The element size must be small compared to the acoustic wavelength for two

reasons: 1) The Nyquist criterion must be fulfilled to avoid aliasing, which requires that

photoacoustic signals are spatially sampled at least every half an acoustic wavelength. 2)

The acoustic reconstruction algorithms typically assume point detectors, which means

that the element size should ideally be much smaller than the acoustic wavelength.

Larger element size also leads to more spatial averaging, which results in increased angle-

dependent sensitivity. It is difficult to fabricate piezoelectric detectors with sufficiently

small element size while maintaining the required sensitivity. Another disadvantage is
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38 Chapter 2. The forward problem and photoacoustic data acquisition

that since piezoelectric detectors are not optically transparent, they may obstruct the

delivery of the excitation light, which can be problematic for some imaging geometries.

Interferometry based sensors [78,79,80,81] can overcome these limitations. This type of

sensors can allow for all-optical detection mechanism and typically have wideband, near-

omni-directional detection capabilities. The sensor component can in some cases [78] be

made transparent to the excitation beam, and hence provide a simple solution to the light

delivery issue. Another advantage of interferometric sensors is that, unlike piezoelectric

detectors, their sensitivity does not decrease as their element size decreases. One of the

disadvantages of interferometry based sensors is that it is more challenging to achieve

parallel detection which allows for faster scanning. However, recent developments in

parallelising the scanning of the Fabry-Perot interferometer sensor have led to improved

imaging speed [82] and dynamic imaging was enabled using compressed sensing [83,84].
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Chapter 3

The inverse problems in QPAT

Finding the chromophore concentrations from the measured photoacoustic signals re-

quires solving two inverse problems: the acoustic inverse problem and the optical inverse

problem. The acoustic inverse problem [85] involves reconstructing the initial pressure

distribution from the acoustic time series measured at the tissue surface. The acoustic

inverse problem has been researched extensively [85,86,87,88,89] and many reconstruc-

tions algorithms have been developed based on different mathematical approaches and

assumptions about the detector geometry. While solving the acoustic inverse problem

is a crucial pre-requisite for achieving quantitative photoacoustic imaging, it is not the

main focus of this thesis, and therefore it will be summarised only briefly in Sec. 3.1.

This thesis focuses on the optical inverse problem, which is considered the remain-

ing unsolved problem in QPAT. In fact, the term QPAT is often used to refer to the

optical inverse problem only, under the assumption that the acoustic inverse problem

has already been solved. In the optical inverse problem, the aim is to recover the con-

centration of the chromophores using the reconstructed initial pressure distribution at

multiple wavelengths. It is a challenging problem to solve due to the unknown fluence

distribution, the spatially varying Grüneisen parameter, the potentially large number of

unknown variables to be estimated and the issue of non-unique solutions when both the

scattering and absorption are unknown. Since the key contributions of this thesis are in

the optical inverse problem, it will be described in detail and existing methods will be

reviewed in Sec. 3.2.
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3.1 Acoustic reconstruction

The acoustic reconstruction algorithms [85, 90, 91] can be broadly separated into four

categories: time-domain methods (back-projection), frequency-domain methods, time-

reversal methods and model-based optimisation methods.

The back-projection method is a simple and intuitive approach that was used to

reconstructed the first photoacoustic images [92, 93]. The reconstruction is based on

the solution to the wave equation in Eq. (2.19) and involves spreading the acoustic

waves detected over a spherical surface to reconstruct the initial pressure distribution

at each spatial location. The disadvantages of this method are the high computational

cost and the fact that the reconstructed images contain circular reconstruction artefacts

due to the approximate nature of the method. In the filtered back-projection method,

a filtering step is performed before or after the back projection step. This process

is analogous to back-projection reconstruction in X-ray computed tomography. The

filtered back-projection method is able to reconstruct the photoacoustic images exactly

for spherical [94], circular [95], ellipsoidal [96], cylindrical [88] and planar detectors [88].

In the frequency domain reconstruction method for a planar detector [86, 97], the

measured pressure signals, pdet(x, y, t), are Fourier transformed in 3D to give pdet(kx, ky, ω).

Using the dispersion relation, the frequency component ω is mapped into kz, resulting

in pdet(kx, ky, kz). The inverse Fourier transform is then applied on pdet(kx, ky, kz) to

obtain the initial pressure distribution p0(x, y, z). Fast Fourier transforms can be used

to speed up the frequency domain reconstruction, making it significantly faster than the

back-projection methods. Frequency domain reconstruction has also been developed for

cubical [98], cylindrical [99] and spherical [100] detection geometries.

Time-reversal algorithms [101,102] rely on the facts that 1) all acoustic waves gener-

ated within a finite volume will leave the volume to be captured by an enclosing detector

surface after a sufficiently long time and 2) the wave equation is invariant when the di-

rection of time is reversed. Hence, the forward acoustic model can be run backwards

in time, such that the detected waves are emitted back into the image domain to form

a reconstruction of the initial pressure at t = 0. Time-reversal algorithms are less re-

strictive compared to other algorithms as they do not rely on the assumption of specific

detector geometries and can also, under some restrictions, account for heterogeneous

acoustic properties [89]. Reconstruction based on time-reversal can be performed using
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finite difference methods [102] or more efficiently using k-space pseudo-spectral meth-

ods [103]. More accurate reconstructions can be obtained for limited detection apertures

using the iterative time-reversal method [104,105], which is described in Sec. 6.3.1.

In model-based acoustic reconstruction methods [106], first, an initial reconstruction

of the initial pressure distribution is generated. Then, a forward model is employed to

calculate the acoustic signals at the detector surfaces. This is followed by iteratively

adjusting the reconstruction of the initial pressure until the difference between the mod-

elled and the measured acoustic signals is minimised, thus improving the accuracy of the

reconstruction. Additional regularisation terms, for example Tikhonov [107,108] or total

variation regularisation [109], can be included in the minimisation scheme to increase the

stability of the reconstruction. The main disadvantages of model-based reconstruction

methods are that they are slow and memory intensive. Faster reconstruction could be

achieved by multiplying the pseudo-inverse of a pre-calculated forward operator matrix

with the vector of the measured acoustic signals for specific detector geometries [110].

However, due to the large size of the forward operator matrix, this is only feasible when

the number of detector elements and the image size are small.

3.1.1 Practical limitations of the acoustic reconstruction

The acoustic reconstruction provides the initial pressure distribution that is used as

input for the optical inversion1. Therefore, the accuracy of the acoustic reconstruction

impacts the estimation of the chromophore concentrations. Many theoretical QPAT

studies assume that the acoustic reconstruction is perfect, such that the images represent

p0 exactly. However, in practice, errors in the acoustic reconstruction may arise due to

many experimental issues. The most significant issues are discussed below:

Detection aperture Perfect reconstruction can only be achieved if all the acoustic

waves generated were captured by the detectors. As discussed in Sec. 2.4.2, this is only

possible with spherical scanners where the subject is enclosed within the detecting sur-

face. In cylindrical and planar scanners, only a fraction of the acoustic waves generated

are captured by the detectors. The effect of the finite detection aperture is illustrated

1The exceptions are the quantitative reconstruction methods where the acoustic inversion in incor-
porated in an “one step” inversion, so that the chromophore concentrations are obtained directly from
the pressure time series (Sec. 3.2.3.3).
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using a numerical simulation in Fig. 3.1. The three circular insertions have the same

initial pressure, p0, as shown in Fig. 3.1(a). Figure 3.1(b) shows the reconstructed p0

using the photoacoustic signals recorded by a planar sensor at one side of the domain

(limited-view). The sensor positions are marked with red lines. The limited-view re-

construction contains streak artefacts, and the edge of the circular insertions are not

reconstructed accurately, leading to distorted shapes. Furthermore, the reconstruction

of the initial pressure is higher for the bottom insertions, due to the fact that a larger

fraction of the wave-front of the bottom insertion is captured by the sensor compared

to the top insertion. These reconstruction errors are referred to as limited-view arte-

facts and it is clear that they will causes errors in the quantification. For comparison,

Fig. 3.1d) shows that an accurate reconstruction of p0 can be obtained when the acoustic

signals measured by detectors at all four sides of the domain are used (full-view). The

limited-view artefacts of planar sensors can be reduced by placing a second orthogonal

planar sensor to create a “V-shaped” scanner [111]. This configuration is described in

more detail in Sec. 6.3.1.

Sensor properties The ideal photoacoustic sensor is a point-detector with omni-

directional response and infinite bandwidth. In practice, the data is often bandlimited

to some extent. For example, the bandwidth of PZT transducers, which are commonly

used, is typically limited to a few megahertz and their sensitivity is not equal for all

frequencies. The finite size of the detection element and the related directional variations

in their sensitivity may also contribute to errors in the image reconstruction.

Acoustic attenuation The attenuation of ultrasound in biological tissue is frequency

dependent and often follows the experimentally determined power law: aωn, where ω

is the angular frequency of the ultrasound waves, a is the power law prefactor and n

is the power law exponent. Both a and n vary depending on the tissue type. The loss

of the high frequency components in the ultrasound signals limits the resolution in a

depth dependent manner. To reduce the impact of the acoustic attenuation, Treeby et al

proposed a time-reversal reconstruction method where the attenuation is compensated

for by including a dispersion term in the reconstruction [89].
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Figure 3.1: a) The true initial pressure. b) The limited-view reconstruction of the
initial pressure, where the signals detected at only one side of the domain were used.
The sensor locations are marked with red lines. c) The full view reconstruction, where
the signals detected at all sides of the domain were used. d) The reconstructed initial
pressure at a vertical line across the insertions using limited-view (blue dashed line) and
full-view (red dashed line) compared to the true initial pressure (green solid line).

Heterogeneous sound speed The speed of sound in tissue is assumed to be spatially

homogeneous in most reconstruction algorithms. However, in reality, the speed of sound

may not be known accurately as it depends on the tissue type and may vary between

1400-1600m/s [112]. The spatially heterogeneous sound speed will, if unaccounted for,

cause errors in the reconstruction and lead to blurry or distorted images. Reconstruction

algorithms that allow for variable sound speed have been developed in Refs. [102,113].

The above-mentioned issues need to be taken into consideration when choosing imag-

ing systems, sensors and reconstruction algorithms, such that an accurate acoustic re-

construction can be produced. This is a crucial pre-requisite for obtaining accurate
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44 Chapter 3. The inverse problems in QPAT

quantitative estimates of the chromophore concentrations.

3.2 Chromophore quantification methods

The aim of QPAT is to estimate the chromophore concentrations, which requires solv-

ing the optical inverse problem in photoacoustic imaging [22]. If the fluence distribution

was known, the solution would be trivial. Therefore the simplest QPAT methods involve

using an estimation or measurement of the fluence to reduce the problem to a linear

problem, which can be solved straightforwardly using linear methods (Sec. 3.2.1). In

methods that do not require linearisation, the fluence is modelled based on light trans-

port theory. The unknown optical parameters or chromophore concentrations can be

solved for in a non-iterative manner (Sec. 3.2.2), or using iterative minimisation meth-

ods (Sec. 3.2.3). Methods that do not assume linearity, nor require fluence modelling,

have also been developed (Sec. 3.2.4). Section 3.3 discusses the challenges that remain

for achieving accurate quantification and the current state of QPAT is summarised in

Sec. 3.4.

3.2.1 Linear methods

In linear methods, the reconstructed initial pressure distribution is assumed to be lin-

early related to the chromophore concentrations:

p0(r, λ) ∝
∑
k

αk(λ)ck(r) (3.1)

which means that any effect of the spectral colouring is ignored. In other words, it is

assumed that the fluence has no spatial or spectral dependence. Quantification methods

based on this linear model are described in the following sections. Methods for linearising

the problem such that linear methods can be applied are also described.

3.2.1.1 Linear spectroscopic inversion

In linear spectroscopic inversion (SI), the concentrations are found by multiplying the

pseudo-inverse of the matrix of the specific absorption coefficients by the multiwave-

length images. SI is commonly used for estimating the sO2 [35, 36, 46, 47, 114, 115] and
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identifying biomarkers from the background tissue [43, 116, 117] in in vivo photoacous-

tic studies. The chromophore concentrations are estimated to a common scaling factor

in SI. However, in the case of sO2 measurements, the scaling factor cancels out since

the sO2 is defined by the ratio of the concentrations. SI is described in more detail in

Sec. 4.2.

3.2.1.2 Linear unmixing methods

Here, the term “linear unmixing” will be used to refer to methods that are based on a

linear model but primarily aim to separate, or “unmix”, the contributions from different

chromophores in the multiwavelength photoacoustic images, rather than to provide an

accurate quantification of the chromophore concentrations. In linear unmixing methods,

the statistical properties of the chromophore distribution are exploited to separate the

chromophores, and the a priori knowledge about the absorption spectra is either not

used at all (blind unmixing) or used only to constrain/initialise the search (semi-blind

unmixing). Linear unmixing methods include vertex component analysis [118], adaptive

matched filter [119], principal component analysis (PCA) [120] and independence com-

ponent analysis (ICA) [120,121]. ICA is the subject of Chapter 5, where the algorithm

and its applications will be described in detail.

3.2.1.3 Fluence correction

When applying the linear spectroscopic inversion or unmixing methods, it is assumed

that the optical inverse problem has been linearised, even though the linearisation step

is often not made explicit. Linearisation refers to approximating the nonlinear equation

for the photoacoustic initial pressure in Eq. (2.15) by the linear equation in Eq. (3.1).

Linearisation can be achieved either by simply assuming that the fluence is spatially and

spectrally constant, or by dividing the photoacoustic images with an approximation of

the fluence to partially correct for the fluence variations. A number of fluence correction

methods which have different levels of accuracy are described below:

Correcting for an absorbing layer In a study of the vasculature in the mouse brain,

Wang et al applied a correction for the absorption of the skin and skull layers using in

vitro measurements [77]. Invasive in vivo measurements have also been performed, where
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the attenuation of the skin layer was measured by inserting a thin sheet with known

absorption properties under the skin [122,123].

This type of correction can reduce the spectral colouring to some extent, provided

that the absorption of the layer has been estimated accurately. However, it cannot fully

remove the nonlinear effect of the fluence, because it can at best only account for the

fluence distortion caused by the superficial layer. It neglects fluence variations due to

the optical properties of the tissue underneath that layer, as well as the fact that the

presence of the layer or the absorbing sheet changes the fluence in the surrounding tissue.

Other attempts to estimate the fluence include injecting the subject with a contrast

agent of a known small concentration [124]. A linear equation for the concentration can

be obtained using the images acquired before and after the injection, and the concen-

tration of the contrast agent. This assumes that the fluence, the concentration of the

endogenous chromophores, and the scaling parameters (including the Grüneisen param-

eter) do not change after the injection, and that the concentration of the contrast agent

is known accurately. It is however unlikely that all assumptions can be fulfilled, because

the distribution of the contrast agent is rarely known accurately, and for the change

in the measured signal to be detectable, it is likely that the change in fluence is also

significant.

Estimation based on a homogeneous medium The exponential decay given by

Eq. (2.10) can be used as an estimation of the fluence, where the effective attenuation

coefficient can be interpreted as a bulk average parameter for the tissue [44]. A sim-

ilar correction can also be applied for imaging systems with circular illumination, in

which case the fluence can be approximated as a radially symmetric function [125]. As

described in Sec. 2.1.4, the exponential fluence model is exact for an optically homo-

geneous semi-infinite medium illuminated by an infinite plane wave. Clearly, practical

imaging scenarios are unlikely to fully satisfy those assumptions. Therefore, the accu-

racy of the fluence correction depends on the level of homogeneity in the tissue, depth

from the illuminated surface and the size of the illumination beam.

Non-invasive fluence measurements The simplest approach to non-invasively esti-

mate the fluence involves using the photoacoustic image at one wavelength to correct for

the fluence at other wavelengths [126]. A number of other studies have proposed using
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measurements of the fluence at the surface of the tissue to estimate the internal fluence

distribution. Ranasinghesagara et al [127] used diffuse reflectance measurements [128]

of the back-scattered light to estimate the bulk average absorption and scattering coeffi-

cients of phantoms, which were used to calculate an approximate estimate of the fluence.

The diffuse light was also measured by Yin et al [129] at different positions at the surface

of a phantom and used as constraint for an iterative calculation of the fluence in a non-

linear inversion (Sec. 3.2.2). The applications of the methods in Refs. [127] and [129] are

limited to tissue regions with only small heterogeneities. In order to measure the fluence

in tissues containing larger heterogeneous features, Bauer et al [130] used diffuse optical

tomography (DOT). DOT can provide spatially resolved images of the absorption and

scattering by using multiple light detectors at different locations. However, the higher

frequency components of the fluence which arise due to abrupt changes in absorption at

organ boundaries cannot be estimated accurately, because DOT has significantly lower

resolution than photoacoustic imaging.

3.2.1.4 Perturbation problem

This group of methods takes advantage of the fact that the heterogeneous absorbing

features in the tissue are often small, and can therefore be treated as perturbations in an

optically homogeneous medium. This model was used by Ripoll and Ntziachristos [131]

to recover small absorption perturbations. In this study, the fluence is assumed to be

unchanged by the absorption perturbations, so that

δH = δµaφ0, (3.2)

where δH is the change in the absorbed energy density due to the absorption pertur-

bation δµa and φ0 is the unperturbed, or background, fluence. The background fluence

is calculated based on the Green’s function using the DA model. It is assumed that

the scattering is homogeneous and known, and the unperturbed background absorption

is also known. This method has similar disadvantages to when the fluence is corrected

using the 1D exponential decay model, where errors may arise if the background optical

properties are not known accurately and if the absorption perturbations are sufficiently

large to cause significant changes in the fluence.

To reduce the errors for cases where the absorption perturbations are large, instead of
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assuming unchanged fluence, the change in the fluence can be modelled as a perturbation

on the background fluence, using the Born approximation method. The perturbed

fluence can be modelled using the DA for perturbations in absorption only [132], or for

perturbations in both the absorption and the scattering coefficients [133]. This leads to

an expression for the change in the absorbed energy density that is linear with respect

to the absorption perturbation, which can be inverted to recover δµa. The quotient of

images acquired with different illumination were used in the numerical implementations

of the Born approximation method in Refs [132] and [133]. This has the advantage of

cancelling out the Grüneisen parameter and system scaling factors. The disadvantage of

the Born approximation method is that it is valid only for small changes in absorption

and the optical properties of the background must be known accurately.

3.2.2 Non-iterative nonlinear methods

In general, linear methods are unlikely to be accurate when the tissue contains inhomo-

geneous optical features that are large or have optical properties that differ significantly

from the background. Therefore, in these cases, it is necessary to use methods that

are not based on a linear model. Two nonlinear methods that do not require iterative

update, and instead rely on rearranging the diffusion equation are described below. One

method assumes that the scattering is known (Sec. 3.2.2.1) and one assumes unknown

scattering (Sec. 3.2.2.2). The Grüneisen parameter is assumed to be known in both

methods.

3.2.2.1 Rearranging DA for absorption

Since the term φµa appears in the DA in Eq. (2.9), it can be replaced by the measured

H, since H = φµa (assuming that Γ is known and has been divided out from the

reconstructed images: H = p0/Γ). In this way, the DA can be rewritten as [134]

(∇ ·D∇)φ = H − q0. (3.3)

Equation (3.3) can be solved numerically to find φ by assuming µa � µ′s such that

D ≈ (3µ′s)
−1. Hence, the absorption coefficient can be estimated by µa = p0/(Γφ).
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3.2.2.2 Rearranging DA for absorption and scattering

When scattering is unknown, the DA can be manipulated using two images acquired

with different illumination patterns, H1 = µaφ1 and H2 = µaφ2, to give [135,136]

∇ ·
(
Dβ

µ2
a

)
= 0, (3.4)

where β is the vector field

β = µ2
aφ

2
1∇
(
φ2

φ1

)
. (3.5)

Two methods for solving Eq. (3.4) has been proposed in Refs [135,136]. It was demon-

strated using numerical simulations that a stable solution exists for suitably chosen il-

lumination patterns (for example illuminating from different sides of the subject) [136].

The solution methods require µa to be non-zero everywhere and D must be known at the

boundaries. Practical implementation of this method may be hindered by the sensitivity

of the quotient term in Eq. (3.5) to noise in the images.

3.2.3 Iterative nonlinear methods

In this section, methods that use iterative updates to bring the unknown parameters

closer to the true solution are described. These methods typically involve the forward

modelling of the photoacoustic images and applying minimisation techniques.

3.2.3.1 Fixed point iteration

If the scattering is known, Eq. (2.14) can be rearranged such that the absorption coef-

ficient can be written as a function of itself. Hence, a fixed point iteration can be used

to recover µa [137]:

µ(i+1)
a =

Hmeas

φ(i)(µ
(i)
a , µs) + ε

, (3.6)

where i denotes the ith iteration, Hmeas denotes the measured H, ε is a small number

that is included to ensure a non-zero denominator in the presence of noise and φi is

estimated fluence at the ith iteration. The general procedure for estimating µa using

the fixed point iteration is as follows: 1) Make an initial guess for the absorption,

µ0
a. 2) Model the fluence based on µ0

a and the known scattering: φ(0)(µ0
a, µs). 3)

Use Eq. (3.6) to calculate µ
(i+1)
a . 4) Update the fluence using the new absorption
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φ(i+1)(µi+1
a , µs). 5) Iterate steps 3 and 4 until the difference between the measured and

the modelled absorbed energy density,
∣∣∣Hmeas − φ(i)µ

(i)
a

∣∣∣, is smaller than a pre-defined

tolerance threshold.

Using the DA as the light model, the fixed point iteration method has been applied

to experimental data in a series of publications [138, 139, 140, 141, 142] aiming towards

measuring the oxygenation in finger joints in vivo. The method was first demonstrated

using 2D [138] and 3D [139] phantom images. The subsequent publications presented in

vivo measurements [140] and comparing the blood oxygenation and total haemoglobin

concentration of osteoarthritis patients with healthy volunteers [142].

The fixed point iteration scheme does not put restrictions on choice of light model

and has also been implemented using the δ-Eddington approximation in Ref. [143] and

the RTE in Refs. [144,145].

3.2.3.2 Methods based on optimisation (model-based inversion)

Optimisation problems occur in many different fields and the aim, in a general sense, is

to find the maximum or minimum of an objective function. In QPAT, optimisation can

be used to solve inverse problems by iteratively updating the unknown parameters in a

model of the initial pressure distribution until the difference between the modelled and

the measured image data is minimised. For consistency with the literature, this method

is referred to as “model-based” inversion in this thesis. Although, of course, all QPAT

methods assume some model of light transport, either explicitly or implicitly (in the

simplest case the fluence is assumed to be constant), except for the methods described

in Sec. 3.2.4. In model-based inversion, the objective function, or error functional, ε, to

be minimised can be written as

argmin
u

ε(u) =
1

2

I∑
i=1

N∑
n=1

M∑
m=1

[
pmodel0,m,λn(u)− pmeas0,m,λn

]2
+ P(u), (3.7)

where M is the total number of voxels, N is the total number of wavelengths, I is the to-

tal number of illuminations, and u is the vector of the unknown variables, which may for

example consist of the absorption and scattering coefficients at each voxel. The second

term P(u) in Eq. (3.7) represents additional regularisers that penalise noise or artefacts.

The most well-known regularisers are the Tikhonov regulariser [146], which increases the
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smoothness of the estimated variables, and the total variation (TV) regulariser [147],

which encourages the estimated variables to be piece-wise constant. Examples of appli-

cations of the Tikhonov and TV regularisers in QPAT can be found in Refs. [140,148,149]

and [136,150] respectively.

There is a large body of literature [151,152,153] on different approaches for updating

the parameters in order to find the minimum of the error functional. The approaches

can be categorised into two main groups: trust-region search methods and line-search

methods. In trust region methods, the error functional is replaced by a function that

is simpler but still an adequate approximation for a region close to the current set

of variables, known as the “trust region”. Then a step direction which reduces the

approximate function is chosen and the variables are updated with a step length within

the trust-region.

In line-search methods, first, the step direction is determined based on the gradient

information, and then the step size is computed by finding the minimum along the step

direction. The most intuitive way to determine the step direction is to find the direction

where the error function has the largest gradient (steepest descent). This is known as

the gradient-descent method. The disadvantage of gradient-descent methods is that

they can require many iterations before reaching the global minimum. Methods based

on the Hessian matrix or its approximation, on the other hand, typically have faster

convergence. These methods are briefly described below:

Newton’s method In Newton’s method, the step direction s(i) at iteration i is given

by

s(i) = −(∇2ε(i))−1∇ε(i) (3.8)

where ∇2ε(i) is the Hessian matrix with the second derivatives (the notation should not

be confused with the Laplace operator) and is given by

∇2ε =



∂2ε
∂u1

∂2ε
∂u1∂u2

· · · ∂2ε
∂u1∂uL

∂2ε
∂u2∂u1

∂2ε
∂u2

2
· · · ∂2ε

∂u2∂uL
...

...
. . .

...

∂2ε
∂uL∂u1

∂2ε
∂uL∂u2

· · · ∂2ε
∂u2

L


(3.9)
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where L denotes the number of unknown variables, and ∇ε(i) is the gradient of the error

functional given by

∇ε =
[
∂ε
∂u1

∂ε
∂u2

· · · ∂ε
∂uM

]T
. (3.10)

The efficiency of the gradient calculations can be increased using the adjoint model

(Sec. 6.4). The memory demand for storing the Hessian matrix can be extremely large,

because the size of the Hessian matrix scales quadratically with the number of unknown

variables L. Therefore, for the large scale inverse problem in QPAT, where the number

of unknowns is in the order of 106 (because a high-resolution 3D photoacoustic image

may have a voxel size of 100µm3, which means that for a 1cm3 volume, the number of

voxels equals 106), the practical implementation of Newton’s method becomes difficult.

The Gauss-Newton method The cost of calculating the Hessian matrix can be

reduced by approximating it with ∇2ε ≈ JTJ, where J is the Jacobian matrix with

the partial derivative of pmodel0 with respect to the unknown parameters. The Gauss-

Newton method was implemented in Ref. [138] where µa was recovered from numerical

and experimental phantoms, and in Ref. [154] where the chromophore concentrations

were recovered from multiwavelength simulated 2D images.

Quasi-Newton methods Quasi-Newton methods are less memory intensive than

both the Newton and Gauss-Newton method, because the Hessian matrix is approx-

imated using only the gradients of the error functional. The Quasi-Newton methods

have slower rate of convergence than the other methods, but the modest memory re-

quirements makes them more attractive for applications in QPAT. Commonly used

Quasi-Newton algorithms include the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-

rithm, the Davidon-Fletcher-Powell (DFP) formula, and the symmetric rank 1 (SR1)

method. The methods are distinguished by different ways of approximating the Hessian

and updating the unknown variables.

There are also optimisation methods that do not use any gradient information, such

as the Nelder-Mead method, which was used in Ref. [155]. However, they have slower

convergence rate and are not suitable for large scale inversions. The methods described

above assume that the error functional is convex with respect to the unknown variables.
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When the error functional is non-convex (for example the mutual information term in

Eq. (6.3) in Sec. 6.2), search methods based on the gradient information may not lead

to the optimal solution.

3.2.3.3 Implementations of model-based inversion

In the case where scattering is known, the absorption can be estimated from the recon-

structed H at a single wavelength and illumination angle [137, 138, 144]. However, if

both absorption and scattering are unknown, they cannot be uniquely reconstructed us-

ing a photoacoustic image acquired at a single wavelength and illumination angle [135].

That is to say, there are multiple combinations of absorption and scattering distribu-

tions that can give rise to the same photoacoustic image. This non-uniqueness problem

can be overcome by using multi-illumination (Sec. 3.2.3.3.1) or multiwavelength imag-

ing methods (Sec. 3.2.3.3.2). Implementations of model-based inversion using the Monte

Carlo method are described in Sec. 3.2.3.3.3. Section 3.2.3.3.4 describes the one-step ap-

proach for recovering the optical parameters directly from the measured photoacoustic

time series.

3.2.3.3.1 Multi-illumination The multi-illumination method uses images acquired

with excitation light of the same wavelength but illuminating the subject from different

angles or with different illumination patterns. The multi-illumination method has been

applied by Gao et al [150] using the Bregman method in a model-based inversion based

on the DA. The model-based inversion using multi-illumination has also been imple-

mented using the RTE: Tarvainen et al [156] used the Gauss-Newton method to recover

both the absorption and scattering coefficients based on 2D simulated multi-illumination

images. Saratoon et al [157] demonstrated a more computationally efficient inversion

using the quasi-Newton minimisation method and also included the acoustic reconstruc-

tion in the simulation.

In the multi-illumination method, the absorption coefficient is recovered at one single

wavelength. It is then assumed that the method can be repeated for multiple wavelengths

to obtain the absorption spectra, from which the concentrations can be found using a

linear spectroscopic inversion.

A combination of multi-illumination and multiwavelength imaging, where the images
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with different illumination patterns at different wavelengths were used simultaneously

(as opposed to using multi-illumination images at each wavelength separately, which was

suggested above) was proposed to simultaneously recover the absorption, the scattering

and also the Grüneisen parameter. This method has been demonstrated using simulated

images based on the DA [158] and the RTE [159], but not with experimental data.

3.2.3.3.2 Multiwavelength The non-uniqueness problem can also be removed by

using images acquired using excitation light with different wavelengths. Cox et al [154]

modelled the wavelength dependence of the scattering using the empirical formula

µ′s = aλ−b, (3.11)

where a is referred to as the scattering amplitude and b is an experimentally deter-

mined constant that varies for different types of tissues [160]. It was shown that the

chromophore concentrations and the scattering amplitude can be uniquely recovered

from multiwavelength images, provided that the wavelength dependence of both the

scattering and the absorption are known [154].

The multiwavelength model-based inversion method was applied to experimental

phantom images in a series of studies by Laufer et al [41, 155, 161]. The earliest publi-

cation [161] presented measurements of a blood-filled cuvette in which the fluence was

modelled in 1D using the δ-Eddington approximation. The concentrations of oxy- and

deoxyhaemoglobin and the scattering amplitude were estimated separately by fitting the

modelled time series to the measured data. This was extended to a spatially resolved

quantification of oxy- and deoxyhaemoglobin concentrations based on a 2D δ-Eddington

model in Ref. [155]. Finally, in Ref. [41], an acoustic propagation model was included

in the inversion such that the minimisation was performed on the reconstructed images

rather than the acoustic time series, and the accuracy of the fluence model was improved

by including a correction factor for the circular light beam. The concentrations of con-

trast agents in a tube phantom were quantified for segmented regions with piece-wise

constant optical properties.

Since the publication of this series of papers, a number of other studies tackling

the quantification problem using model-based inversion in vivo or in full 3D has been

published. However, these studies did not rely on multiwavelength images to remove
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non-uniqueness. Instead, it was avoided by either fixing [42] or restricting [162] the values

the scattering take. Brochu et al [162] used the least squares minimisation approach

as a means of estimating the fluence. This estimated fluence was then divided out

from the images to correct for the spectral colouring. The inversion was performed

on a per-2D-slice-basis using phantom images and in vivo mouse images acquired in a

cylindrical scanner. The 2D δ-Eddington model was used as the light model and piece-

wise constant optical properties were assumed at organ level, which required manual

segmentation. The main limitation of the study is the fact that the 2D model is unlikely

to be accurate due to the complex 3D structures within the mouse.

In a recent publication, Fonseca et al [42] demonstrated a full 3D inversion based on

the DA and assuming known scattering. The concentration ratio as well as the absolute

chromophore concentrations were estimated on a voxel-by-voxel basis (no segmentation)

in an experimental phantom. The study showed accurate results for the concentration

ratio estimation. The estimation of the absolute chromophore concentrations contained

larger errors, but promising improvement was observed once an additional scaling factor

for the system calibration was added as an unknown variable in the minimisation.

The advantages of using the multiwavelength approach over the multi-illumination ap-

proach include [22]:

• In cases where there are images at more wavelengths than chromophores with

unknown concentrations (N > K), the number of unknowns is smaller when

chromophore concentrations are recovered directly (L = KM), than when the

absorption is recovered at each wavelength (L = NM). This means that the

computational burden may be less in the multiwavelength approach.

• The multi-illumination approach requires at least two images per wavelength to

recover the absorption coefficient uniquely when scattering is unknown, while the

multiwavelength approach only requires one image per wavelength. Hence, using

the multiwavelength approach reduces the time required for image acquisition.

3.2.3.3.3 Monte Carlo implementations In all above mentioned studies, the

model-based inversion was implemented using FEM. Monte Carlo (MC) implementa-

tions are less common, but have been published in Refs. [163, 164, 165, 166]. The MC
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model is usually used to calculate the fluence rate, which is the radiance integrated over

all angles, but the angle-dependent radiance is not stored for several reasons: the large

memory demand, the fact that radiance is often not the quantity of interest and calcu-

lating radiance requires using more photons in the model compared to only calculating

the fluence rate. Therefore, the functional gradient with respect to scattering cannot be

calculated analytically. In Refs. [165,166], a non-gradient based minimisation algorithm

was used to find the concentration ratios in segmented regions with piecewise constant

concentrations in 3D experimental phantom. In Refs. [163, 164], Hochuli et al used a

harmonic angular basis to store the radiance field computed using a 2D MC model. This

allowed the gradients to be calculated based on the harmonic angular basis, such that a

gradient-descent minimisation algorithm could be used to estimate the absorption and

scattering coefficients from simulated images with multiple illuminations.

3.2.3.3.4 One step method The model-based inversion scheme and its variations

described above are based on the reconstructed images. It is also possible to perform

a “one-step” inversion, where the optical parameters are recovered directly from the

measured photoacoustic time series. This was implemented by Laufer et al in Ref.

[161], as mentioned in Sec. 3.2.3.3.2. A different approach was proposed by Shao et

al [167]. They used the Born approximation based on the DA to model the fluence

and recovered the absorption and scattering from 2D simulated images illuminated from

different angles. Another experimental demonstration of the one-step inversion using the

DA was presented by Yuan et al [168]. In this study, the scattering was fixed and only the

absorption coefficient was recovered. The one-step inversion has also been implemented

in a simulation study using the RTE [148] to recover the absorption coefficient. In the

above mentioned studies, the sound speed was fixed in the inversion. In Ref. [169] both

the absorption coefficient and the sound speed were reconstructed simultaneously using

eight illuminations, assuming known scattering. The one-step inversion has also been

solved using a Bayesian approach (see Sec. 3.2.3.4) in Ref. [170], where reconstructions

of the absorption and scattering were demonstrated also for limited-view settings.
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3.2.3.4 Additional priors in model-based inversion

The Bayesian approach was used in Ref. [171], which allowed the statistical properties

of the noise to be explicitly included in the model-based inversion, leading to improved

reconstructions of the absorption and scattering. Pulkkinen et al [172] extended the

Bayesian quantitative reconstruction method to be used for multiwavelength images.

They used two illuminations at three wavelengths (six measurements in total) to estimate

the chromophore concentrations, the scattering and the Grüneisen parameter. However,

implementing the Bayesian approach for high resolution 3D images is challenging due

to the high computational and memory demands.

Malone et al [173] proposed a reconstruction-classification method which uses the

prior knowledge that the optical parameters belong to a few classes to improve their

estimates. The algorithm alternates between solving the conventional least-squared

minimisation problem, and a segmentation problem (the classification step). Both 2D

and 3D simulations were used to demonstrate improved estimates of the absorption and

scattering.

In these studies [171, 172, 173], the improvement of the estimate of the scattering is

more significant than for the absorption. This may be due to the fact that the scattering

is typically recovered less accurately than the absorption in conventional model-based

inversion. The reasons for this are discussed in Sec. 3.3.3.

3.2.4 Quantification without fluence modelling

Accurately inverting for the chromophore concentrations by modelling the fluence is not

a straightforward task. Therefore, a number of methods that avoid using experimental

measurements or modelling strategies to account for the fluence have been developed

and are described below.

Rosenthal et al [174] presented a quantification method based on the assumption

that the fluence is slowly varying in space due to diffusion, while the map of the ab-

sorption coefficient has high spatial frequency components as it changes abruptly at

organ or vessel boundaries. These spatial characteristics are exploited to decompose the

image into two components describing the light fluence and the absorption coefficient

respectively, using sparse representations in two suitable sets of elementary functions.

Tzoumas et al [175] proposed representing the fluence in the unknown and hetero-
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geneous tissue as a linear superposition of a few reference fluence base spectra, which

were generated by applying principal component analysis (PCA) on 1470 simulated

fluence distributions. The weight for each base fluence spectrum and the oxy- and

deoxyhaemoglobin concentrations at each voxel were estimated using a constrained op-

timisation scheme that finds the closest match between the modelled and the measured

image intensity.

Choi et al [176] attempted to avoid the effect of the local fluence variations by

measuring the superimposed “differential” photoacoustic signal generated by two square

wave modulated light sources with different wavelengths. The ratio of the amplitude

of the two excitation signals and their phase difference can be adjusted to give the

photoacoustic signal high sensitivity towards small changes in sO2.

3.3 Discussion and remaining challenges

The complexity and computational intensity vary greatly between different inversion

techniques. If only the location of the chromophores or the concentration ratios are of

interest, the quantification task becomes relatively easy, and it may be possible to ob-

tain sufficiently accurate results with a simple approximation of the fluence. However, if

the goal is to estimate the concentrations accurately in absolute units in complex tissue

structures, it is likely that more sophisticated methods of accounting for the fluence

are required. Also, it is more challenging to obtain accurate quantification when more

parameters are unknown. For example, when the Grüneisen parameter and the scat-

tering coefficient are unknown, more images from different illumination pattern and/or

wavelengths are required to remove non-uniqueness. Furthermore, the computational

and memory demands often scale with the number of unknown variables. This means

that inverting for segmented regions with piece-wise constant optical parameters is sig-

nificantly less challenging than obtaining quantification on a voxel-by-voxel basis. With

these issues in mind, it is important to identify which type of quantification and what

level of accuracy are required for each particular application, such that an appropriate

quantification method can be chosen.

To conclude this chapter, the main challenges of QPAT are discussed below and a

brief summary of the current state of QPAT is provided in Sec. 3.4

58



3.3. Discussion and remaining challenges 59

3.3.1 Limitations of linear methods

The linear model in Eq. (3.1) is an approximation of the nonlinear relationship between

the photoacoustic initial pressure and the chromophore concentrations (Eq. (2.15)). This

approximation may be accurate under some circumstances, for example where spatial

variations in optical parameters are low such that the fluence is nearly constant or can

be approximated with a simple exponential decay. However, it is unlikely that linear

methods can provide accurate quantification in a general sense. Despite the lack of

rigorous assessment of their accuracy, linear methods have been used extensively in

in vivo preclinical studies. Furthermore, methods such as SI and ICA cannot provide

absolute quantification and are unable to account for the Grüneisen parameter.

3.3.2 Challenges of nonlinear methods

In theory, the nonlinear model-based inversion method can be used to obtain accurate

recovery of the chromophore concentrations for arbitrary tissue structure and hence

provides a generally applicable solution to the QPAT problem. However, nonlinear

methods are more complex to implement algorithmically and its practical applications

for 3D in vivo images may be challenging due to a number of issues, including:

• The number of unknowns typically exceeds one million when estimating the chro-

mophore concentrations on a voxel-by-voxel basis in high resolution 3D photoa-

coustic images. The extensive computational memory demands of the large scale

of the inversion may be prohibitive for practical implementations.

• Model-mismatch may arise due to the approximations in the fluence model, par-

ticularly when the DA model or 2D fluence models are used, and uncertainty in

the model parameters (which are typically determined experimentally). This is

discussed in more detail in Sec. 6.1.

The issues of the unknown scattering and Grüneisen parameter can also affect the prac-

tical applicability of nonlinear methods and are discussed below.

3.3.3 Scattering

In some QPAT studies, the scattering coefficient is assumed to be known. While this

makes the inversion easier to implement, it can also lead to quantification errors when
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the assumed values of the scattering coefficient are erroneous. For example, Jetzfellner et

al [177] showed that the absorption estimations in the fixed point iteration may diverge

if the scattering is wrong. The effect of errors in the “known” scattering has also been

demonstrated for model-based minimisation schemes [178].

To avoid these errors, the scattering can instead be incorporated as an unknown

variable in the inversion, as discussed in Sec. 3.2.3.3, and unique solutions can be found

under certain conditions. However, the photoacoustic images are only weakly dependent

on the scattering coefficient, because the initial pressure is only indirectly affected by

the scattering coefficient through its effect on the fluence distribution. This causes slow

rate of convergence for the scattering and the estimation of the scattering is typically

poorer than the absorption.

3.3.4 Grüneisen parameter

The vast majority of the inversion methods require that the Grüneisen parameter is

known. A few exceptions include the methods based on multi-illumination at multiple

wavelengths in Refs. [158] and [159], and the Born approximation method where the

Grüneisen parameter cancels out from the quotient images [132, 133]. In Refs. [41, 42],

the Grüneisen parameter was incorporated as a parameter that is dependent on the

chromophore concentrations. In in vivo applications of QPAT, on the other hand, the

Grüneisen parameter is commonly assumed to be a spatially constant scaling factor.

This is likely to lead to quantification errors since the Grüneisen parameter may vary

by more than a factor of four for difference tissue types [179] and may not be known a

priori.

3.3.5 Practical considerations

Many nonlinear methods are demonstrated in numerical simulation using images of H,

with the assumption that the Grüneisen parameter and the system calibrations factor

are known, and that the acoustic reconstruction is perfect. The system calibration

factor could be estimated using calibrated sensors, such that the measured photoacoustic

signals can be converted to have units of Pascals [41, 42]. However, the assumption

of perfect acoustic reconstruction is unlikely to hold, due to limited-view artefacts,

inhomogeneous sound speeds and the limited bandwidth of the sensors, which may
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distort or blur the images as well as create artefacts, as discussed in Sec. 3.1.1.

It is also worth noting that many of the publications presenting the nonlinear meth-

ods demonstrate the recovery of the absorption coefficient at a single wavelength, even

though the key quantity of interest is the chromophore concentrations. In theory, the

methods can be applied to each wavelength individually to estimate the absorption

spectra, from which the concentrations can be calculated. However, this has rarely

been demonstrated experimentally (except in [142,162]). All other experimental estima-

tions of the chromophore concentrations using nonlinear methods have used multiwave-

length images (with a single illumination) to estimate the chromophore concentrations

directly [41,42,155].

3.4 Summary and outlook

The QPAT problem has been tackled from different perspectives by various research

groups, but a generally applicable method for recovering the chromophore concentra-

tions has not yet been found. Most in vivo studies use simplified fluence models or

ad hoc experimental measurements of the fluence to linearise the problem in order to

calculate the concentrations with SI, which is likely to lead to inaccuracies if the tissue

has a complex and inhomogeneous structure. Fluence modelling using light transport

equations has been incorporated in iterative nonlinear inversion schemes, which can pro-

vide more accurate quantification, but are challenging to implement for in vivo images.

Other quantification strategies require additional elements such as light modulation or

generating spectral libraries, which increases the complexity of the methods.

There are large gaps between the mathematical literature with numerical simulations,

the few validated experimental demonstrations and practical in vivo applications (which

continue to ignore most theoretical literature). This thesis aims to bridge this gap

by 1) identifying the circumstances under which simple linear methods can provide

accurate estimation of the chromophore concentrations, in order to better understand

their accuracy and limitations such that they can be used with more confidence, and

2) improving the robustness of model-based inversion under experimental conditions, in

order to encourage the transition of theoretical methods into practical use.
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Chapter 4

Linear spectroscopic inversion

4.1 Introduction

The linear spectroscopic inversion (SI) is a simple QPAT method which uses the (pseudo)

inverse of the matrix of the specific absorption spectra (the spectral matrix) to find

the relative chromophore concentrations. The estimation of the concentrations of oxy-

and deoxyhaemoglobin are of particular interest as their ratio is related to the blood

oxygenation, sO2.

SI is a standard method in conventional spectroscopy, where the concentrations can

be calculated straightforwardly from the absorption of the material at different wave-

lengths. In photoacoustic tomography, however, the measured signals are not linearly

related to the absorption coefficient, because of the spectral colouring by the fluence.

Therefore, using SI is likely to lead to errors in the estimation of sO2 for photoacous-

tic tomography [155, 180]. Despite this, SI has been frequently used in in vivo imaging

studies, as shown in Table 4.1, which presents a non-exhaustive list of publications using

SI to measure sO2 based on in vivo photoacoustic images in the last three years. The

publications include clinical and pre-clinical studies of the oxygenation in for example

tumour models, the placenta and the skin, either with or without employing approxi-

mate fluence correction methods. In many publications, only two wavelengths are used

for the SI, and while some use 4–8 wavelengths, only rarely are more than 10 wavelengths

used.

The analysis in this chapter is motivated by two reasons: Firstly, since SI is very

commonly used for estimating sO2 in QPAT by many research groups, it is important
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Table 4.1: Examples of publications where SI was used to estimate sO2 based on in vivo
photoacoustic images in the past three years (2015–2017). Many of these recent pub-
lications used the commercially available Vevo LAZR scanner (VisualSonics, Toronto,
ON, Canada) [181]. (These references are indicated with the superscript v.)

Ref. N Wavelengths Fluence correction Application

[182] v 2 [750, 850] No Placenta

[183] v 2 [750, 850] No Placenta

[114] v 2 [750, 850] No Tumour

[35] 2 [765, 796] Yes Human finger joint

[184] 2 [756, 797] No Tumour

[45] v 2 [750, 850] No Tumour

[185] v 2 [750, 850] No Tumour

[186] v 2 [750, 850] No Tumour

[187] 2 [576, 584] No Human finger joint

[188] v 2 [750, 850] No Tumour

[189] v 2 [750, 850] No Femoral artery

[190] v 2 [750, 850] No Tumour

[115] 4 [520, 540, 560, 650] Yes Skin

[47] 5 [780:10:820] Yes Placenta

[46] 8 [720:20:860] No Tumour

[36] 15 between 700 and 880 No Tumour

[191] 25 [710:10:950] No Tumour

to assess its accuracy. Secondly, if SI can be shown to be accurate, it would be a very

attractive approach because it is extremely simple, fast and computationally inexpensive.

In a numerical study of a single blood vessel, Hochuli et al [192] found that using

SI with certain pairs of wavelengths can provide accurate sO2 estimates, but the op-

timal wavelength pairs vary for different depths from the illumination source and sO2

levels. Therefore it is difficult to choose an optimal pair of wavelengths that will reliably

result in accurate estimations without knowing true sO2 in advance. The first aim of

this chapter is to investigate whether similar observations hold in a more complex and

realistic numerical phantom and whether using more than two wavelengths can lead to

accurate estimates for a large range of depths and sO2 levels.

The remainder of the chapter aims to better understand the error associated with

estimating sO2 using SI with multiple wavelengths. It would be intuitive to assume
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that using more wavelengths over a broad spectral range would lead to more accurate

results. This assumption is valid in linear problems where ill-conditioning and the noise

in the data are the main potential sources of error. However, since the spectral colouring

causes bias in SI for QPAT, further investigation is required to determine whether it

is more advantageous to use more wavelengths, or fewer wavelengths selected from a

spectral range where the spectral colouring is low.

Finding the wavelength combination for SI that leads to the smallest errors is chal-

lenging, as there are many possible combinations (for example, choosing 25 out of 51

wavelengths gives 51C25 = 2.5 × 1014 unique combinations). Maximising the small-

est singular value of the spectral matrix [193], or minimising the condition number of

the spectral matrix [194] have previously been suggested as methods of selecting wave-

lengths. The suitability of these methods will also be investigated in this chapter.

Numerically simulated multiwavelength photoacoustic images of a mouse brain with

skin and skull intact will be used to study the accuracy of SI for estimating the sO2 in this

chapter. The chapter is structured as the following: Section 4.2 presents the linear model

using matrix notation and the SI for sO2. Section 4.3 describes the numerical phantom

and forward simulation. The average accuracy of the sO2 estimation is presented for

different depth layers and true sO2 levels using an increasing number of wavelengths in

Sec. 4.4. The correlations between the sO2 and the condition number, smallest singular

value and the change in fluence between wavelengths are investigated in Sec. 4.5 and

4.6. The behaviour of the error in the estimated sO2 is explained using the equation for

SI in Sec. 4.7. Section 4.8 discusses how the number of wavelengths used in the inversion

affects the accuracy. Lastly, the findings are summarised in Sec. 4.9 and the conclusions

are presented in Sec. 4.10

4.2 Linear spectroscopic inversion for estimating sO2

As described in Sec. 2.2, the initial pressure is given by

p0(r, λ) = Γ(r)φ(r, λ)
∑
k

αk(λ)ck(r). (4.1)

Assuming that the acoustic reconstruction is perfect and the system calibration factor is

equal to one, such that the reconstructed image represents the distribution of p0 exactly,
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4.2. Linear spectroscopic inversion for estimating sO2 65

a set of photoacoustic images with M voxels acquired at N wavelengths, whose contrast

originate from K chromophores, can be described using matrix notation as

P = Φ ◦ (A (Γ ◦C)) , (4.2)

where ◦ denotes the element-wise (Hadamard) product, P is a (N×M) matrix with each

row corresponding to a reconstruction of the initial pressures at one of the wavelengths,

P =


p0,λ1,m1 p0,λ1,m2 · · · p0,λ1,mM

p0,λ2,m1 p0,λ2,m2

...
. . .

...

p0,λN ,m1 · · · p0,λN ,mM

 , (4.3)

Φ is the (N×M) fluence matrix with each row representing the spatially varying fluence

at one of the wavelengths,

Φ =


φλ1,m1 φλ1,m2 · · · φλ1,mM

φλ2,m1 φλ2,m2

...
. . .

...

φλN ,m1 · · · φλN ,mM

 , (4.4)

A is the (N×K) mixing matrix with each column representing the wavelength dependent

specific absorption coefficient of one of the chromophores,

A =


αc1,λ1 αc2,λ1 · · · αcK ,λ1

αc1,λ2 αc2,λ2
...

. . .
...

αc1,λN · · · αcK ,λN

 , (4.5)
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66 Chapter 4. Linear spectroscopic inversion

C is the (K ×M) concentrations matrix with each row representing the concentration

distribution of one of the chromophores,

C =


c1,m1 c1,m2 · · · c1,mM

c2,m1 c2,m2

...
. . .

...

cK,m1 · · · cK,mM

 , (4.6)

and Γ is a (K×M) matrix where all rows are identical and equal to the spatially varying

Grüneisen parameter,

Γ =


Γm1 Γm2 · · · ΓmM

Γm1 Γm2 · · · ΓmM
...

...
...

Γm1 Γm2 · · · ΓmM

 . (4.7)

In this thesis, the matrices are written with upper case bold letters, the vectors are

denoted with lower case bold letters and the matrix and vector elements are denoted

with normal lower case letters.

Equation (4.2) is nonlinear, due to the spectrally and spatially varying fluence ma-

trix. An approximation to linearity can be achieved by dividing P element-wise by an

approximate estimate of the fluence, Φ̆, such that

P

Φ̆
= P̆ ≈ A (Γ ◦C) . (4.8)

where breve symbol ( ˘ ) is used to denote the estimation of a variable. As Table 4.1

shows, many recent in vivo studies do not apply any fluence correction, which means

that the fluence is assumed to be spatially and spectrally constant. This is the equivalent

to using the identity matrix, I, as the approximate estimate of the fluence, such that

Φ̆ = I. To access the accuracy of SI under this condition, Φ̆ = I is used for all inversions

with SI in this chapter. Based on the linear model in Eq. (4.8), the linear spectroscopic

inversion (SI) can be applied. In SI, the chromophore concentrations are estimated using

the pseudo-inverse of the spectral matrix, A†:

A†P̆ ≈ Γ ◦C, (4.9)
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LI cannot separate Γ from the concentrations because Γ is wavelength independent and

scales with the concentrations.

For the estimation of the sO2, one may assume that oxy- and deoxyhaemoglobin are

the only chromophores present, such that C consists only of the concentrations of oxy-

and deoxyhaemoglobin, cHbO2 and cHbO2 . The blood oxygen saturation, sO2 is given by

sO2 =
cHbO2

cHbO2 + cHb
. (4.10)

4.3 Numerically simulated images

The 3D numerical phantom was generated based on the segmentation of a µCT vascular

cast of a mouse brain 1 with 2.5µm resolution and dimensions of 9.1x10.5x13.8mm3.

The resolution was down-sampled to 125µm to create a phantom with 73x87x110 voxels.

Skull and skin layers were added to the phantom by dilating the volume by 500µm in

all directions. These thicknesses were chosen based on Refs. [195, 196]. The maximum

projection images of the phantom structure from the z, x, and y dimensions are shown

in Fig. 4.1.

The blood vessels in the mouse brain are distinguished into background and fore-

ground vessels, as indicated in Fig. 4.1. The total haemoglobin concentrations of both

the background and foreground blood vessel are 150gL−1. The foreground vessels are

the regions of interest and their sO2 was varied from 60% to 100% in steps of 10% in

five sets of simulations. The background vessels have a sO2 of 80% for all data sets. The

absorption coefficients of oxy- and deoxyhaemoglobin [48] and water [50] are shown in

Fig. 4.2(a). The absorption spectra of the skin and the skull are taken from Refs. [197]

and [198, 199] respectively, which are based on measurements of human samples. The

optical properties of the background tissue are based on the cortical tissue in rat brains,

which has 5.65gL−1 total haemoglobin concentration with sO2 = 60.7% [200] and wa-

ter fraction of 45% [201]. The absorption spectra of the skin layer, the skull and the

background tissue are shown in Fig. 4.2(b). The scattering amplitude and wavelength

dependence for the different types of tissues are shown in Fig. 4.2(c) [160].

The light source was defined as a radially-symmetric Gaussian beam with a 1/e

1The mouse brain µCT data was kindly provided by Simon Walker-Samuel (Centre for Advanced
Biomedical Imaging, University College London) and segmented by Roman Hochuli (Photoacoustic
Imaging Group, University College London).
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Figure 4.1: Maximum intensity projection plots of the structure of the mouse brain
phantom. The different colours indicate the skin (blue), the skull (turquoise), the back-
ground brain tissue (green), the background blood vessels (orange) and the foreground
blood vessels (yellow). The cerebrospinal fluid (CSF) between the skull and the brain
tissue has not been included in this phantom. However, since the CSF does not signifi-
cantly absorb or scatter light, it has a relatively small effect on the spectral colouring.

radius of 5mm incident on the x-y plane. The fluence distribution was simulated for

51 wavelengths between 500 and 1000nm with 10nm spacing based on the DA using

the MATLAB software Toast++ [202]. The acoustic reconstruction is assumed to be

perfect and the Grüneisen parameter, which cancels out in the ratio that defines the

sO2, is assumed to be spatially constant and equal to one. Under these assumptions,

the reconstructed initial pressure is equal to the absorbed optical energy density. The

maximum intensity projection of the simulated images of the initial pressure are shown

at the wavelengths 500, 650 and 1000nm in Fig. 4.3. A zero-mean Gaussian noise with

variance equal to 0.5kPa (the incident excitation light was assumed to be 0.2mJ/mm2)

was added to the images.

4.4 Accuracy as a function of depth and sO2

SI was performed with an increasing number of evenly spread wavelengths from a fixed

spectral range to investigate the accuracy of SI using multiple wavelengths for differ-

ent depths from the illumination source and various sO2 levels. Since oxy- and deoxy-

haemoglobin are the only absorbers present in the foreground blood vessels, all inversions

in this chapter use a spectral matrix consisting of the specific absorption spectra of oxy-

and deoxyhaemoglobin only, such that the SI only inverts for those two chromophores.

The number of wavelengths used in each inversion is denoted by N and the mini-

mum and maximum wavelengths are denoted by λmin and λmax. The error of the sO2
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Figure 4.2: (a) The absorption coefficient of 150gL−1 deoxyhaemoglobin (blue) [48],
oxyhaemoglobin (red) [48] and water (yellow) [50] shown using logarithmic scale. (b)
The absorption coefficient of the skin (blue) [197], skull (red) [198,199] and background
tissue (yellow) also in logarithmic scale. (c) The reduced scattering coefficient of skin
(blue), skull (red), background brain tissue (yellow) and blood (purple), taken from
Ref. [160]
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Figure 4.3: The maximum intensity projection of the simulated photoacoustic images
at 500, 650 and 1000nm. The initial pressure is higher for 500nm as the absorption of
the oxy- and deoxyhaemoglobin is approximately an order of magnitude higher than at
650 and 1000nm. The initial pressure reduces with depth, because the fluence is lower
further away from the light source at the top of the domain.

estimation, δsO2 , is defined as the absolute difference between the estimated sO2 and the

true sO2. The δsO2 was calculated for nine inversions with N = 2, 3, 5, 8, 12, 17, 23, 28

and 34 for each of the five true sO2 levels. The λmin and λmax were fixed at 670nm and

1000nm for all inversions. The other wavelengths were chosen to be as evenly spread

as possible from the simulated set of wavelengths within this range. The mouse brain

was divided into five equally thick depth layers and the average δsO2 was calculated for

the foreground vessel in each layer. The δsO2 is shown using a colourscale in Figure 4.4,

where the depth layers are indicated in the y-axis and the true sO2 levels are indicated

in the x-axis. Each plot represents the inversion using a different N . When N is rela-

tively small, the average δsO2 is shown to be higher for large depths and low sO2 levels.

Comparing the different plots shows that for this spectral range, increasing N leads to
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Figure 4.4: The average error, δsO2 , at the foreground vessel shown using a colourscale
indicating the average absolute difference between the estimated and the true sO2 (in
units of percentage). The depth layers are indicated in the y-axis and the five sO2 levels
are shown along the x-axis. The errors higher than 5% are indicated with black pixels.

smaller average δsO2 for the deeper depths and lower sO2, but increases δsO2 slightly for

the shallower depths and higher sO2. When N ≥ 17, average δsO2 < 5%, where % refers

to percentage points, was achieved for the whole range of depths up 9.1mm and for all

five sO2 levels.

The results in Fig. 4.4 are based on SI using the spectral range 670–1000nm. If

a shorter λmin of 650nm is used instead, lower average δsO2 can be achieved for the

superficial layers and high sO2, but the errors for the deeper depths and lower sO2 are

significantly increased (data shown in Fig. A.1 in Appendix A). This may be caused by

the lower SNR and larger changes in fluence between the wavelengths, which is due to the

increase of the absorption of blood when the wavelength is decreased to 650nm. Using

a longer λmin of 690nm leads to the opposite trend, where the deeper layers and lower

true sO2 have lower errors, and higher errors are seen for the shallow depths and high

true sO2 (data shown in Fig. A.2 in Appendix A). The variations in the error depending
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4.4. Accuracy as a function of depth and sO2 71

on spectral range suggest that there may be different wavelength combinations that lead

to accurate estimates for each depth layer and true sO2.

To find combinations of wavelengths that give more accurate estimates of the sO2,

SI was performed with a maximum of 105 random unique combinations of wavelengths

chosen from [500:10:1000]nm (but not necessarily using 500nm and 1000nm as λmin and

λmax) for each N . Figure 4.5 shows the lowest average δsO2 that was obtained out of all

the wavelength combinations for each depth layer and true sO2. The results show that

there exist wavelength combinations that provide very accurate estimates of sO2 for the

whole range of depths and sO2 levels with δsO2 close to zero. For N = 34, the lowest

average δsO2 is shown to increase. This may seem counter-intuitive given the previous

results with evenly spread wavelengths, where large N generally led to lower errors. It

can be explained by the fact that using fewer wavelengths allows more room for selection

of the more optimal wavelength combination, while higher N forces the inversion to use

a larger range of wavelengths.

In general, the lowest δsO2 shown in Fig. 4.5 are obtained using different wavelength

combinations for each depth and sO2. These optimal wavelengths combinations are

shown in Fig. 4.6. The y-axis of each plot indicates N , and x-axis shows the wave-

length. The bright yellow pixels indicate the wavelengths included in the wavelength

combination that resulted in the lowest δsO2 , for a particular depth range and sO2. For

example, for the depth layer at 2.7mm, true sO2 level of 90% and N = 2, the best wave-

length combination was 650 and 960nm. The results show that including the shorter

wavelengths below 650nm is unlikely to lead to the lowest errors when N is small, par-

ticularly for the shallower layers. Two vertical dark blue gaps appears near 550nm and

600nm, which suggests using wavelengths close to these values is unlikely to result in

the most accurate sO2 estimates. In general, the optimal wavelength combinations have

a scattered appearance and no wavelength combination gives the best results for all

depths and the full range of sO2.

Figure 4.6 shows the wavelength combinations that provide the most accurate esti-

mates of the sO2, but there are many other combinations that also result in low errors.

Therefore, one may be interested in the probability of choosing a “good” wavelength

combination, i.e. one that leads to low errors, if the wavelengths were chosen randomly.

Figure 4.7 shows the percentage of 105 randomly selected wavelength combinations that
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Figure 4.5: The lowest average δsO2 obtained from SI by picking the best from 105

random wavelength combinations chosen from [500:10:1000]nm. The bright colours in-
dicate that the very low average δsO2 can be achieved. (Most of the plots appear white
because the average δsO2 are typically in the order of 0.001–0.01%.) Higher average δsO2

are seen for N = 34, due to less flexibility in avoiding the unfavourable wavelengths.

resulted in average δsO2 < 5% when chosen from [670:10:1000]nm. Comparing Fig. 4.4

with Fig. 4.7 shows that for cases where evenly spread wavelengths resulted in large

errors, the likelihood of obtaining accurate sO2 estimates with a random choice of wave-

length combination is also low. This suggests that, if the optimal wavelengths are

unknown, using as many evenly spread wavelengths as possible between 670nm and

1000nm is the most suitable method for obtaining accurate estimates of sO2. However,

in in vivo applications, it may not be practically feasible to acquire images with a large

number of wavelengths.
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Figure 4.6: The wavelength combinations which lead to the lowest δsO2 . The x-axis
shows the wavelength and the y-axis indicates N . The yellow pixels indicate the wave-
lengths that were used in the inversion which results in the lowest δsO2 . Each plot shows
the results for a specific depth layer and sO2 level.

4.5 Smallest singular value and condition number

The previous section showed that a large number of evenly spread wavelengths are

required to achieve δsO2 < 5% if the wavelengths are selected within a certain range.

However, if the optimal wavelength combinations were known, we could use lower N to

achieve accurate results. Unfortunately, finding the optimal wavelength combinations

is not straight-forward, as there are many possible combinations and no clear patterns

emerge for the optimal wavelengths in Fig. 4.6. This section investigates to what extent

the conditioning of the inversion can be used as an indicator for the accuracy of SI for

different wavelength combinations.

The condition number, κ, of the spectral matrix is defined as the ratio between the

largest and the smallest singular value of the matrix, κ = σmax/σmin. The linear system

is ill-conditioned if κ is large, which indicates that the inversion is unstable. This means
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Figure 4.7: The percentage of the randomly chosen wavelength combinations from the
wavelength range 670–1000nm that result in the average δsO2 < 5% is indicated by the
colours of the pixels. The likelihood of obtaining average δsO2 < 5% are higher for higher
N .

that small perturbations in the multiwavelength image data lead to large changes in

the estimated concentrations. Xiao et al [194] showed that lower κ correlates with more

accurate estimates of the chromophore concentration using SI. Luke et al [193] suggested

choosing wavelengths that maximise the smallest singular value of the spectral matrix,

σmin. In a subsequent publication [203], Luke et al showed that this led to smaller errors

than using wavelength combinations that minimise κ.

The κ and σmin as well as the δsO2 were evaluated for a large number of wave-

length combinations in order to investigate the relationship between these quantities. A

maximum of two hundred unique wavelength combinations were randomly chosen from

[500:10:1000]nm for each λmin and the possible N . (Higher λmin allows only for lower

N . For example, if λmin = 990nm, only N = 2 is possible and [990, 1000]nm is the

only possible wavelength combination.) SI was used to invert for the oxy- and deoxy-

haemoglobin concentrations for each of the wavelength combinations using the simulated
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images based on sO2 = 90%. The δsO2 was found for a single voxel in the foreground

blood vessel at a depth of 4.5mm and near the centre of the x-y plane. The κ and σmin

were calculated for the spectral matrix with the specific absorption spectra of oxy- and

deoxyhaemoglobin for the chosen wavelengths.

Figure 4.8 shows δsO2 plotted against the smallest singular value, σmin. Each data

point in the scatter plots represents one inversion with a unique combination of randomly

chosen wavelengths. The results using N = 2, 5, 20 and 35 are shown in different rows.

The colour of each data point indicate the λmin used for in that inversion. The left

column of plots uses a logarithmic scale to display the full range of δsO2 and σmin

obtained for all inversions. The right column of plots zooms in on the data points with

lower δsO2 and σmin using a linear scale, in order to show the trends in the error range

that is of most interest for potential applications. The results show that the data points

with the lowest δsO2 typically have λmin ≈ 650nm, and do not have the largest σmin.

As seen in the logarithmic plots, the wavelength combinations resulting in data points

with the largest σmin are bluer (shorter λmin) and have extremely high δsO2 . This

demonstrates that, contrary to what previous studies suggested, choosing wavelengths

solely based on maximising σmin is unlikely to lead to accurate sO2 estimates. The

right column of plots further highlights that σmin does not correlate with δsO2 for the

wavelength combinations that result in δsO2 < 25%.

The relationship between δsO2 and the condition number κ is shown in Fig. 4.9.

Similarly to the Fig. 4.8, the left and right columns of plots use logarithmic and linear

scales respectively, and the colours of the data points represent λmin. Overall, κ is

shown to correlate better with δsO2 compared to σmin, as the data points with high

κ are generally associated with high δsO2 : The clusters of bluer data points with high

δsO2 are shown to have high κ in the left column of plots. When the δsO2 decreases

as the λmin decreases to ≈ 650nm, κ generally also decreases. The increase in δsO2 for

λmin <650nm is correlated with an increase in κ. The bottom right plot (N = 35) shows

clusters of data points that follow a linear trend, where increasing κ leads to increasing

δsO2 . However, when N is smaller, this trend is less clear for δsO2 < 25%, as a large

range of δsO2 can be seen for similar values of κ in the linear plots. For N = 2 (top right

plot), while δsO2 is relatively low for the lowest κ, it is clear that the smallest δsO2 do not

occur at the minimum κ. These results suggest that while minimising κ of the spectral
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matrix is useful for eliminating wavelength combinations that result in extremely high

δsO2 , it does not minimise the δsO2 for the range of accuracies that are of key interest

(δsO2 < 25%) unless N is very large.

The results in this section suggest that, for some wavelength combinations, ill-

conditioning of the spectral matrix is not the main source of error for estimating sO2

using SI. The next section investigates the impact of the spectral colouring on the ac-

curacy by presenting the relationship between the spectral variance of the fluence and

the δsO2 .
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Figure 4.8: The error of the sO2 estimate, δsO2 , at a single voxel at a depth of 4.5mm
plotted against the smallest singular value of the spectral matrix, σmin. Each data point
represents the result from a unique combination of N wavelengths. The colour indicates
the smallest wavelength used in the inversion (in nm). The left column of plots uses a
logarithmic scale and the right column shows a smaller range using a linear scale. The
corresponding regions of the logarithmic and linear plots are marked with red rectangles
in the top row of the plots. The data show that increasing σmin does not results in lower
δsO2 .
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Figure 4.9: The error of the sO2 estimate, δsO2 , plotted against the condition number,
κ, of the spectral matrix. High condition numbers are correlated with extremely large
errors. However, minimising the condition number does not necessarily result in the
smallest error, except for cases where N is large.
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4.6 Spectral variation of the fluence

Here, the fluence variance, var(φ), will be used as an indication of the level of spectral

colouring. The fluence variance at one voxel can be defined as

var(φ) =
1

N − 1

N∑
n=1

(φλn − µφ)2 , (4.11)

where the fluence at that voxel at different wavelengths is denoted by φ = [φλ1 , φλ2 , ...,

φλN ] and µφ is the mean of φ. In this numerically simulated study, the fluence is known

from the modelling using DA based on the true absorption and scattering coefficients.

Therefore, var(φ) can be used to investigate how the changes in fluence affects the

accuracy of the sO2 estimation. However, of course, it is not possible to use var(φ) to

select the optimal wavelengths in a practical experiment, where the fluence distribution

is unknown.

The var(φ) was calculated for the same wavelength combinations and voxel as in

Sec. 4.5 and plotted in Fig. 4.10 against δsO2 using logarithmic scale (left column)

and linear scale (right coloum) for different N (rows) with colours indicating λmin.

The plots in the bottom row show that for N = 35, decreasing var(φ) is generally

seen to correspond to lower δsO2 for the full range of values of δsO2 . This is expected

as larger changes in the fluence between wavelengths cause more spectral colouring,

hence reducing the accuracy of SI. The relationship between the δsO2 and var(φ) is less

straightforward for lower N , as shown in the plots in the top three rows. The data points

with λmin <650nm and large var(φ) generally have high δsO2 , as expected. However,

a large range of δsO2 can be seen for similar var(φ) in both the logarithmic and linear

plots. For δsO2 < 25%, lower var(φ) typically correspond to lower δsO2 for the same

λmin. However, in general, smaller var(φ) does not necessarily correspond to lower δsO2 .

This is somewhat surprising as spectral colouring is the main source of error for SI when

the inversion is well-conditioned. To explain this error trend, further investigation is

presented in the next section.
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Figure 4.10: The error of the sO2 estimate as a function of the fluence variance. When
the fluence variance is very large, the errors are generally also large. However, the
fluence variance does not correlate with the error for the lower error range, as the right
column of plots show that when δsO2 < 25%, different errors can be seen for the same
fluence variance for N ≤ 20.
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4.7 Error of the chromophore concentration ratio estimated

using SI

The previous Sections 4.5 and 4.6 show that while there are some correlations between

the δsO2 and κ or var(φ), the error does not fully depend on these quantities. To

investigate the cause of the δsO2 , an analysis of the mathematical expression for the SI

is provided in this section.

The initial pressure is given in matrix form in Eq. (4.2). Assuming that Γ and the

system calibration factor are equal to one, and the only chromophores present are oxy-

and deoxyhaemoglobin, then the initial pressure at one single voxel at N wavelengths is

given by


p0,λ1

p0,λ2

...

p0,λN

 =


φλ1 0 · · · 0

0 φλ2
...

. . .
...

0 · · · φλN




αHbO2,λ1 αHb,λ1

αHbO2,λ2 αHb,λ2
...

...

αHbO2,λN αHb,λN


cHbO2

cHb

 , (4.12)

and the SI for the chromophore concentrations is given by

cHbO2

cHb

 =


αHbO2,λ1 αHb,λ1

αHbO2,λ2 αHb,λ2
...

...

αHbO2,λN αHb,λN



† 
1/φλ1 0 · · · 0

0 1/φλ2
...

. . .
...

0 · · · 1/φλN




p0,λ1

p0,λ2

...

p0,λN

 . (4.13)

Performing SI without correcting for the fluence is equal to assuming that the fluence

matrix is equal to the identity matrix. The estimated concentrations is then given by

c̆HbO2

c̆Hb

 =


αHbO2,λ1 αHb,λ1

αHbO2,λ2 αHb,λ2
...

...

αHbO2,λN αHb,λN



† 
p0,λ1

p0,λ2

...

p0,λN

 , (4.14)

where the breve symbol (˘ ) denotes that the quantity is an estimation. By rewriting

the elements of the pseudo-inverse of the spectral matrix using xi,j , where i denotes the
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row and j denotes the column, and using p0,λn = φλnµa,λn , Eq. (4.14) can be written as

c̆HbO2

c̆Hb

 =

x1,1 x1,2 · · · x1,N

x2,1 x2,2 · · · x2,N



φλ1µa,λ1

φλ2µa,λ2
...

φλNµa,λN

 . (4.15)

The fluence at each wavelength, φλn , can be written as the fluence at the first wavelength,

φλ1 , plus the difference between wavelength n and the first wavelength, δφλn = φλ1−φλn ,

such that Eq. (4.15) becomes

c̆HbO2

c̆Hb

 =

x1,1 x1,2 · · · x1,N

x2,1 x2,2 · · · x2,N




φλ1µa,λ1

(φλ1 + δφλ2)µa,λ2
...

(φλ1 + δφλN )µa,λN

 . (4.16)

Based on Eq. (4.16), the expression for c̆HbO2 is

c̆HbO2 = x1,1φλ1µa,λ1 + x1,2(φλ1 + δφλ2)µa,λ2 + ...+ x1,N (φλ1 + δφλN )µa,λN . (4.17)

Multiplying out the brackets and dividing both sides of the equation by φλ1 , gives

c̆HbO2

φλ1
= (x1,1µa,λ1 +x1,2µa,λ2 + ...+x1,Nµa,λN )+(x1,2∆φλ2µa,λ2 + ...+x1,N∆φλNµa,λN ),

(4.18)

where ∆φλn = δφλn/φλ1 . The first bracket is equal to the true concentration cHbO2 , so

Eq. (4.18) can be simplified to

c̆HbO2

φλ1
= cHbO2 + (x1,2∆φλ2µa,λ2 + ...+ x1,N∆φλNµa,λN ). (4.19)

Similarly, the expression for c̆Hb is given by

c̆Hb
φλ1

= cHb + (x2,2∆φλ2µa,λ2 + ...+ x2,N∆φλNµa,λN ). (4.20)

Finally, since sO2 is related to the ratio between the oxy- and deoxyhaemoglobin con-
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centrations, we use Eqs. (4.19) and (4.20) to obtain

c̆HbO2

c̆Hb
=
cHbO2 + (x1,2∆φλ2µa,λ2 + ...+ x1,N∆φλNµa,λN )

cHb + (x2,2∆φλ2µa,λ2 + ...+ x2,N∆φλNµa,λN )
. (4.21)

The first wavelength λ1 has been used to define ∆φλn =
φλ1−φλn
φλ1

in Eq. (4.21). However,

of course, this choice of wavelength is arbitrary and does not change the estimated

concentration ratio.

It is clear from Eq. (4.21) that when there are no changes in fluence between the

wavelengths, the terms within the brackets are equal to zero and hence the estimated

concentration ratio is equal to the true concentration ratio. The equation also shows

that when there is a change in fluence between the wavelengths, the error is not sim-

ply dependent on the amplitude of the change in fluence, but a combination of terms

involving the inverse of the spectral matrix, the absorption coefficient and the change

in fluence. In the next section, Eq. (4.21) will be used to investigate how N and the

spectral range affect the errors.

4.8 Effect of the spectral range and number of wavelengths

The results in Sections 4.5 and 4.6 show that data points with higher N and λmin ≈

670nm are likely to have lower δsO2 . To further investigate the effect of N and λmin on

the accuracy, instead of using randomly selected wavelength combinations, the inversions

in this section use as evenly spread wavelengths as possible.

To isolate the effect of the spectral fluence variation on Eq. (4.21), we first examine

the behaviour of Eq. (4.21) for different N and λmin when the fluence is nearly constant.

Assuming that the fluence at a single voxel is the same for all wavelengths except the

first one, such that ∆φλ2 = ∆φλ3 = ... = ∆φλN , and dividing Eq. (4.21) by ∆φλ2 , the

estimated ratio becomes

c̆HbO2

c̆Hb
=

cHbO2
∆φλ2

+ (x1,2µa,λ2 + ...+ x1,Nµa,λN )

cHb
∆φλ2

+ (x2,2µa,λ2 + ...+ x2,Nµa,λN )
. (4.22)

The terms within the bracket in this equation are equal to the true concentrations

minus x1,1µa,λ1 or x2,1µa,λ1 . Therefore, in this scenario, as N increases, the missing

terms x1,1µa,λ1 or x2,1µa,λ1 have smaller effect, and the sum of the terms within the
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bracket converge to cHbO2 or cHb. To illustrate this effect, Eq. (4.22) is evaluated for

evenly spread wavelengths with different N and λmin. The sO2 is then calculated using

sO2 =

c̆HbO2
c̆Hb

c̆HbO2
c̆Hb

+ 1
. (4.23)

The results are shown in Fig. 4.11. The spectral range is fixed in each plot, which means

that all data points in each plot have the same λmin (as indicated in the plot title) and

λmax (which is 1000nm for all data points). As N increases (x-axis), as evenly spread

wavelengths as possible are added between the fixed λmin and λmax from the set of 51

wavelengths. For example, the wavelength combination for λmin = 650nm and N = 4 is

[650, 770, 880, 1000]nm. For each wavelength combination, Eq. (4.22) is evaluated for

different ∆φλ2 , which is indicated by the colour of the data points. The results show

that for all λmin, the estimated sO2 converges to a constant value as more wavelengths

are added, and the smaller the ∆φλ2 , the closer the convergence is to the true sO2.

Of course, in reality, the fluence is unlikely to be constant for nearly all wavelengths.

Next we evaluate Eq. (4.21) using the fluence changes calculated from the simulated

fluence distribution based on the DA. This is equivalent to simply performing SI on the

noise-free simulated images of p0. The estimated sO2 for the single voxel at a depth of

4.5mm is plotted in Fig. 4.12, where the colours represent the fluence variance, var(φ).

The true sO2 = 90%, as indicated with the dotted red lines. The results show that

when λmin ≥ 590nm, the var(φ) is generally smaller, and increasing N leads to the sO2

estimate converging to a constant value, in a similar way as in Fig. 4.11 when the fluence

was nearly constant. Interestingly, increasing N generally leads to lower estimation of

sO2. For this particular voxel, using λmin = 650nm led to the most accurate estimate

when N is increased. When λmin > 650nm, increasing N leads to underestimation of

the sO2. However, using λmin = 680nm is shown to achieve high accuracy with small N .

When λmin < 590nm, the trend of the estimated sO2 is different from in Fig. 4.11, due

to the large changes in fluence when the shorter wavelengths are included. In Fig. 4.12,

the estimated sO2 differs from the true value significantly and do not converge to a

constant value when N increases for λmin < 590nm.
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Figure 4.11: The sO2 calculated based on Eq. (4.22) with different ∆φλ2 (colour) and
increasing N (x-axis) for equally spaced wavelengths between λmin (plot title) and λmax
(=1000nm). The true sO2 is equal to 90%. The estimated sO2 is shown to converge to
a constant value when N increases.
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Figure 4.12: The estimated sO2 at a single voxel at a depth of 4.5mm using evenly spread
wavelengths with fixed λmax and different λmin for each plot. The colour of the data
points indicate the fluence variance at that voxel. The true sO2 is 90% (indicated with
dotted line). The plots show that, increasing N leads to the estimated sO2 converging
relatively smoothly to a lower value provided that λmin ≥ 590nm. For λmin = 650nm,
the convergent value is close to the true sO2. Accurate sO2 estimates were also achieved
with lower N when λmin = 680nm.
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4.9 Summary and discussion

In this chapter, numerically simulated photoacoustic images of a mouse brain were used

to investigate the accuracy of estimating sO2 with SI. The errors were analysed with

respect to a number of parameters: the depth from the light source, the true sO2 level,

the smallest singular number of the spectral matrix, the condition number of the spectral

matrix, the spectral variance of the fluence, the number of wavelengths and the shortest

wavelength used in the inversion. The results demonstrated that using N = 17 or

more evenly spread wavelengths between 670nm and 1000nm can lead to accurate sO2

estimates with δsO2 < 5% for depths up to approximately 9mm and sO2 levels between

60% and 100%. It was also shown that there exist wavelength combinations with fewer

wavelengths (N < 17) that lead to extremely low errors for different depth ranges

and sO2 levels. It was shown that using randomly chosen wavelength combinations

is unlikely to lead to more accurate results than using evenly spread wavelengths for

the spectral range 670–1000nm. Choosing wavelength combinations that maximise the

σmin of the spectral matrix has previously been suggested as a method to obtain the

most accurate estimates of the chromophore concentrations. However, the results from

this chapter demonstrate that δsO2 does not correlate with σmin. Minimising κ of the

spectral matrix was shown to be useful for eliminating wavelength combinations that

result in extremely large δsO2 , but it does not necessarily lead to the lowest errors when

the δsO2 is smaller than 25%. The δsO2 was also shown to be related to, but not linearly

dependent on, the variance of the fluence. This was explained by the fact that the δsO2

is due to a combination of terms including the inverse of the specific absorption spectra,

the absorption coefficient and the spectral changes in fluence. Finally, it was shown

that increasing the number of wavelengths used in the inversion leads to the estimated

sO2 converging to a constant value provided that the change in fluence is relatively

small. Including wavelengths shorter than 590nm in the inversion leads to significantly

larger spectral variation in the fluence, and hence results in extremely large δsO2 and

the estimated sO2 does not converge smoothly to a constant value when N is increased.

The results in this chapter are based on simulated images of a realistic mouse brain

phantom. However, given the diffuse nature of light in highly scattering biological

tissue, the precise structure of the blood vessels is unlikely to have a large impact

on the quantification results. To provide an indication of the generalisability of the
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88 Chapter 4. Linear spectroscopic inversion

results, the analysis was repeated for a second numerical phantom, which consisted of

horizontally aligned blood filled tubes arranged in a vertical line and submerged a tissue-

like background. Details of this phantom and the results can be found in Appendix B.

The structure of this phantom represents a scenario where a larger amount of spectral

colouring is likely to be present compared to the mouse brain phantom, because the

tubes are aligned in a vertical line. As a result, the average δsO2 was found to be higher

for deeper depths and lower true sO2 compared to the mouse brain phantom. However,

the increase is <5% for the comparable depths and true sO2 levels. The error trends

are similar to the mouse brain phantom, where the errors generally increase with depth,

decrease with higher true sO2, and decrease with larger N in the spectral range 670–

1000nm. This indicates that the accuracy of the SI is not highly dependent on the specific

structures of the blood vessel of similar diameters. Given that the spectral colouring

is typically lower in realistic tissues than this tube phantom, these results provide an

indication for the lowest accuracy that can be expected when imaging vasculature of

similar diameters. However, this does not suggest that SI is a generally applicable

method for estimating sO2 in any arbitrary tissue structures. For example, it is likely to

result in larger errors in blood vessels with large diameters and in the presence of large

and/or highly absorbing features, such as fluorescent probes or targeted contrast agents.

In these cases, the spectral colouring is likely to be more severe, leading to poorer sO2

estimates.

Simple approximate fluence correction methods have been used to reduce the spectral

colouring before performing SI in some studies. Typically the fluence is assumed to be

exponentially decaying with increasing distance away from the light source and the rate

of the decay is calculated based on average optical properties of the tissue. It has been

shown that applying the exponential fluence correction method can lead to improved

accuracy of the sO2 estimation [180]. This type of fluence correction has not been used

for the analysis in this chapter, because its accuracy depends on numerous other factors,

such as the level of spatial homogeneity of the optical properties in the tissue and how

accurately the optical properties are estimated. If an appropriate approximate fluence

correction has been applied, it is possible that lower errors can be achieved for wider

range of depths and/or sO2 levels, or with fewer wavelengths.
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4.10 Conclusion

In conclusion, this chapter demonstrates that it is difficult to predict precisely the opti-

mal wavelengths for estimating sO2 using SI, due to the fact that the errors depend on

a combination the absorption spectra and its inverse, as well as the changes in fluence.

However, it may be possible to achieve accurate estimation of the sO2 with δsO2 < 5%

using 17 or more evenly spread wavelengths between 670nm and 1000nm for a large

range of depths from the light source and sO2 levels in the vasculature of a mouse brain.
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Chapter 5

Independent component analysis

The previous chapter showed that SI can be used to estimate sO2 relatively accurately

in a range of scenarios. However, it is important to recall that sO2 only requires the

estimation of the concentration ratio, which is a comparatively easy quantity to esti-

mate, because it does not require the concentrations to be estimated correctly with

respect to other spatial locations. Therefore, the errors are caused only by the spectral

variation of the fluence, while the spatial variation of the fluence does not affect the

sO2 estimate. Figure 5.1 shows a typical result of SI where, even though the sO2 is

accurately estimated, the estimated concentrations of oxy- and deoxyhaemoglobin (in

arbitrary units) are inaccurate. In cases where the spatial distribution of the concen-

trations are of interest rather than the ratio, more accurate quantification methods are

required. Independent component analysis (ICA) is an alternative linear QPAT method

that is attractive for in vivo studies, because it can, under certain conditions, poten-

tially provide quantification with higher accuracy than SI without adding extra degrees

of complexity or significant computational burden. Instead of using the known absorp-

tion spectra, ICA exploits the statistical properties of the chromophore distributions in

order to estimate their concentrations. In this chapter, we investigate the accuracy of

ICA under different circumstances and compare the results to the accuracy of SI.

5.1 Introduction

The statistical properties of multidimensional data can be utilised in blind source sep-

aration (BSS) methods. The general aim of BSS is to find the sources that give rise
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Figure 5.1: Maximal intensity projections of the SI results from Chapter 4 using 17
wavelengths with λmin = 670nm and λmax = 1000nm. The estimated concentrations for
oxy- and deoxyhaemoglobin in the foreground vessels are shown with arbitrary units in
(a) and (b), respectively. By comparing to the true concentrations shown in (d) and (e),
it is clear that the estimated concentrations are inaccurate as they decrease significantly
with depth, while the true concentrations are constant inside the foreground vessels.
Despite the fact that the estimated concentrations are inaccurate with respect to other
spatial locations, the estimated sO2, which is shown in percentages in (c), is relatively
accurate. The true sO2 is 90% in the foreground vessels, as shown in (f).

to the observed signals which are mixtures of the original source signals. The “blind-

ness” refers to the fact that the information about the mixing process is unavailable.

BSS is frequently used in signal processing for telecommunications, speech recognition

systems and biomedical applications [204]. For spectroscopic imaging applications of

BSS, the “sources” are the concentrations of each chromophore that provide the image

contrast, and the image acquired at each wavelength is an “observation” of the sources

mixed in different portions due to the unique spectrally varying optical properties of

the chromophores. In linear BSS, it is assumed that the observed signals are linearly

related to the sources. In the context of photoacoustic imaging, this is equivalent to

stating that the images are directly proportional to a weighted sum of the chromophore

concentrations.

Independent component analysis (ICA) is a linear BSS method that can be used to

decompose the multiwavelength image data into components representing the individual
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92 Chapter 5. Independent component analysis

chromophores. This is achieved by exploiting the fact that the distribution of certain

chromophores can be assumed to be statistically independent of each other. In ICA, the

matrix with the specific absorption coefficients, which is referred to as the mixing matrix,

is assumed to be unknown, and the chromophore concentrations are found by searching

for the mixing matrix that corresponds to the most independent chromophores. ICA

has the advantages of being fast, easy to implement and computationally inexpensive

compared to model-based inversion methods, and may potentially provide more accurate

results than SI.

5.1.1 The use of ICA in QPAT

ICA was first proposed for unmixing chromophores in photoacoustic imaging by Glatz

et al [120]. They showed that ICA is able to separate fluorescent dyes from the back-

ground tissue with less crosstalk of the components than SI and principal component

analysis (PCA) using ex vivo multiwavelength photoacoustic images of a nude mouse

with insertions of indocyanine green (ICG) and cyanine 7 (Cy7).

Subsequently, ICA has been applied in a number of in vivo photoacoustic imaging

studies. In Ref. [39], ICA was used to separate a contrast agent which was targeted to

cells undergoing apoptosis from the background tissue in mouse tumour models. The

results demonstrated that the probe accumulated in the blood vessels surrounding the

tumours, which correlated well with ex vivo epifluorescence images and cryo slices. ICA

has also been used in imaging of myocardial infarction in murine models [40]. Two days

after the infarction was induced, 2D multiwavelength images of the heart region of the

mice were acquired before and after the injection of a contrast agent which binds to

selectin – a cell adhesive molecule that is expected to accumulate at injured tissues. A

component representing the contrast agent was obtained by applying ICA on the multi-

wavelength images, which showed that the concentration of the contrast agent was higher

at the infarcted tissue regions. This result was shown to be consistent with histological

analysis of the heart tissue. Furthermore, in an imaging study of reporter-genes, Deli-

olanis et al [205] used ICA to separate three components representing oxyhaemoglobin,

deoxyhaemoglobin and a fluorescent protein from in vivo multiwavelength photoacoustic

images of a mouse brain.

In all above-mentioned studies, the main purpose of applying ICA was to aid the
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visualisation of the probe by distinguishing it from the background tissue. Despite

presenting images of the separated chromophores with normalised scales for concentra-

tion, the quantitative accuracy of the estimated chromophore concentration was not

discussed. The unmixing results were validated through ex vivo fluorescence imaging

or histology techniques, which do not provide quantitatively accurate representations of

the in vivo probe concentrations. It is also worth noting that in Ref. [205], ICA was

used to separate oxy- and deoxyhaemoglobin, despite the fact that they are unlikely to

be independent chromophores (see Sec. 5.3.1).

Dean-Ben et al [121] presented a study with focus on the quantitative accuracy of

ICA. The analysis in this study uses the logarithm of the photoacoustic images, so that

the initial pressure is represented as a sum of the fluence and the absorption coefficient

rather than a product. Numerically simulated images, images of an experimental tissue

mimicking phantom and ex vivo mouse images with insertion of contrast agents with

overlapping absorption spectra were used to show that applying ICA on the logarithm

of the images provided more accurate quantification than standard ICA. However, this

method requires that the chromophore concentration in the background tissue is homo-

geneous since the components of interest are represented as a ratio to the background

chromophore concentration.

5.1.2 Aim and structure of the chapter

ICA has been proposed as a fast and simple method of unmixing multiwavelength pho-

toacoustic images and shows some promise of providing improved accuracy compared to

other linear methods. However, despite having been applied in several in vivo studies,

the quantitative accuracy of ICA has not been rigorously assessed for photoacoustic

imaging. Therefore, the aim of this chapter is to investigate the conditions required

for ICA to provide quantitatively accurate unmixing, which required an approximate

fluence correction step. Simulated multiwavelength photoacoustic images are used to

assess the robustness of ICA against inaccuracies in the fluence correction and demon-

strate the effect of retaining different numbers of dimensions as a pre-processing step to

ICA. The results of ICA are also compared to SI for experimentally acquired images of a

tissue mimicking phantom. Furthermore, the performances of ICA and SI are analysed

using the experimental images with a varying number of wavelengths. We demonstrate
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both the advantages of ICA and its limitations, by including examples of cases where it

provides accurate quantification, as well as cases where it breaks down.

Section 5.2 provides the definition of statistical independence and explains how it can

be measured using mutual information. It also shows examples of statistically indepen-

dent chromophores. Section 5.3 outlines the principles of ICA and describes a widely

used ICA algorithm known as FastICA [206]. Section 5.4 describes the experimental

image acquisition of a tissue mimicking phantom and the generation of the numerically

simulated images. The accuracy of unmixing the experimental and numerical images

using ICA and SI are presented in Sec. 5.5. Section 5.6 summarises and discusses the

findings. The conclusions of this chapter are presented in Sec. 5.7.

5.2 Statistical independence

5.2.1 Definition

The mathematical definition of statistical independence states that two random vari-

ables, y1 and y2, are statistically independent if their joint probability density function

(PDF), ρy1,y2
(y1, y2), is the product of their marginal PDFs, ρy1

(y1) and ρy2
(y2), such

that [207]

ρy1,y2
(y1, y2) = ρy1

(y1)ρy2
(y2), (5.1)

where y1 and y2 denote possible values of y1 and y2. More intuitively, this definition

means that two events, A and B, are independent of each other if the probability of

A occurring does not in any way influence the probability of B occurring. In QPAT,

two chromophores are considered independent if the knowledge of the concentration of

one chromophore at a location does not affect the estimate of the other chromophore’s

concentration at the same location. For example, if a contrast agent is independent of

the blood, then the estimation of the contrast agent concentration at a voxel does not

in any way predict the blood concentration at that voxel. As a counter example, oxy-

and deoxyhaemoglobin are typically not independent chromophores: if a voxel is found

to contain a high concentration of deoxyhaemoglobin, then the likelihood that a high

concentration of oxyhaemoglobin will be found at the same voxel increases, as the voxel

is likely to represent a blood vessel.
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5.2.2 Mutual information as a measure of statistical independence

The degree of independence between variables can be measured using the mutual infor-

mation (MI). MI is an estimate of the amount of information one variable provides on

another variable. Variables with higher statistical independence have lower MI, which

means that they contain less information about each other. MI can also be under-

stood as an estimation of how much the observation of one random variable reduces the

uncertainty of the value of other variables. The MI, I, between y1 and y2 is given by

I(y1,y2) = H(y1) +H(y2)−H(y1,y2), (5.2)

where H(yk) and H(y1,y2) are the entropy and the joint entropy of y1 and y2 re-

spectively. Entropy is a key concept in information theory: it measures the amount of

information provided by the observation of a random variable and it is defined by

H(yk) = −
∫
yk

ρyk(yk)logρyk(yk)dyk, (5.3)

where k = 1 or 2. All logarithms in Chapter 5 and 6 are in base 2 unless otherwise

stated. The behaviour of H for different probability distributions can be understood

from a plot of −ρyk logρyk for 0 < ρyk < 1, which is shown in Fig. 5.2. This plot shows

that −ρyk logρyk is small for probabilities close to 0 and 1. If the variable yk almost

always takes the same value, then the probabilities for most values would be close to

0, except for one value that has a probability close to 1. This means that −ρyk logρyk

will be small for all values, and hence the variable will have a small entropy. However,

if the values that the variable take are less predictable, then the probabilities are more

equal and more likely to be midway between 0 and 1. In this case the entropy would be

higher, which indicates that the variable is less predictable and therefore contains more

information. Similarly, the joint entropy measures the amount of information provided

by the simultaneous observation of a set of variables, and is defined as

H(y1,y2) = −
∫
y1

∫
y2

ρy1,y2
(y1, y2)logρy1,y2

(y1, y2)dy1dy2. (5.4)
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Figure 5.2: When the probabilities are close to 0 or 1, the variable is more predictable,
and the value of −ρyk logρyk is small, resulting in small entropy. The value of −ρyk logρyk
is larger for probabilities far from 0 or 1, which means that the variable is less predictable,
and results in larger entropy.

The MI can also be calculated for multiple random variables using

I(y1,y2, ...,yK) =

K∑
k=1

H(yk)−H(y1,y2, ...,yK). (5.5)

The concept of MI is illustrated with Venn diagrams in Fig. 5.3. The blue and red circles

represent the entropy of y1 and y2 respectively, and the area within the purple curves

is their joint entropy. The left diagram shows a case where the overlap of the entropies,

or information contents, of y1 and y2 is large, which means that y1 and y2 have large

MI, and therefore low independence. In the right diagram, their information contents

do not overlap as much. As a consequence, the variables are more independent, which

means that when y1 is known, there is still large uncertainty in what values y2 might

take.

5.2.3 Which chromophores are statistically independent?

It should be made clear that ICA, or any other technique relying on statistical inde-

pendence, is unlikely to be able to estimate the sO2, because, as mentioned above,

the distribution of oxy- and deoxyhaemoglobin are unlikely to be statistically indepen-

dent. This is illustrated in Fig. 5.4, which shows four hypothetical examples of the

chromophore concentration distributions along a line profile across some volume. Ex-
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Figure 5.3: The blue and red regions represent the entropies of y1 and y2 respectively.
The area within the purple curves represents the joint entropy of y1 and y2. The MI is
in the overlapping regions of blue and red. The left diagram illustrates higher MI and
therefore lower statistical independence compared to the right diagram.

ample A simulates a possible distribution of oxy- and deoxyhaemoglobin concentrations,

cHbO2 and cHb, along a line across nine blood vessels with the same total haemoglobin

concentration, cHbT = 150gL−1, and varying sO2. In this case, if it is given that the

cHbO2 is 140gL−1 at a location, then there is a 100% chance that the cHb is 10gL−1 at

the same location, due to the fixed cHbT . This means that no uncertainty remains for

cHb once cHbO2 is known. These chromophores are therefore completely dependent on

each other. In Example B, both the cHbT and sO2 vary for the different blood vessels.

In this scenario, wherever cHbO2 =140gL−1, the chances of cHb being 10, 20 or 30gL−1

are 33.3% each. This remaining uncertainty means that in this example, oxy- and de-

oxyhaemoglobin are more independent of each other. Example C shows a case where

a contrast agent has been injected inside blood vessels. The independence between the

contrast agent and oxy- or deoxyhaemoglobin is comparable to the chromophores in Ex-

ample B, where some independence can be observed. Example D represents a scenario

where a contrast agent is distributed both outside and inside some blood vessels and is

therefore highly independent of oxy- and deoxyhaemoglobin.

In order to apply QPAT methods based on statistical independence, one must have

the prior knowledge that the chromophore distributions are expected to be statistically

independent. Examples of statistically independent chromophores in cases of practical

interest include:

• Contrast agents that accumulate in areas unrelated to the blood distribution, such

as in lymphatic vessels and lymph nodes [208].
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Figure 5.4: The plots show the concentrations of total haemoglobin (HbT), oxy-
haemoglobin (HbO2), deoxyhaemoglobin (Hb) and a contrast agent along a hypothetical
1D cross sections of blood vessels. The sO2 for some vessels are indicated with arrows.
Example A shows completely dependent oxy- and deoxyhaemoglobin distributions, be-
cause each value of oxyhaemoglobin corresponds to only one possible outcome of deoxy-
haemoglobin. Example B shows more independent oxy- and deoxyhaemoglobin distri-
butions, where each value of oxyhaemoglobin corresponds to three possible outcomes of
deoxyhaemoglobin. Example C includes a contrast agent injected in the blood vessels.
The contrast agent is somewhat independent from the oxy- and deoxyhaemoglobin dis-
tributions. Example D shows a contrast agent that is distributed independently from
the oxy- and deoxyhaemoglobin.
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• Certain cells that have been genetically modified to express optical absorbers, such

as genetically encoded fluorescent proteins [43] or tyrosinase-expressing cells [209],

can be found at locations independent from other absorbers.

• Imaging probes that are targeted to disease-specific receptors whose spatial distri-

bution is unrelated to that of the blood and the background tissue [39,40].

5.3 Independent component analysis

ICA is a blind unmixing method based on a linear model, and it can be used to separate

independent components from the multiwavelength photoacoustic images. The matrix

form of the equation describing the initial pressure is given in Eq. (4.2), and is restated

here for convenience

P = Φ ◦ (A (Γ ◦C)) , (5.6)

where ◦ denotes an element-wise (Hadamard) product. To linearise this equation, one

can divide it with an approximate estimate of the fluence, P̆, such that (Eq. (4.8))

P

Φ̆
= P̆ ≈ A (Γ ◦C) . (5.7)

where breve symbol (˘) is used to denote the estimation of a variable. In SI, the pseudo-

inverse of the mixing matrix A is used to find the chromophore concentrations. In ICA,

on the other hand, the mixing matrix is assumed to be unknown. Instead, ICA aims

to decompose the multiwavelength photoacoustic images into the source components,

which represent the individual chromophores, based on the assumption that the source

components are statistically independent of each other. This is achieved by searching

for a mixing matrix, W, whose inverse can be multiplied by the matrix with the mixed

signals to give the matrix of the source components, S:

W†P̆ = S, (5.8)

where the rows of S have maximal mutual statistical independence. The unmixed com-

ponent in each row of S corresponds to one of the chromophores, such that S ≈ Γ ◦C,

provided that the true spatial distributions of the chromophore concentrations are in-
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100 Chapter 5. Independent component analysis

dependent. Similarly to SI, ICA is unable to separate Γ from the concentrations.

The source components could be estimated by finding a mixing matrix that will

minimise the MI between the chromophores. However, using MI as the independence

measure involves calculating the PDFs of the variables, which is a non-trivial proce-

dure (Sec. 6.2.2 and 6.2.4). The widely known ICA algorithm named FastICA [206]

uses instead a simple independence measure based on the Central Limit Theorem. The

Central Limit Theorem states that the probability distribution of the sum of multiple

independent random variables will always be more Gaussian than the probability distri-

bution of any one of the independent random variables alone. It follows from the Central

Limit Theorem that a linear combination of the mixed signals with the weight vector

w, y = wT P̆, will be the least Gaussian when this combination actually equals one of

the sources components. The aim is therefore to find the optimal w that maximises the

non-Gaussianity of wT P̆. This w is then equal to one of the columns of W, and hence

W can be constructed by finding w for each of the independent components.

A suitable measure of Gaussianity is required to determine whether maximum non-

Gaussianity has been reached. Gaussianity is related to information content and it

can be shown that a Gaussian distributed variable has the highest entropy among all

other random variables with equal variance [210, 211]. Entropy can therefore be used

as a measure of non-Gaussianity. In practice, however, it is more convenient to use

negentropy, J , which is a normalised form of entropy. Negentropy is always positive and

is zero for Gaussian distributions, and it is defined as

J(yk) = H(yGauss)−H(yk), (5.9)

where yGauss is a Gaussian random variable that has the identical covariance matrix as

yk. To avoid having to calculate H which requires estimating the PDFs, FastICA uses

an approximation of negentropy, given by:

J(yk) ∝ [E{G(yk)} − E{G(ν)}]2, (5.10)

where E{.} denotes the expectation value, ν is a Gaussian variable with zero mean and

unit variance, yk is the variable of interest which is also assumed to have zero mean

and unit variance, and G is a non-quadratic function. A suitable choice of G has been
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shown to be G(u) = 1
a log[cosh(au)], where 1 ≤ a ≤ 2 is a constant [206]. This function

for G will be used for all calculations this chapter.

In summary, an individual independent component has a more non-Gaussian distri-

bution than a mixture of multiple independent components, and the non-Gaussianity of

a component can be measured using negentropy. Thus, FastICA finds the independent

components by searching for the w that results in maximum J(wT P̆) in a fixed point

iteration scheme. To find multiple independent components, the algorithm is run for

multiple weight vectors w1, ...wK , with a decorrelation step for the outputs after each

iteration.

5.3.1 Limitations of ICA

The obvious main limitation of ICA is that it can only be applied to chromophores

that are known to be statistically independent of each other. As previously mentioned,

this means that it is not suitable to use ICA to separate oxy- and deoxyhaemoglobin.

However, it can still be a valuable tool for a range of other QPAT applications where

the chromophores are expected to be independent (as discussed in Sec. 5.2.3).

Furthermore, ICA does not recover the concentrations for different chromophores

to a common scale because the magnitude of each independent source is unknown. It

is clear from the ICA model in Eq. (5.8) that since neither of W and S are fixed,

the magnitude of each source can be arbitrarily changed by multiplying any row in

S and dividing the corresponding column in W with the same constant. This means

that while the relative concentration to other spatial locations for each chromophore

can be recovered, the concentration of one chromophore cannot be compared to that

of another chromophore. In other words, each chromophore concentration is estimated

to a different scale, and therefore the concentration ratio between two chromophores

cannot be recovered (Sec. 1.2). Section 5.6 discusses the possibility of overcoming this

ambiguity by using the known absorption spectra.

Another limitation of ICA is that the order of the estimated independent compo-

nents is arbitrary. The components are typically identified manually to the correspond-

ing chromophores, using prior knowledge of the expected results. In this chapter, the

components are identified using the known absorption spectra.

Lastly, ICA cannot unmix Gaussian sources because their probability distribution
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is symmetric and hence lack information on the direction of the mixing matrix. There-

fore ICA requires the values of the chromophore concentrations to have a probability

distribution that is as non-Gaussian as possible.

5.4 Generating multiwavelength photoacoustic images

If the fluence was estimated exactly, such that Φ̆ = Φ, the approximate model in

Eq. (5.7) would be an exact equality and, if the chromophore distributions were inde-

pendent, both ICA and SI would achieve accurate unmixing of the chromophores, such

that the outputs of both inversions are exactly equal to Γ◦C. In practice however, Φ̆ is

only an approximation of Φ, and both methods will lead to errors. Both experimental

and numerically simulated multiwavelength photoacoustic images of tissue mimicking

phantoms were generated to investigate the accuracy of ICA for various levels of ab-

sorption and heterogeneity in the tissue structure, as well as the effect of dimension

reduction and wavelength selection, in order to understand the extent to which ICA can

be used as a reliable quantification method. The same data sets are also unmixed with

SI for comparison. The experimental and numerical phantoms were designed such that

the following criteria were satisfied:

1. The spatial distributions of the chromophores are independent, so that when the

fluence adjustment is perfect, ICA results in accurate unmixing.

2. The specific absorption spectra of the chosen chromophores are such that the

mixing matrix A is full rank, so that when the fluence adjustment is perfect, SI

also results in accurate unmixing.

Hence, using these phantoms, it is possible to see how the inaccuracies in an approximate

fluence adjustment affect the performance of the unmixing methods.

5.4.1 Experimental photoacoustic image acquisition

A liquid tissue mimicking phantom containing capillary tubes was imaged at multiple

wavelengths in a photoacoustic imaging system based on the planar Fabry-Perot polymer

film interferometer sensor. The phantom design and the imaging system are described

below.
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5.4.1.1 The tissue mimicking phantom

Eight capillary tubes (Paradigm Optics, Morcap 83) with an inner diameter of 590µm

and wall thickness of 66.5µm were used to construct the tissue mimicking phantom.

The tubes were arranged horizontally in two vertical lines as indicated in Fig. 5.5,

which shows a cross-section of the phantom in the experimental set-up. The left col-

umn of tubes were filled with four different concentrations of copper(II) chloride dihy-

drate (CuCl2.2H2O) dissolved in deionised water. The concentrations were in the ratios

1:2:3:4, where the uppermost tube had the lowest concentration of 5.2gL−1 while the

bottom tube had the highest concentration of 20.8gL−1. The right column of tubes

were filled with solutions of nickel(II) chloride hexahydrate (NiCl2.6H2O), also with

concentration ratio of 1:2:3:4. These contrast agents simulate different absorbers in the

tissue and their specific absorption coefficients are shown in Fig. 5.6(a). For brevity,

the copper(II) chloride dihydrate and nickel(II) chloride hexahydrate will be referred to

as CuCl2 and NiCl2. Since the specific absorption coefficient of NiCl2 is approximately

one order of magnitude lower than that of CuCl2 (see Fig. 5.6(a)), the concentrations of

NiCl2 were set to be approximately ten times higher than CuCl2 to give similar optical

absorption. Therefore, the uppermost and bottom tubes in the right column had NiCl2

concentrations of 55.1gL−1 and 220.3gL−1 respectively. The average absorption of all

tubes was 0.25mm−1 at 810nm.

5.2gL-1

10.4gL-1

15.6gL-1

55.1gL-1

110.2gL-1

165.2gL-1

220.3gL-1

Water

Intralipid

India ink

sensor CuCl2 NiCl2 tray

20.8gL-1

Figure 5.5: A cross-section of the experimental phantom which consisted of eight tubes
filled with different concentrations of CuCl2 (left column) and NiCl2 (right column).
The centre of the tubes were positioned at depths 1.0mm, 2.7mm, 4.4mm and 6.1mm in
a scattering and absorbing background solution of water, 1% (w/v) Intralipid and India
ink. The distance between the water surface where the phantom was illuminated and
the acoustic sensor at the bottom of the tray was 7.3mm.
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Figure 5.6: (a) The specific absorption coefficient of CuCl2 (asterisks) is approximately
one order of magnitude larger than that of NiCl2 (circles). (b) The crosses indicate the
absorption of the background solution, which is the sum of the absorption coefficients
of water (dash and dotted curve) and India ink (dashed curve). The absorption of the
Intralipid is negligible in this wavelength range. The absorption spectra of CuCl2, NiCl2
and India ink are based on spectrophotometer measurements (Lambda 750S, Perkin
Elmer), and the absorption spectra of water was published by Kou et al [50]. Reprinted
with permission from Ref. [212].

The tubes were submerged at depths between 1.0mm and 6.1mm in a background

solution containing India ink (951 black, Winsor & Newton) and 1% (w/v) Intralipid

diluted in deionized water, such that they provide an absorption of approximately

0.013mm−1 at 810nm and a scattering coefficient of approximately 1mm−1, which are

comparable to realistic values in soft tissue [160]. The Grüneisen parameter of CuCl2

and NiCl2 are both known to scale with their concentrations such that

Γi = ΓH2O(1 + βici), i = CuCl2 or NiCl2 (5.11)

where the βi coefficients are 5.80 × 10−3Lg−1 and 2.25 × 10−3Lg−1 for CuCl2 or NiCl2

respectively [213], ci denotes the concentrations of CuCl2 or NiCl2, and ΓH2O is the

Grüneisen parameter of water, which is 0.12Lg−1 at 22◦C [214].

5.4.1.2 Image acquisition

The image acquisition system relies on a planar Fabry-Perot interferometer (FPI) sen-

sor [78] for ultrasound detection. As discussed in Sec. 2.4.3, the FPI sensor has the

advantages of being transparent to the excitation light and its sensitivity does not de-

crease with smaller detecting element size. The FPI is formed by two dielectric dichroic
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mirrors, between which a Parylene C polymer spacer is sandwiched. The FPI is sup-

ported on a wedged polymethylmethacrylate (PMMA) backing stub. When an ultra-

sound wave generated in the phantom propagates to the sensor, it modulates the optical

thickness of the FPI, leading to a small optical phase shift, and hence changes its optical

reflectivity. Thus, by scanning the surface of the FPI with an interrogation laser and

recording the reflected intensity, a time varying spatial mapping of the photoacoustic

signals is generated. The sensor interrogation beam has an energy of approximately

10mW and is provided by a fibre-coupled tunable continuous wave (CW) laser. It is fo-

cused onto the FPI at normal incidence, and directed by a pair of galvanometer mirrors

to surface-scan the sensor point-by-point. The sensitivity of the sensor is maximised

by tuning the wavelength of the interrogation beam to the point of maximum slope of

the interferometer transfer function, which describes the reflectivity of the sensor as a

function of the optical phase shift. Provided that this optimal wavelength is used, the

phase shift generated by the acoustic modulations of the optical thickness of the FPI is

linearly converted to a corresponding change in the reflected light intensity. The optimal

interrogation wavelength is position dependent because the optical thickness of the FPI

is not spatially homogeneous. Therefore, the tuning procedure is performed for each

scanning point and the optimal wavelengths are stored for the image acquisition.

The excitation light source is a tunable optical parametric oscillator (OPO) system

(SpitLight 600 OPO, InnoLas Laser GmbH), which produces laser pulses of 6ns duration

and at a repetition rate of 30Hz. The idler output of the laser was coupled into an

optical fibre and the beam was homogenised by forcing sharp turns in the fibre. The

tip of the fibre was positioned vertically above the phantom, creating a beam diameter

of approximately 10mm at the surface of the phantom. The pulse energy at the tip of

the fibre was measured to be 7-13mJ depending on wavelength. A small fraction of the

excitation light was reflected into an integrating sphere with a photodiode to measure

the fluctuations of pulse-to-pulse laser energy during image acquisition, which was used

to normalise the measured photoacoustic signals.

The image acquisition procedure is as follows: the interrogation laser tunes to the

optimal wavelength for the first scanning point, and starts recording the reflected beam

intensity when it is triggered by the firing of the excitation laser pulse. It then moves

to the next scanning point and tunes to the corresponding optimal wavelength. This is
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repeated until all points along a 20mm line with 10µm step size have been interrogated,

such that 2D images of the cross-section of the tubes can be reconstructed. The images

were acquired at 18 equally spaced wavelengths between 750nm and 1090nm.

5.4.2 Numerically simulated photoacoustic images

Using the same structure and chromophores as the experimental phantom, a total of 37

sets of simulated 2D multiwavelength photoacoustic images were generated to assess the

performance of ICA for different levels of absorption. The structure of the numerical

phantom in shown in Fig. 5.7. The main differences to the experimental phantom are

the absence of the tube walls and the fact that the India ink and Intralipid are also

present within the tubes. The concentration ratios of 1:2:3:4 between the tubes in each

column, as well as the tenfold ratio between the CuCl2 and NiCl2 concentrations were

kept constant for all simulated data sets, while the absolute concentrations of CuCl2

and NiCl2 were varied in different ways in three case studies:

Case I consists of 15 data sets, where the concentrations inside the tubes

were increased such that the average absorption coefficient of all tubes

increased from 0.05mm−1 to 0.75mm−1 at 810nm in equal steps. The ink

concentration was kept constant for all data sets such that its absorption

coefficient is the same as shown in Fig. 5.6(b).

Case II consists of 11 data sets, where the concentration of the ink was

increased such that the absorption coefficient of the background solution at

810nm was increased from 0.003mm−1 to 0.20mm−1. The CuCl2 and NiCl2

concentrations inside the tubes were kept constant at the same values as

the experimental phantom, such that the average absorption of the tubes

was 0.25mm−1 at 810nm.
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Figure 5.7: The structure of the numerical phantom. The white circular regions rep-
resent the tubes and the gray region represents the additional region with increasing
CuCl2 concentration in Case III.

Case III aims to investigate the impact of spatially inhomogeneous ab-

sorption in the background. A region containing CuCl2 which surrounded

two of the tubes was included, as shown in Fig. 5.7. The CuCl2 concen-

tration in this region was increased such that its absorption coefficient was

increased from 0.015mm−1 to 0.362mm−1 at 810nm in 11 data sets. The

concentrations of the chromophores outside this additional region were kept

constant at the same values as the experimental phantom.

The absorption coefficient was calculated for the same 18 wavelengths as the exper-

imental phantom for each data set based on the chromophore concentrations and their

known specific absorption coefficients. The reduced scattering coefficient was kept the

same as the experimental phantom for all data sets. Based on the distribution of the

absorption and reduced scattering coefficients, the fluence was modelled based on the

DA using FEM with the MATLAB software package TOAST++ [202] for a 10mm wide

Gaussian light source at the top of the phantom. The computational mesh consists of

square elements with a 20µm spacing, creating a domain size of 7.4x20.0mm2 for the

simulated images. The initial pressure was found by multiplying the modelled fluence

by the optical absorption coefficient and the Grüneisen parameter.

The photoacoustic wave propagation from the initial pressure distribution was mod-

elled using the MATLAB toolbox k-Wave [70] based on a k-space pseudospectral method

(Sec. 2.3). The time varying photoacoustic pressure was recorded at the bottom edge of

the numerical phantom.
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5.4.3 Image reconstruction and fluence adjustment

Both the experimental and simulated images were reconstructed using the time-reversal

method [89] (Sec. 3.1) which back-propagates the recorded time series of the photoacous-

tic pressure into the image domain to form an image of the initial pressure. Gaussian

noise with standard deviation equal to 3% of the peak intensity of data set in Case I

with the same concentrations as the experimental phantom were added to all simulated

images. An approximate fluence adjustment was performed by dividing the reconstruc-

tions of the initial pressure by the estimation of the fluence, Φ̆. The simple exponential

decay fluence model in Eq. 2.10 was chosen as Φ̆, such that

Φ̆(z, λ) = Φ0exp(−µeff (λ)z), (5.12)

where z is the depth from the illuminated surface, Φ0 is the known fluence at the illumi-

nated surface, µeff is the effective absorption coefficient given by µeff =
√

3µa(µa + µ′s),

and where the µa and µ′s are assumed to be known and equal to that of the background

solution. As discussed in Sec. 2.1.4, this 1D fluence model is derived from the DA based

on the simplifying assumptions that the medium is a semi-infinite optically homogeneous

slab illuminated by infinitely wide plane waves. The exponential fluence adjustment is

chosen in this study because it can be applied straightforwardly in practice for in vivo

photoacoustic images, with µeff estimated as an average parameter for the tissue. The

fluence correction step is necessary for obtaining accurate estimates of the relative chro-

mophore concentrations, but it is important to emphasise that it is still an approximate

method and does not fully remove the fluence distortion.

The fluence adjustment amplifies the noise in the regions away from the light source

where the values of Φ̆ are small. To avoid this, a 6.5×6.5 mm region of interest in the

fluence adjusted experimental images was decomposed using ICA and SI. Figure 5.8

shows the raw experimental images (top row), the fluence estimations (middle row) and

the fluence adjusted images (bottom row). The raw images at 750nm and 1090nm show

higher intensity for the right column of tubes containing NiCl2, while the image acquired

at 810nm shows higher intensity for the left column of tubes containing CuCl2. These

trends are expected based on the specific absorption coefficients of the chromophores.

The streak artefacts extending from the tubes, the distortion of the circular shapes
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of the tubes and the pixels with negative values are limited-view artefacts. They are

caused by the limited detection aperture of the planar sensor detection geometry, where

only the solid angle subtended by the edges of the detection line of the acoustic wave

front is captured. The bottom row of figures show that after the fluence adjustment, the

image intensity at the tubes increases with depth, which is expected as the chromophore

concentrations are higher inside the deeper tubes. The negative values in the images

lack physical meaning, and were therefore set to zero before further processing.
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Figure 5.8: The experimental photoacoustic images of the tube phantom acquired at
three different wavelengths (top row), the fluence estimations based on the 1D exponen-
tial decay (middle row), and the fluence adjusted photoacoustic images (bottom row).
The fluence adjusted images are more similar to the expected absorption coefficients
than the raw images.

5.4.4 Preprocessing for FastICA

The FastICA algorithm requires further pre-processing of the multiwavelength fluence

adjusted images before unmixing.
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Mean subtraction The first preprocessing step is to centre the data around zero

by subtracting the mean of all images. The mean subtraction is necessary because

the Gaussianity measure in Eq. (5.10) is based on the assumption that the data have

zero-mean and unit variance. The unit variance requirement is fulfilled in the next pre-

processing step. Due to the mean-subtraction, the estimated S in Eq. (5.8) will also

have zero-mean. To recover the mean, WM is added back to the unmixed sources S,

where M represents the mean matrix that was initially subtracted.

Whitening The data is said to be whitened when the images at different wavelengths

are uncorrelated with each other and each have variances of one. To whiten the data,

we first find the eigenvalue decomposition (EVD) of the covariance matrix, E{P̆P̆
T }.

The EVD is given by E{P̆P̆
T } = QDQT , where Q is the (N ×N) square matrix whose

columns are the eigenvectors of E{P̆P̆
T }, and D is a diagonal matrix whose diagonal

elements are the eigenvalues dn so that D = diag(d1, d2, ..., dN ). The matrix Q is the

decorrelation matrix, and it is used in principal component analysis (PCA) to find the

decorrelated data, which are known as the principal components (PC) and given by

QT P̆. The variances of the PCs are not uniform. In fact, the covariance matrix of

decorrelated data is equal to a diagonal matrix where the diagonal entries are equal to

the eigenvalues d1, d2, ..., dN . Therefore, the matrix of eigenvalues D can be used to

scale the data such that the variances are unity. The whitening process is thus given by

P̃ = D−1/2QT P̆, (5.13)

where P̃ denotes the whitened data and D−1/2 = diag(d
−1/2
1 , d

−1/2
2 , ..., d

−1/2
N ). Essen-

tially, the whitening process involves first performing PCA, which decorrelates the mea-

sured images, and then scaling the decorrelated components to have unit variance.

Dimension reduction The ICA algorithm will attempt to find as many independent

components as the number of measurements, N . However, in photoacoustic imaging,

it is common that there are more multiwavelength images available than the number

of chromophores, i.e. N > K. As a result, many of the estimated components will

represent mainly noise. To avoid this, the dimensions of the data are reduced prior to

the unmixing by discarding the PCs with small eigenvalues. This is achieved by retaining
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the first L entries in D and columns in Q, such that the dimensions are reduced at the

same time as the whitening is performed in Eq. (5.13). In this chapter, L is set to

three unless stated otherwise, such that FastICA will decompose the data into three

independent components.

5.5 Unmixing using ICA and SI

The fluence corrected and pre-processed multiwavelength image data are the input to

the FastICA algorithm, and the output is S, which represents the estimated values of

the Grüneisen parameter multiplied by the concentrations, S ≈ Γ ◦C. As mentioned in

Sec. 5.3.1, the ordering of the estimated independent components is arbitrary. However,

the estimated spectra in the mixing matrix resemble the true absorption spectra (an

example is shown in Fig. 5.9). Therefore, the output components are identified to

the corresponding chromophores by calculating the sum of squared differences between

the normalised columns in the estimated mixing matrix and the normalised known

absorption spectra of the chromophores of interest.
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Figure 5.9: The estimated spectra in W for CuCl2 (circles) and NiCl2 (triangles) are
shown with solid curves for a data set in Case I where the average absorption of the
tubes at 810nm is 0.4mm−1. The estimated spectra resemble the true spectra of these
chromophores, which are shown with dashed curves.

The fluence corrected (but not pre-processed) images P̆ were also unmixed using SI,

based on the known specific absorption spectra of CuCl2, NiCl2 and the background

solution, for the purpose of comparison with the ICA results.
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5.5.1 Accuracy as a function of absorption

In this section, the fluence adjusted simulated photoacoustic images were unmixed us-

ing ICA and SI to analyse their accuracy for various levels of absorption. The unmixed

components were normalised to their average value at the tube with the highest con-

centration of the relevant chromophore. The normalised components were compared to

the expected normalised components, which are the true concentrations of the relevant

chromophores multiplied by the Grüneisen parameter. The absolute difference between

the estimated and expected normalised components at each pixel defines the error map.

Three types of errors are defined based on the error maps to provide a quantitative

assessment of the accuracy of the unmixing methods:

1. The concentration error, δc, is defined as the average error at the pixels in the

tubes where the chromophore of interest is present.

2. The average error at the tubes where the relevant chromophore is absent is defined

as the “false positive” error, δf .

3. The background error, δb, is the average error outside the eight tubes.

For example, in the estimated CuCl2 component, δc is the average error at the left column

of tubes, δf is the average error at the right column of tubes and δb is the average error

outside the tubes. For Case III, the error at the additional region is included in the

definition of δc and δf .

The errors were calculated for each data set in the three Cases. The three types

of errors are plotted in Fig. 5.10 as functions of the average absorption of the tubes

at 810nm, µtubesa , for Case I (top row), the absorption of the background solution at

810nm, µbkga , for Case II (middle row), and the absorption of the additional region at

810nm, µadda , for Case III (bottom row). The errors of ICA and SI are shown with dots

and asterisks respectively.

In Case I, the δc error for SI increases with µtubesa at a nearly constant rate for

the whole range of absorptions between 0.05mm−1 and 0.75mm−1. This is expected

as the estimated fluence is based on an optically homogeneous region, and therefore

the accuracy of Φ̆ is reduced for increasing µtubesa . The δf and δb of SI errors remain

below 7% for this entire range of absorption. All three types of errors for ICA are
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>10% for µtubesa <0.15mm−1 in Case I. The large errors at low absorption may be

due to the lower SNR, which leads to the first three PC containing a smaller fraction

of the total variance of the data (see Sec. 5.5.2). When µtubesa is increased beyond

0.15mm−1, the errors of ICA are comparable to SI for the data points with relatively low

µtubesa . As µtubesa is further increased, ICA results in smaller δc than SI. However, when

µtubesa >0.55mm−1, the performance of ICA abruptly deteriorates as the errors increase

to large values beyond the scale of the plots. This is because beyond this threshold, the

accuracy of the fluence estimation is sufficiently low to lead to non-linearities so severe

that the independent components found by ICA cannot be correctly identified to the

relevant chromophores based on the estimated absorption spectra, hence resulting in a

significant increase in errors. This absorption level is comparable to that of blood, which

is 0.46mm−1 at 810nm [160] (assuming a total haemoglobin concentration of 150gL−1

and 100% oxygenation). The blue circles show the errors that would have been obtained

if the correct components were manually selected. This manual selection may not be

possible in practical applications because prior knowledge of the expected chromophore

distribution may not be available.

In Case II, accurate unmixing with all three types of errors .10% were obtained

for µbkga < 0.06mm−1 at 810nm using ICA, and <0.10mm−1 using SI. When µbkga is

increased further, the errors for both unmixing methods increase rapidly. However,

these thresholds are significantly higher than the absorption coefficient of the common

types of biological tissue, which is typically ≈0.01mm−1 at 810nm [160].

The performance of both ICA and SI is dependent on the accuracy of the fluence

adjustment, which in this study is mainly determined by the level of spatial inhomo-

geneity in the optical properties of the phantom. This is highlighted by the fact that

both methods fail to produce accurate results in the presence of the additional region

with increasing concentration of CuCl2 in Case III, where the errors increase with µadda .

5.5.2 Component selection

The thresholds above which the independent components cannot be identified to the

correct chromophores can potentially be shifted towards higher absorption levels if the

multiwavelength image data are decomposed into fewer independent components. This

can be realised by keeping fewer PCs in the preprocessing stage to reduce the dimensions
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Figure 5.10: The left, centre and right columns of plots show the δc, δf and δb errors
respectively for the chromophore components unmixed from the simulated images from
Case I (top row), Case II (middle row) and Case III (bottom row) using ICA (dots)
and SI (asterisks). The x-axis indicates the average absorption of the eight tubes for
Case I, the absorption of the background solution for Case II, and the absorption of the
additional region with CuCl2 for Case III, all at 810nm. For Case I, the δc error for ICA
is .10% for µtubesa between 0.15mm−1 and 0.55mm−1, while the δc error for SI increases
approximately constantly with µtubesa . The circles indicate the ICA errors for manual
selection of the corresponding components. Case II shows that the errors associated
with ICA and SI are both relatively low for physiologically realistic range of absorption
in the background tissue. The δc and δf errors in Case III increase with the absorption
in the additional region for both ICA and SI.

114



5.5. Unmixing using ICA and SI 115

of the data.

Figure 5.11 shows the δc, δf and δb errors from unmixing the images in Case I with

ICA using two, three or four PCs. The results show that if only two PCs were processed

with ICA, the unmixed independent components can be correctly identified as CuCl2 or

NiCl2 for the full range of absorption levels investigated in Case I, and no abrupt increase

in error is observed. However, using only two PCs also results in larger unmixing errors

for the higher absorption levels. When four PCs are used, the error trends are similar

to using three PCs, but a slight lower shift of the range of the absorption in which ICA

results in accurate unmixing is observed. This shift may be explained by the fact that,

when the main features in the image have lower contrast, a smaller fraction of the total

variance of the data is included in the first three PCs.
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Figure 5.11: The δc, δf and δb errors of the unmixed components when two, three or
four PC are further processed with ICA. Using two PC (squares) results in larger δc for
higher absorption, but no abrupt increase in errors is observed. The range of absorption
in which ICA leads to accurate unmixing is shifted to lower absorption when four PC
(crosses) is used instead of three (dots).

5.5.3 Experimental images and wavelength selection

The experimental images were acquired at 18 wavelengths (N = 18) over a spectral range

where the absorption spectra of the chromophores have distinct features. However, in

in vivo imaging applications, it may be necessary to reduce N , and some chromophores

in the tissue may have flatter and/or less unique absorption spectra. To simulate such

a scenario, ICA and SI were applied on images of smaller sets of wavelengths where N

was reduced by removing the images of the longest wavelengths, such that in the final

inversion (the inversion with the fewest wavelengths) only the images at the wavelengths

750, 770 and 790nm were used. Of course, when reducing the number of wavelengths

in practice, one would choose wavelengths that are more spread out for these particular
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chromophores. Here, the wavelengths were removed from the longest to investigate how

the unmixing methods deal with poorly conditioned absorption spectra. The unmixed

components were normalised and the errors δc, δf and δb are found in same way as for

the simulated images.

The three types of errors are plotted as a function of N used in ICA and SI in

Fig. 5.12. When the full set of 18 wavelengths are used, both methods result in accurate

unmixing with the δc, δf and δb errors equal to 11%, 4% and 3% for ICA, and 10%,

5% and 3% for SI. This result is in agreement with the simulated data which showed

high accuracy for lower absorption levels for both ICA and SI. The high accuracy is

maintained for the inversions using N > 10. When N is further reduced, the accuracy

of SI rapidly deteriorates, while the errors associated with ICA remain relatively low.

An example of the unmixed components is shown in Fig. 5.13, where N = 6. Both the

CuCl2 and NiCl2 components are estimated accurately with ICA. SI, on the other hand,

is able to unmix the NiCl2 component with relatively low errors, but its estimate of the

CuCl2 component is noisy and contains large errors.
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Figure 5.12: The δc, δf and δb errors of the unmixed components using different number
of wavelengths for ICA and SI. The SI errors increase significantly when less than 10
wavelengths are used, while the errors of ICA remain relatively low.
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Figure 5.13: The estimated components corresponding to CuCl2 and NiCl2 using ICA
and SI when the six shortest wavelengths are used. The components are normalised
to the average of the estimated concentration at bottom tube containing the relevant
chromophore. The CuCl2 component estimated using SI contains large cross-talk errors,
while both components are estimated relatively accurately with ICA.

Two key factors are likely to affect the unmixing results when the longer wavelengths

are removed. Firstly, due to the spectral variation in the absorption of the contrast

agents in the tubes and the background solution, the fluence correction is more accurate

for some wavelength combinations than others. This results in variations in the accuracy

of SI when certain wavelengths are excluded. Secondly, the condition number of the

known mixing matrix increases by several orders of magnitude when N < 5, as shown

in Fig. 5.14. Therefore, the fact that the inversion is more ill-conditioned is likely

to be the dominant cause of the large errors of SI for the inversions where N < 5.

However, both these factors affect ICA less significantly. As shown with the simulated

image data in Sec. 5.5.1, ICA is more robust against non-linearities caused by poor

fluence correction, and therefore the errors of ICA remains low when wavelength range

changes. Furthermore, the low errors of ICA when N < 5 suggest that unmixing based

on statistical independence can potentially be used to obtain accurate separation of the

chromophores when SI performs poorly due to the ill-conditioning of the mixing matrix.

This is possible because ICA does not rely on the known spectra for unmixing, and can

therefore tolerate ill-conditioning better than SI.
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Figure 5.14: The condition number of the matrix A with the known specific absorption
spectra as a function of number of wavelengths as the wavelengths are reduced from the
longest.

5.6 Summary and discussion

This study demonstrates that ICA can be used to unmix the chromophores to a useful

degree of accuracy under certain conditions, provided that a simple exponential flu-

ence correction, which is straightforwardly applicable in practice, has been performed.

Experimental and numerical phantoms were designed for which the assumptions under-

lying both ICA (statistical independence) and SI (full rank molar absorption coefficient

matrix) were true. Either approach would therefore give accurate results for a per-

fect fluence correction. When using the approximate, but practical, fluence correction

(Eq. (5.12)), it was shown that ICA results in smaller unmixing errors compared to

SI in two circumstances: Firstly, when the absorption level of the contrast agents is

approximately 0.4–0.5mm−1, ICA is more robust against non-linearities caused by in-

accurate fluence estimation than SI, because it allows the mixing matrix to vary in

order to produce the most independent components. Secondly, when the mixing matrix

with the known absorption spectra is more ill-conditioned, ICA provides significantly

more accurate results as it avoids using the fixed mixing matrix by searching for the

chromophore components based on their statistical independence instead. This may be

useful for applications where the chromophore of interest has relatively flat/featureless

absorption spectrum, for example the tyrosinase-expressing cells in Ref. [209].

When the average absorption of the features of interest is higher than a certain

threshold (which in this particular phantom is at 0.55mm−1), leading to greater dif-

118



5.6. Summary and discussion 119

ferences between the estimated and the true fluence, the errors of ICA were shown to

abruptly increase as the output components corresponding to the chromophores of in-

terest could not be identified by comparing the estimated spectra with the known. This

suggests that, with sufficient SNR, ICA can provide accurate unmixing for absorptions

up to a threshold. The threshold will likely be dependent on the absorption spectra,

the spatial structure of the chromophores and the accuracy of the fluence adjustment.

Given the potential presence of these upper absorption thresholds under which ICA

provides relatively low errors, it would be ideal to use lower concentrations of contrast

agents. This would require the imaging system to have high sensitivity in order to obtain

sufficient SNR.

ICA is a suitable unmixing method that is robust to the small errors in the fluence

correction that are unavoidable in practical scenarios, provided that the chromophores

are known to be mutually statistically independent. This assumption is valid for the

chromophores in the phantoms used in this study, and in applications such as unmixing

some exogenous contrast agents from the tissue in the background. However, the inde-

pendence criterion is not always fulfilled for all tissue chromophores, hence limiting the

range of applications of ICA.

The number of components that will be estimated is fixed in SI and determined by

the dimensions of the spectral matrix, which is equal to the number of chromophores.

This study showed that in ICA, it is not straightforward to choose how many indepen-

dent components the multiwavelength images should be decomposed into. Since larger

dimensionality leads to difficulty in identifying the components as chromophores, one

should ideally retain the minimum number of PC that contains a sufficient fraction of

the total variance to explain the data well. In this study, PC representing >75% of the

variance needed to be kept for further processing with ICA to provide accurate results.

However, there are no general guidelines based on theoretical principles for the optimal

choice of dimension reduction.

As discussed in Sec. 5.3.1, the magnitude of the independent components estimated

using ICA is arbitrary because both W and S are unknown. However, some prior

knowledge often exists for the absorption spectra of the chromophores. These known

specific absorption spectra can potentially be used to fix the magnitude of the indepen-

dent components, such that the relative concentration between different chromophores
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are scaled correctly, and hence reducing ambiguities of ICA. One simple approximate

scaling method would be to divide the estimated independent components by a scal-

ing factor equal to the ratio between the mean of each estimated spectrum and the

corresponding known spectrum.

5.7 Conclusion

In conclusion, ICA offers a fast and simple alternative to unmixing multiwavelength

photoacoustic images into components representing individual chromophores, provided

that the spatial distributions of the chromophore concentrations are statistically inde-

pendent. When a first order fluence adjustment has been applied, and the absorption is

within certain ranges and relatively spatially homogeneous, ICA can provide accurate

quantification of the relative chromophore concentrations. The results of ICA depend on

the choice of dimensions retained in the pre-processing step, as accurate results require

that the components can be identified as the correct chromophores. It was shown that

ICA outperforms SI when mixing matrix is ill-conditioned, and that ICA is more robust

to errors in the fluence correction compared to SI.
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Chapter 6

Statistical independence in

nonlinear model-based inversion

While both SI and ICA can under certain circumstances separate the contributions

from individual chromophores, neither of the methods provides a complete solution to

the general quantitative problem in photoacoustic imaging. SI can estimate the concen-

tration ratio accurately for oxy- and deoxyhaemoglobin, provided that the wavelengths

are suitably chosen. To obtain accurate concentrations relative to other spatial loca-

tions, both SI and ICA rely on linearisation, which typically requires that the optical

properties are close to spatially homogeneous. For cases where simple approximate flu-

ence models cannot provide a sufficiently accurate fluence correction, more sophisticated

inversion methods that incorporate an accurate fluence model are required. These meth-

ods are typically computationally more demanding and are less robust to experimental

errors compared to simple linear methods, and therefore not commonly used in in vivo

imaging studies. In this chapter, we propose incorporating a measure of the statistical

independence of the chromophore concentrations in a nonlinear model-based inversion

scheme. This aims to exploit the intrinsic statistical property of the chromophores in

order to reduce the model-mismatch errors in experimental settings, and hence improve

the practical applicability of the model-based inversion method.

Section 6.1 outlines the principles of model-based inversion and explains why they

are challenging to implement in practice. Section 6.2 presents the proposed model-based

inversion scheme where the statistical independence is incorporated. It describes prop-

erties of the mutual information (MI) term in the error functional (Sec. 6.2.1), the kernel
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estimator for the MI (Sec. 6.2.2), the gradient of the MI with respect to the chromophore

concentrations (Sec. 6.2.3) and the implementation of the calculations (Sec. 6.2.4). Sec-

tion 6.3 describes the generation of the experimental and numerical simulated multi-

wavelength images of tissue mimicking phantoms. The result of the quantification using

model-based inversion with MI is presented and compared to the standard model-based

inversion in Sec. 6.4. Section 6.5 discusses the results and conclusions are presented in

Sec. 6.6.

The journal article in Ref. [221] (DOI: 10.1364/BOE.8.005297) has been modified

and adapted to form parts of this chapter, with reprint permission under CC BY 4.0

License.

6.1 Model-based inversion for QPAT

Nonlinear model-based inversion was introduced in Sec. 3.2.3.2. The key steps are

repeated below and the challenges of the practical implementations are discussed.

The first step in the model-based inversion method is to make an initial guess for the

unknown variables, which are represented with the vector u. We focus on the multiwave-

length case (Sec. 3.2.3.3.2), where the unknown variables are typically the chromophore

concentrations and the scattering amplitude, such that u = [c1, ..., cKt ,a]. The total

number of chromophores is denoted with Kt (the subscript t is used to distinguish from

the number of statistically independent chromophores, which is denoted with K in this

chapter). The unknown quantities ck and a are vectors with each element representing

a voxel, such that ck = [ck,1, ck,2, ..., ck,M ] and a = [a1, ..., aM ], where M denotes the

total number of voxels. The absorption coefficient and the scattering coefficient are

calculated based on the initial guess and using µa =
∑

k αkck (Eq. (2.1)) and µ′s = aλ−b

(Eq. (3.11)), where αk is the specific absorption spectra and b is the wavelength depen-

dence of the scattering. Both αk and b are assumed to be known. The fluence, φ, is then

modelled using the DA or the RTE for the distribution of the absorption coefficient and

the scattering coefficient. Using the modelled fluence, the absorption coefficient and the

Grüneisen parameter, Γ, the modelled initial pressure pmodel0,m,λn
at voxel m and wavelength

λn is calculated using (Sec. 2.2)

pmodel0,m,λn = SΓmφm,λnµa m,λn , (6.1)
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6.1. Model-based inversion for QPAT 123

where S is the system calibration factor that depends on the acoustic response of the

sensors, which can typically be assumed to be spatially homogeneous and independent

of the optical wavelength. The data error to be minimised, εd, is defined as the sum

of squared differences between the modelled and the measured initial pressure, pmeas0,m,λn
,

such that

argmin
u

εd(u) =
1

2

N∑
n=1

M∑
m=1

[
pmodel0,m,λn(u)− pmeas0,m,λn

]2
, (6.2)

where the total number wavelengths is denoted by N . By iteratively updating the

values of the unknown variables until εd is minimised, accurate quantification can be

achieved in an idealised scenario for arbitrary tissue structures. Thus, in theory, the

model-based inversion scheme can be used as a general method for recovering the chro-

mophore concentrations in QPAT with relatively little prior information or other re-

strictive assumptions. However, as discussed in Sec. 3.3.2, the practical implementation

of model-based inversion for experimentally acquired images faces challenges including

the large computational demand and the presence of model-mismatch errors. In this

chapter, we tackle the latter issue of model-mismatch. It refers to the inaccurate forward

modelling of pmodel0,m,λn
which leads to the minimum of the data error occurring at erro-

neous values of the unknown parameters, and hence results in inaccurate quantification.

Model-mismatch can arise due to a number of reasons:

• The DA has been extensively used as the fluence model in nonlinear inversion

studies, even though it does not accurately represent the fluence distribution at

regions close to the illuminated surface or near the boundaries of the domain.

• Some studies are based on 2D fluence models, even though light propagation in

biological tissue occurs in 3D and most biological tissues contain complex 3D

structures that extend out of any 2D plane, leading to modelling errors.

• Even when 3D fluence models are employed, due to computational memory re-

strictions, the modelled domain may be limited to a region of interest smaller

than the size of the illuminated region. Therefore, there may be backscattering

from outside the domain that is neglected in the model, which may lead to errors.

• There may be inaccuracies in the fixed parameters in the forward model, such

as the size and the position of the excitation beam, the absorption spectra and
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scattering properties, which are typically determined experimentally.

Most of the above-mentioned problems are practical issues that arise only in experi-

mental settings and are often not taken into account in theoretical or numerical studies

of the model-based inversion. Therefore, the model-mismatch may be one of the main

issues that contribute to fact that model-based inversion is not commonly implemented

in experimental studies. In order to make model-based inversion more applicable for ex-

perimental images, we propose reducing the errors due to model-mismatch by exploiting

the intrinsic statistical properties of the chromophore distributions which do not depend

on the forward model. This approach is described in the next section.

6.2 Model-based inversion with statistical independence

The concept of utilising the statistical independence between the chromophores to im-

prove the accuracy of model-based inversion in the presence of model-mismatch is illus-

trated in Fig. 6.1. In the idealised scenario, where the model is perfectly accurate, the

minimum of the error functional consisting of the data error only (Eq. (6.2)) occurs at

the true solution, as shown in Fig. 6.1(a). Figure 6.1(b) illustrates that the presence of

experimental uncertainties in the model parameters and other inaccuracies in the fluence

model causes the minimum of the error functional to shift away from the true solution,

and occurs instead at an erroneous solution. Unlike the data error, the statistical in-

dependence is a property of the distribution of the chromophores alone, rather than a

function of the forward modelling. Therefore, the errors in the fluence model due to the

issues mentioned in the previous section do not affect the MI between the chromophore

concentrations, which will always have a minimum at the true solution, provided that the

chromophores are statistically independent. The MI of the independent chromophores is

illustrated in red in Fig. 6.1(c). Hence, by including a term representing the MI between

the independent chromophores in the error functional, the quantification errors can be

reduced. The new minimisation problem using an error functional, εd+MI , consisting of

both the data error and the MI is given by

argmin
u

εd+MI(u) =
1

2

N∑
n=1

M∑
m=1

[
pmodel0,m,λn(u)− pmeas0,m,λn

]2
+ γĬ(c1, ..., cK), (6.3)
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where γ is the weight parameter for the MI. The new error functional in Eq. (6.3) is

illustrated with blue dashed curve in Fig. 6.1(c), and its minimum occurs closer to the

true solution than the data error in Eq. (6.2).
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Figure 6.1: (a) The minimum of the data error occurs at the true solution in an
idealistic scenario. (b) In the presence of model-mismatch, the minimum shifts toward an
erroneous solution. (c) The minimum of the MI is independent of the forward modelling
and occurs at the true solution provided that the chromophores are independent (red
curve). A new error functional (dashed blue curve) is created by combining the data
error and the MI and it has a minimum closer to the true solution compared to the data
error alone.

6.2.1 Properties of the MI error term

It is important to understand the differences between the use of statistical independence

in ICA, which a linear unmixing method, and in model-based inversion, which is a

nonlinear optimisation scheme. In ICA, the unknown mixing spectra are iteratively

updated, and the statistical independence is calculated between the output components,

which represents the chromophores whose concentrations are calculated based on the

estimated mixing spectra and the linear model in Eq. (5.7). This means that the MI

(or other measures of statistical independence) is minimised under the restriction of

the linear model – the aim is to find the most independent components that can be

linearly unmixed from a given set of measured data. In the model-based inversion using

Eq. (6.3), the unknown parameters to be updated are the chromophore concentrations

themselves, between which the MI is calculated. Therefore, unlike in ICA, the input into

the MI estimation is not restricted by the measured data in any way and may take any

value. The measured data is only used in the data error term. Consequently, if the error

125



126 Chapter 6. Statistical independence in nonlinear model-based inversion

functional in Eq. (6.3) consisted only of the MI term, the minimisation could result in

spatially homogeneous concentrations which have no information whatsoever and hence

also zero MI. It is therefore important to have a suitable weight balance between the

terms.

Unlike the data error term, the MI term in the error functional is non-convex and

contains many local minima. The local minima exist for the MI term because there

are many ways two spatially varying variables can be statistically independent of each

other. The true solution occurs at a local minimum that may not necessarily be the

global minimum of the MI term. For example, the initial guess of the chromophore

concentrations for the model-based inversion is often chosen to be some spatially ho-

mogeneous values. This initial guess may have lower MI than the true concentrations

in many cases. Nevertheless, the local minima can be avoided with the presence of the

data error term, which brings the solution towards to the correct minimum.

6.2.2 Estimating the mutual information

In FastICA, the statistical independence was measured using negentropy, which can

be estimated straightforwardly using Eq. (5.9). The use of negentropy was justified

based on the Central Limit Theorem, which assumes that the components are linear

mixtures of the independent components. In the model-based inversion, however, the

input chromophore concentrations for each iteration may take any value that minimise

the error functional and are not restricted to being linear sums of the true concentrations.

Therefore, MI is used as the independence measure in Eq. (6.3) instead of negentropy.

As indicated in Eq. (5.2), MI depends on the entropy and the joint entropy of the

variables, which involves calculating the marginal and joint PDFs. We consider the con-

centrations of K independent chromophores, c1, ..., cK , as continuous random variables

with the PDFs ρc1 , ..., ρcK . The values of the concentration of the kth chromophore at

different voxels, [ck,1, ..., ck,M ], are considered the instantiations or “observations” of the

random variable. The total number of observations is equal to the number of voxels M .

Since the true PDFs of the chromophore concentrations are in general unknown, they

need to be estimated based on the observations. The simplest method of estimating the

PDF is using the histogram-based approach. The histogram consists of a number of bins

that cover the whole range of values that the data points of ck take and the probability
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density at the centre of each bin is approximated as the fraction of the data points that

falls within the relevant bin. Hence, the histogram estimation of the probability density

of ck at the value ξk,qk is given by

ρ̆ck(ξk,qk) =
1

Mhhist
× (nr. of elements in ck in the same bin as ξk,qk) (6.4)

where hhist is the width of the bins and the subscript qk is the index of the value at

which the PDF is evaluated. The histogram method is useful simple way of estimating

the PDFs. However, the gradient of the histogram estimation of the PDF is everywhere

zero, except at the edges of each bin, where it is infinite. It is therefore not a suitable

estimator for MI in gradient-based optimisations.

To overcome this issue, the kernel estimator, also known as the Parzen window esti-

mator, is used as an alternative method of estimating the PDF. Conceptually, the kernel

density estimation method involves placing a smoothly varying spread of values, or ker-

nel, on the value of each data point. Figure 6.2 illustrates this with the random variable

y, which only has seven data points. The data points are y = [3, 6, 9.3, 10, 10.4, 12.5,

15]. The shape of the weights are determined by the kernel function, which in this

example is a Gaussian function, as shown with dashed curves. The PDF is estimated as

the sum of these weights, as indicated by the solid black curve in Fig. 6.2.

The kernel estimation of the PDF and the joint PDF are given by [215]

ρ̆ck(ξk,qk) =
1

M

M∑
m=1

κ(ξk,qk − ck,m) (6.5)

and

ρ̆c1,...,cK (ξ1,q1 , ..., ξK,qK ) =
1

M

M∑
m=1

K∏
k=1

κ(ξk,qk − ck,m), (6.6)

where ξk,qk is the value at which the PDF is estimated, ck,m are the data points and κ

is the kernel function. The kernel function must satisfy

κ(x) ≥ 0 (6.7)

and ∫ ∞
−∞

κ(x)dx = 1, (6.8)
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Figure 6.2: The circles indicate the data points of y, the dashed curves indicate the
kernels weights for each data point, and the solid curve is equal to the sum of the kernels,
which is the estimation of the PDF of y, ρ̆y.

to ensure that the estimated PDF is non-negative and integrates to one. The motivation

for using the kernel density estimator instead of a simple histogram approximation is

that the former ensures continuity and differentiability of the estimated PDFs, provided

that a continuous and differentiable kernel function is used. To satisfy those criteria,

the Gaussian kernel is chosen for this study:

κ(x) =
1

h
√

2π
exp(−x2/2h2), (6.9)

where h is the kernel width, also known as the smoothing parameter or bandwidth. If the

kernel width used is too large, κ(ξk,qk−ck,m) changes slowly with ξk,qk , and the resultant

PDF is a superposition of broad and slowly varying functions, which lacks resolution.

A too small window width, on the other hand, will cause the kernels to become “spiky”

with high amplitude centred on each possible outcome of ck. This leads to a noisy

estimate of the PDF. It was shown by Silverman [215] that the optimal window width

for data that follows Gaussian distribution is given by

h =

(
4

3M

) 1
5

σ ≈ 1.06σM−
1
5 , (6.10)
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where σ is the standard deviation of the data.

To estimate the entropies of the chromophore concentrations, the PDF is evaluated

at a set of discrete equally spaced points denoted by ξk = [ξk,1, ξk,2, ..., ξk,Q], where Q

is the total number of points (see Sec. 6.2.4 for details of the implementation). The

integral in the definition of the entropy and the joint entropy for continuous variables in

Eq. (5.3) and (5.4) can be approximated as a sum using the trapezium rule, such that

H̆(ck) = −
Q∑

qk=1

ρ̆ck (ξk,qk) log ρ̆ck (ξk,qk) ∆ξk (6.11)

and

H̆(c1, ..., cK) = −
Q∑

q1,...,qK=1

ρ̆c1,...,cK (ξ1,q1 , ..., ξK,qK ) log ρ̆c1,...,cK (ξ1,q1 , ..., ξK,qK )

K∏
k=1

∆ξk

(6.12)

where the summation symbol denotes a multiple sum of q1, ..., qK and ∆ξk is the spacing

between the sampling points for the PDF. Using the approximated entropies, the MI

can be estimated by

Ĭ(c1, ..., cK) =
K∑
k=1

H̆(ck)− H̆(c1, ..., cK). (6.13)

6.2.3 The gradient of the mutual information

To find the most independent chromophores requires minimising the MI between the

chromophores, which can be done efficiently using a gradient-based optimisation ap-

proach. The partial derivative of the MI with respect to the chromophore concentration

at each voxel is given by [216]

∂Ĭ(c1, ..., cK)

∂ck,m
=
∂H̆(ck)

∂ck,m
− ∂H̆(c1, ..., cK)

∂ck,m
. (6.14)

The first term in the right hand side of Eq. (6.14) is

∂H̆(ck)

∂ck,m
=
∂H̆(ck)

∂ρ̆ck

∂ρ̆ck
∂ck,m

, (6.15)
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where

∂H̆(ck)

∂ρ̆ck
= −

Q∑
qk=1

∂

∂ρ̆ck
[ρ̆ck(ξk,qk)log ρ̆ck(ξk,qk)] ∆ξk

= −
Q∑

qk=1

[
ρ̆ck(ξk,qk)

∂log ρ̆ck(ξk,qk)

∂ρ̆ck
+
∂ρ̆ck
∂ρ̆ck

log ρ̆ck(ξk,qk)

]
∆ξk

= −
Q∑

qk=1

[1 + log ρ̆ck (ξk,qk)] ∆ξk

(6.16)

by the product rule, and
∂ρ̆ck
∂ck,m

= κ′(ξk,qk − ck,m), (6.17)

where κ′ denotes the derivative of κ, given by

κ′(ξk,qk − ck,m) =
ξk,qk − ck,m

h2
κ(ξk,qk − ck,m) (6.18)

for the Gaussian kernel. Similarly, the second term in Eq. (6.14) is

∂H̆(c1, ..., cK)

∂ck,m
=
∂H̆(c1, ..., cK)

∂ρ̆c1,...,cK

∂ρ̆c1,...,cK
∂ck,m

, (6.19)

where

∂H̆(c1, ..., cK)

∂ρ̆c1,...,cK
= −

Q∑
q1,...,qK=1

[1 + logρ̆c1,...,cK (ξ1,q1 , ..., ξK,qK )]
K∏
i=1

∆ξi (6.20)

and
∂ρ̆c1,...,cK
∂ck,m

= κ′(ξk − ck,m)

K∏
i=1,i 6=k

κ(ξi − ci,m). (6.21)

6.2.4 Implementation

6.2.4.1 FFT for fast computation of the kernel estimator

The number of operations required to evaluate an equation is referred to as its complex-

ity, and is often denoted withO. The complexity of evaluating the PDF of a chromophore

at Q points in an image of M voxels is O(QM) using the kernel estimator in Eq. (6.5).

Since Q is typically chosen to be in the order of a few hundreds, and M can be approx-

imately a million for high resolution 3D images, the number of operations required to
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calculate the PDF can be as large as ∼108. The high complexity means that the kernel

estimator can become prohibitively slow. To increase the computational efficiency, we

take advantage of the fact that Eqs. (6.5) and (6.6) can be evaluated using convolu-

tions, which can be calculated efficiently using fast Fourier transforms (FFT) [217]. The

convolution of two continuous functions f(x) and g(x) is given by

f(x) ? g(x) =

∫ ∞
−∞

f(x− s)g(s)ds =

∫ ∞
−∞

f(s)g(x− s)ds, (6.22)

The convolution theorem states that the convolution of two functions can be found by

performing the Fourier transform on each of the functions, then multiplying the results,

and finally taking the inverse Fourier transform of the product:

f(x) ? g(x) = F−1 {F {f(x)}F {g(x)}} , (6.23)

where F and F−1 denote the Fourier transform and the inverse Fourier transform. For

discrete and evenly spaced signals, the FFT algorithm can be used to calculate the

convolution, which has a complexity of O(LlogL), where L is number of points that x is

defined at [217]. It is shown in Sec. 6.2.4.2–6.2.4.5 that using the FFT to evaluate the

PDFs can reduce the complexity by several orders of magnitude. The implementation

largely follows Ref. [218] and is described in detail in the following sections.

6.2.4.2 Estimation of the marginal PDF

As mentioned in the previous section, the FFT can be used to evaluate the convolution

provided that the functions are defined at discrete equally spaced points – a uniform

grid. However, the chromophore concentration at different voxels, ck = [ck,1, ..., ck,M ],

is continuous. (By this we mean that the value of the concentration at each voxel is

continuous, as it may be any continuous number, and it must not be confused with

the spatial discretisation by the equispaced voxels.) To obtain discrete functions, the

continuous concentration ck = [ck,1, ..., ck,M ] is re-sampled onto a uniform grid defined

at a discrete set of Q equally spaced points, ξk = [ξk,1, ..., ξk,Q] [216, 217]. These are

the same points where the PDF will be evaluated, as described in Sec. 6.2.2. The

re-sampled data is given by ĉk = [ĉk,1, ..., ĉk,Q], where each sampled point is given by
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ĉk,qk = w(ξk,qk). The weight w(ξk,qk) for each sampling point is calculated using [216]

w(ξk,qk) =
1

M

M∑
m=1

∧(ξk,qk − ck,m) (6.24)

where ∧(x) is a triangular kernel

∧ (x) =


1− (|x| /∆ξk), if |x| < ∆ξk

0, otherwise

(6.25)

This re-sampling is analogous to the histogram binning method. In the histogram

method, the binning process can be thought of as re-sampling using box functions,

where a box of a fixed height is placed on a bin for each data point with a value that

falls within the bin, and the final weight of the bin is the sum of the boxes. In Eq. (6.24),

the re-sampling uses triangular functions instead of box functions, such that the con-

tribution to the bin is dependent on the distance between values of the data point and

the grid point. To clarify, the original ck represents the continuous concentrations of

the kth chromophore at different voxels and has size M . The re-sampled ĉk represents

the “density” of the concentration at different sampling values and has size Q. The

re-sampling is illustrated in Fig. 6.3 with the concentration of the chromophore k at six

pixels.

It is clear from Eq. (6.25) that each ck,m only contributes to the weight of its closest

neighbouring sampling points ξk,im and ξk,im+1. The weights due to ck,m are given by

w(ξk,im) = (1 − bm)/M and w(ξk,im+1) = bm/M , where bm = (|ck,m − ξk,im | /∆ξk) is

the normalised distance to the neighbour. This is illustrated in Fig. 6.4. The index of

the left neighbour for each ck,m, i = [i1, i2, ..., iM ], and their corresponding distances,

b = [b1, b2, ..., bM ], are stored for subsequent calculations [217].

Thus, using the re-sampled concentrations, the kernel estimator of the marginal PDF

at the sampling point ξk,a is given by [216]

ρ̆ĉk(ξk,a) =
1

Q

Q∑
qk=1

κ(ξk,a − ξk,qk)w(ξk,qk). (6.26)

Calculating the PDF for all Q sampling points, ρ̆ĉk(ξk), would require O(Q2) operations
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Figure 6.3: (a) The concentrations of the chromophore k at six voxels are ck =
[8.5, 2.3, 4.7, 2.0, 8.3, 1.4], as indicated with the colour scale. (b) The concen-
trations are shown using vertical lines along the uniform grid defined by 13 points
at ξk = [0.1, 0.9, 1.7, 2.5, 3.3, 4.1, 5.0, 5.8, 6.6, 7.4, 8.2, 9.0, 9.8], which are
indicated with dots. (c) The re-sampled concentrations at the uniform grid, ĉk =
[0, 0.07, 0.26, 0.18, 0.05, 0.12, 0, 0, 0, 0.24, 0.09, 0]. Figure inspired by [217,218].

using Eq. (6.26). To further reduce the complexity, the kernel estimator is expressed as

a convolution, [216]

ρ̆ĉk(ξk) = κ(ξk) ?
1

Q
w(ξk)

= F−1

{
F {κ(ξk)}F

{
1

Q
w(ξk)

}}
,

(6.27)

and evaluated efficiently using FFT, since both terms in the convolution are defined at

equally spaced points. The practical details of the implementation are as follows [218]:

The number of equidistant points where the PDF is sampled, Q, is chosen to be 500,

which is considered enough for accurate estimation the PDF according to Refs. [219,220].

The kernel κ is pre-calculated on a grid g extending from -6h to 6h, where h is the kernel

width defined in Eq. (6.9), such that g = [−Qg−1
2 ∆ξk, ...,−2∆ξk,−∆ξk, 0,∆ξ, 2∆ξk, ...,

Qg−1
2 ∆ξk], where ∆ξk is the grid spacing and Qg is the number of points on the grid.

The convolution theorem assumes that the data is periodic when the FFT is used, which

means that the points at the end of the grid wrap around and appear at the beginning
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Figure 6.4: A graphic illustration of the normalised distances bm, which are used to
calculate the weights during the re-sampling. Figure inspired by [218].

of the grid. To avoid this wrapping effect, the functions κ(g) and w(ξk) are zero-padded

so that both have the size of Qpad = Q+Qg. The complexity of calculating the PDF in

Eq. (6.27) with the padded functions is O(QpadlogQpad). The total complexity including

the re-sampling is then O(QpadlogQpad+M), which may be significantly smaller than the

original O(QM) if M is large. The range in which the PDF is estimated is determined

by the minimum and maximum ck. To also account for the width of the kernel, the

range is increased by 6h at each extreme of values of ck. The spacing ∆ξk is determined

by dividing the range with the pre-determined Q. The convolutions of the kernel and

the discretised concentrations are illustrated in Fig. 6.5. The estimated PDFs are then

used to calculate the entropies in Eq. (6.11).

6.2.4.3 Estimation of the entropy derivative

The derivative of the entropy with respect to the concentration of chromophore k at

voxel m is given in Eqs. (6.15) to (6.18), and restated here

∂H̆(ck)

∂ck,m
= −

Q∑
qk=1

[1 + log ρ̆ck (ξk,qk)] ∆ξk
∂κ(ξk,qk − ck,m)

∂ck,m
. (6.28)

Equation (6.28) has a complexity of O(Q). However, the derivative needs to be calcu-

lated for all voxels to find the gradient of the error functional, so the total complexity is

O(QM). Since the entropy derivative also has a convolution structure, the FFT can be

utilised to reduce the complexity to O(QpadlogQpad). Again, the functions need to be

evaluated on a regular grid in order to apply the FFT. Therefore, instead of calculating

the derivative with respect to the continuous concentrations ck,m, it is calculated with
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Figure 6.5: (a) An example of the concentrations of a chromophore at nine voxels. (b)
The vertical lines indicate the concentrations along the uniform grid, which is defined at
50 points. The grid points are shown with dots. (c) The re-sampled concentrations are
shown with black arrows. The Gaussian kernel κ with width h = 0.4 is shown with red
curve. The kernel is convoluted with the re-sampled concentrations to provide the kernel
estimator of the PDF, which is shown with blue curve. Figure inspired by [217,218].

respect to the regular grid ξk where the PDFs is evaluated. Thus the discrete version

of Eq. (6.28) is given by [216]

∂H̆(ĉk)

∂ξk,j
= −

Q∑
qk=1

(
1 + log ρ̆ck (ξk,qk)

)
∆ξk

∂κ(ξk,qk − ξk,j)
∂ξk,j

. (6.29)

The gradient of the entropy with respect to the grid ξk can then be expressed as a

convolution [216]

∂H̆(ĉk)

∂ξk
=
(

1 + log ρ̆ck (ξk)
)
?

(
−∆ξk

∂κ(ξk)

∂ξk

)
= F−1

{
F {1 + log ρ̆ck (ξk)}F

{
−∆ξk

∂κ(ξk)

∂ξk

}}
.

(6.30)

and calculated efficiently using FFT. The derivative of κ(ξk) is given by

∂κ(ξk)

∂ξk
=

ξk
h2
κ(ξk). (6.31)
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Equation (6.30) calculates the derivatives at the regular grid ξk in order to make use

of the FFT. However, for the model-based inversion, the derivatives are required at the

continuous values ck,m. Therefore, the previously calculated re-sampling parameters b

and the indices i are used to re-sample the derivative back to the continuous values ck,m,

using
∂H̆(ĉk)

∂ck,m
= (1− bm)

∂H̆(ĉk)

∂ξk,im
+ bm

∂H̆(ĉk)

∂ξk,(im+1)
. (6.32)

6.2.4.4 Estimation of the joint PDF

To estimate the joint PDF between two chromophores, c1 and c2, the concentrations are

re-sampled onto a 2D regular grid defined by ξ1 = [ξ1,1, ..., ξ1,Q] and ξ2 = [ξ2,1, ..., ξ2,Q]

with spacings ∆ξ1 and ∆ξ2, in analogous manner as for the marginal PDF in Sec. 6.2.4.2.

The weight of each grid point is given by [216]

w(ξ1,q1 , ξ2,q2) =
1

M

M∑
m=1

∧(ξ1,q1 − c1,m, ξ2,q2 − c2,m), (6.33)

where

∧ (x, y) =


(1− (|x| /∆ξ1)) (1− (|y| /∆ξ2)) , if |x| < ∆ξ1 and |y| < ∆ξ2

0, otherwise

(6.34)

Similarly to the 1D case for the marginal PDF, the set of two chromophore concen-

trations at each voxel, (c1,m, c2,m), only affects its four neighbouring sampling points

(ξ1,im , ξ2,jm), (ξ1,im+1, ξ2,jm), (ξ1,im , ξ2,jm+1) and (ξ1,im+1, ξ2,jm+1), and the weight it

contributes depends on the normalised distances, bxm = (|c1,m − ξ1,im | /∆ξ1) and bym =

(|c2,m − ξ2,jm | /∆ξ2), as illustrated in Fig. 6.6. Again, the normalised distances and

the indices associated with the continuous concentrations at each voxel, i = [i1, ..., iM ],

j = [j1, ..., jM ], bx = [bx1 , ..., b
x
M ] and by = [by1, ..., b

y
M ], are stored for subsequent re-

sampling.

The re-sampled joint PDF at the sampling point (ξ1,a, ξ2,b) is given by [216]

ρ̆ĉ1,ĉ2(ξ1,a, ξ2,b) =
1

Q

Q∑
q1,q2=1

κ(ξ1,a − ξ1,q1 , ξ2,b − ξ2,q2)w(ξ1,q1 , ξ2,q2). (6.35)
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Figure 6.6: A graphic illustration of the normalised distances bxm and bym, which are
used to calculate the weights during the re-sampling in 2D. Figure inspired by [218].

where κ(x, y) is the 2D Gaussian kernel given by

κ(x, y) =
1

2πh2
exp(−(x2 + y2)/2h2). (6.36)

The joint PDF for all sampling points, ρ̆ĉ1,ĉ2(ξ1, ξ2), can be calculated using a convolu-

tion [216]

ρ̆ĉ1,ĉ2(ξ1, ξ2) = κ(ξ1, ξ2) ? ?
1

Q
w(ξ1, ξ2)

= F−1

{
F {κ(ξ1, ξ2)}F

{
1

Q
w(ξ1, ξ2)

}} (6.37)

where ?? denotes the 2D convolution. The 2D kernel κ(ξ1, ξ2) is calculated over a 2D grid

of size Q2
g extending from -6h to 6h in both dimensions. The kernel and the re-sampled

concentrations are zero-padded in both dimensions, such that the size of each dimension

is Qpad = Q + Qg. The total complexity of the re-sampling and evaluating Eq. (6.35)

using FFT is O(Q2
padlogQpad +M), which is typically several order of magnitude lower

than the original O(Q2M) for high resolution 3D images.
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6.2.4.5 Estimation of the joint entropy derivative

The derivative of the joint entropy was given in Eqs. (6.19)–(6.21), and restated here

for the two chromophores, c1 and c2:

∂H̆(c1, c2)

∂ck,m
= −

Q∑
q1,q2

(
1 + logρ̆c1,c2 (ξ1,q1 , ξ2,q2)

)
∆ξ1∆ξ2

∂κ(ξ1,q1 − c1,m, ξ2,q2 − c2,m)

∂ck,m

(6.38)

where k = 1 or 2. In the same manner as for the marginal entropy derivative, the joint

entropy derivative is evaluated at a 2D regular grid in order to apply the FFT [216]

∂H̆(ĉ1, ĉ2)

∂ξk,(a,b)
= −

Q∑
q1,q2

(
1 + logρ̆c1,c2 (ξ1,q1 , ξ2,q2)

)
∆ξ1∆ξ2

∂κ(ξ1,q1 − ξ1,a, ξ2,q2 − ξ2,b)

∂ξk,(a,b)

(6.39)

The subscript (a, b) is used to differentiate from the 1D case and should be interpreted

as follows: for each a, the derivative is calculated for all b in the 2D grid, rather than

just the one point a in the 1D case. Equation (6.39) has a convolution structure and

can be calculated using FFT:

∂H̆(ĉ1, ĉ2)

∂ξk
=
(

1 + logρ̆c1,c2 (ξ1, ξ2)
)
? ?
(
−∆ξ1∆ξ2

∂κ(ξ1,ξ2)
∂ξk

)
= F−1

{
F {1 + logρ̆c1,c2 (ξ1, ξ2)}F

{
−∆ξ1∆ξ2

∂κ(ξ1, ξ2)

∂ξk

}}
,

(6.40)

where the derivative of the 2D Gaussian kernel is

∂κ(ξ1, ξ2)

∂ξk
=

ξk
h2
κ(ξ1, ξ2). (6.41)

The derivative is then re-sampled back into the continuous values using the stored bx,

by, i and j:
∂H̆(c1, c2)

∂ck,m
=(1− bxm)(1− bym)

∂H̆(ĉ1, ĉ2)

∂ξk,(im,jm)
+

(bxm)(1− bym)
∂H̆(ĉ1, ĉ2)

∂ξk,(im+1,jm)
+

(1− bxm)(bym)
∂H̆(ĉ1, ĉ2)

∂ξk,(im,jm+1)
+

(bxm)(bym)
∂H̆(ĉ1, ĉ2)

∂ξk,(im+1,jm+1)
.

(6.42)
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The joint entropy of three or more chromophores can be calculated in a similar manner

by using multi-dimensional grids. The complexity of the FFT evaluation in n dimensions

is O(QnpadlogQpad).

6.3 Generating multiwavelength images of tissue mimick-

ing phantoms

The accuracy of the quantification using εd+MI compared to εd was investigated using

experimental and numerical tissue mimicking phantoms. The phantoms consist of the

same materials as the phantoms used in Chapter 5: aqueous solutions of CuCl2, NiCl2

and black India ink are used to represent different absorbers in the tissue, and Intralipid

is used to provide scattering in the medium. For both the numerical and the experi-

mental phantom, the distributions of CuCl2 and NiCl2 are arranged such that they are

statistically independent of each other.

6.3.1 Experimentally acquired images

A schematic of the experimental set-up is shown in Fig. 6.7. The tissue mimicking

phantom consists of four polythene tubes with 0.58mm inner diameter and 0.19mm

wall thickness (Scientific Laboratory Supplies Ltd, Nottingham, UK) submerged in a

background solution of diluted India ink and 1% (w/v) Intralipid, which give rise to an

absorption and scattering amplitude comparable to that of typical biological tissue [160].

The tubes are arranged in a line at depths of approximately 3.6, 6.1, 8.1 and 9.8mm

from the top surface of the phantom, which are all within the diffusive regime. The first

and third tube from the top contain 399gL−1 NiCl2 and the second and the fourth tube

contain 36gL−1 CuCl2. The absorption spectra of the chromophores and scattering

spectrum of Intralipid are shown in Fig. 6.8. A photograph of the tubes is shown

in Fig. 6.9. The CuCl2 and NiCl2 are statistically independent of each other in this

phantom, which is clear from the fact that they are contained in distinct regions that

are spatially separated. (However, the spatial separation is not a necessary criterion for

statistical independence, as seen in Sec. 5.2.3.)

The phantom is imaged in a V-shaped photoacoustic imaging system [111,223] con-

sisting of two orthogonal Fabry-Perot interferometer sensors which are mounted in a
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140 Chapter 6. Statistical independence in nonlinear model-based inversion

Figure 6.7: Experimental set-up and phantom structure. The four tubes containing
CuCl2 or NiCl2 are fixed in a vertical line and submerged in the India ink and Intralipid
solution. Two orthogonal Fabry-Perot interferometer sensors are used for increased
detection aperture. The fibre tip at the top of the phantom delivers the pulsed excitation
beam. Figure reprinted from [221] under CC BY 4.0 License.

water-tight tray as illustrated Fig. 6.7. This sensor geometry increases the detection

aperture compared to a single planar detector array and hence reduces the limited-view

artefacts [223]. The fibre tip was positioned vertically above the phantom to deliver the

pulsed excitation light from a Nd:YAG-pumped optical parametric oscillator (GWU,

Spectra-Physics, Santa Clara, USA) with 10Hz repetition rate and a pulse energy of

15-19mJ depending on wavelength. The photoacoustic signals were detected at the two

sensors using two interrogation laser systems. The imaging protocol was as follows:

Prior to the main image acquisition, the V-shaped scanner was filled with deionised wa-

ter and a registration phantom consisting of stretched polymer strands was positioned

in the centre of the scanning region. The registration phantom was imaged using an

excitation laser wavelength of 800nm. The image acquired by each sensor was recon-

structed using the time reversal reconstruction algorithm [101, 224]. These two images

were aligned using a registration algorithm [225] in order to find the rigid transforma-

tion that positions the two sensors in a common coordinate system. The registration

phantom was then removed from the tray and replaced with the liquid phantom with

capillary tubes. The phantom was imaged at 8 wavelengths with equal spacing between

750nm and 890nm by recording the photoacoustic time series at a 13x13mm2 area with

100µm step size for both sensors. A small fraction of the light was directed to an inte-
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Figure 6.8: (a) The absorption coefficients of 36gL−1 CuCl2 (squares) and 399gL−1

NiCl2 (circles). (b) The absorption coefficient of the background solution (crosses),
which is a sum of the absorption of water [50] (dotted) and the India ink (dashed).
(c) The scattering amplitude of 1% Intralipid as a function of wavelength [222]. A
spectrophotometer (Lambda 750S, Perkin Elmer) was used to measure the transmittance
of CuCl2, NiCl2 and India ink in order to determine their absorption spectra. Figure
reprinted from [221] under CC BY 4.0 License.

Figure 6.9: A photograph of the capillary tubes filled with solutions of CuCl2 and NiCl2
which are fixed onto a plastic holder.

grating sphere to measure the pulse energy, which was used to normalise the measured

signals. After the main image acquisition, a transparent sheet with a printed grid of

highly absorbing dots (with 1mm grid spacing) was placed in the tray such that it rests

on the surface of the phantom. An image of the dotted sheet was acquired at 780nm

with the purpose of measuring the beam position and the spatial distribution of the

beam intensity. Based on the reconstruction of this image, the illumination source was

approximated as a Gaussian beam with a 1/e diameter of 6.6mm.

The iterative time reversal acoustic reconstruction method [104, 226] was used to

reconstruct 3D images from the measured pressure time series. The reconstruction

involves first running the time reversal reconstruction (Sec. 3.1) using the detected

time series at the sensors, pmeasdet , to obtain an initial reconstruction of the pressure
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142 Chapter 6. Statistical independence in nonlinear model-based inversion

distribution, p
(0)
0 . The time reversal operator is denoted with T , such that

p
(0)
0 = Tpmeasdet , (6.43)

and subject to the constraints of positive initial pressure and zero initial particle velocity.

An acoustic forward propagation model is then used to calculate the pressure time series

at the sensor surfaces, p
(0)
det, based on the reconstructed initial pressure distribution p

(0)
0 ,

such that

p
(0)
det = Ap

(0)
0 , (6.44)

where A denotes the forward operator. The difference between p
(0)
det and the measured

times series pmeasdet is then used to reconstruct another map of the initial pressure with

the time reversal algorithm. This pressure map is added to p
(0)
0 to find the next iteration

of the reconstruction. Hence the iteration is given by

p
(i+1)
0 = p

(i)
0 + T (pmeasdet − p

(i)
det). (6.45)

Both the forward and time reversal propagations of the acoustic pressures were numer-

ically simulated using the k-space pseudospectral model implemented in the MATLAB

toolbox k-Wave [70]. Seven iterations were used to reconstruct the 3D images of the

tubes phantom. A 2D cross-sectional 12x12mm2 region of interest centred at the tubes

was used for the optical inversion, and the dimension was reduced to 72x72 pixels to

reduce the computational time and memory requirements. The 2D slices are shown for

three wavelengths in Fig. 6.10.

6.3.2 Numerically simulated images

The numerical phantom has an element spacing of 100µm and represents a 5x5mm2 area

with six insertions arranged in two columns, as illustrated in Fig. 6.11. The left column

of insertions represents solutions of CuCl2 with concentrations 12, 24 and 36gL−1 in

increasing order, where the top insertion has the lowest concentration. The right column

of insertions contain solutions of NiCl2 with concentrations 133, 266 and 399gL−1, also

in increasing order from the top insertion. The phantom is designed with increasing

concentrations at the insertions with depth to improve the signal to noise ratio at the
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Figure 6.10: The 2D cross-sectional slices of the 3D reconstructed photoacoustic images
at wavelengths 750, 830 and 890nm which are used for the optical inversion. The size
of this region of interest is 12x12mm2 and the element spacing is 166µm. As expected,
the intensity of the tubes decreases with depth for all wavelengths due to the decay of
the fluence. Figure reprinted from [221] under CC BY 4.0 License.

deeper insertions. The absorption of CuCl2 and NiCl2 are based on the measured spectra

shown in Fig. 6.8(a) and assumed to follow linear dependence on concentration. The

concentrations are chosen such that the average absorption of both columns is 0.52mm−1

over the wavelength range between 750nm to 890nm, which is similar to the absorption

of blood over the same range of wavelengths. Water is present in the whole phantom

and the background region outside the insertions represents a solution of India ink and

Intralipid, which gives rise to the same absorption and scattering amplitude as shown

in Fig. 6.8(b–c).

Figure 6.11: Diagram of the 2D numerical phantom. The phantom contains regions
with different concentrations of CuCl2 and NiCl2. The background region contains India
ink and Intralipid. Figure reprinted from [221] under CC BY 4.0 License.

The top surface of the domain was illuminated with a radially-symmetric light source

with a Gaussian intensity profile with a 1/e width of 3mm. The light fluence distributions

for the same 8 wavelengths as the experimental measurement in Sec. 6.3.1 were simulated
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144 Chapter 6. Statistical independence in nonlinear model-based inversion

using the DA with the MATLAB software Toast++ [202]. The system calibration factor

and the Grüneisen parameter are assumed to be known and equal to one, and the

acoustic reconstruction is assumed to be perfect, such that the simulated photoacoustic

images were equal to the product of the fluence and the absorption coefficient. Gaussian

noise with a variance equal to 10% of the mean of the data, which was comparable to

the magnitude of the noise in the experimental images (Sec. 6.3.1), was added to the

simulated images.

6.4 Inverting for the chromophore concentrations

To investigate the effect of incorporating the MI term, the model-based inversion scheme

was applied to the simulated and the experimentally acquired multiwavelength 2D pho-

toacoustic images using both εd and εd+MI as error functionals. The known model

parameters in the inversion are the absorption spectra, the scattering distribution, the

system calibration factor, the Grüneisen parameter and the light source position and

width. The unknown parameters are the chromophore concentrations of CuCl2, NiCl2,

India ink and water. Thus, the error functionals are given by

argmin
c1,...,cKt

εd(c1, ..., cKt) =
1

2

N∑
n=1

M∑
m=1

[
Hmodel
m,λn (c1, ..., cKt)−Hmeas

m,λn

]2
(6.46)

and

argmin
c1,...,cKt

εd+MI(c1, ..., cKt) =
1

2

N∑
n=1

M∑
m=1

[
Hmodel
m,λn (c1, ..., cKt)−Hmeas

m,λn

]2
+ γĬ(c1, ..., cK),

(6.47)

where Kt = 4 and K = 2 denote the total number of unknown chromophores and the

number of independent chromophores respectively. The MI is only calculated between

the independent chromophores of interest, which are CuCl2 and NiCl2 in this phantom.

The error functionals were minimised with the limited-memory Broyden-Fletcher-

Goldfarb-Shanno (BFGS) quasi-Newton algorithm [151] (Sec. 3.2.3.2), which searches

for the optimal chromophore concentrations using the functional gradients of the data

error term [154] and the MI term [216] (Sec. 6.2.3–6.2.4). The gradient of the data error
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with respect to the concentration of the kth chromophore is given by

∂εd
∂ck

=
∂εd
∂µa

∂µa
∂ck

=
∂εd
∂µa

αk. (6.48)

The gradient with respect to the absorption coefficient, ∂εd
∂µa

, can be calculated efficiently

with the help of the adjoint equation, and is given by [227]

∂εd
∂µa

= −φ(Hmeas −Hmodel) + φφ∗ (6.49)

where φ∗ is the solution to the to the adjoint equation

(µa −∇ ·D∇)φ∗ = µa(H
model −Hmeas). (6.50)

The unknown chromophore concentrations were initialised with spatially homogeneous

values equal to the true concentration at the background. The iterative update was run

for 300 iterations for the inversion of both the simulated and the experimental images

using εd or εd+MI . The difference in computation time for εd+MI and εd was negligible.

As discussed in Sec. 6.2.1, the MI term in the error functional is non-convex. Therefore,

the weight parameter γ of the MI term was set to zero for the first 200 iterations to

avoid the algorithm being trapped in the local minima of the MI term when εd+MI is

used.

6.4.1 Effect of model-mismatch

Two case studies were conducted using the simulated images to investigate the effect

of the uncertainty in different model parameters on the quantification accuracy. In the

first case, the beam diameter was set to be up to 75% smaller or larger than the true

value in the inversion. In the second case, an error up to ±75% was included in the

scattering amplitude. The average errors of the estimated concentrations of CuCl2 and

NiCl2 at the insertions (region of interest, ROI) using the erroneous beam diameter are

shown in Fig. 6.12(a), where the circles and asterisks correspond to the inversions using

εd or εd+MI respectively. The results show that the increase in the percentage error in

the beam diameter leads to larger quantification errors, as expected. The quantification

errors for the simulated images are relatively small because only one model parameter
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146 Chapter 6. Statistical independence in nonlinear model-based inversion

contains error at the time. In an experimental setting, there is likely to be a combination

of modelling errors, resulting in larger quantification errors. Nonetheless, including the

MI term results in a reduction in error compared to using only the standard data error

for all data points.

The inaccuracies in the scattering amplitude used in the inversion resulted in similar

trends for the quantification error, as shown in Fig. 6.12(b). The errors are generally

larger in Fig. 6.12(b) than (a), which suggests that the changes in scattering amplitude

have a larger impact on the fluence distribution than changes in the beam diameter for

this numerical phantom. Using εd+MI is shown to provide more accurate estimations

compared to using εd also for this case. The relative improvement in accuracy varied

between 37% and 8% with an average of 22% over all data points for both cases.
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Figure 6.12: The average errors of the estimated concentrations of CuCl2 and NiCl2
at the insertions as a function of errors in (a) the beam diameter or (b) the scattering
amplitude in the inversion. As expected, the quantification errors increase for larger
errors in the beam diameter or scattering amplitude. However, the inversions using
εd+MI (asterisks) result in smaller errors compared to using εd (circles) for all data
points. The individual errors for CuCl2 and NiCl2 show similar general trends as the
average of the two. The average errors outside the ROI are <2% for inversions using
both εd and εd+MI . Figure reprinted from [221] under CC BY 4.0 License.

6.4.2 Experimental results

The multiwavelength experimental images were divided by the calibration factor and

the spatially varying Grüneisen parameter before the inversion. The calibration factor

was determined using a forward simulation with the true concentrations. The Grüneisen

parameter of aqueous solutions of CuCl2 and NiCl2 are calculated using the true con-
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centrations and Eq. (5.11). In practical applications, where the true concentrations are

unknown, the calibration factor can be obtained by measuring the acoustic sensitivity

of the sensors [42], or included as an unknown parameter [41, 178], and the Grüneisen

parameter can be included in the model as a parameter that is linearly dependent on

the estimated chromophore concentrations [41,42].

The results from the model-based inversion of the experimental data are presented

in Fig. 6.13. The estimated concentrations of CuCl2 (top row) and NiCl2 (bottom row)

using εd and εd+MI are shown in the left and centre columns respectively in Fig. 6.13(a),

while the true concentrations are shown in the right column. The colour scale indicates

the concentrations in units of gL−1. Figure 6.13(b) compares the estimated with the true

concentrations along a line profile across the tubes. The average estimated and expected

concentrations for each tube are presented in Table 6.1. The inversions using εd resulted

in high overestimation of CuCl2 in the second tube and NiCl2 in the first tube, where

the estimated concentrations are 94% and 149% larger than the true values respectively.

There are also large cross-talk errors in the estimation of both contrast agents. This is

most clearly seen for the estimated CuCl2 concentration, where the third tube shows a

high false-positive concentration with comparable magnitude to the concentration in the

fourth tube. The accuracy of the quantification is significantly improved when the MI

term is included in the error functional. The cross-talk errors for both CuCl2 and NiCl2

are almost completely removed when εd+MI is used. The absolute concentrations of the

CuCl2 is estimated accurately with an error of 3gL−1 on average for the four tubes. The

overestimation of the NiCl2 concentration in the top tube remains present with εd+MI .

However, this overestimation error is reduced when εd+MI is used compared to εd.

Table 6.1: The average estimated and true concentrations of CuCl2 (left) and NiCl2
(right) in gL−1 for each tube. The largest improvements using εd+MI are mostly seen
for the tubes that are not expected to contain the relevant chromophore, as they suffer
from significant cross-talk errors when εd is used. The average expected concentrations
are lower than the true concentrations in the solutions due to the interpolation from the
original images. Table reprinted from [221] under CC BY 4.0 License.

CuCl2 εd εd+MI Expected NiCl2 εd εd+MI Expected

Tube 1 -3 -1 0 Tube 1 860 698 345
Tube 2 60 35 31 Tube 2 185 -5 0
Tube 3 26 0 0 Tube 3 367 258 352
Tube 4 27 25 31 Tube 4 167 14 0
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Figure 6.13: (a) The estimated concentrations of CuCl2 (top row) and NiCl2 (bottom
row) in units of gL−1. The results from the inversions using εd (left column) show over-
estimation of the the upper tubes and large cross-talk errors, while using εd+MI results
in more accurate quantification without cross-talk errors. The true concentrations are
shown in the column to the right for comparison. (b) The estimated concentration of
the CuCl2 (top) and NiCl2 (bottom) using εd (crosses) and εd+MI (circles) along a line
across the tubes. The solid curves represent the true concentrations. Figure reprinted
from [221] under CC BY 4.0 License.
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6.5 Summary and discussion

Minimising the MI as well as the data error led to improved quantification accuracy

for both simulated and experimental multiwavelength photoacoustic images, compared

to using the data error alone. In the numerical study, despite the significant fractional

decrease of the quantification errors using εd+MI , in absolute terms, the error was de-

creased only by a few per cent. This was mainly due to the fact that only one model

parameter was erroneous in each inversion, while all other assumptions in the model

were accurate, which resulted in relatively small quantification errors, even when only

εd was used. In the experimental study, on the other hand, a combination of differ-

ent types of modelling errors was likely to have been present simultaneously, leading

to poorer quantification results in the absence of the MI term. The main causes of

model-mismatch may be due to the limited size of the modelled domain, which does not

account for the backscattered light from outside of the domain, and the 2D modelling of

the light fluence, which assumes that the light source is constant in the direction along

the tubes, while in the experiment, the beam was of circular cross-section. Other possi-

ble errors may include uncertainty in the scattering spectra and amplitude, as different

values have been reported in the literature [222, 228]. These errors in the model affect

the calculation of pmodel0,m,λn
, which consequently also affect εd. The MI is not affected by

the fluence modelling errors, because MI is calculated based on only the distribution of

the estimated chromophore concentrations in each iteration, and does not require the

forward modelling of pmodel0,m,λn
. Therefore, the quantification errors were greatly reduced

when εd+MI was used in the experimental study. These results suggest that incorpo-

rating the statistical independence can improve the robustness of model-based inversion

schemes for independent chromophores and thus potentially enhance their applicability

to pre-clinical or clinical imaging studies.

Weight parameter In order to obtain accurate results with the inversion using

εd+MI , it is necessary to use an appropriate weight parameter γ for the MI term. The

weight was determined through manual trial and error. The same weight was used for

all inversions of the simulated and the experimental data, despite the differences in the

data and/or the model parameters. This suggests that the concentration estimates were

not highly sensitive to small variations of the weighting of the MI term around this value
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and, although non-trivial [229,230], it may be possible to develop a general method for

finding the optimal weight parameter for different types of applications.

Local minima In this study, the local minima in the MI term was avoided by adjusting

the weight parameter depending on the iteration. The weight of the MI term was zero

for the first 200 iterations such that initially, only the data error was minimised, which

brings the unknown variables closer to the true solution. Then the MI term is introduced

by setting the weight parameter to a positive number. In this way, the MI term is more

likely to bring the solution to the local minimum closest to the true solution. Global

optimisation methods such as simulated annealing could potentially provide alternative

ways to allow the algorithm to escape from the local minima. However, since simulated

annealing is a probabilistic optimisation technique, it may be extremely slow for large

scale inverse problems with millions of unknowns.

Spatially overlapping chromophores The distributions of the chromophores of

interest do not have any spatial overlap in the phantoms used in this chapter. This

phantom design was chosen such that the independence criteria was clearly satisfied.

However, the spatial overlap of chromophores is not expected to reduce the effectiveness

of the proposed method, provided that it does not significantly reduce the statistical

independence between the chromophores. For example, the CuCl2 and NiCl2 are com-

pletely overlapping with water, but they are still statistically independent from water,

and therefore could be separated from water using the proposed method. A more inter-

esting case of overlapping chromophores may arise when a probe is distributed within

blood vessel. In this case, the probe overlaps spatially with blood, and the statistical

independence may be reduced (Example C in Fig. 5.4). To simulate such a scenario,

the inversion was performed on numerical phantom where both CuCl2 and NiCl2 are

present in all six insertions in Appendix C. The results demonstrate that including the

MI term can also improve the accuracy of the quantification when the chromophores

overlap spatially.

Minimisation scheme There are alternative methods for incorporating the statis-

tical independence in a minimisation scheme. For example, constrained minimisation

algorithms can potentially be employed, where the data error term is minimised under
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the constrained that MI must be smaller than a pre-defined value. Another potential

approach could be to alternate between minimising the data error and the MI term.

The algorithm could minimise one of the error terms for a pre-determined number of

iterations, or until certain criteria have been met, before switching to minimising the

other error term. It is also possible to explore using other measures of independence,

such as normalised versions of the MI, which is commonly used in the field of image

registration. Using the MI term in the error functional is also compatible with other

regularisation methods such as the total-variation regulariser [83,147,231].

Extension to 3D The 2D fluence model based on the DA assumes that the features

are constant in the third dimension and located at depths within the diffusive regime.

These assumptions are appropriate for the phantom geometry used in this study. How-

ever, full 3D fluence modelling will be required for applications of the model-based inver-

sion in biological tissue with complex structures. More accurate modelling of the fluence

for the superficial layer can be achieved by incorporating the δ-Eddington approxima-

tion [41] or using the RTE [157]. The calculation of the MI can be straightforwardly

extended to 3D without causing significant increase in computation time using the FFT

calculations.

6.6 Conclusion

We proposed exploiting the statistical independence between certain chromophores in

the model-based inversion method by minimising the MI between the independent chro-

mophores in addition to the data error. The improvement in the accuracy of the esti-

mated chromophore concentrations was demonstrated using both numerical simulations

and an experimental phantom. The results suggest that the sensitivity of the model-

based inversion to model-mismatch can be reduced by incorporating the additional in-

formation of statistical independence. Thus, the robustness and hence usefulness of the

inversion scheme can potentially be improved for in vivo imaging experiments.
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Chapter 7

Conclusions

The overarching aim of the work in this thesis is to bridge the gap between the simple

linear methods that are routinely used in practice, but often without rigorous validation,

and the more complex nonlinear methods that can be found in the theoretical literature,

but are rarely implemented in vivo. This goal was approached from two perspectives:

1. The conditions under which approximate linear methods can achieve accurate

quantification were investigated. The results provide guidance for selecting the

appropriate methods and parameters, and thus help towards achieving the most

accurate quantitative estimates based on simple linear models whenever possible.

2. The sensitivity of the nonlinear model-based inversion to model-mismatch er-

rors were reduced by exploiting the intrinsic statistical properties of some chro-

mophores. This improves the robustness of the method in experimental settings

and hence provides a step towards bringing model-based inversion into practical

use.

The performances of the linear and nonlinear QPAT methods were analysed under well-

controlled conditions using numerical simulations and experimentally acquired images

of tissue mimicking phantoms. The key findings and contributions of the thesis are:

Linear spectroscopic inversion (SI) Using numerically simulated photoacoustic

images of a realistic mouse brain phantom, it was shown that the blood oxygenation,

sO2, can be estimated with <5% error for a large range of depths and true sO2 levels
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using SI with 17 or more evenly spread wavelengths between 670nm and 1000nm. In-

creasing the number of wavelengths led to the estimated sO2 converging to a constant

value, provided that the spectral change in fluence is relatively small, which requires

avoiding using wavelengths <590nm. It is possible to achieve low errors if optimal

wavelength combinations were selected for each particular depth layer and true sO2

level. However, it is difficult to predict these optimal wavelength combinations because

the errors were shown to depend on a combination of the absorption spectra and its

inverse, as well as the changes in fluence. Minimising the condition number of the spec-

tral matrix is useful for eliminating wavelength combinations that give extremely large

errors in sO2. However, it cannot be used to find wavelength combinations that lead

to sO2 estimates with an useful degree of accuracy, because it was shown that smaller

condition numbers do not correlate with lower errors when the error is smaller than

25%.

Summary: SI can provide accurate sO2 estimates if images at many evenly spread wave-

lengths within a certain wavelength range are available for tissue structures such as the

vasculature in a mouse brain. It is difficult to identify wavelength combinations with

reduced number of wavelengths that produce accurate sO2 estimates for different depths

and true sO2 levels.

Independent component analysis (ICA) ICA is not suitable for estimating sO2,

but it can provide more accurate estimates of the chromophore concentrations relative

to other spatial locations than SI in certain scenarios, provided that a simple exponential

fluence correction has been applied and the chromophores are statistically independent.

Two such scenarios have been identified: 1) when the absorption coefficient of the vessel-

like features of interest is approximately 0.5mm−1 and 2) when the condition number

of the spectral matrix is high. This suggest that searching for the most independent

chromophores and allowing the mixing matrix to vary, instead of inverting with a fixed

spectral matrix, makes the inversion more tolerant towards spectral colouring and ill-

conditioning. When the absorption exceeds a certain threshold, the spectral colouring

is so severe that the estimated spectra become very different from the true absorp-

tion spectra. Consequently, the unmixed components can no longer be identified to

the corresponding chromophores by comparing the estimated spectra with the known.
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This results in large quantification errors unless the components are manually identified.

The accuracy of the quantification also depends on the choice of dimension reduction,

i.e. how many independent components the data will be decomposed into. Smaller

dimensionality leads to easier identification of the estimated chromophores, while larger

dimensionality ensures that a sufficient fraction of the total variance of the data is re-

tained.

Summary: Provided that a first order fluence adjustment has been applied, ICA can

quantify the relative concentration of independent chromophores under certain circum-

stances. ICA outperforms SI when the spectral matrix is ill-conditioned, and can be more

robust to errors in the fluence correction than SI.

Statistical independence in nonlinear model-based inversion The nonlinear

model-based inversion method has the potential to accurately estimate the absolute

chromophore concentrations in arbitrary tissue structures. However, in vivo implemen-

tations of the method may suffer from its sensitivity to model-mismatch errors. In order

to reduce these errors, we proposed exploiting the intrinsic statistical properties of the

chromophore distributions which do not depend on the forward model. This involved

including a mutual information (MI) term as measure of the statistical independence in

the error functional in addition to the least-squares data error. The new error functional

was minimised using a gradient-based algorithm. The MI term was estimated using a

kernel density estimator such that the analytical gradients could be used, and evalu-

ated efficiently using FFT, such that the increase in computational time was negligible.

The results showed that including the MI term led to more accurate estimates of the

chromophore concentrations in both a numerical and an experimental tissue mimicking

phantom, compared to using the data error alone in the error functional. The improve-

ments in accuracy were most evident for the experimental phantom, where cross-talk

errors and over-estimations were significantly reduced. This was possible because sta-

tistical independence is an intrinsic property of the distribution of the chromophores

alone, rather than a function of the forward modelling. This means that, unlike the

data error, MI is not affected by errors in the fluence model. Hence, by incorporating

MI in the error functional, the quantification errors due to model-mismatch in experi-

mental settings can be reduced.
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Summary: The errors due to model-mismatch in model-based inversion can be reduced

by minimising the MI between the independent chromophores in addition to the data

error. This improves the robustness of model-based inversion in experimental settings

and thus can potentially enhance their applicability to in vivo imaging studies.

The ultimate goal is to be able to quantify the chromophore concentrations in vivo

with sufficient accuracy such that clinically relevant functional information can be ex-

tracted reliably. The work in this thesis forms practically useful steps towards this goal.

To build on these steps, we recommend further investigations and discuss a number of

issues that need to be addressed:

If SI can be shown to be accurate for sO2 measurements, it would be an extremely

attractive method that is readily available. Therefore, it is of urgent interest to experi-

mentally validate the accuracy of SI using the wavelengths recommended in Chapter 4.

It is straightforward to apply SI on in vivo images, but it is difficult, or even arguably

impossible, to validate its accuracy in vivo, due to the lack of other techniques that can

provide in vivo sO2 measurements with comparable spatial resolution. Instead, tube

phantoms similar to the ones used in Chapter 5 and 6 where the concentration ratio of

the chromophores can be controlled could be used. Since the results are highly depen-

dent on the particular shape of the oxy- and deoxyhaemoglobin the absorption spectra, it

would be necessary to use in vitro blood instead of surrogate chromophores like CuCl2

and NiCl2. The oxygenation of the in vitro blood inside the capillary tubes can be

controlled using a blood oxygenator and monitored using a CO-oximeter [161,232].

Both ICA and the model-based inversion using MI require that the chromophores are

statistically independent. In practice, there may be many cases where the chromophores

are not completely independent but have some dependence. It would be useful to in-

vestigate how the level of independence of the true chromophore distributions affects

the accuracy of the methods. This work was initiated with the numerical phantom with

spatially overlapping chromophores in Appendix C. Further work could be dedicated to

more systematic investigations.

The realisation of accurate in vivo quantification requires dealing with practical

challenges as well as developing theoretical solutions. The analyses of both ICA and

the model-based inversion with MI are based on 2D images rather than 3D, which
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is due to the practical issues of large computational memory demands or long image

acquisition times. The extension to quantification in 3D could potentially be enabled

by faster image acquisition, which is now possible with the recent developments in

compressed sensing for photoacoustic imaging [83, 84] and parallel interrogation of the

Fabry-Perot sensor [82,233]. Large 3D inversions (with 1589764 unknowns) were recently

demonstrated experimentally in Ref. [42], and were run on a computer with 256GB RAM

and a 2.7GHz CPU with 12 cores, which took approximately 12h. This shows some

promise of the practical feasibility of model-based inversion in 3D despite the higher

computational demands and longer run-time. Provided that these practical issues can

be overcome, both ICA and the addition of the MI term in model-based inversion are

readily applicable in 3D, since both of them are fast to compute and computationally

inexpensive.

Dealing with the spatially varying Grüneisen parameter and improving the accuracy

of the acoustic reconstruction are two issues that require further theoretical or method-

ological developments. The Grüneisen parameter cancels out for the sO2 estimate but

poses a challenge to both linear and nonlinear quantification methods of the relative

or absolute chromophore concentrations. As many other QPAT studies, the Grüneisen

parameter was assumed to be known in Chapters 5 and 6. As discussed in Sec 3.2,

potential solutions have been proposed in the theoretical literature, but their practical

feasibility needs to be tested. The accuracy of the acoustic reconstruction of the initial

pressure distribution was greatly improved using the V-shaped scanner compared to the

single planar scanner, due to the increased detection aperture. There are however other

issues that may cause errors in the acoustic reconstruction in vivo. For example, the

sound speed was near homogeneous in the liquid phantom, but in biological tissue, the

sound speed is likely to be spatially inhomogeneous, as it varies for different tissue types.

The spatial variations in sound speed, which may not be known accurately, may cause

blurring and artefacts in the acoustic reconstruction if unaccounted for. Therefore, re-

construction algorithms that can incorporate spatially heterogeneous sound speeds, or

inversion methods where the sound speed can be included as an unknown parameter,

may be required for accurate acoustic reconstruction in vivo.
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Appendix A

Linear spectroscopic inversion

with different spectral ranges

The figures in this appendix show the average error, δsO2 , of the estimated blood oxy-

genation, sO2, at the foreground vessel using linear spectroscopic inversion (SI) with

evenly spread wavelengths between different wavelength ranges. Figure A.1 shows that

using wavelengths between 650nm and 1000nm results in higher errors for the deeper

depths and lower true sO2 levels compared to the errors in Fig. 4.4, which is based on

using the wavelength range 670–1000nm. Figure A.2 shows that increasing the shortest

wavelength to λmin = 690nm leads to the opposite trend where the shallower depths

and higher true sO2 levels have higher errors.
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Figure A.1: The average error, δsO2 , using evenly spread wavelengths between λmin =
650nm and λmax = 1000nm. The errors at the deeper depths and lower true sO2 are
higher compared to when λmin = 670nm in Fig. 4.4.
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Figure A.2: Using λmin = 690nm generally leads to the opposite trend of shallower
depths and higher true sO2 having higher average errors.
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Appendix B

Linear spectroscopic inversion

with a different phantom

To demonstrate the generalisability of the results in Chapter 4, linear spectroscopic

inversion (SI) is performed on numerically simulated images of a second phantom that

has different structures to the mouse brain phantom. This phantom consists of a flat skin

layer at the surface and 7 straight blood vessels arranged in a vertical line, as shown in

Fig. B.1. All blood vessels have the same blood oxygenation, sO2, which varies between

60% to 100% in steps of 10% in five data sets. The absorption and scattering spectra

for the blood, the background tissue and the skin are the same as those used for the

mouse brain phantom in Chapter 4. The numerically simulated images were generated

for the same 51 wavelengths between 500nm and 1000nm as in Chapter 4.
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Figure B.1: The structure of the blood vessel phantom viewed from the x, y and z
directions. The excitation beam is incident on the x-y plane. The phantom consists of
a skin layer (green) and 7 blood vessels (yellow) surrounded by the background tissue
(blue).
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Figure B.2 shows the average error of the sO2 estimation, δsO2 , for each depth layer

(which contains one blood vessel) and true sO2 level using evenly spread wavelengths

with λmin = 670nm and λmax = 1000nm. The errors are higher compared to the

equivalent plot for the mouse brain phantom (Fig. 4.4), which is expected, because of

the vertical alignment of the blood vessels is likely to lead to more spectral colouring

of the deeper vessels. However, the increase in δsO2 does not exceed 5% for comparable

depths and true sO2 levels. The general trends of the errors are the same as in Fig. 4.4,

where the errors are typically higher for larger depth and lower true sO2, and increasing

N generally leads to lower errors, except for when the sO2 is high.

Figure B.3 shows the δsO2 at a single voxel in the centre of the blood vessel at 4mm

depth for increasing N and for various λmin, while the λmax is fixed at 1000nm. These

errors are very similar to those in the equivalent plot for the mouse brain phantom

in Fig. 4.12, where the errors converge smoothly to a constant value provided that

wavelengths shorter than 590nm are excluded.

Overall, the comparable errors trends for the blood vessel phantom and the mouse

brain phantom suggest that the results in Chapter 4 are not highly sensitive to the

specific geometry of the blood vessels.
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Figure B.2: The average error, δsO2 , at the blood vessels for different depths (y-axis)
and true sO2 levels (x-axis) using evenly spread wavelengths with λmin = 670nm and
λmax = 1000nm. The total number of wavelengths is indicated by N . The colour map
indicate the errors in percentage points (%). The errors differs to that of the mouse
brain phantom by <5% for comparable depths and true sO2 levels. The equivalent
error plot for the mouse brain phantom can be found in Fig. 4.4 for comparison.
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Figure B.3: Each plot shows the estimated sO2 at a single voxel using increasing number
of wavelengths, N , with a different λmin. Similarly to the equivalent plot for the mouse
brain phantom (Fig. 4.12), the estimated sO2 are shown to converge to a constant value
as more wavelengths are added. The true sO2 is 90%, as indicated with red dashed
lines.
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Appendix C

Model-based inversion with

mutual information for spatially

overlapping chromophores

The main aim of Chapter 6 is to demonstrate that statistical independence can be ex-

ploited to reduce model-mismatch errors in the model-based inversion. To clearly satisfy

the independence criterion, the phantoms were designed such that the chromophores dis-

tributions did not overlap each other spatially. In this appendix, we demonstrate that

improved quantification accuracy can also be obtained in cases where there is spatial

overlap between the chromophores, provided that their statistical independence is not

significantly reduced.

Numerically simulated photoacoustic images were generated based on a phantom

with the same structure and chromophores as the numerical phantom in Chapter 6,

but unlike in Chapter 6, both CuCl2 and NiCl2 are present in all six insertions in the

new phantom. This phantom simulates a situation similar to Example C in Fig. 5.4,

where a probe is distributed within the blood vessel. The concentration of CuCl2 is

constant in each column of insertions (simulating the “oxy-” or “deoxyhaemoglobin”)

and the concentration of NiCl2 varies for the different rows of insertions (simulating the

“probe”). For comparison, the normalised mutual information (NMI) between CuCl2

and NiCl2 in this phantom is NMI=0.12, while NMI=0 when CuCl2 and NiCl2 were

completely spatially separate in Chapter 6. The inversion was run with both the error
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functional including MI, εd+MI (Eq. 6.3), and with the data error alone, εd (Eq. 6.2),

for comparison. The beam diameter was set to be 50% larger than the true value in the

inversions. The estimated CuCl2 and NiCl2 concentrations are shown at the top two

rows of plots in Fig. C.1 for inversions using εd and εd+MI , and the true concentrations

are shown to the right. The errors, which are the absolute differences between the

estimated and the true concentrations, are shown in units of gL−1 in the bottom two

rows. These results show that the errors are smaller using εd+MI compared to using

εd. The most significant improvements are seen in the bottom right insertion in the

phantom, where the errors are reduced by approximately 8 and 100gL−1 for CuCl2

and NiCl2 respectively in some pixels. This demonstrates that incorporating the MI in

the inversion can reduce the model-mismatch errors also when there is spatial overlap

between the independent chromophores, which is important for the broad applicability

of the method.
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Appendix C. Model-based inversion with mutual information for spatially overlapping

chromophores
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Figure C.1: The estimated concentrations of CuCl2 and NiCl2 using εd and εd+MI ,
and the true concentrations are shown in the top two rows. The true concentrations of
CuCl2 are 12 and 24gL−1 in the left and right columns of insertions respectively, and
the concentrations of NiCl2 are 133, 266 and 399 gL−1 for the top, centre and bottom
rows respectively. The bottom two rows show the errors of the estimations, which are
defined as the absolute difference between the estimated and the true concentrations.
The colour maps indicate concentration in the units of gL−1. The errors are smaller
using εd+MI compared to εd, which demonstrates the including the MI term can improve
the quantification accuracy for spatially overlapping chromophores.
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Pérot sensors for photoacoustic tomography,” in Photons Plus Ultrasound: Imag-
ing and Sensing 2016, vol. 9708, pp. 9708 – 9708 – 6, International Society for
Optics and Photonics, 2016.

[112] F. A. Duck, Physical properties of tissues: a comprehensive reference book. Aca-
demic Press, 1990.

[113] D. Modgil, M. A. Anastasio, and P. J. La Rivière, “Image reconstruction in photoa-
coustic tomography with variable speed of sound using a higher-order geometrical
acoustics approximation,” J. Biomed. Opt., vol. 15, no. 2, pp. 021308–021308,
2010.

[114] E. Hysi, L. A. Wirtzfeld, J. P. May, E. Undzys, S.-D. Li, and M. C. Kolios,
“Photoacoustic signal characterization of cancer treatment response: Correlation
with changes in tumor oxygenation,” Photoacoustics, vol. 5, no. Supplement C,
pp. 25 – 35, 2017.

[115] M. Schwarz, A. Buehler, J. Aguirre, and V. Ntziachristos, “Three-dimensional
multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in
human skin in vivo,” J. Biophotonics, vol. 9, no. 1-2, pp. 55–60, 2016.

[116] N. Beziere, N. Lozano, A. Nunes, J. Salichs, D. Queiros, K. Kostarelos, and
V. Ntziachristos, “Dynamic imaging of PEGylated indocyanine green (ICG) li-
posomes within the tumor microenvironment using multi-spectral optoacoustic
tomography (MSOT),” Biomaterials, vol. 37, no. Supplement C, pp. 415 – 424,
2015.

[117] E. Herzog, A. Taruttis, N. Beziere, A. A. Lutich, D. Razansky, and V. Ntziachris-
tos, “Optical imaging of cancer heterogeneity with multispectral optoacoustic to-
mography,” Radiology, vol. 263, no. 2, pp. 461–468, 2012.

[118] X. L. Deán-Ben, N. C. Deliolanis, V. Ntziachristos, and D. Razansky, “Fast un-
mixing of multispectral optoacoustic data with vertex component analysis,” Opt.
Laser. Eng., vol. 58, pp. 119–125, 2014.

175



176 Bibliography

[119] S. Tzoumas, N. Deliolanis, S. Morscher, and V. Ntziachristos, “Unmixing molecu-
lar agents from absorbing tissue in multispectral optoacoustic tomography,” IEEE
Trans. Med. Imag., vol. 33, no. 1, pp. 48–60, 2014.

[120] J. Glatz, N. C. Deliolanis, A. Buehler, D. Razansky, and V. Ntziachristos, “Blind
source unmixing in multi-spectral optoacoustic tomography,” Opt. Express, vol. 19,
no. 4, pp. 3175–3184, 2011.

[121] X. L. Deán-Ben, A. Buehler, D. Razansky, and V. Ntziachristos, “Estimation of
optoacoustic contrast agent concentration with self-calibration blind logarithmic
unmixing,” Phys. Med. Biol., vol. 59, p. 4785, 2014.

[122] K. Maslov, M. Sivaramakrishnan, H. F. Zhang, G. Stoica, and L. V. Wang, “Tech-
nical considerations in quantitative blood oxygenation measurement using pho-
toacoustic microscopy in vivo,” in Photons Plus Ultrasound: Imaging and Sensing
2006, vol. 6086, p. 60860R, International Society for Optics and Photonics, 2006.

[123] H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imag-
ing of hemoglobin oxygen saturation variations in single vessels in vivo using pho-
toacoustic microscopy,” Appl. Phys. Lett., vol. 90, no. 5, 2007.

[124] J. R. Rajian, P. L. Carson, and X. Wang, “Quantitative photoacoustic measure-
ment of tissue optical absorption spectrum aided by an optical contrast agent,”
Opt. Express, vol. 17, no. 6, pp. 4879–4889, 2009.

[125] D. Razansky and V. Ntziachristos, “Hybrid photoacoustic fluorescence molecular
tomography using finite-element-based inversion,” Med. Phys., vol. 34, no. 11,
pp. 4293–4301, 2007.

[126] W. L. Kiser Jr, R. A. Kruger, D. R. Reinecke, G. A. Kruger, and K. D. Miller,
“Thermoacoustic in vivo determination of blood oxygenation,” in Photons Plus
Ultrasound: Imaging and Sensing 2004, vol. 5320, p. 5320, 2004.

[127] J. C. Ranasinghesagara and R. J. Zemp, “Combined photoacoustic and oblique-
incidence diffuse reflectance system for quantitative photoacoustic imaging in tur-
bid media,” J. Biomed. Opt., vol. 15, no. 4, pp. 046016–046016, 2010.

[128] S.-P. Lin, L. Wang, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical
properties by the use of oblique-incidence optical fiber reflectometry,” Appl. Opt.,
vol. 36, no. 1, pp. 136–143, 1997.

[129] L. Yin, Q. Wang, Q. Zhang, and H. Jiang, “Tomographic imaging of absolute
optical absorption coefficient in turbid media using combined photoacoustic and
diffusing light measurements,” Opt. Lett., vol. 32, no. 17, pp. 2556–2558, 2007.

[130] A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver,
“Quantitative photoacoustic imaging: correcting for heterogeneous light fluence
distributions using diffuse optical tomography,” J. Biomed. Opt., vol. 16, no. 9,
p. 096016, 2011.

[131] J. Ripoll and V. Ntziachristos, “Quantitative point source photoacoustic inver-
sion formulas for scattering and absorbing media,” Phys. Rev. E, vol. 71, no. 3,
p. 031912, 2005.

176



Bibliography 177

[132] R. J. Zemp, “Quantitative photoacoustic tomography with multiple optical
sources,” Appl. Opt., vol. 49, no. 18, pp. 3566–3572, 2010.

[133] P. Shao, B. Cox, and R. J. Zemp, “Estimating optical absorption, scattering, and
grueneisen distributions with multiple-illumination photoacoustic tomography,”
Appl. Opt., vol. 50, no. 19, pp. 3145–3154, 2011.

[134] B. Banerjee, S. Bagchi, R. M. Vasu, and D. Roy, “Quantitative photoacoustic to-
mography from boundary pressure measurements: noniterative recovery of optical
absorption coefficient from the reconstructed absorbed energy map,” J. Opt. Soc.
Am. A, vol. 25, no. 9, pp. 2347–2356, 2008.

[135] G. Bal and G. Uhlmann, “Inverse diffusion theory of photoacoustics,” Inverse
Probl., vol. 26, no. 8, p. 085010, 2010.

[136] G. Bal and K. Ren, “Multi-source quantitative photoacoustic tomography in a
diffusive regime,” Inverse Probl., vol. 27, no. 7, p. 075003, 2011.
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