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Abstract

Multiple imputation (MI) is increasingly used for handling missing data in medical research.
The standard implementation of MI assumes that data are missing at random (MAR). However,
under missing not at random (MNAR) mechanisms, standard MI might not be satisfactory.
When there are external data sources providing population-level information about the

incomplete variables, it is desirable to utilise such information in MI. This thesis aims to explore
how knowledge about the incomplete covariate’s population marginal distribution from an
external dataset can be used to improve standard MI under MNAR mechanisms. Two univariate
MI methods are proposed for an incomplete binary/categorical covariate to anchor inference to
the population: weighted MI and calibrated-δ adjustment MI.
Chapter 3 demonstrates how, in weighted MI, the incomplete covariate’s population distri-

bution can be incorporated as probability weights in the imputation process to closely match
the post-imputation distribution to the population level. Results from analytic and simulation
studies of a 2× 2 contingency table show that weighted MI can produce more accurate inferences
under two general MNAR mechanisms. Weighted MI is also integrated into the multivariate
imputation by chained equations (MICE) algorithm for imputing several incomplete covariates,
accounting for their population marginal distributions from external data.
Chapter 4 develops and evaluates calibrated-δ adjustment MI, which incorporates the incom-

plete covariate’s population distribution as a δ adjustment in the imputation model’s intercept. In
a 2 × 2 contingency table, it is shown analytically and via simulation that appropriately adjusting
the imputation model’s intercept fully corrects bias when the incomplete covariate is MNAR
dependent on its values and the (complete) outcome. An adaptation of the method in the MICE
algorithm for multivariate imputation is also explored.
Chapter 5 investigates another univariate missing data setting, with a continuous outcome.

Under the above MNAR mechanism, the presence of a second sensitivity parameter for the
covariate–outcome association in the imputation model is introduced, rendering the calibrated-δ
intercept adjustment insufficient. The sensitivity analysis then involves eliciting values of the
second sensitivity parameter and deriving the calibrated-δ adjustment in the intercept.
Chapter 6 presents two case studies using electronic health records to illustrate the application

of the proposed population-calibrated MI methods.
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1
Introduction

1.1 Background and motivation

1.2 Aims and objectives

1.3 Outline of subsequent chapters

1.1 background and motivation

Primary care databases of electronic health records containing routinely collected clinical in-
formation about patients in primary care have been recognised as rich data sources for health
research. In the United Kingdom (UK), there are several large primary care databases which
typically hold data collected from several hundred general practices across the UK since the late
1980s. These databases offer many opportunities for research on populations that are otherwise
difficult to recruit in clinical trials or cohort studies, such as individuals with severe mental illness
[1, 2], pregnant women [3–5], children [6], and the elderly [7, 8].
One example of primary care electronic health records is the The Health Improvement

Network (THIN) database. THIN contains longitudinal electronic health records of more than
12 million patients registered with over 600 general practices in the UK. Data are collected from
the point of practice registration to the time the patients leave or die. Information captured in
THIN includes medical diagnoses, symptoms, prescribed medication, health indicators, and
lifestyle factors recorded through patient consultationswith the general practitioners or healthcare
professionals in primary care.
The recording of variables in primary care databases generally reflects how patient informa-

tion is collected in the primary care setting. During the first year of registration with the general
practices, most patients have a record of common information, including past and current medi-
cal history as well as measurements of some health indicators and lifestyle factors such as height,
weight, blood pressure, smoking status, and alcohol consumption. Data are not systematically
recorded or updated thereafter, unless they are directly relevant for patient management and
care. As a result, data in variables required for research purposes are often incomplete or missing,
which can obstruct their use in primary care research.
Ethnicity is associated with disparities in disease prevalences and healthcare utilisation, and

is an important factor to be considered in many epidemiological studies [9–11]. Within primary
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care, the facility to record ethnicity has been introduced since 1991, and therefore ethnicity data
are available in several UK primary care databases including THIN [12]. The completeness of
ethnicity recording is ideal when primary care databases are used to investigate ethnic differences
in disease epidemiology, healthcare utilisation, or outcomes. Unfortunately, there is a large
amount of missing data in ethnicity in such databases [13], which quite severely limits the use of
ethnicity information recorded in primary care in research. Although ethnicity is associated with
a number of important health conditions, such as type 2 diabetes [11], cardiovascular diseases
[10], and severe mental illness [9], many studies using primary care databases are often reluctant
to include ethnicity in the analysis, primarily due to the low level of recording [1, 2, 14].
The recording of ethnicity information in primary care has a direct impact on the level of

missing data in ethnicity in primary care databases, which is of relevant concern for research using
ethnicity data in such databases. However, only a few studies have investigated the completeness of
ethnicity information in primary care. Kumarapeli et al. [15] analysed the recording of ethnicity in
16 general practices before and after an interventionwhich targeted at improving the completeness
of ethnicity data. The authors reported a poor baseline recording of ethnicity data, with less
than 1% of the practice population having ethnicity codes recorded prior to the intervention,
and that the median level of ethnicity recording increased to 47% after the intervention. Mathur
et al. [13] examined the recording of ethnicity information in the Clinical Practice Research
Datalink (CPRD) primary care database and found that less than 30% of all individuals in the
database (1990–2012) had a record of ethnicity. Ethnicity recording was included in the 2006/7
revision of the Quality and Outcomes Framework (QOF), which provided general practices
with a financial incentive to record ethnicity in all new patient registrations. Following the
financial incentivisation of ethnicity recording under QOF, the completeness of ethnicity data for
newly registered patients was improved immensely. Indeed, according to Mathur et al. [13], the
percentage of individuals with a record of ethnicity increased from approximately 20–30% for
those first registered prior to the QOF financial incentivisation in 2006/7, to 70–80% for those
who registered after 2006/7. Ethnicity recording was later removed from QOF in the 2011/12
update, and since then no studies have investigated whether there was a subsequent drop in
ethnicity recording. As Mathur et al. [13]’s study analysed CPRD data up to 2011, they were not
able to assess the impact of the removal of ethnicity recording from the QOF scheme in the
2011/12 financial year. However, the recording of ethnicity is anecdotally expected to decline
following the 2011/12 QOF update.
Several simple, or ‘ad-hoc’, methods have been employed for the analysis of missing data

in research using clinical databases. Such methods include complete record analysis (CRA, in
which only individuals with complete information on all variables considered are included in the
analysis), excluding variables with missing data from the analysis, and single-value imputation
techniques. The issue of bias and potentially misleading conclusions associated with these meth-
ods is well-known [16–18]. Within the context of incomplete ethnicity data, if the characteristics
of individuals whose ethnicity is recorded are systematically different from those whose ethnicity
is missing, then a CRA ignoring individuals with missing ethnicity information can potentially
lead to biased results. In addition, given the large proportions of individuals with incomplete
ethnicity information in primary care databases, a CRA may lead to a substantial reduction in
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sample size and power. The omission of ethnicity from the analysis model may introduce bias
if ethnicity is known to be associated with the health outcome of interest. Alternatively, some
previous studies made the assumption that all individuals with missing ethnicity data belonged
to the White ethnic group (i.e. only White individuals ever had missing ethnicity information)
[19]. Replacing all missing values in ethnicity with the White ethnic group might lead to some
non-White individuals being misclassified, which in turn might dilute any effect of the different
ethnic groups on the outcome of interest. In addition, this approach might misrepresent the
ethnic make-up of the sample, with one possible consequence being that primary care databases
appear less ‘representative’ of the population than they actually are.
Multiple imputation (MI) [20] is increasingly regarded as the standard approach for dealing

with missing data in medical research [18]. Unlike the complete record analysis, MI utilises
information from individuals with incomplete data. Thus, MI can produce unbiased and statisti-
cally more powerful analyses compared to other simple methods [18]. In MI, each missing value
is replaced with several plausible values generated from an imputation model, conditional on
the observed data. This procedure creates a number of completed datasets to account for the
uncertainty introduced by missing data. The desired analysis is then performed in each of these
completed datasets. Finally, the resulting parameter estimates and standard errors are combined
into a single set of results using Rubin’s rules [20, 21], taking into account the variation within
and between the datasets.
In practice, MI is commonly implemented under the assumption of data being missing

completely at random (MCAR, when missingness does not depend on either observed or un-
observed information), or missing at random (MAR, when missingness does not depend on
unobserved information, conditional on observed information). However, it is possible that data
are missing not at random (MNAR, when missingness depends on unobserved information,
even after conditioning on observed information). In primary care databases, missing data in
ethnicity may depend on unobserved information, such as the unrecorded ethnic groups, or
other factors affecting the recording of ethnicity that are not accessible in the databases [13].
This implies a potential underlying MNAR mechanism for ethnicity, and as a result standard MI
assuming MARmight not cope. In particular, standard MI might fail to yield a plausible estimate
of the marginal distribution of ethnicity.
For an incomplete variable in a given dataset, its corresponding population-level marginal

distribution might also be available in an external data source. As an example, for ethnicity data
in large UK primary care databases, the corresponding distribution of ethnicity in the population
is obtainable from the UK census statistics. It is therefore natural to incorporate this external
information in the imputation process, assuming that the study sample should be representative
of the external population data in terms of the incomplete variable. If done appropriately, the
inclusion of such knowledge about the incomplete variable can potentially improve on standard
MI for missing data generated by general MNAR mechanisms.
From a methodological point of view, statistical research has proposed methods for the

analysis of incomplete data under the assumption of data being MNAR. However, these methods
are often not calibrated (with the exception of Carpenter et al.’s reference based sensitivity analysis
[22]). This thesis outlines methods for calibrating MI inferences to the population level under
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general MNAR assumptions for missing data in the above applied setting. The overall aim of this
thesis is to systematically investigate how an external data source containing population-level
information about the incomplete variable can be appropriately utilised in the imputation process
to improve standard MI when missing data are suspected to be MNAR, as detailed below.

1.2 aims and objectives

This thesis aims to explore the use of available external data sources containing the population-
level marginal distribution of the incomplete variable in improving standard MI under general
MNAR mechanisms. Motivated by the issue of incomplete ethnicity information in primary care
databases, this thesis focuses on MI methods for accommodating missing data in incomplete
binary/categorical variables which are included as covariates in the analysis model.
Two univariate population-calibrated MI methods which incorporate knowledge about the

incomplete covariate’s population distribution in MI are proposed to calibrate inference to the
population: weighted multiple imputation and calibrated-δ adjustment multiple imputation. In
weighted MI, the incomplete covariate’s population distribution is used to calculate probability
weights, which are then used in the imputation process to closely match the post-imputation
distribution to the population level. Alternatively, the calibrated-δ adjustment MI method
incorporates the incomplete covariate’s population distribution as a δ adjustment in the intercept
of the imputation model for the covariate.
The univariate population-calibratedMI methods can also be integrated into the multivariate

imputation by chained equations (MICE) algorithm [23] to impute missing values in several
incomplete covariates, accounting for their marginal distributions in population data. MICE fills
in missing values in the incomplete variables iteratively by using chained equations, a sequence of
univariate imputationmodels which are specified for each of the incomplete variables conditional
on all the other variables.
More specifically, the objectives of this thesis are as follows.

1. To develop and evaluate weighted MI of an incomplete binary covariate, and to explore the
inclusion of univariate weighted MI in the MICE algorithm for imputing missing values in
several incomplete binary covariates, when the outcome variable is binary;

2. To develop and evaluate calibrated-δ adjustment MI of an incomplete binary covariate, and
to explore the inclusion of univariate calibrated-δ adjustment MI in the MICE algorithm for
imputing missing values in several incomplete binary covariates, when the outcome variable
is binary;

3. To evaluate calibrated-δ adjustment MI and weighted MI of an incomplete binary covariate
when the outcome variable is continuous;

4. To implement calibrated-δ adjustment MI and weighted MI for handling missing data in
ethnicity in case studies using UK primary care electronic health records.
The first three objectives are achieved by performing a series of analytic and simulation

studies, using increasingly complex missingness mechanisms for the incomplete covariate(s).
Throughout these studies, the population-calibrated MI methods are also compared to standard
MI and complete record analysis (CRA). The last objective is achieved by conducting two
ethnicity-focused case studies using THIN data. In these case studies, the population-calibrated
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MI methods are compared to standard MI and other simple approaches to missing data.
The next section provides an outline of the subsequent chapters in this thesis.

1.3 outline of subsequent chapters

Chapter 2 presents an overview of the issues raised by missing data in medical research and the
available methods for handling missing data. This chapter outlines the different missingness
patterns and mechanisms which are the key concepts in the analysis of incomplete data. Simple
methods for handling missing data are reviewed, before multiple imputation and various aspects
of multiple imputation analysis are introduced.
Chapter 3 proposes and evaluates the weighted multiple imputation method for utilising

external information about the incomplete variable’s population distribution in MI, in order to
calibrate inference to the population. This chapter describes the procedure of the univariate
weighted MI method, as well as the derivation of the marginal and conditional weights from the
incomplete variable’s population distribution. These weights are used in weighted MI to recover
the correct incomplete variable’s distribution after imputation. Weighted MI is evaluated and
compared to standard MI and CRA in analytic and simulation studies of a 2×2 contingency table,
with a complete binary outcome variable and an incomplete binary covariate. The investigation
is then extended to a multivariate missing data setting. Univariate weighted MI is integrated
into the MICE algorithm, and this integration is evaluated and compared to standard MICE and
CRA in multivariate simulation studies. These studies feature a three-way contingency table
with a fully observed binary outcome variable and two partially observed binary covariates, and
different missingness mechanisms for the covariates are considered.
Chapter 4 proposes and evaluates the calibrated-δ adjustment multiple imputationmethod as

an alternative approach to weighting in MI when the population-level marginal distribution of
the incomplete variable is available externally. This method is motivated by van Buuren et al.’s δ
adjustment (offset) MI method [23]. In calibrated-δ adjustment MI, the incomplete variable’s
population distribution is used (together with its observed-data distribution and association with
other fully observed variables) to calculate an adjustment in the imputation model’s intercept.
The univariate missing data setting of a 2× 2 contingency table discussed in chapter 3 is revisited.
Calibrated-δ adjustment MI is evaluated and compared to weighted MI, standard MI, and CRA
analytically and via simulation. Univariate calibrated-δ adjustment MI is also adapted for use in
the MICE algorithm. This adaptation is further evaluated and compared to the integration of
univariate weighted MI in MICE, standard MICE, and CRA in multivariate simulation studies of
the same set-up as outlined in chapter 3.
Chapter 5 investigates a univariate missing data setting where the incomplete covariate is

binary as before, but the complete outcome variable is continuous. The population-calibrated MI
methods are evaluated and compared to standard MI and CRA in a univariate simulation study.
A proof-of-concept example based on the ideas of the Heckman model [24] is also conducted
to provide theoretical support for the empirical results of the univariate simulation study. The
last part of chapter 5 brings together these empirical and theoretical findings to evaluate and
compare population-calibrated MI, standard MI, and CRA in further simulations.
Chapter 6 illustrates the application of calibrated-δ adjustment MI and weighted MI in real-
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life settings, using UK primary care electronic health records. In two case studies conducted using
THIN data, these population-calibrated MI methods are implemented for handling missing data
in ethnicity, and their results are compared to that in standard MI and other simple approaches
to missing data. The aims of these two case studies are as follows.
1. To assess the plausibility of the MAR assumption for ethnicity data in UK primary care
databases, and;

2. To examine the association between ethnicity and the prevalence of type 2 diabetes diagnoses
in UK primary care databases.
Chapter 7 concludes this thesis by discussing the methodological development of calibrated-δ

adjustment MI and weighted MI, highlighting the implications of these methods, and identifying
potential areas for future work.
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2
Missing data and multiple imputation

2.1 Introduction

2.2 Missing data

2.3 Simple methods for handling missing data
2.3.1 Complete record analysis
2.3.2 Single-value imputation

2.4 Multiple imputation
2.4.1 Rubin’s rules for multiple imputation inference
2.4.2 �e Bayesian justi�cation of multiple imputation
2.4.3 Univariate and multivariate multiple imputation
2.4.4 Specifying the imputation model

2.5 Methods for handling missing data under the missing not at random as-
sumption
2.5.1 Pattern-mixture models
2.5.2 Selection models

2.6 Summary

2.1 introduction

This chapter presents an overview of the issues raised by missing data in medical research and
the available methods for handling missing data. Section 2.2 outlines the different missingness
patterns and missingness mechanisms which are the key concepts underpinning the analysis
of incomplete data. Section 2.3 reviews simple methods for handling missing data, including
complete record analysis and single value imputation which serves as a platform for the ideas
of multiple imputation. Section 2.4 gives an introduction to multiple imputation and various
aspects relevant to multiple imputation analysis, including Rubin’s rules [20, 21] for multiple
imputation inference, methods for performing univariate and multivariate multiple imputation,
key considerations in specifying the imputation model, and the use of multiple imputation under
different assumptions about the underlying missingness mechanism.
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2.2 missing data

Missing data refer to values which were intended to be recorded in a study, but for some reason
were not [25].
Missing data are commonly seen in medical research, where data are often missing due to

non-response. Carpenter and Plewis [26] categorised non-response into four different types
which are presented below, with relevant examples in the context of primary healthcare.
1. Unit non-response. Individuals fail to provide enough information for the response to be
deemed usable. In primary care, unit non-response is present when individuals register with
their general practices but do not consult, and therefore very limited information about them
is observed;

2. Item non-response. Data from individuals are partially observed, i.e. they have at least some
observed data. In primary care, some individualsmight, for example, have their blood pressure
measured at regular intervals, but not their cholesterol level. Recording of health indicators
in primary care may be influenced by pay-for-performance initiatives, see section 6.2.3 for
more details;

3. Wave non-response. In longitudinal studies, some sample members fail to participate in a
particular wave of the study. In primary care, data are not collected at fixed time points and
as a result, individuals often have gaps between consultations during which no information is
recorded;

4. Attrition. In longitudinal studies, some initially cooperative sample members drop out of
the study before the study ends. In primary care, individuals either die or leave their general
practices, from which point no further information is recorded.
Note that when data are referred to as ‘missing’, their values are not recorded but are assumed

to exist. For example, a living person would have blood pressure irrespective of whether the
blood pressure measurements are recorded. On the other hand, missingness due to death is a
fundamentally different concept, in that the missing values cannot usually be said to exist. This
type of missingness is not the focus of this thesis.
With rectangular datasets, data are arranged in such a way that the rows correspond to

individuals and the columns correspond to variables, and there are three main classes of overall
missingness patterns [17] (figure 2.1). Let z = (zi j) denote the n × pmatrix containing data on p
variables for n individuals in the dataset, where zi j is the value of variable z j for the ith individual.
With missing values, define an n× pmatrix of the response indicator r = (ri j), such that ri j = 1 if
zi j is observed, and ri j = 0 otherwise. The matrix r stores the locations of missing observations
in z, and therefore defines the pattern of missing data. The three main classes of missingness
patterns are as follows.
1. Univariate missingness pattern. Missing values occur in a single variable (figure 2.1a);
2. Monotone missingness pattern. Missing values occur in more than one variable, and the
variables can be ordered such that for individual i, z j+1, . . . , zp are missing whenever z j is
missing (figure 2.1b). Attrition is an example of the monotone missingness pattern. Here,
repeated measurements will be missing for an individual in all subsequent waves of a study,
following the individual’s drop-out from the study;

3. Non-monotone missingness pattern. Missing values occur in more than one variable and
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Figure 2.1. Schematic representation of different missingness patterns with four variables.

a. Univariate

z1 z2 z3 z4

b. Monotone

z4z3z2z1

c. Non-monotone

z1 z2 z3 z4

⋆ Note: the unshaded areas represent missing values.

there is a random scatter of missing values across the variables (figure 2.1c), such as in the
case of item or wave non-response.
While missingness patterns indicate which values are missing and observed in a given dataset,

missingness mechanisms describe the relation between the probability of the data being missing
and the values of the data, both observed and missing. This relation can be characterised by
the missing data model p(r ∣ z, α) of the response indicator r given the data z, where α is the
unknown parameters [27]. Let zobs and zmis collectively denote the observed and missing values
of z. Taken together, z = (zobs, zmis) contain data for the complete dataset. Rubin [28] defined
three broad classes of missingness mechanisms, each with distinct implications for the analysis
of partially observed data:
1. Missing completely at random (MCAR). The probability of data being missing does not
depend on any observed or unobserved information, p(r ∣ zobs, zmis, α) = p(r ∣ α). For
example, a laboratory blood sample is MCAR if it is accidentally dropped because the chance
of this random event occurring is the same for all individuals, regardless of their lifestyle
factors or health outcomes. UnderMCAR, the complete records (i.e. individuals with complete
data) are a random sample of the set of originally identified individuals. Therefore, it can be
assumed that missing data are similar to the observed data;

2. Missing at random (MAR). The probability of data being missing does not depend on unob-
served information, conditional on observed information, p(r ∣ zobs, zmis, α) = p(r ∣ zobs, α).
Data can be considered MAR given the observed groups, where observations within the same
group have the same probability of being missing. For example, blood pressure measurements
are MAR conditional on sex, if women are more likely than men to have their blood pressure
measured and sex is fully observed. In other words, within the same sex, the distribution of
blood pressure values is the same, whether or not blood pressure is measured;

3. Missing not at random (MNAR). The probability of data beingmissing depends on unobserved
information, such as the missing values or an unmeasured variable, p(r ∣ zobs, zmis, α) does
not simplify. For example, blood pressure measurements are MNAR if individuals with high
blood pressure are more likely to have their blood pressure measured, even after controlling
for other fully observed factors such as age and sex.
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It might be possible to identify whether missing data are MCAR or not in incomplete datasets,
for example, by using χ2 tests or logistic regression models for the binary response indicator
of the incomplete variable, conditional on other fully observed variables [29]. Conversely, the
observed data alone are not sufficient to distinguish between MAR and MNAR mechanisms.
Further external information or untestable assumptions are required to describe the relationship
between missingness and the unseen values which are not available in the observed data [17]. For
inference under MNAR, a joint model for zmis and r is required. However, there will typically
be a wide range of models for r that match the data observed, and these models may result in
very different inferences. Therefore, assessing the robustness of results to potential departure
from the posited assumption about the missingness mechanism by conducting supplemental
sensitivity analyses under alternative plausible assumptions should play a central role [30, 31].
The following sections describe availablemethods for handlingmissing data and their validity

under different assumptions about the underlying missingness mechanism.

2.3 simple methods for handling missing data

There are many approaches for dealing with missing data, the choice of which one to use depends
on both the missingness pattern and the assumption about the missingness mechanism. The
goal of any procedure for dealing with missing data is to retain the characteristics of the data and
the association between variables, in order to obtain valid and efficient inferences [17]. Methods
for handling missing data should generally be evaluated based on the following criteria [17, 32].
First, the method should yield unbiased parameter estimates over a wide range of parameters.
Second, the estimated standard errors should be close to the true standard deviations of the
parameter estimates, i.e. confidence intervals should cover the true values of the parameters with
probability close to the nominal level, implying an accurate probability of Type I error. Third,
once bias and standard errors have been addressed, the method should yield precise estimates
with small standard errors and narrow confidence intervals, which lead to a lower Type II error
and increased power.
Several simple, or ‘ad-hoc’, approaches were proposed to overcome the issue of missing data;

they are often resorted to in practice, mainly for computational convenience rather than for
their validity. Despite their ease of implementation, these approaches generally require more
restrictive assumptions about missing data that rarely hold in practice, and their shortcomings
have been discussed extensively in the literature [16, 33–37]. Section 2.3.1 discusses complete
record analysis, one of the most frequently adopted approaches for handling missing data which
is usually performed before other more sophisticated methods are considered. As demonstrated
in this section, complete record analysis can provide valid inferences in certain settings where
the missingness mechanism assumption required for the validity of other model-based methods
is violated. Section 2.3.2 then presents two single imputation methods which serve as a platform
for the ideas of multiple imputation (section 2.4).
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2.3.1 Complete record analysis

A complete record analysis (CRA) is an analysis restricted to the complete records, where
individuals with missing values in one or more variables are excluded from the analysis. It
is the default method for accommodating missing data in most statistical packages.
Under the MCAR mechanism, the subset of complete records represents a random, though

smaller than originally intended, sample of individuals in the study. Therefore, results from a
CRA will be unbiased. The validity of CRA is also extended to certain settings beyond MCAR;
one of which is where the analysis consists of fitting a regression model for some outcome
variable on one or several covariates. Results from CRA are valid if the probability of being a
complete record is independent of the outcome when conditioned on the covariates, regardless
of whether missingness occurs in the outcome or the covariates [27, 38–40]. As an example, in
standard cohort studies where individuals are followed-up over time from study entry, it might
be reasonable to assume that missingness in the covariates measured at baseline is not caused
by the outcome, which is measured later after a period of follow-up [40]. This is because the
future values of the outcome are yet to be determined at the time data for baseline covariates are
collected. Under this assumption, CRA can provide unbiased estimates of association.
However, even when this assumption holds and CRA is unbiased, the method is not optimally

efficient since it involves discarding information from individuals with partially observed data.
In multivariable analyses, a relatively small number of missing values in each variable may cause
a large proportion of the study sample to be excluded, which can lead to reduced efficiency and
lower power.
To avoid the potential loss of information associated with CRA, it is sensible to seek ways of

drawing on information available in the incomplete records. For settings where CRA provides
valid inferences such as described above, Bartlett et al. [40] proposed an augmented complete
record approach. This approach improves efficiency through the specification of an additional
model for the probability of missingness conditional on fully observed variables. Alternatively,
when some individuals have partially observed information, rather than excluding these individ-
uals entirely, it is tempting to ‘fill in’ their missing values with plausible values and proceed with
the analysis as planned. There are several single-value imputation techniques which impute the
missing values in order to yield a single completed dataset for analysis. The following sections
discuss two single imputation approaches which motivate the ideas of multiple imputation.

2.3.2 Single-value imputation

One of the most common single imputation approaches is mean imputation, where missing
values in a variable are replaced by the marginal mean of the observed values of that variable.
This method has many disadvantages. First, it ignores the relationship between the incomplete
variable and other variables in the analysis, which can lead to biased estimates of association.
Second, although this method maintains the original sample size and is easy to implement,
the variability in the data is reduced since all missing values are replaced with the same value.
Consequently, variance tends to be underestimated.
In a simple example, let y and x denote two continuous variables whose joint distribution is

bivariate normal and the full-data analysis is a linear regression of y on x, with some values of
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Figure 2.2. Single-value imputation: linear associations between the outcome variable y (com-
plete) and the covariate x (MAR conditional on y), when x is imputed using mean imputation
and stochastic regression imputation.
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⋆ Note: black lines: regression lines in the full data; dotted lines: regression lines in completed data after single
imputation of x; black circles: observed values; hollow circles: missing values; grey circles: imputed values.

x missing. Figure 2.2a shows the result of a simple simulation with 100 observations of y and
x, where 40% of the values in x are assumed to be MAR conditional on y. Missing values in x
are imputed using mean imputation, which biases the slope of the regression line toward 0. The
variability in the observed data is also not reflected in the imputed values in mean imputation.
Stochastic regression imputation was proposed to preserve the association between variables

in the observed data and correct bias created by the reduced variability in mean imputation
[37]. In this method, a regression imputation model is fitted to the complete records, where
the dependent variable is the incomplete variable and the independent variables are other fully
observed variables which are predictive of the incomplete variable. Predicted values are obtained
from the imputation model and are augmented with a residual term to replace missing values.
The residual term is normally distributed with mean 0 and variance equal to the mean square
error of the imputation model. This incorporates the variability in the observed data into the
imputed values, resulting in more plausible standard errors compared to mean imputation. In
the above example, each missing value in x is replaced with ẋi = θ̂0 + θ̂ y yi + ε̇i , where ε̇i is a
random draw from the normal distribution N (0, σ̂2) and σ̂2 is the mean square error of the
imputation model xi = θ0 + θ y yi + εi ; εi

iid∼ N (0, σ2) (figure 2.2b). By comparing figures 2.2a
and 2.2b, it is clear that stochastic regression imputation produces more plausible imputed values
compared to mean imputation.
Although stochastic regression imputation is clearly preferred to mean imputation, the

analysis model generates standard errors of parameter estimates which are still generally too
small. This is because the uncertainty in estimating the θ parameters and σ of the imputation
model is not acknowledged. Indeed, the method can be modified to be fully stochastic, with an
extra step that draws the values of the imputation model’s parameters from their distributions;
in fact this is a key step in multiple imputation which is presented in section 2.4. However,
this process still does not account for the fact that missing values are replaced with reasonable
guesses, and then data are analysed as if there are no guesses. In other words, the originally
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observed data are not distinguished from the imputed data. This implies that standard errors of
the analysis model’s parameters are generally underestimated, resulting in confidence intervals
that are too narrow [17]. The next section introduces multiple imputation which builds on the
single imputation methods presented above.

2.4 multiple imputation

Multiple imputation (MI) [20] is a popular approach for the analysis of partially observed data,
which was originally developed as a technique for handling survey non-response. Since its
inception in the 1970s, MI has increasingly been regarded as the standard method for handling
missing data in medical research [18]. The number of publications which applied MI to impute
missing data in the main analysis or explored new methodological extensions and adaptations of
the method has grown exponentially [37, 41]. MI has been incorporated in standard statistical
software packages [42–44], making it more accessible tomedical researchers and enabling a wider
application of the method in recent years. MI is a suitable tool for addressing item missingness
which is commonly seen in medical research [25], where each individual has at least some
observed data.
The aim of MI is to obtain valid inferences in the presence of missing data [45]. Similar to

single imputation, MI retains all individuals in the analysis, but missing data are imputed in such
a way that fully accounts for the uncertainty about them. Analysis with missing data using MI
generally proceeds in three steps, as illustrated in figure 2.3.

Figure 2.3. Schematic representation of multiple imputation analysis.
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Completed dataset 2

ID z1 z2 z3
1 z11 z12 z13
2 z21 z22 ż232
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⋆ Note: β̂m and Ŵm : estimate of parameter β and its variance obtained from the mth completed dataset, respectively,
m = 1, . . . ,M; β̂MI and V̂ (β̂MI): combined parameter estimate and associated variance for inference.
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1. Imputation step. Fill in missing valuesM > 1 times with plausible values generated from an
imputation model, which is the Bayesian posterior predictive distribution of missing data
conditional on the observed data, to createM completed datasets;

2. Analysis step. Perform the analysis that would have been used in the absence of missing data
identically in each completed dataset, storing parameter estimates of interest and associated
standard errors;

3. Combination step. Use Rubin’s rules [20, 21] (section 2.4.1) to combine results from the M
completed datasets into a single set of parameter estimates and standard errors, accounting
for the variability in results across the completed datasets and reflecting the uncertainty about
the missing values.
The next section discusses Rubin’s rules [20, 21] which are used in the last step of MI analysis

to obtain the combined set of results for inference.

2.4.1 Rubin’s rules for multiple imputation inference

Let β̂m denote the estimate of parameter β obtained from perfoming the main analysis in the
mth completed dataset, and Ŵm denote its estimated variance; m = 1, . . . ,M. The MI estimator
of β is given by

β̂MI = 1
M

M∑
m=1

β̂m .

The associated total variance estimator is expressed as

V̂ar (β̂MI) = (1 + 1
M

) B̂ + Ŵ ,

where

B̂ = 1
M − 1

M∑
m=1

(β̂m − β̂MI)2 and Ŵ = 1
M

M∑
m=1

Ŵm

denote the between-imputation and within-imputation variances, respectively, and (1 + 1
M ) is an

adjustment factor which reflects the extra variability as a consequence of using a finite number
of imputations instead of an infinite number of imputations.
Inference for β̂MI, including hypothesis tests and confidence intervals, is based on the t-

distribution with ν degrees of freedom, where

β̂MI − βH0√
V̂ar (β̂MI) ∼ tν , and ν = (M − 1) ⎡⎢⎢⎢⎣1 +

Ŵ(1 + 1
M ) B̂

⎤⎥⎥⎥⎦
2

.

For a finite number of imputations, the fraction of missing information (FMI) for β which is
a measure of the loss of precision due to missing data, is estimated by

FMI = (1 + 1
M ) B̂

Ŵ + 2/(ν + 3)
(1 + 1

M ) B̂
Ŵ + 1 ≈ B̂

Ŵ + B̂
,

where (1 + 1
M ) B̂

Ŵ is the relative increase in variance (RVI) due to missing data.
The relative efficiency (RE) [20] of usingM imputations versus an infinite number of impu-

tations is given by

RE = (1 + FMI
M

)−1 . (2.1)
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Rubin’s rules [20, 21] are generic and can be applied to estimators that are normally distributed
[46]. Some statistics such as odds ratios or hazard ratios require sensible transformation before
combination, while statistics that are not estimators such as p-values or likelihood ratio test
statistics cannot be combined using these rules [47]. Despite missing values being imputed from
a Bayesian model, MI using Rubin’s rules [20, 21] can provide valid frequentist inferences with
asymptotically unbiased point estimates and variance estimation such that confidence intervals
achieve their nominal coverage [20, 27].
As explained in the next section, the standard implementation ofMI provides valid inferences

based on the ignorability assumption with an underlying MAR mechanism. It is also possible,
although more complex, to perform MI under the MNAR assumption for missing data (see
section 2.5).

2.4.2 The Bayesian justification of multiple imputation

Rubin [20] recommends that imputations are drawn from a Bayesian posterior predictive dis-
tribution of missing data. Thus, MI provides an approximation to a fully Bayesian procedure.
Schafer [48] coined the term ‘Bayesianly proper’ to define an imputation procedure in which
missing values are imputed by independent draws from the posterior predictive distribution of
a Bayesian model, under a parametric model for the complete data (and, if necessary, a model
for the missingness mechanism) and a prior distribution of the unknown model parameters.
This process reflects uncertainty in the imputation, including errors in the predicted values and
estimation errors in the parameters of the imputation model [48]. This section provides a broad
overview of the Bayesian justification of MI, including how the posterior predictive distribution
of missing data is derived and how imputed values are simulated from this distribution.
The joint distribution of the full data can be written as p (zobs, zmis, r ∣ β, α), which depends

on parameters β for the data z that are of interest, and parameters α for the response indicator r
that are seldom of interest. When z contains missing values, this joint model cannot be evaluated
in the normal way. However, the distribution of the observed data can be obtained by integrating
out the missing data as follows

p (zobs, r ∣ β, α) = ∫ p (r ∣ zobs, zmis, β, α) p (zobs, zmis ∣ β, α) dzmis. (2.2)

Bayesian inference about β and α is based on the observed-data posterior distribution of β
and α, which combines the observed-data likelihood with a prior distribution

p (β, α ∣ zobs, r)∝ p (β, α) L (β, α ∣ zobs, r) , (2.3)

where L (β, α ∣ zobs, r)∝ p (zobs, r ∣ β, α) .
Given that (i) β and α are a priori independent, i.e. p (β, α) = p (β) p (α), and (ii) zmis is

MAR conditional on zobs, (2.2) can be written as

p(zobs, r ∣ β, α) = p(r ∣ zobs, α)p(zobs ∣ β).
It follows that β and α are a posteriori independent [27], i.e. (2.3) becomes

p (β, α ∣ zobs, r)∝ p (β) L (β ∣ zobs) p (α) L (α ∣ zobs, r)
∝ p (β ∣ zobs) p (α ∣ zobs, r) .
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Bayesian inference about β can therefore be based on the observed-data posterior distribution
p (β ∣ zobs), ignoring the missing data mechanism. Furthermore, the missing data problem can
be separated from the main analysis, such that

p (β ∣ zobs) = ∫ p (β ∣ zmis, zobs) p (zmis ∣ zobs) dzmis, (2.4)

i.e. the first term in the integral of (2.4) represents the posterior distribution of β given the
complete data, which is the Bayesian version of the main analysis [49].
In MI analysis, (2.4) is approximated in two steps, first by imputing zmis M times from the

posterior predictive distribution p (zmis ∣ zobs), i.e. the imputation step, followed by evaluating
the complete-data posterior distribution at each of the imputed values zmism , i.e. the complete-data
analysis step. Rubin’s rules [20, 21] approximate the integral by summarising over theM draws of
zmis,

p (β ∣ zobs) ≈ 1
M

M∑
m=1

p (β ∣ zobs, zmism ) .
Imputing missing data from the posterior predictive distribution p (zmis ∣ zobs) requires the

specification of a parametric imputation model p (zobs, zmis ∣ θ) with a prior distribution of θ
and the computation of conditional distributions for drawing zmis from this model, since

p (zmis ∣ zobs) = ∫ p (zmis ∣ zobs, θ) p (θ ∣ zobs) dθ .

An imputation of zmis can therefore be created by simulating a random draw of the unknown
parameters from their observed-data posterior, θ̇ ∼ p (θ ∣ zobs), followed by a random draw of
the missing values from the posterior predictive distribution, ż ∼ p (zmis ∣ zobs, θ̇) [50].
While drawing from p (zmis ∣ zobs, θ) is generally straightforward, sampling from the dis-

tribution p (θ ∣ zobs) is often not simple. The next section discusses methods for performing
sampling from the posterior predictive distribution.

2.4.3 Univariate and multivariate multiple imputation

In univariateMI of a single incomplete variable, a regression imputationmodel for the incomplete
variable conditional on other fully observed variables is fitted to the complete records. The
imputation model can be tailored to the variable being imputed; for example, a linear regression
model for a continuous variable or a logistic regression model for a binary variable. Let θ̂
and V̂ar (θ̂) denote the estimated parameters of the imputation model and their covariance
matrix. Imputations are simulated from the posterior predictive distribution of the incomplete
variable using θ̇ and the appropriate probability distribution, where θ̇ is randomly drawn from
the posterior distribution commonly approximated by the multivariate normal distribution,
θ̇ ∼MVN (θ̂ , V̂ar (θ̂)) [20, 47].
The example in section 2.3.2, where (x , y) follow a bivariate normal distribution and x has

some missing values, is now used to demonstrate how to obtain proper imputation in a simple
setting. Suppose x is MCAR orMAR conditional on y, let y = (1, y)′ and nobs denote the number
of subjects with observed x. To obtain proper imputation for x [47], the linear regression model
x ∣ y ∼ N (θ0 + θ y y, σ2) is fitted to nobs subjects whose x values are observed. Let θ̂ denote the
vector of estimated parameters with covariance matrix V̂ar (θ̂) and root mean square error σ̂ . A
draw of θ̇ and σ̇ is obtained from their joint posterior distribution assuming a non-informative
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prior [20]. First, σ̇ is drawn as

σ̇ = σ̂
√

nobs − 2
e

,

where 2 is the number of parameters to be estimated in the imputation model for x and e
represents a random draw from the χ2 distribution with nobs − 2 degrees of freedom. This is
followed by a draw of θ̇ as

θ̇ = θ̂ + σ̇
σ̂
u1V̂ar (θ̂) 12 ,

where u1 is a row vector of 2 independent random draws from the standard normal distribution
and V̂ar (θ̂) 12 is the Cholesky decomposition of V̂ar (θ̂). For individual i with missing xi , each
missing value is imputed with

ẋi = θ̇yi + u2i σ̇ ,

where u2i is a random draw from the standard normal distribution. This procedure is repeatedM
times, creatingM completed datasets. Similarly, univariate MI procedures for binary, unordered,
and ordered categorical variables are described in White et al. [47], section 2.
For multivariate missing data, when the missingness pattern is monotone distinct [51] (pa-

rameters of the univariate conditional models have independent priors), incomplete variables
can be arranged in a monotone pattern with increasing amounts of missing values. They are then
imputed without iteration by sequential specification of univariate models conditional on the
complete and previously imputed variables [51].
When the missingness pattern is non-monotone, factorisation of the joint likelihood function

into independent likelihood functions for the incomplete variables might become impossible [48].
As a consequence, imputation cannot be performed from independent univariate models as in
the case of the monotone missingness pattern. One approach for dealing with the non-monotone
missingness pattern is to assume a joint parametric model for the data and draw imputed values
from the resulting distribution of the missing data given the observed data. A popular choice for
the parametric joint model is the multivariate normal model, although as noted in section 2.4.2,
direct simulation from the corresponding predictive distribution p (zmis ∣ zobs) of missing data
given the observed data is not simple. This is due to an intrinsic dependence of the unknown pa-
rameter θ on the posterior distribution p (θ ∣ zobs). Assuming an underlying multivariate normal
model, the data augmentation method which is an iterative Bayesian Markov chain Monte Carlo
(MCMC) procedure can be used to approximate the distribution of missing data conditional on
the observed data [48, 52]. In data augmentation, the observed data zobs are augmented with un-
observed data zmis, such that the full-data posterior p (θ ∣ zobs, zmis) is easier to draw from. At the
tth iteration, a draw of zmis(t) is generated from the distribution p (zmis ∣ zobs, θ(t−1)) conditional
on the observed data and the previous draw of θ, i.e. the I(mputation)-step. This is followed by a
new draw of θ(t) from its posterior distribution p (θ ∣ zobs, zmis(t)) given the augmented data,
i.e. the P(osterior)-step. Iterating between these two steps sets up a Markov chain that converges
to a stationary distribution, which is the joint distribution p (zmis, θ ∣ zobs) of missing data and
parameters given the observed data. Proper imputations can be obtained by running this process
for a large number of iterations and storing the results of several I-steps with enough iterations
in between to ensure independence. The draws of θ(t) approximate the distribution p (θ ∣ zobs);
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likewise, the draws of zmis(t) correspond to the distribution p (zmis ∣ zobs).
In practice, however, defining a multivariate joint model for the data can often be a challeng-

ing task. For example, difficulty arises when the incomplete variables are of different types, e.g.
continuous, binary, unordered and ordered categorical. This makes the specification of conven-
tional models, such as the multivariate normal model, theoretically inappropriate. Similarly, the
relationship between variables can be complex, e.g. non-linear [53]. A more practical approach
to joint modelling for multivariate missing data was introduced by van Buuren et al. [23]. It is
commonly referred to as fully conditional specification (FCS) [53] or multivariate imputation
by chained equations (MICE) [43]. MICE involves specifying a series of univariate models for
the conditional distribution of each partially observed variable, given other variables. For q
incomplete variables, instead of defining a q-variate joint distribution, MICE proceeds in an
iterative fashion as follows.
1. Fill in missing values in each of the incomplete variables with randomly chosen observed
values of that variable;

2. For each incomplete variable, discard its first filled-in values, define a univariate regression
imputation model for that variable conditional on all other variables, and replace the missing
values with random draws from this conditional model;

3. Repeat step 2 for each of the q incomplete variables in turn, completing one iteration;
4. Repeat step 3 to create a few iterations until convergence is attained.
MICE provides a flexible alternative to joint modelling imputation since the imputation task

is split into specifying relatively simple univariate conditional models that are more conventional,
e.g. linear regression for continuous variables, logistic regression for binary variables, and so
on. However, a known theoretical downside of MICE is that the assumed underlying joint
distribution of the conditional models may not always exist; in other words, the conditional
models may be incompatible [47, 51, 53]. Two conditional models are said to be incompatible if
there exists no joint model for which the conditionals for the corresponding variables equal these
conditional models [40]. One consequence of incompatibility of the conditional models is that
the distribution of the imputed values, and hence the results of the analysis, may differ depending
on the order in which the variables are updated in the chain equations sampler. This is also known
as the ‘order effects’ [54]. However, it was shown that under a set of linear regression conditional
models with all other variables as covariates and no interactions, MICE is equivalent to a Gibbs
sampler, drawing from a multivariate normal distribution [51]. For three incomplete binary
variables, MICE under a set of logistic regression conditional models with all other variables
included asmain effects only is equivalent to joint modelling imputation under a log-linear model
with the three-way factor term set to 0 [51]. Under sufficient conditions (including compatibility
of the conditional models) given by Liu et al. [55], the stationary distribution of the Markov chain
generated in MICE (assuming that this stationary distribution exists and the chain converges
to it) converges to the posterior predictive distribution of missing data. This corresponds to a
joint Bayesian model as the sample size tends to infinity. Hughes et al. [54] and Liu et al. [55]
independently provided an additional non-informative margins condition, according to which
the imputed values yielded fromMICE and joint modelling correspond to the same predictive
distribution. This condition requires that, together with compatibility of the conditional models
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and assuming the Markov chain generated in MICE converges to a stationary distribution, the
joint prior distribution factorises into independent priors. In a simulation study, Hughes et al.
[54] examined the consequences for MICE when compatibility of the conditional models holds
but the non-informative margins condition is not satisfied. The order effects were found to to
be present, but their average magnitude was small and did not cause bias [54]. This supports
previous findings from van Buuren et al. [53] and van Buuren [51] that MICE appears robust to
incompatibility of the conditional models.

2.4.4 Specifying the imputation model

In MI analysis, the missing data problem (the imputation step) is separated from the complete-
data analysis (the analysis step). This separation can be advantageous but can also lead to
difficulties in specifying the imputation model. In particular, for MI of incomplete covariates,
the imputation model might be incompatible with the analysis model in the sense described in
section 2.4.3, and this can lead to biased parameter estimates in the main analysis [40]. Liu et al.
[55] distinguished between the two departures from compatibility, as described below.
1. Semi-compatibility. The imputation model can be made compatible with the analysis model
by restricting some parameters in the imputation model to 0;

2. Incompatibility. The imputation model cannot be made compatible with the analysis model
by restricting some parameters in the imputation model to 0.
Semi-compatibility implies that the analysis model is a restricted version of the imputation

model and all features in the analysis model are preserved in the imputation model. In practice,
this implies that there are some considerations for choosing the imputation models to ensure
(semi-)compatibility. Most importantly, all variables in the analysis model, including the outcome
variable, must be present in the imputation model [47, 56]. For example, if the outcome is not
appropriately included in the imputation model for the incomplete covariate, its association
with the covariate will be biased towards 0 in the main analysis. This is because imputations
are created assuming the incomplete covariate is independent of the outcome [57]. This issue is
illustrated in the analysis of the QRISK tool for cardiovascular risk prediction using primary care
data [14]. After MI had been used for handling missing values in the analysis, cardiovascular
risk was found to be surprisingly unrelated to cholesterol (coded as the ratio of the total to
high density lipoprotein cholesterol). Updated results were later obtained following a revision
of the imputation procedure which showed a clear association between cholesterol ratio and
cardiovascular risk. A possible explanation for this change in results is that one component of the
survival outcome, which comprises the time-to-event and the event indicator, was omitted in the
original imputation model. In survival analysis where the outcome is assumed to follow the Cox
proportional hazards model, White and Royston [58] investigated different functions of time-
to-event. It was showed that by including both the Nelson–Aalen estimator of the cumulative
hazard function and the event indicator in the imputation model for imputing missing covariate
values, the results obtained were less biased compared to using the log survival time [58].
MI allows for the inclusion of auxiliary variables in the imputation model. These variables

are not in the analysis model but provide information about the missing values and/or the
missingness mechanism [46, 47, 59]. Good candidates for auxiliary variables are variables which
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are predictive of both themissing values and the probability of data beingmissing. Including these
auxiliary variables in the imputation model will improve the plausibility of the MAR assumption
and reduce bias. Auxiliary variables that are only predictive of the missing values can help to
reduce the standard errors of estimates in the analysis model. Conversely, variables that are only
predictive of the probability of data being missing will not add information and should not be
included in the imputation model [46].
When imputed values are generated from an imputation model which is more restricted

than the analysis model, incompatibility arises as a result of the imputation model containing
more assumptions than the analysis model. The implication of this incompatibility on inference
depends on the plausibility of the extra assumptions made by the imputation model. If these
extra assumptions are plausible, such imputation is unbiased and ‘super-efficient’, i.e. Rubin’s
variance estimator is positively biased and confidence intervals have coverage that is greater than
the nominal level [45, 60, 61]. If, however, these extra assumptions do not hold, MI may lead to
biased estimates.
The imputation model should also reflect any structure in the analysis model, such as in-

teractions and non-linearity. If there is an interaction between one incomplete covariate to be
imputed and another covariate which is fully observed and discrete, the dataset can be stratified
according to the values of the discrete covariate. Imputation can then be performed separately
in each stratum in the usual way, without having to explicitly incorporate the interaction into
the imputation model [56]. Alternatively, passive imputation and ‘just another variable’ (JAV)
imputation [56] were proposed for handling interactions and multiplicative terms. However,
Seaman et al. [62] reported that while JAV gives consistent estimation for linear regression with
a quadratic or interaction term under MCAR, the method may be biased when data are MAR.
JAV can also lead to severe bias when used for the logistic regression [62].
Recently, Bartlett et al. [40] proposed the substantive model compatible fully conditional

specification (SMC-FCS)method. SMC-FCS provides modification to the normal FCS procedure
to ensure that incomplete covariates are imputed from models which are compatible with the
analysis model. Under the MAR assumption, the method was shown to give consistent estimates
for a range of analysis models, including those with non-linear covariate effects or interactions,
provided that the imputation models are compatible and correctly specified.
When an incomplete covariate in the analysis model is a ratio, e.g. the Body Mass Index

or cholesterol ratio, imputing the numerator and denominator of the ratio separately can yield
implausible values of the ratio. Returning to the QRISK analysis example [14], another possi-
ble explanation for the original results showing no association between cholesterol ratio and
cardiovascular risk is that total and high density lipoprotein cholesterol values were imputed
separately rather than as a ratio. Specifically, missing data in high density lipoprotein cholesterol
were imputed with values close to 0, resulting in very large values of the ratio. For such situations,
Morris et al. [63] recommended imputing the ratio either directly, or passively by imputing the
log-transformed numerator and denominator and then deriving the ratio.
To account for potential departure from the MAR assumption, the next section describes

methods for analysing incomplete data under the MNAR assumption and discusses how such
methods can be used for performing sensitivity analyses in the presence of missing data.
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2.5 methods for handling missing data under the missing not at random assumption

Strategies for handling missing data under the MNAR assumption generally involves defining
a model for the missingness mechanism, which describes how missingness depends on both
observed and unobserved information. This implies that in practice, it is necessary to posit a
model for either the association between the probability of observing a variable and its unseen
values; or the different joint distributions of observed and missing data across the patterns of
missing observations. Due to the potential complexity of modelling the MNAR mechanism,
analyses assuming data are MNAR are relatively infrequently performed and reported in the
applied literature [41].
There are two main approaches for specifically addressing missing data under the MNAR

mechanism; the pattern-mixture model [64, 65] and the selection model [24, 27, 66]. These
approaches are based on two different factorisations of the joint distribution of the data which
comprise the variables and the response indicators. A detailed discussion on pattern-mixture
and selection modelling approaches is provided in Carpenter and Kenward [46], chapter 10.

2.5.1 Pattern-mixture models

The pattern-mixture factorisation of the joint distribution of the data allows for direct modifi-
cation of the behaviour of missing data. MI is therefore well-suited for this purpose, such that
the imputation process can be directly intervened to reflect potential departure from the MAR
assumption. Below is an illustrative example of a general approach to pattern-mixture modelling
using MI, in which missing values are imputed from a missing data distribution which differs for
each missingness pattern. Consider a linear regression model for an outcome y conditional on
covariates x = (x1, . . . , xp)′, where y is incomplete and x is fully observed. For each individual
i , i = 1, . . . , n, let ri denote the response indicator taking values 1 if yi is observed, and 0 otherwise.
Under the MAR assumption, the distribution of y conditional on x is assumed to be the same,
whether or not y is observed

p(yi ∣ xi , ri = 0) = p(yi ∣ xi , ri = 1).
Therefore, in the standard implementation of MI assuming data are MAR, the distribution

p(y ∣ x) is estimated in the complete records and then used to impute missing values in the
incomplete records. When the missingness mechanism is MNAR, it follows that

p(yi ∣ xi , ri = 0) ≠ p(yi ∣ xi , ri = 1).
Thus, MI under the MNAR assumption can proceed by first creating several imputed values

assuming data are MAR, followed by changing the imputations by some chosen fixed quantity δ.
This δ is also known as the ‘sensitivity parameter’ and represents key differences in the conditional
distribution between the observed and missing data (δ = 0 under MAR). Having imputed the
missing values, the analysis model is fitted to each completed dataset and the results are combined
using Rubin’s rules [20, 21] in the usual way. For example, suppose that in an analysis, the variable
blood pressure contains some missing values. The MAR assumption means that conditional on
other fully observed variables in the analysis, the distributions of observed and missing blood
pressure values are the same. Suppose that individuals with missing blood pressure values have,
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on average, measurements that are 10 mmHg below the values predicted assuming data are
MAR. Under this additional assumption about departure fromMAR, missing blood pressure
measurements can first be imputed using standard MI assuming data are MAR, followed by
subtracting δ = 10 mmHg from the imputed values. Rubin’s rules [20, 21] can then be used for
inference and the results can be compared to that under no deviation from the MAR assumption.
This is a simple example of the pattern-mixture model, such that the completed dataset

represents a mixture of potentially different imputations for different missingness patterns. Valid
inference is obtained if δ is chosen correctly. However, the suitability of the chosen value of δ
cannot be validated in the observed data. As a result, a sensitivity analysis is often performed in
which the analysis is repeated for different choices of δ. This approach is relatively straightforward
to implement and communicate, and expert opinions about the plausible values for the sensitivity
parameter (if available) can be directly incorporated in the imputation.

2.5.2 Selection models

Following the selection factorisation of the joint distribution of the data, the selection modelling
approach involves explicitly defining amissingnessmodel for the probability of data beingmissing,
which is estimated jointly with the analysis model. Fully Bayesian analyses are particularly
convenient for this purpose.
Heckman [24] proposed a sample selectionmodel, also known as the Heckmanmodel, which

was successfully applied to account for data being MNAR in incomplete outcome variables. This
method deals with selected samples by defining two linear regression models for the outcome
variable and the response indicator, which are joint by their error terms. Continuing with the
above example of a linear regression model and assuming that data are only missing in y, the
analysis model is given by

yi = xiβ + ε1i ;

ε1i
iid∼ N(0, σ2ε1). (2.5)

Let r denote the response indicator of y, such that ri = 1 if yi is observed, and 0 otherwise. A
selection model representing the non-random sampling of the missingness process is defined as

p (ri = 1 ∣ xhi ) = Φ (xhi α) , (2.6)

where α is a vector of the unknown parameters, xh denotes variables which are thought to be
predictive of missingness in y (xh may partly or fully contain variables in x), and Φ denotes the
cumulative distribution function of the standard normal distribution. The selection equation is
defined through a latent normally distributed variable z, such that

zi = xhi α + ε2i ;

ε2i
iid∼ N(0, σ2ε2). (2.7)

This model is related to the analysis model through the error term ε2i , with ri = 1 if zi >= 0
and ri = 0 if zi < 0. Hence, the Heckman model is defined jointly by (2.5) and (2.7). The joint
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distribution of the error term is a bivariate normal distribution

(ε1
ε2
) ∼ N [(0

0
) , ( σ2ε1 ρσε1σε2

ρσε2σε1 σ2ε2
)] ,

where ρ is the correlation coefficient between ε1 and ε2, and σε2 = 1 under the probit link in (2.6).
It also follows that

E (z ∣ y) = zα + ρ ε2
ε1

(y − xβ) .
Under the MAR assumption, ρ = 0; thus, the selection and analysis equations can be estimated
separately. When data are MNAR, ρ ≠ 0; these equations must therefore be estimated jointly.
The strength of the MNAR mechanism increases with increasing values of ρ.
To obtain unbiased estimates of the β parameters in the analysis model, Heckman [24]

proposed the following two-step procedure.
1. Estimate parameters α in (2.6) by maximum likelihood. These estimates are used to compute
estimates of the inverse Mills ratio (IMR) as

ÎMRi = ϕ (xiβ)
Φ (xhi α) ,

where ϕ and Φ are the probability density and cumulative distribution functions of the
standard normal distribution, respectively.

2. Include the estimated Mill ratios as an additional covariate in the analysis model and obtain
estimates of the analysis model’s parameters as follows

yi = xiβ + ÎMRiβIMR + ε3i ,

ε3i
iid∼ N(0, σ2ε3).

In general, this approach can be inconsistent in small samples. Particularly, if there is a
significant overlap between x and xh, or if they are identical, issues with identification can arise
[67]. An example based on the set-up of the Heckman model is presented in section 5.3.
As an alternative to the probit link which is used to define the selection process in the

Heckman model, the logit link can also be used to define the selection model. Using the logit
link, the selection model in the above example becomes

logit [p (ri = 1 ∣ xi , yi)] = α0 + αxxi + δyi ,

where δ represents the (fixed) selection sensitivity parameter, which is the adjusted log odds
ratio relating the chance of observing the outcome to its underlying unseen values. A value of
δ = 0 implies a MAR mechanism for the missing data. As a result, the analysis and selection
models may be fitted separately. A value of δ ≠ 0 represents departure towards the MNAR
mechanism. Therefore, the analysis and selection models must be fitted simultaneously in a
Bayesian framework, using software like WinBUGS [68].
It is often hard to choose values of δ; plausible values of δ can be elicited by drawing on expert

insights [69]. A sensitivity analysis exploring a range of different values for δ can be performed
to assess the sensitivity of results to potential departure towards MNAR assumptions [70].
Carpenter et al. [66] proposed a re-weighting method which uses importance weighting to

approximate a selection model. In this method, MI is used to impute missing data under the
MAR assumption, and the analysis model is fitted to each completed dataset. In the final step of
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MI, instead of averaging the results for the imputation estimates using Rubin’s rules [20, 21], a
weighted average is performed, up-weighting the imputation estimates that are more plausible
under the assumed MNAR mechanism. This re-weighting method was recently critiqued by
Hayati Rezvan et al. [71], who reported that while this method outperformed standard MI under
the MNAR mechanisms considered, it still provided biased parameter estimates even when a
large number of imputations was used.

2.6 summary

This chapter presents an overview of the issues raised by missing data and the various methods
proposed for the analysis of incomplete data. The concepts covered in this chapter are therefore
essential for understanding the theory and results presented in subsequent chapters of this
thesis. In particular, this chapter gives a detailed description of MI of missing data, including
the MI procedure, the standard implementation of MI under the MAR assumption, and key
considerations when specifying the imputation model. The last part of this chapter discusses
available methods for handling missing data under the assumption of data being MNAR.
The next chapter introduces and evaluates weighted multiple imputation, one of the two

population-calibrated multiple imputation approaches proposed in this thesis.

43



3
Weighted multiple imputation of a binary covariate when the

outcome variable is binary

3.1 Introduction

3.2 Imputation procedure for an incomplete binary/categorical variable
3.2.1 Derivation of the marginal weights
3.2.2 Derivation of the conditional weights

3.3 Analytic study – bias calculation in a 2 × 2 contingency table
3.3.1 Method
3.3.2 Analytic calculations
3.3.3 Veri�cation of analytic calculations using simulation

3.4 Univariate simulation study
3.4.1 Method
3.4.2 Performance measures
3.4.3 Results

3.5 Extended univariate simulation study: when there is uncertainty in estimat-
ing the population distribution
3.5.1 Method
3.5.2 Results
3.5.3 Univariate simulation studies: conclusion

3.6 Multivariate simulation studies
3.6.1 Imputation procedure
3.6.2 Method
3.6.3 Results
3.6.4 Repeated simulations for assessing performance measures
3.6.5 Multivariate simulation studies: conclusion

3.7 Summary

44



3.1 introduction

Multiple imputation (MI), as introduced in the last chapter, is a model-based alternative to simple
methods for handling missing data. MI is increasingly regarded as the standard procedure for
the analysis of partially observed data in medical research [18]. In practice, MI is commonly
implemented under the missing at random (MAR) assumption; that is, the probability of data
beingmissing does not depend on unobserved information, conditional on observed information.
However, for missing data generated under missing not at random (MNAR) mechanisms, the
standard implementation of MI assuming data are MAR might not be satisfactory.
For an incomplete variable in a given dataset, its population-level marginal distribution

might be available in an external data source. Assume that the study sample is expected to be
representative of the population in terms of the incomplete variable. If standard MI under the
MAR assumption yields a post-imputation marginal distribution of the incomplete variable
that does not agree with its known population distribution, then standard MI might not be the
appropriate approach for handling missing data, probably due to a potential MNAR mechanism.
Therefore, standard MI can potentially be improved by matching the incomplete variable’s post-
imputation distribution to the population level. As highlighted in chapter 1, the broad aim of this
thesis is to explore the use of the incomplete variable’s population distribution in the imputation
process in order to improve standard MI under general MNAR mechanisms.
This chapter proposes and evaluates the weighted multiple imputationmethod for utilising ex-

ternal information containing the incomplete variable’s population distribution in MI to calibrate
inference to the population. Throughout this thesis, the focus is on incomplete binary/categorical
variables that are included as covariates in the analysis model of interest. In particular, this
chapter explores the setting of missing data in an incomplete binary covariate of an analysis
model, when the outcome variable is also binary.
Section 3.2 describes the steps in weighted MI and explains how standard MI can be aug-

mented with appropriately calculated probability weights. These weights are derived using the
incomplete variable’s population distribution to closely match the post-imputation distribution
to the population level.
Weighted MI is then evaluated in a univariate missing data setting where missingness occurs

in a single covariate, under missingness mechanisms of increasing complexity. In particular,
section 3.3 presents an analytic study of a 2 × 2 contingency table with a fully observed outcome
variable and a single partially observed covariate. Bias in the analysis model’s parameter estimates
are derived analytically and compared between standard MI and weighted MI under different
missingness mechanisms for the covariate. Sections 3.4 and 3.5 feature univariate simulation
studies of the same setting to investigate other finite-sample properties of weighted MI.
Section 3.6 investigates a multivariate missing data setting where missingness occurs in

more than one covariate. Weighted MI is evaluated and compared to standard MI and complete
record analysis in multivariate simulation studies of a three-way contingency table. These studies
feature a fully observed outcome variable and two partially observed covariates, and different
missingness mechanisms are used for generating missing values in the covariates.
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3.2 imputation procedure for an incomplete binary/categorical variable

In weighted MI of an incomplete binary/categorical variable, the complete records are assigned
weights which are calculated based on the incomplete variable’s population marginal distribution
taken from an external dataset. The derivation of the marginal and conditional weights is
introduced in sections 3.2.1 and 3.2.2.
The procedure of the proposed weighted MI method for an incomplete binary/categorical

variable is as follows. In the imputation step, weights derived from the population marginal
distribution of the incomplete variable are attached to the complete records, and a weighted
(multinomial) logistic regression model is fitted to the complete records to obtain the maximum
likelihood estimates of the imputation model’s parameters, θ̂, and their asymptotic sampling
variance, V̂ar (θ̂). New parameters are then drawn from the large-sample normal approximation
of their posterior distribution, N(θ̂ , V̂ar (θ̂)), assuming non-informative priors. Finally, imputed
values are drawn from the (multinomial) logistic regression model using these newly drawn
parameters. Note that no weights are used when fitting the analysis model to the completed
data, since the ‘fixing’ has been done in the imputed data. This is consistent with Rubin’s MI
philosophy in which the imputation step is separated from the analysis step [20].
The rationale for the derivation of the marginal and conditional weights used in weighted

MI of an incomplete binary/categorical variable is outlined next.

3.2.1 Derivation of the marginal weights

The idea of using weights in MI is related to the technique of post-stratification weights, which
is commonly used to deal with survey non-response when the population distribution/totals
of some of the variables are known [72]. To post-stratify the sample, weights are calculated
to bring the sample distribution in line with the population. Suppose that in a survey, one
of the variables measured is ethnicity, which is categorised into four groups as White, Black,
Asian, and Other. If the population distribution of ethnicity is available, the distribution of
ethnicity among survey respondents can be compared with the population distribution. Suppose
that a proportion pobs = 0.8 of the survey respondents give their ethnicity as White, where as
the population has ppop = 0.6 in this category. The White category is over-represented in the
survey respondents, but can be made representative of the population by assigning to the White
respondents a post-stratification weight wps < 1 such that

wps = 1/ (pobs/ppop) = 1/ (0.8/0.6) = 0.75.
A discussion on post-stratification weighting can be found in Raghunathan [72], chapter 2. In
adapting this idea toMI, it is necessary to address the complication arising because the completed
data obtained after MI consist of both observed and imputed (missing) data.
Naive use of post-stratification weights in MI will recover the correct population distribution

in the imputed data, but not when combined with the observed data. Since the observed data
remain the same, the distribution in the completed (observed and imputed) data will not be
matched to that in the population. Therefore, some compensation for the lack of representation
in the observed data is needed in the imputed data, so that the correct population distribution can
be recovered after imputation. Continuing with the survey example, suppose that 200 individuals
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are surveyed, 100 of whom respond with information about their ethnicity. A proportion pobs =
0.8 of these 100 respondents is in the White group. If the population proportion of this group
is ppop = 0.6, the survey sample is expected to contain 120 White individuals. This implies that
among the 100 individuals with incomplete ethnicity, missing values in 40 individuals need to be
imputed as White, i.e. the proportion of the White ethnic group required in the missing data,
preq, is equal to 0.4. To make the completed data in this category representative of the population,
respondents of this category need to be weighted in the imputation model by

1/ (pobs/preq) = 1/(0.8/0.4) = 0.5.
This weight is smaller than the corresponding naive post-stratification weight, since it compen-
sates for the over-representation among the respondents of White ethnicity.
More generally, suppose that data of an L-level variable x are collected for a sample of size n,

resulting in x being observed for nobs subjects and missing for nmis subjects, nobs + nmis = n. Let
pobsl and preql denote the level-l proportion of x in the observed and imputed data, respectively,
such that pobsl nobs = nobsl , and p

req
l nmis = nreql , l = 1, . . . , L. Let ppopl denote the level-l proportion

of x in the population, which is assumed to be known from an external dataset. The aim here
is to find preql for each level of x such that the number of subjects in the completed data after
imputation is equal to the expected number implied by the corresponding population proportion,
ppopl n = nobsl + nreql . The level-l proportion of x required in the imputed data, p

req
l , is estimated

from the following

ppopl n = pobsl nobs + preql nmis;

→ preql = ppopl n − pobsl nobs

nmis
. (3.1)

The weight for group l , which is referred to as themarginal weight and denoted by wml , is

wml = 1/(pobsl /preql ).
3.2.2 Derivation of the conditional weights

The marginal weights introduced above only depend on the population distribution of the
incomplete variable. However, if there are (fully observed) covariates in the imputation model,
the associations of these variables with the incomplete variable’s distribution are not reflected in
such weights. This is demonstrated in an example of a 2×2 contingency table in section 3.3, where
marginal weighted MI does not recover the correct distribution of the incomplete covariate x
when missingness in x depends on the outcome variable y.
To address this, the marginal weights are adjusted to obtain another set of weights, termed

the conditional weights, which account for covariates in the imputation model. These weights
are derived using the marginal distribution of the incomplete variable obtained after having
estimated the parameters of an imputation model (under the MAR assumption) in the complete
records. In other words, instead of deriving the weights using the incomplete variable’s observed
distribution, its predicted distribution in completed data yielded by standard MI is weighted
against the population distribution.
Suppose that an imputation model is fitted to the complete records, and the corresponding

predicted probabilities of the incomplete variable (averaged over the covariates) are obtained

47



and applied to the missing data. Let ppredl denote the resulting predicted level-l proportion of x
in the completed data, then the level-l proportion required in the imputed data is given by

preql = ppopl n − ppredl nobs

nmis
, (3.2)

and the conditional weight for group l , denoted by wcl , is

wcl = 1/(ppredl /preql ).
In this approach, the effects of covariates in the imputation model are reflected in the predicted
probabilities ppredl , which are then used to derive the conditional weights for weighted MI. Note
that ppred is obtained once in the observed data, and used across the imputations.
Weights can become non-positive when the numerators of (3.1) and (3.2) are non-positive.

Non-positive weights can be attributed to the following reasons.
1. Sampling variation can result in the number of subjects in group l observed in the sample to
be slightly higher than what is implied by the reference proportion;

2. Some subjects who in truth do not belong to group l are misclassified into this group in the
sample, which can happen due to errors in data recording or when the incomplete variable
contains many similar groups;

3. The MNAR mechanism is such that data are only ever missing in one category, which is also
accompanied by sampling variation. For example, suppose the level-l proportion of x in the
population is 0.3, which implies that in a sample of 1007 subjects, 302 of them are expected to
be in this group. However, due to random sampling, there are in fact 304 subjects sampled to
be in group l , among whom x is only missing for one subject, i.e. nobsl > ppopl N . As a result,
the weight for this category will be negative, but very close to 0;

4. The sample is not representative of the reference population in terms of x.
Within the context of this thesis, only positive probability weights are used in weighted

MI, as a negative weight implies that some subjects should be ‘removed’ from the observed
data. Therefore, negative weights can be set to a very small positive value close to 0, and the
corresponding groups get imputed very infrequently. However, when a category is markedly
over-represented in the observed data, this means that it may remain over-represented even if
no missing values are imputed to this category. In such situations, the proposed weighted MI
procedure cannot produce completed datasets whose incomplete variable distribution exactly
matches the population level.
To implement marginal and conditional weighted MI of an incomplete binary/categorical

variable, I have written and released two Stata commands, mi impute wlogit/wmlogit [73]
(available on SSC). These are based on the Stata community-contributed command uvis [74]
which performs univariate MI of an incomplete variable.
The next section describes an analytic study which aims to explore the settings in which

marginal and conditional weighted MI can successfully remove bias in a 2 × 2 contingency table.
3.3 analytic study – bias calculation in a 2 × 2 contingency table

This analytic study is conducted to analytically explore bias in weighted MI in a univariate
missing data setting, where missingness occurs in a single covariate in the analysis model. A
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working example of a 2 × 2 contingency table with a fully observed binary outcome variable y
and a partially observed binary covariate x is chosen. Bias in the analysis model’s parameter
estimates is derived analytically for standard MI (assuming data are MAR) and marginal and
conditional weighted MI under several missingness mechanisms for x.
This exercise allows for a comparison between complete record analysis, standard MI, and

marginal and conditional weighted MI in terms of bias; and for identifying potential scenarios
where using weighted MI to accommodate missing values in the covariate is preferred to the
standard MI approach. The results here apply directly to higher dimensional contingency tables
with one partially observed variable, but the algebra is considerably more complex.

3.3.1 Method

Suppose it is of interest to study the association between a binary covariate x whose levels are
indexed by l and a binary outcome y whose levels are indexed by k; l and k take values 0 or
1. The full-data distribution of x and y (table 3.1) is assumed to be identical to the population
distribution, such that the population marginal distribution of x is given by ppopl = n l+

n++ .
The analysis model is

logit [p (y = 1 ∣ x)] = β0 + βxx , (3.3)

whose parameters can be written in terms of cell counts as

β0 = ln( n01n00
) , βx = ln(n11n00n01n10

) .
In addition, suppose that some values of x are set to missing. Let r be the response indicator

taking values 1 if x is observed, and 0 if x is missing. Fourmissingnessmechanisms are considered
for x in this study; these are all possible missingness mechanisms for missing values in x in this
setting (excluding an interaction between x and y in the selection model for x). Missingness
mechanism assumptions for x as well as the corresponding selection models and cell-wise
probabilities of observing x are presented in table 3.2. Observed cell count nobsl k can be written as
a product of the full-data cell count nl k and the cell-wise probability p (rl k = 1) of observing x,
such that nobsl k = nl kp (rl k = 1).
Missing values in x are imputed using standard MI (under the MAR assumption) and

marginal and conditional weighted MI, after which the β parameters in the analysis model (3.3)
are estimated, and bias defined as β̂ − β is calculated.
In standard MI, the imputation model

logit [p (x = 1 ∣ y)] = θ0 + θ y y

Table 3.1. Analytic study: distribution of x and y in the full data.

y = 0 y = 1 ∑1y=0
x = 0 n00 n01 n0+
x = 1 n10 n11 n1+
∑1x=0 n+0 n+1 n++
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Table 3.2. Analytic study: models for missingness in x.

Linear predictor of selection model
logit [p [(r = 1 ∣ x , y)] Selection probability

p (rl k = 1) Label

α0 pr M1
α0 + αy y prk M2
α0 + αxx pr l M3
α0 + αxx + αy y pr l k M4

⋆ Note: r: response indicator of x; l and k: index categories of x and y, respectively; l , k take values 0 or 1.

is fitted to the nobs++ complete records to obtain the θ estimates, such that

θ̂s0 = ln(nobs10nobs00
) , θ̂sy = ln(nobs11 nobs00

nobs01 nobs10
) , p̂sl k = nobsl k

nobs+k
, (3.4)

where p̂sl k denotes the predicted probability of x = l , given y = k in the complete records; l
and k take values 0 or 1. In weighted MI, the same imputation model is fitted to the weighted
complete records, nobsl k wm/cl , where a marginal/conditional weight wm/cl is assigned to subjects
with observed x = l . Parameter estimates and predicted probabilities of the weighted imputation
model are

θ̂m/c0 = ln(nobs10 wm/c1
nobs00 wm/c0

) ; θ̂m/cy = ln(nobs11 nobs00
nobs01 nobs10

) ; p̂m/cl k = nobsl k wm/cl∑1l=0 nobsl k wm/cl
. (3.5)

In marginal weighted MI, the level-l proportion of x required among the imputed values,
preql , and the weight, w

m
l , are

preql = nl+ − nobsl+
nmis++

;

wml = nl+ − nobsl+
nmis++

⋅ nobs++
nobsl+

.

In conditional weighted MI, these become

preql = nl+ − ppredl nobs++
nmis++

;

wcl = nl+ − ppredl nobs++
nmis++

⋅ 1
ppredl

,

where

ppredl = nobsl+ +∑1k=0 p̂sl knmis+k
n++

.

3.3.2 Analytic calculations

Full analytic calculations of bias in standardMI andmarginal and conditional weightedMI under
missingness models M1–M4 are presented below.
Let n̂l k denote the estimated count for cell (l , k), such that n̂l k = nl k b̂l k , where b̂l k denotes

the estimated cell-wise bias. When b̂l k ≠ 1, bias in the estimates of model (3.3)’s parameters can
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generally be written as

Bias(β̂0) = ln( n01b̂01
n00b̂00

) − ln( n01
n00

) = ln( b̂01
b̂00

) ;
Bias(β̂x) = ln(n00b̂00n11b̂11

n10b̂10n01b̂01
) − ln(n00n11

n10n01
) = ln( b̂00b̂11

b̂10b̂01
) .

1. M1 – bias when x is MCAR
The cell-wise probability of observing X is the same for all cells, p (rl k = 1) = pr . Standard
MI leads to unbiased estimates of cell counts as shown below

n̂sl k = nobsl k + nreql k

= nobsl k + nmis+k
nobsl k
nobs+k= nobsl k

n+k
nobs+k= nl kpr
1
pr= nl k ,

which implies that the estimates of model (3.3)’s parameters are unbiased, as expected.
The marginal weight, wml , in weighted MI is given by

wml = nl+(1 − pr)
n++(1 − pr) ⋅ n++prn j+pr

= 1.
Thus, marginal weighted MI is equivalent to standard MI and also provides unbiased parame-
ter estimates of model (3.3).
Since estimated cell counts are unbiased in standard MI, the level-l predicted probability of x
in the completed data, ppredl , is also unbiased, ppredl = n l+

n++ . The conditional weight, w
c
l , is

wcl = nl+ − n l+
n++ n++pr

n++(1 − pr) ⋅ n++
nl+

= 1,
which implies that conditional weighted MI also provides unbiased estimates of the analysis
model’s parameters.

2. M2 – bias when x is MAR conditional on y
The cell-wise probability of observing x is dependent on y, p (rl k = 1) = prk . Since standard
MI gives unbiased estimates of cell counts as shown below, parameter estimates of model (3.3)
are also unbiased in standard MI,

n̂sl k = nobsl k + nreql k

= nobsl k + nmis+k
nobsl k
nobs+k= nobsl k

n+k
nobs+k= nl kprk
1
prk= nl k .
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Estimated count for cell (l , k) in marginal weighted MI, n̂ml k , is biased as follows
n̂ml k = nobsl k + nreql k

= nl kprk + nmis+k
nl kwml∑1l=0 nl kwml

= nl k (prk + nmis+k w
m
l∑1l=0 nl kwml )

= nl k b̂ml k ,

which implies that marginal weighted MI produces biased parameter estimates of model (3.3).
Since ppredl = n l+

n++ in standard MI, conditional weights in weighted MI can be shown to be
equal to 1, as

wcl = nl+ − ppredl nobs++
nmis++

⋅ n++
nl+

= nl+ − n l+
n++ n

obs
++

nmis++
⋅ n++
nl+

= nl+
nmis++
n++

nmis++
⋅ n++
nl+= 1.

Hence, conditional weighted MI is equivalent to standard MI, and is unbiased for model
(3.3)’s parameter estimates.

3. M3 – bias when x is MNAR dependent on x
The cell-wise probability of observing x is dependent on x, p (rl k = 1) = pr l . Standard MI
produces biased estimates of cell counts as shown below

n̂sl k = nobsl k + nreql k

= nobsl k + nmis+k
nobsl k
nobs+k= nobsl k

n+k
nobs+k

= nl k ( pr l ∑1l=0 nl k∑1l=0 nl kpr l )= nl k b̂sl k ,

which leads to a biased estimate of β0 but an unbiased estimate of βx , since

ln( b̂s00b̂s11
b̂s10b̂s01

) = ln⎛⎜⎜⎝
pr0 ∑1l=0 n l0
∑1l=0 n l0pr l

⋅ pr1 ∑1l=0 n l 1
∑1l=0 n l 1pr l

pr1 ∑1l=0 n l0
∑1l=0 n l0pr l

⋅ pr0 ∑1l=0 n l 1
∑1l=0 n l 1pr l

⎞⎟⎟⎠
= ln (1)
= 0.

In marginal weighted MI, the marginal weights are given by

wl = nmisl+
nmis++

⋅ nobs++
nobsl+
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= nl+ (1 − pr l )∑1l=0 nl+ (1 − pr l ) ⋅
∑1l=0 nl+pr l

nl+pr l
,

from which the ratio of the two marginal weights for x = 1 and x = 0 can be written as
wm1
wm0

= pr0 (1 − pr1)
pr1 (1 − pr0) .

For l = 1, estimated count for cell (1, k) is unbiased under marginal weighted MI as follows
n̂m1k = nobs1k + nreq1k

= n1kpr1 + nmis+k
n1kpr1wm1

n0kpr0wm0 + n1kpr1wm1

= n1k (pr1 + nmis+k pr1w
m
1

n0kpr0wm0 + n1kpr1wm1
)

= n1k
⎛⎜⎝pr1 +

nmis+k pr1
wm1
wm0

n0kpr0 + n1kpr1
wm1
wm0

⎞⎟⎠
= n1k

⎧⎪⎪⎪⎨⎪⎪⎪⎩pr1 +
[n0k (1 − pr0) + n1k (1 − pr1)] pr0(1−pr1)

(1−pr0)

n0kpr0 + n1k
pr0(1−pr1)
(1−pr0)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= n1k {pr1 + [n0k (1 − pr0) + n1k (1 − pr1)] pr0 (1 − pr1)[n0k (1 − pr0) + n1k (1 − pr1)] pr0 }
= n1k .

Similarly, marginal weighted MI produces unbiased estimates of cell counts for l = 0, and the
method is therefore unbiased for model (3.3)’s parameter estimates.
In conditional weighted MI, the level-l predicted probability of x in the completed data, ppredl ,
is given by

ppredl = nobsl+ + nreql+
n++

= nobsl+ +∑1k=0 p̂sl knmis+k
n++

= ∑
1
k=0 n+k

nobsl k
nobs+k

n++
. (3.6)

Estimated count for cell (l , k) is therefore biased as shown below
n̂cl k = nobsl k + nreql k

= nl kpr l + nmis+k
nl kpr lwcl∑1l=0 nl kpr lwcl

= nl kpr l (1 + nmis+k w
c
l∑1l=0 nl kpr lwcl )= nl k b̂cl k .

Consequently, conditional weighted MI produces biased estimates of model (3.3)’s parameters.
In initial two-dimensional simulations performed to verify the calculations when α0 is fixed to
a single value (appendix A.1), bias in conditional weighted MI appears negligible. To confirm
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that this bias exists, note that the formulae for marginal and conditional weights are given by

wml = ppopl n − pobsl nobs

nmispobsl
;

wcl = ppopl n − ppredl nobs

nmisppredl

,

respectively, which only differ in pobsl and ppredl . Since marginal weighted MI is unbiased
under this missingness mechanism, conditional weighted MI is also unbiased if ppredl = pobsl .
From (3.6), these two probabilities can be written as

ppredl = 1∑
k=0

n+k
n++

⋅ nobsl k
nobs+k

= 1∑
k=0

p (x = l ∣ y = k, r = 1) p (y = k) ;
pobsl = p (x = l ∣ r = 1)

= 1∑
k=0

p (x = l ∣ y = k, r = 1) p (y = k ∣ r = 1) .
Under this missingness mechanism, since missingness in x does not depend on y after condi-
tioning on x, the probability of y conditional on x is therefore the same among the missing
and observed x, i.e. p (y = k ∣ x = l , r = 1) = p (y = k ∣ x = l). The marginal probability of y
in the observed data can be written as

p (y = k ∣ r = 1) = 1∑
l=0

p (y = k ∣ x = l , r = 1) p (x = l ∣ r = 1)
= 1∑

l=0
p (y = k ∣ x = l) p (x = l ∣ r = 1)

≠ 1∑
l=0

p (y = k ∣ x = l) p (x = l) . (3.7)

Since∑1l=0 p (y = k ∣ x = l) p (x = l) = p (y = k), (3.7) implies that p (y = k ∣ r = 1) ≠ p (y = k),
which means that ppredl ≠ pobsl . Hence, bias in conditional weighted MI does exist when miss-
ingness in x depends on x.

4. M4 – bias when x is MNAR dependent on x and y
The cell-wise probability of observing x is dependent on both x and y, p (rl k = 1) = pr l k .
Estimated count for cell (l , k) in standard MI is given by

n̂sl k = nobsl k + nreql k

= nobsl k + nmis+k
nobsl k
nobs+k= nobsl k

n+k
nobs+k

= nl k ( pr l k ∑1l=0 nl k∑1l=0 nl kpr l k )= nl k b̂sl k ,

which leads to bias in both parameter estimates of model (3.3).
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In marginal weighted MI, the estimated count for cell (l , k) can be written as
n̂ml k = nobsl k + nreql k

= nl kpr l k + nmis+k
nl kpr l kwml∑1l=0 nl kpr l kwml

= nl k (pr l k + nmis+k pr l kw
m
l∑1l=0 nl kpr l kwml )

= nl k b̂ml k ,

which also results in bias in both parameter estimates of model (3.3).
Similarly in conditional weighted MI, the estimated count for cell (l , k) is

n̂cl k = nobsl k + nreql k

= nl kpr l k + nmis+k
nl kpr l kwcl∑1l=0 nl kpr l kwcl

= nl k (pr l k + nmis+k pr l kw
c
l∑1l=0 nl kpr l kwcl )= nl k b̂cl k .

Therefore, conditional weighted MI also yields biased parameter estimates of the analysis
model (3.3).

3.3.3 Verification of analytic calculations using simulation

The analytic calculations presented in section 3.3.2 are verified by simulating a full-data sample
with n = 10 000 observations of x and y from the following models

x ∼ Bernoulli (ppopx = 0.7) ;
logit [p (y = 1 ∣ x)] = β0 + βxx ,

where β0 = ln (0.5) and βx = ln (1.5). Missing values in x are generated using selection models
M1–M4 with a range of values for the selection parameters α (table 3.3).
Bias in β̂0 and β̂x is calculated for standard MI and marginal and conditional weighted MI

as the difference between β̂0 and β̂x and their true values, ln (0.5) and ln (1.5), respectively.
Parameter estimates are derived analytically by following the calculations in section 3.3.2, and
obtained empirically by creatingM = 10 imputations of missing values in x using the three MI
Table 3.3. Analytic study: values of selection parameters for generating missingness in x used in
simulations conducted to verify analytic calculations.

Missingness
model

Linear predictor of selection model
logit [p [(r = 1 ∣ x , y)] Selection parameter % missing x

α0 αx αy

M1 α0 [−3, 3] 5–95
M2 α0 + αy y [−3, 3] [−3, 3] 3–97
M3 α0 + αxx [−3, 3] [−3, 3] 2–98
M4 α0 + αxx + αy y 0.5 [−3, 3] [−3, 3] 9–84

⋆ Note: r: response indicator of x.
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methods under evaluation. All simulations are performed in Stata 14 [44], where mi impute

logit [75] is used for standard MI, my command mi impute wlogit [73] for marginal and
conditional weighted MI, and mi estimate: logit [75] for fitting the analysis model to the
completed datasets and combining the results using Rubin’s rules [20, 21].
Figures 3.1–3.3 present the analytic bias in standard MI, marginal and conditional weighted

MI under MAR and MNAR mechanisms with the various values of the selection parameters.
Results of the analysis of complete records are also included for comparison.
Overall, the empirical results closely match the analytic results (appendix A.1). When x is

MCAR (M1), all methods provide unbiased parameter estimates, as expected (appendix A.1).
When x is MAR conditional on y (M2), standard MI and conditional weighted MI are

unbiased, while bias is observed for complete record analysis (CRA) in β̂0, and for marginal
weightedMI in both parameter estimates. This bias is due to the marginal weights not accounting
for the association of x and y in the imputation model for x. As a result, marginal weights do not
successfully recover the correct distribution of x after MI.
Both parameter estimates are unbiased in marginal weightedMI when x is MNAR dependent

on x (M3), while standard MI leads to noticeable bias in the estimate of β0. Bias in conditional
weightedMI is small and occurs for extreme values of the selection parameters. Sincemissingness
in x does not depend on y under M3, CRA is unbiased as the theory suggests.
Under the last missingness mechanism where x is MNAR dependent on both x and y (M4),

bias in parameter estimates appears to be the smallest in conditional weighted MI. Although bias
is present in both standard MI and marginal weighted MI, the magnitude of bias is smaller in
marginal weighted MI compared to standard MI. Under this missingness model, conditional
weighted MI can be regarded as a hybrid of marginal weighted MI and standard MI. The condi-
tional weights correct for some bias introduced by x in the selection model in a similar manner
to the marginal weights under M3; the method also alleviates some residual bias similarly to
standard MI under M2.
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Figure 3.1. Analytic study: analytic bias when x is MAR conditional on y (M2).
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Figure 3.2. Analytic study: analytic bias when x is MNAR dependent on x (M3).
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⋆ Note: selection parameters α0 ∈ [−3, 3], αx ∈ [−3, 3]; corresponding percentages of missing x are presented for
extreme values (±3) of the α parameters. 58



Figure 3.3. Analytic study: analytic bias when x is MNAR dependent on x and y (M4).
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⋆ Note: selection parameters α0 = 0.5, αx ∈ [−3, 3], αy ∈ [−3, 3]; corresponding percentages of missing x are
presented for extreme values (±3) of the α parameters. 59



3.4 univariate simulation study

This section reports a univariate simulation study conducted to examine other performance
measures of weighted MI of a binary covariate, when the fully observed outcome variable is also
binary. The aims of this simulation study are to examine finite-sample properties of weighted MI
over repeated simulations in terms of bias in parameter estimates, efficiency, and coverage of
95% confidence intervals (CI); and to investigate when assumptions of the method are correct
and incorrect.
The order of the simulation studies presented in this thesis is generic and broadly involves

the following steps.
1. Generate the ‘full data’ under the chosen data generating mechanism(s);
2. Make data missing with the chosen missingness mechanism(s);
3. Perform the analysis of interest on complete records (CRA);
4. Impute missing values under the chosen MI method(s) to createM completed datasets;
5. Fit the analysis model to each of the M completed datasets and combine the results using
Rubin’s rules [20, 21].

Steps 1–5 are then repeated to evaluate frequentist properties of the methods under comparison.
Note that the term ‘univariate’ is used here to refer to the nature of missing data in the analysis,

where values are missing in a single incomplete covariate. Multivariate simulation studies are
presented later in this chapter; the term ‘multivariate’ refers to settings wheremissing values occur
in more than one covariate. These are consistent with the use of terminologies for describing
missingness patterns in section 2.2.

3.4.1 Method

Similar to the analytic study presented in section 3.3, the analysis model in this simulation study
is a logistic regression of a fully observed binary outcome y on an incomplete binary covariate x.
As before, marginal and conditional weighted MI are compared to standard MI under different
missingness mechanisms. The data generating mechanism and analysis procedures are as follows.
1. Simulate n = 5 000 complete values of the binary {0, 1} covariate x and binary {0, 1} outcome

y from the models

x ∼ Bernoulli (ppopx = 0.7) ;
logit [p (y = 1 ∣ x)] = β0 + βxx , (3.8)

where β0 and βx are arbitrarily set to ln (0.5) and ln (1.5), respectively. The same values of
the β parameters are used throughout to make bias comparable across all simulation settings.
This sample size is chosen to minimise the issue of small-sample bias associated with the
logistic regression [76];

2. Simulate a binary indicator of response r of x from each of the selection models M1–M4
(table 3.2). Values of 1.5 and −1.5 are chosen for αy and αx in M2 and M3, respectively, to
reflect strong odds ratios (OR) of observing x (OR = 4.48 and 0.22, respectively). For M4,
αy = 1.5 and αx = −1.5 are chosen as, according to the results depicted in figure 3.3, bias in the
three MI methods under evaluation is likely to be apparent with these coefficients predicting
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missingness in x. For all selection models, α0 is altered to achieve approximately 45% missing
x. For M1, α0 is calculated directly as ln ( 0.550.45); for M2–M4, α0 = −0.2; 1.35; and 0.75 appear
to work well;

3. For i = 1, . . . , 5 000, set xi to missing if ri = 0;
4. Impute missing values in x M = 50 times using standard MI, marginal and conditional
weighted MI in turn;

5. For each MI method, fit the analysis model (3.8) to each completed dataset and combine the
results using Rubin’s rules [20, 21].
Steps 1–5 are repeated S = 1 000 times under each of the four missingness models M1–M4, so

the same set of simulated independent datasets is used to compare the three MI methods under
the same missingness scenario, but a different set of datasets is generated for each missingness
scenario [77]. The parameters of interest are β0 and βx , although in practice βx is usually of more
interest. Bias, efficiency of β̂0 and β̂x in terms of the empirical standard errors, and coverage of
95% CIs are calculated over 1 000 repetitions for each combination of simulation settings [78],
with analyses of the full data (i.e. before any data are set to missing) and complete records also
provided for reference. All simulations are performed in Stata 14 [44] and simulated datasets are
analysed using the community-contributed command simsum [78].

3.4.2 Performance measures

Assume that the true parameter of interest is β and that the sth simulated dataset (s = 1, . . . , S)
yields a point estimate β̂s with standard error (SE) SEs. Define the following quantities

β̂ = 1
S

S∑
s=1

β̂s;

V̂ar (β̂) = 1
S − 1

S∑
s=1

(β̂s − β)2 ;
Three performance measures over repeated simulations are summarised below, with Monte-

Carlo standard error (MCSE) defined as the standard deviation of an estimated quantity over
repeated simulations [78].
1. Bias in point estimate is estimated as

Bias = β̂ − β;

MCSE =
¿ÁÁÀ V̂ar (β̂)

S
.

2a. The empirical standard error is estimated as the standard deviation of β̂ over S repetitions

Empirical SE = √
V̂ar (β̂);

MCSE =
¿ÁÁÀ V̂ar (β̂)
2 (S − 1) .

2b. The average model standard error is defined as

SE = 1
S

S∑
s=1
SEs;
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MCSE =
¿ÁÁÀ 1

S

S∑
s=1

(SEs − SE)2.
3. Coverage of 95% CIs is defined as the percentage of times the 95% CIs of β̂s contain the true
value of β

Coverage C = 1
S

S∑
s=1

I [∣ β̂s − β ∣< z0.025SEs] ;
MCSE =

√
C (1 − C)

S
,

where I [] denotes the indicator function taking values 1 if the statement inside the brackets is
true and 0 otherwise, and z0.025 is the 0.025 quantile of the standard normal distribution.

3.4.3 Results

Results of the univariate simulation study are summarised graphically in figures 3.4–3.6. The full
data and CRA both give the results that the theory predicts. Analysis of the full data is always
unbiased with coverage close to the 95% level and the smallest standard errors of all methods.
CRA is unbiased under M1 and M3 as expected [78], but bias is observed under the other two
missingness mechanisms. Coverage is correspondingly low when bias is present, and efficiency
is lower than that in the full data.
Under M1, when x is MCAR, all methods appear unbiased with the empirical standard errors

slightly larger than the average model standard errors and correct coverage. This is as expected.
Under M2, when x is MAR conditional on y, only standard MI and conditional weighted MI

are unbiased for both parameter estimates. CRA is severely biased in the estimate of β0 and the
corresponding coverage of 95% CIs falls to 0. However, the method provides an unbiased estimate
of βx with correct coverage. This result is specific to this simulation set-up, where the probability
of being a complete record depends on the outcome, and the analysis model is a logistic regression.
This mimics case-control sampling, where the log odds of the logistic regression are biased in
case-control studies but the log odds ratio is not [39, 79]. The covariate–outcome association can
therefore be estimated consistently among the complete records. The average model standard
errors are similar in standard MI and conditional weighted MI, and they are comparable to their
empirical counterparts. This results in correct coverage of 95% CIs. Bias is seen in both parameter
estimates in marginal weighted MI, which may explain the discrepancy between the empirical
and average model standard errors, as well as the drop in coverage.
Under M3, when x is MNAR dependent on x, standard MI is biased in the estimate of β0

but provides an unbiased estimate of βx , which agrees with findings of the analytic study. Since
missingness in the covariate does not depend on the outcome, conditional on the covariate, CRA
also yields unbiased parameter estimates. Generally, in logistic regression with an incomplete
covariate x, when the missingness mechanism is such that both standard MI and CRA are
unbiased, standard MI tends not to be more efficient than CRA in estimating βx [39]. This is
because without auxiliary variables in the imputation model, standard MI does not carry any
extra information on the odds ratio compared to CRA. This is seen in the simulation results for
βx under models M1–M3. Given that CRA, standard MI, and marginal weighted MI are unbiased
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for β̂x under M3, there is a small gain in efficiency in the estimate of βx in marginal weighted
MI, as the empirical standard error is slightly smaller in marginal weighted MI. The efficiency
gain in marginal weighted MI compared to CRA is expected to be more apparent in multivariate
missing data settings, particularly for incomplete covariates with lower levels of missing data [39].
Although bias in conditional weighted MI is confirmed in the analytic study, this bias appears to
be minuscule over repeated simulations, and results in terms of the standard errors and coverage
are generally similar to that in marginal weighted MI. When the methods under evaluation are
unbiased, their corresponding coverage of 95% CIs generally attains the nominal level.
UnderM4, when x isMNARdependent on x and y, standardMI andCRA are againmarkedly

biased in both parameter estimates, leading to coverage close or equal to 0. Conditional weighted
MI is the least biased method, whose coverage remains relatively high at just below the 95% level.
Although present, bias in marginal weighted MI is less pronounced compared to standard MI
and CRA. Marginal weighted MI corrects bias introduced when missingness in x only depends
on the values of x, but fails to address bias introduced by the presence of y in the missingness
model for x. Coverage therefore falls to below the 90% mark.

Figure 3.4. Univariate simulation study: bias in point estimates under different missingness
mechanisms for x.
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⋆ Note: M1: missingness in x does not depend on x or y; M2: missingness in x depends on y; M3: missingness in x
depends on x; M4: missingness in x depends on (x , y); β0 = −0.693, βx = 0.405; error bars: ±1.96×Monte Carlo
standard errors; hollow circles: out-of-range values.
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Figure 3.5. Univariate simulation study: empirical and average model standard errors under
different missingness mechanisms for x.
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Figure 3.6. Univariate simulation study: coverage of nominal 95% confidence intervals under
different missingness mechanisms for x.
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depends on x; M4: missingness in x depends on (x , y); error bars: ±1.96×Monte Carlo standard errors; hollow
circles: out-of-range values.

3.5 extended univariate simulation study: when there is uncertainty in estimating the
population distribution

So far, the population distribution of the incomplete covariate used to derive the weights in
weighted MI is assumed to be obtained from a population census or equivalent. In other words,
it is assumed that there is no uncertainty associated with estimating the reference distribution,
and hence, the weights. In weighted MI, the uncertainty in weights should be ignored when
the population distribution of the incomplete variable is assumed to be ‘known’, unless the
reference population is not a census or equivalent. Since MI is a Bayesian procedure in which
all sources of uncertainty are modelled, this explains why, if there is no uncertainty about the
population distribution of the incomplete variable, weights can be calculated once and used
across all imputations.
When there is uncertainty in estimating the population distribution of an incomplete bina-

ry/categorical covariate, it raises a question of how this uncertainty should be incorporated in
the imputation process. A natural approach for dealing with this extra source of uncertainty
would be to draw values of the population proportions from their distribution and calculate the
weights using these draws, so that this uncertainty is reflected in the MI variance estimation.
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This additional step is expected to have an effect on the between-imputation variance of Rubin’s
variance estimator.
An extension of the univariate simulation study presented in section 3.4 is discussed next.

This extended simulation study explores the setting where the reference distribution is not ‘known’
and is estimated from an external dataset, e.g. when the reference distribution is assumed to be
estimated in an external population survey instead of a census.

3.5.1 Method

This extended univariate simulation study of a fully observed binary outcome y and a partially
observed binary covariate x follows the same method described in section 3.4.1, except that two
variations of the population proportions of x are evaluated in the imputation step of marginal
and conditional weighted MI. The reference distribution is assumed to either come from a census
or equivalent (case 1), or be estimated in an external dataset of larger size (case 2) or smaller size
(case 3) than the study sample.
Suppose that in an external dataset of size nex which comes from the same population as the

study sample, the sample proportion p̂popx provides an unbiased estimate of the population propor-
tion ppopx . Assuming that the sampling distribution of the sample proportions is approximately
normal, its standard error is given by

SE (p̂popx ) =
¿ÁÁÀ p̂popx (1 − p̂popx )

nex
.

The data generating mechanism and analysis procedures are as follows.
1. For cases 2 and 3, the following two steps are performed to incorporate the sampling be-
haviour of p̂popx , which is estimated in an external dataset of size nex, into the data generating
mechanism in repeated simulations.
a. Simulate nex = 10 000 (case 2) or 1 000 (case 3) complete values of the binary {0, 1}
covariate x from the model

x ∼ Bernoulli (ppopx = 0.7) ;
b. Obtain the sample proportion, p̂popx , of x, which is an unbiased estimate of the population
proportion, ppopx ;

2. Simulate n = 5 000 complete values of the binary {0, 1} covariate x and binary {0, 1} outcome
y from the models

x ∼ Bernoulli (ppopx = 0.7) ;
logit [p (y = 1 ∣ x)] = β0 + βxx , (3.9)

where β0 and βx are arbitrarily set to ln (0.5) and ln (1.5), respectively. The same values of
the β coefficients are used throughout to make bias comparable across all simulation settings;

3. Simulate a binary indicator of response r of x from each of the selection models M1–M4
(table 3.2). Values of 1.5 and −1.5 are chosen for αy and αx in M2 and M3, respectively.
For M4, αy = 1.5 and αx = −1.5 are used. In all selection models, α0 is altered to achieve
approximately 45% missing x. For M1, α0 is calculated directly as ln ( 0.550.45); for M2–M4,
α0 = −0.2; 1.35; and 0.75 are used;
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4. For i = 1, . . . , 5 000, set xi to missing if ri = 0;
5. Impute missing values in x M = 50 times using marginal and conditional weighted MI in
turn, by following the below steps for each of the imputations in cases 2 and 3.
a. Draw a value ṗpopx from the normal approximation N(p̂popx , p̂

pop
x (1−p̂

pop
x )

nex ) , with values
of nex = 10 000 (case 2) and 1 000 (case 3). This is done by first taking a draw u̇ from
the standard normal distribution, u ∼ N (0, 1), followed by calculating the draw ṗpopx =
p̂popx + u̇

√
p̂popx (1−p̂

pop
x )

nex ;
b. Calculate the marginal and conditional weights with ṗpopx as the reference proportion;
c. Perform marginal and conditional weighted MI using these weights;

6. For each MI method, fit the analysis model (3.9) to each completed dataset and combine the
results using Rubin’s rules [20, 21].
Step 5 is designed to mimic the full Bayesian sampling process, which is always the aim in

MI. Again, steps 1–6 are repeated S = 1 000 times under each of the four missingness models
M1–M4, so the same set of simulated independent datasets is used to compare the three MI
methods under the same missingness scenario, but a different set of datasets is generated for
each missingness scenario [77]. The parameters of interest are β0 and βx . Bias in β̂0 and β̂x ,
efficiency in terms of the empirical standard errors, and coverage of 95% CIs are calculated over
1000 repetitions for each combination of simulation settings [78], with analyses of the full data
and complete records also provided for comparison.
All simulations are performed in Stata 14 [44]. For cases 2 and 3 in step 5, marginal and con-

ditional weighted MI are performed using an adaptation of my command mi impute wlogit

[73].

3.5.2 Results

Figures 3.7–3.9 summarise the results of the extended univariate simulation study for marginal
and conditional weighted MI under the various missingness mechanisms for x. Results for both
weighted MI methods in case 1 are discussed in section 3.4.3.
Under M3, when missingness in x depends only on x, the imputation process encounters

negativeweights inweightedMI in 149 (15%) repetitionswhen nex = 1 000. Someof the incomplete
datasets with negative weights are recreated from the corresponding states of the random number
generator, and values of the negative weights are very close to 0. With the chosen coefficients for
generating missingness in x, the majority of missing values in x occur for x = 1 (αx = −1.5). This
missingness mechanism, together with the increased variation in the estimated proportions of
x when nex = 1 000, can lead to negative weights where ṗpopx n < pobsx nobs. Similarly, under M4
when missingness in x depends on both x and y, negative weights are encountered in weighted
MI in 161 (16%) repetitions, also when nex = 1 000. The negative weights w0 are set to 0.00001;
the log odds of the imputation model are therefore increased by a large factor ln ( w1

w0 ), which
ensures that the predicted probability of x = 1 in the imputed data is very close to 1.
Bias in point estimates is similar when ppopx is invariant or estimated in a large external dataset

(cases 1 and 2). Bias slightly increases, particularly under M2 and M4, when ppopx is estimated in
a small external dataset with higher variance (case 3, figure 3.7).
Empirical standard errors and average model standard errors are comparable and remain
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stable for both weighted MI methods across the three cases under M1 and M3. Under M2 and
M4, the discrepancy between the empirical and average model standard errors in marginal
weighted MI, which is thought to be caused by bias in the point estimates, is seen in all three
cases. Empirical and average model standard errors are similar in conditional weighted MI in all
cases. However, when there is increased uncertainty in estimating the population proportions
of x (case 3 compared to case 1), there is also a marked increase in the empirical and average
model standard errors in both marginal and conditional weighted MI. This extra uncertainty
is reflected in the variation of the point estimates across the simulation repetitions according
to how the simulation is set up, and is also acknowledged in the between-imputation variance
component of Rubin’s variance estimator (table 3.4).
In line with the results seen for the standard errors, coverage attains the nominal level for

both weighted MI methods under M1 and M3. Under M2, bias in marginal weighted MI leads
to a slight under-coverage in the first two cases. In case 3 and under M2, due to the increase in
standard errors in marginal weighted MI, coverage is slightly improved and is closer to the 95%
level. There is also an increase in coverage in both marginal and conditional weighted MI under
M4. This increase corresponds to the larger standard errors, which are associated with the higher
uncertainty in estimating ppopx .
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Figure 3.7. Extended univariate simulation study: bias in point estimates under different missing-
ness mechanisms for x; the population distribution of x is assumed to be invariant (case 1) or
estimated in external datasets of sizes 10 000 (case 2) and 1 000 (case 3).
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Figure 3.8. Extended univariate simulation study: empirical and average model standard errors
under different missingness mechanisms for x; the population distribution of x is assumed to be
invariant (case 1) or estimated in external datasets of sizes 10 000 (case 2) and 1 000 (case 3).
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Figure 3.9. Extended univariate simulation study: coverage of nominal 95% confidence intervals
under different missingness mechanisms for x; the population distribution of x is assumed to be
invariant (case 1) or estimated in external datasets of sizes 10 000 (case 2) and 1 000 (case 3).
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Table 3.4. Extended univariate simulation study: variance information about the β parameter
estimates in marginal weighted MI in one simulation repetition, when x is MNAR dependent on
x and y (M4); the population distribution of x is assumed to be invariant (case 1) or estimated in
external datasets of sizes 10 000 (case 2) and 1 000 (case 3).

a. Case 1

Ŵ B̂ Total RVI FMI RE

β̂0 0.00284 0.00057 0.0034 0.2052 0.1712 0.9966
MC error <0.0001 0.00013 0.0001 0.0468 0.0330 0.0007
β̂x 0.00404 0.00124 0.0053 0.3147 0.2411 0.9952
MC error <0.0001 0.00028 0.0003 0.0714 0.0426 0.0008

b. Case 2

Ŵ B̂ Total RVI FMI RE

β̂0 0.00284 0.00084 0.0037 0.3009 0.2330 0.9954
MC error <0.0001 0.00015 0.0002 0.0538 0.0325 0.0007
β̂x 0.00403 0.00192 0.0060 0.4838 0.3290 0.9935
MC error <0.0001 0.00035 0.0004 0.0882 0.0412 0.0008

c. Case 3

Ŵ B̂ Total RVI FMI RE

β̂0 0.00298 0.00305 0.0061 1.0436 0.5158 0.9898
MC error <0.0001 0.00061 0.0006 0.2082 0.0516 0.0010
β̂x 0.00415 0.00696 0.0112 1.7099 0.6368 0.9874
MC error <0.0001 0.00138 0.0014 0.3387 0.0476 0.0009

Note: Ŵ : within-imputation variance; B̂: between-imputation variance; Total: total variance; RVI: relative increase in
variance; FMI: fraction of missing information; RE: relative efficiency; MC error: Monte Carlo error.

3.5.3 Univariate simulation studies: conclusion and remarks

Results of the univariate simulation studies presented in sections 3.4 and 3.5 confirm the findings
of the analytic study (section 3.3) in terms of bias in the analysis model’s parameter estimates. In
a 2× 2 contingency table setting where the outcome variable is fully observed and the incomplete
covariate is MAR conditional on the outcome, standard MI and conditional weighted MI are
equivalent and are the preferred methods.
When values of the covariate are MNAR, marginal weighted MI and CRA are preferred to

standard MI and conditional weighted MI when missingness does not depend on the outcome.
Given that bias in conditional weighted MI under this missingness mechanism is confirmed in
the analytic calculations, simulation results show that this bias appears negligible, and marginal
and conditional weighted MI produce more or less the same results. CRA is an unbiased method
for handling missing data under this missingness mechanism and its standard errors are relatively
similar to that in marginal weighted MI. Nevertheless, the latter can potentially lead to a gain in
efficiency when there is more than one incomplete covariate in a higher-order contingency table.
When missingness in the covariate depends on both the values of the covariate and the
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outcome, none of the weighted MI methods are unbiased, but they both outperform CRA and
standard MI in terms of bias and coverage. Although it is not clear from the analytic calculations
which of the two weighted MI methods yields smaller bias in expectation under this missingness
mechanism, it appears in the simulation studies that bias is smaller in conditional weighted MI.
This confirms that the effects of covariates in the imputation model need to be taken into account
when deriving the weights. Nevertheless, the fact that bias is still observed in conditional weighted
MI under this missingness mechanism indicates that the proposed conditional weights might not
be an entirely optimal approach to account for the effects of covariates in the imputation model.
Further simulations (seciton 3.5) show that when the population proportions of the covariate

are estimated in a small external dataset with a higher level of uncertainty, there is an increase in
the empirical and average model standard errors in both marginal and conditional weighted MI,
particularly when missingness depends on the outcome (missingness models M2 and M4). This
leads to an increase in the coverage of 95% CIs. The increase in the average model standard errors
is due to an increase in the between-imputation variance in Rubin’s variance estimator. Results
from this extended simulation study suggest that the extra uncertainty arising from drawing the
population proportions from their distribution and calculating the weights is reflected in Rubin’s
variance estimator. However, further investigations are required to understand why this increase
in uncertainty is more noticeable when missingness depends on the outcome (M2 and M4).
For application in case studies presented in sections 6.4 and 6.5, it is worth highlighting that

findings in the analytic and univariate simulation studies can be generalised to the case where
the incomplete covariate is a categorical variable with more than two levels. Suppose that in a
two-way contingency table, the fully observed outcome variable y is binary taking values k = 0
or 1 as before, but the partially observed covariate x is now an L-level categorical variable. The
analysis model is still a logistic regression of y on x, but the imputation model for the L-level
variable x is now a multinomial logistic regression of x conditional on the binary outcome y.
Setting the highest level of x, e.g. the Lth level, as the base level to define the model, each level of
x can be modelled with a logistic regression

log( px l k
pxLk

) = α0l + αy l I [y = k] , (3.10)

for l = 1, . . . , L − 1 and k = 0, 1.
This model is analogous to the logistic regression imputationmodel used previously when the

incomplete covariate x was binary, except that the probability distribution of the covariate is now
multinomial instead of binomial, and there are L − 1 equations instead of one. These equations
contrast each of the l = 1, . . . , L− 1 levels with level L, whereas the single logistic regression model
is a contrast between only two levels, i.e. the multinomial logistic regression model reduces
to the usual logistic regression model considered previously if L = 2. The covariate–outcome
association in the imputation model can still be expressed in terms of the odds ratios when each
level of the incomplete covariate is contrasted to the base level. This supports the generalisability
of results in the analytic and univariate simulation studies to the case of an incomplete categorical
covariate. Further simulations can be performed to confirm this generalisability. The above
remark permits the theoretical results to be extended to the situation of an incomplete categorical
variable, and thus strongly suggests that simulation results would give similar findings.
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3.6 multivariate simulation studies

Until now, the development and evaluation of themarginal and conditional weightedMImethods
are restricted to the case of a single partially observed covariate. This section considers an
extension of weighted MI in the multivariate imputation by chained equations (MICE) approach
[23] (section 2.4.3) for imputing missing values in more than one covariate. In particular, the
proposed univariate marginal and conditional weighted MI methods can be embedded into the
chained equations to impute covariates whose population marginal distributions are available
externally, while the standard (unweighted) MI method can be used for the imputation of other
covariates. When there are several variables to be imputed using their reference distributions,
information from more than one external data source can be utilised in weighted MI of these
variables.

3.6.1 Imputation procedure

The MICE algorithm is available in Stata from version 12 onward via the command mi impute

chained. However, mi impute chained only allows for the specification of a global set of
probability weights pweight. This set of weights is applied to every univariate conditional model
in the algorithm [75]. Suppose it is of interest to examine risk factors of diabetes, and missing
data occur in both covariates of interest, namely ethnicity and smoking status. The population
distribution of ethnicity is available from the census, but the population distribution of smoking
is not. Hence, it is not intuitive to use weights calculated from the population distribution of
ethnicity to impute missing smoking status.
Based on the Stata community-contributed command uvis [74], I have written Stata com-

mands to perform multivariate imputation by chained equations in the same manner as mi

impute chained, but allowing for a marginal or conditional weight specification option in
each conditional model separately, as illustrated below for the incomplete variable z j , j = 1 . . . , q
at iteration t + 1.

z(t+1)1 ∣ z(t)2 , z(t)3 , . . . , z(t)q ←Ð weights = wz1 ;

z(t+1)2 ∣ z(t+1)1 , z(t)3 , . . . , z
(t)
q ←Ð weights = 1;

⋮
z(t+1)q ∣ z(t+1)1 , z(t+1)2 , . . . , z(t+1)q−1 ←Ð weights = 1.

In the above example, users can specify marginal or conditional weights in the conditional
model for ethnicity, given the complete outcome and observed and previously imputed values
of smoking status from the last iteration. Subsequently, these weights can be removed from the
conditional model for imputing smoking status.
InMICEwithmarginal weighted conditional models (referred to asmarginal weightedMICE),

weights for z j are calculated once using the observed and population distributions of z j and
applied in all imputations. In MICE with conditional weighted conditional models (referred to as
conditional weighted MICE), weights for z j are calculated at the beginning of the iterative process
using the observed and filled-in values of the other variables z− j, and then re-calculated at each
iteration using the observed and previously imputed values of z− j from the last iteration. The
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calculation of the conditional weights is performed in each imputation, since missing values in
the incomplete variables are filled in randomly using observed values at the beginning of the
algorithm and then imputed values are updated throughout the iterative process.

3.6.2 Method

This section discusses a single multivariate simulation study that extends the previous 2 × 2
contingency table setting into a three-way contingency table, considering different assumptions
of the missingness mechanism for the partially observed covariates.
The analysis model in this simulation study is a logistic regression of a fully observed binary

outcome y on two incomplete binary covariates x and z. As before, marginal and conditional
weighted MICE are compared to standard MICE under the various missingness mechanisms
M1–M5 for x and z (table 3.5). These missingness mechanisms are not the exhaustive set of all
the possible mechanisms for missingness in x and z, but they represent the mechanisms that are
relatively straightforward to describe and interpret.
The data generating mechanism and analysis procedures are as follows.

1. Simulate n = 100000 complete observations of the binary covariates x and z from the models
z ∼ Bernoulli (ppopz = 0.7) ;
logit [p (x ∣ z)] = βx0 + βxzz,

where βx0 = −0.5 and βxz = 0.5 are used for a moderate association between x and z (odds
ratio = 1.6). The sample size is chosen to demonstrate large-sample bias in the point estimates
if present. The true population proportion of x, ppopx , is given by

ppopx = p (x = 1 ∣ z = 0) p (z = 0) + p (x = 1 ∣ z = 1) p (z = 1)
= expit (−0.5) ⋅ 0.3 + expit (0) ⋅ 0.7;

2. Simulate complete data of the binary outcome y from the logistic regression model

logit [p (y ∣ x , z)] = βy0 + βyxx + βyzz, (3.11)

where βy0, βyx , βyz are arbitrarily set to 0.5,−1, and 1, respectively. The same values of the βy

Table 3.5. Single multivariate simulation study: variables associated with missingness in x and z,
corresponding selection parameters, and percentages of observed data in x and z.

Variables
associated with
missingness

Selection
parameters

%
observed data Label

x z αx0 αxx αxy αz0 αzz αzy (x , z) (x , ⋅) (⋅, z) (⋅, ⋅)
x y 0.5 1.5 −0.15 1.5 50 24 18 8 M1
x z 0.5 1.5 2 −1.5 52 23 18 7 M2
x y, z 0.5 1.5 1.95 −1.5 1.5 51 23 18 8 M3
x , y y 1.75 1.5 −1.5 −0.5 1.5 50 26 18 6 M4
x , y z, y 1.75 1.5 −1.5 1 −1.5 1.5 51 25 18 6 M5

⋆ Note: (x , ⋅): subjects with x observed and z missing; (⋅, z): subjects with x missing and z observed; (⋅, ⋅): subjects
with both x and z missing.
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coefficients are used throughout to make bias comparable across all simulation settings;
3. Simulate a binary indicator of response rz of z from each of the following models.

logit [p (rz = 1 ∣ y)] = αz0 + αzy y;

logit [p (rz = 1 ∣ z)] = αz0 + αzzz;

logit [p (rz = 1 ∣ z, y)] = αz0 + αzzz + αzy y.

4. Simulate a binary indicator of response rx of x from each of the following models.

logit [p (rx = 1 ∣ x)] = αx0 + αxxx;

logit [p (rx = 1 ∣ x , y)] = αx0 + αxxx + αxy y.

Five combinations of missing data models for both z and x are considered (M1–M5, table 3.5).
Corresponding values of the αz and αx parameters are chosen for relatively strong associations
in the selection models (odds ratios of 4.48 and 0.22), and are presented in table 3.5. Values of
αz0 and αz0 are altered to achieve the same patterns of missing values in x and z (table 3.5);

5. For i = 1, . . . , 100000, set zi and xi to missing if rz i = 0 and rx i = 0, respectively;
6. Impute missing values in x and z M = 10 times with T = 10 iterations using the standard
implementation of MICE with all unweighted conditional models for x and z, and marginal
and conditional weighted conditional models for x and/or z with ppopz and ppopx as reference
proportions when the corresponding missingness mechanism is MNAR (i.e. M1–M5 for x
and M2, M3, M5 for z).
The imputation model for x is a logistic regression of x conditional on y, z, and rz among the
observed x. Similarly, the imputation model for z is a logistic regression of z conditional on
y, x, and rx among the observed z. Leacy [80] explored how the standard MICE procedure
can be extended for imputation under general MNAR mechanisms by including the δ offsets
[23] in the univariate conditional models. It was suggested that if one variable is imputed as
MNAR using its response indicator, then its response indicator should also be included in the
other imputation models [80]. Therefore, in multivariate simulation studies presented in this
thesis, the response indicator of x is included in the imputation model for z, and vice versa;

7. For each MI method, fit the analysis model (3.11) to each completed dataset and combine the
results using Rubin’s rules [20, 21].
The same full dataset is generated for each missingness scenario, to which data in x and z are

set to missing according to the various missingness models considered, and the same incomplete
dataset is used to compare the three MICE methods under the same missingness scenario. The
parameters of interest are βy0, βyx and βyz . Analyses of the full data and complete records are
also provided for comparison.
The algorithm for performing marginal weighted MICE of x and z is as follows.

1. If the population distribution of x/z is known, calculate the marginal weights for x/z from its
distribution in the population and among subjects with observed x/z;

2. Fill in missing values in x and z randomly with observed values of x and z, respectively;
3. Begin iteration; for the imputation of x:
a. Discard the filled-in/imputed values in x;
b. Fit a (weighted) logistic regression imputation model for x conditional on z (observed
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and filled-in/imputed), y (complete), and rz (complete) to subjects with observed x to
obtain maximum likelihood estimates of imputation model’s parameters and standard
errors;

c. Draw new parameters from the large-sample normal approximation of the posterior
distribution, assuming non-informative priors;

d. Generate imputed values from the logistic regression model with new parameters and
replace missing values in x with the imputed values;

4. For the imputation of z, follow the same imputation procedure for x. The imputation model
for z is a logistic regression of z conditional on x (observed and imputed from the previous
step), y (complete), and rx (complete);

5. Repeat for T = 10 iterations to obtain one set of imputed values for x and z.
The algorithm for performing conditional weighted MICE of x and z is as follows.

1. Fill in missing values in x and z randomly with observed values of x and z, respectively;
2. Begin iteration; for the imputation of x:
a. Discard the filled-in/imputed values in x;
b. If the population distribution of x is known: fit a logistic regressionmodel for x conditional
on z (observed and filled-in/imputed), y (complete), and rz (complete) to subjects with
observed x to get the maximum likelihood estimates of imputation model’s parameters
and standard errors. These parameter estimates are used to obtain predicted proportions
of x in the completed data, which are then used with the population proportions of x to
calculate the conditional weights for x.

c. Fit a (weighted) logistic regression imputation model of x conditional on z (observed and
filled-in/imputed), y (complete), and rz (complete) to subjects with observed x to obtain
maximum likelihood estimates of imputation model’s parameters and standard errors;

d. Draw new parameters from the large-sample normal approximation of the posterior
distribution, assuming non-informative priors;

e. Generate imputed values from the logistic regression model with new parameters and
replace missing values in x with the imputed values;

3. For the imputation of z, follow the same imputation procedure for x. The imputation model
for z is a logistic regression of z conditional on x (observed and imputed from the previous
step), y (complete), and rx (complete);

4. Repeat for T = 10 iterations to obtain one set of imputed values for x and z.
All simulations are performed in Stata 14 [44] using mi impute chained [75] for standard

MICE and my commands for marginal and conditional weighted MICE.

3.6.3 Results

The full-data distributions of y, x, and z are given in table 3.6. Figure 3.10 shows the point estimates
of parameters βy0, βyx and βyz of the analysis model after missing values in x and z are imputed
using MICE with unweighted conditional models for both x and z, or marginal/conditional
weighted conditional models for x and/or z when the corresponding missingness mechanism
for x and/or z is MNAR. Overall, the full data analysis yields small bias in the point estimates,
with the smallest standard errors. Estimates in CRA have the largest standard errors due to a
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Table 3.6. Single multivariate simulation study: distribution of y, x, and z in the full data.

x = 0 x = 1 ∑x

z = 0 6 941 (49.81) 6 323 (32.05) 13 264 (39.40)
y = 0 z = 1 6 993 (50.19) 13 406 (67.95) 20 399 (60.60)∑z 13 934 19 729 33 663

z = 0 11 700 (73.07 ) 28 756 (57.14) 40 456 (60.99)
y = 1 z = 1 4 312 (26.93) 21 569 (42.86) 25 881 (39.01)∑z 16 012 50 325 66 337

⋆ Note: n=100 000; p (y = 1) = 0.66; cell values are frequency (%).

reduction in the sample size by about 50%.
Under M1, when x is MNAR dependent on x and z is MAR conditional on y, CRA yields

large bias in the estimate of βy0, but appears to produce estimates that are close to the true values
for βyx and βyz . Generally, when the probability of being a complete record depends jointly on x
and y, CRA is biased for all parameter estimates including β̂yx . However, when the missingness
mechanism is such that the probability of being a complete record can be written as a product of
some suitable function of x and some suitable function of y, CRA is asymptotically unbiased for
βyx [79]. Since missing values were generated such that missingness in x is dependent on x and
missingness in z is dependent on y, the resulting β̂yx is unbiased in CRA. Due to the symmetry
of the odds ratio, CRA is also unbiased for β̂yz . Standard MICE produces smaller bias in the βy0

estimate compared to CRA, and the method performs relatively well in terms of bias in the βyx

and βyz estimates. MICE with a marginal weighted conditional model for x yields small bias in
point estimates, with 95% CIs for β̂yx and β̂yz covering the true values. Note that 95% CIs in the
full data are just about to cover the true values of βy0 and βyx . Results in conditional weighted
MICE are similar to marginal weighted MICE, with slightly higher bias in β̂y0.
Under M2, when x is MNAR dependent on x and z is MNAR dependent on z, the probability

of being a complete record does not depend on the outcome, conditional on x and z. Therefore,
CRA produces unbiased estimates as expected. Results in marginal and conditional weighted
MICE are similar to that under M1, with minimal bias in the estimate of βy0. There is also an
improvement in the efficiency of MICE compared to CRA, with smaller standard errors and
narrower 95% CIs. The efficiency gain is relatively similar for β̂yx and β̂yz , since the percentage
of missing values is comparable in x and z. Point estimate of βyz is close to the true value in
standard MICE, but the method is biased for β̂y0 and β̂yx .
Under M3–M5, when missingness is dependent on both the incomplete variables and the

outcome, large bias in point estimates can be seen in CRA and standardMI. Conditional weighted
MICE generally produces the smallest bias compared to the other methods across parameter
estimates and missingness scenarios considered, and bias tends to be present in β̂y0 and β̂yz

in this method. Marginal weighted MICE yields noticeable bias in β̂yx under all of these three
missingness mechanisms, and in β̂yz when z is MNAR (M3 and M5).
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Figure 3.10. Single multivariate simulation study: point estimates under different missingness
mechanisms for x and z.
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c. β̂z

.85

.9

.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Full
 da

ta
CRA

Stan
da

rd 
MIC

E

Marg
ina

l w
eig

hte
d M

IC
E

Con
dit

ion
al 

weig
hte

d M
IC

E

Full
 da

ta
CRA

Stan
da

rd 
MIC

E

Marg
ina

l w
eig

hte
d M

IC
E

Con
dit

ion
al 

weig
hte

d M
IC

E

Full
 da

ta
CRA

Stan
da

rd 
MIC

E

Marg
ina

l w
eig

hte
d M

IC
E

Con
dit

ion
al 

weig
hte

d M
IC

E

Full
 da

ta
CRA

Stan
da

rd 
MIC

E

Marg
ina

l w
eig

hte
d M

IC
E

Con
dit

ion
al 

weig
hte

d M
IC

E

Full
 da

ta
CRA

Stan
da

rd 
MIC

E

Marg
ina

l w
eig

hte
d M

IC
E

Con
dit

ion
al 

weig
hte

d M
IC

E

M1 M2 M3 M4 M5

Po
in

t e
st

im
at

e

⋆ Note: M1: missingness in x depends on x and in z depends on y; M2: missingness in x depends on x and in z
depends on z; M3: missingness in x depends on x and in z depends on (z, y); M4: missingness in x depends on
(x , y) and in z depends on y; M5: missingness in x depends on (x , y) and in z depends on (z, y); βy0 = 0.5,
βyx = −1, βyz = 1; horizontal black lines: true parameter values; error bars: 95% confidence intervals.79



Table 3.7 presents variance information (including the within- and between-imputation vari-
ances (Ŵ and B̂, respectively), relative increase in variance (RVI), fraction of missing information
(FMI), and relative efficiency (RE), section 2.4.1) about the βy parameter estimates in the various
MICE methods and missingness mechanisms considered for x and z. Within-imputation vari-
ances are generally higher than between-imputation variances across methods and missingness
mechanisms, and imputation variances are comparable between standard MICE and marginal
and conditional weighted MICE. Relative efficiency is above 95% for all parameter estimates and
methods.
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Table 3.7. Single multivariate simulation study: variance information about the βy parameters
under different missingness mechanisms for x and z.

Ŵ B̂ RVI FMI RE
M1 Standard MICE β̂y0 0.00019 0.00002 0.120 0.110 0.989

β̂yx 0.00022 0.00009 0.479 0.339 0.967
β̂yz 0.00023 0.00010 0.496 0.347 0.966

Marginal weighted MICE β̂y0 0.00017 0.00002 0.151 0.134 0.987
β̂yx 0.00021 0.00012 0.626 0.404 0.961
β̂yz 0.00023 0.00013 0.648 0.413 0.960

Conditional weighted MICE β̂y0 0.00017 0.00006 0.349 0.270 0.974
β̂yx 0.00021 0.00009 0.478 0.339 0.967
β̂yz 0.00023 0.00018 0.856 0.485 0.954

M2 Standard MICE β̂y0 0.00017 0.00004 0.260 0.214 0.979
β̂yx 0.00022 0.00007 0.345 0.267 0.974
β̂yz 0.00021 0.00015 0.770 0.457 0.956

Marginal weighted MICE β̂y0 0.00017 0.00002 0.143 0.128 0.987
β̂yx 0.00021 0.00008 0.423 0.311 0.970
β̂yz 0.00023 0.00002 0.111 0.102 0.990

Conditional weighted MICE β̂y0 0.00017 0.00002 0.129 0.117 0.988
β̂yx 0.00021 0.00009 0.481 0.340 0.967
β̂yz 0.00023 0.00002 0.115 0.105 0.990

M3 Standard MICE β̂0 0.00017 0.00002 0.156 0.139 0.986
β̂yx 0.00023 0.00008 0.391 0.293 0.971
β̂yz 0.00022 0.00009 0.436 0.318 0.969

Marginal weighted MICE β̂y0 0.00017 0.00002 0.151 0.135 0.987
β̂yx 0.00021 0.00009 0.446 0.321 0.969
β̂yz 0.00023 0.00007 0.360 0.276 0.973

Conditional weighted MICE β̂y0 0.00018 0.00002 0.148 0.132 0.987
β̂yx 0.00021 0.00009 0.472 0.336 0.968
β̂yz 0.00023 0.00008 0.353 0.272 0.974

M4 Standard MICE β̂0 0.00018 0.00007 0.411 0.304 0.970
β̂yx 0.00021 0.00007 0.374 0.284 0.972
β̂yz 0.00022 0.00017 0.824 0.475 0.955

Marginal weighted MICE β̂y0 0.00017 0.00003 0.194 0.167 0.984
β̂yx 0.00021 0.00005 0.257 0.211 0.980
β̂yz 0.00023 0.00017 0.822 0.474 0.955

Conditional weighted MICE β̂y0 0.00017 0.00004 0.237 0.198 0.981
β̂yx 0.00021 0.00004 0.194 0.167 0.984
β̂yz 0.00023 0.00015 0.730 0.443 0.958

M5 Standard MICE β̂0 0.00016 0.00002 0.147 0.131 0.987
β̂yx 0.00022 0.00005 0.269 0.220 0.979
β̂yz 0.00021 0.00009 0.463 0.331 0.968

Marginal weighted MICE β̂y0 0.00016 0.00001 0.070 0.066 0.993
β̂yx 0.00021 0.00003 0.174 0.152 0.985
β̂yz 0.00023 0.00008 0.363 0.278 0.973

Conditional weighted MICE β̂y0 0.00017 0.00002 0.119 0.108 0.989
β̂yx 0.00021 0.00006 0.306 0.243 0.976
β̂yz 0.00023 0.00006 0.301 0.241 0.977

⋆ Note: M1: missingness in x depends on x and in z depends on y; M2: missingness in x depends on x and in z
depends on z; M3: missingness in x depends on x and in z depends on (z, y); M4: missingness in x depends on
(x , y) and in z depends on y; M5: missingness in x depends on (x , y) and in z depends on (z, y).
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3.6.4 Repeated simulations for assessing performance measures

This section presents results of a repeated multivariate simulation study conducted to examine
other performance measures, when the univariate weighted MI methods are incorporated into
MICE for handling multivariate missing data. Repeated simulations are performed for miss-
ingness models M1 and M2. Under these missingness mechanisms, marginal weighted MICE
produces the least biased parameter estimates out of the three MI methods under comparison, as
seen in the single multivariate simulation study (section 3.6.3). M5 is also explored further over
repeated simulations since this missingness mechanism is the most complex one, under which
missingness in each covariate depends on its values and the outcome.
The single simulation set-up outlined in section 3.6.2 for M1, M2, and M5 is performed using

S = 1000 repetitions and n = 1000 observations. A smaller sample size is chosen for repeated
simulations to reduce processing time, since it takes relatively longer for the conditional weights
to be updated after every iteration in each imputation of the chained equations. In all MICE
methods, missing values in x and z are imputed usingM = 10 imputations and T = 10 iterations.
Results are presented graphically in figures 3.11–3.13. Bias over repeated simulations across

MICE methods for dealing with missing data and missingness mechanisms considered for x
and z is consistent with results in the corresponding large-sample single simulation (figure 3.11).
Under M1, marginal and conditional weighted MICE are both unbiased for β̂yx and β̂yz , while
there is negligible bias in the estimate of the intercept in conditional weighted MICE. Standard
MICE and CRA also yield unbiased estimates of βyx and βyz under this missingness mechanism,
but bias is noticeable in the intercept in both methods. Under M2, standard MICE is again
unbiased for β̂yz but produces large bias in β̂y0 and small bias in β̂yx . Minimal bias is also present
in β̂y0 in the full data, as well as in both weighted MICE methods. CRA and marginal weighted
MICE are unbiased for the estimates of the two log odds ratios, while there is very small bias in
the estimate of βyx in conditional weighted MICE under this missingness mechanism. Under
M5, none of the methods are unbiased over repeated simulations. However, conditional weighted
MICE appears to be the least biased method, while there is noticeable bias in CRA, standard
MICE, and marginal weighted MICE.
Empirical standard errors are generally similar to the average model standard errors across

parameters andmethods under M1 andM2, with the smallest standard errors seen in the full data,
and the largest standard errors in CRA due to a decrease in sample sizes (figure 3.12). The gain in
efficiency in the MICE methods is represented by a reduction in the standard errors compared
to CRA, particularly in scenarios where both approaches yield unbiased point estimates. Under
M5, the empirical standard errors in conditional and marginal weighted MICE no longer match
the average model standard errors, which might be due to the presence of bias in point estimates.
When there is no or very small bias in point estimates, coverage of 95% CIs attains the

nominal level (figure 3.13). Coverage is low for all parameters in CRA and standard MICE under
M5 when there is substantial bias in point estimates. Although marginal weighted MICE yields
noticeable bias in β̂yx and β̂yz under M5, coverage remains relatively high at around the 90%
level. Conditional weighted MICE achieves the correct coverage under M1 and M2, while there
is a reduction in coverage under M5.
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Figure 3.11. Repeated multivariate simulation study: bias in point estimates under different
missingness mechanisms for x and z.
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⋆ Note: M1: missingness in x depends on x and in z depends on y; M2: missingness in x depends on x and in z
depends on z; M5: missingness in x depends on (x , y) and in z depends on (z, y); β0 = 0.5, βx = −1, βz = 1; error
bars: ±1.96×Monte Carlo standard errors; hollow circles: out-of-range values.
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Figure 3.12. Repeated multivariate simulation study: empirical and average model standard errors
under different missingness mechanisms for x and z.
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standard errors.
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Figure 3.13. Repeatedmultivariate simulation study: coverage of nominal 95% confidence intervals
under different missingness mechanisms for x and z.
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⋆ Note: M1: missingness in x depends on x and in z depends on y; M2: missingness in x depends on x and in z
depends on z; M5: missingness in x depends on (x , y) and in z depends on (z, y); error bars: ±1.96×Monte Carlo
standard errors; hollow circles: out-of-range values.

3.6.5 Multivariate simulation studies: conclusion and remarks

Single and repeated multivariate simulation studies with a complete binary outcome variable and
two incomplete binary covariates are conducted to explore the adaptation of univariate marginal
and conditional weighted MI in the MICE algorithm for imputing missing values in more than
one incomplete covariate.
Results suggest that CRA can be valid in some scenarios. However, even when the method

yields unbiased estimates, it still leads to a loss in efficiency with decreased sample sizes and
higher standard errors. Apart from M2, standard MICE results in smaller bias in point estimates
compared to CRA, but bias is still substantial and coverage is poor.
Marginal weighted MICE appears to be the preferred method when one covariate is MNAR

dependent on its values, and the other covariate is either MAR conditional on the outcome (M1)
or MNAR dependent on its values (M2). This agrees with findings of the analytic and univariate
simulation studies in sections 3.3 and 3.4. When missingness in each covariate depends on both
its values and the outcome (M5), conditional weightedMICE appears to produce the smallest bias
with relatively high coverage of 95% CIs. This is also consistent with findings of the univariate
simulation study in section 3.4. In a 2 × 2 table, when missingness in the incomplete covariate is
dependent on its values and the fully observed outcome, conditional weighted MI yields biased
estimates, but bias is smaller than that in marginal weighted MI and standard MI (section 3.3.2).
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3.7 summary

This chapter proposes and evaluates the univariate marginal and conditional weighted MI meth-
ods, which utilise external population information about the incomplete variable in order to
calibrate inference to the population. Throughout this thesis, the focus is on incomplete bina-
ry/categorical variables that are included as covariates in the analysis model of interest, and
whose population marginal distributions are available in external data sources. The potential of
the weighted MI methods for improving on standard MI under general MNAR mechanisms is
explored extensively.
In weighted MI, the incomplete variable’s population distribution is incorporated as proba-

bility weights, which are calculated to match its post-imputation distribution to the reference
level. The rationale for the inclusion of probability weights in weighted MI and the formulae for
obtaining these weights from the incomplete variable’s population distribution are provided in
section 3.2.
Weighted MI is evaluated in a univariate missing data setting of a 2 × 2 contingency table,

with a complete outcome variable y and an incomplete covariate x whose population distribution
is available externally. Increasingly complex missingness mechanisms are used for generating
missing values in x. Section 3.3 presents an analytic study to compare bias in parameter estimates
in marginal and conditional weighted MI to that in standard MI and CRA, when the analysis
model is a logistic regression of y on x. The weighted MI methods are further evaluated in
terms of their frequentist properties in univariate simulation studies in sections 3.4 and 3.5.

Table 3.8. Analytic and univariate simulation studies: summary of bias in the analysis model’s
parameter estimates under different missingness mechanisms for the incomplete covariate x.

Missingness in x depends on Method for missing data in x Biased estimation of

β0 βx

Neither y nor x CRA No No
Standard MI No No
Marginal weighted MI No No
Conditional weighted MI No No

y

CRA Yes No
Standard MI No No
Marginal weighted MI Yes Yes
Conditional weighted MI No No

x

CRA No No
Standard MI Yes No
Marginal weighted MI No No
Conditional weighted MI Yes Yes

x and y

CRA Yes Yes
Standard MI Yes Yes
Marginal weighted MI Yes Yes
Conditional weighted MI Yes Yes

⋆ Note: analysis model: logit [p (y = 1 ∣ x)] = β0 + βxx; y (complete) and x (incomplete) are binary variables, taking
values 0 or 1.
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Results of the analytic and univariate simulation studies are summarised in table 3.8, indicating
which method yields unbiased parameter estimates under each of the missingness mechanisms
investigated. When the incomplete covariate is MAR conditional on the outcome, conditional
weightedMI produces the same results as standardMI and bothmethods are unbiased. When the
incomplete covariate is MNAR dependent on its values, marginal weightedMI results in unbiased
point estimates with correct coverage of 95% CIs. However, when the incomplete covariate is
MNAR dependent on its values as well as the outcome, both weighted MI methods are not valid,
with smaller bias seen in conditional weighted MI.
In section 3.6, the investigation is extended to a multivariate missing data setting to explore

the adaptation of the univariate weighted MI methods in the MICE algorithm for multivariate
imputation. Multivariate simulation studies are conducted to explore the inclusion of marginal
and conditional weighted MI in MICE for imputing missing values in two incomplete binary
covariates in a three-way contingency table, when the population distribution of one or both
covariates is available externally. In line with the results seen in the univariate missing data
setting, marginal weighted MICE produces unbiased parameter estimates when missingness
in each of the incomplete covariates depends on its values. In the most complex missingness
mechanism considered when each incomplete covariate is missing dependent on its values and
the outcome, none of the methods yield unbiased estimates of the analysis model’s parameters.
However, it is reassuring to see conditional weighted MICE perform well, with relatively small
bias in point estimates and good coverage of 95% CIs.
Inspired by van Buuren et al.’s δ adjustment (offset)MImethod [23], the next chapter presents

an attempt to approach the problem from a different angle, in order to deal with bias seen in
marginal and conditional weighted MI when the incomplete covariate is MNAR dependent on
its values and the outcome.
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4
Calibrated-δ adjustment multiple imputation of a binary

covariate when the outcome variable is binary

4.1 Introduction

4.2 �e calibrated-δ adjustment multiple imputation method
4.2.1 An analytic exploration of the equivalence between weighting and δ

adjustment in multiple imputation in a 2 × 2 contingency table
4.2.2 Derivation of the calibrated-δ adjustment

4.3 Univariate simulation studies – revisited
4.3.1 Method
4.3.2 Results
4.3.3 Extended univariate simulation study: when there is uncertainty in

estimating the population distribution
4.3.4 Univariate simulation studies: conclusion

4.4 Multivariate simulation studies – revisited
4.4.1 Method
4.4.2 Results
4.4.3 Repeated simulations for assessing performance measures
4.4.4 Multivariate simulation studies: conclusion

4.5 Summary

4.1 introduction

This chapter proposes and evaluates calibrated-δ adjustment multiple imputation as an alterna-
tive approach to weighting (chapter 3) in multiple imputation (MI) when the population-level
marginal distribution of the incomplete variable is available externally. In calibrated-δ adjustment
MI, knowledge about the incomplete variable’s population distribution is utilised to calculate
an adjustment in the imputation model’s intercept. This intercept adjustment is included in the
imputation model in order to tackle bias seen in marginal and conditional weighted MI when
missingness in the covariate depends on both its values and the outcome variable (sections 3.3
and 3.4). The idea of the calibrated-δ adjustment is motivated by van Buuren et al.’s δ adjustment
(offset) MI method [23]. However, while values of δ are often chosen arbitrarily in van Buuren
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et al.’s approach, the population distribution of the incomplete variable is used to derive the value
of δ in calibrated-δ adjustment MI to calibrate inference to the population, as the name of the
method suggests.
Similar to chapter 3, this chapter also focuses on missing values in an incomplete binary

covariate of an analysis model, where the outcome variable is also binary. Featuring a 2 × 2
contingency table, section 4.2 provides the rationale for calibrated-δ adjustment MI and explains
how this method can remove bias in the analysis model’s parameter estimates under two missing
not at random mechanisms for the covariate. This section also presents the derivation of the
calibrated-δ adjustment in the same setting, based on the reference distribution of the incomplete
covariate.
Section 4.3 revisits the univariate simulation studies of a 2 × 2 contingency table with a fully

observed binary outcome variable and a partially observed binary covariate, as presented in
sections 3.4 and 3.5. Calibrated-δ adjustment MI is evaluated and compared to marginal and
conditional weighted MI, standard MI, and complete record analysis in terms of bias in the
analysis model’s parameter estimates, efficiency, and coverage of 95% confidence intervals, under
increasingly complex missingness mechanisms.
In section 4.4, calibrated-δ adjustment MI is further evaluated in a multivariate missing

data setting of a three-way contingency table, as outlined in section 3.6. The setting investigated
involves a complete binary outcome and two incomplete binary covariates. Repeated simulations
are conducted to examine the frequentist properties of calibrated-δ adjustment MI under missing
at random (MAR) and missing not at random (MNAR) mechanisms for the covariates.

4.2 the calibrated-δ adjustment multiple imputation method

This section begins with an exploration of the equivalence between weighting and including a δ
adjustment in the imputation model for an incomplete covariate in a 2×2 contingency table. This
exploration is then followed by the derivation of the calibrated-δ adjustment. The frequentist
properties of the method is evaluated in simulation studies in subsequent sections.

4.2.1 An analytic exploration of the equivalence between weighting and δ adjustment in multiple imputa-
tion in a 2 × 2 contingency table
Recall the example of a 2 × 2 contingency table in the analytic study presented in section 3.3,
where it is of interest to study the association between a binary covariate x taking values l ∈ {0, 1}
and a binary outcome y taking values k ∈ {0, 1}, with the following analysis model

logit [p (y = 1 ∣ x)] = β0 + βxx . (4.1)

An imputation model
logit [p (x = 1 ∣ y)] = θ0 + θ y y (4.2)

is fitted to the nobs++ complete records to obtain the θ parameter estimates in standard MI, where

θ̂s0 = ln(nobs10nobs00
) , θ̂sy = ln(nobs11 nobs00

nobs01 nobs10
) . (4.3)

In weighted MI, the same imputation model is fitted to the weighted complete records,
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nobsl k wm/cl , where a marginal/conditional weight wm/cl is assigned to individuals with observed
x = l . Parameter estimates of the weighted imputation model are

θ̂m/c0 = ln(nobs10 wm/c1
nobs00 wm/c0

) , θ̂m/cy = ln(nobs11 nobs00
nobs01 nobs10

) . (4.4)

Note that in (4.3) and (4.4), the estimated log odds ratio θ̂ y of the imputation model is the
same in standard MI and weighted MI, but the estimated log odds θ̂0 in weighted MI can be
written as θ̂m/c0 = θ̂s0 + ln ( w1

w0 ). This implies that in this simple setting, weighted MI is equivalent
to the (pattern-mixture) δ adjustment, also known as offset, MI method proposed by van Buuren
et al. [23]. The imputation model for the incomplete covariate x is therefore

logit [p (x = 1 ∣ y)] = θ0 + θ y y + δ (1 − r) ,
where δ = ln ( w1

w0 ) is now estimated using the population marginal distribution of x instead of
being chosen arbitrarily. When the incomplete covariate is binary, weighting the imputation
model is effectively equivalent to changing the intercept of the imputation model by a factor. This
factor needs to be appropriately determined to match the post-imputation distribution of the
incomplete covariate to the population level, as well as to preserve the correct outcome–covariate
association in the analysis model.
TwoMNARmechanisms considered in the analytic study in section 3.3 (M3 andM4, table 4.1)

are now reevaluated. The aim of this investigation is to confirm whether adjusting the intercept
of the imputation model can sufficiently recover the correct post-imputation distribution of the
incomplete covariate and its association with the outcome.
1. M3 - when x is MNAR dependent on x
Under this missingness mechanism, the posited model for the response indicator r of x is
given by

logit [p (r = 1 ∣ x)] = α0 + αxx , (4.5)

and the corresponding probabilities of observing x are

p (r = 1 ∣ x = l) = pr l = expit (α0 + αxx) .
For imputation model (4.2), the log odds ratios of x for y = 1 compared to y = 0 in the
observed and missing data are given by

[θ y ∣ r = 1] = θobsy = ln(n00pr0n11pr1
n01pr0n10pr1

) = ln(n00n11
n01n10

) ;
Table 4.1. Analytic study: models for missingness in x.

Linear predictor of selection model
logit [p [(r = 1 ∣ x , y)] Selection probability

p (rl k = 1) Label

α0 pr M1
α0 + αy y prk M2
α0 + αxx pr l M3
α0 + αxx + αy y pr l k M4

⋆ Note: r: response indicator of x; l and k: index categories of x and y, respectively; l , k take values 0 or 1.
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[θ y ∣ r = 0] = θmisy = ln [n00 (1 − pr0) n11 (1 − pr1)
n01 (1 − pr0) n10 (1 − pr1)] = ln(

n00n11
n01n10

) ,
respectively. Hence, θobsy = θmisy , which are also the same as the log odds ratio θ y in the full
data.
The log odds of x for y = 0 in the observed and missing data are given by

θobs0 = ln( n10pr1
n00pr0

) ;
θmis0 = ln [ n10 (1 − pr1)

n00 (1 − pr0)] ,
respectively. This implies that the correct adjustment in the imputation model’s intercept
should be

θmis0 − θobs0 = ln [(1 − pr1) pr0(1 − pr0) pr1 ]
= ln [ exp (α0)

exp (α0 + αx)]
= −αx ,

which is minus the log odds ratio of observing x for x = 1 compared to x = 0 in (4.5).
The log ratio of the two marginal weights (for x = 0 and x = 1) can be shown to be the same
as the correct intercept adjustment, as

ln(wm
1

wm
0
) = (n1+ − nobs1+ ) nobs0+

nobs1+ (n0+ − nobs0+ )
= ln [ (n1+ − n1+pr1) n0+pr0

n1+pr1 (n0+ − n0+pr0)]
= ln [(1 − pr1) pr0(1 − pr0) pr1 ]= −αx .

This result explains the equivalence of marginal weighted MI and calibrated-δ adjustment
MI under this missingness mechanism, and why marginal weighted MI provides unbiased
parameter estimates of model (4.1) in this case (sections 3.3.3 and 3.4.3).

2. M4 - when x is MNAR dependent on x and y
Under this missingness mechanism, the posited model for the response indicator r of x is
given by

logit [p (r = 1 ∣ x , y)] = α0 + αxx + αy y, (4.6)

and the corresponding probabilities of observing x are

p (r = 1 ∣ x = l , y = k) = pr l k = expit (α0 + αxx + αy y) . (4.7)

For imputation model (4.2), the log odds ratios of x for y = 1 compared to y = 0 in the
observed and missing data are given by

θobsy = ln(n00pr00n11pr11
n01pr01n10pr10

) ; (4.8)
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θmisy = ln [n00 (1 − pr00) n11 (1 − pr11)
n01 (1 − pr01) n10 (1 − pr10)] . (4.9)

(4.8) and (4.9) can be shown to be equal, since

θmisy − θobsy = ln [(1 − pr00) (1 − pr11) pr01 pr10(1 − pr01) (1 − pr10) pr00 pr11 ]
= ln⎡⎢⎢⎢⎣

exp (α0 + αx) exp (α0 + αy)
exp (α0) exp (α0 + αx + αy)

⎤⎥⎥⎥⎦
= ln (1)
= 0.

The log odds of x for y = 0 in the observed and missing data are given by
θobs0 = ln( n10pr10

n00pr00
) ;

θmis0 = ln [ n10 (1 − pr10)
n00 (1 − pr00)] ,

which implies that the correct adjustment in the intercept of the imputation model should be

θmis0 − θobs0 = ln [(1 − pr10) pr00(1 − pr00) pr10 ]
= ln [ exp (α0)

exp (α0 + αx)]
= −αx .

This is again minus the log odds ratio of observing x in (4.6). However, the correct intercept
adjustment is no longer the same as either the log ratio of the two marginal weights (for
x = 0 and x = 1) or conditional weights. This finding explains bias seen in both marginal and
conditional weighted MI under this missingness mechanism (sections 3.3.3 and 3.4.3).

4.2.2 Derivation of the calibrated-δ adjustment

The analytic calculations in section 4.2.1 confirm that in a 2 × 2 contingency table setting, appro-
priately adjusting the intercept of the imputation model for the covariate x sufficiently corrects
bias introduced by MNAR mechanisms under which missingness in x depends on either its
values or both its values and the outcome (M3 and M4). By approaching the problem from this
angle, the population distribution of x can be used to calculate the correct adjustment in the
intercept of the imputation model. This adjustment is referred to as the calibrated-δ adjustment
to avoid confusion with van Buuren et al.’s δ adjustment.
The probability of x = 1 can be written in terms of the conditional probabilities among

subjects with observed and missing x

p (x = 1) = p (x = 1 ∣ r = 1) p (r = 1) + p (x = 1 ∣ r = 0) p (r = 0) . (4.10)

In (4.10), p (x = 1) is the population proportion; p (x = 1 ∣ r = 1) , p (r = 1), and p (r = 0) are
observed. Thus, p (x = 1 ∣ r = 0) can be solved for as

p (x = 1 ∣ r = 0) = p (x = 1) − p (x = 1 ∣ r = 1) p (r = 1)
p (r = 0) . (4.11)
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Note that p (x = 1 ∣ r = 0) can be further written as
p (x = 1 ∣ r = 0) = 1∑

k=0
p (x = 1 ∣ y = k, r = 0) p (y = k ∣ r = 0)

= 1∑
k=0
expit (θmis0 + θmisy I [y = k]) nmis+k

nmis++

= 1
nmis++

1∑
k=0
expit (θmis0 + θmisy I [y = k]) nmis+k , (4.12)

where I [] denotes the indicator function taking values 1 if the statement inside the brackets is
true and 0 otherwise; k takes values 0 or 1.
It is shown earlier that when x is MNAR dependent on either x or both x and y, θobsy = θmisy ;

(4.12) is therefore equal to

p (x = 1 ∣ r = 0) = 1
nmis++

1∑
k=0
expit (θmis0 + θobsy I [y = k]) nmis+k

= 1
nmis++

1∑
k=0
expit{(θobs0 + δ) + θobsy I [y = k]} nmis+k ,

where δ is the adjustment factor in the intercept of the imputation model for x. Since nmis+k and
nmis++ are available in the observed data, the value of the calibrated-δ adjustment can be derived
from (4.11) and (4.12) using interval bisection [81, 82] (or any other root-finding method).
The interval bisection algorithm for finding the root of an equation involves using the

Intermediate Value Theorem [81] to find an initial interval containing the root. In each successive
step of the algorithm, the interval is divided in half to get a smaller interval. Eventually, an
interval is reached, whose midpoint will be the numerical solution. Suppose f is a continuous
function defined on the interval [a1, a2]. To find the root of f , interval bisection proceeds as
follows.
1. Find a suitable interval [a1, a2] such that f (a1) and f (a2) are of opposite sign;
2. Calculate the midpoint amid of the interval, amid = (a1 + a2) /2;
3. Compute f (amid);
4. If the result in step 3 is sufficiently close to 0, stop iterating and return amid as the solution;
5. Check the sign of f (amid);
6. Replace a1 or a2 with amid such that the root is still within the new interval;
7. Repeat from step 2.
This approach should yield unbiased estimates of the β parameters under all four missingness

mechanisms considered. ForM1 andM2, when x is eitherMCARorMAR conditional on y, values
of the calibrated-δ adjustment derived should be very close to 0. This is because the standard MI
approach is unbiased under the MCAR and MAR mechanisms. For MNAR models M3 and M4,
calibrated-δ adjustment MI should remove bias seen in both marginal and conditional weighted
MI (sections 3.3.3 and 3.4.3).
Note that the derivation of the calibrated-δ adjustment differs from that of the conditional

weights in weighted MI, in which the term p (x = 1 ∣ r = 1) in (4.11) is replaced with
ppred1 = p (x = 1 ∣ y = 0, r = 1) p (y = 0) + p (x = 1 ∣ y = 1, r = 1) p (y = 1) .

This implies that conditional weighted MI is not the optimal approach for estimating the proba-
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bility p (x = 1 ∣ r = 0) of x in the missing data.
4.3 univariate simulation studies – revisited

This section presents a univariate simulation study to evaluate performance measures of the
calibrated-δ adjustmentMImethod for an incomplete binary covariate x, when the fully observed
outcome variable y is also binary. As before, the aims of this simulation study are to examine
finite-sample properties of calibrated-δ adjustment MI in terms of bias in parameter estimates,
efficiency, and coverage of 95% confidence intervals (CI); and to compare the method with
marginal and conditional weighted MI, standard MI, and complete record analysis (CRA) under
various missingness mechanisms for x.

4.3.1 Method

This simulation study is performed using the method outlined in section 3.4.1, with calibrated-δ
adjustment MI as an additional method under evaluation.
To implement calibrated-δ adjustmentMI of an incomplete covariate x in Stata, first a logistic

regression imputationmodel of x conditional on y is fitted to the complete records and parameter
estimates θ̂obs0 and θ̂obsy are saved. Next, the calibrated-δ adjustment is obtained numerically
using interval bisection as described in section 4.2.2 and stored in a local macro delta. The
interval bisection algorithm is straightforward to program in Stata. A response indicator r of x is
created. The calibrated-δ adjustment is then built into the imputation process via the offset

option, which is specific to mi impute logit [75], using the following commands.

. generate offsetvar = -‘delta’*r

. mi impute logit x y, offset(offsetvar) add(50)

By executing these commands, a logistic regression imputation model of x conditional on y is
fitted to the complete records to obtain maximum likelihood estimates of the imputation model’s
parameters and their asymptotic sampling variance. The coefficient of the variable offsetvar

containing the offset is constrained to 1. New parameters are then simulated from the large-
sample normal approximation of their posterior distribution, assuming non-informative priors.
Imputed values are then generated by drawing from the logistic regression imputation model,
given the new parameters.
An equivalence of calibrated-δ adjustment MI, referred to as calibrated-δ weighted multiple

imputation, is also examined in this simulation study. In this method, the numerical solution of
the calibrated-δ adjustment is obtained in the same way, but the adjustment is incorporated into
the imputation process as probability weights instead of an offset. Since δ = ln ( w1

w0 ) (section 4.2),
a weight w0 = 1 can be assigned to subjects with observed x = 0, and a weight w1 = exp (δ) to
subjects with observed x = 1. The imputation can then be performed using the pweight option
in mi impute logit [75], as follows.

. generate w = 1 if x == 0

. replace w = exp(‘delta’) if x == 1

. mi impute logit x y [pweight = w]
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This approach is expected to produce the same results as including the calibrated-δ adjustment
as an offset.
Different sets of simulated datasets are generated for each of the four missingness mecha-

nisms considered (M1–M4, table 4.1). This set of missingness mechanisms represent all possible
mechanisms for the incomplete covariate in this setting (excluding the interaction between the
covariate and the outcome in the selection model for the covariate). Under each missingness
mechanism, the full datasets are different across the S = 1 000 simulation repetitions, but the
same full dataset is used to compare the various methods for handling missing values in x in
each repetition. All simulations are performed in Stata 14 [44], using mi impute logit [75]
for standard MI, my command mi impute wlogit[73] for marginal and conditional weighted
MI, mi impute logit, offset [75] for calibrated-δ adjustment MI, and mi impute logit

[pweight] [75] for calibrated-δ weighted MI.

4.3.2 Results

Figures 4.1–4.3 present results of the univariate simulation study. Results in the full data, CRA,
marginal and conditional weighted MI are discussed in section 3.4.3 and included here for
comparison.
As expected, calibrated-δ adjustment MI and calibrated-δ weighted MI produce identical

results in terms of bias, standard errors, and coverage of 95% CIs. This is because in each
simulation repetition, the same state of the random-number generator for that repetition is set
before performing each of the two MI methods. By resetting the random-number generator
states in this way, it is possible to confirm whether these two calibrated-δMI methods are indeed
identical. Both methods are unbiased under all four missingness mechanisms considered, with
error bars covering 0 for both β̂0 and β̂x (figure 4.1). Bias seen in marginal and conditional
weighted MI under M4 is now fully alleviated in calibrated-δ adjustment MI.
Empirical standard errors are similar to the average model standard errors across the four

missingness mechanisms in calibrated-δ adjustment MI (figure 4.2). This method produces
higher standard errors than that in the full data, as expected. Standard errors of calibrated-δ
adjustment MI are comparable to that in standard MI and conditional weighted MI under M2,
when the two latter MI methods are unbiased. Standard errors of calibrated-δ adjustment MI are
also similar to that in marginal weighted MI under M3, when marginal weighted MI is unbiased.
Results for coverage are consistent with that obtained for bias and standard errors. Coverage

of 95% CIs in calibrated-δ adjustment MI attains the nominal level for both parameter estimates
and under all four missingness mechanisms considered (figure 4.3).
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Figure 4.1. Univariate simulation study: bias in point estimates under different missingness
mechanisms for x.
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depends on x; M4: missingness in x depends on (x , y); β0 = −0.693, βx = 0.405; error bars: ±1.96×Monte Carlo
standard errors; hollow circles: out-of-range values.
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Figure 4.2. Univariate simulation study: empirical and average model standard errors under
different missingness mechanisms for x.
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depends on x; M4: missingness in x depends on (x , y); error bars: ±1.96×Monte Carlo standard errors.

97



Figure 4.3. Univariate simulation study: coverage of nominal 95% confidence intervals under
different missingness mechanisms for x.
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⋆ Note: M1: missingness in x does not depend on x or y; M2: missingness in x depends on y; M3: missingness in x
depends on x; M4: missingness in x depends on (x , y); error bars: ±1.96×Monte Carlo standard errors; hollow
circles: out-of-range values.

4.3.3 Extended univariate simulation study: when there is uncertainty in estimating the population
distribution

The extended univariate simulation study presented in section 3.5 is rerun to examine perfor-
mance measures of calibrated-δ adjustment MI when the population marginal distribution of
the incomplete variable is obtained from an external dataset that is not equivalent to a census. As
before, three cases are considered, where the population distribution either comes from a census
and is invariant (case 1), or is estimated in external datasets of size nex = 10 000 (case 2), and
1 000 (case 3).
The simulation procedures are the same as that described in section 3.5.1, with a few alterations.

For each of the S = 1 000 repetitions, an external dataset of size nex = 10 000 or 1 000 is generated
in case 2 or 3, respectively, to obtain the estimated population proportion p̂popx of x. Next, a full-
data sample of size n = 5 000 is generated for a binary covariate x from a Bernoulli distribution,
and a binary outcome y from a logistic regression of y conditional on x. Values of x are thenmade
missing according to selection models M1–M4 (table 4.1). Missing data in x are then imputed
by calibrated-δ adjustment MI using M = 10 imputations instead of M = 50 imputations as
before, since the interval bisection algorithm for estimating the calibrated-δ adjustment can take
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a relatively long time. In each imputation, a draw of ṗpopx is taken from the normal approximation
N(p̂popx , p̂

pop
x (1−p̂

pop
x )

nex ). The calibrated-δ adjustment is then estimated using ṗpopx as the reference
proportion. The analysis model, which is a logistic regression of y on x, is then fitted to each
completed dataset and the results are combined using Rubin’s rules [20, 21]. All simulations are
performed in Stata 14 [44].
Figures 4.4–4.6 present the simulation results for calibrated-δ adjustment MI. Results for

marginal and conditional weighted MI are also included for reference.
Overall, the results seen in calibrated-δ adjustment MI are similar to that discussed in section

3.5.2. Calibrated-δ adjustment MI appears unbiased in all cases considered. Compared to case
1 where the population distribution of x is invariant, bias in point estimates slightly deviates
from 0 with the extra uncertainty in estimating ppopx in case 3 (figure 4.4). The average model
standard errors in calibrated-δ adjustment MI increase markedly in case 3, which is matched
by an increase in the corresponding empirical standard errors. These trends are also seen for
marginal and conditional weightedMI (figure 4.5). In contrast to marginal weightedMI, coverage
in calibrated-δ adjustment MI does not appear to be much affected by the extra uncertainty
coming from estimating ppopx (figure 4.6).
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Figure 4.4. Extended univariate simulation study: bias in point estimates under different miss-
ingness mechanisms for x; the population distribution of x is assumed to be invariant (case 1) or
estimated in external datasets of sizes 10 000 (case 2) and 1 000 (case 3).
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Figure 4.5. Extended univariate simulation study: empirical and average model standard errors
under different missingness mechanisms for x; the population distribution of x is assumed to be
invariant (case 1) or estimated in external datasets of sizes 10 000 (case 2) and 1 000 (case 3).
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Figure 4.6. Extended univariate simulation study: coverage of nominal 95% confidence intervals
under different missingness mechanisms for x; the population distribution of x is assumed to be
invariant (case 1) or estimated in external datasets of sizes 10 000 (case 2) and 1 000 (case 3).
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4.3.4 Univariate simulation studies: conclusion and remarks

Results of the univariate simulation studies in sections 4.3.2 and 4.3.3 support the findings in the
analytic calculations which explore the equivalence of weighting and including a δ adjustment
in MI in a 2 × 2 contingency table (section 4.2.1). When both the outcome variable y and the
covariate x are binary, appropriately adjusting the intercept of the imputation model for x is
sufficient to correct bias in point estimates introduced byMNARmechanisms where missingness
in x depends on either the values of x (M3) or both x and y (M4). Having established this,
the calibrated-δ adjustment MI method is then equivalent to standard MI when x is MCAR or
MAR conditional on y. Calibrated-δ adjustment MI produces the same inferences as marginal
weighted MI when x is MNAR dependent on x. Calibrated-δ adjustment MI is unbiased with
comparable empirical and average model standard errors and correct coverage of 95% CIs across
the four missingness mechanisms considered. In addition, bias previously seen in marginal
and conditional weighted MI under M4 is fully removed by the inclusion of the calibrated-δ
adjustment.
It is also shown that including the calibrated-δ adjustment as an offset in the logistic regression

imputation model yields the same results as incorporating it in the imputation process in the
form of probability weights. This has a practical implication on the inclusion of the calibrated-δ
adjustment in a multinomial logistic regression imputation model for an incomplete categorical
covariate, since the implementation of mi impute mlogit in Stata does not support an offset

option [75]. Under the four missingness mechanisms considered, it is concluded that calibrated-δ
adjustment MI is the method of choice for imputing missing values in a binary covariate when
the fully observed outcome variable is also binary.
Calibrated-δ adjustment MI is evaluated in analytic and univariate simulation studies of the

same set-up as described in sections 3.3–3.5. Using the same reasoning as presented in section 3.5.3,
results in this setting can be generalised to the case where the incomplete covariate is a categorical
variable with more than two levels. As before, suppose that the covariate contains L levels, and
the imputation model is a multinomial logistic regression model with L − 1 logistic regression
equations contrasting each of the l = 1, . . . , L−1 levels with the base level. The populationmarginal
distribution of the incomplete covariate can be used to derive L − 1 appropriate calibrated-δ
adjustments in the intercept of each of these regression equations. This helps to justify the use
of calibrated-δ adjustment MI (as well as marginal and conditional weighted MI) in two case
studies (sections 6.4 and 6.5) examining the issue of missing ethnicity data in UK primary care
databases, where ethnicity is analysed as a four-level categorical variable. Further simulations
can be undertaken to confirm this generalisability.

4.4 multivariate simulation studies – revisited

This section explores the integration of the univariate calibrated-δ adjustment MI method in the
multivariate imputation by chained equations (MICE) algorithm [23] (section 2.4.3) for imputing
missing values in several incomplete covariates. This extension is referred to as calibrated-δ
adjustment MICE. In the Stata command mi impute chained which performs multivariate
imputation by chained equations, users can specify a logistic regression conditional model for
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an incomplete binary variable with the option offset [75]. This is illustrated below for the
incomplete variable z j , j = 1 . . . q, at iteration t + 1.

z(t+1)1 ∣ z(t)2 , z(t)3 , . . . , z(t)q ←Ð offset = δz1 ;

z(t+1)2 ∣ z(t+1)1 , z(t)3 , . . . , z
(t)
q ←Ð offset = 0;

⋮
z(t+1)q ∣ z(t+1)1 , z(t+1)2 , . . . , z(t+1)q−1 ←Ð offset = 0.

However, the offset included in the logistic regression conditional model as implemented in
mi impute chained (logit, offset) is fixed across all imputations and iterations. Based
on the Stata community-contributed command uvis [74], I have written a new Stata command
to perform multivariate imputation by chained equations. This command allows for an offset
specification option in each logistic regression conditionalmodel, such that the offset is calculated
in each imputation and updated after every iteration of the algorithm. The purpose of this feature
is to account for the fact that missing values are randomly filled in using observed values at the
beginning of the iterative process in each imputation. In addition, after each iteration in a given
imputation, the incomplete variable is imputed conditional on observed and imputed values of
other variables from the previous iteration, which needs to be reflected in the calculation of the
calibrated-δ adjustment.
The following sections report a single multivariate simulation study in which the analysis

model is a logistic regression of a fully observed binary outcome on two incomplete binary
covariates. The aims of this study are to evaluate performancemeasures of calibrated-δ adjustment
MICE; and to compare the method to marginal and conditional weighted MICE and standard
MICE under different missingness mechanisms for the covariates.

4.4.1 Method

The single multivariate simulation study presented in this section follows the same set-up as
outlined in section 3.6.2. To recap, a single large dataset of size n = 100000 is simulated for a
binary outcome y and two binary covariates x and z, to demonstrate large-sample bias in the

Table 4.2. Single multivariate simulation study: variables associated with missingness in x and z,
corresponding selection parameters, and percentages of observed data in x and z.

Variables
associated with
missingness

Selection
parameters

%
observed data Label

x z αx0 αxx αxy αz0 αzz αzy (x , z) (x , ⋅) (⋅, z) (⋅, ⋅)
x y 0.5 1.5 −0.15 1.5 50 24 18 8 M1
x z 0.5 1.5 2 −1.5 52 23 18 7 M2
x y, z 0.5 1.5 1.95 −1.5 1.5 51 23 18 8 M3
x , y y 1.75 1.5 −1.5 −0.5 1.5 50 26 18 6 M4
x , y z, y 1.75 1.5 −1.5 1 −1.5 1.5 51 25 18 6 M5

⋆ Note: (x , ⋅): subjects with x observed and z missing; (⋅, z): subjects with x missing and z observed; (⋅, ⋅): subjects
with both x and z missing.
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point estimates if present. Values of x and z are made missing under the various missingness
mechanisms M1–M5 (table 4.2). The calibrated-δ adjustment is incorporated in the logistic
regression conditional models used to impute missing values in x and z in the chained equations,
whenever the corresponding missingness mechanism is MNAR, i.e. M1–M5 for x and M2, M3,
M5 for z. The algorithm is performed using M = 10 imputations with T = 10 iterations. The
analysis model is then fitted to each completed dataset and the results are combined using Rubin’s
rules [20, 21].
The algorithm for performing calibrated-δ adjustment MICE for x and z is as follows.

1. Fill in missing values in x and z randomly with observed values of x and z, respectively;
2. Begin iteration; for the imputation of x:
a. Discard the filled-in/imputed values of x;
b. Fit a logistic regression model for x conditional on z (observed and filled-in/imputed), y
(complete) and rz (complete) to subjects with observed x to obtain maximum likelihood
estimates of the imputation model’s parameters and associated standard errors;

c. Calculate the calibrated-δ adjustment in the intercept of the conditional imputationmodel
for x using interval bisection, as outlined in section 4.2.2. The probability of x = 1 among
the missing x can be written as

p (x = 1 ∣ r = 0) = 1
nmisx

nmisx∑
i=1
expit [(θobsx0 + δx) + θobsxy yi + θobsxz zi + θobsxrz rz i ] ,

where i indexes subjects in the dataset, and the estimate of θxrz is expected to be close to
0, since conditional on y and z missingness in z does not depend on x;

d. Fit a logistic regression model for x conditional on z (observed and filled-in/imputed),
y (complete) and rz (complete), with the calibrated-δ adjustment fixed as an offset, to
subjects with observed x to obtain maximum likelihood estimates of the imputation
model’s parameters and associated standard errors;

e. Draw new parameters (keeping calibrated-δ fixed) from the large-sample normal approxi-
mation of their posterior distribution, assuming non-informative priors;

f. Generate imputed values from the logistic regression model with new parameters and
replace missing values in x with the imputed values;

3. For the imputation of z, follow the same imputation procedure for x. The imputation model
for z is a logistic regression of z conditional on x (observed and imputed from the previous
step), y (complete), and rx (complete);

4. Repeat for T = 10 iterations to obtain one set of imputed values for x and z.
4.4.2 Results

Figures 4.7 and 4.8 present the results of the multivariate simulation study. Results in the full data,
CRA, standard MICE, and marginal and conditional weighted MICE are discussed in section
3.6.3 and included here for comparison.
Overall, calibrated-δ adjustment MICE gives point estimates that are closest to the full data

(figure 4.7). Point estimates are generally closest to the true values in the full data, with the
smallest standard errors and the narrowest 95% CIs. CRA has the largest standard errors and
the longest 95% CIs. Across the five missingness mechanisms considered, point estimates in
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calibrated-δ adjustment MICE are generally similar to that in the full data and conditional
weighted MICE, with error bars crossing the true values in most cases for β̂yx and β̂yz. The
95% CIs in calibrated-δ adjustment MICE just about cover the true value of βy0 under all five
missingness mechanisms, which is similar to the results in conditional weighted MICE and the
full data.
Figure 4.8 presents a comparison of the marginal and conditional weights and calibrated-δ

adjustment under the five missingness mechanisms used for generating missingness in x and z.
The log ratio of the twomarginal or conditional weights ln (wm/c1

wm/c0
) is plotted against the calibrated-

δ adjustment in each of theM = 10 imputations for x (under M1–M5) and z (under M2, M3, M5).
The conditional weights and calibrated-δ adjustment are taken from the last iteration in each
imputation. In addition, the following logistic regression conditional models for x and z

logit [p (x = 1 ∣ y, z, rx)] = θx0 + θxy y + θxzz + θxrx rx ;

logit [p (z = 1 ∣ y, x , rz)] = θz0 + θzy y + θzxx + θzrz rz ,

are fitted to the full data (i.e. before any values of x and z are set to missing), and the full-data
estimates θ̂fullxrx and θ̂fullzrz are plotted against the weights and calibrated-δ adjustment for reference.
The values of the calibrated-δ adjustment are close to θ̂xrx and θ̂zrz for both x and z under

all five missingness mechanisms, which agrees with the results for point estimates in calibrated-δ
adjustmentMICE (figure 4.8). The log ratio of the twomarginal weights is similar to θ̂xrx and θ̂zrz

under M1 and M2. This is consistent with the results in figure 4.7 suggesting that point estimates
in marginal weighted MICE are comparable to the true values under these two missingness
models. Under M3, while the log ratio of the two marginal weights for x is close to θ̂xrx , the
corresponding quantity for z is much smaller in magnitude compared to θ̂zrz , which explains the
noticeable bias in β̂yz in marginal weighted MICE. A similar explanation applies to the results in
marginal weighted MICE under M4 and M5. Overall, the results in this comparison are reflected
in the point estimates for marginal weightedMICE and calibrated-δ adjustmentMICE. Therefore,
the discrepancy between the log ratio of the conditional weights and θ̂xrx and θ̂zrz across all
missingness mechanisms suggests that some bias is expected to be present in the point estimates
in conditional weighted MICE. This is contrary to the results seen in figure 4.7, in which β̂yx

and β̂yz in conditional weighted MICE are close to the true values. However, bias in conditional
weighted MICE is shown over repeated multivariate simulations in section 3.6.4 (figure 3.11).
Variance information (including the within- and between-imputation variances (Ŵ and B̂,

respectively), relative increase in variance (RVI), fraction of missing information (FMI), and rela-
tive efficiency (RE), section 2.4.1) about the β parameters in marginal and conditional weighted
MICE and calibrated-δ adjustment MICE is presented in table 4.3. The within-imputation vari-
ance is stable across the methods and missingness mechanisms under evaluation. Compared
to the weighted MICE approaches, calibrated-δ adjustment MICE generally results in similar
between-imputation variance for β̂yx and β̂yz . Relative efficiency exceeds 95% for all parameter
estimates and methods.
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Figure 4.7. Single multivariate simulation study: point estimates under different missingness
mechanisms for x and z.
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⋆ Note: M1: missingness in x depends on x and in z depends on y; M2: missingness in x depends on x and in z
depends on z; M3: missingness in x depends on x and in z depends on (z, y); M4: missingness in x depends on
(x , y) and in z depends on y; M5: missingness in x depends on (x , y) and in z depends on (z, y); βy0 = 0.5,
βyx = −1, βyz = 1; horizontal black lines: true parameter values; error bars: 95% confidence intervals.107



Figure 4.8. Single multivariate simulation study: comparison of the marginal and conditional
weights, calibrated-δ adjustment, and estimated coefficient of the response indicator across
M = 10 imputations.
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⋆ Note: M1: missingness in x depends on x and in z depends on y; M2: missingness in x depends on x and in z
depends on z; M3: missingness in x depends on x and in z depends on (z, y); M4: missingness in x depends on
(x , y) and in z depends on y; M5: missingness in x depends on (x , y) and in z depends on (z, y); the conditional
weights and calibrated-δ adjustment are taken from the last iteration of each imputation; for each covariate, a logistic
regression model conditional on the outcome, the other covariate, and the covariate’s response indicator is fitted to
the full data to obtain estimated coefficient of the response indicator θ̂ fullr .
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Table 4.3. Single multivariate simulation study: variance information about the βy parameters
under different missingness mechanisms for x and z.

Ŵ B̂ RVI FMI RE
M1 Marginal weighted MICE β̂y0 0.00017 0.00002 0.151 0.134 0.987

β̂yx 0.00021 0.00012 0.626 0.404 0.961
β̂yz 0.00023 0.00013 0.648 0.413 0.960

Conditional weighted MICE β̂y0 0.00017 0.00006 0.349 0.270 0.974
β̂yx 0.00021 0.00009 0.478 0.339 0.967
β̂yz 0.00023 0.00018 0.856 0.485 0.954

Calibrated-δ adjustment MICE β̂y0 0.00017 0.00003 0.161 0.143 0.986
β̂yx 0.00021 0.00009 0.485 0.342 0.967
β̂yz 0.00023 0.00013 0.644 0.412 0.960

M2 Marginal weighted MICE β̂y0 0.00017 0.00002 0.143 0.128 0.987
β̂yx 0.00021 0.00008 0.423 0.311 0.970
β̂yz 0.00023 0.00002 0.111 0.102 0.990

Conditional weighted MICE β̂y0 0.00017 0.00002 0.129 0.117 0.988
β̂yx 0.00021 0.00009 0.481 0.340 0.967
β̂yz 0.00023 0.00002 0.115 0.105 0.990

Calibrated-δ adjustment MICE β̂y0 0.00017 0.00002 0.098 0.091 0.991
β̂yx 0.00021 0.00007 0.376 0.285 0.972
β̂yz 0.00023 0.00005 0.235 0.197 0.981

M3 Marginal weighted MICE β̂y0 0.00017 0.00002 0.151 0.135 0.987
β̂yx 0.00021 0.00009 0.446 0.321 0.969
β̂yz 0.00023 0.00007 0.360 0.276 0.973

Conditional weighted MICE β̂y0 0.00018 0.00002 0.148 0.132 0.987
β̂yx 0.00021 0.00009 0.472 0.336 0.968
β̂yz 0.00023 0.00008 0.353 0.272 0.974

Calibrated-δ adjustment MICE β̂0 0.00017 0.00002 0.129 0.117 0.988
β̂yx 0.00021 0.00008 0.419 0.308 0.970
β̂yz 0.00023 0.00008 0.372 0.283 0.973

M4 Marginal weighted MICE β̂y0 0.00017 0.00003 0.194 0.167 0.984
β̂yx 0.00021 0.00005 0.257 0.211 0.980
β̂yz 0.00023 0.00017 0.822 0.474 0.955

Conditional weighted MICE β̂y0 0.00017 0.00004 0.237 0.198 0.981
β̂yx 0.00021 0.00004 0.194 0.167 0.984
β̂yz 0.00023 0.00015 0.730 0.443 0.958

Calibrated-δ adjustment MICE β̂0 0.00017 0.00002 0.123 0.112 0.989
β̂yx 0.00021 0.00006 0.321 0.253 0.975
β̂yz 0.00023 0.00012 0.589 0.389 0.963

M5 Marginal weighted MICE β̂y0 0.00016 0.00001 0.070 0.066 0.993
β̂yx 0.00021 0.00003 0.174 0.152 0.985
β̂yz 0.00023 0.00008 0.363 0.278 0.973

Conditional weighted MICE β̂y0 0.00017 0.00002 0.119 0.108 0.989
β̂yx 0.00021 0.00006 0.306 0.243 0.976
β̂yz 0.00023 0.00006 0.301 0.241 0.977

Calibrated-δ adjustment MICE β̂0 0.00017 0.00001 0.088 0.082 0.992
β̂yx 0.00021 0.00006 0.318 0.251 0.976
β̂yz 0.00023 0.00007 0.344 0.267 0.974

⋆ Note: M1: missingness in x depends on x and in z depends on y; M2: missingness in x depends on x and in z
depends on z; M3: missingness in x depends on x and in z depends on (z, y); M4: missingness in x depends on
(x , y) and in z depends on y; M5: missingness in x depends on (x , y) and in z depends on (z, y).
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4.4.3 Repeated simulations for assessing performance measures

In this section, performance measures of calibrated-δ adjustment MICE are examined in a re-
peated multivariate simulation study. Similar to section 3.6.4, repeated simulations are conducted
under missingness models M1, M2, and M5 (table 4.2). Prior to the evaluation of calibrated-δ
adjustment MICE, marginal weighted MICE is found to be the preferred method under M1 and
M2, while conditional weighted MICE produces the least biased parameter estimates under M5.
The single simulation set-up under M1, M2, and M5 described in section 3.6.2 is performed

using S = 1000 repetitions and n = 1000 observations. A smaller sample size is chosen for
repeated simulations to reduce processing time, since the calibrated-δ adjustment needs to be
re-estimated after every iteration in each imputation of the chained equations, and the interval
bisection algorithm can take a relatively long time. As before, in all MI methods, missing values
in x and z are imputed usingM = 10 imputations and T = 10 iterations.
Results are summarised graphically in figures 4.9–4.11. Under M1, when x is MNAR depen-

dent on x and z is MAR conditional on y, calibrated-δ adjustment MICE yields unbiased point
estimates and the method is similar to marginal weighted MICE. Empirical standard errors are
comparable to the average model standard errors in calibrated-δ adjustment MICE, and they are
both similar to that in marginal and conditional weighted MICE. Coverage of 95% CIs attains
the nominal level for all three parameters in calibrated-δ adjustment MICE.
Under M2, when x is MNAR dependent on x and z is MNAR dependent on z, there is

minimal bias in the estimate of βy0 in calibrated-δ adjustment MICE. This bias is similar to
the bias seen in marginal weighted MICE and smaller than that in conditional weighted MICE.
Calibrated-δ adjustment MICE is unbiased in β̂yx , while there is negligible bias in β̂yz .
Under M5, when each of x and y is MNAR dependent on its values and the outcome y,

all three parameter estimates are unbiased in calibrated-δ adjustment MICE. Average model
standard errors are comparable in calibrated-δ adjustment MICE and conditional weighted
MICE. Empirical standard errors are larger than the average model counterparts in calibrated-δ
adjustment MICE for β̂yx and β̂yz . This result for the standard errors corresponds to a slight
drop in coverage of 95% CIs for these two parameters in calibrated-δ adjustment MICE, with
coverage remaining high at around the 92% mark.
It is also of concern that the chosen full-data sample size for repeated simulations might

affect the estimation of the calibrated-δ adjustment by interval bisection. With missing values
in both x and z, the observed-data estimation of the log odds ratios in the imputation models
for x and z can become less stable. Therefore, the multivariate simulation design is repeated
S = 500 times with increased sample sizes n = 3 000 and 5000, and the results are presented in
appendix B.1. Calibrated-δ adjustment MICE appears unbiased with increased sample sizes. A
larger sample size also leads to an overall reduction in the standard errors. Empirical and average
model standard errors in calibrated-δ adjustment MICE are more comparable under M5, which
improves coverage for βyz .
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Figure 4.9. Repeated multivariate simulation study (n = 1 000): bias in point estimates under
different missingness mechanisms for x and z.
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⋆ Note: M1: missingness in x depends on x and in z depends on y; M2: missingness in x depends on x and in z
depends on z; M5: missingness in x depends on (x , y) and in z depends on (z, y); β0 = 0.5, βx = −1, βz = 1; error
bars: ±1.96×Monte Carlo standard errors; hollow circles: out-of-range values.
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Figure 4.10. Repeated multivariate simulation study (n = 1 000): empirical and average model
standard errors under different missingness mechanisms for x and z.
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standard errors.
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Figure 4.11. Repeated multivariate simulation study (n = 1 000): coverage of nominal 95%
confidence intervals under different missingness mechanisms for x and z.
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depends on z; M5: missingness in x depends on (x , y) and in z depends on (z, y); error bars: ±1.96×Monte Carlo
standard errors; hollow circles: out-of-range values.

4.4.4 Multivariate simulation studies: conclusion and remarks

Single and repeated multivariate simulation studies with a complete binary outcome variable and
two incomplete binary covariates are conducted to explore the extension of univariate calibrated-δ
adjustment MI in the MICE algorithm for imputing missing values in more than one covariate.
Marginal weighted MICE and calibrated-δ adjustment MICE yield relatively comparable

results when one covariate is MNAR dependent on its values and the other covariate is MAR
conditional on the outcome (M1), or both covariates are MNAR dependent on their values
(M2). When missingness in each covariate depends on both its values and the outcome (M5),
calibrated-δ adjustment MICE appears unbiased with good coverage of at or slightly lower than
the 95% level, while bias is seen in both weighted MICE methods. Under M5, the empirical
standard errors are larger than the average model standard errors for β̂yx and β̂yz in calibrated-δ
adjustment MICE, and the reason for this mismatch is not clear. This discrepancy between the
two standard errors results in a slight decrease in coverage of 95% CIs.
Overall, results from the repeated multivariate simulation study suggest that calibrated-δ

adjustment MICE is generally the preferred method under the three missingness mechanisms
considered for the incomplete covariates.
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4.5 summary

This chapter proposes and evaluates calibrated-δ adjustment MI as an alternative method to
weighting in MI. Calibrated-δ adjustment MI offers a way for incorporating the population-
level distribution of the incomplete variable into the imputation process via an offset in the
imputation model’s intercept. The calibrated-δ adjustment is calculated using the population
marginal distribution of the incomplete covariate and its association with other variables in the
observed data. Calibrated-δ adjustment MI thus incorporates not only information about the
incomplete covariate’s population distribution, but also the effects of other variables included in
the imputation model for that covariate.
In section 4.2, calibrated-δ adjustment MI is explored analytically in a 2×2 contingency table,

with a fully observed binary outcome variable y and a partially observed binary covariate x. It
is found that appropriately adjusting the intercept of the imputation model for the incomplete
covariate is sufficient to correct bias introduced by missing data under all four missingness
mechanisms considered for x. Section 4.3 further evaluates the implementation of calibrated-δ
adjustment MI and the method’s performance measures in univariate simulation studies of the
same setting. Table 4.4 summarises the results of the univariate simulation studies for calibrated-δ
adjustment MI in comparison with other methods for handling missing values in the covariate

Table 4.4. Analytic and univariate simulation studies: summary of bias in the analysis model’s
parameter estimates under different missingness mechanisms for the incomplete covariate x.

Missingness in x depends on Method for missing data in x Biased estimation of

β0 βx

Neither y nor x CRA No No
Standard MI No No
Marginal weighted MI No No
Conditional weighted MI No No
Calibrated-δ adjustment MI No No

y

CRA Yes No
Standard MI No No
Marginal weighted MI Yes Yes
Conditional weighted MI No No
Calibrated-δ adjustment MI No No

x

CRA No No
Standard MI Yes No
Marginal weighted MI No No
Conditional weighted MI Yes Yes
Calibrated-δ adjustment MI No No

x and y

CRA Yes Yes
Standard MI Yes Yes
Marginal weighted MI Yes Yes
Conditional weighted MI Yes Yes
Calibrated-δ adjustment MI No No

⋆ Note: analysis model: logit [p (y = 1 ∣ x)] = β0 + βxx; y (complete) and x (incomplete) are binary variables, taking
values 0 or 1.
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x. When missingness in x depends on both the values of x and the outcome y, calibrated-δ
adjustment MI removes bias in point estimates that is still present in marginal and conditional
weighted MI. This method also has comparable empirical and average model standard errors,
and correct coverage of 95% CIs.
The proposed calibrated-δ adjustment MI method for univariate missing data is also adapted

for use in theMICE algorithm for imputingmissing values inmore than one incomplete covariate,
accounting for their population marginal distributions. This extension is explored in single and
repeated multivariate simulation studies of a three-way contingency table. The analysis model is a
logistic regression of a complete binary outcome variable y on two incomplete binary covariates x
and z. Simulation results again suggest that under the severalmissingnessmechanisms considered
for the incomplete covariates, calibrated-δ adjustmentMICE is the preferredmethod for handling
missing values, compared to marginal and conditional weighted MICE and standard MICE.
So far, the development and evaluation of marginal and conditional weighted MI and

calibrated-δ adjustment MI focus on the setting where both the outcome variable and the incom-
plete covariate(s) are binary. The next chapter investigates the application of the weighted MI
and calibrated-δ adjustment MI methods in a univariate missing data setting where the fully
observed outcome variable is continuous.
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5
Population-calibrated multiple imputation of a binary

covariate when the outcome variable is continuous

5.1 Introduction

5.2 Univariate simulation study
5.2.1 Method
5.2.2 Results
5.2.3 Exploration of the second sensitivity parameter

5.3 �eoretical justi�cation of the additional sensitivity parameter

5.4 Univariate simulation study: when the second sensitivity parameter is �xed
to its full-data estimate
5.4.1 Method
5.4.2 Results
5.4.3 Univariate simulation studies: conclusion

5.5 Summary

5.1 introduction

In chapters 3 and 4, the proposed population-calibrated multiple imputation (MI) methods,
including marginal and conditional weighted MI and calibrated-δ adjustment MI, are developed
for utilising external information containing the incomplete variable’s population-level marginal
distribution in the imputation process. Within the context of this thesis, these methods are
used for handling missing data in incomplete variables which are included as covariates in the
analysis model of interest. The population-calibrated MI methods are explored analytically and
via simulation in univariate and multivariate missing data settings where both the outcome
variable and the incomplete covariate(s) in the analysis model are binary.
This chapter studies the population-calibrated MI methods in a univariate missing data

setting, where the incomplete covariate to be imputed is binary as before but the fully observed
outcome variable is continuous. Following the same theme from the previous chapters, the
methods are evaluated using progressively increasing realism of the missingness mechanisms for
the incomplete covariate.
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In section 5.2, marginal and conditional weighted MI and calibrated-δ adjustment MI are
evaluated in a univariate simulation study, with a fully observed continuous outcome variable and
a partially observed binary covariate. Using repeated simulations, the frequentist properties of the
methods are studied and compared to that in standard MI and complete record analysis (CRA).
This investigation is conducted to examine whether the population-calibrated MI methods are
valid under missingness mechanisms investigated previously when the outcome variable is binary.
As shown in this simulation study, when the outcome variable is continuous and missingness
in the covariate depends on both its values and the outcome, adjusting the imputation model’s
intercept based on the population marginal distribution of the incomplete covariate is not
sufficient to remove bias introduced by missing data. This finding is due to the presence of a
second sensitivity parameter for the covariate–outcome association, which represents how this
association differs in the observed and missing data.
Section 5.3 provides a theoretical justification of the additional sensitivity parameter for the

covariate–outcome association in the imputation model. A proof-of-concept example based
on the set-up of the Heckman model [24] (section 2.5.2) is used to demonstrate that, under a
data generating mechanism similar to that used in the above simulation study, the presence of a
second sensitivity parameter is expected when the incomplete covariate is missing not at random
dependent on its values and the outcome.
Once the presence of the second sensitivity parameter is detected, the problem becomes

eliciting the second sensitivity parameter, followed by deriving the calibrated-δ adjustment in
the imputation model’s intercept. This intercept adjustment is calculated conditional on the
incomplete covariate’s population marginal distribution and the elicited value of the second
sensitivity parameter. This process is demonstrated in a univariate simulation study in section
5.4. In this simulation study, calibrated-δ adjustment MI is evaluated and compared to marginal
and conditional weighted MI, standard MI, and CRA when the second sensitivity parameter is
fixed to its full-data (i.e. ‘correct’) estimate.

5.2 univariate simulation study

This chapter starts with a univariate simulation study to examine performance measures of
marginal and conditional weighted MI and calibrated-δ adjustment MI for handling missing
data in an incomplete binary covariate when the complete outcome variable in the analysis
model is continuous. The aim of this simulation study is to evaluate the finite-sample properties
of marginal and conditional weighted MI and calibrated-δ adjustment MI in this setting. In
particular, the properties of interest are bias in parameter estimates, efficiency, and coverage of
95% confidence intervals (CI). This study also aims to examine whether the proposed population-
calibrated MI methods are valid under missingness mechanisms considered previously for a
binary outcome variable.

5.2.1 Method

The analysis model in this simulation study is a linear regression of a fully observed, normally
distributed outcome variable y on an incomplete binary covariate x. As before, marginal and
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conditional weighted MI and calibrated-δ adjustment MI are compared to standard MI and CRA
under different models of the missingness mechanism for x.
The data generating mechanism and analysis procedures are as follows.

1. Simulate n = 5 000 complete values of the binary covariate x taking values 0 or 1 and the
continuous normally distributed outcome y from the following models

x ∼ Bernoulli (ppopx = 0.7) ;
y = β0 + βxx + ε; (5.1)

ε iid∼ N (0, σ2) ,
where β0 and βx are arbitrarily set to −0.5 and 1, respectively. A standard deviation of σ =
0.9 is chosen to achieve a coefficient of determination R2 = 0.2. The same values of the β
coefficients and σ are used throughout to make bias comparable across all simulation settings;

2. Simulate a binary indicator of response r of x from each of the selection models M1–M4
(table 5.1). Under M1–M4, αy and αx are set to −1.5 to reflect a strong odds ratio (OR) of
observing x (OR = 0.22). For all selection models, α0 is altered to achieve approximately 45%
of missing values in x. The values of α0 = 0.25; 0.6; 1.25; and 1.75 appear to work well for
M1–M4, respectively;

3. For i = 1, . . . , 5000, set xi to missing if ri = 0;
4. Impute missing values in x M = 50 times using standard MI, marginal and conditional
weighted MI, and calibrated-δ adjustment MI in turn;

5. For eachMImethod, estimate parameters of the analysis model (5.1) in each completed dataset
and combine the results using Rubin’s rules [20, 21].
This process is repeated S = 1 000 times under each of the four missingness models M1–M4,

so the same set of simulated independent datasets is used to compare the four MI methods under
the same missingness scenario, but a different set of datasets is generated for each missingness
scenario [77]. The parameters of interest are β0 and βx . Bias in the estimates of the β coefficients,
efficiency in terms of the empirical standard errors, and coverage of 95% CIs are calculated over
1000 repetitions for each combination of the simulation settings [78], with analyses of the full
data and complete records also provided for comparison.
All simulations are performed in Stata 14 [44]; simulated datasets are analysed using the

community-contributed command simsum [78]. As before, mi impute logit [75] is used for
standard MI, my command mi impute wlogit [73] for marginal and conditional weighted
MI, and mi impute logit, offset [75] for calibrated-δ adjustment MI.

Table 5.1. Univariate simulation study: models for missingness in x.

Linear predictor of selection model
logit [p (r = 1 ∣ x , y)] Label

α0 M1
α0 + αy y M2
α0 + αxx M3
α0 + αxx + αy y M4

⋆ Note: r: response indicator of x.
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In calibrated-δ adjustment MI, the following imputation model

logit [p (x = 1 ∣ y)] = θ0 + θ y y

is fitted to the complete records, and the estimates of θobs0 and θobsy are obtained. The calibrated-δ
adjustment is then calculated based on the assumption that the association between y and x is the
same among the observed and missing x, θobsy = θmisy . Since y is now continuous, this assumption
cannot easily be verified in an analytical approach, as in the previous 2 × 2 contingency table
setting (section 4.2.1). However, bias in parameter estimates is expected to be detectable over
repeated simulations if this assumption does not hold. Under this assumption, the probability of
x = 1 among those with missing data in x can therefore be written as

p (x = 1 ∣ r = 0) = 1
nmis

nmis∑
i=1
expit [(θobs0 + δ) + θobsy yi] ,

and the calibrated-δ adjustment can again be estimated using interval bisection [81, 82] (or any
other root-finding method).

5.2.2 Results

Results of the univariate simulation study are summarised in figures 5.1–5.3. Full data and CRA
again produce results as expected. Point estimates are always unbiased in the full data with the
smallest standard errors and correct coverage, except for β̂0 under M3 where there is a small
over-coverage due to the empirical standard error being slightly smaller than the average model
standard error. CRA is unbiased when x is missing completely at random (MCAR,M1) ormissing
not at random (MNAR) dependent on x (M3). Under these missingness mechanisms, coverage
of CRA attains the nominal level. CRA is severely biased under the other two missingness
mechanisms, with coverage equal to 0.
Under M1, when x is MCAR, all methods under evaluation are unbiased. Empirical standard

errors of marginal and conditional weighted MI and calibrated-δ adjustment MI are slightly
higher than the average model standard errors for β̂x , leading to very slight under-coverage of
95% CIs.
Under M2, when x is missing at random (MAR) conditional on y, standard MI is, by design,

unbiased with correct standard errors and coverage. Conditional weighted MI and calibrated-δ
adjustment MI are also unbiased. While the empirical and average model standard errors are
similar in conditional weighted MI and coverage of the method is correct, the empirical standard
errors are larger than the average model standard errors in calibrated-δ adjustment MI. This
increase in the empirical standard errors leads to a small drop in coverage of the method to just
below 94%. Marginal weighted MI is biased in both parameter estimates under this missingness
mechanism, and coverage decreases substantially to less than 5%.
Under M3, when x is MNAR dependent on x, standard MI produces noticeable bias in both

point estimates, as expected. Coverage of the method decreases to a larger extent for β̂0 compared
to β̂x , since bias is more severe in β̂0. Conditional weighted MI is also biased in both parameter
estimates, with larger bias in β̂0. Under this missingness mechanism, bias in conditional weighted
MI is more noticeable when y is continuous compared to when y is binary. Marginal weightedMI
and calibrated-δ adjustment MI are unbiased with similar empirical and average model standard

119



errors, and coverage of both methods is at the expected 95% level.
Under M4, when x is MNAR dependent on x and y , none of the methods yield unbiased

point estimates of β0 and βx . However, the magnitude of bias appears to be the smallest in
calibrated-δ adjustment MI. Although the empirical standard errors are larger than the average
model standard errors in calibrated-δ adjustment MI, coverage remains high, exceeding the 90%
level. Due to the substantial bias in point estimates in the other methods, their standard errors
are not comparable and coverage is therefore low.
To explore the results for higher and lower degrees of uncertainty in the full data, the univariate

simulation study is repeated using the same method (section 5.2.1) but for values of σ = 1.95
and 0.45, which correspond to coefficients of determination R2 = 0.05 and 0.5, respectively.
Results mainly vary with the changes in R2 under M2 and M4. Overall, there is bias in point
estimates in calibrated-δ adjustment MI under M4, but bias decreases with higher R2. Under
M2, although calibrated-δ adjustment MI appears unbiased, the empirical and average model
standard errors do not match, and coverage is slightly above or below the nominal level. When
R2 is low, conditional weighted MI is unbiased under M2 and less biased than calibrated-δ
adjustment MI underM4, with an over-coverage of 95% CIs under both missingness mechanisms.
When R2 is high, conditional weighted MI is unbiased and achieves the correct coverage under
M2; the method is noticeably biased with poor coverage under M4. These results can be found
in appendix C.1.
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Figure 5.1. Univariate simulation study (R2 = 0.2): bias in point estimates under different
missingness mechanisms for x.
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Figure 5.2. Univariate simulation study (R2 = 0.2): empirical and average model standard errors
under different missingness mechanisms for x.
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Figure 5.3. Univariate simulation study (R2 = 0.2): coverage of nominal 95% confidence intervals
under different missingness mechanisms for x.

0

0.3 (-0.04, 0.64)

0

3.7 (2.53, 4.87)

0.1 (-0.10, 0.30)

0
0
20.5 (18.00, 23.00)
46.5 (43.41, 49.59)

0
0
33.6 (30.67, 36.53)

Full data
CRA

Standard MI
Marginal weighted MI

Conditional weighted MI
Calibrated-δ adjustment MI

Full data
CRA

Standard MI
Marginal weighted MI

Conditional weighted MI
Calibrated-δ adjustment MI

Full data
CRA

Standard MI
Marginal weighted MI

Conditional weighted MI
Calibrated-δ adjustment MI

Full data
CRA

Standard MI
Marginal weighted MI

Conditional weighted MI
Calibrated-δ adjustment MI

60 70 80 90 100<50 60 70 80 90 100<50

M1, β0 M1, βx

M2, β0 M2, βx

M3, β0 M3, βx

M4, β0 M4, βx

Coverage of nominal 95% CIs

⋆ Note: M1: missingness in x does not depend on x or y; M2: missingness in x depends on y; M3: missingness in x
depends on x; M4: missingness in x depends on (x , y); error bars: ±1.96×Monte Carlo standard errors; hollow
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5.2.3 Exploration of the second sensitivity parameter

Results in the univariate simulation study suggest that the calibrated-δ adjustment MI method
produces unbiased parameter estimates when missingness in the incomplete covariate x depends
on either the values of x or the outcome variable y. Conversely, the method is valid in all but the
last missingness mechanism (M4) considered, under which missingness in x depends on both x
and y. Previously, it is noted that the calibrated-δ adjustment MI method is implemented based
on the assumption that the association between x and y is the same whether x is observed or
missing, i.e. θobsy = θmisy . Bias in point estimates seen in calibrated-δ adjustment MI under M4
might suggest that, while this assumption might hold under the other missingness mechanisms,
it is violated under M4.
To explore whether there is empirical support for this hypothesis, the full datasets in S = 1000

simulation repetitions under each of the four missingness mechanisms are recreated using the
random number generator states that correspond to each of the repetitions, and the following
model is fitted to each full dataset (i.e. before values in x are set to missing)

logit [p (x = 1 ∣ y, r)] = θ0 + θ y y + θrr + θ yr yr,
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Table 5.2. Univariate simulation study (R2 = 0.2): mean and standard deviation (SD) of the
full-data estimates of θr and θ yr over S = 1 000 simulation repetitions and the number of times
each of the null hypotheses H0 ∶ θr = 0 and H0 ∶ θ yr = 0 is rejected at the 5% level.
Missingness
model

¯̂θr SD (θ̂r) ¯̂θ yr SD (θ̂ yr) Number of times
H0 ∶ θr = 0 rejected Number of times

H0 ∶ θ yr = 0 rejected
M1 0.0021 0.0677 −0.0026 0.0912 41 54
M2 0.0029 0.0825 −0.0023 0.1028 47 49
M3 −1.5017 0.0835 −0.0027 0.0966 1000 47
M4 −1.4972 0.0948 0.0934 0.1128 1000 134

⋆ Note: M1: missingness in x does not depend on x or y; M2: missingness in x depends on y; M3: missingness in x
depends on x; M4: missingness in x depends on (x , y).

where r is the response indicator of x. Full-data estimates of θr and θ yr are then obtained from
the above model. The parameter θr of the response indicator of x represents the difference
between θobs0 and θmis0 , which is the calibrated-δ adjustment in the univariate simulation study
and is and now referred to as δ0. The parameter θ yr of the interaction between the outcome y
and the response indicator of x represents the difference between θobsy and θmisy . This parameter,
which is assumed to be 0 in the above simulation study (section 5.2.1), is now referred to as δy.
Table 5.2 presents the mean and standard deviation of the estimates of θr and θ yr over

S = 1000 simulation repetitions, which are defined as
¯̂θ = 1

S

S∑
s=1

θ̂s;

SD (θ̂) =
¿ÁÁÀ 1

S − 1
S∑
s=1

(θ̂s − ¯̂θ)2,
respectively. In addition, the number of times each of the following null hypotheses

H0 ∶ θr = 0, and H0 ∶ θ yr = 0
is rejected at the 5% level, where the Wald test p-value is less than 0.05, is also counted and
presented in table 5.2.
Under M1 and M2, when x is MCAR or MAR conditional on y, the means of θ̂r and θ̂ yr

are both relatively close to 0, and both hypotheses are rejected in around 5% of the simulation
repetitions. This suggests that no adjustment is needed in either θobs0 or θobsy in the imputation
model for x, and standardMI is valid according to the theory of MI. Under M3, when x is MNAR
dependent on x, the mean of the θr estimates is around −1.5, which is the value of the coefficient
αx used to generate missingness in x; the mean of the estimates of θ yr is again close to 0. In
addition, while the second hypothesis regarding θ yr is rejected in about 5% of the simulation
repetitions as before, the first hypothesis regarding θ0 is rejected in all 1000 repetitions. This
result is consistent with keeping θobsy unadjusted and changing θobs0 by an adjustment δ0 in the
imputation model for x.
Under M4, when x is MNAR dependent on x and y, the mean of the θr estimates is still

close to αx (as it must be when y is binary); however, there is an increase in the magnitude of the
mean of the θ yr estimates. The hypothesis regarding θ yr is now rejected in 13% of the simulation
repetitions, which suggests that θobsy is also different from θmisy . The number of times the null
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hypothesis θ yr = 0 is rejected increases for lower values of R2 (appendix C.1). Therefore, in
order to correct bias under this missingness mechanism for x, a second adjustment, or sensitivity
parameter, δy is needed in θobsy in addition to the existing adjustment δ0 in θobs0 .
The presence of the interaction term θ yr between the outcome y and the response indicator r

of x in the logistic regression model for x in the full data implies that there is also an interaction
term βxr between x and r in the linear regression model for y in the full data, where

y = β0 + βxx + βrr + βxrxr + ε;

ε iid∼ N (0, σ2) .
The presence of the interaction term βxr is somewhat unexpected, given that data in y

are simulated using model (5.1), which does not include an interaction between x and r. This
interaction might be induced by the association between r, x, and y in the missingness model for
x. This mechanism is explored in the next section, where the difference between θobsy and θmisy

is demonstrated mathematically in a setting based on the Heckman model [24] (section 2.5.2).
This analysis confirms the presence of the second sensitivity parameter when missingness in x
depends on x and y.

5.3 theoretical justification of the additional sensitivity parameter

This section describes a proof-of-concept example which provides a theoretical justification of
the interaction between the outcome variable and the missingness indicator of the incomplete
covariate in the logistic regression imputation model for the covariate, in the scenario when the
covariate isMNAR dependent on its values and the outcome. This supports the empirical findings
in section 5.2.2 regarding the presence of a second sensitivity parameter for the covariate–outcome
association in the imputation model for the incomplete covariate.
This working example is set up as follows. Let x denote the binary covariate taking values

l = 0 or 1 where x ∼ Bernoulli (px), and y denote the continuous outcome variable which is
normally distributed with mean β0 + βxx and variance σ2y∣x .
Missingness in x is defined through a latent variable z following a normal distribution with

mean α0 + αxx + αy y and variance 1. Let a fully observed response indicator r take values 1 if
z ≥ 0 and 0 otherwise. The selection model for x is then defined by two regression models

y ∣ x ∼ N (β0 + βxx , σ2y∣x) ; (5.2)

z ∣ y, x ∼ N (α0 + αxx + αy y, 1) , (5.3)

where x is missing when z < 0 (or r = 0). This set-up is similar to the Heckman model [24]
discussed in section 2.5.2.
Using the law of total expectation, the conditional expectation of z given x can be written as

E (z ∣ x) = E (E (z ∣ y, x) ∣ x)
= α0 + αxx + E (αy y ∣ x)
= α0 + αxx + αy(β0 + βxx)
= (α0 + αyβ0) + (αx + αyβx) x
= α∗0 + α∗x x .
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The conditional variance of z given x can be expressed as

Var (z ∣ x) = E (Var (z ∣ y, x) ∣ x) +Var (E (z ∣ y, x) ∣ x)
= 1 +Var (α0 + αxx + αy y ∣ x)
= 1 + α2yVar (y ∣ x)
= 1 + α2yσ2y∣x
= σ2z∣x .

f (y, z ∣ x) thus jointly follows a bivariate normal distribution, whose density function is
⎛⎝yz

⎞⎠ ∼ N⎡⎢⎢⎢⎢⎣
⎛⎝µy∣x = β0 + βxx
µz∣x = α∗0 + α∗x x

⎞⎠ ,
⎛⎝ σ2y∣x ρσy∣xσz∣x

ρσy∣xσz∣x σ2z∣x

⎞⎠
⎤⎥⎥⎥⎥⎦ , (5.4)

where ρ is the correlation coefficient between y and z, ρ = corr (y, z ∣ x).
The conditional distribution of z given y and x can then be written as

z ∣ y, x ∼ N(µz∣x + ρ
σz∣x
σy∣x

(y − µy∣x) , σ2z∣x (1 − ρ2)) . (5.5)

(5.3) and (5.5) imply that
1 = σ2z∣x (1 − ρ2) ,

from which the correlation ρ between y and z can be derived as

ρ =
¿ÁÁÁÀσ2z∣x − 1

σ2z∣x

= αyσy∣x√
1 + α2yσ2y∣x

. (5.6)

The probability of x = 1 conditional on y in the observed data is given by

p (x = 1 ∣ y, z ≥ 0) = f (z ≥ 0 ∣ y, x = 1) f (y ∣ x = 1) p (x = 1)∑1l=0 f (z ≥ 0 ∣ y, x = l) f (y ∣ x = l) p (x = l)
= 1

1 + f (z ≥ 0 ∣ y, x = 0) f (y ∣ x = 0) p (x = 0)
f (z ≥ 0 ∣ y, x = 1) f (y ∣ x = 1) p (x = 1)

, (5.7)

and, similarly, in the missing data

p (x = 1 ∣ y, z < 0) = 1

1 + f (z < 0 ∣ y, x = 0) f (y ∣ x = 0) p (x = 0)
f (z < 0 ∣ y, x = 1) f (y ∣ x = 1) p (x = 1)

.

From (5.2), the density function of y conditional on x can be expressed as

f (y ∣ x = 1) = 1√
2πσ2y∣x

exp
⎡⎢⎢⎢⎢⎣−

(y − β0 − βxx)2
2σ2y∣x

⎤⎥⎥⎥⎥⎦ . (5.8)

From (5.5) and (5.6), the truncated density function of z ≥ 0 given y and x can be written as

f (z ≥ 0 ∣ y, x) = Φ
⎡⎢⎢⎢⎢⎢⎣
µz∣x + ρ σz∣x

σy∣x
(y − µy∣x)√
1

⎤⎥⎥⎥⎥⎥⎦
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= Φ [(α∗0 + α∗x x) ρ
σz∣x
σy∣x

(y − β0 − βxx)]
= Φ [(α0 + αyβ0) + (αx + αyβx) x + αy (y − β0 − βxx)]
= Φ [α0 + αxx + αy y] . (5.9)

The logistic regression of x conditional on y in the observed data is

logit [p (x = 1 ∣ y, z ≥ 0)] = θobs0 + θobsy y,

from which the probability of x = 1 given y in the observed data is given by

p (x = 1 ∣ y, z ≥ 0) = expit (θobs0 + θobsy y) . (5.10)

From (5.7)–(5.10), the linear predictor in the logistic regression of x conditional on y in the
observed data can be written as

θobs0 + θobsy y = ln [ f (z ≥ 0 ∣ y, x = 1) f (y ∣ x = 1) p (x = 1)
f (z ≥ 0 ∣ y, x = 0) f (y ∣ x = 0) p (x = 0)]

= ln⎡⎢⎢⎢⎣
Φ (α0 + αx + αy y)
Φ (α0 + αy y)

⎤⎥⎥⎥⎦ + ln
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
exp [− (y−β0−βx)2

2σ 2y∣x
]

exp [− (y−β0)2
2σ 2y∣x

]
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
+ ln( px

1 − px
)

= ln⎡⎢⎢⎢⎣
Φ (α0 + αx + αy y)
Φ (α0 + αy y)

⎤⎥⎥⎥⎦ −
(y − β0 − βx)2

2σ2y∣x
+ (y − β0)2

2σ2y∣x
+ ln( px

1 − px
) . (5.11)

When y = 0, (5.11) becomes
θobs0 = ln [Φ (α0 + αx)

Φ (α0) ] − 2β0βx + β2x
2σ2y∣x

+ ln( px
1 − px

) , (5.12)

and similarly, when y = 1
θobs0 + θobsy = ln⎡⎢⎢⎢⎣

Φ (α0 + αx + αy)
Φ (α0 + αy)

⎤⎥⎥⎥⎦ −
β2x + 2β0βx − 2βx

2σ2y∣x
+ ln( px

1 − px
) . (5.13)

The log odds ratio of x for y in the observed data can be derived from (5.12) and (5.13) as

θobsy = ln⎡⎢⎢⎢⎣
Φ (α0 + αx + αy)Φ (α0)
Φ (α0 + αy)Φ (α0 + αx)

⎤⎥⎥⎥⎦ +
βx

σ2y∣x
. (5.14)

In the missing data, the logistic regression of x conditional on y is

logit (x = 1 ∣ y, z < 0) = θmis0 + θmisy y.

Following the same steps as above, the log odds and log odds ratio of x for y in the missing
data can be written as

θmis0 = ln [ 1 −Φ (α0 + αx)
1 −Φ (α0) ] − 2β0βx + β2x

2σ2y∣x
+ ln( px

1 − px
) ; (5.15)

θmisy = ln⎧⎪⎪⎨⎪⎪⎩
[1 −Φ (α0 + αx + αy)] [1 −Φ (α0)][1 −Φ (α0 + αy)] [1 −Φ (α0 + αx)]

⎫⎪⎪⎬⎪⎪⎭ +
βx

σ2y∣x
. (5.16)

From (5.12) and (5.15), the difference between the log odds of x in the observed and missing
data is given by

θmis0 − θobs0 = ln [ 1 −Φ (α0 + αx)
1 −Φ (α0) ⋅ Φ (α0)

Φ (α0 + αx)] . (5.17)
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This difference is a function of the parameters defining the latent variable z which governs
missingness in x.
Similarly, (5.14) and (5.16) show that there is also a difference between the log odds ratios of

x for y in the observed and missing data. This difference is again a function of the parameters
used for generating missingness in x, and can be written as

θmisy − θobsy = ln⎧⎪⎪⎨⎪⎪⎩
[1 −Φ (α0 + αx + αy)] [1 −Φ (α0)][1 −Φ (α0 + αy)] [1 −Φ (α0 + αx)] ⋅

Φ (α0 + αy)Φ (α0 + αx)
Φ (α0 + αx + αy)Φ (α0)

⎫⎪⎪⎬⎪⎪⎭ . (5.18)

When x is MCAR, αx = αy = 0, and it follows that the differences in the log odds and log
odds ratios in (5.17) and (5.18) are both equal to 0. When x is MAR conditional on y, αx = 0,
and again both (5.17) and (5.18) are equal to 0. This implies that under these two missingness
mechanisms, no adjustment is needed in the imputation model, and standard MI is the valid
approach as the theory suggests. In contrast, when x is MNAR dependent on x, αy = 0, which
means that the difference in the log odds ratios in (5.18) is 0 while (5.17) is not equal to 0, so
the log odds in the observed and missing data are different. This is consistent with findings
in the univariate simulation study in section 5.2, which suggest that adjusting the imputation
model’s intercept is sufficient to remove bias when missingness in x depends on x. Lastly, when
missingness in x depends on x and y, neither αx nor αy is 0, and thus both (5.17) and (5.18)
are not equal to 0. This finding confirms the presence of the second sensitivity parameter for
the association between x and y in the imputation model for x, and further demonstrates why
adjusting only the intercept of the imputation model is not sufficient to remove bias introduced
by the MNAR mechanism in this case. Nevertheless, using the intercept adjustment when x is
MNAR dependent on both x and y is expected to yield little bias when αy is small compared to
the other selection parameters.
These calculations are verified by simulating a large full dataset of size n = 1 000000 for x,

y, and z using pre-defined values of the β and α coefficients and σy∣x (appendix C.2). Analytic
results obtained from following the above calculation steps are compared to the empirical results
obtained from fitting the relevant models to the simulated dataset, in order to verify consistency.
As expected, this working example demonstrates the presence of a sensitivity parameter for

θobs0 . In addition, the calculations (and the empirical findings) in this example also confirm the
presence of an additional sensitivity parameter for θobsy , as seen in the univariate simulation study
in sections 5.2.2 and 5.2.3.

5.4 univariate simulation study: when the second sensitivity parameter is fixed to its
full-data estimate

Findings in the univariate simulation study and calculations in sections 5.2 and 5.3 explain why
adjusting the intercept θobs0 of the imputationmodel for x alone cannot sufficiently account for bias
introduced by the inclusion of y in the MNAR mechanism (M4) for x. This deficiency indicates
that under this missingness mechanism, knowing the population-level marginal distribution
of the covariate is not enough to correctly recover the second sensitivity parameter for the
association between the covariate and the outcome variable in the missing data.
The problem then becomes exploring the sensitivity of inference for a range of values of the
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second sensitivity parameter δy. This evaluation can be conducted by eliciting δy and using the
population distribution of the incomplete covariate x to derive δ0, given each elicited value of δy .
The estimate of interest and its 95% CIs can be graphed against the various choices of δy.
The following sections revisit the univariate simulation study presented in section 5.2, in

order to explore bias in calibrated-δ adjustment MI under missingness mechanismM4, when
the sensitivity parameter for θobsy is fixed to its estimate obtained in full data.

5.4.1 Method

Based on the findings highlighted above, this section focuses on missingness mechanism M4
(table 5.1), under which missingness in the incomplete covariate x depends on both the values of
x and the outcome variable y.
The data generating mechanism and simulation procedures follow the method described

in section 5.2.1. For each of the S = 1 000 simulation repetitions, the same repetition-wise state
of the random number generator used previously is set to recreate the full dataset and missing
values in x, in order to make bias comparable to previous simulations. In the presence of the
second sensitivity parameter, the logistic regression model for x conditional on y in the full data
is given by

logit [p (x = 1 ∣ y, r)] = θ0 + θ y y + θr (1 − r) + θ yr y (1 − r) . (5.19)

This parameterisation implies that the imputation model for x in the missing data can be written
as

logit [p (x = 1 ∣ y, r = 0)] = (θobs0 + δ0) + (θobsy + δy) y, (5.20)

where δ0 and δy represent the adjustments in the parameter estimates obtained from fitting the
logistic regression model for x conditional on y in subjects with observed x.
Since a full dataset is simulated in each simulation repetition, model 5.19 can be fitted to the

full data before any values of x are set to missing, and θ̂ yr representing the full-data (i.e. ‘correct’)
value of the adjustment for θ y is recorded. The probability of x = 1 among the missing x can be
written as

p (x = 1 ∣ r = 0) = 1
nmis

nmis∑
i=1
expit [(θobs0 + δ0) + (θobsy + δy) yi] . (5.21)

Hence, δ0 can be derived using interval bisection [81, 82] (or any other root-finding method),
after δy is fixed to θ̂ yr which is estimated in full data in the previous step.
In Stata, this process can be integrated in the imputation via the offset option which is

specific to mi impute logit [75], as before. First, model (5.19) is fitted to the full data, and
the estimate of θ yr is stored in a local macro delta_y. Next, δ0 is estimated using interval
bisection given the chosen value of δy from the previous step, and the estimate is also stored in a
local macro delta_0. Finally, a variable offsetvar containing the offset is created, and MI is
performed using the following commands.

. generate offsetvar = -(‘delta_0’ + ‘delta_y’*y) * r

. mi impute logit x y, offset(offsetvar) add(50)

As before, missing values in x are imputedM = 50 times, and the parameters of interest, β0
and βx , are estimated in each completed dataset and the results are combined using Rubin’s rules

129



[20, 21]. Bias in the β coefficient estimates, efficiency in terms of the empirical standard errors,
and coverage of 95% CIs are calculated over 1000 simulation repetitions for each MI method [78],
with analyses of the full data and complete records also provided for reference. Stata 14 [44] is
used for all aspects of this simulation study.

5.4.2 Results

Figure 5.4 presents the results of the univariate simulation study under M4, when x is MNAR
conditional on x and y. Results for the full data, CRA, standard MI, marginal and conditional
weighted MI, and calibrated-δ adjustment MI assuming δy = 0 are discussed in section 5.2.2 and
included here for reference.

Figure 5.4. Univariate simulation study (R2 = 0.2): bias in point estimates, empirical and average
model standard errors, and coverage of nominal 95% confidence intervals when missingness in x
depends on x and y (M4).
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Bias previously seen in calibrated-δ adjustment MI when δy is assumed to be 0 is now
corrected under calibrated-δ adjustment MI with δy fixed to its estimate obtained in full data.
This result is as expected, because once the δy adjustment is set to the correct value, the remaining
sensitivity parameter is δ0, which can be recovered using the population marginal distribution of
the incomplete variable x.
Results regarding the standard errors and coverage are generally similar for the two calibrated-

δ adjustment MI approaches (assuming δy = 0 and setting δy to its full-data estimate). The
discrepancy between the empirical and average model standard errors seen in calibrated-δ
adjustment MI assuming δy = 0 also appears in calibrated-δ adjustment MI with δy fixed to its
full-data estimate. This dissimilarity between the two standard errors leads to an under-coverage
of 95% CIs, with coverage of both parameter estimates remaining above the 90% level. However,
this dissimilarity is smaller, particularly for β̂x , when δy is fixed to the correct value, which results
in a slight improvement in coverage for this parameter. Results for R2 = 0.05 and 0.5 are similar
and are presented in appendix C.3.
Figure 5.5 shows a comparison of the distributions of θ̂r estimated in full data, δ0 derived

assuming δy is fixed to its full-data estimate θ̂ yr , and δ0 derived assuming δy is equal to 0. Dot-
plots of θ̂r and δ0 under two different assumptions for δy over S = 1000 simulation repetitions
are presented, ignoring the sign of the quantities.
While the location of the distributions is comparable for θ̂r and δ0 given δy = θ̂ yr (sample

mean = 1.497 and 1.491 over 1000 simulation repetitions, respectively), there is a shift towards 0

Figure 5.5. Univariate simulation study (R2 = 0.2): comparison of θ̂r estimated in the full data;
calibrated δ0 derived assuming δy = θ̂ yr , where θ̂ yr is estimated in the full data; and calibrated δ0
derived assuming δy = 0 over S = 1 000 simulation repetitions, when missingness in x depends
on x and y (M4).
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in the distribution of δ0 assuming δy = 0 (sample mean = 1.451 over 1000 simulation repetitions).
The assumption of δy = 0 therefore leads to an underestimation of the first sensitivity parameter
δ0 under the missingness mechanism M4 investigated in the simulation study.
The spread of the distribution of θ̂r is narrower than that of δ0 given δy = θ̂ yr (SD = 0.095

and 0.218, respectively), while the spread of the distribution is similar for δ0 given δy = θ̂ yr and
δ0 given δy = θ̂0 (SD = 0.218 and 0.221, respectively).
This comparison is repeated for R2 = 0.05 and 0.5. The sample mean is less comparable for

the three quantities with decreasing values of R2, and the distributions of δ0 have wider spreads
for higher values of R2. These results are presented in appendix C.3.

5.4.3 Univariate simulation studies: conclusion and remarks

In the first univariate simulation study, the analysis model is a linear regression of a fully observed
continuous and normally distributed outcome variable and an incomplete binary covariate.
Calibrated-δ adjustment MI works well in terms of bias when the covariate is MCAR, MAR
dependent on the outcome, or MNAR dependent on its values.
When the covariate is MNAR conditional on both its values and the outcome, calibrated-δ

adjustment MI is biased, and the extent of bias increases with higher variation σ (i.e. lower R2) in
the full data. Under this missingnessmechanism, the univariate simulation study and calculations
exploring calibrated-δ adjustment MI in sections 5.2 and 5.3 confirm the presence of a second
sensitivity parameter for the association between the incomplete covariate and the outcome in
the missing data. This second sensitivity parameter does not appear when the outcome variable
is binary (sections 4.2.1 and 4.3.2).
Another univariate simulation study is conducted, in which the second sensitivity parameter

is fixed to its full-data estimate and the adjustment in the imputation model’s intercept is derived
using calibrated δ-adjustment MI as before. It is found that this approach can correct bias in
parameter estimates which is introduced by the inclusion of the outcome variable in the MNAR
model for the covariate. However, the empirical standard errors of the method do not match
the average model standard errors, which lead to coverage being slightly over or under the 95%
level, depending on the values of R2 and σ used to generate the full data. The reason for this
discrepancy in the standard errors is not clear.

5.5 summary

This chapter explores the application of marginal and conditional weighted MI and calibrated-δ
adjustment MI in a univariate missing data setting, where the incomplete covariate is binary as
considered previously, but the outcome variable is now continuous.
As before, four increasingly complexmodels of themissingnessmechanism for the incomplete

covariate are examined in a univariate simulation study (section 5.2). Under the first three
missingness mechanisms, results for marginal and conditional weighted MI and calibrated-δ
adjustment MI are shown to be similar to the setting where the outcome variable is binary.
However, calibrated-δ adjustment MI leads to bias in point estimates under the last missingness
mechanism when the covariate is MNAR dependent on its values and the outcome. Due to the
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inclusion of the continuous outcome variable in the MNAR selection model for the covariate, the
assumption of the covariate–outcome association being the same in the observed and missing
data is therefore violated. This violation implies that under this missingness mechanism, simply
adjusting the imputation model’s intercept might not be enough to remove bias caused by missing
data in the covariate.
In section 5.3, a working example based on the design of the Heckman model [24] is intro-

duced to confirm the presence of a second sensitivity parameter for the association between the
incomplete covariate and the outcome in the imputation model for the covariate.
Further repeated simulations (section 5.4) show that setting the second sensitivity parameter

to the correct value and deriving the calibrated-δ adjustment in the imputation model’s intercept
can correct bias previously seen in calibrated-δ adjustment MI, when the method is implemented
with only one sensitivity parameter. In practice, since the full data are not available, the robustness
of inference can be explored for several values of the second sensitivity parameter, in which each
of the intercept adjustments is derived using the incomplete variable’s population distribution.
For a continuous outcome variable, when the calibrated-δ adjustment MI method produces

unbiased estimates, it is still not clear why there is a discrepancy between the method’s empirical
and average model standard errors. Since this discrepancy can subsequently affect coverage of
95% CIs, further investigations are thus required to gain a better understanding of this issue in
calibrated-δ adjustment MI when the outcome variable is continuous.
In the next chapter, the methodology of the population-calibrated MI methods developed

thus far is applied in two case studies using data from a large UK primary care electronic health
record database.
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6
Case studies using UK primary care electronic health records

6.1 Introduction

6.2 UK primary care databases and the issue of missing data
6.2.1 �e Health Improvement Network database
6.2.2 �e use of primary care databases in research
6.2.3 Data recording in primary care and the issue of missing data

6.3 Ethnicity recording in primary care

6.4 Case study 1: assessing the missing at random assumption for ethnicity in
�e Health Improvement Network primary care database
6.4.1 Study sample
6.4.2 Outcome variable
6.4.3 Statistical analysis
6.4.4 Results

6.5 Case study 2: ethnicity and the prevalence of type 2 diabetes diagnoses in
�e Health Improvement Network primary care database
6.5.1 Study sample
6.5.2 Outcome variable
6.5.3 Statistical analysis
6.5.4 Results

6.6 Summary

6.1 introduction

In previous chapters, the development and implementation of the population-calibrated multiple
imputation (MI) methods, including marginal and conditional weighted MI and calibrated δ-
adjustment MI, are explored and evaluated in analytic and simulation studies with univariate and
then multivariate missing data. In this chapter, the application of these methods is demonstrated
using real-life data from a large UK primary care electronic health record database.
Section 6.2 provides an overview of primary care electronic health record databases in the

UK, including The Health Improvement Network (THIN) database which is the main data source
for the two case studies presented in this chapter. This is followed by a description of how data
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are typically recorded in the primary care setting, which gives rise to the problem of missing
data in research using primary care databases. Since the methodological development of the
population-calibrated MI methods in this thesis is motivated by the incompleteness of ethnicity
information in primary care databases, the recording of ethnicity information in primary care is
discussed in section 6.3.
Two case studies are presented in sections 6.4 and 6.5, using THIN data to illustrate the

application ofmarginal and conditional weightedMI and calibrated-δ adjustmentMI for handling
missing values in ethnicity. These methods are also compared to standard MI as well as other
simple approaches to missing data. In the first case study, the plausibility of the missing at
random assumption for ethnicity is assessed by handling missing values in ethnicity using
different methods, estimating the resulting marginal distribution of ethnicity in each method,
and comparing that to the corresponding population distribution in the census data. The second
case study aims to demonstrate the use of the population-calibrated MI methods for handling
missing ethnicity data, when ethnicity is included as a covariate in an analysis model to examine
the association between ethnicity and the prevalence of type 2 diabetes diagnoses in primary
care.

6.2 uk primary care databases and the issue of missing data

An electronic health record is a digital version of an individual’s medical record. Primary care
electronic health records refer to the systematic collection of patient information during routine
consultations with a general practictioner (GP) or other healthcare professionals in the primary
care setting.
Almost the entire UK population is registered with a GP, and under the National Health

Service (NHS) the majority of treatments including visits to the GPs are free of charge. GPs act
as the gatekeepers of the NHS; they provide the first point of contact for any non-emergency
health-related issues, which may then be managed within primary care or referred to secondary
care if necessary. UK general practices now have computerised health records, where patient
data collected in primary care are routinely documented onto computers by practice staff using
a unique patient NHS number. Most information recorded in secondary care including key
diagnoses is also fed back to the GPs and added to the patient records.
Several large and well established primary care databases are available in the UK, including

the Clinical Practice Research Datalink (CPRD, formerly known as the General Practice Research
Database, GPRD) [83], The Health Improvement Network (THIN) [84], and QRESEARCH [85].
These databases provide access to patient-centred health information collected at irregular time
points from when the patients first register with their general practices to the time they die or
leave the practices, forming longitudinal health records. Data in primary care databases typically
include patient demographics (e.g. year of birth, sex, social deprivation), medical records (e.g.
symptoms, diagnoses, and referrals to secondary care), prescription information, laboratory
test results, lifestyle-related factors (e.g. smoking and alcohol consumption), and measurements
of health indicators taken during consultation (e.g. height, body weight, blood pressure, and
cholesterol level).
The next section provides background information on The Health Improvement Network
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database which is used as the main data source for case studies in this chapter.

6.2.1 The Health Improvement Network database

The Health Improvement Network (THIN) primary care database [84] represents a collaboration
between In Practice Systems who developed the Vision software used by GPs in the UK to
record and manage patient data, and IMS Health who then provide access to the data for use in
health research. Data are collected during routine consultations in primary care and regularly
downloaded to the database. THIN data used in research are pseudonymised, i.e. the data do
not contain patient-identifiable information such as name, exact address or postcode, exact date
of birth, or NHS number. Data collection was ethically approved for use in scientific research by
the NHS South-East Multicentre Research Ethics Committee. Studies using THIN data must
undergo scientific review provided by an independent Scientific Review Committee to help
ensure appropriate analysis and interpretation of the data.
THIN data collection commenced in 2002, but data for some practices date back to the early

1990s. In 2013, the database captured data contributed by more than 12 million patients from 587
general practices in the UK, covering approximately 5.7% of the UK population [84]. THIN was
shown to be broadly representative of the UK population in terms of demographics, prevalence
of major conditions, and death rates adjusted for demographics and deprivation [86].
Figure 6.1 outlines the structure of the data files available in THIN. Data are ordered ac-

cording to the practice level, followed by the patient level. For each practice, there are seven
main files including patient, medical, therapy, additional health data (AHD), postcode variable
indicators (PVI), consultation, and staff files; all of which are linked by unique practice and
patient identifiers. In addition, medical, therapy and AHD files are linked to consultation and
staff files by consultation and staff identifiers.
Data in THIN are mainly recorded as coded information. Clinical data (e.g. symptoms

and medical diagnoses) are recorded using Read codes, a hierarchical coding system used to
document clinical summary information in primary care [87, 88]. Each entry in the medical
record can be accompanied by free text comments, as the Vision software allows for the entry of
free text or scanned information. Prescriptions are entered using multilex drug codes, which are
categorised as per chapters in the British National Formulary [89]. Additional health information
(e.g. lifestyle factors and health indicator measurements) is coded using the additional health data
(AHD) codes. Information on deprivation is given by quintiles of the Townsend score [90], which
is an indicator of deprivation in the patients’ postcode and is calculated based on unemployment,
house and car ownership, and household overcrowding. In THIN, Townsend deprivation score is
coded as a five-level categorical variable, with level 1 corresponding to quintile 1 (least deprived),
and level 5 corresponding to quintile 5 (most deprived).
In terms of quality assurance, the acceptable mortality reporting (AMR) date [91] was cal-

culated and applied to each practice in THIN; this information is supplied for every practice.
The AMR date is the date after which the practice is deemed to be reporting a rate of all-cause
mortality sufficiently similar to that expected for a practice with the same demographics, based
on data from the Office for National Statistics (ONS) [91]. The AMR date can also be combined
with other measures of data reporting quality such as the acceptable computer usage (ACU) date
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Figure 6.1. Structure of the main data files for each participating general practice in The Health
Improvement Network (THIN) database.
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[92]. The ACU date is designed to exclude the transition period between the practice switching
from paper-based records to complete computerisation. It is defined as the date from which the
practice is consistently recording on average at least two drug prescriptions, one medical record
and one additional health record per patient per year [92].

6.2.2 The use of primary care databases in research

Data in primary care databases are a valuable resource, and are increasingly tapped into for use
in epidemiological and health research for several reasons. First, the data are collected in an
unobtrusive and automatic way, and therefore closely represent the real-life primary care data
recording practice. Second, the use of medical data collected by general practices across the UK
provides not only representation of the local population, but the wide geographical coverage of
the databases also allows for broader generalisation to the overall UK population [86, 93]. Third,
as patient data for some practices date back to the early 1990s, the databases provide access to
a rich source of longitudinal health data for research, making it possible to conduct analysis
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over the patients’ lifetime. In addition, the large size of the databases offers a relatively cheaper,
faster, and more accessible alternative for research on populations that are otherwise logistically
difficult and expensive to enrol in clinical trials or standard observational studies. This include,
for example, research on low incidence/prevalence diseases, individuals with severemental illness,
[1, 2], pregnant women [3–5], children [6], and the very elderly [7, 8]. The databases have also
increasingly been linked to secondary care and mortality datasets.
Despite their unique potentials for use in research, primary care databases are not free from

limitations. For studies based on these data sources, it is important to have good measures of
key variables such as height, body weight, blood pressure, cholesterol level, smoking and alcohol
consumption, many of which are routinely recorded in primary care. However, since information
is mainly collected in primary care for the purposes of clinical management, non-trivial amounts
of data among these variables are often missing, posing challenges to analysis and inference
[94–97].

6.2.3 Data recording in primary care and the issue of missing data

Data in primary care are collectedmainly as ameans for healthcare staff to track information about
their patients’ health, such as required to diagnose or monitor a condition. Therefore, physicians
might not find it necessary, or they might not have enough time during the consultations to
record all information that is relevant for research. As a result, the data recording practice in
primary care is directly reflected in how the data are present in primary care databases. A missing
value in a patient’s recordmight indicate that either the patient did not attend the GP consultation,
or the value was not measured during the consultation, or the value was measured but for some
reason (e.g. incorrect measurement) was not recorded. The second scenario implies that the
missing data may not technically be considered as missing, because they are usually not intended
to be recorded. In order to apply existing methods for handling missing data, it is assumed that
such values would have been observed for all individuals if requested by the GPs.
There have been some changes in the data recording in primary care over the last two decades.

Efforts were made by the NHS to improve the recording of several health indicators such as
height, body weight, blood pressure, smoking, and alcohol consumption in primary care through
the implementation of some pay-for-performance initiatives. The New Patient Health Checks
scheme [98], which was first introduced under the NHS Department of Health contract between
GPs and the government back in 1990, provided GPs with incentive payments to collect health
indicator measurements for all newly registered individuals. This scheme eventually came to
an end in 2004 when the Quality and Outcomes Framework (QOF) was introduced under the
revised Department of Health contract [99]. Under QOF, practices receive financial rewards
for high quality recording of health indicators that are required to monitor specific clinical
conditions, e.g. smoking status recorded in the preceding 15 months for diabetic patients [100].
Data for health indicators associated with QOF-specific diseases have therefore been recorded
much more regularly [96, 97].
The implementation of these financial incentives, together with the fact that information

in primary care is mainly recorded for clinical purposes, suggest that missing data in primary
care databases are not likely to be missing completely at random (MCAR). Indeed, Delaney et al.
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[101] examined data in the GPRD database and reported that individuals with more frequent
blood pressure readings tended to have higher recorded values. Similarly, Marston et al. [95]
explored the recording of several health indicators for newly registered individuals in THIN
between 2004 and 2006 and compared that to external nationally representative datasets. Their
findings were consistent with data at practice registration being missing at random (MAR) for
height, body weight, and blood pressure, whereas missing not at random (MNAR) for smoking
status and alcohol consumption. The 2008 update of QOF on the recording of smoking status
was likely to start improving the completeness of this variable. Using THIN data, Marston et al.
[96] later re-examined the recording of smoking status for newly registered individuals between
2008 and 2009 and concluded that the variable was relatively well recorded for these individuals.
Following from their findings, Marston et al. [96] reported that if information on smoking status
was missing for an individual, then he or she was likely to be an ex-smoker or a non-smoker [96].

6.3 ethnicity recording in primary care

Disparities in health and healthcare among racial and ethnic groups are an issue of growing
interest. Recognition of this comes from a body of research, which increasingly uses electronic
health records from clinical and administrative health databases [12, 102]. Ethnicity recording
has been incorporated in UK primary care, and therefore ethnicity information is also available
in a number of large primary care databases [12]. However, as is often the case with using such
databases where data are mainly collected for patient care management, research addressing
ethnicity is hindered by the low level of recording [13, 15, 94, 103]. In a recent study investigating
the recording of ethnicity in the CPRD database, Mathur et al. [13] showed that less than 30%
of individuals had their ethnicity recorded between 1990 and 2012. Although the completeness
of ethnicity data in primary care has improved for newly registered patients after the financial
incentivisation to record ethnicity was introduced under QOF between 2006/7 and 2011/12 [13],
some practices may still not record ethnicity on a regular basis.
Despite incomplete ethnicity information being a pervasive problem in research using elec-

tronic health records, it is unclear how to handle missing data in ethnicity when ethnicity is either
an outcome of interest or a risk factor for health outcomes. In practice, some previous studies
omitted ethnicity from the main analysis due to a high level of missing values [2]. Excluding
ethnicity from the analysis will obscure its effect and is also likely to confound the associations
of other variables in the analysis. Another widely used method for missing data in ethnicity,
which is also the default option in most statistical software, is complete record analysis (CRA,
section 2.3.1), where the analysis is performed only on individuals with fully observed data on all
variables included in the analysis. Consider the setting where missing data only occur in ethnicity.
It is known that a CRA gives valid inferences when ethnicity is MCAR. In analyses examining
the association between ethnicity and an outcome of interest, CRA can also provide unbiased
estimates in settings where missing data in ethnicity are not MCAR, provided that missingness
in ethnicity is conditionally independent of the outcome, given ethnicity and/or other fully ob-
served variables [39, 40]. However, even when this assumption holds, analysis based only on the
complete records can still be inefficient, since information available in individuals with missing
ethnicity is discarded. In order to retain all individuals in the analysis, some previous studies
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using UK primary care databases made an assumption that individuals with missing values
in ethnicity belonged to the White ethnic group, and replaced missing values with the White
ethnicity [19]. The assumption underpinning this approach is that only individuals from the
White ethnic group ever failed to have their ethnicity recorded, which might not be plausible in
practice. One consequence of this single imputation approach is that some non-White individuals
can be incorrectly assigned to theWhite ethnic group, which can bias any effect of the non-White
ethnic groups on the outcome. In addition, variances are also likely to be underestimated (section
2.3.2).
Large primary care databases are evolving in recent years, and are increasingly enriched by

record linkage to different data sources. In particular, databases such as the CPRD or THIN are
now linked to the Hospital Episode Statistics. It is a secondary care data warehouse containing
information recorded during a patient’s time in the hospital; it also includes ethnicity information.
This linkage therefore allows for some additional ethnicity information recorded in secondary
care to be recovered in the primary care records. The possibility for data linkage depends on
whether the practice is willing to participate in the linkage scheme, and in THIN database
this is only available for a few practices in England [104, 105]. Data linkage algorithms based
on patient identifiers (such as the NHS numbers) can also be prone to linkage errors [106].
In addition to record linkage, previous work exploring the use of name-recognition software
to indirectly retrieve ethnicity information of the patients showed that the credibility of this
method is questionable, particularly for the non-White ethnic groups and descendants ofmigrants
[13, 107, 108].
Multiple imputation (MI, section 2.4) is increasingly applied for accommodating missing

data in studies using primary care databases in recent years [2, 19, 95, 96, 109]. MI offers a more
statistically sensible approach for dealing with missing data compared to other simple ‘ad-hoc’
methods, and MI requires researchers to think carefully about the plausible assumptions for the
missingness mechanism. Despite gaining more popularity in practice, the main obstacle for MI
in large clinical databases is the limited available information on the extent and mechanisms
that give rise to missing data, since procedures and incentives for recording data in primary
care change over time [95]. As a result, the missingness mechanism assumptions made by
standard MI might not be plausible, which can in turn affect the method’s validity. In particular,
although the standard implementation of MI in most statistical packages assumes data are MAR,
at any particular time in a dynamic database the MAR assumption might not be plausible. The
probability that ethnicity is recorded in primary care may well vary systematically with ethnicity,
even after its associations with other variables are taken into account. The recording of ethnicity
information can also be related to other factors which are not available in routine healthcare
databases such as patients’ circumstances during consultation or at admission, the availability
of staff, the lack of time or opportunity to ask the patients about their ethnicity [13]. This
implies a potential MNAR mechanism for ethnicity, and as a result, standard MI might not be an
appropriate approach to missing data. Standard MI might fail to yield plausible estimation of the
marginal distribution of ethnicity, and can potentially distort the association between ethnicity
and the health outcome in the main analysis.
AlthoughMI can be extended to imputemissing values under theMNARmechanism (section
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2.5), imputation becomes more difficult because a model for the missing data mechanism needs
to be specified, which describes how missingness depends on both observed and unobserved
quantities. This implies that in practice, it is necessary to define a model for either the probability
of observing a variable and its unseen values (the selection model [24]), or the difference in the
distribution of individuals with and without missing data (the pattern-mixture model [64, 65]).
The extra model specification requirement in MI under the MNAR mechanism raises several
issues. First, the underlying MAR and MNAR mechanisms are not verifiable from the observed
data alone. Second, there can be an infinite number of possible MNAR models for any dataset,
and it is very rare to know which of these models is appropriate for the missingness mechanism.
Due to the potential complexity of modelling the MNARmechanism, analyses assuming data are
MNAR are relatively infrequently performed and reported in the applied literature. In practice,
researchers more often try to enhance the plausibility of theMAR assumption as much as possible
by the inclusion of many (auxiliary) variables in the imputation model [47, 110].
For some variables in certain datasets, their corresponding population marginal distributions

can be obtained from external data sources, such as population censuses or surveys. If our
study samples come from such a population, it is natural to feed the population information
into the imputation process in order to calibrate inference to the population. For ethnicity
information recorded in UK primary care databases, the distribution of ethnicity in the UK
population is available in the UK population census. Since the majority of the UK population is
registered with a GP, the population-level distribution of ethnicity can be utilised inMI of missing
data in ethnicity in primary care databases to inform the imputation. Previous chapters of this
thesis propose and evaluate two candidate population-calibrated MI methods which exploit such
external information: weighted MI and calibrated-δ adjustment MI. In these approaches, the
population distribution of the incomplete variable can be used to calculate appropriate probability
weights or a δ adjustment in the imputationmodel’s intercept, which are then used inMI such that
the post-imputation distribution much more closely (and often exactly) matches the population
level.
The rest of this chapter presents two case studies in which the issue of incomplete ethnicity

information in UK primary care databases is used to demonstrate the application of weighted MI
and calibrated-δ adjustment MI, as well as to compare weighted MI and calibrated-δ adjustment
MI to existing methods for handling missing ethnicity data in practice. The first case study
focuses on ethnicity, where it is of interest to estimate the marginal distribution of ethnicity in
UK primary care databases. In the second case study, the focus is on examining the association
between ethnicity and the prevalence of type 2 diabetes diagnoses in UK primary care, where
ethnicity is included as a covariate in the analysis model.

6.4 case study 1: assessing the missing at random assumption for ethnicity in the health
improvement network primary care database

The first case study is a cross-sectional study which aims to assess the plausibility of the MAR as-
sumption for ethnicity in UK primary care databases. Since the population marginal distribution
of ethnicity is available in the UK census data, the MAR assumption for ethnicity can be assessed
by using standard MI to handle missing data and comparing the resulting ethnicity distribution
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to that in the census. Mathur et al. [13] previously compared the 2011 UK census distribution of
ethnicity to that among individuals with a record of ethnicity who were actively registered in
the CPRD database on the census day. It was concluded that there was not much discrepancy
between the two sources.
The objective of this study is to compare the distribution of ethnicity in THIN general

practices in London with that in the 2011 UK census data for London, after missing values in
ethnicity are handled by (i) a CRA, (ii) single imputation with the White ethnic group, (iii)
standard MI assuming MAR, (iv) marginal and (v) conditional weighted MI, and (vi) calibrated-
δ adjustment MI. In the population-calibrated MI methods, the 2011 UK census distribution of
ethnicity in London [111] is used as the reference distribution.
As discussed in section 6.2.3, similar comparisons between data recorded in THIN and

external nationally representative datasets were explored by Marston et al. [95, 96] for health
indicators including height, weight, smoking status, and alcohol consumption. As an example of
this, Marston et al. [96] reported that if smoking status is missing for an individual then (s)he is
typically either an ex-smoker or non-smoker, and accordingly proposed only allowing imputed
data to take one of these two values. As illustrated in chapters 3 and 4, the population-calibrated
MI methods supersede this approach, providing a way to incorporate population distribution
information into MI.

6.4.1 Study sample

Data used in this study are from individuals who are permanently registered (i.e. variable
patflag takes value A or C) with general practices contributing data to THIN which meet the
data quality assurance criteria (AMR [91] and ACU [92], section 6.2.1). From this population, a
sample of all individuals registered with general practices in London is selected for subsequent
analyses. This sample is chosen since it is not only more practical to performMI on a smaller
dataset, but also because London is the most ethnically diverse region in the UK, and hence
incorrect assignment of ethnicity from imputing missing data with the White ethnic group is
expected to be more apparent compared to other regions.
All individuals actively registered with THIN general practices in London on the 2011 UK

census day (27 March 2011) are identified. For each individual, a start date is defined as the
latest of [date of birth, ACU and AMR dates, registration date], and an end date is defined as the
earliest of [date of death, date of transfer out of practice, and date of last data collection from the
practice]. Individuals are selected into the study sample if their start date is on or before the 2011
UK census day, and their end date is on or after the census day.

6.4.2 Outcome variable

Ethnicity is typically recorded in THIN using the Read code system [87]; it can also be recorded
using free text entries. A Read code list including codes related to ethnicity is developed using
a published method [88] (appendix D.1). The majority of ethnicity records are identified by
searching both the medical and additional health data files for Read codes in the ethnicity code
list. Additional information is gathered by searching both the pre-anonymised free text, as well as
other free text linked to ethnicity-related Read codes. Ethnicity is then coded into the five-level
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ONS classification as White, Mixed, Asian, Black, and Other ethnic groups [112]. Subsequently,
the Mixed and Other ethnic groups are combined due to the small numbers of individuals in
these two groups. Searching for ethnicity-related Read codes reveals that there are individuals
with multiple records of ethnicity, some of which are inconsistent. For these individuals, it can
not be determined with certainty whether their ethnicity is in fact one of the recorded categories
or if all the recorded categories are incorrect. Therefore, their ethnicity is set to missing for
simplicity, since the issue of inconsistency in ethnicity recording is not the focus of this study.

6.4.3 Statistical analysis

For MI of ethnicity, a multinomial logistic regression imputation model is constructed for
ethnicity using information on individuals’ age in 2011, sex, and quintiles of the Townsend
deprivation score. Age is analysed in 10-year age groups for individuals aged 0-79 years, and all
individuals aged 80 years and older are grouped into the 80+ category. In addition, indicators
of common diseases known to be associated with ethnicity including heart attack, stroke, type
2 diabetes, chronic kidney disease, sickle cell disease, thalassemia, and schizophrenia are also
included in the imputation model. These variables are chosen after consultations with two GP
colleagues (Dr Claudia Cooper and Dr Kate Walters). This is done because the patterns of
ethnicity might differ by demographic variables and between those with and without each disease
[47]. In order to extract disease information in THIN, a Read code list is developed for each
disease, and both medical and additional health data files are searched for Read codes in the
corresponding disease code list. Since the aim of this study is to illustrate the use of marginal and
conditional weighted MI and calibrated-δ adjustment MI in a univariate missing data setting
where only ethnicity contains missing values, individuals with missing data in other variables
(year of birth, sex, Townsend score) are excluded from the analysis.
In this study, ethnicity is analysed as a four-level categorical variable (White, Asian, Black,

Mixed/Other). Therefore, the univariate calibrated-δ adjustmentMImethod for handlingmissing
data in an incomplete binary variable discussed in section 4.2 can be generalised for handling
missing values in ethnicity as a categorical variable. The overall proportion of the jth level of
ethnicity, j = 1, . . . , 4, can be written as
p (ethnicity = j) = p (ethnicity = j ∣ r = 0) p (r = 0) + p (ethnicity = j ∣ r = 1) p (r = 1) , (6.1)
where p (ethnicity = j) is obtained from the census data; p (r = 0), p (ethnicity = j ∣ r = 1), and
p (r = 1) are available in the observed data.
A multinomial logistic regression imputation model for ethnicity conditional on 10-year age

groups (0–9 years old as the base level), sex (male as the base level), Townsend deprivation score
(quintile 1 as the base level), binary indicators of heart attack, stroke, type 2 diabetes, chronic
kidney disease, sickle cell disease, thalassemia, and schizophrenia (no diagnosis as the base level)
is fitted to the observed data. Setting the first level of ethnicity (White, j = 1) as the base level to
identify the model, the probability of the level jth of ethnicity in the observed data, j = 2, . . . , 4,
can be written in terms of the observed-data linear predictors, linpredobsj , obtained from the
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multinomial logistic regression model for ethnicity as

p (ethnicity = j ∣ r = 1) = 1
nobs

nobs∑
i=1

1
1 +∑4j=2 exp (linpredobsi j ) , (6.2)

where i indexes individuals in the dataset, and

linpredobsi j = θobsj0 + 80∑
a=10

θobsjagea I [agei j = a] + θobsjfemI [sexi j = female]
+ 5∑

t=2
θobsjtownt I [Townsendi j = t] + θobsjhaI [heart attacki j = yes]

+ θobsjstrI [strokei j = yes] + θobsjt2dI [type 2 diabetesi j = yes]
+ θobsjckdI [kidney diseasei j = yes] + θobsjsicI [sickle celli j = yes]
+ θobsjthaI [thalassemiai j = yes] + θobsjschI [schizophreniai j = yes] , (6.3)

where I [] denotes the indicator function taking values 1 if the statement inside the brackets is
true and 0 otherwise.
Following the methods outlined in section 4.2, since covariates in the imputation model for

ethnicity are all binary or categorical, the log odds ratios are the same among those with ethnicity
observed and missing. The linear predictors in the missing data, linpredmisj , can therefore be
written as

linpredmisi j = (θobsj0 + δ j0) + 80∑
a=10

θobsjagea I [agei j = a] + θobsjfemI [sexi j = female]
+ 5∑

t=2
θobsjtownt I [Townsendi j = t] + θobsjhaI [heart attacki j = yes]

+ θobsjstrI [strokei j = yes] + θobsjt2dI [type 2 diabetesi j = yes]
+ θobsjckdI [kidney diseasei j = yes] + θobsjsicI [sickle celli j = yes]
+ θobsjthaI [thalassemiai j = yes] + θobsjschI [schizophreniai j = yes] , (6.4)

where δ j0 is the level− j intercept adjustment in the multinomial logistic regression imputation
model for ethnicity. Hence, the probability of the jth level of ethnicity in the missing data,
j = 2, . . . , 4, is given by

p (ethnicity = j ∣ r = 0) = 1
nmis

nmis∑
i=1

1
1 +∑4j=2 exp (linpredmisi j ) . (6.5)

From (6.1)–(6.5), the problem now becomes finding the solutions δ j0, j = 2, . . . , 4, of a
system of three non-linear equations for the three categories of ethnicity. Instead of using interval
bisection which is no longer sufficient in this case because there is a system of equations to be
solved simultaneously, the solutions can be obtained by using the Stata command nl [113] and
defining a function evaluator program.
All MI methods are performed usingM = 30 imputations (≈ percentage missing ethnicity),

and Rubin’s rules [20, 21] are used to obtain overall estimates of the ethnic proportions and
associated standard errors. All analyses are performed using Stata 14 [44], where mi impute

mlogit is used for standard MI, my command mi impute wmlogit for marginal and condi-
tional weighted MI, mi impute mlogit [pweight] for calibrated-δ adjustment MI, and mi
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estimate: proportion for performing the main analysis in completed datasets and obtaining
the final results using Rubin’s rules [20, 21].

6.4.4 Results

Figure 6.2 depicts a flowchart of the selection criteria used to select the relevant sample for
this study. Data from a total of n = 13 532 630 individuals are extracted from THIN, of which
n = 2 137 874 (15.8%) individuals are not permanently registered (variable patflag does not
take values A or C), n = 293 (< 0.1%) individuals do not have their year of birth recorded,
n = 1 308 (< 0.1%) individuals have missing sex, n = 1 376 098 (10.2%) individuals have an invalid
or missing Townsend deprivation score, and n = 2 160435 (16.0%) individuals have their start
date after their end date. Applying the selection criteria to the data results in n = 9065 617 (70.0%)
individuals eligible for inclusion in this study. Among these eligible individuals, there are n =
1 090 248 (8.1%) individuals who are registered to THIN general practices in London, of whom
n = 445 199 (3.3%) individuals are actively registered on the 2011 UK census day and make up the
THIN sample relevant to this study.
Table 6.1 presents a summary of variables used in this study. The sample comprises 51%

female; the majority of individuals in the sample (more than 80%) are below 60 years of age;

Figure 6.2. Case study 1: flowchart of selection criteria for THIN sample.

All individuals in THIN
n = 13 532 630

Exclusion⋆
Individuals not permanently registered, n = 2 137 874 (15.8%)
Individuals with missing year of birth, n = 293 (<0.1%)

Individuals with missing sex, n = 1 308 (<0.1%)
Individuals with invalid/missing Townsend, n = 1 376098 (10.2%)
Individuals with start date a�er end date, n = 2 160435 (16.0%)

Eligible individuals in THIN
n = 9065 617 (70.0%)

Eligible individuals registered
to general practices in London

n = 1 090 248 (8.1%)

Eligible individuals actively
registered on 2011 UK census day

n = 445 199 (3.3%)

⋆ Note: an individual can be excluded from the study sample due to more than one criterion.
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slightly more than 70% of individuals have a Townsend score quintile of 3 and above; type 2
diabetes and chronic kidney disease are the two most frequently diagnosed conditions, followed
by stroke and heart attack, schizophrenia, thalassemia, and sickle cell disease.
Ethnicity is recorded for 337 278 (75.8%) and missing for 107 921 (24.2%) individuals (table

6.2). Among individuals with ethnicity recorded, the percentage of the White ethnic group is
higher and the percentages of the non-White ethnic groups are lower compared to the ethnic
breakdown in the 2011 UK census (table 6.2). Single imputation of missing values in ethnicity
with the White ethnic group exaggerates this discrepancy, further overestimating the White
ethnic group and underestimating other non-White groups (table 6.2).

Table 6.1. Case study 1: summary of variables in the analysis; n = 445 199.
Variable Frequency %

Sex
Male 219 071 49.21
Female 226 128 50.79
Age group (years)
0–9 51 472 11.56
10–19 47 444 10.66
20–29 62 047 13.94
30–39 76 855 17.26
40–49 70 576 15.85
50–59 53 270 11.97
60–69 39 642 8.90
70–79 25 401 5.71
80+ 18 492 4.15
Townsend score
Quintile 1 (least deprived) 51 770 11.63
Quintile 2 68 643 15.42
Quintile 3 109 545 24.61
Quintile 4 113 417 25.48
Quintile 5 (most deprived) 101 824 22.87
Disease indicator
Heart attack 5 865 1.32
Stroke 8 990 2.02
Type 2 diabetes 26 235 5.89
Chronic kidney disease 21 000 4.72
Sickle cell disease 331 0.07
Thalassemia 2 458 0.55
Schizophrenia 2 360 0.53

146



Table 6.2. Case study 1: distribution of ethnicity when missing values are included, excluded, and
singly imputed with the White ethnic group; n = 445 199.

Ethnicity Frequency
%

including
missing

%
excluding
missing

Frequency
missing
imputed
as White

%
missing
imputed
as White

%
2011 UK
census
London

White 245 064 55.05 72.66 352 985 79.29 59.80
Asian 37 519 8.43 11.12 37 519 8.43 18.50
Black 33 374 7.50 9.90 33 374 7.50 13.30
Mixed/Other 21 321 4.79 6.32 21 321 4.79 8.40
Missing 107 921 24.24

∑ including missing 445 199∑ excluding missing 337 278

Table 6.3 presents the adjusted associations of ethnicity (among individuals with ethnicity
recorded) with fully observed variables included as covariates in the imputation model for ethnic-
ity, including sex, age group, Townsend deprivation score, and disease indicators. Corresponding
unadjusted associations are shown in table D.2 (appendix D.2). Adjusted relative risk ratios
(RRR) and 95% confidence intervals (CIs, table 6.3) are estimated by fitting a multivariable
multinomial logistic regression of four-level ethnicity conditional on fully observed variables
among individuals with observed ethnicity; the White ethnic group is set as the base level for
ethnicity.
Table 6.4 presents the adjusted associations of missingness in ethnicity with fully observed

variables included as covariates in the imputation model for ethnicity. Corresponding unadjusted
associations are given in table D.3 (appendix D.2). A multivariable logistic regression model for
the response indicator of ethnicity conditional on fully observed variables is fitted to the whole
study sample to obtain adjusted odds ratios (OR) and 95% CIs (table 6.4).
These results suggest that sex, age group, Townsend score, and disease indicators are related

to ethnicity. Apart from sickle cell disease and thalassemia, these variables are also associated
with missingness in ethnicity, supporting the inclusion of these variables as covariates in the
imputation model for ethnicity [46, 114].
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Table 6.3. Case study 1: adjusted associations of ethnicity with variables used to inform the
imputation of ethnicity among the complete records; n = 337 278.

Asian Black Mixed/Other

Variable RRR 95% CI RRR 95% CI RRR 95% CI

Sex
Male 1 1 1
Female 0.905 0.885; 0.926 1.106 1.080; 1.132 1.036 1.007; 1.066
Age group (years)
0–9 1 1 1
10–19 0.929 0.887; 0.974 1.047 1.001; 1.096 0.916 0.869; 0.965
20–29 0.895 0.860; 0.932 0.502 0.480; 0.524 0.605 0.576; 0.634
30–39 0.885 0.852; 0.920 0.531 0.509; 0.553 0.552 0.527; 0.578
40–49 0.602 0.577; 0.627 0.728 0.699; 0.758 0.492 0.468; 0.517
50–59 0.498 0.475; 0.522 0.504 0.481; 0.529 0.402 0.379; 0.426
60–69 0.350 0.332; 0.370 0.225 0.210; 0.240 0.227 0.211; 0.245
70–79 0.318 0.298; 0.340 0.286 0.266; 0.307 0.172 0.155; 0.190
80+ 0.136 0.123; 0.150 0.094 0.084; 0.106 0.078 0.066; 0.092
Townsend score
Quintile 1 (least deprived) 1 1 1
Quintile 2 1.261 1.196; 1.330 1.263 1.174; 1.360 1.221 1.135; 1.314
Quintile 3 2.277 2.173; 2.386 2.756 2.585; 2.937 2.117 1.984; 2.258
Quintile 4 2.480 2.367; 2.598 4.739 4.455; 5.041 2.719 2.552; 2.897
Quintile 5 (most deprived) 2.457 2.343; 2.577 8.049 7.571; 8.558 3.948 3.706; 4.204
Disease indicator
Heart attack 1.187 1.073; 1.314 0.466 0.393; 0.554 0.875 0.726; 1.055
Stroke 0.851 0.772; 0.939 0.935 0.838; 1.044 0.784 0.666; 0.924
Type 2 diabetes 3.455 3.310; 3.606 2.140 2.033; 2.252 1.555 1.445; 1.672
Chronic kidney diseases 1.052 0.988; 1.120 1.325 1.239; 1.416 1.014 0.919; 1.119
Sickle cell disease 1.991 0.631; 6.282 128.666 69.419; 238.480 12.231 5.515; 27.124
Thalassemia 6.666 5.963; 7.453 3.569 3.096; 4.114 4.754 4.088; 5.530
Schizophrenia 0.830 0.706; 0.977 1.916 1.698; 2.162 1.031 0.843; 1.259
⋆ Note: White ethnic group and no diagnosis are base levels for ethnicity and disease indicators, respectively; RRR:
relative risk ratios are obtained from fitting a multivariable multinomial logistic regression model for four-level ethnicity
conditional on all variables considered; CI: confidence interval.
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Table 6.4. Case study 1: adjusted associations of the response indicator of ethnicity with variables
used to inform the imputation of ethnicity, n = 445 199.

OR 95% CI

Sex
Male 1
Female 1.310 1.291; 1.328
Age group (years)
0–9 1
10–19 0.512 0.498; 0.527
20–29 0.975 0.948; 1.003
30–39 1.162 1.131; 1.195
40–49 0.828 0.806; 0.850
50–59 0.744 0.723; 0.766
60–69 0.863 0.836; 0.891
70–79 0.923 0.888; 0.959
80+ 0.851 0.815; 0.890
Townsend score
Quintile 1 (least deprived) 1
Quintile 2 0.969 0.943; 0.995
Quintile 3 0.908 0.886; 0.930
Quintile 4 1.070 1.044; 1.097
Quintile 5 (most deprived) 0.962 0.938; 0.987
Disease indicator
Heart attack 1.283 1.199; 1.373
Stroke 1.140 1.079; 1.204
Type 2 diabetes 1.400 1.354; 1.448
Kidney disease 1.179 1.134; 1.225
Sickle cell disease 0.978 0.759; 1.261
Thalassemia 1.008 0.917; 1.109
Schizophrenia 1.347 1.213; 1.496

⋆ Note: no diagnosis is the base level for disease indicators; OR: odds ratios are obtained from fitting a multivariable
logistic regression model for the response indicator of ethnicity conditional on all variables considered; CI: confidence
interval.
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Figure 6.3. Case study 1: distribution of four-level ethnicity in different methods for handling
missing ethnicity data.
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⋆ Note: horizontal black lines: the 2011 UK census ethnic breakdown for London is used as the reference distribution
for marginal and conditional weighted MI and calibrated-δ adjustment MI, as well as for comparison.

Figure 6.3 presents the distribution of four-level ethnicity obtained from the various methods
for missing data in ethnicity. Standard errors in all methods are very small (less than 0.0009),
hence 95% CIs are not shown. As seen in table 6.2, compared to the 2011 UK census statistics
for London, the White ethnic group is over-represented among the complete records. It is
apparent that single imputation of missing ethnicity values with the White ethnic group further
overestimates the proportion of the White group, while underestimating the Asian, Black, and
Mixed/Other groups, under the assumption that the ethnicity distribution in THIN should
match the census. Standard MI produces similar proportion estimates to that in CRA (figure
6.3). Despite the inclusions of several variables which are thought to be predictive of both
the values of ethnicity and missingness in ethnicity in the imputation model for ethnicity, the
distribution of ethnicity after standard MI still does not match that in the census. This result
suggests that ethnicity might be MNAR even after conditioning on variables in the imputation
model. Marginal and conditional weighted MI and calibrated-δ adjustment MI compensate for
the over-representation of the White ethnic group in the observed data by imputing missing
values with this group less frequently, in order to give the correct census proportions in the
completed data. Conversely, the non-White ethnic groups, which are under-represented in the
observed data, are imputed more frequently. As a results, the weighted MI and calibrated-δ
adjustment MI methods yield ethnic proportion estimates that are closest to the census level.
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Table 6.5. Case study 1: fraction of missing information (Monte Carlo error) for the estimated
proportions of ethnicity.

Ethnicity Standard MI Marginal
weighted MI

Conditional
weighted MI

Calibrated-δ
adjustment MI

White 0.147 (0.027) 0.174 (0.039) 0.172 (0.038) 0.217 (0.046)
Asian 0.175 (0.043) 0.451 (0.075) 0.445 (0.076) 0.378 (0.066)
Black 0.159 (0.036) 0.352 (0.070) 0.356 (0.073) 0.478 (0.055)
Mixed/Other 0.247 (0.051) 0.401 (0.073) 0.401 (0.071) 0.411 (0.052)

Table 6.5 presents the fraction of missing information (FMI) in the various methods for
missing data in ethnicity. Higher FMI is obtained in marginal and conditional weighted MI and
calibrated-δ adjustment MI compared to standard MI. This could be explained by the fact that
non-White ethnic groups, which are under-represented in the observed data, are imputed more
often in marginal and conditional weighted MI and calibrated-δ adjustment MI than in standard
MI. Therefore, the between-imputation variance relies on more imputed values in the non-White
ethnic groups and less frequently imputed values in the White ethnic group, which leads to the
non-White proportion estimates being more variable across the completed datasets. This might
be the reason why the FMI is higher in the population-calibrated MI methods in comparison to
standard MI.

6.5 case study 2: ethnicity and the prevalence of type 2 diabetes diagnoses in the health
improvement network primary care database

While the first case study focuses on summarising the overall distribution of ethnicity as the
outcome, in practice it is often of interest to consider ethnicity as a covariate in the main analysis.
For this reason, this second case study aims to illustrate the use of the marginal and conditional
weighted MI and calibrated-δ adjustment MI methods for handling missing data in ethnicity,
when ethnicity is included as a covariate in the analysis model. In particular, case study 2 is a
cross-sectional study which examines the association between ethnicity and the prevalence of
type 2 diabetes diagnoses in THIN database in 2013. Prevalence of type 2 diabetes is chosen as
the outcome variable to illustrate the application of the population-calibrated MI methods as
developed in chapters 3 and 4.
The objective of this study is to examine how the prevalence of type 2 diabetes diagnoses in

THIN varies with ethnicity, after adjusting for individuals’ demographics including age in 2013,
sex, and social deprivation measured by quintiles of the Townsend score.

6.5.1 Study sample

All individuals who are permanently registered (variable patflag takes values A or C) with
general practices in London contributing data to THIN are considered for inclusion in the study
sample, for the reasons explained in section 6.4.1. For each individual, a start date is defined
as the latest of (date of birth, ACU and AMR dates, registration date). Similarly, an end date is
defined as the earliest of (date of death, date of transfer out of practice, date of last data collection

151



from the practice). Point prevalence of type 2 diabetes on 01 January 2013 is calculated, since
THIN is a dynamic database in which individuals register with and leave their general practices
at different times. Individuals are selected into the study sample if they are actively registered
to THIN practices on 01 January 2013, and in addition they need to have been registered with
the same general practices for at least 12 months by 01 January 2013. This criterion is introduced
to ensure that there is enough time for the individuals to have their type 2 diabetes recorded in
their electronic health data, from when the individuals first register with their general practices.

6.5.2 Outcome variable

The recording of diabetes diagnoses and management in THIN is comprehensive and therefore
there are several ways an individual may be identified as diabetic. For this study, an algorithm
developed by Sharma et al. [115] is used to identify individuals with diabetes mellitus, as well
as to distinguish between type 1 and type 2 diabetes. According to this algorithm, individuals
are identified as having diabetes if they have at least two of the following records: a diagnostic
code for diabetes, supporting evidence of diabetes (e.g. screening for diabetic retinophany), or
prescribed treatment for diabetes [115, 116]. In this study, the first record of any of these three
is considered as the date of diagnosis. In addition to identifying individuals with diabetes, the
algorithm also distinguishes between type 1 and type 2 diabetes based on individuals’ age at
diagnosis, types of treatment and timing of the diabetes diagnosis [115, 116]. See Sharma et al.
[115] for more information about the algorithm. After the study sample is selected using the
method described in section 6.5.1, prevalent cases of type 2 diabetes are defined according to the
point prevalence approach, in which all individuals who have a diagnosis of type 2 diabetes by 01
January 2013 are defined as prevalent cases.

6.5.3 Statistical analysis

The analysis model in this study is a logistic regression model for a binary indicator of whether
an individual has a diagnosis of type 2 diabetes on or before 01 January 2013, conditional on the
individual’s ethnicity (defined as four categories), age in 2013, sex, and Townsend deprivation
score (defined in quintiles). Age is analysed in 10-year age groups for individuals aged 0-79
years, and all individuals aged 80 years and older are grouped into the 80+ category. Ethnicity
information is extracted and categorised as described in section 6.4.2.
Missing values in ethnicity are handled by (i) a CRA, (ii) single imputation with the White

ethnic group, (iii) standardMI, (iv) marginal and (v) conditional weightedMI, and (vi) calibrated-
δ adjustment MI using the 2011 UK census distribution of ethnicity in London [111] as the
reference distribution. For MI of ethnicity, a multinomial logistic regression imputation model
is constructed for ethnicity using all variables in the analysis model, including individuals’ age
group in 2013, sex, and quintiles of the Townsend deprivation score. In MI, the outcome variable
must be explicitly included in the imputation model for the incomplete covariate [47]. Since the
analysis model is a logistic regression model, the binary indicator of whether an individual has a
diagnosis of type 2 diabetes in 2013 is also included as a covariate in the imputation model for
ethnicity. Calibrated-δ adjustment MI is performed using the same procedure as outlined in
section 6.4.3, with the relevant covariates in the imputation model for ethnicity in this study.
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All MI methods are performed using M = 30 imputations, and Rubin’s rules [20, 21] are
used to obtain estimates of associations and standard errors. All analyses are conducted using
Stata 14 [44], where mi impute mlogit is used for standard MI, my command mi impute

wmlogit [73] for marginal and conditional weighted MI, mi impute mlogit [pweight] for
calibrated-δ adjustment MI, and mi estimate: logit for performing the main analysis in
completed datasets and obtaining the final results using Rubin’s rules [20, 21].

6.5.4 Results

Figure 6.4 depicts a flowchart of the selection criteria used to select the relevant sample for
this study. In total, data from n = 13 532 630 individuals are extracted from THIN, of which
n = 2 137 874 (15.8%) individuals are not permanently registered (variable patflag does not
take values A or C), n = 293 (< 0.1%) individuals do not have their year of birth recorded,
n = 1 308 (< 0.1%) individuals have missing sex, n = 1 376 098 (10.2%) individuals have invalid or

Figure 6.4. Case study 2: flowchart of selection criteria for THIN sample.

All individuals in THIN
n = 13 532 630

Exclusion⋆
Individuals not permanently registered, n = 2 137 874 (15.8%)
Individuals with missing year of birth, n = 293 (<0.1%)

Individuals with missing sex, n = 1 308 (<0.1%)
Individuals with invalid/missing Townsend, n = 1 376098 (10.2%)
Individuals with start date a�er end date, n = 2 160435 (16.0%)

Eligible individuals in THIN
n = 9065 617 (70.0%)

Eligible individuals registered
to general practices in London

n = 1 090 248 (8.1%)

Eligible individuals actively
registered on 01 January 2013

n = 470 863 (3.5%)

Eligible individuals actively registered
on 01 January 2013, who have been

registered with the same practices for at
least 12 months before 01 January 2013

n = 404 318 (3.0%)

⋆ Note: an individual can be excluded from the study sample due to more than one criterion.

153



missing Townsend deprivation score, and n = 2 160 435 (16.0%) individuals have their start date
after their end date. Applying the selection criteria results in n = 9065 617 (70.0%) individuals
eligible for inclusion in this study. Among the eligible individuals, there are n = 1 090 248 (8.1%)
individuals who are registered to THIN general practices in London, of whom n = 470 863 (3.5%)
individuals are actively registered on 01 January 2013. Finally, n = 404 318 (3.0%) individuals
have at least 12 months of follow-up by 01 January 2013 and make up the sample for this study.
Table 6.6 presents a summary of variables used in this study. The sample comprises 51%

female; the majority of individuals in the sample (approximately 80%) are below 60 years of age;
slightly more than 70% of the individuals have a Townsend score quintile of 3 and above; and
5.5% of the individuals have a diagnosis of type 2 diabetes on or before 01 January 2013.
Ethnicity is recorded for 309 684 (76.6%) and missing for 94 634 (23.4%) individuals (table

6.7). Among individuals with ethnicity recorded, the estimated proportion of the White ethnic
group is higher, and the non-White ethnic groups lower compared to the corresponding ethnic
breakdown in the 2011 UK census data for London (table 6.7). Single imputation with the White
ethnic group further overestimates the White group and underestimates the other non-White
groups, under the assumption that the ethnicity distribution in THIN should match the census
(table 6.7).
Table 6.8 presents the adjusted associations of ethnicity (among individuals with ethnicity

recorded) and fully observed variables in the analysis model, including sex, age group, Townsend
deprivation score, and an indicator of type 2 diabetes. Corresponding unadjusted associations
are shown in table D.4 (appendix D.2). Relative risk ratios (RRR) and 95% CIs in table 6.8
are obtained from fitting a multivariable multinomial logistic regression model for four-level
ethnicity conditional on fully observed variables, with the White ethnic group set as the base
level for ethnicity.
Table 6.9 presents the adjusted associations of missingness in ethnicity and fully observed

variables in the analysis model. Corresponding unadjusted associations are given in table D.5
(appendixD.2). Odds ratios (OR) and 95%CIs in table 6.9 are obtained from fitting amultivariable
logistic regression model for the response indicator of ethnicity, conditional on fully observed
variables.
These results suggest that sex, age group, Townsend score, and the indicator of type 2 diabetes

are related to both the chance of observing ethnicity as well as the ethnic groups, supporting the
inclusion of these variables as covariates in the imputation model for ethnicity [46, 114].
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Table 6.6. Case study 2: summary of variables in the analysis; n = 404 318.
Variable Frequency %

Sex
Male 198 301 49.05
Female 206 017 50.95
Age group (years)
0–9 41 601 10.29
10–19 45 664 11.29
20–29 50 065 12.38
30–39 65 695 16.25
40–49 64 837 16.04
50–59 53 272 13.18
60–69 39 427 9.75
70–79 25 348 6.27
80+ 18 409 4.55
Townsend score
Quintile 1 (most deprived) 48 934 12.10
Quintile 2 64 788 16.02
Quintile 3 101 305 25.06
Quintile 4 102 626 25.38
Quintile 5 (least deprived) 86 665 21.43
Type 2 diabetes 22 100 5.47

Table 6.7. Case study 2: distribution of ethnicity when missing values are included, excluded, and
singly imputed with the White ethnic group; n = 404 318.

Ethnicity Frequency
%

including
missing

%
excluding
missing

Frequency
missing
imputed
with White

%
missing
imputed
with White

%
2011 UK
census
London

White 224 403 55.5 72.46 319 037 78.91 59.8
Asian 35 027 8.66 11.31 35 027 8.66 18.8
Black 30 771 7.61 9.94 30 771 7.61 13.3
Other 19 483 4.82 6.29 19 483 4.82 8.4
Missing 94 634 23.41

∑ including missing 404 318∑ excluding missing 309 684
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Table 6.8. Case study 2: adjusted associations of ethnicity with variables used to inform the
imputation of ethnicity among the complete records; n = 309 684.

Asian Black Mixed/Other

Variable RRR 95% CI RRR 95% CI RRR 95% CI

Sex
Male 1 1 1
Female 0.925 0.904; 0.947 1.131 1.103; 1.159 1.061 1.030; 1.094
Age group (years)
0–9 1.480 1.416; 1.546 1.329 1.272; 1.388 1.969 1.869; 2.075
10–19 1.463 1.397; 1.532 1.520 1.454; 1.589 1.894 1.793; 2.001
20–29 1.363 1.307; 1.422 0.812 0.777; 0.850 1.227 1.162; 1.296
30–39 1.424 1.371; 1.480 0.711 0.682; 0.741 1.089 1.035; 1.146
40–49 1 1 1
50–59 0.797 0.762; 0.834 0.835 0.799; 0.873 0.809 0.762; 0.858
60–69 0.580 0.551; 0.611 0.340 0.319; 0.361 0.483 0.449; 0.520
70–79 0.516 0.485; 0.548 0.421 0.394; 0.450 0.369 0.335; 0.407
80+ 0.262 0.240; 0.285 0.180 0.162; 0.199 0.168 0.145; 0.195
Townsend score
Quintile 1 (least deprived) 1 1 1
Quintile 2 1.251 1.186; 1.320 1.305 1.211; 1.406 1.249 1.159; 1.346
Quintile 3 2.308 2.202; 2.419 2.825 2.647; 3.016 2.129 1.993; 2.275
Quintile 4 2.481 2.368; 2.600 4.836 4.540; 5.152 2.708 2.538; 2.889
Quintile 5 (most deprived) 2.442 2.327; 2.564 8.708 8.179; 9.272 4.081 3.826; 4.354
Type 2 diabetes 3.561 3.405; 3.724 2.244 2.126; 2.368 1.620 1.499; 1.751

⋆ Note: White ethnic group and no diagnosis are base levels for ethnicity and type 2 diabetes, respectively; RRR:
relative risk ratios are obtained from fitting a multivariable multinomial logistic regression model for four-level
ethnicity conditional on all variables considered; CI: confidence interval.
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Table 6.9. Case study 2: adjusted associations of the response indicator of ethnicity with variables
used to inform the imputation of ethnicity; n = 404 318.

Variable OR 95% CI

Sex
Male 1
Female 1.258 1.240; 1.277
Age group (years)
0–9 1.263 1.225; 1.302
10–19 0.549 0.535; 0.564
20–29 0.895 0.871; 0.920
30–39 1.343 1.307; 1.380
40–49 1
50–59 0.845 0.823; 0.868
60–69 0.945 0.917; 0.974
70–79 1.090 1.051; 1.130
80+ 1.050 1.008; 1.093
Townsend score
Quintile 1 (least deprived) 1
Quintile 2 0.964 0.937; 0.991
Quintile 3 0.906 0.884; 0.930
Quintile 4 1.072 1.045; 1.101
Quintile 5 (most deprived) 0.941 0.916; 0.966
Type 2 diabetes 1.389 1.340; 1.441

⋆ Note: no diagnosis is the base level for type 2 diabetes; OR: odds ratios are obtained from fitting a multivariable
logistic regression model for the response indicator of ethnicity conditional on all variables considered; CI: confidence
interval.
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Figure 6.5. Case study 2: distribution of four-level ethnicity in different methods for handling
missing ethnicity data.
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⋆ Note: horizontal black lines: the 2011 UK census ethnic breakdown for London is used as the reference distribution
for marginal and conditional weighted MI and calibrated-δ adjustment MI, as well as for comparison.

Figure 6.5 shows the distribution of four-level ethnicity after missing values in ethnicity
are handled by the various methods for missing data. As before, CRA, single imputation of
missing values with the White ethnic group, and standard MI overestimate the White group
while underestimating the other non-White ethnic proportions, compared to the corresponding
2011 UK census statistics. In marginal and conditional weighted MI and calibrated-δ adjustment
MI, themajority ofmissing values in ethnicity are imputedwith theAsian andBlack groups. These
methods recover the ethnic breakdown in the census as expected, since the census distribution is
used as the reference for these population-calibrated MI methods.
Figures 6.6–6.9 present estimated odds ratios of type 2 diabetes prevalence and 95% CIs for

age group, sex, Townsend deprivation score, and ethnicity in the analysis model. Age 40–49
years, male, quintile 1, and the White ethnic group are selected as base levels for age group, sex,
Townsend score, and ethnicity, respectively. M = 30 imputations produce Monte Carlo errors for
point estimates of less than 10% of the estimated standard errors. The relative efficiency versus an
infinite number of imputations is > 0.988 for all parameter estimates and MI methods. Overall,
the odds of being diagnosed with type 2 diabetes increases relatively smoothly with older age
groups and higher quintiles of the Townsend deprivation score; is lower in female compared to
male; and is higher in the Asian, Black, and Mixed/Other ethnic groups compared to the White
group in all methods for handling missing data in ethnicity.
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Figure 6.6. Case study 2: estimated odds ratio of type 2 diabetes diagnosis for age group in
different methods for handling missing ethnicity data.
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Figure 6.7. Case study 2: estimated odds ratio of type 2 diabetes diagnosis for sex in different
methods for handling missing ethnicity data.
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Figure 6.8. Case study 2: estimated odds ratio of type 2 diabetes diagnosis for Townsend depriva-
tion score in different methods for handling missing ethnicity data.
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Figure 6.9. Case study 2: estimated odds ratio of type 2 diabetes diagnosis for ethnic group in
different methods for handling missing ethnicity data.
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Marginal and conditional weighted MI produce broadly similar results. Compared to CRA,
single imputation with the White ethnic group, and standard MI, the population-calibrated
MI methods (marginal and conditional weighted MI and calibrated-δ adjustment MI) produce
comparable estimated odds ratios for the younger age groups, and smaller estimated odds ratios
for the older (60+) age groups. The population-calibrated MI methods lead to slightly higher
estimated odds ratio for female compared to CRA, single imputation with theWhite ethnic group,
and standard MI, and this increase is towards the null. All missing data methods yield odds
ratios that increase with more deprived quintiles of the Townsend score. Again, the population-
calibrated MI methods yield similar estimated odds ratios compared to the other methods for the
three lower quintiles of the Townsend score, and higher estimates for higher deprivation scores.
The most noticeable differences in point estimates associated with the prevalence of type 2

diabetes diagnoses are seen in the estimated odds ratios for ethnicity. CRA, single imputation,
and standard MI again return similar results, in which the odds of having a diagnosis of type
2 diabetes is around 3.6 times higher in the Asian ethnic group compared to the White group,
and individuals in the Black ethnic group are about 2.25 times more likely to receive a diagnosis
of type 2 diabetes compared to those of White ethnic background. Singly imputing missing
ethnicity values with the White ethnic group slightly increases the estimated odds ratios for
non-White ethnic groups. This is because individuals with missing ethnicity are, on average,
less likely to have a diagnosis of type 2 diabetes (table 6.9). Replacing missing values with the
White ethnic group means that this group will contain a lower percentage of type 2 diabetes
diagnoses, which implies that the estimated odds ratios for the non-White ethnic groups will
increase. Compared to CRA, single imputation with the White ethnic group, and standard
MI, the population-calibrated MI methods lead to a reduction in estimated odds ratios for the
non-White ethnic groups, with point estimates being slightly lower in calibrated-δ adjustment
MI compared to the two weighted MI approaches. For all non-White ethnic groups, the 95%
CIs of point estimates in the population-calibrated MI methods do not cross that of the other
methods.
In the population-calibrated MI methods where missing values are more frequently imputed

with the non-White ethnic groups, the explanatory power of ethnicity for type 2 diabetes is
diluted, with lower estimates of odds ratios for the non-White ethnic groups. These findings
might correspond to the stronger effect of the Townsend score, which compensates for the
reduction in the odds ratios for ethnicity. The odds ratios for Townsend score are smaller
in CRA compared to population-calibrated MI, for higher deprivation quintiles. In addition,
these findings seem to suggest that some effect of ethnicity is absorbed in Townsend score
in the population-calibrated MI methods, where Townsend score explains some of the effect
which might otherwise be explained by ethnicity. This might be attributed to a possibility that
individuals of Asian and Black ethnic groups, whose ethnicity is not recorded, tend to belong to
the more deprived quintiles of the Townsend score.
Returning to the missingness mechanisms considered thus far for the development of

marginal and conditional weighted MI and calibrated-δ adjustment MI, results in case study 2
suggest a potential departure from the MAR assumption for missingness in ethnicity. This is
because conditional on the outcome variable type 2 diabetes and other fully observed variables
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Table 6.10. Case study 2: fraction of missing information (Monte Carlo error) for the estimates of
association between ethnicity and the prevalence of type 2 diabetes diagnoses.

Method Asian Black Mixed/Other

Standard MI 0.132 (0.033) 0.193 (0.050) 0.230 (0.066)
Marginal weighted MI 0.355 (0.066) 0.173 (0.039) 0.342 (0.060)
Conditional weighted MI 0.351 (0.065) 0.195 (0.042) 0.338 (0.058)
Calibrated-δ adjustment MI 0.186 (0.027) 0.259 (0.062) 0.251 (0.074)

⋆ Note: White ethnic group is the base level for ethnicity.

included in the analysis model, standard MI does not yield a distribution of ethnicity that is
comparable to the census ethnic breakdown. Ethnicity is also not likely to be MNAR dependent
on only the values of ethnicity, since the point estimates in CRA and standard MI are broadly
comparable.
Results from analyses exploring the associations between covariates in the imputation model

for ethnicity and missingness in ethnicity suggest that sex, age, Townsend deprivation score, and
type 2 diabetes are factors likely to be related to whether ethnicity is recorded. This indicates
that ethnicity might be MNAR depending on the ethnic groups, fully observed outcome (type
2 diabetes), as well as other fully observed covariates in the analysis model (sex, age group,
Townsend score).
Table 6.10 presents the fraction of missing information (FMI) for the estimates of association

between ethnicity and the prevalence of type 2 diabetes diagnoses in different MI methods for
handling missing data in ethnicity. Again, standard MI tends to have lower FMI compared to the
population-calibrated MI methods, which is consistent with the results seen in case study 1.

6.6 summary

This chapter provides a description of The Health Improvement Network (THIN) database which
is the main data source for the case studies presented in this chapter. Section 6.2 explains how
data are typically recorded in the primary care setting, which gives rise to the issue of missing
data in primary care databases. Since the development of the population-calibrated MI methods
is motivated by the issue of missing data in ethnicity in research using primary care databases, the
recording of ethnicity information in primary care is discussed in section 6.3. These are followed
by two case studies in sections 6.4 and 6.5, which illustrate the application of marginal and
conditional weighted MI and calibrated-δ adjustment MI in utilising population-level external
information about the marginal distribution of ethnicity for handling missing values in ethnicity.
These methods are also compared to standard MI, single imputation of missing values with the
White ethnic group, and CRA in the case studies.
The first case study (section 6.4) aims to assess the plausibility of the MAR assumption

for ethnicity, by estimating the distribution of ethnicity and comparing that to the 2011 UK
census statistics. It is shown that CRA, single imputation of missing values with the White ethnic
group, and standardMI can lead to implausible distributions of ethnicity, whereas the population-
calibrated MI methods can yield ethnicity distributions that are comparable to that given by the
census statistics. The second case study (section 6.5) examines the association between ethnicity
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and the prevalence of type 2 diabetes diagnoses, where ethnicity is considered as a covariate in
the analysis model with some missing values. Compared to CRA, single imputation of missing
values with the White ethnic group, and standard MI, both marginal and conditional weighted
MI and calibrated-δ adjustmentMImethods result in scientifically relevant changes in inferences,
typically for the Asian and Black ethnic groups. Potential missingness mechanisms for missing
values in ethnicity are discussed and also compared to the missingness mechanisms considered
in univariate simulation studies presented in chapters 3 and 4.
The next chapter provides an overall discussion of the methodology and applications devel-

oped and presented thus far to conclude this thesis.
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7
Discussion

7.1 Summary of thesis

7.1.1 Weighted multiple imputation of a binary covariate when the outcome
variable is binary

7.1.2 Calibrated-δ adjustment multiple imputation of a binary covariate when
the outcome variable is binary

7.1.3 Population-calibrated multiple imputation of a binary covariate when
the outcome variable is continuous

7.1.4 Case studies using UK primary care electronic health records

7.2 Implications

7.2.1 Methodological implications
7.2.2 Applied implications: the analyst’s perspective

7.3 Strengths and limitations

7.3.1 Strengths
7.3.2 Limitations

7.4 Remarks on speci�c �ndings and further work

7.4.1 Generalisability to incomplete categorical covariates
7.4.2 Application for more complex analysis models
7.4.3 Application for incomplete covariates and outcome variables of di�erent

types
7.4.4 Complexity of the missingness mechanisms
7.4.5 Pending issues regarding the standard errors

7.5 Conclusion

7.1 summary of thesis

It is very difficult to completely avoid the problem of missing data in research involving human
participants, and thereforemissing data commonly occur inmedical research and epidemiological
studies. The presence of missing data is even harder to control in research using electronic health
record databases of patients’ clinical information, since such databases are not designed for this
purpose. Missing data can hinder researchers from performing standard statistical analyses
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designed for complete datasets, and can potentially lead to bias and inefficiency.
There is a vast range of methods for accommodating missing data, most of which assume

data are missing at random (MAR, section 2.2). The MAR assumption simplifies analyses with
missing data, such that analyses can proceed without having to explicitly define a model for the
missingnessmechanism. However, inmany real-life settings it is possible that data aremissing not
at random (MNAR, section 2.2). In addition, since the validity of the MAR assumption cannot be
verified, it is important to consider other plausible assumptions for the missingness mechanism
underlying the unseen values, which reflect potential departure from MAR towards MNAR.
An analysis based on the MAR assumption should therefore be accompanied by a sensitivity
analysis exploring how inferences may vary under alternative assumptions about the potential
MNAR mechanism [117]. Unfortunately, sensitivity analyses are often not performed or reported
sufficiently in practice [30, 118], a tendency abetted by the practical constraints of many applied
projects.
This thesis explored the idea of calibrating the dataset used for analysis to a relevant population-

level external data source, as a means of anchoring the analysis to the population in the presence
of missing data suspected to be MNAR. The investigations conducted in this thesis centred
around the use of multiple imputation (MI) [20] (section 2.4) for handling missing values in
incomplete covariates in the analysis model of interest. In practice, MI is widely implemented
under the assumption of data beingMAR. Although the standard implementation of MI provides
a good starting point for the analysis when data are suspected to be MNAR, the assumption made
about the missingness mechanism is not correct. One indication of potential departure from the
MAR assumption towards a MNAR mechanism is when standard MI results in an implausible
marginal distribution of the incomplete variable.
MI offers flexibility for performing sensitivity analyses, since the imputation model can be

tuned to incorporate possible departure from the MAR assumption [47, 117]. However, such
tuning is typically ‘un-anchored’, as it is hard to decide what the sensitivity parameters should be or
to justify the choice of values for the sensitivity parameters. This motivated the idea of bringing in
information from external data sources into the imputation process, in order to improve standard
MI when there are reasons to believe that data are MNAR. More specifically, for an incomplete
variable in the analysis dataset, if its corresponding population marginal distribution is available
in an external dataset, knowledge about such a distribution can be integrated into MI in order
to match the incomplete variable’s post-imputation distribution to that in the population. The
rationale for aligning the post-imputation distribution with the population reference is that the
imputation should be performed consistently with the population data.
Two population-calibrated univariate MI approaches for utilising the incomplete variable’s

population marginal distribution in the imputation process were proposed, evaluated, and
compared to existing methods for handling missing data. The first approach is (marginal and
conditional) weighted multiple imputation. This approach involves weighting the complete records
in the imputation model with probability weights which are calculated based on the incomplete
variable’s population distribution. The second approach is calibrated-δ adjustment multiple
imputation. In this approach, the intercept of the imputation model is adjusted by an offset which
is derived using the incomplete variable’s population distribution as the reference.
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The development of the two population-calibrated univariateMImethods focused onmissing
values in an incomplete binary/categorical covariate in the analysis model. Several analytic and
simulation studies were conducted to evaluate these methods under a range of missingness
mechanisms with an increasing level of complexity (chapters 3–5). These univariate MI methods
were also incorporated in the multivariate imputation by chained equations (MICE) algorithm
[23] for imputing missing values in more than one incomplete covariate, accounting for their
population marginal distributions which are available externally (sections 3.6 and 4.4). The
application of these methods was illustrated in case studies using real-life data from a large UK
primary care electronic health record database (sections 6.4 and 6.5).
Findings from previous chapters of this thesis are summarised in the following sections.

7.1.1 Weighted multiple imputation of a binary covariate when the outcome variable is binary

Chapter 3 proposed and evaluated the univariate weighted multiple imputationmethod for an
incomplete binary/categorical covariate. Weighted MI augments the standard MI method (under
the MAR assumption) with sampling probability weights. These weights are derived using
population-level information about the incomplete covariate’s distribution from an external
dataset, in order tomatch the incomplete covariate’s post-MI distribution to that in the population.
An outline of the weighted MI procedure for an incomplete binary/categorical variable,

followed by the derivation of the marginal and conditional weights in weightedMI were provided.
Univariate analytic and simulation studies were conducted to evaluate and compare marginal
and conditional weighted MI to standard MI and complete record analysis (CRA) in terms of
bias and other finite-sample properties in a univariate missing data setting where missing values
occur in a single covariate (sections 3.3 and 3.4). These studies featured a 2 × 2 contingency table
with a fully observed binary outcome variable y and a partially observed covariate x, where the
analysis model was a logistic regression of y on x. Overall, empirical bias agreed closely with
what the theoretical calculations predicted. The four missingness mechanisms considered are
listed below, together with the methods which produced unbiased estimates of both parameters
of the analysis model under each scenario.
1. x was MCAR: all methods were valid;
2. x was MAR conditional on y: standard MI and conditional weighted MI were valid;
3. x was MNAR dependent on x: CRA and marginal weighted MI were valid;
4. x was MNAR dependent on x and y: none of the methods were valid; conditional weighted
MI appeared to be the least biased method.
Results over repeated simulations showed that when bias was present, coverage of 95%

confidence intervals (CI) was lower than the nominal level and efficiency was lower than the full
data (i.e. before values in x are set to missing). When a method being evaluated was unbiased
under a posited missingness mechanism, correct coverage and matching standard errors were
often achieved. The key finding to be taken forward to the development of calibrated-δ adjustment
MI (chapter 4) was that the effects of covariates in the imputation model for the incomplete
covariate need to be accounted for in the derivation of the weights, and conditional weights
might not account for such effects in an optimal manner.
Chapter 3 also investigated the setting where the population distribution of the incomplete
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variable used to derive the weights in weighted MI is not ‘known’, i.e. it is not obtained from
a population census or equivalent (section 3.5). When there is uncertainty in estimating the
population distribution, a natural approach to incorporate this extra source of uncertainty
in the imputation process would be to draw values of the population proportions from their
distribution and calculate the weights using these draws, so that this uncertainty is reflected in
the MI variance estimation. An extension of the univariate simulation study discussed above
was conducted to address the effect that this extra uncertainty in estimating the incomplete
variable’s population distribution might have on the simulation results. The extended simulation
study compared three cases in which the population distribution was either invariant, estimated
in a large external dataset, or estimated in a smaller external dataset compared to the dataset
used for analysis. When the population proportions of the binary covariate were estimated in a
small external dataset with a higher level of uncertainty, there was an increase in the empirical
and average model standard errors in both marginal and conditional weighted MI, particularly
when missingness in the covariate was dependent on the outcome. This also led to an increase
in the coverage of 95% CIs. The increase in the average model standard errors was due to an
increase in the between-imputation variance component of Rubin’s variance estimator. Results
from this extended simulation study suggested that the extra uncertainty arising from drawing
the population proportions from their distribution and calculating the weights was reflected in
Rubin’s MI variance estimator.
The last part of chapter 3 explored the inclusion of the proposed univariate weighted MI

methods in the MICE algorithm [23] for imputing missing values in more than one incomplete
covariate (section 3.6). In particular, multivariate simulation studies of a three-way contingency
table with a fully observed binary outcome variable y and two incomplete binary covariates
x and z were conducted, where the analysis model was a logistic regression of y on x and z.
MICE with marginal and conditional weighted conditional models for x and z (referred to as
marginal weighted MICE and conditional weighted MICE) were compared to standard MICE
(with unweighted conditional models) in terms of bias, standard errors, and coverage of 95%
CIs under three missingness mechanisms for x and z. Simulation results ‘tentatively’ showed
that marginal weighted MICE was the preferred choice. The method yielded small or no bias in
point estimates and correct coverage of 95% CIs when missingness in x depended on x (MNAR)
and missingness in z depended either on y (MAR) or z (MNAR). When missingness in each
covariate depended on its values and the outcome, bothmarginal weightedMICE and conditional
weighted MICE were biased; conditional weighted MICE produced less bias and maintained
relatively high coverage.
As seen in the univariate andmultivariate simulation studies, neithermarginal nor conditional

weighted MI could produce unbiased parameter estimates when missingness in the covariate
depended on both its values and the outcome. This finding suggested that these weights might
not optimally account for both the incomplete covariate’s population marginal distribution and
the effects of fully observed variables in the imputation model on the incomplete covariate’s
distribution. Results in chapter 3 thus provided the motivation for calibrated-δ adjustment MI,
which was proposed in chapter 4.
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7.1.2 Calibrated-δ adjustment multiple imputation of a binary covariate when the outcome variable is
binary

Chapter 4 proposed and evaluated the univariate calibrated-δ adjustment multiple imputation
method as an alternative approach to weighting in MI when the population-level marginal distri-
bution of the incomplete covariate is available. In calibrated-δ adjustment MI, the incomplete
covariate’s population distribution is utilised to calculate an adjustment in the intercept of the
imputation model, in order to tackle bias found in marginal and conditional weighted MI when
missingness in the covariate depended on both its values and the outcome variable.
The idea of incorporating the calibrated-δ adjustment in MI was motivated by the δ adjust-

ment MI method proposed by van Buuren et al. [23]. The main difference between the two
approaches is that while values of δ are often chosen arbitrarily in van Buuren et al.’s method, the
incomplete variable’s population distribution is used to derive the appropriate δ in calibrated-δ
adjustment MI.
Chapter 4 started with an exploration of the equivalence between weighting and including a

δ adjustment in the imputation model for the incomplete covariate x in the 2 × 2 contingency
table (section 4.2). Key findings to be noted from this investigation were as follows. When the
incomplete covariate x was MNAR dependent on x, or MNAR dependent on x and the outcome
variable y, the covariate–outcome association the imputation model for x was the same in the
observed and missing data. This implied that adjusting the intercept of the imputation model for
x was sufficient to correct bias introduced by missing data under these two MNAR mechanisms.
Further, the correct intercept adjustment was shown to be equal to the value of the log odds ratio
of observing x for x = 1 compared to x = 0 in the selection model for x. When missingness in
x depended on x, it was found that the correct intercept adjustment was equal to the log ratio
of the two marginal weights for x = 1 and x = 0, which explained why marginal weighted MI
was unbiased under this missingness mechanism. However, when missingness in x depended
on both x and y, the correct intercept adjustment was neither equal to the log ratios of the two
marginal weights nor conditional weights, which illustrated the bias seen in both marginal and
conditional weighted MI under this missingness mechanism.
These findings confirmed that in a 2×2 contingency tablewhere both the outcome variable and

the incomplete covariate are binary, appropriately adjusting the intercept of the imputationmodel
sufficiently corrects bias in point estimates introduced by the twoMNARmechanisms considered.
The derivation of the calibrated-δ adjustment thus involves using the incomplete variable’s
population marginal distribution as well as its observed-data distribution and association with
other fully observed variables to estimate its distribution in the missing data.
Results of this analytic investigation were further affirmed in a univariate simulation study

of a 2 × 2 contingency table (section 4.3). Under all four missingness mechanisms considered,
calibrated-δ adjustment MI provided unbiased estimates of the analysis model’s parameters,
with comparable empirical and average model standard errors and correct coverage of 95% CIs.
Most importantly, bias seen in both marginal and conditional weighted MI when x was MNAR
dependent on x and y was alleviated by the correct calibrated-δ adjustment.
Further simulations were also conducted to explore the setting where there is uncertainty

in estimating the population distribution of the incomplete covariate x (section 4.3.3). More

168



specifically, it was assumed that the population distributionwas estimated in an external dataset of
either larger or smaller sizes compared to the dataset used for analysis. Results seen in calibrated-
δ adjustment MI were similar to previous results seen in the weighted MI methods. Bias in point
estimates slightly increased when the population distribution was estimated in a small external
dataset with high uncertainty. This was accompanied by an increase in both the average model
and empirical standard errors. Since there was tiny or no bias in the point estimates, coverage
was around the 95% level in all cases.
Lastly, the repeated multivariate simulation study conducted to compare the performance of

marginal and conditional weightedMICE and standardMICE in chapter 3 was revisited to explore
the use of univariate calibrated-δ adjustment MI in the MICE algorithm for handling missing
data in more than one covariate (section 4.4). The analysis model considered in this simulation
study was a logistic regression of a fully observed binary outcome variable y conditional on
two incomplete binary covariates x and z. Three different missingness mechanisms for x and
z were investigated. When x was MNAR dependent on x, and z was either MAR conditional
on y or MNAR dependent on z, calibrated-δ adjustment MICE appeared to yield small or no
bias in all three parameter estimates, which was similar to the results seen in marginal weighted
MICE. Standard errors were also comparable for marginal weighted MICE and calibrated-δ
adjustment MICE under these two missingness mechanisms, and coverage of both methods
attained the nominal level. When missingness in each of the two covariates depended on its
values and the outcome, there was minuscule bias in the estimated log odds ratios in calibrated-δ
adjustmentMICE, which disappeared when the sample size increased from n = 1 000 to n = 5 000
(appendix B.1). However, the empirical standard errors appeared to be larger than the average
model counterparts for the estimated log odds ratios in calibrated-δ adjustment MICE, leading to
the coverage of the corresponding parameter estimates to be slightly lower than the nominal level.
This discrepancy became smaller with increased sample size, and the reason for this discrepancy
was unclear.
Calibrated-δ adjustment MI provides an alternative approach to weighting in MI, in which

the incomplete variable’s population marginal distribution is incorporated into the imputation
process via an offset in the imputation model. The calibrated-δ adjustment is calculated using
the population marginal distribution of the incomplete variable as well as its distribution and
association with other variables in the observed data. Thus, in the univariate missing data setting
considered, the method represented a correct approach for utilising population-level information
about the incomplete variable while accounting for the effects of covariates in the imputation
model. In the univariate and multivariate simulation studies presented thus far, it was found
that while marginal weighted MI(CE) could be valid in certain settings, calibrated-δ adjustment
MI(CE) was generally preferred to marginal and conditional weighted MI(CE). However, there
was still a concern regarding the average model standard errors being slightly smaller than
the empirical counterparts in calibrated-δ adjustment MICE, which can affect coverage of the
method. This issue was seen in the repeated multivariate simulation study where each of the two
incomplete covariates was MNAR dependent on its values and the outcome.
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7.1.3 Population-calibrated multiple imputation of a binary covariate when the outcome variable is
continuous

In chapters 3 and 4, the univariate population-calibrated MI methods were explored in univariate
and multivariate missing data settings where both the outcome variable and the incomplete
covariate(s) were binary. Chapter 5 studied the application of marginal and conditional weighted
MI and calibrated-δ adjustment MI in a univariate missing data setting where the incomplete
covariate was binary as before, but the fully observed outcome variable was continuous.
This chapter presented a univariate simulation study conducted to examine finite-sample

properties of marginal and conditional weighted MI and calibrated-δ adjustment MI of an
incomplete binary covariate x, when the complete outcome variable y is continuous (section 5.2).
For moderate coefficient of determination (R2 = 0.2), point estimates were unbiased in standard
MI, conditional weighted MI, and calibrated-δ adjustment MI when x was MAR conditional
on y. However, while the average model standard errors were comparable in the three methods,
the empirical standard errors in calibrated-δ adjustment MI appeared to be slightly larger than
the average model standard errors, leading to a small drop in coverage. When missingness in x
depended on x, marginal weighted MI, calibrated-δ adjustment MI, and CRA were unbiased.
Empirical and average model standard errors were comparable in the population-calibrated MI
methods and were smaller than that in CRA. Coverage of all three methods attained the 95% level.
Most importantly, when missingness in x depended on x and y, calibrated-δ adjustment MI was
no longer unbiased. The empirical standard errors of the method also appeared to be larger than
the average model counterparts, leading to coverage falling slightly below the nominal level. For
an increased value of the coefficient of determination (R2 = 0.5, appendix C.1), while bias in
point estimates disappeared, the discrepancy between the average model and empirical standard
errors in calibrated-δ adjustment MI remained present. This discrepancy was less noticeable for
the estimated log odds ratio, and coverage of this parameter was also improved.
Previously in a 2×2 contingency table setting, it was noted that the calibrated-δ adjustmentMI

method was implemented based on the assumption that the association between the incomplete
covariate x and the complete outcome y was the same, whether x was observed or missing.
This implied that when missingness in x depended on x and y, adjusting the intercept in the
imputation model for x was sufficient to correct bias introduced by this MNAR mechanism. To
explore whether bias seen in calibrated-δ adjustment MI under this missingness mechanism
when y is continuous could be explained by the violation of this assumption, a logistic regression
model for x conditional on y, the response indicator r of x, and their interaction was fitted to the
full data (i.e. before values in x were set tomissing). It was found that the hypothesis regarding the
log odds ratio of the interaction term was rejected at 5% level in 13% of the simulation repetitions.
Based on this finding, it might not be plausible to assume that the association between x and y was
the same among the observed and missing x. This finding also implied that a second adjustment,
or sensitivity parameter, was needed in the log odds ratio of the imputation model for x in
addition to the existing intercept adjustment. This empirical exploration was also supplemented
by an analytic example based on the Heckman model [24] (section 2.5.2). This example provided
a mathematical justification for the presence of the second sensitivity parameter (section 5.3).
Findings in the univariate analytic and simulation studies clarified why adjusting the intercept
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of the imputationmodel for x alonewas not sufficient to deal with bias introduced by the inclusion
of y in the MNAR mechanism for x. Thus, in this case, knowing the population-level marginal
distribution of the incomplete covariate is not enough to correctly recover the second sensitivity
parameter for the association between the covariate and the outcome variable in the missing data.
The problem became exploring the sensitivity of inference for a range of values of the second
sensitivity parameter δy. This can be done by eliciting δy and using the population distribution
of the incomplete covariate to derive δ0, given each elicited value of δy. Further simulations
were performed to explore the setting where δy was fixed to its full-data (i.e. ‘correct’) estimate
(section 5.4). In this approach, bias previously seen in calibrated-δ adjustment MI when δy was
assumed to be 0 was now removed by fixing δy to its estimate obtained in the full data. However,
doing so still did not resolve the mismatch between the empirical and average model standard
errors, and the reason for this discrepancy was unclear. As a result of this mismatch, coverage was
slightly above or below the 95% level, depending on the values of the coefficient of determination.

7.1.4 Case studies using UK primary care electronic health records

In chapter 6, the application of the proposed population-calibratedMImethodswas demonstrated
using real-life data from The Health Improvement Network (THIN), a large UK primary care
electronic health record database (section 6.2.1). Two case studies were conducted using THIN
data to illustrate the application of marginal and conditional weighted MI and calibrated-δ
adjustment MI for handling missing values in ethnicity, as well as to compare these methods to
standard MI and other simple approaches to missing data that are used in practice.
The first case study, which was a cross-sectional study, aimed to assess the plausibility of the

MAR assumption for missing data in ethnicity in THIN (section 6.4). The marginal distribution
of ethnicity was estimated after missing values in ethnicity were handled by (i) a CRA, (ii) single
imputation of missing values with the White ethnic group, (iii) standard MI assuming MAR, (iv)
marginal and (v) conditional weighted MI, and (vi) calibrated-δ adjustment MI. The resulting
THIN distribution of ethnicity was then compared to the corresponding population distribution
in the 2011 UK census data [111]. It was shown that among the complete records, the proportion
of the White ethnic group was over-represented, while the proportions of the non-White groups
(Asian, Black, Mixed/Other) were under-represented, assuming that the distribution of ethnicity
in THIN should match that in the census. Single imputation of missing ethnicity values with the
White ethnic group, which assumed that onlyWhite individuals ever failed to have their ethnicity
recorded, further over-estimated the proportion of the White ethnic group and underestimated
the proportions of the non-White ethnic groups. Standard MI also yielded a post-imputation
distribution of ethnicity that did not match that in the census. In standard MI, an imputation
model was constructed for ethnicity based on individuals’ demographics and health conditions.
These included age, sex, a measure of social deprivation, as well as indicators of diseases including
heart attack, stroke, type 2 diabetes, chronic kidney disease, sickle cell disease, thalassemia, and
schizophrenia. These variableswere expected to be associatedwith ethnicity aswell asmissingness
in ethnicity. Even with the extensive inclusion of disease indicators which were thought to be
predictive of ethnicity and/or missingness in ethnicity in the imputation model, standard MI
still did not recover the distribution in the census, potentially due to a MNAR mechanism for
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missing data in ethnicity. In contrast, by incorporating the census distribution of ethnicity in the
imputation process, the post-imputation distribution of ethnicity was matched to the population
level in marginal and conditional weighted MI as well as calibrated-δ adjustment MI.
The second case study, also a cross-sectional study, extended the setting considered in the first

case study by including ethnicity as a covariate in an analysis model to examine the association
between ethnicity and the prevalence of type 2 diabetes diagnoses in THIN in 2013 (section 6.5).
The analysis model was a logistic regression model for whether an individual had a record
indicative of type 2 diabetes, conditional on the individual’s demographics including age, sex,
and a measure of social deprivation. The resulting odds ratios (OR) and associated standard
errors were compared in (i) a CRA, (ii) single imputation of missing values with theWhite ethnic
group, (iii) standard MI assuming MAR, (iv) marginal and (v) conditional weighed MI, and (vi)
calibrated-δ adjustment MI, using the census distribution of ethnicity as the reference.
In CRA, the odds of having a diagnosis of type 2 diabetes increased quite smoothly in older

age groups, with the most noticeable changes occurring between age 50–59 years and 70–79
years. Results for sex among the complete records indicated that the odds of having a diagnosis
of type 2 diabetes was higher for men compared to women. There was also a smooth increase in
the odds of having a diagnosis of type 2 diabetes in more deprived quintiles of the Townsend
deprivation score. In CRA, individuals of the Asian ethnic group were found to be around 3.5
times more likely to have a diagnosis of type 2 diabetes compared to White individuals. Similarly,
the odds of having a diagnosis of type 2 diabetes was higher for the Black ethnic group compared
to the White group. Results under single imputation of missing values with the White ethnic
group and standard MI were broadly similar to that in CRA, along with a slight increase in the
odds of having a type 2 diabetes diagnosis in women.
Results in the population-calibrated MI methods were generally comparable. The estimated

ORs increased in older age groups as seen before, but the odds of having a diagnosis of type
2 diabetes was slightly smaller for older age groups in the population-calibrated MI methods
compared to the other methods. Therefore, this led to a slight drop in the estimated ORs for
these groups. There was an increase towards 1 in the estimated ORs for women in population-
calibrated MI compared to the other methods. Estimated ORs also increased in more deprived
quintiles of the Townsend deprivation score. However, the estimated ORs grew more rapidly
for higher quintiles of deprivation in the population-calibrated MI methods compared to the
other methods. The most substantial difference in the results between population-calibrated MI
and the rest of the methods could be seen in the estimated ORs of type 2 diabetes diagnoses for
ethnicity. Although the Asian and Black ethnic groups were still associated with higher odds of
having a diagnosis of type 2 diabetes, the estimated ORs decreased noticeably for these groups.
In particular, there was a drop in the ORs from 3.6 for the Asian group in CRA (OR = 3.59; 95%
CI 3.43 to 3.75), single imputation with the White ethnic group (OR = 3.63; 95% CI 3.47 to 3.79),
and standard MI (OR = 3.58; 95% CI 3.43 to 3.73), to 2.4 in marginal and conditional weighted MI
(OR = 2.45; 95% CI 2.34 to 2.56) and calibrated-δ adjustment MI (OR = 2.35; 95% CI 2.36 to 2.45).
Compared to the most complex missingness mechanism investigated in univariate simu-

lation studies for the population-calibrated MI methods where the incomplete covariate was
missing depending on its values and the outcome (missingness model M4, tables 3.2 and 4.1), the
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assumed missingness mechanism in this study involved an extra element where missingness in
the incomplete covariate also depended on other fully observed covariates. It might be reasonable
to assume that since these fully observed covariates are all binary or categorical, results under
M4 in the univariate simulation studies can be generalised to this case study. That is, if the above
missingness assumption holds and the census statistics provide a relevant population distribution
of ethnicity for this THIN sample, calibrated-δ adjustment MI can produce more plausible
estimates of association in the analysis model. This is done by calibrating the post-imputation
distribution of the incomplete covariate to the correct population distribution, while accounting
for the relationships with other variables in the observed data.
The next section highlights the implications of the population-calibrated MI methods devel-

oped and evaluated in this thesis.

7.2 implications

Findings in this thesis carry several methodological and practical implications, which are dis-
cussed below.

7.2.1 Methodological implications

Most MI analyses are performed under the MAR assumption in practice. It is possible, although
more complex, to perform MI assuming missing data are MNAR. In the missing data literature,
there are two general approaches for analysing missing data under the MNAR assumption, the
selection model [24, 66] and the pattern-mixture model [64, 65]. MI is particularly well-suited
for the pattern-mixture modelling approach, since the distribution of missing data across the
different missingness patterns can be intervened directly in the imputation process (section 2.5.1).
According to Carpenter and Kenward [46], in comparison with the selection modelling approach,
the pattern-mixture model is more readily understood and communicated via graphs.
Due to the theoretical complexity of these methods as well as the lack of practical software

and/or the requirement to write code using specific packages such as WinBUGS [68], these
methods are not frequently adopted in applied settings. These technical difficulties create a barrier
for researchers to explore the sensitivity of results under the MNAR mechanism. As a result,
MI analyses are increasingly performed under the MAR mechanism without the consideration
for alternative MNAR assumptions [22]. Apart from Carpenter et al. [22], most methods for
performing sensitivity analyses exploring departure from the MAR assumption are ‘un-anchored’.
Clinical expert insights are often drawn on for eliciting values of the sensitivity parameters.
Alternatively, the sensitivity of inference to alternative MNAR assumptions is examined across a
range of different values for the sensitivity parameters in a ‘tipping-point’ analysis fashion.
In contrast to such methods, the two population-calibrated MI methods proposed in this

thesis offer a way to calibrate the data used for analysis to a relevant population-level external
dataset, thereby anchoring MI inference to the population, as the name of the methods suggests.
At their core, these methods follow a pattern-mixture approach in which the difference in
the incomplete variable’s distribution between the observed and missing data is implied and
represented by information obtained in external population data. Instead of selecting values for
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the sensitivity parameter in an arbitrary manner as implemented in van Buuren et al. [23], the
population-calibrated MI methods derive values of the sensitivity parameter based on empirical
data containing information about the incomplete variable in the population. Further, it is
important to highlight that van Buuren et al.’s δ is chosen independently of covariates in the
imputation model (as commonly done in practice), which can potentially yield implausible
imputed values [23]. On the contrary, calibrated-δ adjustment MI accounts or the observed-
data association between variables in the imputation model when deriving the value of the δ
adjustment. By calibrating MI analysis to the population, the population-calibrated MI methods
make a step further compared to other un-anchored approaches for performing sensitivity
analyses, since it is sensible thatmissing data should be imputed in consistencewith the population
data. The proposed population-calibrated MI methods thus add to the advancement in the field
of missing data, particularly in terms of the availability of MI methods for handling missing data
under the MNAR mechanism which calibrate inference to the population.

7.2.2 Applied implications: the analyst’s perspective

The proposed population-calibrated MI methods were evaluated from a methodological per-
spective, with investigations carried out in various univariate and multivariate settings using
increasingly complex missingness mechanisms for the incomplete covariate(s). These settings
ranged from a MCAR mechanism (most restricted) to a MNAR mechanism dependent on the
values of the incomplete covariate and the outcome variable. The calibrated-δ adjustment MI
method was generally the preferred method across the scenarios considered, while marginal
and conditional weighted MI could remove bias or produce more accurate results compared
to standard MI in certain settings. In addition, it was shown that calibrated-δ adjustment MI
can produce the same inferences as standard MI when data are MAR, and so can conditional
weighted MI in certain settings (e.g. when the outcome and covariate are both binary).
In practice, when the analyst is faced with the problem of data suspected to be MNAR in

one or several covariates in the analysis, the following steps are recommended for choosing the
appropriate MI methods for handling missing values in the incomplete covariates.
1. Define the full-data analysis model, including the outcome variable and the set of covariates
(both fully and partially observed);

2. Perform aCRA,which is valid under the assumption thatmissingness in the covariates is either
independent of both the outcome variable and the covariates (MCAR); or is independent of
the outcome, conditional on the covariates (MNAR);

3. Select a plausible set of fully observed variables (including the outcome) that are related to
the values and missingess in the covariates, and perform a standard MI analysis under the
posited MAR assumption;

4. Carefully consider (a) whether the available external datasets are suitable references for
the population-calibrated MI methods; (b) the type of the outcome variable and covariates
(e.g. binary, continuous); (c) some plausible MNAR mechanisms and whether such MNAR
mechanisms depend on the outcome variable and/or other fully observed covariates;

5. Perform the relevant population-calibrated MI method(s) that is (are) valid under the posited
MNAR mechanism and compare the results to standard MI and CRA to examine whether
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they produce similar inferences;
6. If the methods lead to different conclusions, report the results in all methods and attempt to
provide some plausible explanations for the discrepancies seen.
By considering the above steps, it should become evident that knowledge about the incomplete

variable’s population marginal distribution does not guarantee that such information can be
applied in the same way in all situations. Careful considerations of the missingness mechanisms
underlying the missing values are therefore unavoidable and also key to the appropriate use of
such knowledge in MI.

7.3 strengths and limitations

The following sections provide some remarks on the strengths and limitations of the proposed
population-calibrated MI methods and the investigations carried out in this thesis.

7.3.1 Strengths

As illustrated throughout this thesis, the two proposed population-calibrated MI methods can
improve on standard MI by utilising external population data, and hence correct or reduce bias
under general MNAR mechanisms. These methods are MI-based with an underlying pattern-
mixture modelling nature, and are therefore straightforward to implement and communicate
among researchers who are familiar with the use of MI. Further, the imputation procedures
described in this thesis could be implemented fairly automatically using a choice of statistical
package that offers software for performing MI analysis. As a part of this PhD, I have written and
released software for population-calibrated MI in Stata [44], a widely used package in medical
research, in order to enable the implementation of these methods in practice.
In a fully Bayesian approach, missing values in the incomplete covariate are treated as extra

parameters in the model which require a prior distribution. Knowledge about the population
marginal distribution of the incomplete covariate can therefore be incorporated into the model
in the form of an informative prior. However, defining a model for the informative prior might
not be simple. This is because similar to the use of weights in weighted MI, the prior only reflects
the distribution of the incomplete covariate in the missing data, while the aim is to match the
completed-data distribution of the covariate to the population level. Therefore, some form of
adjustment accounting for the observed-data distribution is also required when defining the
informative prior for the missing data, which might be difficult. Compared to a fully Bayesian
procedure, calibrated-δ adjustmentMI offers a simple solution for incorporating knowledge about
the incomplete covariate’s population distribution in the imputation process. The calibrated-
δ adjustment can be readily calculated based on the reference distribution and used in the
imputation model, and adjustments made in the imputation step are separated from the fitting
of the analysis model. Further, the implementation of the calibrated-δ adjustment MI procedure
in standard statistical software such as Stata [44] or R [119] is reasonably direct and the method
is relatively straightforward to communicate, while fitting Bayesian models requires familiarity
with specialised software for Bayesian inference.
An important strength of the proposed population-calibrated MI methods is their flexibility
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to be adapted to impute variables in a given dataset whose distributions might be available in
some external data. For example, in case studies using UK primary care electronic health records
in sections 6.4 and 6.5, the census data were used for imputing ethnicity. Similarly, data from
other nationally representative datasets such as the Health Survey for England [120] could also be
used to impute missing data in other health indicators that are routinely recorded in primary care,
such as smoking status or alcohol consumption. In such cases, it is also important to consider
the uncertainty associated with estimating the population distributions of these variables, as was
highlighted in simulation studies in sections 3.5 and 4.3.3.
Direct linkage of data from individuals included in the analysis to several datasets containing

data from the same individuals is increasingly used to reduce the level of missing data in the
analysis dataset and obtain a more complete picture of the information available about the
individuals’ health. For example, primary care electronic health records containing individuals’
ethnicity information can be enriched by direct linkage to hospital records in secondary care via
the unique patient identifiers. Data linkage thus allows for the direct determination of missing
ethnicity information in individuals whose ethnicity is recorded through their hospital visits in
secondary care and not in primary care. However, linkage is not attainable for patients who do not
allow their data to be linked and thus choose to opt out [121]. The process of linking observations
from different data sources can also involve many complications, including the occurrence of
linkage errors [106]. In addition, the use of data linkage for improving the completeness of
partially observed variables in the analysis dataset requires the linked datasets to contain the
same set of variables, which might not always be possible. In contrast, the population-calibrated
MI methods do not rely on a direct linkage between observations in the datasets used for analysis
and calibration. Instead, the methods ‘match’ the datasets in the sense that the analysis dataset is
assumed to be representative of the population data, i.e. the two datasets are assumed to originate
from roughly the same population. Further, the implementation of the population-calibrated MI
methods does not require eliciting expert opinions, which can be subjective in nature. Researchers
may be more comfortable with utilising objective external empirical data, which is what the
proposed population-calibrated MI methods are designed to do.

7.3.2 Limitations

First, it should be noted that not all possible settings can be covered in analytic and empirical
investigations. In particular, chapters 3–5 were linked together by a common theme, in which the
proposed population-calibrated MI methods were evaluated and compared to existing methods
under missingness mechanisms of increasing realism. The work presented in these chapters
demonstrated the strengths and limitations of different methods in different scenarios, and
the investigations carried out so far relied heavily on simulation studies of various complexity.
Although simulation is a useful tool for comparingmethods directly since the true data generating
mechanisms are known, findings are limited to the scope of the simulation studies considered and
does not guarantee that such scenarios are applicable in practice. Therefore, it may be desirable
to design simulation studies based on a real-life motivating dataset. However, in this approach,
conclusions can also be limited to the nature of the data used to motivate the simulation studies.
Nevertheless, it is worth highlighting that analytic and simulation studies conducted in this thesis
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represent an attempt to cover practically interesting missingness mechanisms for the missing
data that are straightforward to study and interpret.
Second, the implementation of the population-calibrated MI methods proposed in this thesis

rests on the availability of relevant external data sources to be used as references in MI. For
datasets comprising broad samples of individuals, such as large primary care electronic health
records in populations like the UK where the majority of individuals are registered with general
practices, there may be a number of population-level external data sources that can be used in
MI to calibrate inference to the population (e.g. the UK census data [122] or the Health Survey
for England [120]). For other datasets containing information about very specific groups of
individuals, such as data from a survey designed to study the experience of patients diagnosed
with cancers who are treated in public hospitals, it can be rare or impossible to find external
datasets that correspond to the study sample at the population level. Further, it can also happen
that although a suitable source of external data can be identified, the data are of relatively poor
standard with potential misclassifications and/or missing data. Therefore, depending on the
availability and quality of the suitable external data sources, the implementation of the population-
calibrated MI methods may or may not be feasible.
Given this remark, in the second case study (section 6.5) which examined the association

between ethnicity and the prevalence of type 2 diabetes diagnoses in 2013, the 2011 UK census
data were used as reference in the imputation of missing values in ethnicity. This was done based
on the assumption that the population composition of the ethnic breakdown did not change
very much between 2011 and 2013, which is relatively reasonable. If there is a wider time gap
between the analysis and external datasets, results need to be interpreted subject to consideration
regarding the representation of the analysis data.
Further, the proposed population-calibrated MI methods were examined in situations where

only knowledge about the incomplete variable’s population marginal distribution was available.
In some settings, such knowledge might not be enough to correct bias introduced by the MNAR
mechanism. One such situation was described in sections 5.2 and 5.3, where the continuous out-
come variable induced the presence of a second sensitivity parameter for the covariate–outcome
association. Another situation is when the MNAR mechanism involves an interaction between
the variables, where knowledge of the conditional distributions (i.e. lower level information
instead of only marginal) may be needed to remove bias introduced by data being MNAR. Again,
the successful implementation of population-calibrated MI depends on whether the necessary
information is accessible.

7.4 remarks on specific findings and further work

From the above discussion regarding the findings and limitations of the investigations carried
out in this thesis, several areas for further work and potential extensions are identified below.

7.4.1 Application for more complex analysis models

In the application of the population-calibratedMImethods for handling missing ethnicity data in
chapter 6, it was also conjectured that results of the 2 × 2 contingency table could be generalised
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to the case of a three-way or higher-order contingency table with additional fully observed
covariate(s) that are binary/categorical. This generalisability was based on the properties of
the odds ratios in the (multinomial logistic) regression imputation and analysis models. To
confirm this, a simulation study can be conducted featuring a three-way table with a fully
observed binary outcome variable, a partially observed categorical covariate, and another fully
observed categorical covariate. The analysis model is a logistic regression model for the outcome
conditional on the two covariates, and the imputation model for the incomplete covariate is a
multinomial logistic regression of the incomplete covariate conditional on the outcome and the
other fully observed covariate.
Likewise, further extensions can explore situations where the fully observed covariates are

a mixture of continuous and binary/categorical variables, or when the analysis model includes
interaction terms between the incomplete and fully observed variables.

7.4.2 Application for incomplete covariates and outcome variables of different types

Motivated by the issue ofmissing data in ethnicity in UK primary care databases, the development
of the population-calibrated MI methods thus far focused on imputing missing values in incom-
plete binary/categorical covariates. For an incomplete continuous variable whose population
marginal distribution (e.g. mean and standard deviation) is available externally, it is less clear
how to incorporate such information in MI. This can be explored in further extensions of the
population-calibrated MI methods.
It might also be of interest to extend the application of the population-calibrated MI methods

in survival analysis. For a time-to-event outcome variable, it is suspected that a second sensitivity
parameter for the covariate–outcome association is needed, such as in the case of the continuous
outcome considered in chapter 5. Settings involving survival models can be investigated further.

7.4.3 Complexity of the missingness mechanisms

In the multivariate simulation studies presented in sections 3.6.4 and 4.4.3, three missingness
mechanisms for x and z were considered over repeated simulations. These ranged from the case
where one covariate was MNAR and the other covariate was MAR, to cases where each of the two
covariates was MNAR dependent on either its values or both its values and the outcome variable.
While these missingness mechanisms did not represent the full set of mechanisms involving
three variables in this setting, they were chosen to aid the interpretation of results.
Indeed, in practice the actual missingness mechanisms can be much more complicated,

especially when missing values occur in several variables. For example, in the above three-
way contingency table setting, missingness in a covariate can depend on its values, the other
incomplete covariate which can either be MAR or MNAR, the outcome variable, and/or two-way
and three-way interactions. Although more realistic, such complicated missingness mechanisms
aremuch harder to comprehend and they alsomake it harder to understand the simulation results.
Nevertheless, more complex missingness mechanisms can be explored in further simulations.
In the aforementioned univariate simulation studies comparing calibrated-δ adjustment

MI and marginal and conditional weighted MI to standard MI and CRA, four missingness
mechanisms were considered for the covariate x when the outcome variable y was fully observed.
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The complexity of these mechanisms ranged from the case where missingness in x depended
on (i) neither y nor x (MCAR, most restricted), either y (MAR conditional on y) or x (MNAR
dependent on the covariate), or a sum of the two variables (MNAR dependent on y and x,
least restricted). Under these mechanisms, it was shown that using the incomplete covariate’s
population marginal distribution to calculate the calibrated-δ adjustment in the intercept of
the imputation model sufficiently removed bias introduced by missing data. Under a saturated
selection model for x where missingness in x depends on both y and x as well as an interaction
between the two, it will generally be necessary to adjust the intercept of the imputation model
for each combination of x and y (i.e. there will be more than one sensitivity parameter). Hence,
under suchMNARmechanisms, knowledge about the incomplete covariate’s populationmarginal
distribution alone might not be enough to correct bias introduced by missing data.

7.4.4 Pending issues regarding the standard errors

In the repeated multivariate simulation study presented in section 4.4.3, a possible explanation
for the mismatch between the empirical and average model standard errors (from using Rubin’s
variance estimator) might arise from comparing the calibrated-δ adjustment MICE algorithm
to a fully Bayesian approach. In calibrated-δ adjustment MICE, for each incomplete covariate,
a univariate conditional imputation model is fitted to subjects with observed values of the
covariate to obtainmaximum likelihood estimates of the imputationmodel’s parameters, and the δ
adjustment is calculated based on these estimates. New parameter values are then drawn from the
posterior distribution conditional on the observed data and the δ adjustment to obtain imputed
values for the covariate. In a fully Bayesian approach, itmight be that for each incomplete covariate,
values of the imputation model’s parameters are first drawn from the posterior distribution of
the parameters conditional on the observed data, followed by calculating values of δ given these
draws. This difference in the step for obtaining the calibrated-δ adjustment between the two
approaches might be the cause for the discrepancy between the empirical and average model
standard errors.
Further investigations can involve updating the current Stata code for implementing the

calibrated-δ adjustment MICE algorithm to change the order of deriving the calibrated-δ adjust-
ment in the algorithm, and conducting further simulations to examine the standard errors.
Similarly, in chapter 5, further work is also warranted to gain a better understanding of the

discrepancy between the empirical and average model standard errors in calibrated-δ adjustment
MI, when the outcome variable was continuous and the second sensitivity parameter was fixed
to its estimate in the full data.

7.5 conclusion

The proposed population-calibrated MI methods, including marginal and conditional weighted
MI and calibrated-δ adjustment MI, represent pragmatic and practical approaches for utilising
external population information about the incomplete variable(s) in the imputation process.
These methods offer a formal way for researchers to incorporate information obtained from
external data sources in MI, in order to assess the plausibility of the MAR assumption in the
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analysis of incomplete data. By investigating missing data scenarios that are realistic and relevant
in practice, the work conducted in this thesis demonstrated that these methods are likely to
perform well and can potentially lead to more accurate inferences compared to standard MI
under the MNAR mechanism.
By matching the analysis dataset to external population data, the proposed population-

calibrated MI methods anchor inference to the population level, and therefore provide practical
tools for performing sensitivity analyses to potential departure from the MAR assumption. At
the very least, findings from this thesis highlighted the importance of considering the plausibility
of the MAR assumption in the presence of missing data. Researchers should therefore be encour-
aged to perform sensitivity analyses under alternative MNAR assumptions using all available
information, and consider results from such analyses in companion with the results obtained in
standard MI assuming data are MAR.
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A
Supplementary materials for chapter 3

A.1 verification of analytic calculations using simulation

As discussed in section 3.3.2, figure A.1 depicts the results of initial two-dimensional simulations
which are performed to verify analytic bias calculations in a 2×2 contingency table under various
missingness mechanisms considered for the incomplete covariate x.

Figure A.1. Analytic study: comparison of bias in point estimates obtained analytically and
empirically via simulation under different missingness mechanisms for x.
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⋆ Note: circles: analytic bias; lines: empirical bias; M1: missingness in x does not depend on x or y, α0 = [−3, 3]; M2:
missingness in x depends on y, α0 = 0.5, αy = [−3, 3]; M3: missingness in x depends on x, α0 = 0.5, αx = [−3, 3]; M4:
missingness in x depends on (x , y), α0 = αx = 0.5, αy = [−3, 3]; bias is plotted against the corresponding percentages
of missing values in x.
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B
Supplementary materials for chapter 4

B.1 repeated simulations for assessing performance measures

Figures B.1–B.6 present the results of the repeated multivariate simulation study discussed in
section 4.4.3, for sample sizes n = 3 000 and 5 000.
Figure B.1. Repeated multivariate simulation study (n = 3 000): bias in point estimates under
different missingness mechanisms for x and z.
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⋆ Note: M1: missingness in x depends on x and in z depends on y; M2: missingness in x depends on x and in z
depends on z; M5: missingness in x depends on (x , y) and in z depends on (z, y); β0 = 0.5, βx = −1, βz = 1; error
bars: ±1.96×Monte Carlo standard errors; hollow circles: out-of-range values.
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Figure B.2. Repeated multivariate simulation study (n = 3 000): empirical and average model
standard errors under different missingness mechanisms for x and z.
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⋆ Note: M1: missingness in x depends on x and in z depends on y; M2: missingness in x depends on x and in z
depends on z; M5: missingness in x depends on (x , y) and in z depends on (z, y); error bars: ±1.96×Monte Carlo
standard errors.

192



Figure B.3. Repeated multivariate simulation study (n = 3 000): coverage of nominal 95%
confidence intervals under different missingness mechanisms for x and z.
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⋆ Note: M1: missingness in x depends on x and in z depends on y; M2: missingness in x depends on x and in z
depends on z; M5: missingness in x depends on (x , y) and in z depends on (z, y); error bars: ±1.96×Monte Carlo
standard errors; hollow circles: out-of-range values.
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Figure B.4. Repeated multivariate simulation study (n = 5 000): bias in point estimates under
different missingness mechanisms for x and z.
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⋆ Note: M1: missingness in x depends on x and in z depends on y; M2: missingness in x depends on x and in z
depends on z; M5: missingness in x depends on (x , y) and in z depends on (z, y); β0 = 0.5, βx = −1, βz = 1; error
bars: ±1.96×Monte Carlo standard errors; hollow circles: out-of-range values.
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Figure B.5. Repeated multivariate simulation study (n = 5 000): empirical and average model
standard errors under different missingness mechanisms for x and z.
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⋆ Note: M1: missingness in x depends on x and in z depends on y; M2: missingness in x depends on x and in z
depends on z; M5: missingness in x depends on (x , y) and in z depends on (z, y); error bars: ±1.96×Monte Carlo
standard errors.
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Figure B.6. Repeated multivariate simulation study (n = 5 000): coverage of nominal 95%
confidence intervals under different missingness mechanisms for x and z.
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⋆ Note: M1: missingness in x depends on x and in z depends on y; M2: missingness in x depends on x and in z
depends on z; M5: missingness in x depends on (x , y) and in z depends on (z, y); error bars: ±1.96×Monte Carlo
standard errors; hollow circles: out-of-range values.
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Supplementary materials for chapter 5

C.1 univariate simulation study

This section presents the results of the univariate simulation study discussed in section 5.2 for
different values of R2.
Figures C.1–C.3 summarise the results of the univariate simulation study when calibrated-δ

adjustment MI is implemented with one sensitivity parameter, assuming the association between
x and y is the same in the observed and missing data. Under M2, when R2 = 0.05, the empirical
standard errors of both conditional weighted MI and calibrated-δ adjustment MI are smaller
than the average model counterparts, leading to an over-coverage of 95% CIs. When R2 = 0.5, the
empirical and average model standard errors of conditional weighted MI are now comparable.
However, the empirical standard errors of calibrated-δ adjustment MI are larger than the average
model standard errors, particularly for β̂0, which corresponds to a drop in coverage. Under M4,
when R2 = 0.05, bias in calibrated-δ adjustment MI is noticeable, while the method appears
unbiased when R2 = 0.5. Empirical standard errors are larger than the average model standard
errors in calibrated-δ adjustment MI, and coverage slightly decreases when R2 = 0.5; these results
are similar to that when R2 = 0.2.
Table C.1 shows the mean and standard deviation (SD) of the estimates of θr and θ yr over

S = 1000 simulation repetitions, and the number of times each of the null hypotheses H0 ∶ θr = 0
and H0 ∶ θ yr = 0 is rejected at 5% level. There is an increase in the standard deviation of θ yr when
R2 = 0.5 compared to when R2 = 0.05. The number of times the hypothesis concerning θ yr is
rejected drops from nearly 40% of the simulation repetitions when R2 = 0.05 to 5% when R2 = 0.5,
which explains the decrease in bias seen in calibrated-δ adjustment MI assuming δy = 0.
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Figure C.1. Univariate simulation study (R2 = 0.05 and 0.5): bias in point estimates under
different missingness mechanisms for x.

a. R2 = 0.05

-0.942 (-0.945, -0.939)

-0.326 (-0.332, -0.321)

-0.440 (-0.444, -0.437)

0.378 (0.372, 0.384)

0.128 (0.125, 0.131)

-0.663 (-0.666, -0.660)
0.517 (0.512, 0.521)

-0.121 (-0.126, -0.116)

-0.831 (-0.835, -0.828)
-0.695 (-0.701, -0.688)

0.153 (0.146, 0.160)

Full data
CRA

Standard MI
Marginal weighted MI

Conditional weighted MI
Calibrated-δ adjustment MI

Full data
CRA

Standard MI
Marginal weighted MI

Conditional weighted MI
Calibrated-δ adjustment MI

Full data
CRA

Standard MI
Marginal weighted MI

Conditional weighted MI
Calibrated-δ adjustment MI

Full data
CRA

Standard MI
Marginal weighted MI

Conditional weighted MI
Calibrated-δ adjustment MI

-.05 0 .05 >.1<-.1 -.05 0 .05<-.1 >.1

M1, β0 M1, βx

M2, β0 M2, βx

M3, β0 M3, βx

M4, β0 M4, βx

Bias in point estimate

b. R2 = 0.5

-0.143 (-0.144, -0.142)

Full data
CRA

Standard MI
Marginal weighted MI

Conditional weighted MI
Calibrated-δ adjustment MI

Full data
CRA

Standard MI
Marginal weighted MI

Conditional weighted MI
Calibrated-δ adjustment MI

Full data
CRA

Standard MI
Marginal weighted MI

Conditional weighted MI
Calibrated-δ adjustment MI

Full data
CRA

Standard MI
Marginal weighted MI

Conditional weighted MI
Calibrated-δ adjustment MI

-.05 0 .05 >.1<-.1 -.05 0 .05 >.1<-.1

M1, β0 M1, βx

M2, β0 M2, βx

M3, β0 M3, βx

M4, β0 M4, βx

Bias in point estimate
⋆ Note: M1: missingness in x does not depend on x or y; M2: missingness in x depends on y; M3: missingness in x
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errors; hollow circles: out-of-range values.
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Figure C.2. Univariate simulation study (R2 = 0.05 and 0.5): empirical and average model
standard errors under different missingness mechanisms for x.
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Figure C.3. Univariate simulation study (R2 = 0.05 and 0.5): coverage of nominal 95% confidence
intervals under different missingness mechanisms for x.
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depends on x; M4: missingness in x depends on (x , y); error bars: ±1.96×Monte Carlo standard errors; hollow
circles: out-of-range values.
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Table C.1. Univariate simulation study (R2 = 0.05 and 0.5): mean and standard deviation (SD) of
the full-data estimates of θr and θ yr over S = 1 000 simulation repetitions and number of times
each of the null hypotheses H0 ∶ θr = 0 and H0 ∶ θ yr = 0 is rejected at the 5% level.

a. R2 = 0.05
Missingness
model

¯̂θr SD (θ̂r) ¯̂θ yr SD (θ̂ yr) Number of times
H0 ∶ θr = 0 rejected Number of times

H0 ∶ θ yr = 0 rejected
M1 0.0004 0.0634 0.0006 0.0329 51 43
M2 −0.0034 0.0891 −0.0004 0.0484 49 63
M3 −1.5014 0.0759 −0.0007 0.0390 1000 51
M4 −1.3620 0.0984 0.0828 0.0461 1000 391

b. R2 = 0.5
Missingness
model

¯̂θr SD (θ̂r) ¯̂θ yr SD (θ̂ yr) Number of times
H0 ∶ θr = 0 rejected Number of times

H0 ∶ θ yr = 0 rejected
M1 −0.0041 0.0959 −0.0102 0.2941 44 47
M2 −0.0008 0.1058 −0.0094 0.3068 53 44
M3 −1.5074 0.1127 −0.0174 0.3123 1000 44
M4 −1.5037 0.1247 0.0092 0.3536 1000 52

⋆ Note: M1: missingness in x does not depend on x or y; M2: missingness in x depends on y; M3: missingness in x
depends on x; M4: missingness in x depends on (x , y).

C.2 theoretical justification of the additional sensitivity parameter

This section describes the simulation performed to verify the calculations shown in section 5.3.

C.2.1 Method

A single large simulation is conducted; if the calculations are not correct, the discrepancy between
the empirical and theoretical results given by the calculations will be apparent and detectable in
a large simulated dataset.
The data generating mechanism and analysis procedures are as follows.

1. Simulate n = 1 000000 complete values of the binary covariate x from the Bernoulli distribu-
tion, x ∼ Bernoulli (ppopx ) = 0.7;

2. Simulate data for the continuous, normally distributed outcome y from the linear regression
model for y conditional on x, such that

y = β0 + βxx + εy∣x ;

εy∣x ∼ N (0, σ2y∣x) ,
where values of 0.5, 2, and 1 are arbitrarily chosen for β0, βx , and σy∣x , respectively;

3. Simulate data for the (latent) continuous, normally distributed variable z which governs the
missingness in x from the linear regression model for z conditional on x and y

z = α0 + αxx + αy y + εz∣x ,y;

εz∣x ,y ∼ N (0, 1) ,
where α0, αx , and αy are arbitrarily set to 2, 0.5, and −0.5, respectively;
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4. Simulate a binary indicator of response r of x, such that r = 1 if z ≥ 0, and r = 0 otherwise;
5. Fit the logistic regression imputation model for x conditional on y

logit [p (x = 1 ∣ y)] = θ0 + θ y y,

to the observed (i.e. r = 0) and missing (i.e. r = 1) data in turn, recording the parameter
estimates θ̂0 and θ̂ y in the observed and missing data;

6. Compare the empirical results to that given by the following calculations

θobs0 = ln [Φ (α0 + αx)
Φ (α0) ] − 2β0βx + β2x

2σ2y∣x
+ ln( px

1 − px
) ;

θobsy = ln⎡⎢⎢⎢⎣
Φ (α0 + αx + αy)Φ (α0)
Φ (α0 + αy)Φ (α0 + αx)

⎤⎥⎥⎥⎦ +
βx

σ2y∣x
;

θmis0 = ln [ 1 −Φ (α0 + αx)
1 −Φ (α0) ] − 2β0βx + β2x

2σ2y∣x
+ ln( px

1 − px
) ;

θmisy = ln⎧⎪⎪⎨⎪⎪⎩
[1 −Φ (α0 + αx + αy)] [1 −Φ (α0)][1 −Φ (α0 + αy)] [1 −Φ (α0 + αx)]

⎫⎪⎪⎬⎪⎪⎭ +
βx

σ2y∣x
.

C.2.2 Results

Table C.3 shows a comparison of the imputation model’s parameters in the observed and missing
data. These are obtained empirically and analytically by following the calculations presented in
section 5.3. All percentage differences between the empirical and theoretical results are small
(less than 1%), supporting the validity of the calculations.
The values of the imputationmodel’s intercept in the observed andmissing data are noticeably

different, suggesting that an intercept adjustment is needed in the imputation model for x when
the model is fitted to the observed data. In addition, there is also a difference between the two log
odds ratios in the observed andmissing data. This finding is consistent with the theoretical results
regarding the presence of a second sensitivity parameter for the covariate–outcome association
in the imputation model for x. This second sensitivity parameter represents the difference in the
association of x and y between the observed and missing data.

Table C.3. Comparison of parameters θ in the imputation model for the covariate x obtained
empirically and analytically, when the outcome variable y is continuous.

θobs0 θobsy θmis0 θmisy

Empirical −2.1461 2.0493 −3.4457 2.2157
Analytical −2.1359 2.0294 −3.4512 2.2212

% difference 0.475 0.983 0.157 0.251
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C.3 univariate simulation study: when the second sensitivity parameter is fixed to its
full-data estimate

This section presents the results of the univariate simulation study discussed in section 5.4 for
different values of R2.
Figure C.4 summarises the results of the univariate simulation study under M4, when

calibrated-δ adjustment MI is implemented with δy set to its full-data estimate and δ0 is derived
from the population distribution of x, given the fixed δy . This method appears unbiased for both
values of R2. There is still a difference between the empirical and average model standard errors,
which corresponds to the slight over- or under-coverage of 95% CIs. This coverage issue is more
noticeable for β̂0 when R2 = 0.5.
A comparison of θ̂r obtained in the full data; calibrated δ0 derived assuming δy = θ̂ yr where

θ̂ yr is estimated in the full data; and calibrated δ0 derived assuming δy = 0 is presented in figure
C.5. The difference between the location of the distribution of calibrated δ0 when δy = 0 and
the other two quantities is larger when R2 is small. This again explains bias seen in calibrated-δ
adjustment MI with one sensitivity parameter when R2 = 0.05. The spread of the distributions of
calibrated δ0 is wider than that of θ̂r , which is more noticeable for higher R2.
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Figure C.4. Univariate simulation study (R2 = 0.05 and 0.5): bias in point estimates, empirical
and average model standard errors, and coverage of nominal 95% confidence intervals when
missingness in x depends on x and y (M4).
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Figure C.5. Univariate simulation study (R2 = 0.05 and 0.5): comparison of θ̂r estimated in the
full data; calibrated δ0 derived assuming δy = θ̂ yr , where θ̂ yr is estimated in the full data; and
calibrated δ0 derived assuming δy = 0 over S = 1 000 simulation repetitions, when missingness
in x depends on x and y (M4).
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D
Supplementary materials for chapter 6

D.1 read codes for extracting ethnicity information in the health improvement net-
work database

A Read code list for ethnicity has been developed by my colleague, Dr Emre Basatemur, which
contains 904 codes used in primary care to record information about individuals’ ethnicity/-
nationality/race, country of birth, language, or requirement for an interpreter. Some codes do
not provide enough information to determine individuals’ ethnicity, in which case ethnicity
is classified as missing. Below are the 50 most frequently used codes for extracting ethnicity
information in the two THIN case studies. Altogether these codes accumulate a cumulative
frequency of 93%.

Read code Description

9S10.00 White British
9i0..00 British or Mixed British - ethnic category 2001 census
9S1..00 White
9S13.00 White Scottish
9i00.00 White British - ethnic category 2001 census
9i20.00 English - ethnic category 2001 census
9i2..00 Other White background - ethnic category 2001 census
9iG..00 Ethnic category not stated - 2001 census
9S12.00 Other White ethnic group
13l4.00 Main spoken language English
9i7..00 Indian or British Indian - ethnic category 2001 census
9SE..00 Ethnic group not recorded
9SD..00 Ethnic group not given - patient refused
9iC..00 African - ethnic category 2001 census
9S6..00 Indian
9S3..00 Black African
9i...00 Ethnic category - 2001 census
9i2F.00 Polish - ethnic category 2001 census
9S...00 Ethnic groups (census)
9SJ..00 Other ethnic group
9i8..00 Pakistani or British Pakistani - ethnic category 2001 census
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Read code Description

9i2R.00 Other White European/European unspecified/Mixed European 2001 census
9S7..00 Pakistani
9iA..00 Other Asian background - ethnic category 2001 census
9i22.00 Welsh - ethnic category 2001 census
9i1..00 Irish - ethnic category 2001 census
9S11.00 White Irish
9iB..00 Caribbean - ethnic category 2001 census
9i21.00 Scottish - ethnic category 2001 census
9iE..00 Chinese - ethnic category 2001 census
9i2T.00 Other White or White unspecified ethnic category 2001 census
9S14.00 Other White British ethnic group
9SH..00 Other Asian ethnic group
9iF..00 Other - ethnic category 2001 census
9S2..00 Black Caribbean
226..00 O/E - ethnic group
134B.00 Race: Caucasian
9S9..00 Chinese
9i9..00 Bangladeshi or British Bangladeshi - ethnicity category 2001 census
13lC.00 Main spoken language Polish
134..00 Country of origin
9i6..00 Other Mixed background - ethnic category 2001 census
9i24.00 Northern Irish - ethnic category 2001 census
9i3..00 White and Black Caribbean - ethnic category 2001 census
13Z6.00 Language spoken
13l..00 Main spoken language
134N.00 Race: White
13dC.00 Born in England
9iAA.00 Other Asian or Asian unspecified ethnic category 2001 census
9i4..00 White and Black African - ethnic category 2001 census

D.2 associations of ethnicity and the response indicator of ethnicity with fully ob-
served variables in case studies 1 and 2

The following tables present unadjusted associations of ethnicity and the response indicator of
ethnicity with fully observed variables in case studies 1 and 2 (sections 6.4 and 6.5). The p-values
presented here are obtained from performing χ2 tests of independence in a two-way contingency
table for each of the fully observed variables considered.
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Table D.3. Case study 1: unadjusted associations of the response indicator of ethnicity with
variables used to inform the imputation of ethnicity; n = 445 199.
Variable Missing Observed ∑ p-value

Frequency % Frequency % Frequency %

Sex < 0.001
Male 58 598 26.75 160 473 73.25 219 071 100
Female 49 323 21.81 176 805 78.19 226 128 100
Age group (years) < 0.001
0–9 11 418 22.18 40 054 77.82 51 472 100
10–19 16 960 35.75 30 484 64.25 47 444 100
20–29 13 868 22.35 48 179 77.65 62 047 100
30–39 14 975 19.48 61 880 80.52 76 855 100
40–49 17 821 25.25 52 755 74.75 70 576 100
50–59 14 285 26.82 38 985 73.18 53 270 100
60–69 9 243 23.32 30 399 76.68 39 642 100
70–79 5 360 21.1 20 041 78.9 25 401 100
80+ 3 991 21.58 14 501 78.42 18 492 100
Townsend score < 0.001
Quintile 1 (least deprived) 12 642 24.42 39 128 75.58 51 770 100
Quintile 2 17 015 24.79 51 628 75.21 68 643 100
Quintile 3 28 180 25.72 81 365 74.28 109 545 100
Quintile 4 25 381 22.38 88 036 77.62 113 417 100
Quintile 5 (most deprived) 24 703 24.26 77 121 75.74 101 824 100
Heart attack < 0.001
No 106 816 24.31 332 518 75.69 439 334 100
Yes 1 105 18.84 4 760 81.16 5 865 100
Stroke < 0.001
No 106 127 24.33 330 082 75.67 436 209 100
Yes 1 794 19.96 7 196 80.04 8 990 100
Type 2 diabetes < 0.001
No 103 105 24.61 315 859 75.39 418 964 100
Yes 4 816 18.36 21 419 81.64 26 235 100
Kidney disease < 0.001
No 103 856 24.48 320 343 75.52 424 199 100
Yes 4 065 19.36 16 935 80.64 21 000 100
Sickle cell disease 0.976
No 107 841 24.24 337 027 75.76 444 868 100
Yes 80 24.17 251 75.83 331 100
Thalassemia 0.189
No 107 353 24.25 335 388 75.75 442 741 100
Yes 568 23.11 1 890 76.89 2 458 100
Schizophrenia < 0.001
No 107 486 24.27 335 353 75.73 442 839 100
Yes 435 18.43 1 925 81.57 2 360 100

∑ 107 921 24.24 337 278 75.76 445 199 100
⋆ Note: p-values are obtained from χ2 tests of independence for each of the variables considered.
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Table D.5. Case study 2: unadjusted associations of the response indicator of ethnicity with
variables used to inform the imputation of ethnicity; n = 404 318.

Missing Observed ∑ p-value

Frequency % Frequency % Frequency %

Sex < 0.001
Male 50 593 25.51 147 708 74.49 198 301 100
Female 44 041 21.38 161 976 78.62 206 017 100
Age group (years) < 0.001
0–9 7 936 19.08 33 665 80.92 41 601 100
10–19 16 044 35.13 29 620 64.87 45 664 100
20–29 12 429 24.83 37 636 75.17 50 065 100
30–39 11 817 17.99 53 878 82.01 65 695 100
40–49 14 740 22.73 50 097 77.27 64 837 100
50–59 13 607 25.54 39 665 74.46 53 272 100
60–69 9 110 23.11 30 317 76.89 39 427 100
70–79 5 150 20.32 20 198 79.68 25 348 100
80+ 3 801 20.65 14 608 79.35 18 409 100
Townsend score < 0.001
Quintile 1 (least deprived) 11 460 23.42 37 474 76.58 48 934 100
Quintile 2 15 454 23.85 49 334 76.15 64 788 100
Quintile 3 25 041 24.72 76 264 75.28 101 305 100
Quintile 4 22 026 21.46 80 600 78.54 102 626 100
Quintile 5 (most deprived) 20 653 23.83 66 012 76.17 86 665 100
Type 2 diabetes < 0.001
No 90 659 23.72 291 559 76.28 382 218 100
Yes 3 975 17.99 18 125 82.01 22 100 100

∑ 94 634 23.41 309 684 76.59 404 318 100
⋆ Note: p-values are obtained from χ2 tests of independence for each of the variables considered.
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