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Abstract

The mycalesine butterfly Bicyclus anynana, the “Squinting bush brown,” is a model organism in the study of lepidopteran
ecology, development, and evolution. Here, we present a draft genome sequence for B. anynana to serve as a genomics
resource for current and future studies of this important model species. Seven libraries with insert sizes ranging from 350
bp to 20 kb were constructed using DNA from an inbred female and sequenced using both Illumina and PacBio technology;
128 Gb of raw Illumina data was filtered to 124 Gb and assembled to a final size of 475 Mb (∼×260 assembly coverage).
Contigs were scaffolded using mate-pair, transcriptome, and PacBio data into 10 800 sequences with an N50 of 638 kb
(longest scaffold 5 Mb). The genome is comprised of 26% repetitive elements and encodes a total of 22 642 predicted
protein-coding genes. Recovery of a BUSCO set of core metazoan genes was almost complete (98%). Overall, these metrics
compare well with other recently published lepidopteran genomes. We report a high-quality draft genome sequence for
Bicyclus anynana. The genome assembly and annotated gene models are available at LepBase
(http://ensembl.lepbase.org/index.html).
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Figure 1: Wet-season morph of Bicyclus anynana (picture credit: William H. Piel

and Antónia Monteiro).

Data Description

The squinting bush brown butterfly, Bicyclus anynana, is a mem-
ber of the remarkably speciose nymphalid subtribe Mycalesina,
which is distributed across the Old World tropics (Fig. 1). B.
anynana is an important model organism for the study of lepi-
dopteran ecology, development, speciation, behaviour, and evo-
lution [1–6]. B. anynana are found primarily in woodland habi-
tats across East Africa (from southern Sudan in the north to
Swaziland in the south), and adults are typically observed flying
close to the ground, where they feed on fallen fruit [1]. Strikingly,
B. anynana exhibits seasonal polyphenism, a form of pheno-
typic plasticity whereby individuals that develop during the wet
season differ in behaviour, appearance, and life history to those
that develop during the dry season [7–9]. Wet season butterflies
are smaller, have shorter lifespans, are more active, and show
larger and more conspicuous eyespots on their wings in com-
parison to dry season individuals. The genetic basis of this plas-
ticity and its impacts on various other life history and develop-
mental characteristics are ongoing research questions to which
the availability of a B. anynana reference genome will contribute
[10–12].

Sampling and sequencing

Genomic DNA was extracted from a B. anynana female that had
been inbred via 7 generations of brother-sistermatings. The cap-
tive laboratory stock population from which these individuals
originated was established in 1988 from 80 wild-caught indi-

Figure 2: Kmer frequency distribution for B. anynana short-insert libraries (k =
31). The bimodality of the distribution, with peaks at approximately ×105 and

×210, is the result of heterozygosity in the sequence data.

viduals and has been maintained at large effective population
sizes to minimise the loss of genetic diversity [1]. Two short-
insert libraries with insert sizes of 350 and 550 bp were con-
structed using Illumina TruSeq Nano reagents and sequenced
(125 base, paired-end) on an Illumina HiSeq2500 at Edinburgh
Genomics (Edinburgh, UK). DNA froma sister to this focal animal
was used to construct four long-insert (mate-pair) libraries with
insert sizes of 3 and 5 kb (2 of each) at the Centre for Genomic Re-
search, University of Liverpool (Liverpool, UK); libraries of both
insert-sizes were then sequenced on an Illumina HiSeq2500 and
an Illumina MiSeq at Edinburgh Genomics (Table 1). DNA from a
female descendent of the same inbred linewas used to construct
2 long read libraries with insert sizes of 10 and 20 kb, sequenced
on the PacBio platform at the Genome Institute of Singapore at
∼×10 coverage using 16 P6 SMRT cells. All raw data have been
deposited in the Short Read Archive under the accessions given
in Table 1.

A total of 128.2 Gb of raw Illumina data was filtered for
low-quality bases and adapter contamination using Skewer v.
0.2.2 [13], and both raw and trimmed reads were inspected
using FastQC v. 0.11.4 [14]. Only 4 Gb of data (3.1%) was dis-
carded, indicating the high quality of the raw data. Kmer fre-
quency distributions were estimated using the “kmercountex-
act” program from the BBMap v. 36.02 package [15] and showed
2 major coverage peaks at ∼×105 and ∼×210 (Fig. 2). The first

Table 1: Data counts and library information.

Library type Platform Read length
Insert size
(expected)

Number of reads
(raw)

Number of reads
(trimmed)

Number of bases
(trimmed)

SRA run
accessions

Short insert Illumina
HiSeq2500

125 bp paired-end 350 bp 271 808 057 pairs 267 241 712
(98.3%)

66 334 099 834
(97.6%)

ERR1102671-2,
ERR1102675-6

Short insert Illumina
HiSeq2500

125 bp paired-end 550 bp 241 050 065 pairs 234 269 871
(97.2%)

57 913 474 128
(96.1%)

ERR1102673-4,
ERR1102677-8

Mate pair Illumina
HiSeq2500

100 bp paired-end 3 kb 77 105 680 pairs 31 848 200
(41.3%)

5 758 856 502
(37.3%)

ERR1750945

Mate pair Illumina
MiSeq

100 bp paired-end 3 kb 5 641 764 pairs 2 170 610 (38.5%) 397 993 018
(35.3%)

ERR754051

Mate pair Illumina
HiSeq2500

100 bp paired-end 5 kb 77 614 870 pairs 45 676 725
(58.9%)

8 203 769 131
(52.8%)

ERR1750946

Mate pair Illumina
MiSeq

100 bp paired-end 5 kb 7 939 601 pairs 4 734 000 (59.6%) 861 352 793
(54.2%)

ERR754052

Long read PacBio P6 0.80–50 kb 10 kb 1 388 796 1 199 064 (86.3%) 4 086 394 966 ERR1797559-74
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Figure 3: Taxon-annotated GC-coverage plots for (a) draft and (b) final B. anynana genome assemblies. Each contig/scaffold in the assembly is represented by a circle,

coloured according to the best match to taxonomically annotated sequence databases (see legends) and distributed according to the proportion GC (x-axis) and read
coverage (y-axis). The upper- and right-hand panels show the distribution of the total span (kb) of contigs/scaffolds for a given coverage (upper panel) or GC (right
panel) bin. The heterozygosity in the sample is evident in the bimodal coverage distribution seen in (a). The cluster of orange-coloured contigs at a lower coverage
and higher GC than the main cloud were likely derived from contaminant Enterococcus present in the sample. The final assembly (b) shows the effective collapse of

heterozygous regions, the removal of contaminant sequences, and the scaffolding of contigs into long contiguous sequences. Note that only taxon annotations with
a span > 1 Mb are shown in the legend for clarity.

peak (×105) represents the proportion of the genome that is
heterozygous and has an approximate span of 87.7 Mb (18.4%
of the genome; calculated as one-half of the area under the
×105 curve, from ×50 to ×150). The expected proportion of
heterozygous sites given 7 brother-sister (full-sib) matings is
0.75

∧

7 = 13.3%, or 63.5 Mb. Thus, the greater than expected
heterozygosity is likely to be due primarily to selection against
highly inbred individuals during the course of the inbreeding
regime [16].

Contaminant filtering and assembly

Short-insert librarieswere screened for the presence of contami-
nant reads using Taxon-Annotated GC-Coverage (TAGC) plots, or
“blobplots” [17]. An initial draft assembly was constructed using
the CLC assembler (CLCBio, Copenhagen) and compared to the
NCBI nucleotide database (nt) using Megablast v. 2.3.0+ [18], and
against the UniRef90 protein database using Diamond v. 0.7.10
[19]. Read coverage for each contig was calculated by mapping
both libraries to the CLC assembly using CLC mapper (CLCBio,
Copenhagen), and blobplots were generated using Blobtools v.
0.9.19.4 [20] using the “bestsumorder” rule for taxonomic an-
notation of contigs (Fig. 3). Contigs that showed a substantially
different coverage relative to that of the main cluster of con-
tigs and/or good hits to sequences annotated as non-Arthropoda
were classed as putative contaminants. A total of 237 394 pairs
of reads (∼59 Mb) that were classed as either “mapped/mapped”
or “mapped/unmapped” to a putative contaminant were subse-
quently discarded from further analysis.

Filtered libraries were reassembled using the heterozygous-
aware assembler Platanus v. 1.2.4 [21], with default parameters.
Contigs were further scaffolded with the mate pair libraries us-
ing SSPACE v. 3.0 [22] and with 35 747 assembled B. anynana
transcripts [23] using a combination of L RNA scaffolder [24]
and SCUBAT v. 2 [25]. A final round of scaffolding was per-
formed with PacBio long reads (fastq files error-corrected using
the RS Preaassembler.2 protocol) using SSPACE-LongRead v. 1.1

[26]. Finally, gaps between scaffolds were filled using GapFiller v.
1.10 [27] and PBJelly v. 15.8.24 [28].

Our final assembly (v. 1.2) comprised 10 800 scaffolds span-
ning a total of 475.4 Mb, with a scaffold N50 of 638 kb (Ta-
ble 2). The genome-wide proportion of G+C was 36.5%, while
the number of undetermined bases (Ns) was 5.8 Mb (∼1.2%
of the total span). We determined assembly completeness by
mapping both genomic and transcriptomic reads from B. any-
nana (SRA whole genome sequencing accessions ERR1102671-8
and transcriptome accessions ERR1022636-7, ERR1022640-1, and
ERR1022644-5, downloaded October 2016) to the genome using
BWA mem v. 0.7.12 [29] and STAR v. 020201 [30], respectively.
Over 99% of reads from the 2 short-insert librariesmapped to the
assembly, suggesting that the vast majority of the genome rep-
resented by these data has been assembled. In addition, 94.9%
of RNA-Seq reads mapped to the assembly, suggesting that the
majority of transcribed genes are present. Gene-level complete-
ness was assessed using CEGMA v. 2.5 [31] and BUSCO v. 2.0 [32].
The proportion of CEGMAgenes “completely” recovered (n= 248)
was 81%, increasing to 97%when partially recovered genes were
included. The recovery of BUSCO genes specific to the meta-
zoa (n = 978) was higher, at 98% for complete genes, increas-
ing to 99% when partial genes were included. An almost com-
plete set (99.2%) of BUSCO genes specific to the Arthropoda (n =
1066) was also recovered. In addition, CEGMA indicated a dupli-
cation rate of 1.1while BUSCO estimated only∼2% of geneswere
present in multiple copies. The high complete CEGMA/BUSCO
scores suggestthat a good assembly has captured themajority of
core metazoan/Arthropod genes in full length and that the frag-
mentation of genes across multiple scaffolds is low. In addition,
the low duplication rates suggest that most genes are present in
single copy, and thus that the genome does not include signifi-
cant duplicated segments representing alternative haplotypes.

Annotation

Prior to gene prediction, we masked the B. anynana as-
sembly for repetitive elements to minimise the number of
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Table 2: Summary of B. anynana genome assembly and comparison to selected lepidopteran genomes.

B. anynana B. mori D. plexippus H. melpomene M. cinxia

Assembly version 1.2 ASM15162v1 3 Hmel2 MelCinx1.0
Span 475.4 Mb 481.8 Mb 248.6 Mb 275.2 Mb 389.9 Mb
Contigs

Number 23 699 88 673 10 682 3100 48 180
N50a 78.7 kb 15.5 kb 111.0 kb 328.9 kb 14.1 kb
NumN50b 1543 8075 548 214 7366

Scaffolds
Number 10 800 43 379 5397 795 8261
N50 638.3 kb 4008.4 kb 715.6 kb 2102.7 kb 119.3 kb
NumN50 194 38 101 34 970
N90 99.3 kb 61.1 kb 160.5 kb 273.1 kb 29.6 kb
NumN90 909 258 366 176 3396

Shortest/longest 201 b/5 Mb 53 b/16.2 Mb 300 b/6.2 Mb 394 b/9.4 Mb 1.5 kb/668 kb
G+C content 36.5% 37.7% 31.6% 32.8% 32.6%
NNNs

Span 5.8 Mb (1.2%) 50.1 Mb (10.4%) 6.7 Mb (2.7%) 986 kb (0.4%) 28.9 Mb (7.4%)
N50 1.4 kb 5.0 kb 2.5 kb 2.4 kb 1.4 kb

CEGMAc (n = 248) C: 81.1%; D: 1.1;
F: 97.2%

C: 76.6%; F: 96.8% C: 90.3%; F: 96% C: 88.7%; F: 96.8% NA

BUSCOc (n = 1066) C: 98.3%; D: 1%;
F: 99.2%

C: 97.5%; D: 0.5%;
F: 98.4%

C: 97.4%; D: 8.6%;
F: 98.5%

C: 98.8%; D: 0.7%;
F: 99.3%

C: 85.7%; D: 0.2%;
F: 91.8%

aN50: the length of the contig/scaffold at which 50% of the genome span is accounted for, given a list of sequences sorted by length. bnumN50: the number of sequences
required to reach the N50 sequence. cCEGMA/BUSCO notation: C, proportion (%) of genes completely recovered; D, duplication rate; F, proportion (%) of genes at least
partially recovered (including complete genes); n, number of queries. Note that duplication rate (D) for CEGMA is given as the average number of (complete) genes
recovered, whereas for BUSCO it is the proportion of complete genes recovered multiple times. BUSCO values are based on comparisons to the Arthropoda gene set.

Table 3: Major types of repeat content for B. anynana.

Repeat type Span (Mb) Proportion of genome

SINE 10.8 2.3%
LINE 15.3 3.2%
LTR elements 1.1 0.2%
DNA elements 0.8 0.2%
Small RNA 10.8 2.3%
Unclassified 86.2 18.1%
Total 122.6 25.8%

spurious open-reading frames due to low-complexity repeat re-
gions or transposable elements. Repetitive motifs in the B. any-
nana assembly were modelled ab initio using RepeatModeler
v. 1.0.5 (http://www.repeatmasker.org/RepeatModeler.html). Re-
peats occurring within genuine coding regions were excluded
by querying the proteins from a previous B. anynana assembly (v.
0.1) versus the RepeatModeler database using BLAST, removing
any sequences showing a match at the E-value ≤ 1e-10 thresh-
old. The filtered RepeatModeler database was combined with
known repeats from the Lepidoptera using RepBase v. 20.05 [33]
and input to RepeatMasker v. 4.0.5 [34] to mask the assembly.
Overall, approximately one-quarter of the assembly (122.6 Mb)
was masked from gene prediction (Table 3).

Gene findingwas performed following a 2-pass approach [35].
Initial genemodels were constructed withMAKER v. 2.31 [36] us-
ing HMMs derived from SNAP [37] and GeneMark-ES v. 4.3 [38]
in conjunction with a recently published B. anynana transcrip-
tome as evidence. MAKER gene models were then passed to AU-
GUSTUS v. 3.0.3 [39] for refinement, resulting in an initial set of
26 722 predicted protein-coding genes. A set of basic filters was
applied to remove likely spurious gene models (Table 4), result-
ing in the deletion of 4080 gene models. Protein sequences from

Table 4: Number of genes in potential error categories.

Category Description Number of genes

(a) Single-exon 7112
(b) Small exon (<9bp) 1866
(c) Small intron (≤40 bp) 45
(d) Short (CDS < 120 bp) 127
(e) No hit to nr 6532
(f) Duplicate (≥98% identity over ≥98%

query length)
822

Totala 4080

aDefined as the non-redundant total of the intersection of each category (a) to
(d) with category (e), plus the shorter of any duplicates identified in category (f).

the filtered 22 642 genes were annotated using BLAST searches
versus UniRef90 and the NCBI non-redundant protein database
(nr), and domains/motifs were described using InterProScan5
[40]. Summary statistics for the 22 642 predicted gene models
are given in Table 5.

Comparison to other lepidopteran genomes

To ascertain the relative quality of the B. anynana v. 1.2 assem-
bly, we compared our results to 9 other published lepidopteran
genomes available on LepBase (http://lepbase.org/) [41]: Bom-
byx mori ASM15162 v. 1 [42], Danaus plexippus v. 3 [43], Helico-
nius melpomene Hmel2 [44,45], Lerema accius v. 1.1 [46], Melitaea
cinxia MelCinx1.0 [47], Papilio glaucus v. 1.1 [48], Papilio polytes
Ppol 1.0 [49], Papilio xuthus Pap xu 1.0 [49], and Plutella xylostella
DBM FJ v1.1 [50]. The B. anynana v. 1.2 assembly was of high
quality compared to other published genomes, with the major-
ity of the genome represented in a relatively small number of
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Table 5: Summary of B. anynana gene prediction.

B. anynana B. mori D. plexippus H. melpomene M. cinxia

Assembly version 1.2 ASM15162v1 3 Hmel2 MelCinx1.0
Number of CDS 22 642 19 618 15 130 13 178 16 668
Mean length 1.4 kb 1.6 kb 1.4 kb 1.3 kb 958 bp
Median length 1.2 kb 1.2 kb 981 bp 927 bp 693 bp
Min/max 84 bp/28.3 kb 23 bp/60.3 kb 9 bp/58.9 kb 45 bp/46.4 kb 6 bp/45.4 kb
Introns
Mean number per gene 4.4 9.9 5.7 5 NAa

Length (mean/median) 1.3/0.6 kb 2.4/0.8 kb 795/280 bp 960/416 bp NA
Exons
Length (mean/median) 208/126 bp 283/161 bp 206/149 bp 284/157 bp NA

Number of single-exon
genes

3571 1744 1461 3113 NA

Transcript GC 49.2% 48.3% 46.5% 43% 41.7%
Gene frequencyb (genes per

Mb)
47.7 32.1 60.9 55.5 NA

aGFF for M. cinxia not available. bDefined as the number of genes divided by the total genome span (Mb).

scaffolds despite being only marginally smaller than the largest
lepidopteran genome, B. mori (Fig. 4a). Interestingly, B. anynana
v. 1.2 encodes the highest number of proteins of the 10 species
compared (Fig. 4b). Despite measures to eliminate potentially
spurious ORFs caused by annotation error or by duplication, B.
anynana encodes∼3250more genes than the diamondbackmoth
P. xylostella, and ∼10 400 more than the swallowtail P. polytes. It
is tempting to attribute the apparently high number of genes
to the developmental plasticity and alternative seasonal forms
with divergent morphologies and life histories in B. anynana.
However, it remains to be determined whether the number of
genes predicted in B. anynana is a function of its larger genome
size or unusual life history characteristics, or if further curation
of the v. 1.2 gene models will reduce the number of inferred
genes.

Concluding remarks

Wepresent a high-coverage, high-quality draft assembly and an-
notation of the mycalesine butterfly B. anynana. The assembly
will be a core resource for ongoing analyses of population ge-
nomics, discovery of cis-regulatory elements of wing patterning
and other genes, functional genetics and functional ecology of
complex gene families, and the evolution of novel and plastic
lifecycle strategies in lepidopterans and other arthropods.
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Figure 4:Assembly and gene prediction comparison among 10 lepidopteran genomes. (a) Cumulative assembly curves showing the relationship between the number of

scaffolds (x-axis) and the cumulative span of each assembly (y-axis), coloured by species. Higher-quality assemblies are represented by an almost-vertical line (e.g., H.
melpomene Hmel2 assembly in black), indicating that a relatively small number of scaffolds is required to reach the final genome span; conversely, a long tail indicates
that the assembly includes a large number of smaller scaffolds. The curve for B. anynana (brown and bold) suggests a good assembly for this species, with the majority
of the assembly comprised of relatively few scaffolds. (b) B. anynana v. 1.2 encodes the greatest number of genes of the 10 genomes and is particularly different from B.

mori, which is of equivalent length. Species names/colours are as follows: “bicyclus” (brown), B. anynana; “bombyx” (blue), B. mori; “danaus” (light green), D. plexippus;
“heliconius” (black), H. melpomene; “lerema” (dark green), L. accius; “melitaea” (orange), M. cinxia; “glaucus” (red), P. glaucus; “polytes” (pink), P. polytes; “xuthus” (violet),
P. xuthus; “plutella” (grey), P. xylostella.
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