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Change in multimodal MRI markers
predicts dementia risk in cerebral small
vessel disease

ABSTRACT

Objective: To determine whether MRI markers, including diffusion tensor imaging (DTI), can pre-
dict cognitive decline and dementia in patients with cerebral small vessel disease (SVD).

Methods: In the prospective St George’s Cognition and Neuroimaging in Stroke study, multimodal
MRI was performed annually for 3 years and cognitive assessments annually for 5 years in
a cohort of 99 patients with SVD, defined as symptomatic lacunar stroke and confluent white
matter hyperintensities (WMH). Progression to dementia was determined in all patients. Progres-
sion of WMH, brain volume, lacunes, cerebral microbleeds, and a DTI measure (the normalized
peak height of the mean diffusivity histogram distribution) as a marker of white matter micro-
structural damage were determined.

Results: Over 5 years of follow-up, 18 patients (18.2%) progressed to dementia. A significant
change in all MRI markers, representing deterioration, was observed. The presence of new la-
cunes, and rate of increase in white matter microstructural damage on DTI, correlated with both
decline in executive function and global functioning. Growth of WMH and deterioration of white
matter microstructure on DTI predicted progression to dementia. A model including change in
MRI variables together with their baseline values correctly classified progression to dementia
with a C statistic of 0.85.

Conclusions: This longitudinal prospective study provides evidence that change in MRI measures
including DTI, over time durations during which cognitive change is not detectable, predicts cog-
nitive decline and progression to dementia. It supports the use of MRI measures, including DTI, as
useful surrogate biomarkers to monitor disease and assess therapeutic interventions. Neurology®
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GLOSSARY
AUC 5 area under the receiver operating characteristic curve; CMB 5 cerebral microbleeds; DSM-5 5 Diagnostic and
Statistical Manual of Mental Disorders, 5th edition; DTI 5 diffusion tensor imaging; EF 5 executive function; IADL 5
Instrumental Activities of Daily Living; LME 5 linear mixed effect; MD 5 mean diffusivity; MMSE 5 Mini-Mental State
Examination; NAWM 5 normal-appearing white matter; NPH 5 normalized peak height; PS 5 processing speed;
SCANS 5 St George’s Cognition and Neuroimaging in Stroke; SVD 5 small vessel disease; WM 5 white matter; WMH 5
white matter hyperintensities.

Cerebral small vessel disease (SVD) is the major pathology underlying vascular dementia and an
important cause of age-related cognitive decline.1 While many elderly patients develop radio-
logic signs of SVD,2 only a minority progress to dementia. Better methods are required to
identify the subgroup who rapidly decline.

Using rate of cognitive decline as a predictive tool in SVD has been shown to be limited3 due
to the slow rate of decline4 and insensitivity of cognitive tests to change. Research has therefore
focused on using MRI features of SVD, such as lacunes, white matter hyperintensities (WMH),
and brain atrophy,5,6 as surrogate markers.7 Diffusion tensor imaging (DTI) is of particular
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interest; it is highly sensitive to white matter
(WM) microstructural damage in SVD and
demonstrates widespread abnormalities in
the apparently normal-appearing WM
(NAWM).8

Cross-sectional studies have shown that
both lacunes and diffuse WM damage de-
tected on DTI are associated with cognitive
impairment.9–12 It has been hypothesized that
both result in white matter track disruption,
and disconnection of distributed networks
underlying executive function (EF) and pro-
cessing speed (PS), the 2 domains most
affected in SVD.13,14 However, almost all pre-
vious data are cross-sectional and therefore
give information only on association, not pre-
diction. The longitudinal St George’s Cogni-
tion and Neuroimaging in Stroke (SCANS)
study was established to determine whether
change in multimodal MRI, including DTI,
predicts cognitive decline and dementia in
SVD.

METHODS Patients. Details of the SCANS study have been

published previously.7,10 In brief, patients presenting with symp-

tomatic SVD, defined as a clinical lacunar stroke syndrome15 with

MRI evidence of an anatomically corresponding lacunar infarct,

and with confluent regions of WMH graded$2 on the modified

Fazekas scale,16 were enrolled from 3 stroke services covering

a geographically contiguous region in South London. Patients

underwent MRI annually for 3 years and cognitive testing annu-

ally for 5 years. At each visit, repeat recordings of cardiovascular

risk factors and blood pressure were performed. Data on progres-

sion to dementia were collected during follow-up and from

hospital and family doctor records.

Standard protocol approvals, registrations, and patient
consents. The study was approved by the Wandsworth (London)

research ethics committee and all patients provided written

informed consent. The study is registered with the UK Clinical

Research Network (public.ukcrn.org.uk/; study ID 4577).

Available data. A total of 121 patients were recruited. Of

these, 103 attended more than one cognitive assessment. Eigh-

teen patients only attended one assessment due to death (n 5

7), study withdrawal (n5 6), house move (n5 1), lost to follow-

up (n 5 2), or withdrawal from full neuropsychological testing

(n 5 2). Of the 103 who attended cognitive assessments more

than once, MRI data at multiple time points were available for 99;

4 withdrew from imaging but remained in the study for neuro-

psychological testing. In this analysis, we describe the relationship

between change of MRI measures and both cognitive change and

progression to dementia in all 99 who had at least one follow-up

MRI. The number of complete MRI and cognitive assessments at

each time point are shown in table e-1 at Neurology.org.

Demographic characteristics of the 99 patients (table 1) who

attended one or more follow-up MRI and cognitive sessions

compared to the 22 who did not have been described previously.4

There were no significant differences in any imaging measures

between the groups, but patients who remained in the study were

Table 1 Baseline and change characteristics of the analyzed cohort

Baseline characteristics Mean (SD)

Age, y 68.9 (10.0)

MMSE 27.9 (2.4)

Premorbid IQ 99.6 (15.6)

Rankin 1.1 (1.0)

Male sex, % 66 (66.7)

IADL 7.59 (0.93)

Change characteristics Mean baseline value (range) Incident findings

Lacunes 4.2 (0–27) 74 in 27 patients

Microbleeds 5.5 (0–144) 173 in 35 patients

Estimated mean baseline value (SD) Estimated mean annual change (SD) x2 p Value

WMH lesion load (log) 0.450 (0.341) 0.082 (0.033) 322.0 ,0.001

TCV, mL 1,045.85 (102.2) 213.84 (3.72) 310.3 ,0.001

MD-NPH, mm2/s 0.0152 (0.0028) 23.72 3 1024 (8.14 3 1025) 141.7 ,0.001

Executive function 20.903 (0.966) 20.048 (0.047) 10.2 0.001

Processing speed 20.964 (0.787) 20.052 (0.060) 14.3 ,0.001

Working memory 20.202 (0.780) 0.007 (,0.001) 0.3 0.609

Long-term memory 20.037 (0.926) 0.022 (0.044) 3.0 0.082

Global functioning 20.651 (0.721) 20.029 (0.036) 11.1 ,0.001

Abbreviations: IADL 5 Instrumental Activities of Daily Living; MD-NPH 5 normalized peak height of mean diffusivity histogram distribution; MMSE 5 Mini-
Mental State Examination; TCV 5 total cerebral volume; WMH 5 white matter hyperintensity, in % of total cerebral volume log transformed.
Annualized change measures were estimated through linear mixed effect models with a random intercept and slope model fit.
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younger and had higher baseline Mini-Mental State Examination

(MMSE) scores. At study entry, no patients had had intracerebral

hemorrhage, had superficial siderosis, or met the modified Boston

criteria for definite, probable, or possible cerebral amyloid

angiopathy.17

MRI acquisition. MRI at baseline and each follow-up visit were

acquired using the same 1.5T GE Signa HDxt system (General

Electric, Milwaukee, WI) using identical image acquisition pro-

tocols as previously published10 and described in appendix e-1.

MRI analysis. Structural preprocessing. A longitudinal tissue

segmentation pipeline optimized to our SVD cohort, described

in detail in a previous publication,18 was performed to obtain

segmentations for gray matter, NAWM, WMH, and CSF based

on coregistered fluid-attenuated inversion recovery and T1-

weighted images.

Conventional MRI markers of SVD. The tissue segmenta-

tion maps were used to calculate total cerebral volume and

WMH lesion load (log-transformed to adjust for its skewed dis-

tribution). Lacunes and cerebral microbleeds (CMB) were identi-

fied by a trained independent rater according to agreed

neuroimaging standards.6,19 Detailed calculations and descrip-

tions for these MRI markers are shown in appendix e-2.

Diffusion preprocessing. Detailed preprocessing steps of

diffusion-weighted images have been described elsewhere20 and

in appendix e-3. Preprocessing was applied to evaluate the nor-

malized mean diffusivity (MD) histogram distributions of all

WM tissue (i.e., NAWM plus WMH) (range 0–0.004 mm2/s,

bin width 0.000004 mm2/s). The normalized frequency of voxels

with the histogram peak value in all WM tissue, the MD nor-

malized peak height (MD-NPH) (figure e-1), was used as

a measure of tissue microstructure over time as we have previously

shown it is the most stable and sensitive DTI measure of

change.20

Cognitive assessment. Cognitive index scores. A battery of

well-established, standardized tasks sensitive to the cognitive

impairments seen in SVD was carried out annually. Full details

have been published previously.10 In brief, cognitive tasks (table

e-2) were age-scaled using published normative data, converted to

z scores, and grouped into broad cognitive domains. Averaging

across component scores within each cognitive domain created

cognitive index scores for EF, PS, working memory, and long-

term memory. An overall global functioning score based on all

administered tests was produced. In addition, premorbid intelli-

gence was assessed.

Dementia. Information on conversion to dementia was avail-

able for all 99 patients. Dementia was diagnosed using the

DSM-521 definition of major neurocognitive disorder, and was

present if individuals met one of the following criteria:

1. A diagnosis of dementia made in a memory clinic or equiva-

lent clinical service

2. After review of medical records and cognitive assessments by

a neurologist and clinical neuropsychologist, both blinded to

MRI and risk factor information, who agreed that the clinical

picture met DSM-5 criteria

3. An MMSE score consistently ,24, indicative of cognitive

impairment,22 and reduced capabilities in daily living as mea-

sured by a score #7 on the Instrumental Activities of Daily

Living (IADL)23

The presence of dementia was determined before comparison

of cognitive and MRI data. Date of dementia onset was defined as

the date of diagnosis. If no exact date was known and dementia

conversion was based on review of patient data or cognitive

performance, the midpoint date between the visit at which the

diagnosis was established and the previous visit was used.

Statistical analyses. We employed linear mixed effect (LME)

models to estimate annualized change rates in MRI and cognitive

markers based on all available time points. MRI and cognitive

indices data were modeled separately in MLwiN 2.1 (Centre

for Multilevel Modelling, University of Bristol).24 Intercepts

and linear trajectories (i.e., annual change rate) across the

follow-up period as a function of time were allowed to vary

with fixed and random effects. The presence of detectable change

was assessed on the basis of significance of the average fixed effect

slope of time evaluated using a Wald test. Slopes for each patient

as estimated by the LME models were extracted and used for

further analyses.

First, univariate linear regression analyses were performed

between annualized cognitive change rates and MRI markers

using SPSS 22.0 (IBM Corp., Armonk, NY). Lacunes and

CMB were treated as binary variables (i.e., no change or any

new lesions), due to the low frequency of new lesions. Multivar-

iate stepwise linear regression analysis was used to investigate the

relationship between annualized change rates of different MRI

markers with cognitive decline. Baseline age, premorbid IQ,

and sex were added as covariates.

Predictive abilities of MRI change rates and vascular risk fac-

tors for dementia conversion were assessed by univariate Cox

regression. LME estimates of change in MRI variables for these

dementia models were recalculated to exclude MRI data acquired

after conversion to dementia (n 5 3 participants, n 5 3 obser-

vations). This ensured that only imaging data prior to diagnosis

were used to predict dementia conversion. Continuous risk fac-

tors, such as blood pressure, were averaged over all time points.

Smoking status was defined as smoking during the majority of

follow-up, and diabetes as presence at any point during follow-up.

A stepwise multivariate Cox regression model including all annu-

alized MRI change rates and risk factors, plus baseline age, pre-

morbid IQ, and sex, was applied to identify independent

predictors of dementia.

To assess classification performance of the regression model,

we performed discriminant function analyses. First we identified

the discriminant value of a conventional risk factor model includ-

ing age, sex, premorbid IQ, and cardiovascular risk factors. Sub-

sequently we compared significance, sensitivity and specificity,

area under the receiver operating characteristic curve (AUC;

equivalent to a C statistic),25 and model stability (i.e., through

leave-one-out cross-validation) of that model to that of a model

that included the significant variables from the multivariate Cox

regression and their baseline values (the relationship between

baseline MRI measures and cognition is not investigated in this

article, but has been previously published for the 121 patients

recruited10).

RESULTS Conversion to dementia. A total of 18
(18.2%) of 99 patients converted to dementia during
the 5-year follow-up. Dementia diagnosis was based
on clinical diagnosis (n 5 8), review of medical re-
cords (n 5 3), and meeting dementia thresholds for
MMSE and IADL scores (n5 7). Mean (SD) time to
dementia conversion was 3.31 6 1.40 years. Deaths
and other endpoints during follow-up are shown in
appendix e-4.

Change in MRI and cognitive measures.Over the 3-year
imaging period, there was an increase in WMH lesion
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load, worsening of WM tissue microstructure
(decreased MD-NPH), and decreased brain volume
(table 1). Seventy-four new lacunes were observed in
27 patients. Nineteen developed 1–2 lacunes, and 8
$3 (maximum 9). A total of 173 new CMB occurred
in 35 individuals; 10 developed a single CMB, 14
developed 2–5 CMB, and 11 developed $6 CMB.

During 5-year cognitive follow-up, there was a sta-
tistically significant decline in EF, PS, and global
functioning (table 1). No change in working and
long-term memory was observed. We therefore lim-
ited further analyses to EF, PS, and global

functioning. Cognitive change varied markedly
between individual patients, with some showing
marked decline and others no decline. Estimated
annualized progression rates are shown in figure 1.

Relationship between imaging change and cognition

change. Univariate models showed decline in EF was
associated with lower baseline premorbid IQ (b 5

0.219, p5 0.026), greater change of MD-NPH (b5

0.275, p 5 0.007), and new lacunes (b 5 20.269,
p5 0.003) but not brain volume (b520.030, p5
0.773) or CMB (b520.190, p5 0.061) or WMH
(b 5 0.077, p 5 0.449). In contrast, no neuro-
imaging marker, age, IQ, or sex correlated with
decline in PS. Decline in global functioning was
associated with lower premorbid IQ (b5 0.307, p5
0.002), greater change in MD-NPH (b5 0.262, p5
0.011), new lacunes (b 5 20.265, p 5 0.004), and
new CMB (b520.218, p5 0.035) but not WMH
(b 5 0.677, p 5 0.500) or brain volume (b 5

20.113, p 5 0.277).
Table 2 shows standardized regression coefficients

from multivariate models investigating which MRI
markers correlated with cognitive decline. New la-
cunes, decline in MD-NPH, and premorbid IQ were
independently associated with decline in EF. The
model explained 17.9% of variance in EF change
(F3,91 5 6.63, p , 0.001). Age, premorbid IQ,
change in MD-NPH, and new lacunes were all inde-
pendent correlates of decline in global functioning,
with the model explaining 26.6% of variance (F4,885
7.98, p , 0.001).

Imaging predictors of conversion to dementia. Univari-
ate Cox regression analyses revealed only greater
MD-NPH change (hazard ratio 0.004; p 5 0.034)
was indicative of conversion to dementia (table 3).

Figure 1 Estimated annual change rates for
cognitive indices

The dot lines show all estimated individual annual progres-
sion rates of executive function, processing speed, and
global functioning, as modeled using linear mixed effect
models over all available time points.

Table 2 Independent predictors of change in cognitive indices

Multivariate stepwise regression models

Executive function Processing speed Global functioning

Baseline age, y — — 20.207 (0.032)

Baseline premorbid IQ 0.246 (0.013) — 0.338 (0.001)

Sex (male) — — —

Annualized change in MRI measures

WMH lesion load — — —

TCV — — —

MD-NPH 0.230 (0.021) — 0.200 (0.040)

Incident lacunes 20.276 (0.007) — 20.347 (0.001)

Incident CMB — — —

Abbreviations: CMB 5 cerebral microbleeds; MD-NPH 5 normalized peak height of mean diffusivity histogram distribution,
in mm2/s; TCV 5 total cerebral volume, in mL; WMH 5 white matter hyperintensity, in % of total cerebral volume log
transformed.
Values shown are standardized regression coefficients b (p value).
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On multivariate Cox regression including all
MRI measures, as well as age, sex, IQ, and vascular
risk factors, only higher premorbid IQ, greater
increase in WMH, and greater decrease in MD-
NPH independently predicted conversion to
dementia (table 3).

Dementia prediction accuracy. Discriminant analysis in
which age, sex, and premorbid IQ and vascular risk
factors were entered did not discriminate between
dementia converters and nonconverters (Wilks
lambda [df 9] 5 0.865, x2 5 13.43, p 5 0.144).
In contrast, discriminant analysis including the
MRI variables found to be associated with progres-
sion to dementia in the previous multivariate Cox
regression (i.e., change in MD-NPH, WMH, and
premorbid IQ) and their MRI baseline values was
significant (Wilks lambda [df 5] 5 0.759, x2 5

24.64; p , 0.001). It correctly classified 80.9% of
patients with 80.0% sensitivity and 81.0% specificity
and achieved an AUC of 0.849, corresponding to a C
statistic of 0.849. After leave-one-out cross-validation,
this model remained stable, with a sensitivity of 73.3%
and specificity of 78.5%.

DISCUSSION In this longitudinal prospective study
in symptomatic SVD, change in multimodal MRI
measures over a 3-year period, during which little

change in cognition was detectable, predicted long-
term cognitive decline and dementia. In particular,
diffuse WM damage on DTI predicted decline in EF
and progression to dementia. It was striking that
while some patients had marked cognitive decline,
others did not decline. This emphasizes the need for
predictive tools to identify those who are likely to
develop dementia both for individual risk prediction
and to identify who may benefit from specific treat-
ments. Our results suggest that MRI may be useful in
risk prediction.

Previous cross-sectional studies using DTI have
demonstrated abnormalities not only within
WMH,26 but also in NAWM,8 and have shown these
DTI measures correlate with cognition more strongly
than WMH volume.27,28 This finding, indicating that
diffuse WM damage is associated with cognitive
decline, has led to the hypothesis that disruption of
WM tracks and secondary disconnection of complex
cortical–subcortical networks causes cognitive
impairment. However, cross-sectional studies dem-
onstrate association, but cannot prove causality. Lon-
gitudinal studies provide stronger evidence that
associations are causal. This study provides some of
the first evidence that change in DTI measures cor-
relates with subsequent cognitive decline in SVD, and
therefore provides support for the hypothesis that

Table 3 Predictors of conversion to dementia in cerebral small vessel disease

Univariate Cox regression Multivariate Cox regression

Hazard ratio 95% CI p Value Hazard ratio 95% CI p Value

Baseline age, y 1.020 0.97–1.07 0.443 — — —

Baseline IQ 0.975 0.94–1.01 0.124 0.958 0.93–0.99 0.017

Sex (male) 1.930 0.64–5.87 0.246 — — —

Vascular risk factors

Diabetes 1.232 0.44–3.46 0.692 — — —

Current smoker 1.910 0.64–5.71 0.246 — — —

Ex-smoker 0.767 0.24–2.42 0.650 — — —

Mean diastolic BP 0.952 0.90–1.01 0.113 — — —

Mean systolic BP 1.020 0.99–1.05 0.162 — — —

Mean total cholesterol 0.738 0.48–1.13 0.165 — — —

Mean BMI 0.955 0.86–1.06 0.370 — — —

Annualized change in MRI measures

WMH lesion load (log) 1.6 3 106 0.17–1.6 3 1011 0.088 2.5 3 106 1.80–3.57 3 1012 0.041

TCV 1.009 0.97–1.05 0.669 — — —

MD-NPH (3103) 0.004 2.0 3 1025–0.65 0.034 0.0002 3.7 3 1027–0.12 0.009

Incident lacunes 1.089 0.38–3.09 0.873 — — —

Incident CMB 2.312 0.09–6.00 0.085 — — —

Abbreviations: BMI 5 body mass index, in kg/m2; BP 5 blood pressure, in mm Hg; CMB 5 cerebral microbleeds; MD-NPH 5 normalized peak height of mean
diffusivity histogram distribution, in mm2/s; TCV 5 total cerebral volume, in mL; WMH 5 white matter hyperintensity, in % of total cerebral volume log
transformed.
Mean total cholesterol was measured in mmol/L.
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diffuse WM damage on DTI causes cognitive
impairment.

Using discriminant analysis, we showed that WM
microstructure in addition to WMH lesion load and
premorbid IQ had significant power to discriminate
dementia converters from nonconverters with a C sta-
tistic of 0.849. This is a level of prediction that would
be clinically useful and is, for example, higher than
the 0.81 previously reported for an all-dementia
model, which included MRI variables in addition to
demographic, vascular risk factor, and cognitive vari-
ables.29 Replication in further independent SVD test
populations is needed.

Our results provide further support for the validity
of MRI measures as surrogate markers in clinical trials
evaluating new treatments for SVD. Currently there
are few effective treatments for patients with SVD-
related cognitive decline. A major obstacle to assessing
new treatments is the lack of detectable longitudinal
change in cognition over short time periods.3,7 This
has led to the suggestion that MRI measures may be
useful to assess new therapies.7,30 Using MRI markers
could markedly reduce sample sizes required to detect
treatment effects.7 However, before such a surrogate
marker is adopted clinically, it is essential to show that
change in the marker correlates with change in clin-
ical endpoints. Our study provides some of the first
data that this is indeed the case with change in MD-
NPH, the DTI measure most sensitive to change,20

correlating with eventual cognitive decline and pro-
gression to dementia.

Previous cross-sectional studies in SVD have
shown that, in addition to WM damage imaged on
DTI, lacunar infarcts31,32 and brain volume9,33 are
also associated with cognitive impairment, while
inconsistent associations have been shown for
CMB.31,34,35 In this study, new lacunar infarcts were
associated with decline in EF. Although 74 new lacu-
nar infarcts were detected over 3 years of imaging
follow-up, only 3 patients had symptomatic lacunar
strokes in this period. Therefore, although the vast
majority of new lacunar infarcts are apparently asymp-
tomatic, they are associated with cognitive decline. It has
been hypothesized that lacunar infarcts do so by causing
previously mentioned disconnection.32 Support for this
has been provided by cross-sectional data showing that
network efficiency mediates the association of lacunar
infarcts on cognitive impairment.36 In contrast to pre-
vious cross-sectional data, we did not find any associa-
tion between brain volume and cognitive decline or
dementia despite a detectable decline in volume over
time.

Previous studies have shown little or no cognitive
change over shorter time periods in this patient
group.4 An analysis of cognition at 3 years in the same
SCANS study showed minimal detectable change,4

and in the large SPS3 trial in MRI-confirmed lacunar
stroke no change was detected over a 2-year period
either.3 The current study shows that with longer
follow-up, change is detectable. The lack of cognitive
change over shorter periods of time is likely to be
a reflection of testing methodology (i.e., variability
in test results and learning effects), as well as the slow
rate of cognitive decline in some individuals.

In contrast to associations we found between DTI
measures and EF, we found no association with
decline in PS. This is perhaps surprising in light of
the association between PS and MRI measures in pre-
vious cross-sectional studies.10,37 This may reflect the
relatively large motor performance component in our
PS measure leading to reduced specificity. Alterna-
tively, the mechanisms underlying PS impairment
in SVD might differ from those causing EF impair-
ment. PS impairment has been shown to associate
with global efficiency derived from DTI tractography
networks,14 and may be a consequence of more dif-
fuse network disruption. Decline in PS may thus be
better described by alternative analysis methods such
as network analysis.36

The present study had a number of limitations.
First, it suffered from moderate data loss during
follow-up, although the dropout rate is comparable
to longitudinal aging studies.38 As reported previ-
ously, patients without complete follow-up tended
to be older and more disabled,4,7 which may have
led to an underestimation of MRI and cognitive pro-
gression rates. Second, all MRI data were acquired on
a 1.5T scanner. Although the same scanner was used,
which was not upgraded during the duration of the
study, image data quality could be improved by high-
er field strengths and spatial resolution with isotropic
voxel dimensions.39 SVD represents a spectrum of
disease from asymptomatic WMH in community
populations through to patients with multiple lacunes
and extensive WMH who present with vascular
dementia.1 This study investigated a population with
moderate to severe symptomatic SVD who have
a higher risk of progressing to dementia. In this spe-
cific patient group, we showed that a significant pro-
portion progresses to dementia over 5 years. Our
results now require replication in patients with less
severe SVD, such as in community studies, in which
WM DTI measures have been shown to correlate
with cognition cross-sectionally.27,40
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