
MNRAS 455, 974–986 (2016) doi:10.1093/mnras/stv2375

Genetically modified haloes: towards controlled experiments in �CDM
galaxy formation

Nina Roth,‹ Andrew Pontzen and Hiranya V. Peiris
Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK

Accepted 2015 October 12. Received 2015 October 8; in original form 2015 April 28

ABSTRACT
We propose a method to generate ‘genetically modified’ (GM) initial conditions for high-
resolution simulations of galaxy formation in a cosmological context. Building on the
Hoffman–Ribak algorithm, we start from a reference simulation with fully random initial
conditions, then make controlled changes to specific properties of a single halo (such as its
mass and merger history). The algorithm demonstrably makes minimal changes to other prop-
erties of the halo and its environment, allowing us to isolate the impact of a given modification.
As a significant improvement over previous work, we are able to calculate the abundance of
the resulting objects relative to the reference simulation. Our approach can be applied to a
wide range of cosmic structures and epochs; here we study two problems as a proof of concept.
First, we investigate the change in density profile and concentration as the collapse times of
three individual haloes are varied at fixed final mass, showing good agreement with previous
statistical studies using large simulation suites. Secondly, we modify the z = 0 mass of haloes
to show that our theoretical abundance calculations correctly recover the halo mass function.
The results demonstrate that the technique is robust, opening the way to controlled experiments
in galaxy formation using hydrodynamic zoom simulations.
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1 IN T RO D U C T I O N

Understanding galaxy formation requires us to take account of the
variety of halo assembly histories that build today’s population.
Many pressing questions – such as the origin of varying morpholo-
gies (e.g. van Dokkum et al. 2013; Papovich et al. 2015) and bulge
sizes (Kormendy 2015) – will be answered by understanding the
interplay between complex, non-linear physics and the various his-
tories for mass accretion. The fundamental difficulty is that these
histories are in turn determined by the random initial conditions
(ICs) seeded in the early universe.

This paper is the first in a series to directly tackle that problem
using a novel approach. The most typical solution is to simulate
large numbers of galaxies in a representative volume (e.g. Genel
et al. 2014; Codis et al. 2015; Schaye et al. 2015). However, this
is computationally expensive and limits the resolution that can be
achieved for any single object. Conversely, zoom-in simulations
achieve the maximum level of physical detail for a given compu-
tational time. They have been used to establish that qualitatively
different processes come into play at sub-kpc resolutions, where
processes within the interstellar medium begin to be resolved (e.g.
Governato et al. 2007; Brook et al. 2011; Guedes et al. 2011;
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Hopkins et al. 2013; Pontzen & Governato 2014). But such ap-
proaches only sample over a small and potentially biased range of
merger histories. A third tactic is to use isolated, idealized set-ups
to test particular hypotheses (e.g. Naab, Burkert & Hernquist 1999;
Robertson et al. 2006; Hopkins et al. 2009), but these by definition
lack a full cosmological environment. Thus, it is difficult to quanti-
tatively connect the results of isolated and zoom simulations to the
observed galaxy population.

Our aim is to combine the best aspects of these three types of
numerical study. We proceed by systematically changing aspects
of individual galaxies’ histories (such as mass and merger history)
within a cosmological simulation, while keeping track of the sta-
tistical likelihood of the changes to understand the relative abun-
dance of objects of different types. This can be achieved by using
the Hoffman–Ribak algorithm (Hoffman & Ribak 1991, hereafter
HR91; see also Bardeen et al. 1986; Bertschinger 1987; van de
Weygaert & Bertschinger 1996 for further theoretical background).
A more common use for HR91 is to obtain simulations resembling
the local universe by turning a given observational data set (e.g. the
local distribution of galaxies) into a prescription for the ICs of a nu-
merical simulation (Bistolas & Hoffman 1998; Kravtsov, Klypin &
Hoffman 2002; Mathis et al. 2002; Klypin et al. 2003; Heß, Ki-
taura & Gottlöber 2013; Jasche & Wandelt 2013; Sorce et al. 2014).
There is a significant amount of literature that uses this technique to
study the formation history of the Local Group (Zavala et al. 2009;
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Klimentowski et al. 2010; Libeskind et al. 2010; Forero-Romero
et al. 2011; Iliev et al. 2011; Dayal, Libeskind & Dunlop 2013;
Doumler et al. 2013; Kitaura 2013; Brook et al. 2014; Nuza et al.
2014).

Instead, we propose to use constrained ICs as an experimentation
toolkit for the formation of a particular halo embedded in a cosmo-
logical volume. This approach has precedent: for example, Frenk
et al. (1999) used the HR91 method to create galaxy cluster initial
conditions for a comparative study of numerical simulation codes.
More recently, Romano-Dı́az et al. (2006, 2007) and Hoffman et al.
(2007) simulated a single dark matter object of ∼1012 M� with
different substructures to understand the impact of quiescent and
violent accretion phases on the inner properties of the halo, and
the origin of the universal halo density profile. By including bary-
onic physics, Romano-Dı́az et al. (2011a,b, 2014) studied galactic
properties in extremely overdense regions which may host the early
precursors of QSOs. In a similar vein, Dubois et al. (2012) use the
numerical implementation from Prunet et al. (2008) to investigate
the accretion of material in the cores of very massive haloes to shed
light on the formation of black holes at high redshifts.

In all of the above cases, a simulated object was created by con-
straining the properties of a region defined by an analytical profile
(typically a Gaussian peak). Constrained properties included the
height of the density peak at the origin and its first- and second-
order derivatives (see e.g. Prunet et al. 2008 and the appendix of
Romano-Dı́az et al. 2011a). This creates objects that are well de-
fined in a theoretical sense (e.g. one can predict their collapse time
reasonably well), but that represent configurations which may or
may not be common in fully random ICs.

What sets our work apart from these previous efforts is that we
always start with a ‘reference’ halo from a simulation based on
fully random ICs. We are able to impose constraints on volumes
of completely arbitrary shape, using the particles that make up a
single dark matter halo embedded in a cosmological volume. Once
the constraints are applied, we re-run the simulation and compare
the results to the original reference run.

This has two immediate benefits. First, we can fine-tune selected
properties of the halo while demonstrably ensuring that the con-
strained object is as similar as possible to the reference run – a
controlled ‘genetic modification’ (GM) of the halo. Secondly, we
can calculate the change in the likelihood of the field after the mod-
ification; in other words, we can assess the relative abundance of
the genetically modified systems compared to the original. This
will allow us to test whether connections between merger history
and morphology quantitatively account for observed population
statistics.

The current work provides a first illustration of both these aspects
of the technique. Specifically, we study the properties of several
haloes as their total mass and merger history are systematically
changed. We investigate the concentration at z = 0 for different
mass accretion histories and find overall excellent agreement of
our constrained haloes with relations derived from statistical aver-
ages over large simulations. There are many studies that connect
the concentration parameter to other halo properties like the mass,
collapse time or mass accretion history, halo shape and angular mo-
mentum (e.g. Bullock et al. 2001; van den Bosch 2002; Wechsler
et al. 2002; Zhao et al. 2003; Reed et al. 2005; Bett et al. 2007;
Macciò et al. 2007; Neto et al. 2007; Duffy et al. 2008; Macciò,
Dutton & van den Bosch 2008; Zhao et al. 2009; Ragone-Figueroa
et al. 2010; Prada et al. 2012; Ludlow et al. 2013, 2014; Correa et al.
2015a,b,c; Klypin et al. 2014). Often, these studies operate by con-
sidering a statistical sample from a large volume simulation to find

correlations and provide fitting functions. Even though the statistical
power in recent simulations is excellent, there is still considerable
scatter around the median relations. Since the density profile of dark
matter haloes is an important ingredient in theoretical models, it is
important to understand these correlations and the scatter. Given
the large number of parameters that could influence the evolution
of a halo, principal component analysis has been used to investi-
gate correlations between them (Jeeson-Daniel et al. 2011; Skibba
& Macciò 2011; Wong & Taylor 2012). Our approach of design-
ing ‘experiments’ in galaxy formation provides a complementary
approach to computationally expensive statistical studies.

This paper is organized as follows: in Section 2 we give a brief
outline of the HR91 technique and our specific implementation.
Section 3 contains details of the numerical simulations that are used
to obtain the results in the rest of the paper. In Section 4 we provide
a brief illustration of some of the constraints we have applied to
the reference initial density field, focusing on influencing a single
halo traced by its particles. Next, we study the results of designing
different merger histories for a set of haloes in Section 5, focusing
on their collapse–concentration relation. In Section 6, we discuss a
method for assessing the relative abundance of the modified haloes
by defining a χ2 measure, and show that our results are consistent
with the cosmological halo mass function. We summarize in Sec-
tion 7. Finally, Appendices A and B contain the mathematical details
of our reformulation of the HR91 technique including a translation
between our notation and theirs.

2 O U T L I N E O F T H E M E T H O D

We now present a brief outline of the mathematical technique by
which ICs can be generated that satisfy certain constraints, while
remaining consistent with a � cold dark matter (�CDM) power
spectrum. This technique is described in a slightly different formu-
lation by HR91. The full derivation can be found in Appendix A.

By assumption, the density field in the early universe is linearly
perturbed around a background density ρ0, so that

ρ(x) = ρ0 (1 + δ(x)) , (1)

where δ(x) is a Gaussian random field with statistical properties
specified by the �CDM transfer function and inflationary tilt.

Generating ICs involves sampling the Gaussian random field at
a list of discrete points xν , where the integer value ν decides which
point we are discussing. In particular, when running a uniform-
resolution cosmological simulation with N particles on a box side,
ν runs from 1 to N3. The sampled field then consists of an N3-length
vector δ, where an element is given by δν ≡ δ(xν). The values of δ

are drawn from a multivariate Gaussian probability distribution with
mean 〈δ〉 = μ0 and covariance matrix C0 = 〈(δ − μ0)†(δ − μ0)〉.
Cosmological ICs have zero mean, μ0 = 0, but the HR91 technique
is not limited to this case.

A constrained field is defined by requiring α†δ = d for some
constraint vector α, which also contains N3 elements. In general,
d is real, though the formalism also extends to the case where it
is complex-valued. A simple example would be to fix the density
contrast to 0 at position x1. This requires αν = 1 for ν = 1 (before
normalization, see below) and 0 otherwise, and d = 0. Throughout,
we will use Greek indices in this way to denote values of either δ

or α at a specific grid position xν .
To actually create a field satisfying any given constraint, one

could sample repeatedly from the underlying population until ob-
taining a realization that satisfies (or is close to satisfying) the
requirement. However, such an accept–reject algorithm would be
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computationally expensive to implement in practice; instead, the
HR91 technique makes a mathematical rearrangement that requires
only one set of random numbers to be generated. As detailed in Ap-
pendix A, this rearrangement also shows that a constrained Gaus-
sian random field remains Gaussian. This allows us to apply a large
number of constraints independently, with the final result obeying
α
†
i δ = di for each i, where the Roman index i denotes the n dif-

ferent constraints. The properties of the constrained field are then
determined by a new mean and covariance

μn = μ0 +
n∑

i=1

C0αi

(
di − α

†
i μ0

)
(2)

Cn = C0 −
n∑

i=1

C0αiα
†
i C0, (3)

provided that the {αi} have been orthonormalized1 in the sense that
α
†
i C0αj = δij .
A realization of the constrained field could therefore be obtained

by calculating μn and Cn and drawing random numbers accordingly.
However, in practice, dealing directly with Cn from equation (3)
becomes prohibitively expensive for large N. The problem is that,
whereas C0 is the �CDM power spectrum and therefore diagonal
in Fourier space, Cn is generally not sparse in either pixel or Fourier
space. Instead, one can make the ansatz that a realization obeying
n constraints, δn, can be obtained starting from a realization of the
unconstrained field, δ0, via

δn = Pn

(
δ0 − μ0

) + μn, (4)

where Pn is a matrix that depends on C0 and {αi}.
By requiring that δn obeys the correct statistics and, additionally,

requiring that the changes made to the field are minimal, one can
uniquely derive the HR91 solution for Pn. The details are given in
Appendix A, with the result that

δn = δ0 +
n∑

i=1

C0αi (di − di0) , (5)

where we have defined di0 = α
†
i δ0 to represent the value of the

constrained quantities in the unconstrained realization, and again
require that the {αi} are orthonormalized. This reduces the actual
calculation to a series of vector multiplications and summations in
Fourier space (since C0 is diagonal there). The memory require-
ments are manageable since we need only store vectors of length
N3, instead of the N3 × N3 matrix Cn.

Consequently, a continuum of constrained realizations can be
generated from a single realization of the original ensemble. We
select a single dark matter halo from a reference run at z = 0, and
then return to the ICs and place constraints on the particles that
make up this object. In this way, our constrained regions are defined
directly via the halo particles, without requiring any assumptions
about the properties of density peaks in the ICs, or any type of
direct smoothing of the density field (only indirectly through the
halo finding at z = 0).

3 SIMULATION SET-UP

All our simulations were run with P-GADGET-3 (Springel 2005;
Springel et al. 2008). The ICs have been set up at redshift z = 99 and

1 Note that this orthonormalization can always be arranged for any set of
non-conflicting original constraints.

Table 1. Overview of the simulations used in this paper. For more details on
the individual runs, see the text in the sections mentioned in the last column.
MH and MH* stand for the two different ways of constraining the merger
history of the halo. The simulations marked in bold are not actually used
because they are not in equilibrium at z = 0 (see Section 5 for a discussion).

Name Halo Constraint Section

Reference N/A None 3
H24-MH Halo 24 d10/dref = {0.5, 1.5} 4, 5
H24-MH* Halo 24 d(z = 1)/dref = {0.9, 1.1} 4, 5
H37-MH Halo 37 d10/dref = {0.5, 1.5} 4, 5
H37-MH* Halo 37 d(z = 1)/dref = {0.9, 1.1} 4, 5
H40-MH Halo 40 d10/dref = {0.5, 1.5, 2} 4, 5
H40-MH* Halo 40 d(z = 1)/dref = {0.9, 1.1, 1.2} 4, 5
H24-mass Halo 24 d/dref = {0.5, 0.8, 1.2, 1.5} 4, 6
H37-mass Halo 37 d/dref = {0.5, 0.8, 1.2, 1.5} 4, 6
H40-mass Halo 40 d/dref = {0.5, 0.8, 1.2, 1.5} 4, 6

evolved to z = 0, saving 100 snapshots from z = 9 equally spaced in
scale factor. The cosmological model is 	m = 0.279, 	b = 0.045,
	� = 0.721, σ 8 = 0.817, h = 0.701, ns = 0.96, corresponding to
a Wilkinson Microwave Anisotropy Probe 5 cosmology (Dunkley
et al. 2009). While these cosmological parameters have been re-
vised in more recent data sets, they allow an easier comparison of
our results with the literature. All simulations have a (comoving)
box size of L = 50 h−1 Mpc ∼ 71.3 Mpc, and Npart = 2563 dark
matter particles, resulting in a particle mass of 8.24 × 108 M�.
The Plummer equivalent force softening length (which limits
the smallest accessible scales) is ε = 25.6 kpc in comoving
units.

We use the SUBFIND code (Springel et al. 2001), which finds haloes
with the friends-of-friends (FoF) method. SUBFIND also identifies
subhaloes inside the top level FoF groups, but we always use the
whole group for particle tracking. Each FoF group is assigned a
unique number, sorted in descending order by mass. SUBFIND also
provides a list of halo particle IDs, which allows us to track the
haloes between snapshots and across different simulations (by se-
lecting those objects which have the most particles in common at
z = 0). We choose the standard FoF linking length of 0.2 times the
mean interparticle distance.

Our analysis makes use of the PYTHON module PYNBODY (Pontzen
et al. 2013). We select haloes with mass M200 ∼ 1013 M� at z = 0,
which are well resolved but not the most massive (and therefore rare)
objects in the box. Throughout this paper, M200 refers to the halo
mass contained in r200, the radius within which the mass density
is 200 times the critical density of the universe at that time. We
construct halo merger trees by tracing halo particles from z = 0
backwards in time through each simulation snapshot. This allows us
to determine the mass accretion history and other internal properties
of each object as a function of time. We take advantage of the fact
that the density field is first set up by assigning one particle to each
grid node (the displacements are applied later). This means that
any particle at z = 0 can be traced back to a grid position xν in
the ICs, and no additional interpolation is necessary to calculate
δ(xν).

Table 1 gives an overview of the different runs that are used in this
paper; the last column provides the section where the constraints
are described and the results are discussed. In order to show that the
technique is robust, we have selected three haloes of similar mass
in the reference run, and constrained their properties in different
ways. Therefore, each simulation name contains a halo number and
constraint type.
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Figure 1. Left-hand panel: the density of the reference ICs (black circles) and modified H40-MH-2 ICs (red crosses) for the early collapse constraint, where
the density of the 10 per cent innermost particles is increased by a factor of 2. The slice is 5 kpc wide in the y- and z-coordinates, to give an impression of
the 3D structure. Each symbol corresponds to a single particle/initial grid point. The constrained density field maintains the complicated (sub-)structure that
was present in the reference run. Right-hand panels: the same two ICs as a 2D projection in the x–y plane. Only those particles that form each halo at z = 0
are shown here; it is these particles that are used for generating the constraint in our algorithm. The higher central density is clearly visible in the constrained
case. The results of these simulations will be discussed in detail in Section 5.

4 IL L U S T R AT I O N O F C O N S T R A I N T S

We now present a simple illustration of the technique with which we
generate a density constraint. We will discuss the results obtained
from running simulations with these constraints in the following
sections.

Our approach constrains the actual Lagrangian region that col-
lapses into a halo at z = 0; by contrast, in previous work the
constraints were typically chosen to follow some analytical form,
in order to connect the constraints to theoretical models such as
Press–Schechter theory (e.g. van de Weygaert & Bertschinger 1996;
Romano-Dı́az et al. 2006). Since we know which particles are going
to collapse in the reference run, we do not need to assume a specific
form for the peak or a smoothing scale. The resulting constrained
halo will be very similar to the reference object, unless the con-
straint radically changes the collapsing region, e.g. by introducing
a large overdensity in a region which only forms an intermediate
mass halo in the reference run.

Designing the constraints for a given modification to the final
halo requires a physical understanding of the evolution. Ultimately,
a proposed constraint must be tested by trialling the changes and
testing that they have the desired effect and that they are statisti-
cally consistent with the modified halo existing in the unconstrained
universe. We will demonstrate both of these properties over the re-
mainder of the paper.

Changing the mass can be achieved by changing the density con-
trast of the halo particles in the ICs. By creating a larger or smaller
overdensity, we influence the final mass by increasing or decreasing
the overall size of the region which has the average threshold den-
sity to collapse by a specified redshift (Press & Schechter 1974). We

term this a density constraint: in the ICs, we calculate the average
mass overdensity of all Npart particles in the reference halo

1

Npart

Npart∑
ν=1

δ(xν) ≡ d, (6)

where we again use the fact that each particle corresponds to a grid
position xν . Before orthonormalization, the value of the constraint
vector α is then 1/Npart for each particle which belongs to the halo
and 0 otherwise. The density can now be increased or decreased
by enforcing the value of d. Results of simulations with different
choices for d that produce haloes with higher or lower mass at z = 0
will be used in Section 6.

More specifically, according to the Press–Schechter argument,
the collapse time of a halo is related to its peak height ν = δ/σ (R),
where σ (R) is the variance of the density field smoothed on a scale
R. Therefore, by fine-tuning the overdensity on different scales
within the ICs, we can modify the accretion history. In particular,
by increasing (or decreasing) the density contrast in an inner region
of the halo, while requiring that the overall density contrast of
the halo particles stays the same, we are able to generate a halo
with very similar mass at z = 0, but a faster (or slower) accretion
history.

Fig. 1 illustrates an example of such a constraint acting on the
ICs. In the left-hand panel, we show a slice through the dark mat-
ter density field in the ICs, centred on the halo’s centre of mass.
Each black circle corresponds to a density value in the reference
run, and the red crosses show the same position in the constrained
run. The slice is 5 kpc wide in the y- and z-coordinates, to give an
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Figure 2. Left-hand panel: mass accretion history for early (red solid) and late collapse (blue dashed) runs, expressed by the FoF mass (all particles assigned
by the halo finder). The black solid line with points shows the same halo in the reference run; each point is one snapshot, illustrating the time resolution of
our simulations. Right-hand panel: same but for the virial mass M200, which does not converge to a common value at late times because M200 probes the inner
regions of the halo (see Fig. 3), which are affected by the collapse time.

impression of the 3D structure. Here, we show the constraint that
will be used in the ‘early’ run (discussed in detail in Section 5),
where we have increased the density of the innermost 10 per cent
of halo particles to be a factor of 2 higher, while keeping the over-
all density the same. An alternative approach is to actually iden-
tify substructures at an intermediate redshift and apply the ‘inner’
constraints to those specific particles. We have tried this second
approach for the present work, selecting the particles which have
already collapsed around z ∼ 1 by constructing a merger tree from
the SUBFIND output in the reference run. Table 1 contains an overview
of all simulations used in this paper; we denote the first method of
constraining the inner region by d10 and the second by d(z = 1)
there. The two modification methods give near-identical results
(Section 5), making the outcomes reassuringly insensitive to the
intuition guiding the modifications. We have found that it is also
possible to add further constraints to modify the build-up in differ-
ent subhaloes and so fine-tune the accretion history to any required
degree.

As explained in Section 2, the modified field is constructed to
follow the peaks and troughs of the underlying density field, thereby
maintaining the same substructure as much as possible. In the right-
hand panel, we show the 2D projection (x–y plane) of the density
of halo particles in the ICs, again for both the reference run and
constrained run. In both cases, the density is calculated for all
particles that are part of the halo at z = 0, which have been traced
back to z = 99. The effect of increasing the density in the innermost
region can be clearly seen in the constrained run (red border). In
addition, the second constraint, which keeps the overall mass the
same, leads to a compensation effect in the ICs, removing some
particles in the outer regions which fall into the reference halo but
not the constrained one. We will discuss the results of simulations
with these modified ICs in the next section.

5 M E R G E R H I S TO RY A N D
C O N C E N T R AT I O N – C O L L A P S E R E L AT I O N

So far we have looked at how applying various constraints modifies
the initial linear overdensity field. We will now consider the changes
that result when the new ICs are used in a numerical simulation,
starting with our modified merger history.

The mass accretion histories for simulations with the H40-MH-2
‘early’ (circles) and H40-MH-0.5 ‘late’ collapse constraint (crosses)
are shown in Fig. 2. Here, we chose the innermost 10 per cent of
particles and changed their overdensity by a factor of 2 (0.5) for the
early (late) collapse cases. In the left-hand panel, we show the time
evolution of the total mass (including all substructures) for the two
constrained runs and the reference halo. It is clear that the accretion
rates differ quite significantly at early times, but are compensated at
late times, leaving the overall mass of the objects the same. In the
right-hand panel, we show the time evolution of M200. This quantity
only measures the mass up to r200 instead of the total mass of linked
FoF particles (which can extend out to several r200). As in the former
case, the accretion rate follows the expected behaviour in the early
and late collapse cases. However, at late times, M200 differs between
the constrained runs and the reference runs. This is due to a change
in the halo density profile related to the collapse time, as we will
now explore.

The halo radial density profiles for these three simulations
at z = 0 are illustrated in Fig. 3, with inset panels showing
projected density maps. As the collapse is delayed, the slope
in the inner regions becomes less steep. The location of the
virial radius r200 is indicated by an arrow in each case; as ex-
pected given our discussion above, this is displaced inwards
by the relative shallowness of the late collapse H40-MH-0.5
case.
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Genetically modified haloes 979

Figure 3. Density profile of the reference halo (black dot–dashed) and the
‘early’ (blue dashed) and ‘late’ (red solid) constrained runs at z = 0. The
leftmost arrow indicates the softening length of the simulation, and the other
arrows indicate the virial radius of each halo. Inset panels: density projection
(x–y plane) of the resulting haloes at z = 0. All panels show a region 2.5 Mpc
across, include only the FoF group particles, and use the same colour scale
for the column density.

The difference between the density profiles can be encapsulated
in the concentration parameter

c = r200

rs
, (7)

where r200 is the virial radius of the halo (defined in Section 3) and
rs is the scale radius in the NFW density profile (Navarro, Frenk &
White 1997)

ρ(r) = 4ρs

(r/rs)(1 + r/rs)2
. (8)

We fit an NFW profile to each of our haloes at z = 0, after determin-
ing its centre using a shrinking-sphere method and estimating the
density in 100 radial bins of equal size. In order not to contaminate
the fits with numerical artefacts introduced by the finite particle res-
olution, we exclude from the fit the innermost regions (two times the
softening length, ε), which are affected by the force softening (e.g.
Power et al. 2003), and regions with r > 0.6 r200, which may not be
relaxed. We tested that the choice of the minimum and maximum
radius has negligible impact on the estimate of rs. The measured
values of the concentration are 4.2, 6.1 and 11.1 for late, reference
and early simulations, respectively.

The GM method allows us to study the relationship between the
collapse time of a halo (defined below) and its concentration as
measured at z = 0. Using a large statistical sample, Wechsler et al.
(2002) found that c ∝ a−1

coll, the scale factor at collapse time. We

follow their procedure to obtain the collapse scale factor by fitting
the mass accretion history of each halo with

M(z) = M0 × exp [−α z] , (9)

with M0 ≡ M200(z = 0) and α = 2acoll. Extensions to this sim-
ple function have been proposed by e.g. Tasitsiomi et al. (2004),
McBride, Fakhouri & Ma (2009) and Correa et al. (2015a), but for
our purposes these are not necessary: the refined formulae are de-
signed to accurately represent the median mass accretion histories
for many haloes, and the corrections are smaller than the scatter
between individual haloes.

There are some differences between the conventions of Wechsler
et al. (2002) and the present work which we need to understand
before proceeding. In the left-hand panel of Fig. 4, the grey band and
black dashed line show the average concentration and scatter from
measuring the properties of ∼120 haloes of mass M ∼ 1013 M� in
our unmodified box. Wechsler et al. (2002) used a slightly different
definition of halo mass from the one used in our study. Instead of
defining M200 with respect to the critical density of the universe,
they define Mmean

200 relative to the mean density.
To show how this affects the measured concentration, the green

points show a sample of concentration parameters estimated using
Mmean

200 , using the same haloes that were used to generate the grey
shaded region. There is an overall upward offset of these points
relative to the grey band because rmean

200 is correspondingly larger.
The black solid line and the green band show the median relation
and scatter predicted by Wechsler et al. (2002, taken from their
fig. 7), corrected by a factor of 0.8 following Duffy et al. (2008) to
account for their different σ 8 (1, instead of 0.817 in our simulations).

In summary, once the differences in conventions and cosmologi-
cal parameters are taken into account, we can reproduce the median
results of Wechsler et al. (2002) in our unmodified boxes. The scat-
ter from our simulation is also compatible with the much larger
Wechsler et al. (2002) sample; outliers are likely due to the fact that
we do not pre-select relaxed haloes as they do. For consistency with
the rest of the paper, we will use all quantities derived with respect
to critical density in the following analysis.

We are now ready to see how this relationship emerges when
using GM haloes instead of a statistical sample. For this study, we
have selected three different haloes in the reference run, which are
all of similar mass (M ∼ 1013 M�). The right-hand panel of Fig. 4
shows the result for 13 simulations (four each for haloes 24 and 37,
and five for halo 40) with different collapse times. We call each set
a ‘halo family’, including the reference run. The right-hand panel
of Fig. 4 shows the results for the three families illustrated by red
diamonds, green circles and blue squares for family 24, 37 and 40,
respectively.

The slopes of the three families appear to be consistent with, but
scattered around, the population average (grey band). We find that
each halo family is well described by a linear relation

c = const1

acoll
+ const2, (10)

which contains the offset as an additional parameter compared to
the fit used in Wechsler et al. (2002). These fits are shown in the
right-hand panel of Fig. 4 as coloured solid lines; we also fit all
13 points together (black dashed line). In addition, the grey band
shows the scatter expected for haloes in our selected mass bin, as in
the left-hand panel. The fit to all 13 simulations is very similar to
the median relation from our unconstrained box which is consistent
with the larger sample from Wechsler et al. (2002).
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Figure 4. Halo concentration parameter as a function of the collapse time. Left-hand panel: our reference simulation gives a volume to probe the relationship
using the traditional statistical technique. Taking 120 haloes from our simulation, this results in a scatter of points in the region of the grey band. To compare
with the existing literature, we need to redefine r200 (and hence c) relative to the mean (rather than critical) density, after which these haloes are represented by
the green points with error bars. The black solid line and green band show the average relation and scatter as predicted by Wechsler et al. (2002), multiplied
by a factor of 0.8 to account for their different choice of σ 8 (Duffy et al. 2008). Right-hand panel: our three constrained haloes (24, 37 and 40), showing fits to
each constrained family individually (colours) and all of them together (black dashed). The grey band is the same as in the left-hand panel. Together the panels
establish that (left) haloes in our reference volume recover the known relationship between concentration and collapse scale factor, and (right) relationships
consistent with this relation are also recovered individually by each GM family. The scatter of slopes between different families is expected (see the text).

The shift of each family member along its line is dictated by the
direction and amplitude of the density constraint in the ICs. Higher
values of the density in the inner region shift a point towards the top
left, and lower values to the bottom right with respect to the reference
run. This gives us considerable insight into the kind of results that
can be expected from GM compared to large population studies. The
scatter of individual simulations within a GM family is very small
– in other words, the concentration is highly predictable from a
single variable. This is because, as we have previously emphasized,
the history of each halo within a single family is as similar as
possible to all the others. The normal scatter in the concentration–
collapse relation is then seen to be due to factors that are not being
constrained within a single family (such as more detailed aspects
of the merger history or other variables such as halo spin). The GM
technique allows for a detailed exploration of results from specific,
precise changes.

For halo 24 (red diamonds), two of the results are nearly identi-
cal: the point with the highest concentration value is actually two
points nearly on top of each other. These points have been obtained
using the two methods for setting mass accretion history constraints
discussed previously, emphasizing that they can lead to very similar
results. Indeed, for each halo we have performed constrained runs
using both methods, and a mixture of the resulting data points are
shown in Fig. 5. For a list of all the simulations used in this paper,
see Table 1.

The results of four additional runs (one each for haloes 24 and
37, two for halo 40) are excluded from this figure. In each case,
the estimated density profile was not well described by an NFW
profile due to the halo undergoing a merger or the presence of
large substructures. This is in agreement with Zhao et al. (2003)
who find that at least part of the scatter around the Wechsler et al.

(2002) relation is due to poor fits to the NFW profiles and the mass
accretion history.

6 L I K E L I H O O D O F T H E MO D I F I E D FI E L D

As explained previously, the HR91 algorithm constructs a con-
strained realization which is equivalent to (but much more efficient
than) rejection sampling, i.e. repeatedly drawing from an ensemble
of �CDM universes until one obtains a realization that satisfies a
given number of constraints. However, a naive choice of constraints
can easily result in extreme configurations which are very unlikely
to occur within the Hubble volume of the real universe. Depending
on context, this could even be intentional (e.g. when investigating
rare objects; Romano-Dı́az et al. 2011a,b, 2014; Dubois et al. 2012);
but nevertheless it is important to understand how likely it is for a
given constrained configuration to arise, relative to the reference
realization. We now derive a general expression for evaluating this
likelihood and show how it is related to the abundance of haloes
when changing the mass.

We can compare the unconstrained and constrained fields with re-
spect to the unmodified �CDM covariance matrix C0 by evaluating
the change in χ2, defined as

�χ2 = δn
†C−1

0 δn − δ0
†C−1

0 δ0, (11)

where δn is a field with n constraints. This constrained field has a
relative abundance in the universe of e−�χ2/2 compared to the orig-
inal, unconstrained field δ0. Since this is only a relative abundance,
applying a constraint to a halo that is rare in the reference simulation
will in general also generate a rare object in the constrained run. We
therefore modify several haloes in a similar way, in order to reduce
the impact that picking a rare object may have on any of our results.
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Figure 5. Left-hand panel: the relationship between �χ2 and the initial overdensity for different halo families (H24-mass, H37-mass and H40-mass; see
Table 1). Lines show the theoretical prediction from equation (13), whereas points give the actual change measured from the IC generator output, confirming
that the algorithm is operating as expected. Right-hand panel: �χ2 values (points) can be interpreted as giving the relative abundance of the haloes within
each genetically modified family, and therefore should agree with estimates from a halo mass function (lines). The agreement is indeed good except for the
H37-mass-1.5 point which appears to have too small a mass at z = 0 compared to expectations. This is because the halo mass function is based on an average
mass build-up rate, whereas in this specific case the mass will only be acquired after a major merger in around 3 Gyr (see Fig. 6 and discussion in the text).

One can calculate �χ2 directly from the density field, but we can
also expand the above equation analytically by inserting equation (5)
and making use of α

†
i C0αj = δij . This leads to a series of cancel-

lations, with the final result

�χ2 =
n∑

i=1

(|di |2 − |di0|2
)

, (12)

where we again use di0 = α
†
i δ0 to express the value of the con-

straints in the underlying realization.
Crucially, the details of the original realization δ0 have disap-

peared except in the initial values of the constrained quantities, di0.
In other words, the relative likelihood of the constrained simulation
compared to the unconstrained case is dependent only on the choice
of constraints. It is therefore specifically related to properties of
the individual halo, not to details of its surroundings. This is an-
other very desirable property of the HR91 formalism and reflects
the minimality of the changes made to the field going from δ0 to δn.

For a single constraint, equation (12) has a particularly trans-
parent interpretation. Because of the normalization condition, the
variance of di0 for i = n = 1 in unconstrained realizations is

〈d∗
0 d0〉 = 〈δ†0α1α

†
1δ0〉 = α

†
1C0α1 = 1. (13)

Thus, for a single constraint, a change in �χ2 of 1 corresponds to
a 1σ variation in the property measured in the population at large.

The left-hand panel of Fig. 5 shows �χ2 for a single constraint
as a function of dcons/dref, the ratio between a halo’s average density
contrast after the constraint and its value in the reference run (see
Section 4). The values are calculated directly from the fields (points)
and using equation (12) (lines); the two methods agree to within
numerical accuracy, which is a useful verification of the algorithm.
As before, the results for the three families are illustrated by red

diamonds, green circles and blue squares for haloes 24, 37 and 40,
respectively. The minimum at dcons = 0, as well as the symmetry, is
expected for a zero-mean Gaussian random field.

6.1 Connecting ICs and non-linear structure

In this section, we work towards establishing a quantitative con-
nection between the degree of change in the ICs and in the final,
non-linear structure. Using a single constraint, we investigate how a
change in density contrast in the ICs is related to the resulting halo
mass at late times. Qualitatively, an increase in overdensity should
lead to a more massive object at z = 0 as explained in Section 4.

Quantitatively, the probability of finding a halo with mass M at
z = 0 is given by the halo mass function, n(M)dM, which depends
on the cosmological power spectrum and growth function. Given
two haloes of masses M0 and M1, their relative abundance is given
by the ratio of the halo mass function at those masses, n(M1)/n(M0).
Assuming that the statistical properties of constrained and uncon-
strained simulations can be related by the change in mass of the
target halo alone, this ratio also gives the relative probability of the
structure in the two simulations.

Additionally, we can calculate the relative probability of the two
ICs using equation (11); specifically

p(d1)

p(d0)
= exp

[−�χ2/2
]
, (14)

where p(d) is shorthand for the probability of a constrained field
using one ‘density constraint’ with value d. Since we only con-
sider probability ratios and �χ2, any terms which only change the
normalization of p(d) have dropped out.
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Now we have two methods of calculating the relative probabili-
ties, and we can check whether they agree. We rewrite p(d) in terms
of halo mass using the conservation of probability

p(M) = p(d) d ′(M), (15)

where M is the halo mass at z = 0 and d′(M) is the derivative of the
constraint d with respect to the mass, evaluated at M. By combining
equations (14) and (15), we can find a relationship between the
p(M1)/p(M0) and �χ2, namely

p(M1)

p(M0)
= exp

[−�χ2/2
]
d ′(M1)

[
d ′(M0)

]−1
. (16)

If our assumptions are correct, this expression for p(M1)/p(M0)
should be equal to the mass function ratio n(M1)/n(M0). We have
used HMFcalc (Murray, Power & Robotham 2013) to generate
a halo mass function at z = 0 for our cosmological model, and
confirmed that it provides a good fit to our simulations.2

Evaluating equation (16) also requires an estimate of the Jacobian
factors on the right-hand side. This can be obtained either from a
physical model underlying the mass function or by using an empir-
ically calibrated M(d) relationship from the simulations. We chose
the latter approach by fitting a power-law relation between d and M,
which allows us to obtain values for d′(M) at different halo masses
separately for each halo family (24, 37 and 40; introduced in the
previous section). This leaves us with a ‘semi-analytical’ prediction:
theoretical halo mass function plus fit to the Jacobian.

The right-hand panel of Fig. 5 shows the results of the calcula-
tion (lines), as well as points evaluated directly from the simulations.
Overall, most points show good agreement: there is consistency be-
tween the population statistics and the abundance calculated from
the GM �χ2 values. The broad agreement justifies our set of as-
sumptions for calculating abundances in this specific case of a single
density constraint. However, the individual haloes do scatter around
the relation and there is one point that clearly does not fit the expec-
tations. This arises from our H37-mass-1.5 run where we increase
the initial overdensity of the proto-halo 37 region by a factor of 1.5.

The mismatch can be understood by considering the discrete na-
ture of merger histories. Specifically, Fig. 6 shows the projected
density at the last output (z = 0) in a region around halo 37 in
the original run (upper panel) and the ×1.5 run (lower panel). In
the latter case, a major merger (mass ratio ∼2) will occur in around
3 Gyr. After this merger, the anomalous point will shift significantly
rightwards in Fig. 5 to the correct mass ratio (�3.1) according to
the �χ2(M) derived from the halo mass function.3 We can frame
this in another, more general way: the halo mass function is a sta-
tistical construction that corresponds to averaging over all possible
histories, but the individual points in Fig. 5 represent modifications
to specific haloes which have a discretized accretion history. There-
fore, they scatter away from the line, especially when seen at special
times (such as shortly before a major merger).

The main conclusion from Fig. 5 is therefore that the changes in
the χ2 give us a good quantitative handle on the relative abundance
of haloes of different types, at least in this case where we have only
changed the mass. However, the complex non-linear connection

2 This is preferable to obtaining a (noisy) estimate of the mass function
directly from our limited volume; the fitting functions included in the HM-
Fcalc tool were validated using detailed studies of large simulation suites
(e.g. Tinker et al. 2008).
3 Note that the nearest massive halo in the original run corresponds to the
same particles, but is considerably further away from halo 37 and is not on
a trajectory that will lead to a merger within a Hubble time.

Figure 6. Slices from the original simulation (upper panel) and H37-mass-
1.5 simulation (lower panel) illustrate how the target halo is, at z = 0, seen
at a time where it is about to undergo a major merger in the latter case.
For that reason, its mass undershoots the expectation from the halo mass
function (Fig. 5) which averages over all the possible discrete realizations
of the accretion history. Black circles show the size of the virial radius.

between initial and final states means that �χ2 will always need to
be interpreted with care.

7 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we have demonstrated an extension of the HR91
technique to modify the ICs of a numerical simulation. For this
modification, we selected regions of arbitrary shape, defined solely
by the particles that form a halo in our reference simulation. This is
a different approach than that used in previous works, which relied
on imposing constraints of a given analytic profile. By applying
our constraints only to the halo particles, we showed that we can
‘genetically modify’ a single object, changing its properties in a
smooth and continuous way.

Using constraints on the density averaged over all halo particles
controls the total mass, whereas adding additional constraints allows
us to change the halo’s collapse time. This serves as a demonstration
of the technique and is the basis of the creation of further constraint
types to study the impact of other halo characteristics on a halo’s
evolution.

Using the collapse time constraint, we investigated the density
profiles of the resulting haloes at z = 0 and found that the distribu-
tion of their concentration parameter is consistent with the results
of statistical analyses such as Wechsler et al. (2002). However, we
also find that different haloes occupy different regions in the pa-
rameter space, and have different trajectories when their collapse
time is changed. We plan to study this behaviour in future work,
in order to determine which other halo parameters have changed.
This should be complementary to the principal component analysis
carried out by Skibba & Macciò (2011), Jeeson-Daniel et al. (2011)
and Wong & Taylor (2012), which revealed somewhat inconclusive
correlations between additional internal halo parameters. With our
constrained simulations, we will not only be able to find correla-
tions but to explicitly test their significance. Since we can directly
compare the constrained halo to its reference in the unconstrained
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run, we can establish exactly which changes in the halo parameters
have a physical impact.

We have provided a way of quantifying the likelihood of modified
ICs via a χ2 difference between the constrained and unconstrained
fields. In general, this statistic can be used to assess how compatible
the modified object is with the underlying cosmology. Similar ex-
pressions were obtained by van de Weygaert & Bertschinger (1996);
however, our orthonormalization procedure allows for the deriva-
tion of the considerably simpler equation (12). The statistic can
be used to quantify the rarity of genetically modified objects rel-
ative to the unconstrained realization. As an example, we showed
that modifying the mass produces abundance constraints that are
quantitatively consistent with the traditionally measured halo mass
function at z = 0. Individual haloes have discrete accretion histories
and scatter around the mean relation predicted by the mass function;
the strongest outlier in our study is about to undergo a merger at
z = 0, which significantly lowers its current mass. In principle, the
�χ2 measure could also be used to specifically create objects that
are ‘rare’ in a �CDM universe (similar to e.g. Romano-Dı́az et al.
2011a,b, 2014; Dubois et al. 2012); we leave such a study to future
work.

In this paper, we have used a uniform resolution over a box size of
50 h−1 Mpc; having a sufficiently large box is important to ensure
that haloes are embedded in the correct large-scale environment.
Our code also produces ICs for ‘zoom’ simulations with varying
resolution (see also Prunet et al. 2008; Romano-Dı́az et al. 2014);
the only major difference when generating these is the extra compu-
tational complexity introduced in the transformation between real
space and Fourier space on an irregularly spaced grid, which has
been tackled elsewhere in the literature (e.g. Bertschinger 2001;
Hahn & Abel 2011). The real power of the approach to generate
insight into a population from a handful of runs will become more
apparent as we begin to use these zoom ICs in tandem with high-
resolution baryonic physics.

While our focus here has been on basic properties such as the for-
mation time and mass of a system, many other interesting aspects of
evolution can be changed by constraining different properties. One
example with which we are experimenting is the specific angular
momentum, which can be controlled because tidal torque theory de-
scribes the connection between ICs and final spin (e.g. White 1984;
Catelan & Theuns 1996; Porciani, Dekel & Hoffman 2002a,b); the
internal properties of the galaxy forming inside the dark matter halo
will naturally depend on the spin parameter of the halo. We are
able to generate ICs that modify the spin parameter of the halo, but
leave the mass and merger history untouched. Studies of halo spin
constraints for dark matter and hydrodynamic simulations will be
presented in future work.

AC K N OW L E D G E M E N T S

We thank Volker Springel for allowing access to P-GADGET-3 and SUB-
FIND. NR thanks Emilio Romano-Dı́az and Cristiano Porciani for
useful discussions. AP acknowledges helpful conversations with
Fabio Governato. NR and HVP are supported by STFC and the
European Research Council under the European Community’s Sev-
enth Framework Programme (FP7/2007-2013)/ERC grant agree-
ment no 306478-CosmicDawn. AP is supported by a Royal Soci-
ety University Research Fellowship. This work used the DiRAC
Complexity system, operated by the University of Leicester IT
Services, which forms part of the STFC DiRAC HPC Facility
(www.dirac.ac.uk). This equipment is funded by BIS National E-
Infrastructure capital grant ST/K000373/1 and STFC DiRAC Op-

erations grant ST/K0003259/1. DiRAC is part of the National E-
Infrastructure.

R E F E R E N C E S

Bardeen J. M., Bond J. R., Kaiser N., Szalay A. S., 1986, ApJ, 304, 15
Bertschinger E., 1987, ApJ, 323, L103
Bertschinger E., 2001, ApJS, 137, 1
Bett P., Eke V., Frenk C. S., Jenkins A., Helly J., Navarro J., 2007, MNRAS,

376, 215
Bistolas V., Hoffman Y., 1998, ApJ, 492, 439
Brook C. B. et al., 2011, MNRAS, 415, 1051
Brook C. B., Di Cintio A., Knebe A., Gottlöber S., Hoffman Y., Yepes G.,
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A., Yepes G., Hoffman Y., 2010, MNRAS, 402, 1899
Klypin A., Hoffman Y., Kravtsov A. V., Gottlöber S., 2003, ApJ, 596, 19
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MNRAS, 407, 581
Reed D., Governato F., Verde L., Gardner J., Quinn T., Stadel J., Merritt D.,

Lake G., 2005, MNRAS, 357, 82
Robertson B., Bullock J. S., Cox T. J., Di Matteo T., Hernquist L., Springel

V., Yoshida N., 2006, ApJ, 645, 986
Romano-Dı́az E., Faltenbacher A., Jones D., Heller C., Hoffman Y., Shlos-

man I., 2006, ApJ, 637, L93
Romano-Dı́az E., Hoffman Y., Heller C., Faltenbacher A., Jones D., Shlos-

man I., 2007, ApJ, 657, 56
Romano-Dı́az E., Shlosman I., Trenti M., Hoffman Y., 2011a, ApJ, 736, 66
Romano-Dı́az E., Choi J.-H., Shlosman I., Trenti M., 2011b, ApJ, 738, L19
Romano-Dı́az E., Shlosman I., Choi J.-H., Sadoun R., 2014, ApJ, 790, L32
Schaye J. et al., 2015, MNRAS, 446, 521
Sherman J., Morrison W. J., 1950, Ann. Math. Stat., 21, 124
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A P P E N D I X A : T E C H N I QU E

Here, we will give a detailed description of the derivation of the
HR91 operator and our equation (5).

The values of the three-dimensional overdensity field δ ≡ δ(x) in
the ICs of our cosmological simulations are distributed according
to a multivariate Gaussian

p0(δ) ∝ exp

(
−1

2
(δ − μ0)†C−1

0 (δ − μ0)

)
, (A1)

with mean 〈δ〉 = μ0 and C0 = 〈(δ − μ0)†(δ − μ0)〉 (the covariance
or the power spectrum in Fourier space). Cosmological ICs have
zero mean, μ0 = 0, but we will consider the fully general case.

We will build the general procedure by induction. Suppose we
have a pi−1(δ) that describes the probability distribution function
for i − 1 constraints; we now want to add the ith constraint, ensuring
that α

†
i δ = di for some constraint vector αi and constant di. To gain

samples from the constrained distribution, one could sample from
the original distribution and reject all those trials which lie too far

away from
∣∣∣α†

i δ − di

∣∣∣2
= 0. Mathematically, this can be expressed

by multiplying the original probability distribution by a penalty
function, e.g.

pi(δ) ∝ lim
β→∞

pi−1(δ) exp

(
−β

2

∣∣∣α†
i δ − di

∣∣∣2
)

, (A2)

where the constant of proportionality renormalizes the probability
distribution function and is dependent on β. In the limit β → ∞,
the penalty function becomes a Dirac-delta distribution and the
constraint is satisfied exactly.

Under the assumption that pi−1 is Gaussian, the new probability
function is the product of two Gaussians, and so remains Gaussian
itself; consequently after imposing i constraints, we must be able to
write

pi(δ) ∝ exp

(
−1

2
(δ − μi)

†C−1
i (δ − μi)

)
(A3)

for some mean μi and covariance Ci which we will now derive. By
multiplying out equation (A2), we obtain

pi(δ) ∝ lim
β→∞

exp

[
−1

2
(δ − μi)

†
(
C−1

i−1 + βαiα
†
i

)
(δ − μi)

− μ
†
i

(
C−1

i−1 + βαiα
†
i

)
δ + μ

†
i−1C

−1
i−1δ + βdiα

†
i δ

]
, (A4)

where we have already thrown away several terms which are zero
order in δ since they just change the normalization. By comparing
terms in equations (A3) and (A4), we can first read off C−1

i =
C−1

i−1 + βαiα
†
i . We will also need a normalization for the αi , which

conveniently can be chosen4 as

α
†
i Ci−1αi = 1. (A5)

Next, we apply the Sherman–Morrison formula (Sherman &
Morrison 1950)

(C−1
i−1 + βα1α

†
1)−1 = Ci−1 − β

Ci−1αiα
†
i Ci−1

1 + βα
†
i Ci−1αi

� Ci−1

[
1 − (1 − β−1)αiα

†
i Ci−1

]
, (A6)

where we have used β > 1 and the normalization condition (A5) in
the second step.

4 Unless αi is a null direction of Ci − 1, but then there would be zero proba-
bility of our constraint in the original distribution.
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The terms in the second line of equation (A4) have to cancel
exactly. Plugging equation (A6) into this expression leads to

μi = lim
β→∞

μi−1 − (1 − β−1)Ci−1αiα
†
i μi−1 + diαiCi−1α

†
i

= μi−1 + Ci−1αi

(
di − α

†
i μi−1

)
, (A7)

and finally taking the limit in equation (A6) yields

Ci = Ci−1 − Ci−1αiα
†
i Ci−1. (A8)

This result allows us to apply as many constraints as desired analyt-
ically – by looping over the constraints and updating the covariance
matrix and mean at each step, then drawing a constrained realiza-
tion – but this would be computationally expensive. Instead, the
constrained realization can be constructed from the unconstrained
field using a projection operator, which we will now derive.

For notational simplicity, in addition to normalizing the con-
straints, it is also helpful to make them orthogonal (e.g. through a
Gram–Schmidt procedure) in the sense that α

†
i C0αj = 0 for i �= j.

One can then verify by substitution (see Appendix A1) that the
constrained field has mean

μn = μ0 +
n∑

i=1

C0αi

(
di − α

†
i μ0

)
(A9)

and covariance

Cn = C0 −
n∑

i=1

C0αiα
†
i C0 (A10)

for orthonormalized {αi}.
Efficiently drawing from the distribution implied by the above

mean and covariance is made possible by any operator Pn that
takes a realization from the unconstrained field δ0 and forms a new
realization under n constraints via the ansatz

δn = Pn

(
δ0 − μ0

) + μn, (A11)

where to gain the correct covariance Cn = 〈(δn − μn)(δn − μn)†〉
one must demand

PnC0P
†
n = Cn. (A12)

There are an infinity of operators Pn with this property. Given any
specific Pn, one can form P′

n = UPn, where U†C0U = �, and the
new P′

n satisfies the required identity (A12). To obtain the unique
HR91 operator, we additionally require Pn to make minimal changes
to the field. This implies Pnδn = δn – in other words, that no changes
are made if the field already satisfies the constraints. Using equation
(A11), it immediately follows that P2

n = Pn and Pnμn = μn. The
first of these conditions implies that all eigenvalues of Pn are either
1 or 0.

One can verify by substitution that all these requirements are
satisfied by

Pn = � −
n∑

i=1

C0αiα
†
i (for orthonormalized {αi}), (A13)

Note that the HR91 form given in their equations (2–4) builds the
orthonormalization procedure into the projection operator (appear-
ing as ξ−1

ij in their notation). However, as stated above, we found it
notationally simpler to pre-condition the constraints into orthonor-
mal form using the Gram–Schmidt procedure. Both formulations
are mathematically equivalent (see Appendix B).

Inserting equations (A13) and (A9) into equation (A11) then
leads to the final expression

δn = δ0 +
n∑

i=1

C0αi (di − di0) , (A14)

where di0 = α
†
i δ0.

In practice, most of the necessary calculations are performed
in Fourier space, because there C0 is the �CDM power spectrum
which is diagonal. Any constraint vector αi and density field δ can
be easily converted using numerical fast Fourier transformations.

Note that the algorithm in its current form only takes into ac-
count the contribution from the power spectrum. If one wanted to
generate constrained ICs based on an observational data set, the
associated uncertainties would introduce extra contributions in the
new covariance matrix (e.g. Zaroubi et al. 1995; van de Weygaert
& Bertschinger 1996), which is not included in the current imple-
mentation.

A1 Comments on normalization

Throughout this paper, we use the same notation for the normalized
and unnormalized constraints (expressed by α

†
i δ = di). In prac-

tice, these quantities are affected by the normalization condition
in the following way: if α

†
i C0αi = κi before normalization, then

we immediately find αi → αi/
√

κi to satisfy α
†
i C0αi = 1. Accord-

ingly, the constant di transforms as di → di/
√

κi as well, such that
α
†
i δ = di is still obeyed after normalization.
The consistency of the Gram–Schmidt condition α

†
i C0αj = δij

and our normalization α
†
i Ci−1αi = 1 can be shown as follows: mul-

tiplying (A10) by αn on both sides yields

α†
nCn−1αn = α†

nC0αn

−
n−1∑
i=1

α†
nC0αiα

†
i C0αn, (A15)

where we have shifted the index n by 1 compared to equation (A10)
for ease of notation. Inserting α

†
i C0αj = δij into the right-hand side

leads to

α†
nCn−1αn = 1 −

n−1∑
i=1

δniδin = 1, (A16)

which proves the equality.

APPENDI X B: EQU I VALENCE TO H R 9 1

In this appendix, we translate our notation into the one used by
HR91 to show that our final expression (A14) is equivalent to their
equation (4), which states

δn = δ0 +
n∑

i,j=1

ξ i ξ
−1
ij (di − di0), (B1)

where we have already translated their notation for the constrained
and unconstrained field, and the values of the constraints ( f → δ,
ci → di). The two additional functions are

ξ i = 〈δ0C†
i 〉 (B2)

and

ξij = 〈CiC†
j 〉, (B3)
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where Ci = α
†
i δ0 (not to be confused with our covariance ma-

trix Ci), and we have added daggers to the HR91 notation to al-
low for complex-valued quantities. Inserting these expressions into
equation (B1) leads to

δn = δ0 +
n∑

i,j=1

C0αi

[
α
†
i C0αj

]−1
(di − di0) (B4)

= δ0 +
n∑

i=1

C0αi(di − di0), (B5)

where in the first step we used that C0 = 〈δ0δ
†
0〉 because μ0 = 0 in

HR91, and our orthonormalization condition in the second step. This
shows that the Gram–Schmidt approach is equivalent to performing
the matrix inversion ξ−1

ij .

This paper has been typeset from a TEX/LATEX file prepared by the author.
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