
 

 

 

 

 

THE DEVELOPMENT OF EXECUTIVE FUNCTIONS AND 

INFORMATION PROCESSING SPEEDS IN TODDLERS 

BORN PRETERM  

 

Kayleigh Lauren Day 

 

 

 

University College London 

 

A thesis submitted for the degree of  

Doctor of Philosophy (PhD) 

September 2017



Declaration 

 

I, Kayleigh Lauren Day confirm that the work presented in this thesis is my own. 

Where information has been derived from other sources, I confirm that this has 

been indicated in the thesis. 

 

Signed: 

Date: 

 

 

 

  

Supervisors 

Dr Michelle de Haan 

 

Professor Neil Marlow 

 



Abstract 

Cognitive impairments are commonly reported in children born preterm, with 

particular difficulties in executive functions, information processing and attention. 

Yet, children that later present with mild to moderate impairments are typically 

missed in earlier standard developmental assessments. The current longitudinal 

investigation explores the development of executive function, information 

processing and attentional abilities in very preterm (<32 weeks of gestation) and 

term-born children at 3, 6, 12 and 30 months of age, corrected for prematurity. 

Performances on established paradigms assessing these cognitive abilities were also 

compared to the cognitive composite scores of the Bayley Scales of Infant and 

Toddler Development (third edition) at 12 months and 2 years of age.  

Very preterm (n = 50) and term-born (n = 81) children were assessed in a 

multifaceted battery of behavioural, eye-tracking and event related potential tasks, 

to formulate a detailed understanding of developmental trajectories for executive 

functions, information processing and attention.  

Overall, cohort performances were not differentiated within the first year and 

measures of attention were comparable for both groups over the two years. 

However, executive function and information processing differences were observed 

within the very preterm children during the second year assessments. These 

difficulties were independent of global cognitive performance, and variation on the 

executive function, information processing and attentional measures was poorly 

reflected in the Bayley-III cognitive scores at 2 years.  

In conclusion, very preterm children display difficulties predominantly in executive 

function abilities by 2 years of age, independent of global cognitive scores. Longer-

term follow-up of this cohort will highlight any links between these early deficits 

and later academic and social outcomes, and can aid in the development of tools 

for earlier identification of adverse cognitive outcomes in very preterm populations. 
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Chapter 1 Background   

Survival following preterm birth is continually increasing due to advances in 

perinatal and neonatal care (WHO, 2012). Tracking the effects of preterm birth, in 

particular at very low gestations, is a focus of much research effort. As gestation at 

birth decreases a range of serious impairments affecting motor (cerebral palsy) and 

cognitive function become more frequent among survivors. Although these 

impairments may be decreasing in frequency (Moore, Hennessy, et al., 2012), 

survivors of very premature birth (<32 weeks gestation) remain at risk of 

impairments in infancy and preschool ages, that later manifest as lower academic 

attainment compared to children born at full term (Kerr-Wilson et al., 2012). The 

prevalence of global cognitive impairment, as measured by low Intellectual 

Quotient (IQ), increases with decreasing gestation (Mulder et al., 2009; Kerr-Wilson 

et al., 2012). However, academic difficulties observed within this population may be 

compounded by additional factors contributing to overall performances, with more 

prominent impairments in specific cognitive domains in addition to lower IQ 

(Aylward, 2002; Anderson, 2014).  

A particular focus within this population is executive function and information 

processing (Rose, Feldman and Jankowski, 2009, 2011; Mulder, Pitchford and 

Marlow, 2010, 2011b). Executive function or EF, is an umbrella term for a set of 

effortful cognitive processes responsible for directing focus and goal-setting 

behaviours (Diamond, 2006, 2013). The speed of information processing (or IP) 

refers to the speed at which the brain functions, both in terms of automatic 

responses and effortful mental processing in response to stimuli. Both areas have 

been previously reported as areas of difficulty within preterm populations (Johnson, 

2007; Rose et al., 2008; Mulder, Pitchford and Marlow, 2011b). Problems with EF 

become apparent and easily quantifiable at early school age.  It is unclear whether 

EF dysfunction is not quantifiable until then or whether current developmental 

assessments, made usually at around 2 years of age, are too insensitive to detect 

subtle cognitive difficulties. The goal of current research is to improve identification 

methodologies, aiding interventions before the school years, and helping structure 
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the development of those that require the support before it impacts their 

education. In order to achieve this, a better understanding is required regarding 

when the stated delays start to emerge. It is possible specific impairments in EF and 

IP are apparent from birth and, although likely to be subtle, could be detected if 

appropriate methods are identified. Equally these delays may emerge slowly across 

development, making early and accurate identification difficult.  

This thesis seeks to evaluate the development of executive functions and 

information processing speeds through the first two and a half years of life in 

children born very preterm, with the focus of identifying emerging signs of 

dysfunction that are not detected by that of the current standard developmental 

assessments. 

1.1 Preterm development 

Infants born very preterm (<32 weeks of gestation) require significant and highly 

skilled medical interventions to survive. Advances in neonatology and obstetrics in 

the last few decades have led to a surge in preterm survival rates and at much 

younger gestational ages than ever before (Sun, Mohay and O’Callaghan, 2009). 

Thus developments in neonatal care are proving very successful. However, the risk 

of severe cognitive, sensory and motor impairments in these infants still remains 

high (see figure 1-1) (Moore, Hennessy, et al., 2012). Impairments can range from 

severe mental and physical disabilities, including Cerebral Palsy (CP), Developmental 

Coordination Disorder (DCD) (Sun and Buys, 2012b), hydrocephalus, and 

neurosensory impairments such as blindness and deafness (Johnson, Wolke and 

Marlow, 2008), to mild cognitive impairment. Research to date is yet to identify 

biomarkers in infancy that could predict the level of impairment likely to be 

observed in a child at a later stage of development. Whether these biomarkers 

exist, remains to be seen. 
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Figure 1-1. Both images taken from Moore et al., (2012). Impairment rates in EPICure2 cohort, including infants born before 27 weeks in 2006. To the left: overall level 

of impairment including motor, sensory, communication and developmental domains, categorised by national consensus recommendations at the time of publication. 

To the right: functional outcomes according to the Gross Motor Function Classification System. 

Overall impairment: Motor grades: 
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During the final stages of fetal development, the brain is differentiating at its 

highest rate, making this an extremely sensitive phase of development (Huppi, 

2010), see figure 1-2. Even subtle disturbances of the intrauterine environment, 

especially if they occur in the mid second and early third trimesters, can lead to 

serious impairments later in life (Johnson, Wolke and Marlow, 2008; Ishii and 

Hashimoto-Torii, 2015). The brain outcome for very preterm children is related to a 

complex amalgam of destructive and developmental influences. Both focal injuries 

and changes to regional developmental trajectories are influenced by both external 

and internal factors. Examples of external factors include perinatal infection and 

perfusion fluctuations that lead to haemorrhagic and ischaemic injuries. Internal 

factors are disturbed by the switch from intrauterine to independent life, causing 

alterations to the developing organisation of the brain in terms of differentiation, 

migration, myelination and synaptogenesis (Volpe, 2009). In a number of cases, it is 

likely that severe motor and cognitive outcomes are related to the topography of 

acquired brain injury (Krägeloh-Mann, 2004), however, biomarkers for specific 

cognitive deficits are yet to be determined.  

Figure 1-2. Neuronal growth during fetal development. Adapted from (Allen and Kelly, 2015) 
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Premature infants do not always present with focal neurological injury, yet can still 

later display cognitive, behavioural and/or neuropsychological deficits (Bhutta et al., 

2002). These deficits are termed by some as ‘hidden disabilities’  due to the absence 

of neurological injury, and can thereby be difficult to predict early on (Johnson, 

Wolke and Marlow, 2008). These high prevalence/low severity deficits are most 

often reported when children reach school age and can significantly impact early 

learning and influence later school achievements, both academically and in a social 

context. This puts those that present with these cognitive and neuropsychological 

deficits at a disadvantage to their term-born peers in many areas (Johnson, Wolke 

and Marlow, 2008).  

Figure 1-3 illustrates and summarises the brain regions associated to executive 

functions (EF), the cognitive abilities most closely linked to academic attainment, 

and details neuroanatomical differences reported in the preterm literature. 
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Figure 1-3. The predominant brain regions involved in EF in typically developing populations and a 

brief summary of difference reported in brain region functionality in preterm populations 

associated with EF performance. 

 

Structural difference noted in adult 
preterm brain regions and those 
associated with EF tasks:  

 Reduced white matter volume in 
posterior corpus callosum, 
thalamus and fornix in combination 
with reduced grey matter volume in 
temporal gyri have been reported 
to account for 21% of performance 
differences in EF in an ex-preterm 
population (Nosarti et al., 2014) 

 Reduced activity has been reported in the dorsolateral prefrontal cortex 
in response to a working memory task in ex-preterm adults that suffered 
severe neonatal brain injury (Kalpakidou et al., 2014). 

 Anterior cingulate cortex: 
activation has been linked to 
selective attention and although 
not typically considered part of 
EF, this ability and therefore this 
region has been considered to be 
essential for EF task completion 
(Peterson et al., 1999; Alvarez 
and Emory, 2006). 

Brain regions associated with EF: 

 Dorsolateral prefrontal cortex: the predominant region 
associated to EF. Used to maintain information in mind, 
set shifting, planning and problem solving (Alvarez and 
Emory, 2006; Diamond, 2013) 

 Orbitalfrontal/ventralmedial cortices: responsible for 
socially acceptable behaviour and linked to emotion. 
Therefore linked to inhibition but often debated as self-
regulation oppose to EF (Alvarez and Emory, 2006; 
Diamond, 2013). 



 
 

28 
 

1.1.1 Influence of neonatal factors on cognitive function 

Neonatal complications following premature birth are extensive. Accounting for the 

numerous complications and possible influences on later development is almost 

impossible due to the varying degrees of illness during the perinatal period. 

However, although complex, it is likely a relationship exists between adverse clinical 

events and cognitive function later in development (Linsell et al., 2015).  

Before the age of 5 years, global cognitive performance is commonly measured by 

the cognitive composite score on the current third edition of Bayley Scales of Infant 

and Toddler Development (Bayley-III) or previously, the Mental Development Index 

from the Bayley-II. After 5 years of age, IQ is typically used to define global cognitive 

performance. Consistently, correlations are observed between poorer cognitive 

outcomes with decreasing gestational age (Bhutta et al., 2002; Johnson, 2007; 

Orton et al., 2015; Johnson and Marlow, 2016). In infancy, male sex, lower birth 

weight, non-white ethnicity and parental education (or social economic status/SES) 

all have been shown to be strong predictors of poorer global cognitive outcomes. 

However, apart from parental education, these prognostic effects appear to 

diminish in later childhood (Linsell et al., 2015). The effect of SES on cognitive 

outcome continues to be reported in the adult literature, above other biological 

factors (Tideman, 2000; Hack, 2006). Although the health of ex-preterm adults can 

be effected by the complications associated to early life experiences, there is no 

evidence to suggest the perinatal complications consistently influence outcomes 

beyond that of gestation age at birth and known brain injuries (Marlow, 2004).  

Reports of specific neonatal risk factors associated with deficits in EF are mixed. A 

meta-analysis by Linsell et al., (2015) identified 7 studies investigating prognostic 

factors for EF deficits in preterm cohorts born after 1990, with a wide variety of 

tests used to assess EF. The inconsistencies of measures used, combined with the 

small number of studies identified, rendered it difficult to meaningfully combine the 

results to ascertain the predominant factors associate with EF impairments in early 

childhood (Linsell et al., 2015). More definitive correlations have been reported in 

the MR-based studies (Howard, K., Anderson, P. J., & Taylor, 2008; Vollmer et al., 
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2017). Diffuse white matter abnormalities identified within the neonatal period 

correlate with overall IQ performance and specific EF and attentional deficits within 

preterm populations (Vollmer et al., 2017). White matter tracts such as the fronto-

striatal pathway, connecting the frontal lobe to the basal ganglia, and fronto-

occipital pathway, connecting the frontal lobe and visual cortex, have been 

identified as two of many long association fibre tracks at risk within this population. 

These alterations in white matter tract integrity appear to be present even in the 

absence of major focal brain injury (Li et al., 2015; Vollmer et al., 2017). 

Conventional radiological images do not identify such problems, and computational 

MRI techniques are not used in clinical practice to date  (Duffau, 2014). These 

alterations are not immediately apparent yet are likely to have functional 

implications (Vollmer et al., 2017).  

Although difficult to translate to human observations, animal studies have observed 

functional outcomes to be predominantly affected if an injury to the brain, such as 

hypoxia, occurs during neuronal migration (Kolb et al., 2013). Very preterm delivery 

occurs during the developmental stage of neuronal migration (figure 1-2). Poor 

oxygenation of the brain during the preterm birth is a common occurrence and has 

been associated to specific deficits within the EF sub-skill, working memory (Taylor 

et al., 2004). These sub-skills and associated deficits will be discussed in greater 

detail in subsequent sections. In a more recent investigation into Apnoea of 

Prematurity (AOP), intermittent hypoxia used to model AOP, had a neuroprotective 

effect in rodents with brain lesions and in response to behavioural stressors 

(Bouslama et al., 2015). This highlights the inconsistencies within the literature and 

the need for further research. 

In the current thesis, very severe brain injuries were excluded. Neonatal 

complications will be summarised, however, they will not be taking into 

consideration within the main study analyses relating to cognitive performance 

given the mixed reports within the literature. The factors considered to be most 

influential of later outcome in the early years and therefore will be considered 
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within all analyses are SES as defined by the Index of Multiple Deprivation quintile 

(a nationally available score related to postcode (NPEU, 2013)) and male sex. 

1.1.2 Cognitive impairments and later academic achievements in children born 

preterm  

Global cognitive impairment in the early years, as defined by low scores on 

cognitive scales in measures such as the Bayley-III is a common finding following 

preterm birth (for review see (Anderson and Doyle, 2008)). This impacts learning in 

early school years and into middle childhood; see Figure 1-4. 

Ex-preterm children can present with a wide range of developmental problems 

including; speech and language delay; impaired attentional abilities; working 

memory impairments; reduced processing speeds and later specific difficulties in 

academic areas such as reading and mathematics (Johnson, Hennessy, et al., 2009; 

Woodward et al., 2009). Difficulties can range from mild through to severe and are 

not consistent across preterm cohorts; a proportion of children do not present with 

any notable difficulties. The problem that faces clinical professionals is the 

sensitivity and predictive validity of the developmental assessments used to identify 

these difficulties. The Bayley-III (Bayley, 2006) is the current standard assessment 

tool in the UK to determine the achievement of developmental milestones in the 

early years. Significant cognitive impairments are detected by scores 2 standard 

deviations (SD) below the mean on measures such as the Bayley-III and are often 

found to be predictive of later learning and cognitive difficulties. However, those 

with milder impairments are often missed in the initial developmental assessments 

(Aylward, 2002; Hack et al., 2005). A discernible pattern to predict those that will 

and those that will not present with cognitive impairments later in life is yet to be 

uncovered.  
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Figure 1-4. Continuum of special needs by gestational age at birth by Mackay (2010) 

 

Academic attainment in middle childhood, specifically in reading and maths, appear 

to be areas of greatest difficulty compared to other academic abilities. A significant 

proportion of ex-preterm children require additional educational support, Figure 1-

4 (Bull and Johnston, 1997; Bowen, Gibson and Hand, 2002; Johnson, Hennessy, et 

al., 2009; Odd, Evans and Emond, 2013). Low IQ scores influence academic 

achievement in middle childhood for ex-preterm populations with these difficulties 

persisting into adulthood (Nosarti et al., 2007; Breeman et al., 2015; Burnett et al., 

2015; Eryigit-Madzwamuse and Wolke, 2015; Johnson and Marlow, 2016). 

However, low IQ does not appear to account for all difficulties observed. Those with 

less severe impairments, although scoring in the low average range for IQ, appear 

to have problems relating to specific functions, namely: visual-perceptual/motor 

abilities, attention, reading, writing, spelling and mathematical skills (Aylward, 

2002). The neuropsychological functions reported here utilise a set of cognitive 

abilities termed Executive Functions (EF). EF is commonly considered an umbrella 

term encompassing multiple sub skills, essential for problem solving and cognitive 

Gesta onal	Week	 PAR	due	to	gesta onal	age	

24-27	 0·5%	(0·4-0·6)	

28-32	 1·1%	(1·0-1·3)	

33-36	 2·0%	(1·7-2·4)	

Total	 10%	(·07-12·9)	

MacKay	et	al	PLOS	Medicine	2010	
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regulation, assessments of which, have been found to account for the variability in 

academic attainment in healthy control cohorts (Blair and Razza, 2007; Bull, Espy 

and Wiebe, 2008; Mulder, Pitchford and Marlow, 2010). Poor performance in EF 

assessments in preterm populations compared to term born peers following 

adjustment for IQ are repeatedly found (Espy et al., 2002; Bohm, Smedler and 

Forssberg, 2004; Aarnoudse-Moens, Smidts, et al., 2009; Mulder et al., 2009; Sun 

and Buys, 2012a). EF sub-domains typically include inhibition, working memory, and 

cognitive flexibility. However, some authors consider these processes to linked with 

an underlying mechanism and therefore view EF as a unitary concept (Miyake et al., 

2000).  

Mathematical abilities appear to be a particular area of difficulty in preterm 

children, independent of the lower global cognitive scores (Johnson, Hennessy, et 

al., 2009). In line with this, studies show preterm children are more likely to fail age-

appropriate maths questions than their term born peers, after adjustment for 

general cognitive ability (Simms et al., 2013). These children are reported to find 

more complex, simultaneous mathematical problems more difficult to those that 

are sequential in structure, implying their difficulties are associated with specific 

cognitive functions involved in complex mathematical processing. Working memory, 

perceptual and attentional problems, and visuo-spatial inabilities are all speculated 

to contribute to these difficulties (Marlow, 2004; Johnson, Hennessy, et al., 2009).  

This is in contrast to the reading and spelling difficulties in which delays are 

accounted for by general cognitive ability (Johnson et al., 2009). The processes of 

learning to read, write and solve mathematical problems require the acquisition of 

simple skills, such as letter and number recognition, before complex skills, such as 

reading and addition, can be achieved. It is speculated that crystallized knowledge, 

information that is gleamed from past experiences, forms the basis of these simple 

skills. However in order to acquire this knowledge, it has been argued a biological 

basis is involved in learning. EF abilities, specifically working memory performance, 

influence the acquisition of new information and dictate a child’s capacity to learn. 

Mathematical abilities appear to be particularly dependent upon working memory 
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performance. A predictive relationship has been frequently reported between 

working memory abilities and early mathematical scores in typically developing 

cohorts (Gathercole et al., 2004). Given such reports, it is perhaps unsurprising to 

observe difficulties within the working memory domain in preterm populations 

correlating to performance in mathematical assessments (Mulder, Pitchford and 

Marlow, 2010). 

The nature of mathematical difficulties observed in this population is understood to 

be different to that of development dyscalculia  (Simms et al., 2015). 

Developmental dyscalculia is a condition whereby an individual has specific 

numerical difficulties related to the approximate number system, a system that 

handles quantity information, both in terms of representation and manipulation, in 

order to achieve mathematical problems (De Smedt et al., 2013; Simms et al., 

2015). Within preterm populations, more complex calculations appear to be the 

most prominent difficulty and it is thought deficits in working memory may explain 

this, not the way the brain characterises numerical presentations. However, it is not 

clear why mathematics is an area of particular difficulty within this population, and 

literacy skills are spared (Isaacs et al., 2001). Current research suggests a possible 

explanation for these difficulties lies in the reduced grey matter volume reported 

within the intraparietal sulcus (IPS) in preterm populations with numerical 

difficulties (Isaacs et al., 2001); a region commonly associated to number processing 

and calculation ability (Klein et al., 2014). This research correlates with other studies 

reporting grey matter reductions within this region of the brain and associated EF 

difficulties, see Figure 1-3 (Kalpakidou et al., 2014; Nosarti et al., 2014).  

The most consistent domains found to account for academic difficulties, and the 

strongest predictors of academic attainment, are speed of processing and working 

memory abilities (Rose and Feldman, 1996; Rose, Feldman and Jankowski, 2002; 

Mulder, Pitchford and Marlow, 2010). Commonly these two domains are 

considered to be linked: processing speed may mediate EF performance (Rose and 

Feldman, 1996; Bull and Johnston, 1997; Rose, Feldman and Jankowski, 2002, 2009, 

Mulder, Pitchford and Marlow, 2010, 2011b). The study by Mulder et al. (2010), 
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found a global deficit in processing speed the likely explanation of some of the 

difficulties in academic attainment observed within their study (Mulder, Pitchford 

and Marlow, 2010). However, this group also reported working memory abilities 

were independently predictive of later academic achievements.  

Bull and Johnston (1997) proposed that mathematical difficulties are likely to be 

explained by information processing speed. Two theories were put forward by this 

group; firstly, reduced speed of processing could reflect the way the brain processes 

information as a whole and therefore the speed of completion of mathematical 

problems is thereby reduced. Alternatively, recall of basic information within 

crystallised knowledge and failure to automate simple mathematical operations 

could also explain performance difficulties within these children (Bull and Johnston, 

1997).  

The inclusion of processing speed, specifically verbal processing, and working 

memory in a predictive model of academic outcome, the same amount of variance 

was accounted for as full scale IQ (Mulder, Pitchford and Marlow, 2010). Due to the 

relationship between working memory and processing speeds in determining 

academic attainment, it would be valuable to study longitudinally from the early 

years to investigate how early these functions predict later capabilities. 

When exploring EF abilities in the early years, it is valuable to consider when the 

construct is evaluable in terms of first emergence, the differentiation and the 

trajectory of the construct through childhood. The literature is divided on the topic 

of EF and its developmental trajectory, and in order to make predictions about later 

functioning based on specific aspects of this construct, it is important to consider 

the likelihood of targeting such domains when they are in their infancy. Section 1.2 

explores the multiple theories surrounding EF. 

1.1.3 Current clinical practice 

Due to the recognised risk associated with preterm birth, several strategies are in 

place to evaluate outcomes in very preterm children (Kallioinen et al., 2017; NICE, 
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2017). Before the release of the updated NICE guidelines in August 2017, standard 

practice in the UK following preterm birth of before 32 weeks gestation required 

infants to be followed up at 4 time points after discharge from hospital; at 3, 6, 12 

and 24 months of age. The most recent guidelines include an additional follow-up 

within the fourth year (NICE, 2017). The most frequently used standardised 

assessment in preterm follow-up clinics in the first two years after discharge is the 

Bayley-scales of Infant and Toddler Development (current version, edition III) 

(Bayley, 2006). These follow-ups are recommended to all clinics, however, 

variations in practical and economic allowances across difference hospital trusts 

may mean assessments such as these are not always performed. Tracking the 

development of these children in this crucial and the nature of these assessments 

should work in theory, but this does not always translate into clinical practice. 

Multiple hour-long assessments are expensive and require well-structured 

comprehensive follow-up services. The difficulties in implementing these practices 

suggest a need to address the ease of follow-up in this population, potentially 

calling for faster and more efficient methods of assessment. 

In addition to these clinical implications, many studies have reviewed the current 

edition of the Bayley following concerns regarding the sensitivity and predictive 

validity of the tool (Milne, McDonald and Comino, 2012; Aylward, 2013; Spittle et 

al., 2013; Johnson, Moore and Marlow, 2014; Mansson and Stjernqvist, 2014; 

Spencer-Smith et al., 2015; Anderson and Burnett, 2017). The overwhelming 

conclusion of the majority of these studies finds the current edition not sensitive 

enough to detect children with mild cognitive impairments. Although not originally 

designed to predict IQ, the Bayley-III is commonly reported to under-identify those 

likely to later present with cognitive impairments, and exhibits particular difficulty 

in recognising those that fall within the mild impairment range that are likely to 

require additional assistance before starting school (Anderson and Burnett, 2017). 

Prior to the Bayley-III, the Bayley-II was the most frequently used infant 

developmental assessment and yielded much professional confidence (Johnson and 

Marlow, 2006). Upon an update to the test, the re-standardisation procedure used 

different reference population strategies, including seeding the population with 
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poorly performing groups.  Final scores were found to be 7 points higher than 

Bayley-II according to the publisher (Bayley, 2006; Moore, Johnson, et al., 2012).  

This lower sensitivity at lower scores and a non-linear relationship with the Bayley-

III brings challenges when targeting the detection of mild impairments as in preterm 

cohorts (Moore, Johnson, et al., 2012). The proposition from a number of studies to 

overcome this insensitivity in the first instances is to use 1 standard deviation below 

the norm, or to formulate a local control reference for the purposes of research 

(Marlow, 2013; Spencer-Smith et al., 2015). 

Assessments at 2 years of age also show poor predictive validity of cognitive 

performance at 5 (Potharst et al., 2012). Development of better measures is 

therefore essential before successful interventions can be put in place that work to 

improve later outcomes. This emphasizes the importance of obtaining a greater 

understanding of the domains that underpin the cognitive deficits later observed, 

and the subsequent need to identify the development profile and trajectory of 

specific domains. This will allow the necessary predictions to be made regarding 

which infants may benefit from intervention services. More broadly, early 

interventions have shown to have advantageous effects on the developmental 

profile within infancy and leading on to improved cognitive performance at 

preschool age, including in preterm populations (Spittle et al., 2007; Hadders-Algra, 

2011). However, evidence is limited that interventions significantly improve longer 

term cognitive performances within ex-preterm children, supporting the 

requirement of more extensive research (Spittle et al., 2007).  

A key factor to consider in the assessment of premature cohorts is the adjustment 

for age at birth. Accounting for prematurity in developmental assessments has been 

a long running discussion within the literature. The disagreements stem from two 

viewpoints: the biological opinion and the environmental opinion. The biological 

perspective states development takes a set time from conception. Originally 

proposed by Gesell and Amatruda (1947) (for review see Wilson and Cradock, 

2004), they stated development was dictated by time itself and was not influenced 

by external factors. As such, a preterm child would lag behind a term born child on a 
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developmental basis, at least initially, due to the underdeveloped central nervous 

system. Once the nervous system was fully developed the opinion within the 

literature employed the concept that ‘catch up’ growth would occur and the 

preterm child would meet the developmental stage of a term born within the first 

few years after birth. On the contrary, the environmental perspective suggests that 

development is primarily driven by external influences and the exposure to the 

outside world, with factors such as medical care and parental stimulation, advances 

and aids development (Wilson and Cradock, 2004). In support of this is the research 

into the benefits of higher social economic status effects on developmental 

achievement (Tideman, 2000; Hack, 2006). In any regard, the set clinical practice 

following preterm birth is to utilise correction for gestational age as proportionately 

using a biological basis, the assessment at chronological age puts preterm children 

at a disadvantage, and this disadvantage increases with lower gestational age 

(Wilson-Ching et al., 2014). Therefore in the current investigation adjusted ages will 

be utilised. 

1.2 Development of Executive function 

Executive function, executive or cognitive control (Diamond, 2006), as discussed, 

are terms used to encompass a number of cognitive abilities. Multiple attempts 

have been made to clearly define the term ‘Executive Function’ (EF), and as 

described by Bohm et al. (2004), these various different explanations clearly 

demonstrates the complexity of the system. The general consensus is EFs include 

our ability to plan, inhibit behaviours, shift between tasks, use and understand 

verbal and non-verbal communication, sustain and manipulate information within 

our working memory, and in some instances, our attentional abilities. These are 

often condensed into three main areas: cognitive flexibility, working memory, and 

inhibition (Diamond, 2013). The purpose of these domains are to work together to 

in order to achieve a personal or social goal (Bohm, Smedler and Forssberg, 2004; 

Mulder et al., 2009). This three part model is supported by studies in pre-adolescent 

children and adults. However, Miyake and colleagues have recently proposed a new 
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framework that includes an additional common EF factor, considered to account for 

the similarities that overlap the three factor model (Miyake and Friedman, 2012). 

There are several theories regarding the development of EF. Some preschool 

children are described as having executive dysfunction due to the lack of control 

over these abilities within the early years. Exactly when and how these different 

domains come into play is still a matter of debate (Isquith et al., 2005). Multiple 

models have been put forward to explain the emergence of these abilities, three of 

most the predominant models are briefly discussed and summarised in Figure 1-5. 

Miyake et al., (2000), built a model around the focus of the inter-relatability and the 

independent nature of the three main EFs; cognitive flexibility, working memory 

and inhibition. ‘The unity and diversity framework’ derived from their research in 

2000, concluded that there is both unity and diversity within the EF domains, with it 

possible to measure each as separate entities, but all correlate in terms of overall 

function. When investigating traditional paradigms in relation to their model, 

Miyake and colleagues results suggested that each EF domain contributed 

differently to the performance on each task, reaffirming the consideration of each 

as distinct functions with underlying commonality (Miyake et al., 2000).  Following 

additional research, the group went on to further develop this model, delving 

deeper into the unity that connects the three sub-skills. This led to the group 

proposing an additional factor within the model, termed common EF, and refers to 

the cognitive underpinnings consistent across the three domains, whilst 

simultaneously considering what makes each domain unique. When using this 

model including the unity across measures, flexibility and updating (working 

memory), all appeared independent factors and explained differences in inhibition 

(Figure 1-5). The authors drew three further conclusions when considering 

variability in EF. Firstly that genetic variations may contribute to the overall 

functioning of the sub-domains; secondly that individual variability may relate to 

‘clinically and societally important behaviours’ and by extension therefore effecting 

the performance on EF tasks; and lastly that variability also presents with 

developmental stability (Miyake and Friedman, 2012). The final point is 
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fundamental in relation to the current thesis. Although their work focused around 

the composition of EF in adult populations, the changes in relationship across the 

different domains remained consistent over longitudinal measures. Many authors 

subscribe to the view that childhood EF is a unitary concept (Wiebe, Espy and 

Charak, 2008; Hughes et al., 2010) as developmental studies into the three factor 

view have produced mixed results (Lehto et al., 2003; Huizinga, Dolan and van der 

Molen, 2006; Howard, Okely and Ellis, 2015).  

Reports of differentiation in performance across EF sub-skills have been observed in 

the early year studies (Lehto et al., 2003; Huizinga, Dolan and van der Molen, 2006). 

However, the interpretation of this differentiation and the extent of each sub-skills 

contribution to the overall construct is not consistent (Howard, Okely and Ellis, 

2015). The predominant finding, and the most consistent interpretation 

independent of EF tasks administered, suggests the unified concept best fits EF 

performance in the early years and differentiates in later childhood (Tsujimoto, 

Kuwajima and Sawaguchi, 2007; Wiebe, Espy and Charak, 2008; Hughes et al., 2010; 

Brydges et al., 2014). 

Aspects of the Miyake model resonate with the EF model put forward by Anderson 

in 2002. The proposition in this model is EF performance is conditional on selective 

attentional processes. This hierarchical view of EF suggests a gradual development 

of the other EF sub-skills. In this model Anderson considered the following 

composition as EF: cognitive flexibility, goal setting and information processing. 

Within this model all sub-skills develop independently and combine over time, 

finally presenting as overall executive control or EF (Anderson, 2002). Anderson 

concluded that the different executive domains come ‘on-line’ at different points in 

development: attentional control appears between 9 and 12 months, cognitive 

flexibility and goal setting behaviours at 3 to 4 years, and information processing 

speed only shows measurable improvements in later childhood, although it is 

measureable in infancy (Anderson, 2002). Not typically considered a sub-skill to EF, 

the inclusion of information processing in this construct was justified due to strong 

correlation between EF abilities and speed of response defining performances. By 
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including the neural integrity of the circuits involved, speed of performance is 

accounted for within the model (Anderson, 2002). Both models proposed by 

Anderson and Miyake consider the sub-skills of EF to be inter-related. Although 

Anderson proposes a hierarchical emergence of these abilities, the continuity of an 

underlying relationship between the EF sub-domains is clear in the two theories 

(Miyake et al., 2000; Anderson, 2002). 

An alternative widely accepted model of EF was offered by Barkley (Barkley, 1997, 

2001). Barkley was the first to propose a hierarchical, evolutionary based model for 

the development of EF throughout the early years, with a focus on the development 

of inhibitory abilities in the first instance (Barkley, 1997). Barkley states that 

inhibitory abilities are an essential part of EFs as they predominantly determine self-

directed behaviours; without inhibition, self-directed decisions and goals are not 

possible as prepotent responses interfere with the control. It is proposed that the 

development starts with simple motor inhibition, proceeding to aspects of working 

memory, internal thoughts, flexible thinking and planning. Subsequently 

developmental advancements during childhood creates goal-directed behaviour, 

impulse control becomes more refined and complex attentional skills develop 

(Barkley, 1997, 2001). 

Opinions continue to differ on the true likely representation of EF structure within 

the developmental pathways. As better understandings of how the EF sub-domains 

emerge, improvements in the detection of early signs of dysfunction would be 

anticipated (Isquith et al., 2005). Garon et al. (2008) reviewed the unitary and 

differentiated models in regards to the developmental literature, concluding that 

before 3 years of age, basic EF abilities are emerging, but once beyond this age, 

crucial integration and coordination of the cognitive processes occurs, advancing EF 

performance. If considering this in the context of the preterm literature, whilst 

mindful of findings suggestive of domain specific difficulties within this population 

later in life, it remains to be seen whether it is possible to detect early EF difficulties 

emerging before 3 years, irrespective of the structure of EF abilities in these early 

years. 
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The review in the following sections will provide further insight into what is known 

about emergence of EF in both typically developing and preterm populations, 

before revisiting and reviewing the three models in relation to the preterm 

literature. 
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Figure 1-5. Schematic representation of three EF models commonly referred to within developmental literature. 
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1.2.1 Cognitive flexibility 

Cognitive flexibility, or the shifting of mental states (Miyake et al., 2000) is the 

ability to focus, shift and combine information from various sources, moderate and 

adapt behaviour following mistakes, and formulate plans for action (Anderson, 

2002; Diamond, 2012). The ability to plan is vital for achieving specific goals and first 

appears around 7-8 months, becoming more advanced with age. The development 

of this skill is seen to advance over childhood and improves greatly between 18 to 

27 months. At this age, children can recognise a goal and construct a sequence of 

actions in order to achieve it (Sun and Buys, 2012a). Plans that need conceptual 

reasoning appear too difficult before the age of 4 and only advance considerably 

between the ages of 7 to 11 years (Anderson, 2002).  

The use of the other EF domains is often considered necessary in order to achieve 

shifting in mental state. Inhibition is required to ignore a previous perspective, and 

working memory is required in order to actively process the new view (Diamond, 

2013). The dependence of flexible thinking on the other two EF sub-skills creates 

problems when attempting to identify pure cognitive flexibility, and often, if 

difficulties are observed in one domain, another is likely impaired (Nosarti et al., 

2007; Aarnoudse-Moens, Weisglas-Kuperus, et al., 2009).   

Immaturity of this domain is thought to be reflected in perseveration responses to 

cognitive flexibility tasks. Perseveration in this context, refers to the failure to 

modulate a response following the presentation of new information, instead the 

previously acquired response is repeated. Tasks that typically assess this domain 

challenge a child’s ability to use information provided by creating an established 

response set before introducing a rule change that challenges that response. The 

more complex the rule change, the harder it is for children to incorporate the 

information to modify their behaviour. This skill continues to develop and advance 

throughout middle childhood and into adolescence (Anderson, 2002).  
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Cognitive flexibility in later childhood  

In general, performance deficits on cognitive flexibility tasks appears to be a 

consistent finding in preterm populations from childhood and into adulthood 

(Nosarti et al., 2007; Aarnoudse-Moens, Weisglas-Kuperus, et al., 2009; Rose, 

Feldman and Jankowski, 2011; Eryigit Madzwamuse et al., 2015). However, 

cognitive flexibility deficits are often reported alongside other EF domain 

difficulties. The meta-analysis of neurobehavioral outcomes in children born 

preterm by Aarnoudse-Moens, Weisglas-Kuperus, et al., (2009) found a decrement 

in cognitive flexibility performance across 12 studies with a moderate effect size. 

This, however, was not a specific deficit, as working memory and verbal fluency 

performances were also weaker in the preterm group compared to the controls. 

Nosarti et al., (2007) investigated EF performance in ex-preterm adults, with the 

predominant deficits observed in cognitive flexibility, inhibition and visual motor 

speed. When looking between these age groups, 11 year old ex-preterm children 

have been reported to present with deficits in all 3 EF domains (Rose, Feldman and 

Jankowski, 2011).  

Although not directly comparable, discrepancies across these studies could suggest 

developmental changes in EF within ex-preterm cohorts, as domain specific 

differences impact performance differently with age. Detailed longitudinal 

exploration into cognitive performance would be required to explore this further as 

each study above utilised different paradigms and had differing inclusion criteria. 

What is transparent from previous research, however, is that ex-preterm 

populations demonstrate cognitive flexibility difficulties from childhood extending 

into adult life. 

Emergence of cognitive flexibility during infancy and early childhood 

When difficulties in cognitive flexibility emerge is not clear. The focus of many 

research studies is in the determination of which domain displays the greatest area 

of difficulty in ex-preterm children. Although poorer performances are detected in 



 
 

45 
 

cognitive flexibility in older childhood, such difficulties have not been a consistent 

finding in toddlers aged 2 to 3, although research in this age range is minimal. Espy 

et al., (2002), did not find differences in term and preterm performances on a 

spatial reversal task, thought to assess shifting abilities. In contrast, a multi-facet 

study by Pozzetti et al., (2014) identified cognitive flexibility as the only EF domain 

in a multi-factor analysis to show significant differences between groups. Both 

studies utilised reversal paradigms whereby the child was instructed to find a 

reward repeatedly in a specific location and once a criterion of correct responses 

was reached, the location was switched. Rule reversal paradigms are often 

considered an assessment of cognitive flexibility. However, in order to achieve a 

correct response, inhibition of the previous rule is fundamental, presenting a 

problem in interpretation. The multi-factorial approach by Pozzetti et al., (2014) 

attempted to account for the interrelated nature of such tasks, creating composite 

scores from different tasks for each EF domain. Tasks such a Multi-Location Multi-

Step (MLMS) paradigm, although predominantly is thought to target cognitive 

flexibility, likely recruits all EF sub-skills. This task therefore provided multiple 

variables to add to the Exploratory Factor Analysis conducted by Pozzetti et al. 

(2014). Although in principle this exploration could provide insight into the 

variability of EF domain performances in a preterm population, there are many 

limitations. Fundamentally, although the authors provided rationale in regards to 

the primary outcome variables that contributed to each EF factor composite score, 

as this was a new approach, there was no evidence to support the choice of 

variables selected (Pozzetti et al., 2014).  

These findings stress the difficulties in separating the performances of the different 

EF domains. Although attempts have been made to distinguish between EF sub-

skills, even in the adult literature there it is a challenge in particular with cognitive 

flexibility due to the nature of the sub-skill. The adult literature is fairly consistent, 

as EF difficulties appear to be a typical finding within preterm populations, 

irrespective of whether flexibility is a specific issue. In early childhood, although 

some findings suggest cognitive flexibility may be the preliminary domain displaying 

difficulty in ex-preterm toddlers, this is far from consistent and research is sparse.  
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1.2.2 Working memory 

Working memory is the ability to retain information in mind whilst executing a given 

task, or manipulating information in order to achieve a desired goal. Working 

memory helps us to plan and enables us to hold alternative views in mind, 

connecting it to cognitive flexibility. This ability also facilitates giving directions and 

linking current, future and past events (Diamond, 2006). Working memory has been 

reliably observed to be typically detectable between 8 and 12 months, however a 

review of the literature by Reznick et al., 2004, suggests working memory abilities 

can be detected in those as young as 6 months. This ability develops and matures 

with age, increasing in capacity and ability to handle more complex information 

(Sun and Buys, 2012a).  

Working memory in later childhood 

Within the preterm literature, difficulties with working memory, although not the 

exclusive problem, have been widely reported in school age children (Aarnoudse-

Moens, Weisglas-Kuperus, et al., 2009; Hutchinson et al., 2013). As illustrated in the 

previous section, results are often mixed as to whether the deficit resides 

independently within the working memory domain and/or is coupled with other EF 

subskills (Bohm, Smedler and Forssberg, 2004). Working memory has been reported 

as a specific deficit in preterm cohorts in some instances. A study by Mulder et al., 

(2010) explored the impact of EF deficits on academic outcomes in middle 

childhood. Working memory appeared to predict attainment outcomes 

independent of verbal processing speed, a measure that mediated the relationship 

between the other EF domains and academic outcomes. Research in ex-preterm 

adolescent and adult cohorts suggest difficulties in working memory may improve 

with age (Rushe et al., 2001; Saavalainen et al., 2007), however this is not a 

consistent result (Breeman et al., 2015).   

These independent and coupled deficits within the EF domains have been linked 

with poorer mathematical abilities in typically developing cohorts (Bull and Scerif, 

2001). As discussed in section 1.1.2, difficulties in mathematics are frequently 
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reported within preterm populations and many studies have found associations 

between this academic area and working memory deficits (Bull, Espy and Wiebe, 

2008; Mulder, Pitchford and Marlow, 2010; Simms et al., 2013).  

Emergence of working memory during infancy and early childhood 

Few studies have explored possible early signs of working memory deficits in ex-

preterm children. Traditional assessments of working memory in infancy use 

delayed-response type tasks, in which an object of interest is hidden and following a 

set period of delay, the infant is required to attempt to locate it (Diamond and 

Doar, 1989; Reznick et al., 2004). A study by Sun et al. (2009), found preterm infants 

as young as 8 months showed poorer performance on an A-not-B tasks (AB task) 

(Piaget, 1954) compared to term born peers, after adjusting for global cognitive 

performance (Sun, Mohay and O’Callaghan, 2009). However, the AB task is highly 

dependent upon inhibition of prepotent responses and requires cognitive flexibility 

to modulate responses, thus interpretation of performance cannot be assigned to 

one domain (Espy et al., 1999).  

Preterm born children aged 2 to 3 years have been reported to display poorer 

performances in tasks such as the Delay Alteration Task, designed to assess spatial 

working memory abilities (Espy et al., 2002). Behavioural differences to spatial 

working memory tasks have also been reported at 3 to 4 years using delayed 

location recall tasks (Vicari et al., 2004; Baron et al., 2010). In contrast, Pozzetti et 

al., (2014) did not observe specific working memory deficits when using a ‘spin the 

pots’ paradigm. The discrepancy between studies could be explained by the 

different tasks used to explore these abilities. The delay alteration/delay location, 

require toddlers to wait before the retrieval of a reward from one of 2 or 3 set 

locations, the time delay before retrieval gradually increasing as a measure of 

performance (Vicari et al., 2004; Baron et al., 2010). The spin the pots paradigm 

require toddlers to locate a number of different rewards from different locations 

that were spun following the start of the trial, no time delay is imposed (Pozzetti et 

al., 2014). It could be speculated that different aspects of working memory are 

being targeted in the two paradigms; the delayed alteration imposing a greater 
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demand on spatial working memory, whereas the spin the pots task demands 

greater memory for colour and shape of reward location. Both require working 

memory of visual information, however, the specific mechanisms underlying these 

differences require further exploration. 

The proportion of studies to observe differences within this EF domain is certainly 

suggestive of a working memory deficit in preterm populations. Further clarification 

on when these differences first emerge, and if it is possible to reliably identify 

specific working memory abilities in the first years of life, still remains to be seen. 

1.2.3 Inhibition 

Inhibition, is the ability to ignore irrelevant stimuli to the task at hand and to control 

behaviour (or thoughts) by preventing a response and/or replacing it with another 

(Diamond, 2006). It is thought to first appear between 7 and 12 months of age (Sun 

and Buys, 2012a). The signs of significant improvement within EF tasks that require 

working memory and inhibition occur between the ages of 3 to 5 years (Rennie, Bull 

and Diamond, 2004). Inhibition continues to mature throughout childhood, when 

exercising discipline and controlling emotions (Diamond, 2012).  

Deficits in inhibition can lead to uncontrolled impulsive behaviours and are 

associated with disorders such as ADHD, the disorder that formed the basis of 

Barkley’s EF model, which considers inhibition as the fundamental domain of 

executive control (Barkley, 1997; Diamond, 2012; Sun and Buys, 2012a).  

Inhibition in later childhood  

ADHD is often a diagnosis made in children born preterm (Bohm, Smedler and 

Forssberg, 2004), although there is speculation whether this population has a 

‘purer’ form of attentional disorder, specifically inattention, as hyperactive 

behaviour is not always reported (Johnson, 2007). Nevertheless, the impulsivity 

observed in those with ADHD is often apparent within ex-preterm cohorts from 

childhood through to adolescence (Bohm, Smedler and Forssberg, 2004). Impulse 

control is commonly defined within the development literature as the inhibition of 
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actions and control of emotions (Hammond, Potenza and Mayes, 2011). Bohm et 

al., (2004) found impulse control deficits in a cohort of preterm 5 year olds after 

adjusting for IQ, which were associated with later academic difficulties (Bohm, 

Smedler and Forssberg, 2004). This observation is reflected in a later study using a 

rapid visual processing task in ex-preterm 11 year olds, where the preterm 

participants displayed a greater rate of false alarms. These deficits do not appear to 

dissipate, as studies of ex-preterm adults present with marked deficits in tasks 

requiring response inhibition. These fundamental difficulties are speculated to stem 

from deficits in inhibitory control and mental flexibility (Nosarti et al., 2007). 

Emergence of inhibition during infancy and early childhood 

Few studies have investigated inhibitory control in the preschool years (Aarnoudse-

Moens, Weisglas-Kuperus, et al., 2009). Tasks such as the Bear Dragon paradigm 

(Kochanska, Murray and Harlan, 2000), where the child has to follow the 

instructions of one puppet and ignore those given by the other, or the Gift Delay 

Open task (Carlson, 2005), where the child has to wait to open a present until told, 

are both classic tasks of inhibition. In children born preterm, gestational age has 

been shown to be a significant predictor of performance on these tasks (Duvall et 

al., 2015). However, paradigms that include conflicting instructions, such as the 

bear/dragon, have a high working memory load (Carlson, Mandell and Williams, 

2004). Delayed response tasks, such as the Gift Delay Open task (Carlson, 2005), 

have a lower working memory load, but limited sensitivity, because they are 

typically scored as pass or fail according to an arbitrary predefined time limit. 

Delayed response tasks are commonly used to assess inhibition from the ages of 3 

onwards (Carlson, Mandell and Williams, 2004); before this age, children lack the 

ability to comprehend task instructions.  Other paradigms, such as the Snack Delay 

(Kochanska et al., 1996), have been used on children under 3 years, but in 

populations where language is delayed, as in some cases of children born 

premature, this can confound study interpretations as language abilities are 

influential on task performance (Cuskelly, Einam and Jobling, 2001). 
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Within the first year, the traditional Piagetian A-not-B paradigm, considered later in 

this thesis, has previously been considered to represent inhibitory abilities. As noted 

however, working memory is also fundamental to this tasks success (Diamond and 

Goldman-Rakic, 1989). Difficulties in attempts to parcel out the different EF 

domains in the preschool period are in part constrained by the limited assessment 

structure available at these younger ages due to restricted behavioural repertoires 

(Wiebe, Espy and Charak, 2008). Many tasks require infants either to make 

repetitive responses, respond to rule changes, and/or retrieve hidden objects. 

These factors make targeting one ability without the incorporation of others very 

difficult. Although a combination of tasks that are thought to predominantly target 

different domains can be used in an attempt to highlight specific differences, the 

interpretation and validity of findings is challenging (Pozzetti et al., 2014). 

1.2.4 EF overview 

The literature is clearly undecided regarding which domain has the greatest 

influence on later cognitive performance. There is an emerging consensus that a 

specific working memory deficit is likely to be the primary cause of the difficulties 

observed in this population in older children and into adulthood. When exploring 

the extent of problems over a range of functions in preterm cohorts, many studies 

report deficits within the other EF domains, of which are not fully explained by IQ 

scores (Botting et al., 1998; Bohm, Smedler and Forssberg, 2004; Neil Marlow et al., 

2007). The possibility of domain specific differences in later childhood/early 

adulthood are in agreement with the literature exploring the structure of executive 

control, suggesting differentiation of EF occurs later in development (Miyake et al., 

2000). As the current review suggests, in infancy and later childhood, assessing one 

of these domains without the influence of another is challenging (Beauchamp et al., 

2008).  

There are mixed reports regarding EF abilities in ex-preterm children aged 2 to 3 

years, possibly due to attempts to address when specific EF domains emerge (Espy 

et al., 2002; Pozzetti et al., 2014). Although tasks can be argued to target a 

predominant EF domain, the other sub domains are typically involved in task 
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performances. It is therefore not possible to categorically conclude where specific 

deficits originate with the use of these tasks. Ex-preterm toddlers EF abilities 

require further investigation, perhaps with a focus of exploring EF as a unitary 

concept, in order to clarify overall stability of the construct and not in an attempt to 

parcel out the different domains.  

Very few studies track cognitive performance longitudinally to explore the 

developmental trajectory of EF (Anderson, 2014).  To the authors knowledge, the 

only study investigating cognitive performance at multiple time points across the 

first two years after birth in a preterm cohort was the study conducted by Lobo and 

Galloway (2013), who investigated the stability of learning in this early period of 

life. The focus of this study was related to the trajectory of EF, but rather fixated on 

the infants’ ability to learn within the early months, as a means of identifying 

learning difficulties later in life (Lobo and Galloway, 2013).   

Irrespective of differences in opinion regarding the structure of EF and which 

abilities make up each sub-domain, it is clear that ex-preterm children, and later 

adults, have difficulties in these cognitive abilities. In later life, there is evidence to 

suggest that specific domain differences may account for these cognitive deficits, 

but which is primarily responsible, is still a matter of debate. When difficulties in EF 

are first detectable remains unclear. Typically, studies have approached this 

question with attempts to determine when specific domain differences emerge in 

preterm populations. However, the evidence for the emergence of EF domains 

within typical cohorts also divides opinions. In studies of early development, it is 

apparent that classic paradigms do not allow for clear differentiation of the EF sub-

domains. With this taken into account, it is highly plausible that EF is a unitary 

construct that differentiates in later life. This is in accordance with the unity and 

diversity model presented by Miyake et al.,(2000) and is supported by previous 

reports in typically developing cohorts as the best fit for the development of EF 

(Wiebe, Espy and Charak, 2008). Thus in the current investigation we evaluated a 

series of classic EF tasks in very preterm and term infants, with the aim of 
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identifying the early signs of differential EF performance in the context of a 

longitudinal study. 

1.3 Attention 

First described by Posner and colleagues, attention is commonly conceived as three 

networks; orienting or selective attention; alerting, arousal or sustained attention; 

and executive control or simply executive attention (Posner and Petersen, 1990; 

van de Weijer-Bergsma, Wijnroks and Jongmans, 2008; Mulder et al., 2009). In this 

model, the orienting attentional network describes the spatial positioning of 

attention to surrounding stimuli, and is thought to be fully developed by 6 months 

of age (van de Weijer-Bergsma, Wijnroks and Jongmans, 2008). The alerting or the 

arousal network dictates focus in order to maintain continuous information 

processing abilities, and upon unanticipated  stimulation, creates a state of arousal 

(Amso and Scerif, 2015). Finally, the executive network refers to self-directed 

attentional behaviours and is largely connected to the wider range of EFs (van de 

Weijer-Bergsma, Wijnroks and Jongmans, 2008; Diamond, 2013). This 

multidimensional construct brings together these three systems in order to achieve 

higher-order processing as well as coordinating and responding to sensory and 

motor stimulation (van de Weijer-Bergsma, Wijnroks and Jongmans, 2008; Scerif, 

2010).  

The developmental trajectory of these networks is again complex because they are 

inter-related. In infancy, the first of the networks to be observed is that of arousal 

and orienting of visual attention. Evaluation of this network is often driven by the 

response to novel stimuli and a large proportion of investigations focus on the 

infant’s attraction to faces (van de Weijer-Bergsma, Wijnroks and Jongmans, 2008; 

Scerif, 2010). This focus on highly salient stimuli can lead to difficulties in 

disengagement of attention, termed ‘sticky attention’. This ‘blank stare’ is not 

necessarily a measure of visual processing, as discussed in detail within the visual 

habituation literature (Stechler and Latz, 1966). Visual habituation is a technique 

developed as a means of trying to assess early information processing in infants. 

Initially when presented with a novel stimulus, an infant will maintain visual focus. It 
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is assumed that the time spent observing the stimulus reflects internal processing. 

With repeated exposure to a stimulus, the looking time decreases, termed a 

habituation response. Current theories suggest the faster the speed of habituation 

the more efficient the visual processing of the infant. Look durations increase with 

age, and are thought to reflect improved disengagement of attention and improved 

efficiency of information processing (van de Weijer-Bergsma, Wijnroks and 

Jongmans, 2008; Kavsek and Bornstein, 2010).  

In infancy, attentional networks have been found to be highly correlated with 

processing speeds and early EF abilities (Garon, Bryson and Smith, 2008). Although 

the precise mechanisms are not yet clearly defined, paradigms such as the ‘Visual 

Search task’ (Scerif et al., 2004) and the Gap Overlap task (Atkinson et al., 1992; 

Hood and Atkinson, 1993) are thought to tap into this relationship. The Gap overlap 

paradigm requires disengagement of visual attention from a central stimulus and 

shifting gaze to the periphery (Atkinson et al., 1992; Hood and Atkinson, 1993). It is 

proposed that those who disengage at a faster rate are then able to reengage with 

an alternative image and process scenes quicker than those with difficulties (Rose, 

Feldman and Jankowski, 2002). This is a paradigm that will be used in the current 

study as it may be used in infancy through to the preschool years, thereby providing 

longitudinal observation of the development of disengagement measures within a 

preterm population. 

Alerting, arousal or sustained attention is observed in infancy and early childhood. 

Although a 3 network model is often reported within the attentional literature, the 

overlap between the development trajectories of sustained and selective attention 

has led some to postulate whether a two arm model is more appropriate; selective 

and sustained attention as one network, executive attention as the other (Steele et 

al., 2012). In any regard, the capacity of the sustained attentional network allows 

for active information processing due to a sustained state of arousal. This is often 

observed during play sessions, when infants or toddlers display a prolonged interest 

in a specific object (van de Weijer-Bergsma, Wijnroks and Jongmans, 2008). In 

laboratory settings, the Continuous Performance Task has been used to assess 
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sustained attention, whereby the child presented with a stream of continuous 

stimuli is asked to respond to a specific infrequent target (Akshoomoff, 2002).  

Over the toddler years, playing behaviours develop becoming self-directed and 

planned; this is considered a function of the executive attentional network. This 

network has strong associations to the EF domains: cognitive flexibility, working 

memory and inhibitory abilities (van de Weijer-Bergsma, Wijnroks and Jongmans, 

2008). Executive attention is often associated with activity in the Dorsolateral 

Prefrontal Cortex, a region also highly linked to EF abilities (see Figure 1-3) (van de 

Weijer-Bergsma, Wijnroks and Jongmans, 2008). The ‘flanker task’ has previously 

been considered a measure of executive attention, where a child or adult, is asked 

to select a responses that correspond to a visual target stimulus, and ignore the 

distractor stimuli, presented either side (Rueda et al., 2004). The interrelated nature 

of these attentional networks and EF means that obtaining a ‘pure’ measure of the 

any attentional networks is not easily achieved and is often assessed as part of EF 

tasks. For example, the Flanker task is predominantly regarded as an assessment of 

inhibition, although attentional abilities are certainly likely to impact performance 

(Steele et al., 2012).  

The dual network model proposed by Steele et al. (2012) suggests the selective and 

sustained attentional networks, although they may be more closely related in 

childhood, differentiate during development. The developmental trajectory of these 

networks may show a similar structure to the emergence of EF domains (Steele et al 

2012; Wiebe et al., 2011).  

In ex-preterm infants, paradigms that assess visual orienting within the first 6 

months have observed difficulties with gaze shifting behaviour. Errors in gaze shift 

tasks include specific looks away from central fixation stimuli and more general 

looks away from task equipment. Butcher et al. (2002) explored the developmental 

trajectory of shift patterns in term and preterm born cohorts. Over development, 

term born infants were observed to make more errors compared to preterm 

infants. The authors interpreted this increase in looks away from task stimuli as the 
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emergence of disengagement behaviour, the ability to inhibit attention to salient 

stimuli, and required for high level cognitive processing. This more mature looking 

behaviour was not observed in the ex-preterm infants (Butcher et al., 2002). 

However, these differences in gaze shift patterns are not consistent across the 

literature. Rose et al., (2001) reported comparable gaze shifting behaviour across 

the first year after birth in a longitudinal cohort of term and preterm infants. Gaze 

patterns advanced with age at a similar rate within both cohorts, with shorter looks 

to targets and faster shift rates at the later time point (Rose, Feldman and 

Jankowski, 2001). Shift rates, although indicative of attentional processes, are also 

utilised in the investigation of information processing speeds, another area 

postulated to be affected by preterm birth (Rose, Feldman and Jankowski, 2002; 

Mulder, Pitchford and Marlow, 2011a) and explored in section 1.4. 

Preterm children and adults are more frequently assigned diagnoses of ADHD (van 

de Weijer-Bergsma, Wijnroks and Jongmans, 2008), alongside a range of 

psychological disorders, in particular the inattentive subtype (Johnson, 2007; 

Lawrence et al., 2009; Jaekel, Wolke and Bartmann, 2013).  Among those who do 

not meet diagnostic criteria there is an excess of sub-clinical symptoms (Johnson, 

2007). The propensity for inattention may explain some of the learning difficulties 

found among preterm populations and the effect may be independent of general 

cognitive performance (Jaekel, Wolke and Bartmann, 2013).  In one study a battery 

of EF tasks, including attentional measures, explained variance in cognitive and 

behavioural scores between a very preterm and term born populations, but the 

majority was explained by working memory and visual processing speeds (Mulder, 

Pitchford and Marlow, 2011b). Behavioural inattention observed in the classroom 

may be related to what we understand to be the neuropsychological attentional 

networks (discussed below), but to date limited evidence is available to connected 

the two (Steele et al., 2012). On the contrary, behavioural inattention has been 

shown to correlate to a greater extent with working memory, processing speed and 

inhibitory deficits (Espy et al., 2002; van de Weijer-Bergsma, Wijnroks and 

Jongmans, 2008; Scerif, 2010). Thus behavioural inattention may be considered a 

reflection of EF deficits, as opposed to specific difficulties in attentional networks. 
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Investigations into the functionality of attentional networks in ex-preterm adults 

report lower performances compared to controls; however, as discussed previously, 

tasks utilised in older populations are often highly confounded by other cognitive 

domains. Nosarti et al. (2007) utilised the Test of Attention Performance to 

investigate attentional abilities in ex-preterm adults, but by evaluating performance 

based on response times, there will be confounds by slower processing speeds 

typically observed within this population (Nosarti et al., 2007).  

1.4 Information processing 

‘Information processing speed’ is the term given to the speed of communication 

between different brain regions in order to complete specific cognitive goals. The 

speed in which information is transferred is fundamental to the success of basic 

cognitive tasks and is considered an essential cognitive resource (Turken et al., 

2008). It has been long since established that speed of information processing (IP) is 

positively correlated with IQ scores in typical adult population studies, and it is 

speculated that a link between speed of processing and working memory drives this 

correlation (Jensen, 1993). The same relationship has been seen in preterm cohorts. 

Possible associations have been observed between working memory deficits and 

reduced processing speeds in preterm children (Mulder, Pitchford and Marlow, 

2010).  

Reduced speeds in information processing is commonly reported in preterm cohorts 

both in terms of sensory information (Rose, 1983; Ramon-Casas et al., 2013) and 

higher level cognitive information reflected in reduced cognitive performance 

(Rose, Feldman and Jankowski, 2009). Studies of preterm cohorts consistently 

report strong associations between processing speed and individual variability in EF 

performance and overall academic achievements (Mulder, Pitchford and Marlow, 

2010, 2011b; Rose, Feldman and Jankowski, 2012). Up to 60% of the differences in 

global cognitive performance scores between term and preterm participants may 

be accounted for by variations in processing speed alone (Rose and Feldman, 1996). 

In addition to the association with IQ, processing speed is linked to the performance 

variations in multiple independent domains across many studies, from working 
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memory (Rose, Feldman and Jankowski, 2002), to language deficits (Ortiz-Mantilla 

et al., 2008) and attention (Mulder, Pitchford and Marlow, 2011a).  

The traditional view of early cognitive investigations is that they showed poor 

predictive validity for later cognitive performance (Fagan and Singer, 1983). Tests in 

infancy are speculated not to tap into the same processes that are apparent in 

childhood and beyond (Rose and Feldman, 1990; Colombo, 1993). In this vein, 

improvements in this area have been the focus of infancy research, with processing 

speed measures indicating a level of continuity and stability in the prediction of 

later cognitive abilities (Rose, Feldman and Jankowski, 2009).  

Preterm infants have been observed to perform poorly in cognitive tasks that 

additionally assess speed of information processing.  In 2002, Rose, Feldman and 

Janowski, utilised habituation, gaze shifting and recognition paradigms with poorer 

performances observed in the preterm cohorts. In contrast, and in an earlier study 

Rose et al., (2001) found no group differences between term and preterm infants in 

an attentional gaze shift paradigm in the first year after birth. The authors speculate 

that discontinuity between their findings reflect different processing skills in the 

paradigms used. In the second study in 2002, a familiarisation paradigm may have 

created a greater cognitive load than the first in 2001, a simple visual expectation 

paradigm; thereby the greater complexity provided a more detailed investigation of 

the preterm infants cognitive abilities (Rose, Feldman and Jankowski, 2001, 2002).  

Deficits in processing speed within the preterm population are observed in middle 

childhood and into adulthood. The link between processing speed and working 

memory seen in typically developing populations, is highly associated with overall 

academic attainment in preterm populations (Rose and Feldman, 1996; Fry and 

Hale, 2000; Mulder, Pitchford and Marlow, 2010). In the study by Mulder et al., 

(2010), verbal processing speeds accounted for the variations in attentional 

abilities, inhibitory performance, semantic fluency and shifting abilities. Working 

memory was independently predictive of academic attainment. This finding echoed 

a previous study by Rose et al., (1996). In contrast, Bull and Johnston (Bull and 
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Johnston, 1997), reported that the typical arithmetic difficulties observed in 

preterm children were best predicted by motor processing speed, and independent 

of memory. Although there are still variations amongst study results, there remains 

a strong suggestion that processing speed is a good predictor of later academic 

performance.  

In terms of continuity, there is a lack of investigations within the preterm literature 

exploring processing speeds from infancy into the toddler years. Rose et al., (2009) 

reported toddlers born preterm to display a persistent deficit in a range of cognitive 

abilities from the first year and into the second. Information processing speeds in 

combination with recognition memory, recall and attention accounted for the 

variation in general cognitive ability with this cohort (Rose, Feldman and Jankowski, 

2009). To date, there is limited additional evidence investigating such trajectories. 

Information processing speed may also be investigated using neural processing 

techniques. Event Related Potentials (ERPs) provide more accurate temporal 

measures of specific processing and may be used to assess preterm-term 

differences. Processing difficulties related to slow cognitive performance and social 

inabilities are correlated to the ‘lower-order’ processing speeds of sensory 

information, particularly that of visual and auditory stimuli (Fellman et al., 2004; 

Mikkola et al., 2007; Sokhadze et al., 2017). If preterm children do not process 

sensory information at the same rate as typically developing individuals, this will 

impact the performance of cognitive tasks. In particular, infancy research is largely 

dependent on looking times and the speed of gaze-shifting to evaluate early 

cognitive abilities (Butcher, Kalverboer and Geuze, 2000). Exploring neural 

correlates of sensory systems may inform on the evaluation of mechanisms 

underpinning cognitive performance. 

ERPs are averaged voltage deflections produced by the brain in response to any 

sensory modality (Woodman, 2010). In this brief review, ERPs to visual and auditory 

stimuli are summarised. Upon detection of a stimulus, an initial change in polarity is 

observed in the ERP waveform; in the case of visual stimuli, the C1, reflects the 
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location of the stimulus within the visual field (Clark, Fan and Hillyard, 1994). The 

N1 and/or P1 are typically the first components observed in an ERP waveform in 

response to auditory stimuli. These are postulated to reflect the physical attributes 

of the stimulus oppose to cognitive evaluations and indicate the detection of the 

stimulus in the primary visual or auditory cortices (Herrmann and Knight, 2001). 

Following this, the P300 or P3 is produced. The P3 is a positive deflection, peaking 

at approximately 300 milliseconds post stimulus onset. This component reflects the 

attention to the stimulus and is typically a larger response when an infrequent 

stimulus is detected (Herrmann and Knight, 2001). This technique is therefore 

tailored to explore differences in information processing speeds in early attentional 

networks to any sensory modalities between different cohorts.  

Within this thesis, the focus is on neural correlates associated to auditory 

processing. Northam et al. (2012) used MRI and diffusion tractography techniques 

to investigate the integrity of the interhemispheric pathways associate with 

language in a group of extremely preterm infants. They found a significant 

reduction in volume in the posterior Corpus Callosum that accounted for 57% of the 

variance in language abilities within the preterm cohort (Northam et al., 2012). This 

in part echoed the findings of Nosarti et al. (2004) who had previously reported 

correlations between the posterior corpus callosum volume and verbal fluency and 

IQ scores, but only in preterm males. These findings suggest that transfer of 

auditory information related to speech and language across the hemispheres is 

compromised, and potentially slower, in children born preterm. To the authors’ 

knowledge, there are no current studies exploring the attentional response of the 

brain to speech sounds in a cohort of preterm toddlers.  A more detailed review of 

auditory processing in relation to language can be found in Appendix 4, but will not 

be considered as the primary focus in this thesis. 

1.5 Conclusion 

In contrast to the large body of research into cognitive processes in school age ex-

preterm children, there is a paucity of research that seeks to evaluate the early 

trajectory of emerging cognitive processes that will underpin later performance and 
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allow for the early identification of children at clinical risk of later learning 

difficulties.  Such evidence is needed to formulate targeted interventions to 

ameliorate the high prevalence of special needs and cognitive deficits in very 

preterm children at school age. There is genuine uncertainty about the early 

emergence of executive functions and information processing speed differences in 

infancy. 

In this thesis, studies of the early emergence of EF skills up to 30 months of age will 

be presented whilst exploring the influence of processing speed and attentional 

differences in a group of very preterm infants (VP henceforth) with relatively 

uncomplicated neonatal courses, compared to a group of term children (term 

henceforth).  
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1.6 Research Aims and Objectives 

The overall aim was to use targeted neuropsychological assessments in combination 

with ERP techniques and eye-tracking technology to identify at which point within 

the first two years after birth differences begin to emerge in EF abilities between VP 

and term controls, and to what extent information processing (IP henceforth) 

abilities impact global cognitive performance. The specific study objectives were: 

1) To explore the differences in EF, attention and IP speeds at 3 time points within 

the first year and at 30 month of age between the term and VP cohorts. Each EF 

task incorporates the different EF subskills and performances will be adjusted 

for global cognitive score (defined by the cognitive composite score of the 

Bayley-III). This will seek to identify the emergence of EF, attention and IP 

difficulties not accounted for by global cognitive performance.  

2) The first year of assessments will be used as predictors of cognitive score of the 

Bayley-III at both: 

i) 12 months 

ii) 2 years 

3) Finally, the EF tasks at 30 months will be used to investigate the variation of the 

Bayley-III at 2 years.  

 

The final two objectives will explore to what extent the performances in EF tasks in 

the first and second year predict the variation on the Bayley-III cognitive scores and 

will examine the effectiveness of the cognitive scale at detecting any variation in EF 

abilities in a VP and term cohort. 
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1.7 Hypotheses  

This thesis is broken down into 5 chapters: Global measures of cognitive, language 

and motor development; Executive Functions; Attention; Information Processing 

speeds; and Prediction of global cognitive performance at 12 months and 2 years 

from earlier measures of EF, IP and Attention. Accordingly, the following 

hypotheses where made for each aspect of the study: 

1.7.1 Global measures of cognitive, language and motor development  

 VP infants will score lower in the Bayley-III cognitive composite scores 

compared to term infants, at both 12 months and 2 years of age. 

 The cognitive composite score at 12 months will predict the cognitive 

composite score at 2 years of age.  

 The cognitive composite score at 30 months will account for some of the 

variation in other neuropsychological measures throughout the other 

chapters but will not explain all differences seen between the two cohorts. 

1.7.2 Executive Functions 

 VP infants will show a reduced ability in EF tasks compared to term controls.  

 Any differences observed within the first year will also be observed in the 

second year performance in corresponding tasks.  

 Any differences seen in the two cohorts will not be completely accounted 

for by the global cognitive score. 

1.7.3 Attention 

 The information processing speeds obtained from the attentional task will 

show slower processing and more immature looking behaviour in VP 

children compared to term controls at each time point that it is measured (6, 

12 and 30m). 

 Overall global cognitive differences at 12 and 30 months account for a 

proportion of the variation in performance within the two groups.  
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1.7.4 Information processing speed  

 VP children will display slower response times across all IP measures. 

 Any differences observed will still be present after adjusting for global 

cognitive performance. 

1.7.5 Prediction of global cognitive performance at 12 months and 2 years from 

earlier measures of EF, IP and Attention  

 Poor correlations will be observed between the variation in the Bayley-III 

cognitive scores at 12 months and 2 years and the EF, IP and attention 

performances from the first year 

 Likewise, the proportion of variation accounted for by EF, IP and attentional 

performances in the Bayley-III cognitive score at 2 years will be low. 
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Chapter 2 Methods   

2.1 Preterm Development Project  

The Preterm Development Project: Growing up after preterm birth (PDP) was 

established in 2011, by Professor Neil Marlow and Dr Michelle de Haan, with the 

assistance of Dr Lara Platten, and Dr Charlotte Sanderson-Brindle. This prospective 

cohort study was primarily put together to further our understanding of the early 

brain and social-cognitive development of children born very preterm. The long 

term aim of the study is to use the information collected to help improve early 

identification methods of those at risk for later social, cognitive and academic 

difficulties, and to develop targeted interventions in order to reduce levels of 

developmental delay seen within this population, thereby reducing the social cost 

these delays have on the education system.  

The main objectives of the PDP are outlined in the UCH PDP protocol, please see 

Appendix 1. The structure of the study is presented in Figure 2-1.  
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Figure 2-1. The Preterm Development Project (PDP) study structure. The red boxes indicate the 

stages of the study where the data reviewed in the thesis were collected. 
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On discharge from the hospital, the term and VP infants received the normal clinical 

outpatient follow ups as standard, with additional visits to University College 

Hospital to visit the UCH PDP Baby lab within the Clinical Research Facility in the 

Elizabeth Garrett Anderson wing. The infants were asked to attend 3 visits within 

their first year at 3, 6 and 12 months of age. Following this first year of assessment, 

consent was sought to allow subsequent assessments at a rate no greater than 1 

per annum. The outcome for this PhD project is based on the data obtain at the 

follow-up assessment at 30 months of age, however utilises the data collected at 

the previous time point to address the study aims. The VP infants were corrected 

for gestation by using their Expected Date of Delivery (EDD) for the purpose of 

these assessments, the reasons for which were discussed in Chapter 1.  

This chapter will detail the recruitment process of the infants into the study, the 

inclusion and exclusion criteria, the ethical approval for the study, a brief 

description of the tasks administered and reviewed within this thesis, and finishing 

with the statistical plan for all analyses conducted in later results chapters. The 

detailed methodologies for each task administered will be in the relevant chapters. 

2.1.1 Participant recruitment 

The PDP study, originally funded by SPARKS, aimed to recruit fifty preterm infants 

born at <32 weeks of gestation and fifty term born controls as a comparison group. 

Recruitment for the study was initiated before the start of this PhD project. Support 

from this studentship, allowed for additional recruitment of term born controls and 

then aided in the completion of recruitment of the VP infants. Eighty one term born 

and fifty VP born children were included in the data analysed within this thesis; of 

these, forty-four term born participants and thirty-nine VP infants were recruit 

during the PhD period. The author completed a minimum of one follow up 

assessment for sixty term born and forty seven VP born participants during the 3 

years of data collection. The attrition rate for the study is show in Figure 2-2. 
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Figure 2-2. The attrition rate of the participants included in this thesis from the PDP study. 
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infants assessed: 63 

Total preterm-born 
infants assessed: 47 

Term-born infants not include 
at this time point: 
• 18 not recruited until 

after 3 months 

Preterm-born infants not 
include at this time point: 
• 3 not recruited until 6 

months 

6 month assessment  

Total term-born 
infants assessed: 70 

Total preterm-born 
infants assessed: 43 

Term-born infants not include 
at this time point: 
• 5 not available 
• 6 not recruited until 30 

months 

Preterm-born infants not 
include at this time point: 
• 4 not available 

• 4 too young 

12 month 
assessment  

Total term-born 
infants assessed: 52 

Total preterm-born 
infants assessed: 43 

Term-born infants not include 
at this time point: 
• 13 not available 
• 10 too young 
• 6 not recruited until 30 

months 

Preterm-born infants not 
include at this time point: 
• 4 not available 
• 4 too young 

30 month 
assessment  

Total term-born 
infants assessed: 28 

Total preterm-born 
infants assessed: 28 

Term-born infants not include 
at this time point: 
• 6 new recruits 
• 29 not available 
• 24 too young 

Preterm-born infants not 
include at this time point: 
• 9 not available 
• 13 too young 
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2.1.1.1 Preterm Inclusion criteria 

Infants born at <32 completed weeks of gestation were recruited from the Neonatal 

Unit at University College Hospital London.  In the first instance, VP parents were 

approached at the end of the first week after birth and permission was sought to 

include them in the study.  Exclusion criteria were low likelihood of survival and 

severe congenital abnormality. An information leaflet was given to parents at the 

time of consent, so to provide information on the study follow-ups, separate from 

routine medical follow-ups. No alteration to clinical care was necessary as part of 

the project other than the two imaging procedures around birth. Copies of consent 

forms and study documents were included in the infants’ medical files, and copies 

were given to the parents for future reference. Parent contact details were passed 

on to the study team following consent from the participating parents in order to 

organise the follow-up appointments in the UCH Babylab.  

2.1.1.2 Term inclusion criteria 

Term born children included in the control group were recruited from antenatal 

classes and postnatal wards at University College Hospital London.  Inclusion criteria 

for the term group were: gestation between 37-42 weeks, birthweight between 10th 

and 90th percentile for gestation, no perinatal complications and Apgar score at 

5min >7. A leaflet detailing the study and providing contact details was distributed 

via local parent and infant groups and their venues. Participants were also recruited 

via email notices.  

2.1.1.3 Attrition rate 

Due to the nature of the study, a number of children originally recruited did not 

complete all assessment phases. As highlighted in Figure 2-2, detailing the attrition 

rate of infants through the study, a proportion of infants did not fully withdraw 

from the study within the first year of assessment, but were unable to attend 

specific assessments either due to illness or other family circumstances. The 

timeline of the study and the start of this PhD project were such that a number of 
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the term born infants first recruited onto the study were missed at the 30 month 

time point. Due to this, a small cross-section of term children were recruited at this 

age to ensure a balanced sample of term and VP children at the 30 month time 

point. 

2.1.2 Ethical Approval 

The study was approved by the NW London Research Ethics Committee 2 

(Reference 10/H0720/80) and is registered with the Research and Development 

Department of UCLH.   

The study incurred a number of amendments to include new researchers, additional 

tasks and new assessment batteries; all changing the documentation and requiring 

review. For the purpose of this PhD project, Appendix 1 and Appendix 2 detail the 

amended protocol and approval letter for assessment administered up to and 

including the 30 month follow up. 
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Table 2-1. Total population demographics for infants included within this thesis. Male sex and maternal education reported separately as ratio data; remaining 

characteristics reported as Median and IQR. Maternal education categorised by those with qualifications greater than GSCE and those below; the IMD quintiles is the 

Index of Multiple Deprivation for UK postcodes categorised into 5 groups with 1 = least deprived and 5 = most deprived (NPEU, 2013). 

 

 
Term Preterm 

 
Total term 

n = 81 
Total Preterm 

 (n = 50); 
Very Preterm  

(n = 17); (27-31+6weeks) 
Extremely Preterm 

(n = 33); (<27weeks) 

 n=81 n=50 n=17 n=31 

Infant sex (M:F) 40:41 31:19 12:5 19:14 

Maternal education 
(<GCSE:>GCES) 

96% (3:77) 87% (6:41) 86.7% (2:13) 87.5% (4:28) 

 Median IQR Median IQR Median IQR Median IQR 

Gestation (Weeks + 
days) 

40
+2

 39
+2

 – 41
+2

 26
+0

 25
+0

 – 28
+0

 28
+4

 28
+0

 – 29
+3

 25
+2

 24
+6

 – 26
+0

  

Birth Weight (g) 3380  
3175 – 
3850 

767 670 – 922 956 736 – 1130 730 657 – 785 

SDS -.05 
-.49 –  

.47 
-.41 

-.89 –  
.05 

-1.37 
-2.12 –  

-.50 
-1.85 -.52 – .13 

IMD quintile (SES)  4 2 – 4 3 2 – 4 3 2 – 4 3 2 – 4 
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Table 2-2. Maternal and paternal ethnicity of all infants included within this thesis. 

 

 

Ethnicity 
Term  Preterm 

Mother (n=73) Father (n=73) Mother (n=45) Father (n=44) 

White British 29 42 14 16 

White Irish 6 1 1 0 

White and Asian 1 1 0 0 

White and Black Caribbean 1 0 0 0 

White and Black African 1 0 0 1 

Any other white background 26 21 6 7 

Chinese 3 2 0 0 

Indian 3 2 8 7 

Black African 1 1 4 4 

Black Caribbean 0 0 1 1 

Bangladeshi 0 0 1 1 

Pakistani 0 0 3 4 

Arab 0 0 1 1 

Any other Asian background 0 0 3 1 

Any Other Mixed/Multiple Ethnic Background 0 3 1 0 

Any other ethnic group 1 0 2 1 
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2.1.3 Primary language of cohort 

At the time of recruitment, the study was explained in English and consent was 

given and taken in English. Families whose mother tongue was not English were not 

excluded from the study, but needed a level of understanding to consent to the 

study in English. The researcher or physician taking consent utilised their 

professional judgment to assess whether the level of understand was present. If this 

level of understanding was not there, consent was not taken and the child was not 

entered onto the study. 

Throughout the study communication with the infant or toddler was in English. This 

was particularly important during the 30 month follow-up given the nature of the 

assessments. It was therefore at this point that the predominant language spoken 

within the home was recorded. The proportion of English spoken within the home is 

detailed below in table 2-3. 

 

Only English 

Bilingual or greater 

 Predominant language 
Percentage of time 

English spoken in home 

 n % English (n; %) Other (n; %) Median (range) 

Total (n=49) 28 57.14 39 (92.86) 3 (7.14) 100 (50-100) 

Term (n=26) 14 53.85 21 (87.5) 3 (12.5) 100 (50-100) 

Preterm (n=23) 14 60.87 18 (100.0) 0 100 (90-100) 

Table 2-3. Proportion of English spoken within the cohort at 30 month follow-up, detailing the 

predominant language spoken within the home and the percentage of time spoken in English. 

 

If the mother tongue of the toddler was not English, and the toddler displayed signs 

of misinterpretation of task instruction, the parent was instructed to give an exact 

translation to the mother tongue during specific tasks. 
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2.1.4 Medical factors 

As discussed in section 1.1, numerous neonatal complications can impact the brain 

development and later function of infants born preterm. Below is a summary of key 

neonatal characteristics of the VP infants within the current cohort.  

 Total cases; n=50 
Very Preterm; n=17 

(27-31+6weeks) 
Extremely Preterm; 
n=33 (<27weeks) 

 n % n % n % 

Cases of IVH/PVL: I-II 25 50 6 35.28 19 57.58 

IVH+ Intraventricular 
dilation 

17 34 4 23.52 13 39.39 

Intraparenchymal 
lesion/PVL 

8 16 2 11.76 6 18.18 

ROP: 29 58 3 17.65 26 78.79 

Stage 1 8 16 0 0 8 24.24 

Stage 2 17 34 2 11.76 15 45.45 

Stage 3 4 8 1 5.88 3 9.09 

CLD/BPD: 42 87.5 10 62.5 32 75 

Mild 11 22.92 3 18.75 8 25 

Moderate/ Severe 31 64.58 7 43.75 24 75 

NEC 7 14 2 11.76 5 15.15 

       

 Mean SD Mean SD Mean SD 

Days in ITU 33.19 22.19 18.88 20.24 40.34 19.75 

Total days in hospital 107.26 37.52 89.87 49.71 115.41 27.52 

Table 2-4. Neonatal characteristic of the infants born very preterm included within this study, 

total, and subdivided into very preterm 27-31+6weeks; and Extremely preterm <27weeks 

gestation.  

2.2 Assessment Methodology and summary of study paradigms 

The experimental paradigms included in the PDP study aimed to assess the 

development of EF, attention, and IP speed differences in a cohort of term and VP 

infants and will be categorised accordingly; the results of each category will be 

reported in separate chapters.  



 
 

74 
 

As detailed in the literature, targeting one cognitive domain within EF without 

incurring the use of others is very difficult (Mulder et al., 2009); therefore the 

predominant cognitive domain will be discussed for each task, however overall, the 

paradigms have been considered measures of more general EF functioning. In each 

chapter, the paradigms will be reported in order of age of assessment. Below, table 

2-5 briefly introduces the tasks utilised within this thesis and the chapters where 

they are reviewed. Table 2-6 details the additional questionnaire measures utilised 

in order to acquire relevant information use in the thesis.  Within each chapter, a 

background of their standing in current literature will be reviewed, including how 

they fair in terms of known preterm research. Full methodologies including 

apparatus and procedures will be explained within the methods section of the 

relevant chapters. 

Chapter Assessment and age 

performed 

Description 

Chapter 3: 

Global 

measures 

Bayley Scales of 

Infant and Toddlers 

Development 3rd 

edition – cognitive, 

motor and language 

scales (Bayley-III);  

12 and 24/30 

months 

A well-established global assessment scale with 

normative data available for population comparisons. 

Gold standard clinical assessment used to determine 

development milestones according to age in 3 main 

areas: cognition, language and motor skills. 

 

Chapter 4: 

Executive 

Functions 

Delayed Response 

Task (DRT);  

 

6 months 

The infant was sat on a parent or guardians lap in 

front of a large black screen with two windows. The 

windows were occluded by a blind. Upon raising the 

blind, a stimulus was presented at one of the two 

windows, making a noise to capture the infants’ 

attention. The blind was then lowered and a 5 second 

delay administered. The blind was then raised and the 

direction of the first eye movement from the infant 
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was recorded. The procedure was repeated with the 

stimulus presented randomly to each window. The 

DRT administered in this study included both social 

and non-social stimuli, which were summarised to 

provide performance measures. 

 A not B paradigm; 

 

12 months 

The infant observed the hiding of an object in one of 

two locations and was then asked to retrieve it 

without any delay imposed. After two correct 

retrievals in the same location, the hiding location of 

the object was changed to the other location in plain 

sight, and the child was again asked to retrieve the 

object. If the child searched correctly, the procedure 

was repeated, accept with a delay of 5 seconds 

implemented before being allowed to search for the 

object in all instances. This procedure was continued 

until the child incorrectly searched for the object 

following a switch. This error has been termed as an 

‘AB error’ (Diamond, 1985). 

Dimensional 

Change Card sort 

task; 

 

30 months 

The DCCS task comprised of two sorting boxes and a 

selection of sorting cards. The cards varied on two 

dimensions, with the sorting box displaying the same, 

yet inverse dimensions. The task required the child to 

sort according to each of the dimensions in turn. If 

both dimensions were correctly sorted, the cards were 

changed and the next level was administered; the 

complexity of the different dimensions increased with 

each level. 

Chapter 5: 

Attention 

GAP Task;  

 

6, 12 and 30 months 

Used eye-tracking technology to assess visual reaction 

speed and attentional processes. The task challenged 

the child’s ability to disengage from a central stimulus 

when presented with a peripheral target. The task 
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was designed to highlight any deficits in attention by 

looking at the time taken to disengage (e.g. an 

inability to disengage may be a sign of ‘sticky 

attention’, typically seen in children with Autism 

Spectrum Disorder). 

Chapter 6: 

Information 

Processing-  

 

Behavioural 

measures   

Conjugate Mobile 

Reinforcement 

paradigm; 

 

3 months 

A behavioural paradigm designed by Rovee & Rovee 

(1969) targeting the operant learning response. A 

reinforcement paradigm, where the infant learnt 

specific movements displaced a mobile suspended 

above them, rewarding them with sounds and visual 

movement. The infants were considered to have 

learnt during the paradigm if a pre-determined 

criterion is reached.  

Babyscreen App; 

 

30 months 

A touchscreen based assessment designed by Twomey 

et al (Twomey et al., In Press). A newly developed 

application based on classic EF tasks but in a 

touchscreen environment enabling the investigation 

of speed of processing in relation to EF abilities. Tasks 

on which the application was designed include the A 

not B, and Dimensional card sort task (DCCS). 

Multi-Location 

Multi-step task 

(MLMS); 

 

30 months 

 

 

An extension to the A not B paradigm. An object was 

hidden in one location for one or more trials but 

retrieval of the object required the completion of a 

multiple step process. After correctly locating the 

object in 3 consecutive trials, the hiding location was 

switched to an alternative location. Perseverative 

errors and time to completion were summarised to 

provide performance measures. 

Neural 

measures   

Auditory ERP 

paradigm; 

 

Designed to assess speed of auditory information 

processing with particular interest in the speed of 

information transfer across the corpus callosum. 
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Table 2-5. Name and brief description of assessments evaluated within this thesis 

 

Table 2-6. Summary of questionnaires considered within this thesis.  

2.3 Statistical analyses 

Excluding the Bayley-III and the BabyScreen tasks, which were coded online, all 

other tasks were video recorded with data acquired off line. 20% of the data from 

each task were double coded for reliability, which was set at a minimum of 80% to 

be considered accurate. Due to the variation in participant attendance during the 

study, and the nature of neuropsychological assessments in infants and young 

children, full datasets for each child were not possible. This thereby led to variations 

in participant numbers for each task. Given this, population demographics will be 

30 months Infants watched an unspecific visual presentation on a 

screen whilst listening to  simple auditory  syllables 

presented to left and right ear independently 

(monaurally). The auditory N1 and P3 amplitudes and 

latencies will be compared between cohorts. 

Assessment 

age 

Questionnaire Description 

All time 

points 

Demographics (see 

Appendix 3) 

General information about the family; address, 

siblings, medical history, educational 

background, employment history, language 

dominance. 

30 months The Oxford 

Communicative 

Development Inventory 

(OCDI) 

A UK adaptation of the MacArthur-Bates CDI. A 

parental report of the receptive and expressive 

language produced by the child at the time of the 

assessment. The OCDI is used with the analyses in 

the subsequent chapters if the language scale of 

the Bayley-III is not completed. 
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given at the beginning of each results section. Data were analysed following a set 

procedure detailed below.  

Normality of each key variable within a data set was explored using histograms and 

the Shapiro Wilk test of normality. If data were not normally distributed a 

transformation was attempted to achieve normality. If normality could not be 

reached, or if a transformation was not appropriate, for example in cases where the 

data was based on standardised population scores, non-parametric tests were 

carried out on the raw data. For normally distributed (parametric) data, the mean 

and standard deviations will be reported; for non-normally distributed data (non-

parametric) medians and ranges will be reported. 

Following data exploration, variables were assessed for equality of variance using 

an analysis of variance test and then compared using the appropriate statistical test 

for differences in the term and VP groups. Significance was set p < .05; and a trend 

identified as a p-value between .05 and .1. In cases where the variables had 

repeated measures for each participant, a repeated measured analysis of variance 

(ANOVA) was carried out, where main effects and interaction effects were explored. 

Post-hoc analyses in the form of stepwise multiple comparisons using Bonferroni 

adjustments were run where appropriate. The statistical tests used will be reported 

in each results section. 

In section 1.1.1, upon review of the literature, the neonatal factors previously 

determined to be most influential of outcome in the early years and therefore were 

considered within all analyses were gestational age, social economic status as 

determined by the Index of Multiple Deprivation quintile score (IMD quintile; 

calculated from the family postcode (NPEU, 2013)) and male sex. For each task, one 

variable was selected a priori on a theoretical basis to best reflect the task 

performance and will be stated in each results section. A regression model was 

applied to investigate the relationship between this outcome variable whilst 

adjusting for study group (term/VP), male sex and IMD quintile.  
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For the tasks conducted at 30 months of age, an additional regression model was 

fitted to each task data adjusting for the cognitive composite score on the Bayley-III 

at 2 years. This investigated whether any differences seen in the task outcomes at 

this age were explained by overall cognitive scores or demonstrated domain-

specific variations.  

For the Gap data in Chapter 5, the longitudinal observations were investigated using 

a multi-level mixed effects model. These were generated with the main dependent 

variable cluster over the two or three age points, depending on the model. 

Ultimately, a longitudinal investigation of the data will be conducted within Chapter 

7 to explore the predictive validity of the EF, IP and attentional measures in relation 

to the Bayley-III cognitive scores. Sequential regression models will be produced to 

examine the contribution of each task score to the overall proportion of variance 

accounted for in the Bayley-III results. Z-scores will be produced for continuous 

variables using the term-born population mean and standard deviations. These will 

then be entered into the models alongside the pre-determined demographic 

confound variables: Male sex, Index for Multiple Deprivation quintile score as the 

measure of Social Economic Status, and study group. The baseline group in for all 

regression models unless otherwise stated, will be term-born females with an IMD 

quintile of 1. 



 
 

80 
 

Chapter 3 Global Measures of Cognitive, Language and Motor 

Development 

The Bayley Scales of Infant and Toddler Development – Third edition (Bayley-III), is 

an internationally recognised developmental assessment, standardised across a 

representative sample. Developed and published originally by Nancy Bayley in 1969 

(Bayley, 1969), the scale has been repeatedly used as a gold standard for assessing 

developmental delay in at risk populations, going through multiple updates to keep 

up with current research. The most recent updated was to the Bayley-III in 2006. 

Produced by Pearson Education Ltd., the measure assesses 5 key developmental 

domains: cognition, language, motor skills, social-emotional skills and adaptive 

behaviour; in children as young as 1 month up to 42 months of age.  

As discussed in section 1.1.2, global cognitive abilities are an indication of later IQ, 

and assessments such as the Bayley-III are designed to highlight children whose 

developmental progression is out of the normal range. Since its development in 

1969 (Bayley, 1969), the Bayley-III has been consistently utilised in clinics and 

developmental research. Particularly within individuals born preterm, there is an 

imperative need to track their neuropsychological development within the first few 

years after birth, to ensure the infants hit their developmental milestones; the 

Bayley-III has been and currently is the gold standard measure used. The Bayley-III, 

however, has previously undergone scrutiny due to its lack of sensitivity to those 

showing mild cognitive delay and its inability to detect subtle domain specific 

performance differences within the first two years after birth (Johnson, Moore and 

Marlow, 2014). This research alone highlights the need for improvements in early 

identification measures for those at risk of mild delays.  

The Bayley-III, and its predecessor, the Bayley-II, have been consistently used in 

preterm literature to further explore the cognitive impairments seen later in 

development with mixed results (Lobo and Galloway, 2013; Bode et al., 2014; 

Spencer-Smith et al., 2015). Although clinical practice consists of the use of the 

Bayley-III at 3, 6 and 12 months of age following preterm birth, research suggests 
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that the measure has poor predictive validity before 24months of age (Lobo and 

Galloway, 2013). Once at 24 months, studies have more frequently found 

correlations to later IQ (Bode et al., 2014). A consistent finding however, is the 

overestimation of developmental abilities (Anderson and Burnett, 2017). Although 

studies report a strong correlation between those identified as delayed in the 

Bayley-III at 2 years and those that later present with cognitive delays (Spencer-

Smith et al., 2015); a considerable proportion of children that later present with 

delays are not identified by the Bayley-III measures at 2 years, with this consistent 

across all Bayley subscales (Spittle et al., 2013; Spencer-Smith et al., 2015). 

Discussed in section 1.1.1, the effect of SES (social economic status) on cognitive 

outcome has been continually reported in the preterm literature (Tideman, 2000; 

Hack, 2006; Moore, Hennessy, et al., 2012). Poorer SES has been found to be 

associated to moderate cognitive difficulties, defined as <85 on the cognitive scales 

(Hack, 2006; Beaino et al., 2011). Those from poorer family backgrounds are less 

likely to show improvements in cognitive score from childhood into later school 

years (Hack, 2006). It is also possible that the difficulties reported in preterm 

populations at schools are not representative of the levels of impairments detected 

in infancy due to the SES related biases to follow-ups; the more disadvantaged 

families appear to require greater persuasion to attend follow-up assessments 

(Moore, Hennessy, et al., 2012).  

A second factor consistently associated to cognitive outcome is sex of the infant. 

Male survivors of premature birth are typically reported to present with poorer 

cognitive abilities than ex-preterm females (Moore, Hennessy, et al., 2012; 

Månsson, Fellman and Stjernqvist, 2015). Boys have frequently been reported to be 

at greater risk for brain injury and respiratory problems compared to girls and 

appear to be at a greater risk for sensory, motor and communicative problems 

(Elsmen, Pupp and Hellstrom-Westas, 2004; Peacock et al., 2012; Månsson, Fellman 

and Stjernqvist, 2015). Both factors are therefore accounted for when exploring 

cognitive outcome within the current investigation.  
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The Bayley-III was conducted at two time points within the current study, 12 

months as 24/30months; with the VP toddlers assessed during clinical follow-up at 

2 years, the following section will elaborate, and the term toddlers during the PDP 

30 month assessment. Given the evidence from the literature, it will not be possible 

to conclude which of the assessments holds the strongest predictive validity within 

the current cohort as further follow-ups would be required. However, it will be 

possible to explore the continuity of the measure longitudinally. In subsequent 

chapters, performances in EF, attention and IP will be adjusted for cognitive score 

performances, and inversely, the proportion of variation in the Bayley-III cognitive 

scores accounted for by the EF, attention and IP measures will be explored. 

3.1 Methodology of the Bayley-III 

Infants born very preterm are as standard in the UK, followed up at 4 time points 

after leaving hospital as part of their routine care: at 3, 6, 12 and 24 months of age. 

These assessments overlapped in part with the PDP assessment timeframe. Due to 

the nature of hospital appointments, in practice, the age at which the infants were 

seen varied. It was therefore not advisable for the PDP to repeat the Bayley-III 

assessment due to the possibility of practice effects and scores not reflecting true 

abilities.  Permission was therefore sort from the parents of the infants to access 

medical records and the relevant Bayley-III scores were obtained. The results from 

the clinical 24 month Bayley-III cognitive scale were used to adjust for global 

cognitive performance at 30 months of age in the VP cohort and the term infants 

were assessed on the Bayley-III during the PDP assessments at 12 and 30 months, 

performed by the researchers involved in the PDP study.   

The PDP researchers were taught the administration procedure of the Bayley-III by 

Mrs B Hutchon, the paediatric occupational therapist and National Trainer for 

Bayley assessments, who is responsible for the follow-up clinics within the North 

Central London Network, including UCH. Consistency between assessments the 

term and VP cohorts was strived for by following the same administration practices 

as those adopted in clinic.  
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The administration of the Bayley-III took place in the Clinical Research Facility at 

University College Hospital and typically lasted between 30-90 minutes depending 

on the age and the developmental stage of the child. The cognitive scale was 

typically the first scale to be performed in order to ensure scores reflected the full 

functional capacity of the child. The challenge of infant and toddler research is 

obtaining the necessary data, but in the most optimal conditions before the child 

tires. The cognitive scale was selected as the primary outcome measure for the 

assessment in this instance and therefore completion of this scale was essential.  

The cognitive scale was selected and justified as the predominant outcome measure 

in review of the numerous investigations that previously observed a link between 

global cognitive performance and EF measures (Potharst et al., 2012; Lobo and 

Galloway, 2013; Bode et al., 2014; Spencer-Smith et al., 2015). Although the scale 

has not been found to account for all variation in performance at later ages, it does 

appear to predict those with severe developmental impairment (Anderson and 

Burnett, 2017). This current investigation set out to explore whether any initial 

indications of EF differentiation were apparent at 2 and a half years of age in a 

cohort of term and VP toddlers. It was therefore essential to adjust EF 

performances by a measure of global cognitive performance to see if any 

differences in EF still remained. In a couple of instances in the current investigation, 

the impact of language comprehension on task performances was questioned; the 

language scales were therefore additionally explored in greater detail. Although all 

scales of the Bayley are reported below, the cognitive and language scores were 

predominantly taken forward though the subsequent chapter analyses.  

The results of the Bayley-III comprise of 5 raw scores from each of the scales. In the 

following datasets, the raw scores were converted into scaled scores which took 

into consideration the infants’ age at assessment. The scaled scores were then 

converted into composite (or standardised) scores; this normalised the scores 

around a mean of 100 and standard deviation of 15. The composite scores are 

calculated based on a normative sample of typically developing children, and are 

used to determine the developmental stage of a child’s performance during the 
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assessment according to typically developing peers. The measure has been 

performed on thousands of children in different countries so to provide a 

standardised representative dataset for each country. The UK sample included 221 

children aged between 12 and 41 months and is said to take into consideration 

‘geographic region, gender, age, ethnicity and parental education’ (Bayley, 2006). 

The use of composite scores reduced the reliance of carrying out the assessment 

within a narrow age-range. As discussed, this enabled the clinical 24 month follow-

up Bayley-III scores of the VP children to be utilised in the 30 month PDP visit 

instead of repeating the assessment again during the PDP visit.  

A topic that frequents the literature surrounding the Bayley-III is the insensitivity of 

the tool to mild cognitive impairments. The results of the study by Johnson, Moore 

and Marlow (2014), reported a low sensitivity of the Bayley-III at 24 months of age, 

with a number of children in the mild neurodevelopmental disability range 

speculated to have been missed. Given this, the cut-off score of <85 was used to 

identify those at possible risk of delay within this thesis (Aylward, 2013; Anderson 

and Burnett, 2017).  

3.2 Results 

3.2.1 Bayley-III scores at 12 months of age 

Fifty-three full term and 32 VP infants completed the cognitive scale of the Bayley-

III at 12 months (see Table 3-1 for population demographics). The mean cognitive 

composite score for the VP infants was 98.28 compared to 107.83 for the term 

infants. 
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  Term (n=53) VP(n=32) 

Gestational age 
Median (range); 

weeks
+d

 
40

+2
 (37

+1
 – 42

+0
) 26

+2
 (24

+0
 – 29

+4
) 

Male sex  28 (52.83) 23 (71.88) 

IMD Quintile  1 7 5 

 2 9 9 

 3 7 13 

 4 17 11 

 5 13 6 

Table 3-1. Population demographics for the cognitive scale on the Bayley-III at 12 months. 

Table 3-2. Neonatal characteristics of the VP infants that completed the cognitive scale on the 

Bayley-III at 12 months. 

 

At 12 months of age, VP infants cognitive composite scores were on average 9.55 

points (±.73 (95%CI) lower compared to term infants (t(83) = 3.90, p < .001), with an 

effect size of .8 (±.06 (95%CI). The motor composite scores were on average 12.53 

points (± .87 (95%CI) lower (t(78) = 4.63, p < .001) and consistent over the two 

subscales, fine (1.73: .16 (95%CI); (t(78) = 3.50, p < .001)) and gross motor (2.11: .62 

 Total cases; n=32 
Very Preterm; n=11 

(<32>27 weeks) 
Extremely Preterm; 
n=21 (<27weeks) 

 n % n % n % 

Cases of IVH/PVL: I-II 14 43.75 3 27.27 11 52.38 

IVH+ Intraventricular 
dilation 

7 21.88 1 9.09 6 28.57 

Intraparenchymal 
lesion/PVL 

7 21.88 2 18.18 5 23.81 

ROP: 18 56.25 2 18.18 16 76.19 

Stage 1 6 18.75 0 0 6 28.57 

Stage 2 8 25.00 1 9.09 7 33.33 

Stage 3 4 12.50 1 9.09 3 14.29 

CLD/BPD: 28 87.50 7 63.64 100 100 

Mild 8 25.00 3 27.27 5 23.81 

Moderate/ Severe 20 62.50 4 36.36 16 76.19 



 
 

86 
 

(95%CI); (t(78) = 3.79, p < .001)). Language had similar scores (2.11: .62 (95%CI); 

(t(74) = .60, p = .55)).  

12m Bayley-III scale  Term (n=53) Preterm (n=32) 
Mean difference 

(95%CI) 
p 

Cognitive Composite 

N 53 32   

Mean 
(SD) 

107.83 (11.87) 98.28 (9.12) 9.55 (± .73) *** 

Cognitive z-score 
Mean 
(SD) 

0 (1.00) -.80 (.77) 0.8 (± .06)
Ψ

  

Language Composite 

N 44 32   

Mean 
(SD) 

100.55 (10.86) 98.44 (17.73) 2.11 (± 1.12)  

Receptive Language  
Scaled score 

N 44 32   

Mean 
(SD) 

9.96 (2.64) 9.34 (2.66) .62 (± .20)  

Expressive Language  
Scaled score 

N 44 32   

Mean 
(SD) 

10.27 (2.18) 10.09 (3.80) .18 (± .24)  

Motor Composite 

N 46 32   

Mean 
(SD) 

101.87 (12.24) 89.34 (10.99) 12.53 (± .87) *** 

Fine Motor 
Scaled score 

N 46 32   

Mean 
(SD) 

11.07 (2.53) 9.34 (1.81) 1.73 (± .16) *** 

Gross Motor  
Scaled score 

N 46 32   

Mean 
(SD) 

9.47 (2.83) 7.09 (2.67) 2.38 (± .20) *** 

Table 3-3. 12 month Bayley-III composite scores; *p<.05; **p.01; ***p<.001;  

Ψ 
Effect size of primary measure, cognitive composite score. 

Although there was a significant difference between the two study groups, only one 

VP infant scored within the clinically significant range with a score of 75 (Table 3-4). 

Three term infants and four VP infants scored <85 on the language scale.  

12m Bayley-III scale  Term (n=53) Preterm (n=32) 

Cognitive Composite 
N<85 0 1 

Mean score (SD) - 75 

Language Composite 
N 3 4 

Mean score (SD) 80 (5.2) 73.5 (6.81) 

Table 3-4. Count of infants to score within the clinical range (<85) 
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Due to the term infants scoring on average 7 points higher than the expected 

standardised norms, z-scores utilising the term mean and standard deviation of the 

composite scores were produced in order to account for the variation between the 

two study cohorts. 

Table 3-5 investigates the effect of male sex and IMD quintile on the 12 month 

cognitive z-score of the Bayley-III. At 12 months, study group was the only variable 

to have a predictive effect on the 12 month cognitive score outcome.  
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Table 3-5. Linear regression model with outcome as 12 month cognitive z-scores (F(3, 81) = 5.45, p = .001). The base group was set as the term born females with an IMD 

quintile of 1. 

 

 
 
 
Overall model fit R

2
 = 0.17 

Predictor Term (n=53) Preterm (n=32) 

Coef 95%CI 

  
 

 

Median (range) Median (range) P 

Study 
Group 

- - -.79 -1.22 – -.37 .000 

Male Sex 28 (52.83) 23 (71.88) .12 -.30 – .54 .56 

IMD 
Quintile 

4 (1-5) 3 (1-5) .08 -.07 – .24 .30 

Cog 
score 
(const.) 

  -.34 -.99 – .31 .31 
-1.5 -1.0 -0.5 0.0 0.5 1.0

Coefficient	(95%	CI)
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3.2.2 Bayley-III scores at 2 years 

Twenty-four full term and 26 VP infants completed the cognitive scale of the Bayley-

III at 2-2.5 years (see Table 3-6 for population demographics). The mean cognitive 

composite score of the VP infants’ was 100 compared to the term infants’ score of 

105. 

 

  Term (n=24) VP (n=26) 

Gestational age 
Median (range); 

weeks
+d

 
40

+2
 (37

+0
 – 42

+2
) 26

+2
 (23

+4
 – 29

+4
) 

Male sex  14 (50%) 21 (72.41%) 

IMD Quintile  1 5 5 

 2 4 3 

 3 4 10 

 4 9 7 

 5 6 4 

Table 3-6. Population demographics for the cognitive scale on the Bayley-III at 2-2.5 years. 

 

 Total cases; n=26 Very Preterm; n=8 
(<32>27 weeks) 

Extremely Preterm; 
n=18 (<27weeks) 

 N % N % N % 

Cases of IVH/PVL: I-II 12 46.15 2 25.00 10 66.66 

IVH+ Intraventricular 
dilation 

7 26.92 0 0 7 38.89 

Intraparenchymal 
lesion/PVL 

5 19.23 2 22.22 3 16.67 

ROP: 13 50.00 1 12.50 14 70.00 

Stage 1 5 19.23 0 0 6 30.00 

Stage 2 5 19.23 0 0 6 30.00 

Stage 3 3 11.54 1 12.50 2 10.00 

CLD/BPD: 25 96.15 7 87.50 18 100.00 

Mild 9 34.62 3 37.50 6 33.33 

Moderate/ Severe 16 61.54 4 50.00 12 66.67 

Table 3-7. Neonatal statistics for the VP children that completed the cognitive scale on the Bayley-

III at 2 years. 
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2-2.5 year Bayley-III 
scale 

 Term (n=24) Preterm (n=26) 
Mean difference 

(95%CI) 
p 

Cognitive Composite 

N 24 26   

Mean 
(SD) 

107.71 (12.42) 101.92 (12.81) 
-5.79 (-12.98 – 

1.40) 
 

Cognitive z-score 
Mean 
(SD) 

0 (1) -.47 (1.03) 
-.47 (-1.05 – 

.11) 
Ψ

 
 

Language Composite 
N 14 26   

Mean 
(SD) 

119.43 (10.41) 97.81 (18.23) 
-21.62 (-12.45– 

-30.79) 
*** 

Receptive Language  
Scaled score 

N 14 26   

Mean 
(SD) 

13 (1.75) 9.65 (2.80) 
-3.35 (-4.81 – -

1.88) 
*** 

Expressive Language  
Scaled score 

N 14 26   

Mean 
(SD) 

13.57 (2.68) 9.5 (3.82) 
-4.07 (-6.18 – -

1.97) 
*** 

Motor Composite 

N 9 26   

Mean 
(SD) 

117.44 (15.91) 94.58 (11.86) 
-22.87 (-35.58 – 

-10.15) 
*** 

Fine Motor 
Scaled score 

N 9 26   

Mean 
(IQR) 

12.33 (1.66) 9.92 (1.92) 
-2.41 (-3.83 – -

.99) 
** 

Gross Motor  
Scaled score 

N 9 26   

Mean 
(IQR) 

13.44 (4.18) 7.88 (1.93) 
-5.56 (-8.82 – -

2.3) 
*** 

Table 3-8. Bayley-III scores at 2 year time point; *p<.05; **p<.01; ***p<.001 

Ψ 
Effect size of primary measure, cognitive composite score. 

 

In contrast to the scores at 12 months, at 2-2.5 years the cognitive composite scores 

of the VP children showed a lesser deficit compared to term children (difference in 

means: 5.0; -12.98 – 1.40 (95% CI); (z(48) = 1.84, p = .07)).  

VP infants scored significantly lower in language (difference in means 21.62 points; 

12.45-30.79 (95% CI); (t(38) = 4.77, p < .001)) which was consistent over the two 

subscales, receptive (difference in means 3.35; 4.81-1.88 (95% CI); (t(38) = 4.64, p < 

.001)) and expressive language (difference in means 4.07: 1.97-6.18 (95% CI); (t(38) 

= 3.93, p < .001)); and motor composite scores (difference in means 22.87 points; 

10.15-35.58 (95% CI); (z(33) = 3.39, p < .001)) and subscales, fine (difference in 
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means 2.41: .99-3.83 (95%CI); (z(33) = 2.93, p < .003)) and gross motor (difference 

in means 5.56: 2.3-8.82 (95%CI); (z(33) = 3.41, p < .001)). 

Both the cognitive and motor composite score were compared with Mann Whitney 

U tests due to the marginal skew in both data sets (Figure 3-1). 

 

 

Figure 3-1. Frequency distribution of the cognitive (A) and motor (B) composite scores collapsed 

across study groups.  

No term or VP born children scored within the clinically significant range for the 

cognitive scales at the 2 year assessment, when taking <85 as the cut off (Table 3-9). 

Nine VP children displayed language scores within the clinical range, with one infant 

scoring within the clinical range at for both language scores.  

2 year Bayley-III scale  Term (n=24) Preterm (n=26) 

Cognitive Composite 
N<85 0 0 

Mean score (SD) - - 

Language Composite 
N 0 9 

Mean score (SD) - 78.33 (7.05) 

Table 3-9. Count of children within the clinically significant range of <85 
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Again, the term infants scored on average 5 points higher than the expected 

standardised norms, therefore the z-scores utilising the term mean and standard 

deviation of the composite scores were produced in order to account for the 

variation between the two study cohorts. 

Table 3-10 explores the effect of study group, male sex and IMD quintile on the 2 

year cognitive z-score of the Bayley-III. At 30 months, study group did not have any 

predictive effect on the cognitive score as the outcome. 
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Table 3-10. Linear regression model with outcome as 30 month cognitive z-scores (F(3, 46) = 1.21, p = .32). The base group was set as the term born females with an IMD 

quintile of 1. 

 
 
 
 
Overall model fit R

^2
 = 0.07 

Predictor Term (n=24) Preterm (n=26) 

Coef 95%CI 

  
 

Median (range) Median (range) P 

Study 
Group 

- - -.38 -1.01 – .25 .23 

Male Sex 14 (50) 21 (72.41) -.09 -.73 – .55 .78 

IMD 
Quintile 

4 (1-5) 3 (1-5) .12 -.12 – .35 .32 

Cog 
score 
(const.) 

  -.36 -1.30 – .57 .44 -1.5 -1.0 -0.5 0.0 0.5 1.0

Coefficient	(95%	CI)
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3.2.3 Longitudinal Bayley-III cognitive scores 

Eighteen term and 22 VP infants completed the cognitive scale of the Bayley-III at 

both time points months (see table 3-11 for population demographics). The mean 

cognitive composite score for the VP infants increased by 2.5 points (± 1.51 (95%CI)) 

compared to smaller .27 point rise (± 2.08 (95%CI)) for the term born infants. The 

effect size within the term-born infants was .03 and within the VP .27. 

  Term (n=18) VP(n=22) 

Gestational age 
Median (range); 

weeks
+d

 
40

+3
 (38

+5
 – 42

+0
) 26

+3
 (24

+0
 – 29

+4
) 

Male sex  28 (52.83%) 23 (71.88%) 

IMD Quintile  1 2 5 

 2 4 3 

 3 3 5 

 4 4 7 

 5 5 2 

Cognitive composite 
12m 

Mean (SD) 105.56 (13.92) 99.09 (9.08) 

Cognitive composite 2 
years 

Mean (SD) 105.83 (11.28) 101.59 (13.31) 

Mean Difference  (95%CI) .27 (± 2.08) 2.5 (± 1.51) 

Table 3-11. Longitudinal population demographics for the cognitive scale on the Bayley-III at 12 

months and 2-2.5 years 

 

Table 3-12 and figure 3-2 shows the correlation coefficients between the cognitive 

scores collected at 12 months and 2 year time points.  

Bayley-III scale Cognitive Composite 

 N Correlation Coefficient (p) 

Total Cohort 40 .31 (.05) 

Term  18 .31 (.22) 

Preterm 22 .27 (.23) 

Table 3-12. Correlation coefficients between the 12 month and 2 year cognitive Bayley-III scores. 
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Figure 3-2. 12 month and 2 year Bayley-III correlation data for Term and Very Preterm children  

 

Table 3-13 displays the outcome of a random intercept linear mixed-effect model 

with cognitive composite scores at both time points as the dependent variable, 

participant ID as the random effects identifier and age of testing nested within the 

model. Study group was a significant predictor of the overall cognitive score, with 

the preterm regression coefficient of -6.55. The age of the assessment was not a 

significant predictor of the outcome, nor was male sex or IMD quintile 
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Table 3-13. Mixed effects regression model with outcome as cognitive scores over the 12 month and 2 year Bayley-III assessments. Only children with both time points 

were included within the model. The predictor ‘Age’ was the longitudinal index within the model. The base group was set as the 12 month cognitive score for the term 

born females with an IMD quintile of 1. 

 

Wald chi
2
 = 8.94, p = .06 

Predictor Term (n=18) Preterm (n=22) 

Coef. 95%CI 
  

 

 

Median (range) Median (range) P 

Age - - 2.11 -2.01 – 6.24 .31 

Study 
Group 

40+3 (38+5-42+0) 26+3 (24+0-29+4) -6.55 -11.86 - -1.23 .02 

Male sex 9 (50%) 18 (81.82%) 3.09 -2.42 – 8.60 .27 

IMD 
Quintile  

4 (1-5) 3 (1-5) 1.04 -.88 – 2.96 .29 

Cog 
score 
(const.) 

- - 100.73 92.93 – 108.63 .000 
-15 -10 -5 0 5 10

Coefficient	(95%	CI)
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3.2.4 Z-score analysis 

Consistent with previous research, the term infants in the current cohort scored 

higher on the cognitive scale of the Bayley-III than typically expected when utilising 

the normalised means provided by the tool. Due to this higher mean within the 

term group, z-scores were calculated for both cognitive composite scores at 12 

months and 2 years and will be used for all global cognitive performance 

adjustments within subsequent analysis chapters. By formulating a z-score based on 

the term born infants performances, a clearer interpretation can be made as to how 

the VP infants perform in relation to the controls on each of the EF, IP and attention 

tasks once global cognitive performance is adjusted for. Table 3-14 collates the 

scores at both assessment ages. 

  Term VP 

12m Cognitive 
scores 

 
(n=T:53; VP:32) 

Male  28 (52.83%) 23 (71.88%) 

IMD Quintile 
(Median; IQR) 

4 (2) 3 (2) 

Composite  
(mean; sd) 

107.83 (11.87) 98.28 (9.12) 

z-score  
(mean; sd) 

0 (1.00) -.80 (.77) 

24/30m Cognitive 
scores 

 
(n=T:24; VP:26) 

Male  14 (50%) 21 (72.41%) 

IMD Quintile 
(median; IQR) 

4 (2) 3(2) 

Composite  
(mean; sd) 

107.71 (12.42) 101.92 (12.81) 

z-score  
(mean; sd) 

0 (1.00) -.47 (1.03) 

Table 3-14. Cognitive composite and z-scores from the Bayley-III assessment at both 12 and 24/30 
month time points. 

3.3 Discussion 

The primary goal of the current thesis is to further our understanding of the VP 

children’s cognitive abilities through the first two years of life, with a particular 

interest in determining any specific EF, IP and attentional difficulties. Thus, it is of 

high importance to have a global measure of cognitive performance to understand 

if any difficulties observed in later specific tasks are in line with general ability, or 

impaired above the level expected.   



 
 

98 
 

The results of the Bayley-III cognitive scale within the current investigation found 

the term infants scored on average 7 points higher than the VP infants at 12 months 

of age, and 5 points higher at 2 years. Although the term infants displayed a level of 

consistency in the scores at each age point, when looking within infants that had 

two measures there was a no longitudinal correlation observed. 

Within the preterm literature, a prominent question is how early delays or 

impairments can be accurately detected in order to develop successful, targeted 

interventions (Spittle et al., 2007). Previously, Bayley-III cognitive scores at 2 years 

have been reported to correlate with later cognitive performance abilities (Bode et 

al., 2014); limited evidence is available for the predictive validity at 12 months 

(Lobo and Galloway, 2013). The VP infants displayed a marginal increase in cognitive 

score at 2 years, however, when exploring those with two time longitudinal 

measures, using pairwise correlation, figure 3-2 displays the weak correlation 

between the scores across the two years. This draws into question the reliability of 

the scores as a measure of cognitive performance over the two years. Although it 

could be argued that the absence of a relationship between the 12 and 30 month 

scores reflects a discontinuity between the measures; the 12 month Bayley-III 

scores cannot be discounted without additional follow-ups. The increase in VP 

scores at the two year assessment but poor correlation to the score at 12 months 

could suggest that some of the VP infants are displaying an improvement in 

cognitive ability, but others a decrease. This would not necessarily infer the 

cognitive score at 12 months as incorrect, but it would make it a poor predictor at 2 

years. As seen in previous studies, for example the investigation by Lobo and 

Galloway (2013), the 24 month assessment is a better reflection of later 

performance in preterm infants; it could therefore be postulated that the 

performance differences here are showing more stability by the age of 2 years. 

Which of the scores, either at 12 months or 2 years, is the more accurate reflection 

of later ability within the current cohort will require further follow-up beyond the 

current investigation. However, the validity of this measure can be explored in 

relation to the two cohort’s performances on EF, IP and attention specific tasks. This 
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will provide an insight into how well the measures are evaluating the abilities in 

relation to these cognitive skills. 

There has been much discussion within the literature regarding the score used to 

define developmental delay within the Bayley-III (Aylward, 2013; Johnson, Moore 

and Marlow, 2014; Anderson and Burnett, 2017). Previously, the Bayley-II had a 

combined cognitive and language score called the Mental Development Index (MDI) 

and was highly regarded for many years (Johnson and Marlow, 2006; Johnson, 

Moore and Marlow, 2014). Upon the introduction of the Bayley-III, where the 

cognitive and language assessments were separated into independent scales, 

although the Bayley-III scores correlated with the previous MDI scores, the Bayley-

III appeared to be producing scores approximately 7-10 points higher, making 

scores of 107 the norm, not appropriate for a standardised measure (Aylward, 

2013; Johnson, Moore and Marlow, 2014).  

Johnson, Moore and Marlow explored the differences in scores in a study in 2014 

with a cohort of extremely preterm infants. The conclusion reached was a cut off of 

<85 on either the cognitive or language scales is more representative of moderate 

to severe neurodevelopmental delay than the previously used score of <75. This 

higher cut off was more in line with those that had previously scored within the 

neurodevelopment impairment range of <70 on the MDI (Johnson, Moore and 

Marlow, 2014).  

Other methods of dealing with this discrepancy include using Developmental 

Quotient (DQ), generated by dividing the developmental age by the chronological 

age and multiplying by 100 (Milne, McDonald and Comino, 2012). This theoretically 

provides an estimated rate of development relative to a standardised sample. 

However, when investigating a group of children born preterm, particularly beyond 

the age of 2 years of age, there is often disagreement on whether to continue to 

adjust for the child’s corrected age or use their chronological age. The use of this 

measure can therefore be hard to justify (Rickards et al., 1989; Sugita et al., 1990; 

de Jong et al., 2015). This method also assumes that the standard deviations of the 
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scores are comparable for all ages, however, that is not always the case and 

therefore the DQ could be considered less precise (Anderson and Burnett, 2017).   

Within the current cohort, no toddler scored within the mild to moderate clinical 

range for the cognitive score at 24 months (cognitive score <85). It could be 

postulated that the current results illustrates the poor sensitivity and predictive 

validity of the Bayley-III commonly reported in the literature, and mild cognitive 

impairments are not reflected in the scores (Anderson and Burnett, 2017). When 

comparing to previous studies, the current results of the Bayley-III appear unusual 

from a cohort of children born before 32 weeks of gestation. Previously, in a cohort 

of toddlers born at <30 weeks, 11% of the infants tested scored within the mild to 

moderate impairment range at 24 months (<85) (Spencer-Smith et al., 2015). These 

results echoed the study by Bode et al., (2014) who reported 18% of VP infants to 

score within mild to moderate range (GA <30 weeks). An investigation into the 

cognitive performance of extremely premature infants (birth at < 27 weeks 

gestation) at 2 to 3 years of age reported 10.2% to score <85 on the cognitive scale 

(Johnson, Moore and Marlow, 2014). These results are not supported in the current 

cohort, where 69% of the infants were born at <27 weeks gestation.  

These high Bayley-III scores could be a reflection of lower neonatal risks within the 

cohort. However, in the investigation by Spencer-Smith et al., (2015), 9% infants 

were reported to have had a IVH grade 3 or over compared to 19% of the current 

cohort, and 31% of the infants reportedly suffered with BPD compared to 61% of 

the current cohort. Although these characteristics have not been consistently 

related to later outcome, this is likely due to the difficulty in categorising the 

severity of illness within premature cohorts; previous reports have found 

associations between these conditions and later cognitive performances (Luu et al., 

2009; de Mello, Rodrigues Reis and da Silva, 2017). As the prevalence levels of these 

neonatal conditions do not differentiate the cohorts discussed from the current 

cohort, the high Bayley-III scores of the current population could therefore indicate 

the infants recruited onto the PDP are displaying a more typical trajectory. 

However, given what is known about preterm development and given the mean 
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gestational age of the cohort (approximately 26 weeks gestation), evidence would 

suggest this is not likely to be the case. 

Although the sensitivity and specificity of the Bayley-III scores are still being 

explored within the literature, there is some evidence that suggests performance at 

2 years may have a level of predictive validity for cognitive functioning later in life 

(Bode et al., 2014; Spencer-Smith et al., 2015; Breeman et al., 2016; Linsell et al., 

2017, In press).  Bode and colleagues found a correlation coefficient of .81 for the 

cognitive scale and .78 for the language scale of the Bayley-III when comparing 

scores to those collected in the WPPSI-III at 4 years of age in a group of preterm 

children (Bode et al., 2014). Spencer-Smith and colleagues also investigated the 

predictive nature of the Bayley-III at 2 years on later functioning using the DAS-II in 

a group of very preterm children, reporting a low sensitivity of the measure at 

detecting those within the mild to moderate range (Spencer-Smith et al., 2015). In 

contrast, an investigation into the relationship between cognitive function in 

childhood through to adulthood in a cohort of very preterm or low birth weight 

infants, by Breeman et al., (2015), reported a level of consistency within cognitive 

scores measured at 20 months of age to IQ scores reported in adulthood, even 

when excluding those within the severe range. This clearly illustrates the 

discrepancies within the literature regarding the use of the Bayley-III.  

From this exploration into the Bayley-III scores at 12 and 2 years, it can be 

concluded that there is an overall performance difference between the term and VP 

cohorts on global cognitive function. Although, none of the toddlers score within 

the clinically significant range at the 2 year time point for the cognitive scale, this 

does not rule out subtle impairments within the VP group, and compared to the 

term born infants there is a significant difference between the cohorts over the two 

time points. Due to this difference and given the discrepancies with the Bayley-III 

normative data within the literature, it is likely that the term born infants within this 

study are a better reference point for global cognitive performance. In order to 

ensure performance across subsequent task analyses is comparable, the z-scores 

calculated based on the term performance at each age point will be used to adjust 
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for global cognitive performance. For the tasks analysed in the first year, the 12 

month cognitive z-scores will be used, and for those conducted at 30 months the 2 

year z-scores will be used.  
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Chapter 4 Executive Functions 

EFs are considered top-down processes that influence the more routine or 

fundamental cognitive skills that have been automated over time following learning 

and repeated practice (Burgess, 1997). The progression of automatic processing to 

higher order functioning, allows for more control and process-driven behaviours 

that facilitate our ability to plan, troubleshoot and handle novel situations (Gilbert 

and Burgess, 2008). Deficits in these abilities can lead to impulsivity and distractible 

behaviours (Hughes, 2002) as well as difficulties in conceptual reasoning and later 

academic achievements (Aylward, 2005). Children born preterm consistently show 

poorer performance on EF tasks (Howard, K., Anderson, P. J., & Taylor, 2008; 

Mulder et al., 2009; Mulder, Pitchford and Marlow, 2011b; Rose, Feldman and 

Jankowski, 2011, 2012; Aarnoudse-Moens et al., 2013). 

Quantifying these cognitive processes has proved a challenge for many research 

groups due to the interrelated nature of these skills, in addition to the associated 

social and emotional influences (Burgess, 1997; Gilbert and Burgess, 2008). The 

understanding of the three sub domains of EF: inhibition, working memory, and 

cognitive flexibility have driven the development of EF assessments to 

predominantly focusing on one EF domain over the others. For example, inhibitory 

based tasks commonly require the individual to overcome a strong stimulus-

associated response; working memory tasks require the holding of information in 

mind over a period of delay; lastly, cognitive flexibility tasks require switching 

between rules or conditions or between two or more stimulus-based responses 

(Gilbert and Burgess, 2008). However, as discussed, assessing one domain incurs 

the use of the others because of the common factors between them, described by 

the unity and diversity model (Miyake et al., 2000; Miyake and Friedman, 2012). 

When studying the development of EF, research suggests that these skills improve 

with age (Beveridge, Jarrold and Pettit, 2002), with a substantial amount of EF 

research focusing on preschool and early school aged children. Age-related changes 

in EF abilities are often reflected in task complexity. For example, younger children 
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are more likely to score poorly on tasks with complex rules than older children who 

have the abilities to comprehend, remember and execute the task instructions 

(Hughes, 2002). In older children, this allows task parameters to be altered in order 

to assess the contribution of different EF domains on cognitive performance, 

providing a within subject understanding of EF maturity, such as working memory 

load capacity (Hughes, 2002). However, in very young children, this is not 

necessarily reflective of EF ability, but rather of language and/or motor abilities that 

could hinder the completion of the task. Therefore emphasis has been placed on 

the importance of age appropriate assessments for targeting EF in infancy and early 

childhood (Best and Miller, 2010), and can constrain assessments to specific 

methodological structures. 

Studies into the developmental trajectory of EF and the emergence of the sub-

domains have produced conflicting results, potentially due to the restrictive nature 

of infancy capabilities when attempting to target the different EF domains. A 

general consensus within the literature proposes all domains emerge and show 

signs of development during preschool years, with working memory and flexible 

thinking showing continued development into adolescence and beyond (Best and 

Miller, 2010; Roebers, 2017), yielding support for the unity and diversity model 

(Miyake et al., 2000). These developmental changes in EF ability are thought to 

reflect, in part, the adaptations of the frontal lobe during development. The 

prefrontal cortex is considered to predominantly govern EF abilities (Sun and Buys, 

2012a).  

The growth of the frontal lobe is protracted in human development. Prefrontal 

adaptations including synaptogenesis and myelination occur late in the pre- and 

perinatal period. It has been postulated that this area may be vulnerable to 

disruptions, such as hypoxic events, during preterm birth (Espy et al., 2002). 

Although the causality of EF deficits observed in ex-preterm populations is 

unknown, there are repeated reports of smaller regional volumes, such as the 

frontal lobes, basal ganglia and cerebellum, as well as disturbances in subcortical 
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white matter, correlated with poorer EF outcomes in ex-preterm populations 

(Nosarti et al., 2008; Sun and Buys, 2012a; Taylor and Clark, 2016).  

Impairments in EF are typically reported in later childhood for ex-preterm 

populations, the size of the deficit being proportional to gestational age at birth 

(Aarnoudse-Moens et al., 2011). Whether the deficits observed are specific to one 

EF domain or a more general disability, in the literature is undecided, as detailed in 

section 1.2. In any regard, two meta-analyses investigating ex-preterm 

performances on EF related tasks reported a consistent deficit in EFs across the 

preterm literature (Aarnoudse-Moens, Weisglas-Kuperus, et al., 2009; Mulder et al., 

2009). In contrast to the widely investigated difficulties observed in EF in later life, 

there is a limited understanding in the literature of when these deficits first emerge 

in preterm populations.  

In infancy, a number of studies have reported poorer performances in EF-related 

tasks in preterm cohorts (Sun, Mohay and O’Callaghan, 2009; Lobo and Galloway, 

2013). For example, preterm infants have been reported to display poorer working 

memory abilities in response to the A-not-B paradigm at 7 to 8 months of age (Sun, 

Mohay and O’Callaghan, 2009), and have displayed poorer learning to the conjugate 

mobile reinforcement paradigm at 3 months of age (Lobo and Galloway, 2013). 

However, to the authors’ knowledge, no studies to date have examined the 

trajectory of these abilities over the first year into the toddler years. It is unclear 

how deficits observed in the first year fit into the older cognitive profile of children 

born preterm.  

Pre-school and older children have been extensively studied in the very preterm 

population (Espy et al., 2002; Vicari et al., 2004), but very few studies have 

investigated EF performance in toddlers (Ross et al., 1996; Pozzetti et al., 2014). In 

those that have, the results of EF tasks are mixed. For example in a study by Ross et 

al., (1996), significant differences between 28 month old term and preterm toddlers 

were reported on a hidden object task (a working memory assessment) and a 

reverse response set paradigm (a cognitive flexibility assessment). In contrast,  



 
 

106 
 

Pozzetti et al. (2014) only reported differences between preterm and term born 

toddlers on cognitive flexibility measures. Differences between these investigations, 

from population demographics, to task procedures, could explain these findings. 

The absence of investigations into this age range leaves a large gap in our 

understanding on the emergence of deficits in preterm populations.  

The current investigation aims to provide additional evidence by exploring EF 

abilities within a longitudinal cohort.  

The following chapter uses established investigations to understand the relationship 

between emerging EF over the first 2 years after birth in a very preterm population 

and more conventional measures of developmental outcome, the cognitive scale of 

the Bayley-III. It is hypothesised that differences will be observed in EF 

performances across both the first and second year assessments. Due to the nature 

of the development of EF, currently there are no established tasks available that 

assess EF abilities in the both first and second years. The necessity of increasing task 

complexity with age in order to challenge EF performances unfortunately hampers 

direct comparisons between the tasks from the first to the second year. 

Nevertheless, a detailed observation of EF abilities over the first two years, in a 

population in whom difficulties are predicted could provide a clearer theoretical 

understanding of how EF develops. With this greater understanding, better 

detection of early difficulties could be established. Subsequently, custom targeted 

inventions then could be developed to optimise the developmental trajectories of 

children showing signs of early delay. 

The EF tasks will be reported in age order to acquire an understanding of how 

differences in EF performance evolve with age. 
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4.1 Methodologies and procedures 

4.1.1 Delayed Response Task (DRT) 

The Delay Response Task (or DRT) was administered at the 6 month time point, with 

the version used similar to that used by Schwartz and Reznick, (1999) and Noland et 

al. (2010), using ocular movements to determine correct responses (developed 

originally by Gilmore and Johnson (1995)). The current task design was developed 

by Natasha Mooney, who has an abstract on her work with this task published in 

DMCN. 

The premise of this task in the first instance is to assess early working memory 

capabilities by presenting the infant with a stimulus in a specific location and 

assessing their ability to remember this location after a delay. The DRT format has 

been a long established assessment of frontal lobe function both in human and non-

human primates (Fuster, 1973). Improved performance in such task were noted 

from 6 to 12 month infants by Diamond and Doar, in line with prefrontal cortex 

development (1989). A delayed response task was selected due to its established 

success in the literature for determining early cognitive functioning in infants 

(Garon, Bryson and Smith, 2008), and the well-known link between the frontal lobe 

and EF performance (Diamond and Doar, 1989). At 6 months of age, infants have 

been shown to be able to retain information in mind for a period of a few seconds, 

and this ability increases with age. The success of other EF tasks, for example the A-

not-B paradigm, are typically confounded by immature motor and planning abilities 

at this age (Thelen, Corbetta and Spencer, 1996). Therefore ocular movements were 

utilised for this paradigm to provide the best reflection of EF performance. 

In preterm infants, there is limited research utilising Delayed Response paradigms 

at 6 months of age. The majority of investigations occur in the second half of the 

first year, utilising paradigms such as the A-not-B (Sun, Mohay and O’Callaghan, 

2009; Sun and Buys, 2012a). 



 
 

108 
 

4.1.1.1 DRT Apparatus and methodology 

The DRT apparatus consisted of a 90 x 60cm screen securely fastened to a narrow 

table 72cm high. The screen contained 2 windows of the same dimension (15cm x 

21cm) cut 9cm in from each side of the screen and 7cm from the top. On the back 

of the screen, a roller blind was secured at the top with a pull that would lower and 

raise the curtain during the task. The infant was sat on the parent or guardians lap 

on a chair in front of the screen. The chair was adjusted so that the infant was 

positioned in the centre of the screen and approximately 150cm way. During the 

task, a camera was secured to the top centre of the screen so that the infant was in 

full view and their eye gaze fully visible. The experimenter sat behind the table. A 

black cloth was laid over the table, beneath the screen, to obscure the 

experimenter sat behind.  

During the task, 2 stimuli were presented to the infant from the windows in the 

screen. In this version of the task, a non-social stimulus, or a social stimulus was 

presented. The non-social stimulus was one of two rattles, either a round rattle 

comprised of 2 pink bowls filled with rice, and decorated with pompoms, or the 

typical shape of an infant rattle with a stem and oval end in blue, yellow and red 

colours, but was not a common toy that the child was likely to have come into 

contact with. Neither rattle displayed any social reference and when shaken in the 

windows of the screen during the task, was held in a way that did not display any 

part of the experimenters’ body. The social stimulus was the experimenter 

themselves, presenting their face in the windows of the screen. Upon presenting 

their face in the window, the experimenter would say ‘Hello *infants name*, hello’, 

in an enthusiastic manner to capture the infants’ attention. 

The DRT comprised of 3 test phases; a pre-test phase and a social and a non-social 

condition. The infant was first shown the pre-test phase where a paired comparison 

screening took place. The comparison displayed both the non-social stimulus and 

the experimenters face simultaneously, one in each window. Simultaneous 

comparison presentation was repeated twice, alternating the stimuli between 
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windows in the two trials. The order of the side of social stimulus presentation was 

counterbalanced between infants. Preceding the pre-test phase, either the social or 

non-social condition was initiated, the order of which was counterbalanced 

between infants. Both conditions started with the lowering of the roller blind. Once 

at the bottom the experimenter waited for 3 seconds before lifting the blind again, 

being careful not to expose any of their body to the infant through the windows of 

the screen. Once the blind was lifted, the experimenter waited for 5 seconds before 

either presenting the non-social stimulus or social stimulus in one of the windows. 

This 5 second delay was the response window for the infant to direct its gaze to the 

previous stimulus presentation window, where they should be expecting the 

stimulus to re-appear (this was not possible on the first trial as no trial had 

preceded this). The ‘call’ of each condition lasted approximately 5 seconds each, in 

order to orient the infants’ attention to the window of presentation. The non-social 

stimulus was rattled for 5 seconds, and the experimenter called the infant using the 

phrase above whilst at the window. The roller blind was then lowered and the next 

trial would begin. The infants gaze was recorded in the response window after the 

completion of the first trial, when the curtain was re-opened before the 

presentation of the second stimulus condition. 

The infant’s initial gaze direction after the opening of the curtain on each trial was 

recorded as correct or incorrect according to the side of the preceding stimulus 

presentation (Reznick et al., 2004). Due to this, the first trial performed could not be 

recorded as a test trial for the first condition as there were no preceding trials. A 

total of 10 responses for each condition was required from the infant, therefore to 

achieve this, 10 trials were conducted for the first condition, and 11 for the second. 

The first trial of the second condition was still and assessment of working memory 

for the previous condition as the response window precedes the next new stimulus 

presentation. For clarity, please see figure 4-1.  

The sound of the roller blind was clearly audible within the videos and was used to 

determine the start and finish of each trial. Upon hearing the roller blind lift, the 

direction of the infant’s first look was marked as the response to the previous trial. 
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If the infant looked towards the location of the previous stimulus, a correct 

response was awarded. If the infant looked towards the incorrect direction, an 

incorrect response was recorded. If the infant failed to look at the apparatus in the 

response window, this was recorded as not looking. 

The total number of correct trials for each condition was recorded then divided by 

the total number of trials for that block. This gave a ‘proportion of correct’ for each 

condition. Although the aim was to obtain 10 trials for each condition, this was not 

always possible due to the temperament of the infant. The results were collapsed 

across conditions, but a minimum of 8 completed trials per condition were required 

for infants to be included in the analysis, to ensure there was no social bias within 

the results. 

Normal distribution of the ‘proportion correct’ variable meant a t-test was carried 

out to compare the study group performances (term vs VP). The number of trials 

where the infants were not looking (total not-looking), were not normally 

distributed and therefore were compared using Mann-Whitney U-test. The variable 

selected a priori to best reflect the performance on this task was the ‘proportion 

correct’. A regression model was produced with this main performance variable as 

the outcome measure, with the specified predictors stated in chapter 2 section 2.3 

additionally included. 
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*Response window for preceding trials 
after the completion of trial 1 
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Counterbalanced order of stimulus presentation: 

Stimulus change 

Figure 4-1. Trial procedure and counterbalance order of stimulus 

presentation in the Delayed Response Task. As the response window 

precedes the stimulus presentation, the correct response is the side 

of the preceding trial presentation. 
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4.1.2 A not B Paradigm (AB task) 

At 12 months of age, EF was measured using a task with a similar format to the 

delayed response task, the Piagetian A not B paradigm (AB) (Piaget, 1954; Diamond, 

1985). The AB paradigm is a long-standing assessment of EF, particularly working 

memory in children within their first year and has long been considered to reflect 

developmental milestones (Rose, 1983). 

The administration used the standard method. The task required infant to attend to 

a stimulus whilst it was hidden in location 1 in the first instance. This primary step of 

the task recruits attentional control in order to later correctly reach for the object in 

location 1 (Reynolds and Romano, 2016). Following two correct retrievals, the 

object hiding location was switched and the infant had to inhibit the established 

prepotent motor response that gave rise to the reward of the toy in the first two 

trials. If the infant correctly identified the toy following the switch, the procedure 

was repeated and a delay was imposed before the infant was allowed to search on 

subsequent trials. Working memory networks were therefore challenged following 

the short delays (Schwartz and Reznick, 1999; Espy et al., 2002; Reynolds and 

Romano, 2016). When the infant did not correctly identify the toy following the 

switched hiding location, the task was terminated and the infant was termed to 

have shown the preservative ‘A-not-B’ error.  

The ‘A-not-B’ error (AB error) has been found to emerge between 7 and 8 months 

(Wellman, Cross and Bartsch, 1987). From this age onwards, performance has been 

shown to display marked improvements with age, with the length of delay tolerated 

increasing over the first year (Diamond, 1990; Thelen, Corbetta and Spencer, 1996; 

Garon, Bryson and Smith, 2008). This task therefore is seen a good reflection of EF 

capabilities at 12 months.  

Previous studies with preterm infants have found mixed results on this task (van de 

Weijer-Bergsma, Wijnroks and Jongmans, 2008), highlighting inconsistencies in this 

population. Significantly higher AB errors have been reported in preterm infants 
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compared to term born peers at 8 (Sun and Buys, 2011), and 10 months of age 

(Ross et al., 1992) when corrected for prematurity. In contrast, in 6 to 14 month old 

infants longer delays have been tolerate in preterm infants over terms born 

controls before the AB error was observed (Matthews, Ellis and Nelson, 1996). The 

latter study however, utilised a non-reaching version of the AB paradigm, allowing 

for the younger ages to be assessed and included preterm infants considered to be 

low-risk as their mean prematurity was -31.9 days. This therefore could explain the 

discrepancies with other population reports. In any regard, performance differences 

are not conclusive, and the literature calls for further investigations for additional 

clarity. 

4.1.2.1 A-not-B Apparatus and methodology  

Figure 4-2 illustrates the apparatus used for this paradigm. The infant sat on a 

parent/carer’s lap on one side of an elongated table with the experimenter on the 

other. The testing table contained two wells (10cm x 10cm) of a depth of 8cm. 

Within these wells, the experiment hid a toy for the infant to find. In a pre-test 

period, the infant was given the toy to play with for a period of time before 

commencing the task, so that there was a desire to locate the toy. If one toy did not 

create any level of enjoyment, the toy was changed as it was important the child 

displayed some interest in the object being hidden. Once the pre-test period was 

complete, the task initiated by hiding the toy in the left or right well. The toy was 

placed into a well when full attention of the child was on the toy. As the toy was 

placed into the well, the experimenter stated ‘I am hiding the toy in here’. The 

experiment then simultaneously covered both wells with the 2 orange cloths 

illustrated in Figure 4-2. The experimenter then asked the infant ‘where is it?’ in 

combination with a hand gesture where they opened both hands and raised their 

shoulders. If the infant correctly identified the well containing the toy, the child was 

allowed to play with it for a short period. If the toy was not correctly identified, the 

experimenter initiated the second trial. Each trial followed the same format.  
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The initial well the toy was hidden in, was counterbalanced between infants to 

avoid any bias (please see Table 4-1). The criterion set for the paradigm, asked the 

infant to correctly identify the toy in the same location on 2 consecutive trials 

before the location of the toy was switch to the alternative well. Upon correct 

identification after a switch, a delay of 5 seconds was introduced, where the 

experimenter paused after placing the toy in the well and covering the cloths. The 5 

seconds was counted out loud whilst maintaining the infant’s eye gaze. The infant 

was then asked to locate the toy again. If the infant again located the toy on 2 

consecutive trials and on the switch, the delay was increased by another 5 seconds. 

This continued until the child made an error on the switch trial. If the infant did not 

correctly identify the toy on the switch, this was considered the ‘AB’ effect and the 

task was terminated. 

The infants’ responses were video recorded and scored offline. The AB error was 

coded according to the delay that the infant reached. For example, if the infant 

reached the 10 second delay after previously correctly selecting the location of the 

toy at 5 seconds, and then proceeded to meet the criterion and find the toy 

correctly on two consecutive trials with a 10 second delay before not correctly 

finding the toy on the switch, the infant was given the score of 10 for the AB error. 

All infants included in the analyses were required to meet the criteria for the switch 

at each level. Although an infant may pass the first level, on occasions, the task was 

not completed, and therefore the level at which the AB error occurred was not 

achieved. 

The variable selected a priori to best reflect the performance on this task was the 

AB error. The ordinal nature of this variable dictated the use of a Mann-Whitney U-

test to explore any group differences, although the same statistical procedure 

stated in section 2.3 was followed to explore the data. The regression model fitted 

was an ordinal logistic regression with the AB error as the dependent variable and 

predictors included were consistent with the procedure stated in section 2.3.  
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Figure 4-2. Illustration of A not B apparatus including table dimensions; trial counterbalance order;  

and paradigm procedure table  

 

 

 

 

Table 4-1. Counterbalanced order for trials in AB paradigm 
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Counterbalance order 1 RRL LLR RRL LLR 

Counterbalance order 2 LLR RRL LLR RRL 
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Pass Fail 

Finish – score of 
0s 

Finish – score of 
10s 

Pass 
Fail 

Finish – score of 
15s 



 
 

116 
 

4.1.3 Dimensional Change Card Sort Task 

The ‘Dimensional Change Card Sort Task’ or DCCS (Zelazo, Frye and Rapus, 1996; 

Zelazo, 2006) was the EF task administered at 30 months of age with a predominant 

focus on cognitive flexibility. The standard procedure detailed by Zelazo was the 

protocol utilised for the task (Zelazo, 2006), with the stimuli produce by the Carlson 

lab, (Carlson, 2013). 

The DCCS task comprised of two sorting boxes and a selection of sorting cards. The 

cards varied on two dimensions, with the sorting box displaying the same, yet 

inverse dimensions. The task required the child to sort according to each of the 

dimensions in turn. If both dimensions were correctly sorted, the cards were 

changed and the next level was administered. The complexity of the different 

dimensions increased with each level. 

It has been observed that children of 30 months of age find it difficult to integrate 

two aspects of a picture that are not part of the same object, or, separate the 

colour of an object from its shape. Diamond and Kirkham (Diamond, Carlson and 

Beck, 2005) suggest this is not an inability to recognise the two features, rather 

seeing the same picture from two different perspectives and integrating this 

information is too challenging. When given pictures with only one discernible 

feature, 3 year olds can sort with ease. It is only when the second dimension is 

added that confusion arises.  

The rules of the paradigm consistently switch, requiring the child to adapt their 

behaviour according to the rule changes. The more complicate the instruction or 

rule, the greater the working memory load. Success at this tasks is theorised to 

require all of the EF subdomains (Diamond, Carlson and Beck, 2005; Garon, Bryson 

and Smith, 2008). Although, fundamentally, the child needs to inhibit the secondary 

feature of the picture to sucessfully pass the trial, without the flexibility to adapt 

their behaviour or the ability to hold the rule in mind, failure is likely to occur 

(Diamond, Carlson and Beck, 2005). 



 
 

117 
 

Unlike three year olds who have been extensively investigated with the DCCS 

paradigm, research into EF performance is limited in the toddler age range (Garon, 

Bryson and Smith, 2008; Pozzetti et al., 2014). The use of this task, although well 

established in older children, was experimental in the current investigation in 

regards to the toddler’s capacity to understand what was required from them. Two 

additional measures of EF, the BabyScreen App and Multi-Location Multi-step 

paradigm were additionally included in the 30 month assessment battery in support 

for the use of the DCCS at this age. However, both had predominant processing 

speed measures and will be considered in the information processing chapter 

(Chapter 6). 

4.1.3.1 DCCS Apparatus and Methodology 

The apparatus consisted of two sorting boxes, with a selection of sorting and target 

cards. The apparatus was set up so that the two sorting boxes were placed between 

the experimenter and the child, within reaching distance of both. Each sorting box, 

with the dimensions of 9cm X 12cm X 16cm, had a target card placed on the front 

and back of the box. All sorting cards displayed the target image. This image 

differed in dimension and complexity with advancing conditions. The sorting cards 

were white on the back and laminated with the approximate dimensions of   8cm X 

13cm.  

 
Figure 4-3. Dimensions and set up of the Dimensional Change Card Sort task sorting boxes, cards 

and target cards. The example shows level 3 of the DCCS task where the child is asked to sort first 

by colour, then by shape. 
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At 30 months, the task begun with the simplest condition. Condition 1 saw a target 

card of an elephant and fish placed on the two separate sorting boxes. The 

experimenter read from the standardised script written by Carlson et al., (2013) in 

combination with gestures: ‘we have these two boxes here, this box has a fish on it 

[gestured to the left box], this box has an elephant on it [gestured to the right box]. 

This is the fish game. In the fish game, all the fish go in the fish box, because that is 

where they belong. See here is a fish [held up fish demo sorting card], fish go here 

[placed the fish card into the fish sorting box]’. The child was then asked ‘which box 

do the fish go in?’. They were given 2 opportunities to correctly identify the 

appropriate sorting box. Irrespective of the response on the second check, the trial 

continued.  

Each condition comprised of 10 trials split into 2 sections, a and b. The sorting rule 

changed between part a and b, with the target cards remaining the same for both 

parts. For example, condition 1, the child was asked to sort the fish cards for part a 

and then was verbally instructed that the rule had changed, and they now needed 

to sort the elephants cards into the other sorting box. 4 or more cards needed to be 

correctly sorted in order to move on to the next section. If the child passed the 2 

sections, the target cards were removed and the new condition was introduced.  

The coding of the task required the recording of the total correct trials achieved and 

the highest level passed. All subjects had the same basal level, 1a due to their age 

and understanding. The main outcome measure for this task was the highest level 

completed. As noted, each condition comprised of parts a and b. If the child 

successfully passed part a, but failed to sort ≥4 cards on part b, the highest level 

passed was part a. For the purposes of the data analysis, each level was numbered 

incrementally, e.g. 1a and 1b was coded, level 1 and 2. An additional measure that 

was investigated within this paradigm was the total number of correctly sorted 

cards (total number correct trials).  

Two sets of analyses were completed with this task. Primarily all participants to 

successfully complete the task were analysed, followed by a second analysis which 
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took language abilities into consideration. Participants are excluded on the basis of 

the following criteria: score lower that 1SD below the standardised mean on the 

language composite score in the Bayley-III (<85) at 2 years, a proportional 

comprehension score <1SD below the cohort mean on the OCDI (<.76), or if no 

language score was available. A number of the term born children (11/25) did not 

complete the language scale of the Bayley-III at the 30 month assessment, typically 

due to fatigue during the assessment. Although there were no language concerns 

from the assessment team, the Oxford Communicative Development Inventory 

(OCDI) was completed by all parents. The prospective cohorts will be described in 

detail in section 4.2.3. 

The variable selected a priori to best reflect the performance on this task was the 

highest level completed. Due to the ordinal nature this variable, although the same 

statistical procedure stated in section 2.3 was followed to explore the data, a Mann-

Whitney U-test was the most appropriate for an outcome variable of this nature. 

The total number of trials completed was a secondary focus within the results and 

displayed a marginally positively skewed, with a Shapiro-wilk test result of 0.04. The 

data was transformed, but normality was not reached, therefore a Mann-Whitney 

U-test was performed. 

4.1.4 Longitudinal exploration of EF analyses 

The final set of results reported in the current chapter looks at the relationship 

between the EF task performances in the first year to the EF measure at 30 months. 

Due to the ordinal nature of the DCCS, an ordinal logistic regression model was 

fitted to the data including the previously defined demographic variables: study 

group, male sex, and IMD quintile, and included the primary outcome variables for 

the DRT and AB paradigm: total proportion correct and time to AB error 

respectively. This model was then repeated with the additional inclusion of the 30 

month cognitive z-scores of the Bayley-III. 
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4.2 Results 

The results of the three EF tasks are detailed below in age of administration order. 

For each task, a summary of the demographic information is initially provided as 

each task had a different sub population of the overall longitudinal cohort. Within 

the demographic information the Bayley-III cognitive scores provided are from the 

assessment nearest in age to the experimental task; for the DRT at 6 months and 

the AB task at 12 months, the 12 month Bayley-III score is provided; for the DCCS, 

the 30 month cognitive scores are provided. Unfortunately due to a number of 

factors, including infant temperament, incomplete datasets and missed 

appointments, not all participants completed all assessments at all ages. This 

explains the n number differences for the Bayley-III scores and the total number of 

children to complete each task as not all completed both. 

4.2.1 DRT at 6 months age 

During the 6 month assessment phase, 57 term born and 33 VP infants completed 

the DRT (Table 4-2) assessed on the ability to remember the location of the 

previous stimulus. During the paradigm, neither study group displayed a response 

above chance when ocular movements were used to identify the infant’s response 

(Table 4-3; Figure 4-4). This was not confounded by the number of infants not 

looking towards the apparatus as there was no difference observed between groups 

in the number of trials where the infant was not looking (Table 4-3). 
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  Term (n=57) VP (n=33) 

Gestational age 
Median (range); 

weeks
+d

 
40

+3
 (37

+1 
– 42

+1
) 26

+2
 (23

+6
 – 31

+4
) 

Male sex  28 (49%) 22 (67%) 

IMD Quintile  1 4 5 

 2 10 8 

 3 8 12 

 4 21 9 

 5 16 4 

Bayley-III cognitive 
composite score at 12m 

Mean (SD) 
(n:T=44; VP=25)  

110.23 (11.26) 99.6 (8.89) 

Bayley-III Cognitive z-
score at 12m 

Mean (SD) 
(n:T=44; VP=25) 

.2 (.95) -.69 (.75) 

Table 4-2. Demographic details of infants included in Delayed Response Task analysis. 

No effect of group was seen in the total proportion of correct trials (t(88) = -.14, p = 

.89; see Figure 4-4); nor was there an effect of group on proportion of not-looking 

trials (z(88) = 1.41, p = .158). No correlation was observed between the total 

number correct and the 12 month cognitive z-scores (r = -.16, p = .17).  

Variable  Term, n=57 Preterm, n=33 

Mean total proportion correct 

(SD) 

.46 (.12) .47 (.13) 

Mean number of trials not-

looking (IQR): 

1.72 (2.34) 0.88 (1.16) 

Table 4-3. Mean proportion of correct trials in Delayed Response Task collapsed across the social 

and non-social conditions (total correct looks/total trials completed). Mean number of ‘trials not 

looking’ during DRT where the infant failed to look towards the equipment during the response 

window. 
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Figure 4-4. Total proportion of trials correct in Delayed Response Task by study group. A t-test was 

used to compare the proportions in each group that correctly identified the location of the 

previously observed stimulus.  

 

Table 4-4, presents the results of the linear regression model for the total 

proportion correct as the primary outcome measure. Following regression, no 

differences remained between the VP and term groups but better test performance 

was independently associated with male sex. The model only accounted for 10% of 

the variance in the outcome. 
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Table 4-4. Linear regression model looking at the proportion of correct looks in DRT (F(3, 85) = 3.19, p = .03). SES for one term-born infant missing, therefore this infants 

data was excluded from the model. The constant for the model was coded as term-born females with an IMD quintile of 1.  

 

Overall model fit R
2
 = 0.10 

Predictor Term (n=56) Preterm (n=33) 

Coef. 95%CI 
  

 

 

Median (range) Median (range) P 

Study 
Group 

40+2 (37+1 – 42+1) 26+5 (23+6 – 31+4) -.02 -.07 – .04 .50 

Male sex 27 (48.2%) 22 (66.7%) .07 .02 – .12 .01 

IMD 
Quintile  

4 (1-5) 3 (1-5) -.01 -.04 – .01 .20 

Const - - .46 .39-.54 .000 

-0.10 -0.05 0.00 0.05 0.10 0.15

Coefficient	(95%	CI)
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4.2.2 AB task at 12m age 

During the 12 month assessment phase, 43 term born children and 36 VP children 

completed the AB task. Performance was defined by the number of seconds delay 

before the AB error occurred, also termed ‘time to AB error’. Both study groups 

tolerated the same length of delay.  

  Term (n=43) VP (n=36) 

Gestational age 
Median (range); 

weeks
+d

 
40

+1
 (37

+1
 – 42

+0
) 26

+2
 (23

+4
 – 31

+4
) 

Male sex  21 (48.84%) 24 (66.67%) 

IMD Quintile  1 6 5 

 2 7 7 

 3 5 10 

 4 15 9 

 5 10 5 

Bayley-III cognitive 
composite score at 12m 

Mean (SD) 
(n:T=43; VP=29)  

107.79 (12.64) 98.79 (9.03) 

Bayley-III Cognitive z-
score at 12m 

Mean (SD) 
(n:T=43; VP=29) 

0 (1) -.76 (.76) 

Table 4-5. Demographic details of infants included in A-not-B paradigm analysis. 

 

Seven of the 43 term infants and 7 of the 36 VP infants did not to reach the task 

criterion of 2 correct retrievals of the toy at the start of the paradigm (z = .48; p = 

.63); the infants that did not pass this initial criterion therefore did not continue 

through the rest of the paradigm (Table 4-6).  

Having passed the initial criterion, 6 term born and 3 VP infants did not complete 

the task and were excluded from the analyses as the paradigm was terminated 

early, leaving 30 term and 26 VP infants who displayed an AB error (Table 4-6). 

Overall, no effect of group was seen in the number of seconds to AB error after 

excluding those that did not meet the task criterion (z(68) = 1.41, p = .158; see 

Figure 4-5). A positive correlation was observed with the 12m cognitive z-scores (r = 
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.27, p = .05), which when further investigated, was driven by the term group (T: r = 

.41, p = .02; PT: r = -.03, p = .91).  

Time to AB error Term (n=43) Preterm (n=36)  

0s criterion not achieved 7/43 7/36 

0s 12/36 12/29 

Not reached criterion 0 0 

5s 11/20 7/16 

Not reached criterion 4 1 

10s 6/8 6/8 

Not reached criterion 1 1 

15s 0/2 1/1 

Not reached criterion 1 1 

20s 1/2 0 

Not reached criterion 0 0 

>20 seconds but AB error 

not achieved. 
1 0 

Table 4-6. Proportion of each study group to display the AB errors at each time delay; including the 

proportion of infants to not achieve the criterion in the first instance. 

 

Figure 4-5. Time to A-not-B error in seconds delay across study groups. 
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Table 4-7 presents the results of an ordinal logistic regression model with time of 

AB error as the primary outcome measure reported as an odds ratio. Given the 

positive correlation in the term group to the Bayley-III cognitive z-score at 12 

months, an additional model was fitted to investigate this relationship. However the 

original result was unaffected by this adjustment and the second model has not 

been reported.  

The regression model in Table 4-7 shows no predictive effects of group, male sex or 

IMD quintile on the performance in the AB paradigm at 12 months of age. The 

model was not considered a good fit of the data as it only accounted for 2% of the 

variance. 
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Table 4-7. Ordinal logistic regression modelling the AB error as the main outcome of the AB paradigm; reporting odds ratio with 95% confidence intervals (LR chi2 =2.48, 

p =.48). The baseline for the model was coded as term-born females with an IMD quintile of 1.  

 

 
Overall model fit pseudo R

2
 = 0.02 

 

Predictor Term (n=30) Preterm (n=26) 

OR 95%CI 

  

 

Median (range) Median (range) P 

Study 
Group 

39+6 (37+1 – 42+0) 26+4 (23+4 – 31+4) .99 .37 – 2.68 .99 

Male sex 13 (43.33%) 16 (61.54%) .46 .17 – 1.27 .13 

IMD 
Quintile  

4 (1-5) 3 (1-5) .88 .61 – 1.27 .49 
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4.2.3 DCCS at 30 months age 

The Dimensional Change Card Sort task saw 25 term-born and 25 VP toddlers 

complete the paradigm at 30 months of age. The term born children completed a 

greater number of levels during the DCCS paradigm compared to VP toddlers and 

the term toddlers successfully passed more trials than the VP toddlers. Language 

was not seen to affect the performance of either group. 

  Term (n=25) VP (n=25) 

Gestational age 
Median (range); 

weeks
+d

 
40

+2
 (37

+0
 – 42

+1
) 26

+2
 (23

+4
 – 31

+4
) 

Male sex   11 (44) 18 (72) 

IMD Quintile  1 3 5 

 2 4 1 

 3 4 9 

 4 9 6 

 5 5 4 

Bayley-III cognitive 
composite score at 30m 

Mean (SD) 
(n:T=23; VP=23) 

108.26 (12.40) 101.09 (10.55) 

Bayley-III Cognitive z-
score at 2 years 

Mean (SD) 
(n:T=23; VP=23) 

0 (1) -.53 (.85) 

Bayley-III language 
composite score at 2 
years 

Mean (SD) 
(n:T=14; VP=23) 

119.43 (10.41) 97.95 (18.07) 

Proportional 
comprehension score on 
OCDI 

Mean (SD) 
(n:T=17; VP=22) 

.93 (.17) .93 (.17) 

Number of toddlers with no language score: 4 1 

Table 4-8. Demographic details of all infants to complete the DCCS paradigm. 

The first set of analyses included all participants; the second removed infants with 

possible indications of language delays.  

In the full cohort, a significant difference was observed between the term and VP 

toddlers in ‘highest level completed’, with the term-born children scoring higher as 

a cohort compared to the VP children (z(48) = 3.27, p = .001; see Figure 4-6). Within 

each level a variation was observed in the total number of trials correct; the median 

number of trials correct for term children was 17 and for VP children was 13.  
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Highest level achieved Term (n=25) Preterm (n=25)  

0 levels passed 0 1 

1 (level 1A: fishes) 0 1 

2 (level 1B: elephants) 3 11 

3 (level 2A) 12 10 

4 (level 2B) 4 0 

5 (level 3A) 6 1 

6 (level 3B) 0 0 

7 (level 4A) 0 1 

8 (level 4B) 0 0 

 Mann Whitney U: 3.27; p = .001 

Median total number of 
trials completed (range) 

17 (11-28) 13 (1-34) 

 Mann Whitney U: 2.77; p = .006 

Table 4-9. Highest level passed and total number of correct trials of all participants to complete 
the DCCS paradigm. 

 

Figure 4-6. Highest level achieved on the Dimensional Change Card Sort Task by study group. 
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  Term (n=19) VP (n=17) 

Gestational age 
Median (range); 

weeks
+d

 
40

+2 
(38

+4
 – 42

+1
) 26

+3 
(23

+4
 – 31

+4
) 

Male sex  8 (42.11%) 13 (76.47%) 

IMD Quintile  1 3 5 

 2 2 1 

 3 3 4 

 4 6 4 

 5 5 3 

Bayley-III cognitive 
composite score at 2 
years 

Mean (SD) 
(n:T=17; VP=16) 

111.18 (13.05) 104.38 (9.81) 

Bayley-III Cognitive z-
score at 30m 

Mean (SD) 
(n:T=17; VP=16) 

.28 (1.05) -.27 (.79) 

Bayley-III language 
composite score at 2 
years 

Mean (SD) 
(n:T=14; VP=16) 

119.43 (10.41) 107.13 (12.71) 

Proportional 
comprehension score on 
OCDI 

Mean (SD) 
(n:T=23; VP=23) 

.98 (.02) .96 (.07) 

Table 4-10. Demographic details of infants included in secondary DCCS paradigm analysis excluding 

infants with low language scores. 

 

The second set of analyses excluded any children with a low or absent language 

score (as categorised in section 4.1.3.1). Six children within the term group and 8 

children within the VP group were identified, all of which were excluded from the 

subsequent analyses; the remaining cohort summarised in Table 4-10. 
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Highest level achieved Term (n=25) Preterm (n=25)  

0 levels passed 0 0 

1 (level 1A: fishes) 0 1 

2 (level 1B: elephants) 1 5 

3 (level 2A) 8 9 

4 (level 2B) 4 0 

5 (level 3A) 6 1 

6 (level 3B) 0 0 

7 (level 4A) 0 1 

8 (level 4B) 0 0 

 Mann Whitney U: 2.67, p = .008 

Median total number of 
trials completed (range) 

20 (11-28) 15 (7-34) 

 Mann Whitney U: 2.41, p = .02 

Table 4-11. Highest level passed and total number of correct trials to during the DCCS paradigm of 

participants within the sub-cohort; excluding those with low language scores. 

 

Term infants continued to perform to a higher level on the DCCS than that of the VP 

infants after excluding those with low language score (z(36) = 2.67, p = .008; Table 

4-11). The difference between the total number of trials still remained, with term 

children successfully passing a median of 20 trials and VP children a median of 15, in 

those with good language scores (z(36) = 2.41, p = .02; Table 4-11).  

In an ordinal logistic regression against highest level completed, VP infants 

performed less well after allowing for the effect of male sex and IMD quintile (Table 

4-12). A further analysis including the 2 year Bayley cognitive z-scores, revealed that 

both DCCS level and Bayley-III cognitive z-score had independent effects in the 

model; a better performance on the DCCS was associated with higher cognitive 

scores on the Bayley-III, but the effect size was small, .13 (Table 4-13). Both models 

included the full cohort to complete the DCCS paradigm as low language abilities 

did not appear to significantly impact the differences seen in study group 

performances.  
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Table 4-12. Ordinal logistic regression (LR chi2 = 12.42, p = .006), with highest level achieved defined as the primary outcome for the DCCS; reporting odds ratio with 

95% confidence intervals. The baseline for the model was coded as term-born females with an IMD quintile of 1.  

 

 
Overall model fit was Pseudo R

2
 = 0.09 

Predictor Term (n=25) Preterm (n=25) 

OR 95%CI 

  
 

 

Median (range) Median (range) P 

Study 
group 

40 (41+3 – 38+4) 26+3 (28+3 – 24+3) .14 .04 – .50 .002 

Male sex 11 (44%) 18 (72%) .88  .29 – 2.71 .82 

IMD 
quintile 

4(2) 3(1) .89 .60 – 1.32 .57 
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Table 4-13. Ordinal logistic regression (LR chi2 = 16.15, p = .003) with highest level achieved during DCCS as the outcome and including the additional adjustment of the 

2 years z-score; reporting odds ratio with 95% confidence intervals. The baseline for the model was coded as term-born females with an IMD quintile of 1.  

 

 
 
Overall model fit Pseudo R

2
 = 0.13 

Predictor Term (n=23) Preterm (n=23) 

OR 95%CI 

  
 

 

Median (range) Median (range) P 

Study 
group 

40+1 (41+4 – 38+3) 26+2 (28+0 – 24+3) .22 .06 – .91 .04 

Male sex 11 (44%) 18 (72%) .94 .26 –3.35 .92 

IMD 
quintile 

4(2) 3(1) .79 .51 – 1.23 .30 

2 year  Cog 
Z-score 

.04 (1.00) -.53 (.85) 2.15 1.12 – 4.11 .02 
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4.2.4 Longitudinal exploration of EF performance over first and second year 

assessment 

Exploration of the longitudinal relationship of the data collected across the 3 EF 

tasks included the responses from 14 term children and 17 VP children. With 

performance on the DCCS at 30 months set as the dependent outcome variable, 

there was no predictive effect of DRT or AB task performance after allowing for the 

effect of study group, male sex and IMD quintile (Table 4-15). VP infants continue to 

perform less well on the DCCS however, when adjusting for the additional EF 

measures, the model accounts for a greater proportion of the variation within the 

DCCS outcome. A further analysis with the addition of the 2 year Bayley-III cognitive 

score again saw an independent effect of study group within the model, unaffected 

by the additional EF predictors. This model accounts for even greater variance in the 

DCCS outcome at 24% (Table 4-16).  

  Term (n=14) VP (n=17) 

Gestational age 
Median (range); 

weeks
+d

 
40

+1
 (38

+4
 – 42

+0
) 26

+3
 (24

+0
 – 31

+4
) 

Male sex  6 (42.86%) 13 (76.47%) 

IMD Quintile  1 2 4 

 2 4 1 

 3 2 4 

 4 4 5 

 5 2 3 

Bayley-III cognitive 
composite score at 2 
years 

Mean (SD) 
(n:T=12; VP=16)  

107.5 (12.15) 102.5 (11.11) 

Bayley-III Cognitive z-
score at 2 years  

Mean (SD) 
(n:T=12; VP=16) 

-.02 (.98) -.42 (.89) 

Table 4-14. Demographic details of all infants to complete all EF paradigms and included in 

longitudinal analysis. 
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Table 4-15. Ordinal logistic regression (LR chi2 = 14.64, p = .01) with highest level achieved during DCCS as the dependent variable and including the additional 

adjustment of the total proportion correct in DRT and time to AB error in AB task; reporting odds ratio with 95% confidence intervals. The baseline for the model was 

coded as term-born females with an IMD quintile of 1.  

 

 
 
Overall model fit Pseudo R

2
 = 0.19 

Predictor 

Term (n=14) Preterm (n=17) 

OR 95%CI 
  

 

 

Median (range) Median (range) P 

Study 
group 

40
+1

 (38
+4

 – 42
+0

) 26
+3

 (24
+0

 – 31
+4

) .04 .00 –.41 .007 

Male sex 6 (42.86%) 13 (76.47%) .72 .15 – 3.56 .69 

IMD 
quintile 

3 (1-5) 3 (1-5) 1.10 .65 – 1.86 .71 

DRT - - 16.78 .06 –4340.95 .32 

AB - - 1.02 .89 –1.18 .74 
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Table 4-16. Ordinal logistic regression (LR chi2 = 15.69, p = .02) with highest level achieved during DCCS as the dependent variable, and including the additional 

adjustment of the total proportion correct in DRT, time to AB error in AB task, and 2 years z-score; reporting odds ratio with 95% confidence intervals. The baseline for 

the model was coded as term-born females with an IMD quintile of 1.  

 
Overall model fit Pseudo R

2
 = 0.24 

Predictor Term (n=12) Preterm (n=16) 

OR 95%CI 
  

 

 

Median (range) Median (range) P 

Study group 
40+4 (38+5 – 

42+0) 
26+3 (24+0 –29+4) .06 .01 –.68 .02 

Male sex 5 (41.67%) 13 (81.25%) .95 .15 – 6.15 .96 

IMD Quintile 3 (1-5) 3 (1-5) .93 .50 – 1.71 .82 

DRT - - 29.73 .09 – 9542.32 .25 

AB - - .97 .81 – 1.18 .79 

2 year  
Cog Z-score 

- - 2.37 .98 –.57 .06 
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4.3 Discussion  

The development of EF abilities across the first two years after birth has not been 

extensively studied in ex-preterm populations. The aim of the study was therefore 

to explore the advancement of EF abilities across 3 time points up to the age of 30 

months in a cohort of very preterm children. Established EF paradigms were utilised 

to ensure the abilities assessed depicted classically defined EFs as predetermined by 

a general consensus in the developmental literature. The use of such paradigms 

allows for comparisons to be made to previous observations both from typically 

developing populations and cross-sectional reports of ex-preterm children to fully 

evaluate the current findings. The paradigms selected were the delayed-response 

task (Schwartz and Reznick, 1999; Noland et al., 2010), the Piagetian A-not-B task 

(Piaget, 1954) and the Dimensional Change Card Sort task (Zelazo, 2006). 

With the use of the DRT and A-not-B paradigms, we were unable to demonstrate 

differences in performance between the term and VP infants at 6 or 12 months of 

age. By 30 months, we have demonstrated differences in achievement using the 

DCCS paradigm. These differences were only partially explained by performance in 

the Bayley-III cognitive scale.  From the measures utilised in the current 

investigation, there were no predictive relationships observed within the measures 

from the first year to that of the DCCS outcome at 30 months. Although there is 

rationale for a relationship between the abilities used within these paradigms, none 

are direct replicates of tasks from previous time points therefore the absence of 

relationship is not unexpected. 

Both the DRT and AB tasks are delayed-response-type paradigms, where the infant 

has to wait to respond, assessing what is thought to reflect the emergence of 

working memory abilities, coupled with inhibitory control. Before 8 months of age, 

it is thought that ‘inhibitory control’ refers to inhibition of reflex behaviours rather 

than prepotent responses, which emerge with the maturation of the motor cortex 

(Diamond, 1991). It is the utilisation of this latter inhibitory behaviour that is crucial 

for success in the AB paradigm. By including both paradigms, both the reflex and 



 
 

138 
 

motor-related inhibitory behaviours were assessed in relation to working memory. 

In this instance, there was no effect of prematurity seen in either set of results.  

The DRT paradigm required the infants to remember the location of either a social 

or non-social stimulus presented to them 3 seconds prior. This paradigm was 

unsuccessful at measuring working memory within this cohort, as neither group 

appeared to be performing above chance for the main outcome variable 

‘proportion of trials correct’. This task has been reported to measure working 

memory capacity at 6 months of age (Reznick et al., 2004). However, Diamond has 

speculated that the paradigm may be more effective at later ages (7-8 months) and 

different tasks may be required to access working memory at earlier ages, if it is 

possible to do so (Diamond, 1990).  

When considering the model of human brain development, it is possible 6 months is 

too early to detect working memory performance. The frontal cortex has a more 

extensive developmental period than that of the smaller structures in the brain, in 

order to encompass the experiences during the postnatal period, thereby shaping 

and structuring connections during development (Johnson, 2001). Around 6-8 

months the cortex appears to go through large structural and metabolic changes, 

with an increase in glucose metabolism and reduction in synaptic density (Chugani, 

Phelps and Mazziotta, 1987; Paterson et al., 2006; Sun and Buys, 2011). This 

coincides with the timescale of EF emergence (Pelphrey and Reznick, 2003), at 

which 6 months marks the start of these changes. It is possible it is not until 7 to 8 

months that these abilities can be reliably investigated. This is supported by the 

numerous studies that appear to more consistently report successful working 

memory assessment at 7-8 months (Diamond, 1990; Schwartz and Reznick, 1999). 

Evidence from both animal and human infant studies suggest DR tasks are 

processed by the prefrontal cortex (Diamond and Doar, 1989). Adverse experiences 

within first year of life have been observed to correlate with abnormal brain 

development, particularly in the frontal lobe due to its protracted developmental 

period over the first year (Espy et al., 2002). The multitude of perinatal risk factors 
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associated with preterm birth have been speculated to cause altered connections 

within the frontal lobe, potentially resulting in cognitive impairments later in life 

(Diamond, 2006; Sun and Buys, 2012a). However, the evidence to support the 

disruption that is responsible for later difficulties is limited, as classified neurological 

injury does not occur in all preterm cases, yet cognitive impairments are still 

observed later in life (Vollmer et al., 2017). If to view the structural changes that are 

occurring in the brain within the first year from a neuroconstructivist approach, it 

could be argued that an abnormal developmental trajectory is responsible for the 

delays observed later in life, therefore at 6 months structural changes are still 

occurring and any mild abnormalities are yet to functionally present themselves 

(Oliver et al., 2000). On the contrary, if substantial metabolic and structural changes 

occur in the brain between the ages of 6-8 months as discussed above (Chugani, 

Phelps and Mazziotta, 1987; Paterson et al., 2006; Sun and Buys, 2011), one might 

expect functional differences be start to emerging by 12 months of age. Differences 

may be present but were not detectable within the current investigation.  

An alternative explanation for the null result in the DRT is that the delay imposed 

during the current study may have been too challenging for infants of this age. 

Previous studies have used delays of 1-2 seconds (Reznick et al., 2004). Although 

the investigation was on information processing speeds, Rose et al. (2002) explored 

preterm infant performance on a familiarisation task, with preterm infants 

significantly slower than term born infants on this task. This was in contrast to a 

previous study, where the infants were assessed on a visual expectation paradigm 

and no study group differences were observed (Rose, Feldman and Jankowski, 

2001). The authors postulated that this was due to the type of information being 

measured. The first study assessed the simple detection of stimulus and motor 

response; the second required the encoding of the stimulus to compare it to the 

next and was therefore considered a higher order cognitive task for an infant within 

the first year. The absence of group difference in the DRT task could be viewed 

similarly. It could be speculated that the motivation necessary for the updating of 

working memory systems with location of the stimulus may not be present within 

this paradigm, and eye-gaze to the stimulus location may not be stimulating any 
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active working memory processes. In combination with the greater delay, this could 

explain the absence of responses to this paradigm. Further exploration of the DRT 

at this age with shorter time delays would be required to advance our 

understandings of working memory abilities at 6 months of age. 

The AB task appeared successful: 80% of the VP infants and 83% of term infants 

displayed some level of working memory and inhibitory abilities at 12 months of 

age. As discussed, the AB paradigm may reflect early working memory capabilities 

and inhibitory abilities to prepotent responses. In older cohorts, working memory 

has been identified as a specific area of difficulties in preterm cohorts (Mulder, 

Pitchford and Marlow, 2010). In the current investigation, performance was similar 

in both study groups. This absence of performance differences in a working memory 

paradigm at 12 months is not a first for a cohort of preterm infants (Wilcox, Nadel 

and Rosser, 1996). As summarised by Jongbloed-Pereboom et al., (2012) results on 

AB paradigms and related delayed response tasks have produced very mixed 

findings across the preterm literature. A study by Matthews et al., (1996), for 

example, observed age-corrected preterm infants to outperformed term born 

infants on an AB paradigm when exploring the maturation of performance from 7 to 

15 months of age; on the contrary Ross et al., (1992) found preterm infants to be 

significantly less successful of the AB paradigm at 10 months of age. These 

differences across studies are likely to reflect the variety amongst cohort 

demographics and differences in assessment parameters, making comparisons 

across study findings challenging. 

It is often thought that the predominant domain assessed in this paradigm is that of 

working memory over inhibitory behaviours due to the reduced performance with 

increased time delay. However, obtaining the toy following the reaching behaviour 

reinforces the associated motor response and therefore inhibitory processes are 

almost certainly required to ensure this is not utilised after the hiding location is 

changed (Sun and Buys, 2012a). A study by Sun and Buys (2011) found preterm 

infants to display a poorer performance on the AB task compared to term born 

infants (Sun and Buys, 2011). An important characteristic of the current cohort is 
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the absence of any scores in the clinical range of the Bayley-III at 12 months of age, 

with only one infant in the mild range (<85). This could be considered a high 

performance on the Bayley-III for a preterm cohort, suggesting the infants are 

performing at an appropriate level at 12 months. However, as discussed previously, 

given the range of perinatal complications observed in this cohort, which have been 

indicative of poorer outcome in other studies (Aylward, 2002; Taylor and Clark, 

2016), it could be argued lower cognitive scores might be have been expected. 

Given the similar performance on the AB task however, these results could be a 

good representation of the cohorts’ performance. 

On the contrary, differences are observed both in the DCCS and in the 2 year 

Bayley-III cognitive scale when comparing term and VP performances. Speculation 

could therefore be made regarding the first year EF and Bayley-III measures. It is 

plausible the first year measures are not sensitive enough to later developmental 

abilities, potentially due to the restrictive nature of the assessments, or due to the 

developmental trajectory these abilities take within the second year of life. These 

results could be suggestive of domain differentiation beginning to occur and signs of 

delay only starting to emerge as the functions develop. 

At 30 months, term born toddlers completed the DCCS task to a higher level 

compared to the VP cohort and successfully completed more trials throughout the 

assessment. This result was still apparent after adjusting for the cognitive z-score in 

the Bayley-III at 2 years. As discussed in Chapter 3, at this age, the cognitive scale on 

the Bayley-III has been shown to reflect cognitive performance later in life (Bode et 

al., 2014; Spencer-Smith et al., 2015). However, as the difference between term and 

preterm performance on the DCCS remained following the correction for global 

score, it could be postulated that the Bayley-III is not sensitive enough in its 

assessment to detect this variation in EF performance.  

Very few studies have investigated the influence of preterm birth on EF at 2.5 years 

of age, and there are very few data available on the performance of a preterm 

cohort on the DCCS task. A recent study by Duvall et al., (2015) explored the 
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performance of EFs in relation to medical characteristics, using a modified version 

of the DCCS in infants born preterm at 3 to 4 years of age. They found a greater 

percentage of the typically developing infants passed their version of the DCCS but 

no effect of study group as a predictor of performance. This group also performed 

additional tasks targeting purer inhibitory skills, such as the bear-dragon paradigm 

(Carlson, 2005). It was in the additional tasks where an effect of study group was 

observed. The authors argued the absence of gestational age effect on the DCCS 

results was due to this task assessing more complex brain networks. An effect of 

gestation observed in a purer measure of inhibition, indicated gestational age was 

not likely to be sensitive enough to the specific deficits in the DCCS task (Duvall et 

al., 2015). These data may be viewed as supporting the Barkley hypothesis of 

inhibition as a fundamental problem underpinning EF dysfunction (Barkley, 1997). 

Although it is not possible to identify whether one EF domain is fundamentally 

affecting the outcome on the DCCS, it is clear that study group is having a significant 

impact in the performance on this task at 30m of age in our current observations. 

One criticism might be that infants do not have the language comprehension for the 

DCCS paradigm at 30 months. Although the designers of the DCCS materials 

(Diamond, Carlson and Beck, 2005) advise a starting age of 2 years is possible, if 

there are developmental delays, particularly with concerns in language 

development as commonly reported in the preterm population (Ramon-Casas et al., 

2013; Vohr, 2014), performance could be influenced by these factors over and 

above the EF task demands. However, the difference observed between the two 

cohorts remained after excluding those with low language scores at 2 years of age, 

with term toddlers achieving a higher level during the paradigm and completing a 

greater number of trials successfully compared to the VP toddlers. It is clear that 

the overall success at this task was not language dependent within this cohort. 

Overall, the EF measures obtained during the first year of the PDP study were not 

indicative of EF performance at 30 months of age. Poorer EF performances in the VP 

group are first evident during the second year, with these differences in 

performance across the two study groups only partially explained by the Bayley-III 
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cognitive scores. These results could be reflective of the developmental trajectory 

of the EF sub-domains, and differentiation may begin around 2 years of age. 

Difficulties within the preterm literature in identifying specific domain differences in 

the first year could be due to undifferentiated structure of EF. These results are 

consistent with previous research that suggests the problems seen in this 

population are not easily detectable until later in childhood. 
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Chapter 5 Attention 

Orienting our attention is a crucial part of how we start to learn and take in 

information from our surroundings. This system emerges and undergoes significant 

changes within the first year of life (Elsabbagh et al., 2009). Understanding how this 

develops in the typical population has been crucial to our comprehension of the 

adult attentional systems and its association to other higher cognitive processes 

(Amso and Scerif, 2015). Success in achieving goal directed behaviour in later life 

relies on disengagement from distraction and to be able to flexibly switch focus, 

making attention orientation vital to more complex EFs (Sun and Buys, 2012a). 

Some adopt the opinion that attention is the predominant skill for executive control 

as detailed in the model by Anderson (2002). 

Clinical inattention is amongst the most commonly reported deficit following 

premature birth. Some ex-preterm children are diagnosed with attention deficit 

hyperactivity disorder (ADHD), however, it is typical for ex-preterm children to not 

display the impulsive behaviour and hyperactive movement and talking elements 

that manifest within this disorder (Johnson, 2007). This has led to speculation that 

this population may display a purer form of attentional deficit (Wolke, 1998). 

Nevertheless, the difficulties in attentional abilities have been frequently related to 

the later academic difficulties reported in this population (Jaekel, 2013). This gives 

rise to the need to further explore the emergence of these difficulties to primarily 

obtain a more comprehensive view on the developmental trajectory of attentional 

abilities, with the subsequent drive to investigate whether interventions would be 

beneficial to long term academic attainment. 

The clinical definition of ‘attention deficit’ and deficits in what research classifies as 

attentional networks may not completely overlap. Clinical attentional difficulties 

related to behavioural manifestations have been associated to working memory 

difficulties or problems with inhibition that lead to the poor attentional focus 

(Bohm, Smedler and Forssberg, 2004). However in research terms, attention refers 

to the network of cognitive process that appear to emerge throughout childhood 
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and when fully developed are classified into sustained, selective and executive 

attentional networks (Steele et al., 2012). Although there are different definitions 

for clinical inattention and attentional network difficulties, it is likely both are 

interrelated. For example, attentional networks have been associated to EF task 

performances and thereby by could be considered to be related to behavioural 

responses (Kane and Engle, 2003; Cowan, 2011). Given this relationship between 

the attentional networks and EF in the current context, it is important to 

understand whether the poorer performance observed in the EF chapter are related 

to the cognitive attentional networks. 

Difficulties have been reported across the different attentional networks in children 

born preterm and lower global cognitive abilities do not account for the differences 

observe in all cases (N Marlow et al., 2007; Mulder et al., 2009). A meta-analysis by 

Mulder et al., (2009) summarised the selective and sustained attentional 

performances in preterm cohorts over 2 years. Selective attention, where specific 

information is selected from the environment whilst ignoring other distractions, is 

often investigated with this use of visual attention paradigms.  In the preterm 

literature these abilities appear to be less well developed and associated to 

gestational age at birth in preterm populations (Mulder et al., 2009). The ability to 

maintain focus on a task at hand, or sustained attention, is often assessed by 

continuous performance tasks in older children, and again, the reports suggest a 

poorer performance correlated with the age of gestation at birth (Mulder et al., 

2009). In infants, the predominant network is considered to be that of selective or 

orienting attention (van de Weijer-Bergsma, Wijnroks and Jongmans, 2008). 

Before the age of 3 months, infants often focus on stimuli in the centre of their 

visual field and struggle to disengage. It is not until half way through the first year 

that shifting attention is observed (Butcher, Kalverboer and Geuze, 2000; Colombo, 

2001). The development of the ability to disengage and the speed of disengagement 

has been a large focus within the literature. There is speculation that the inability to 

disengage could be indicative of later attentional deficits (Elsabbagh et al., 2009; 

Wass, Porayska-Pomsta and Johnson, 2011; Hitzert et al., 2014; Green et al., 2015). 
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This is an area typically reported within preterm populations later in life (Taylor, 

Klein and Hack, 2000; Bhutta et al., 2002; Aarnoudse-Moens, Smidts, et al., 2009). If 

difficulties can be detected within the first year of life, this could help predict later 

impairments. 

Orienting to stimuli can be observed in new-born infants, however, it is not until 

around 4 to 6 months, that infants start to display higher-order voluntary attention 

orienting systems (Mulder et al., 2009; Reynolds and Romano, 2016), such as 

disengagement and increase speed of shifting to other stimuli of interest (Amso and 

Scerif, 2015). It is these processes that are targeted and assessed in the ‘Gap-

Overlap task’ used in the PDP battery.  

The Gap-overlap paradigm (gap task) is frequently utilised amongst investigations of 

children with autism. The gap task measures the time to disengage from a centrally 

presented stimulus in order to re-direct gaze to one peripherally located. Being able 

to orientate to surrounding stimuli and shift flexibly between areas of visual focus 

have been linked to social communication abilities; an area that is typically 

compromised in children on the autistic spectrum (Bryson et al., 2004; Elsabbagh et 

al., 2009). The speculation within the autism literature is that the social difficulties 

are in part due to deficits in visual attention (van der Geest et al., 2001). In support 

of this, impairments have been reported in the disengagement responses to the gap 

task in this population (Wainwright-Sharp and Bryson, 1993), and in populations at 

high risk for autism (Elsabbagh et al., 2009). In these investigations, impairments in 

disengagement manifest as slower response times.  

There is evidence to suggest that ex-preterm populations are more prone to social 

interaction difficulties than term born peers and often show signs of introversion 

and neuroticism (Johnson and Marlow, 2016). These children are also reported to 

be at a higher risk for ASD (Johnson and Marlow, 2016). Given this, it is could be 

postulated that the findings reported in studies of children with ASD could be 

similar to those of the PDP cohort in response to the Gap-overlap paradigm. To 
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date, the author is unaware of any preterm research to utilise the Gap task to 

investigate visual attention development over the first two years after birth.  

Within this chapter, data from Gap-overlap paradigm collected across 3 time points 

of the PDP are explored. The data are investigated both cross-sectionally and 

longitudinally to fully explore the differences and changes of attentional 

disengagement behaviours of the infants involved. 

5.1 Methods 

The GAP task utilised eye-tracking technology to record speed of eye saccades to 

stimuli presented on a visual display unit (VDU). The infant was presented with a 

stimulus in the centre of the screen in the first instance; a second stimulus was then 

presented on the periphery of the screen, to which the infant was required to look. 

Stimuli were presented in a range of formats in attempts to assess visual attention, 

specifically the speed of disengagement of attention and voluntary visual attention 

shifting. For example, central stimulus either disappeared before the presentation 

of the secondary stimulus, or it remained on screen; the latter termed an overlap 

trial and challenged the infants’ disengagement abilities. 

Longitudinal measures of orienting visual attention were achieved with 

administration of the Gap task at 6, 12 and 30 months of age (Wass, Porayska-

Pomsta and Johnson, 2011). The 3 time points allowed for the developmental 

trajectories of the visual system to be explored across the two populations. Should 

any differences in speed processing or performance be observed either group, the 

multiple time points would hope to determine when these problems begin to 

emerge.  

5.1.1 Apparatus 

Those within their first year were placed in a travel seat 65cm from the Visual 

Display Unit (VDU) see Figure 5-1.  For those at 30 months of age, the child sat on a 
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parent or carers lap on a beanbag ensuring they were at an average distance of 

65cm from the VDU, with their eye line in the centre of the unit. 

Beneath the VDU was a 60 Hz Tobii 1750 eye tracker (1024 x 768 pixels monitor). 

The eye-tracker was calibrated, incorporating all dimensions of the VDU, please see 

Figure 5-1 for measurements and calibration calculations used.  

The GAP task stimuli were presented using the Talk2Tobii toolbox and custom-

written MATLAB scripts shared with the PDP from the Birkbeck Babylab, originally 

written by Sam Wass (Wass, Porayska-Pomsta and Johnson, 2011). 

5.1.2 Procedure 

The task began with 6 calibration points across the screen. Each point was 

presented independently, using an animated shape of numerous colours in 

combination with sound effects to draw the child’s attention to each area of the 

screen. Quality of the recording was reported after all calibration points were 

shown. A pause in the script allowed the experimenter to either accept or decline 

the calibration. If calibration had not been achieved, the initial script was repeated.  

The premise of the task was to identify the infant’s ability to disengage from a more 

visually pleasing, central stimulus to a less detailed, peripheral image. This was 

achieved by the use of a colourful and detailed cartoon clock as the central 

stimulus, and a simple cartoon cloud as the peripheral stimulus, both shown in 

Figure 5-2.  Movement of gaze from the central stimulus to the peripheral stimulus 

was rewarded by the disappearance of the cloud, revealing a different and more 

interesting animation and sound effect. The speed of relocating gaze to the 

peripheral stimulus varied dependent upon the different test conditions. 

3 test conditions were included within the paradigm, please see Figure 5-2.  

1. The baseline condition provided a measure of saccadic reaction time. During 

these trials, the central stimulus was presented for a total of 200ms and 
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disappeared simultaneously as the peripheral stimulus appeared, removing 

the need to disengage from the central stimulus.  

2. The Gap condition displayed a blank screen between the central stimulus 

disappearance and the presentation of the peripheral stimulus. The speed to 

engage with the peripheral stimulus was expected to be the fastest within 

these trials.  

3. Lastly, the overlap condition saw the central clock stimulus presented for 

200ms, before the peripheral stimulus appeared simultaneously to this, with 

both stimuli remaining on screen until the infant looked to less visually 

pleasing cloud stimulus, challenging the infant’s disengagement ability. 

The script comprised of a random presentation of the 3 test conditions across 3 

separate blocks. Each block was separated by two short videos to maintain the 

infant’s attention throughout the task. Progression through the task was controlled 

by the infant’s looking behaviour.  Each trial required the infant to engage with the 

central stimulus before the trial could commence, ensuring that the gaze was not 

biased to one side of the screen. Upon centralisation of the gaze, as depicted in 

Figure 5-2 each condition had 200ms of the central stimulus before deviation into 

the different condition settings. In any condition, the infant had to look to the 

peripheral stimulus within 3000ms of its presentation. The number of trials where 

the infant’s attention remained centralised in the presence of a peripheral image 

was defined here as inability to disengage, sometimes termed ‘sticky attention’.  

Once the infant had met all criteria stated above to achieve a valid trial, determined 

by online criteria written into the MATLAB script, the paradigm was terminated 

after 12 baseline, 12 gap and 16 overlap valid trials.  
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Figure 5-1. Set up and 

dimensions of visual 

display unit with eye-

tracker; travel car seat used 

to correctly position the 

infants at 6 and 12months 

of age. During the 30m 

time point, the travel seat 

was removed and the child 

sat on a parent or carers 

lap at the same distance. 
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Figure 5-2. Representation of the visual 

displays and timing within the 3 

conditions of the GAP task. All conditions 

start with a central stimulus, and end 

with a less visually interesting peripheral 

stimulus. 

1. Baseline condition 

Central stimulus extinguished 
as peripheral stimulus appears 

(≤ 3000ms) 

Peripheral 
stimulus 
present for 3s 
or until infant 
attends to it. 

(200ms) 

2. Overlap condition 

Central stimulus 
extinguished as peripheral 
stimulus appears 

(200ms) 

(≤ 3000ms) 

Both central and 
peripheral stimuli 
are presented for 
3s or until infant 
attends to it. 

3. GAP 
conditionCentral stimulus 

displayed for XXXms 
Blank screen 
presented for 200ms 
before the appearance 
of the peripheral 
stimulus 

(200ms) 

(200ms) 

Peripheral stimulus present for 
3s or until infant attends to it. 

(≤ 3000ms) 
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5.1.3 Coding  

After data collection, we had concerns about the accuracy of the internal criteria 

used by the programme to determine trial validity. Data were re-processed offline 

with the help of Dr Emily Jones, Birkbeck University, which led to a different number 

of total trials for each participant. Post hoc we used the number of valid trials for 

exclusion purposes only: we excluded infants if they did not achieve a minimum of 5 

valid trials within each condition.  

The paradigm produced 3 primary response time (RT) variables, one for each 

condition. From these response times, a ‘time to disengage’ was calculated by 

subtracting the baseline RT from the Overlap RT, and the ‘gap-effect’ was calculated 

by subtracting the Gap RT from Overlap RT. As mentioned above, trials where 

disengagement did not occur will also be reported. 

5.1.4 Analysis 

The statistical process was as described in section 2.3, with each assessment age 

explored independently in the first instance, followed by a longitudinal look at the 

data. The longitudinal relationships were explored in the following order: 6 and 12 

months; 12 and 30 months. This section is concluded by looking across all three 

time points. The 3 way longitudinal model was primarily explored only including 

participants with all 3 observations, however the study numbers were small with 

this approach. The final model includes infants that presented with a minimum of 

two observations across the 3 assessment ages. 

The variable selected a priori to best reflect the performance on the Gap task was 

the ‘disengagement’ response time. This variable was selected as it accounts for the 

baseline performance variability between individuals, and includes the response to 

the overlap trials. The overlap trials were hypothesised to create the greatest 

variability in gaze shift response patterns.  
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The relationship between study group, male sex, IMD quintile, cognitive z-score and 

disengagement RT were explored with the use of regression models to determine 

the predictably of these characteristics on the gap-task performance. In all cases, 

two models were performed, the first reported includes the first three predictors 

and the second included the adjustment for the Bayley-III cognitive z-score. Six and 

12 month scores were adjusted using the 12m Bayley cognitive score and 30 month 

scores using the 2 year cognitive score.   

For the longitudinal analysis, rather than exploring all response times to all 

variables, only the disengagement RTs and the gap-effect were explored as both 

values accounted for individual variation. Multilevel mixed effects regression 

models were explored for each subgroup of longitudinal measurements thereby 

accounting for the repeated measures across assessment ages. Likelihood ratio (LR) 

tests were used to determine whether the inclusion of interaction terms were 

necessary in each model. The coefficients and 95% confidence intervals reported 

are from the Mixed-effect models.  

Within the longitudinal data, participants were included in the models if they 

achieved >5 trials in each condition and at each age. This significantly reduced the 

numbers within each study group for the full three level model. An additional 

analysis was therefore included that allowed infants with valid data at any two time 

points to be included in the 3 way model, as an exploratory sensitivity analysis.  

Task prediction: 

If social communication difficulties are in part influenced by visual attention, as 

reported within the autism literature (Elsabbagh et al., 2009) it is hypothesized that 

VP infants in the current study will display slower disengagement and associated 

responses time patterns to the Gap-overlap task. 
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 The main research questions are:   

1. Do the disengagement response times (RTs) differ between the two study 

groups? 

2. Do differences in RTs between groups vary across trial conditions?  

3. Do differences in saccade RTs in response to the Gap trials vary between 

study groups?  

4. Do VP infants demonstrate non-disengagement more frequently compared 

to term infants at any age? 

5. Do differences in RTs between groups vary with age of assessment? 

5.2 Results – cross-sectional data 

5.2.1 6 months 

During the 6 month assessment phase, 36 term and 22 VP infants completed the 

Gap-overlap task (Table 5-1). No differences were observed between the two study 

groups in the response times to the 3 task conditions: baseline, gap and overlap. 

The gap condition produced the fastest shift in gaze (Table 5-2; Figure 5-3). No 

differences were seen in the speed to disengage from the central stimulus between 

the two study groups (overlap trial minus baseline; Figure 5-4); nor were there any 

differences in the gap effect (overlap minus gap; Figure 5-5). These results were 

consistent after adjusting for cognitive z-score collected at 12 months. 
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  Term (n=36) VP (n=22) 

Gestational age 
Median (range); 

weeks
+d

 
40

+0
 (37

+1
 – 41

+5
) 26

+0
 (23

+4
 – 31

+4
) 

Male sex  17 (47.22%) 15 (68.18%) 

IMD Quintile  1 6 2 

 2 8 4 

 3 3 8 

 4 11 5 

 5 8 3 

Bayley-III cognitive 
composite score at 12m 

Mean (SD) 
(n:T=34; VP=15)  

108.68 (12.20) 100.00 (8.66) 

Bayley-III Cognitive z-
score at 12m 

Mean (SD) 
(n:T=34; VP=15) 

.07 (1.03) -.66 (.73) 

Table 5-1. Demographic details of infants in Gap-overlap task at 6 month assessment. 

 

Table 5-2 displays the means and SDs of the outcome variables of the GAP task at 

the 6 month assessment age. No significant differences were observed between the 

two groups in any of the response times at this age. When running a repeated 

measures ANOVA, a significant main effect of condition was observed (F(1.15, 

64.53) = 390.92, p<.001), with Gap trials producing the fastest response and the 

overlap the slowest, as seen from the means reported in Table 5-2. No main effects 

of study group were seen nor were there any significant interaction terms.  
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GAP task Variable  
Term (N=36; excluded as 

<5 = 6) 
Preterm (N=22; excluded 

as <5 = 6) 
p 

Baseline RT (ms) 
Mean 386. 16 388.78 .86 

(SD) 50.85 59.66 
 

GAP RT (ms) 
Mean 281.41 274.16 .27 

(SD) 22.10 26.94  

Overlap RT (ms) 
Mean 675.50 667.81 .84 

(SD) 145.14 120.12 
 

Disengagement RT 
(ms) 

Mean 289.34 279.03 .76 

(SD) 127.68 123.41  

Gap-effect (ms) 
Mean 394.09 393.65 .99 

(SD) 137.43 118.54  

Non-
disengagement 

N  14 10 .42 

Table 5-2. Response times (ms) to each condition of the Gap-Overlap task and the total number of 

trials where disengagement from the central stimulus did not occur during the 6 month 

assessment by study group. 

 

Figure 5-3. Response times (ms) of each condition within the Gap overlap task at 6 months of age 

by study group.  
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Figure 5-4. Disengagement response times (ms) of term and very preterm infants during the Gap-

overlap task at 6 months of age.  

 

  

Figure 5-5. Gap-effect (ms) of term and very preterm infants during the Gap-overlap task at the 6 

months of age. 
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The main outcome, disengagement RT, was explored in two regression models 

(Table 5-3 and Table 5-4). None of the predictive variables included have a 

significant predictive effect on the disengagement RT during the 6 month 

assessment. This result was maintained when adjusting for the Bayley-III z-scores at 

12 months. 
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Table 5-3. Linear regression model of disengagement RT during the 6 month GAP task (F(3,54) = 1.05, p = .38). The baseline group are term-born females with an IMD 

quintile of 1. 

 
Overall model fit was R

2
 = 0.05 

Predict
or 

Term (n=36) Preterm (n=22) 

Coef 95%CI 

  
 

 

Median (Range) Median (Range) P 

Study 
Group 

40+0 (37+2 – 41+5) 26+0 (23+4 – 31+4) -7.42 -76.68 – 61.84 .83 

Male 
sex 

17 (47.22%) 15 (68.18%) -19.87 -88.77 – 49.03 .57 

IMD 
Quintil
e 

4 (1-5) 3 (1-5) -21.77 -47.04 – 3.49 .09 

Diseng
ag 
RT(Co
nst.) 

289.34 (127.68) 279.03 (123.41) 368.28 266.58 – 469.99 .000 

 
     

-100 -50 0 50 100

Coefficient	(95%	CI)
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Table 5-4 Linear regression model of disengagement RT during the 6 month GAP task including the adjustment of the 12m Bayley-III z-score (F(4, 44) = 1.62, p = .17). The 

baseline group are term-born females with an IMD quintile of 1. 

 

Overall model fit was R
2
 = 0.13 

Predictor Term (n=34) Preterm (n=15) 

Coef 95%CI 
  

 
Median (Range) Median (Range) P 

Study 
Group 

40+0 (37+2 – 41+5) 26+2 (24+3 – 29+4) 20.20 -56.24 – 96.63 .60 

Male sex 17 (50) 12 (80) -30.75 -99.35 – 37.81 .37 

IMD 
Quintile 

2.5 (1-5) 3 (1-5) -19.68 -43.56 – 4.19 .10 

12m cog. 
Z-score 

.71 (1.03) -0.66 (.73) 32.27 -1.91 – 66.45 .06 

Disengag 
RT(Const.) 

289.34 (127.68) 279.03 (123.41) 379.76 284.46 – 475.05 .000 

 
     

-150 -100 -50 0 50 100 150

Coefficient	(95%	CI)
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5.2.2 12 months 

During the 12 month assessment phase, 31 term born and 23 VP infants completed 

the Gap-overlap task (Table 5-5). No differences were observed between the two 

study groups in the response times to the 3 task conditions: baseline, gap and 

overlap. The gap condition produced the fastest shift in gaze (Table 5-6; Figure 5-6). 

No differences were seen in the speed to disengage from the central stimulus 

(overlap trial minus baseline; Figure 5-7) between the two study groups; nor were 

there any differences in gap effect (overlap minus gap; Figure 5-8). These results 

were consistent after adjusting for cognitive z-score collected at 12 months.  

  Term (n=31) VP (n=23) 

Gestational age 
Median (range); 

weeks
+d

 
40

+0
 (37

+1
 – 42

+0
) 26

+0
 (23

+6
 – 31

+4
) 

Male sex  14 (45.16%) 14 (60.87%) 

IMD Quintile  1 3 3 

 2 6 5 

 3 6 8 

 4 11 5 

 5 5 2 

Bayley-III cognitive 
composite score at 12m 

Mean (SD) 
(n:T=31; VP=18)  

 107.26 (12.51) 99.17 (11.41) 

Bayley-III Cognitive z-
score at 12m 

Mean (SD) 
(n:T=31; VP=18) 

-.05 (1.05) -.73 (.96) 

Table 5-5. Demographic details of infants in Gap-overlap task at 12 month assessment. 

 

Table 5-6 displays the means and SDs of the outcome variables of the GAP task at 

the 12 month assessment age. No significant differences were observed between 

the two groups in any of the response times at this age. Again, a significant main 

effect of condition was observed, with the Gap trials producing the fastest response 

(F(1.18, 61.24) = 619.83, p<.001), but with no main effect of study group or 

interaction terms were observed. 
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GAP task Variable  
Term (n=31; excluded 

as <5 = 1) 
Preterm (n=23; 

excluded as <5 = 7) 
p 

Baseline RT 
Mean 378.70 378.24 .97 

(SD) 45.51 38.28 
 

GAP RT 
Mean 264.12 272.83 .30 

(SD) 28.19 33.08  

Overlap RT 
Mean 702.56 696.02 .81 

(SD) 92.08 111.09 
 

Disengagement RT 
Mean 323.87 317.78 .84 

(SD) 112.11 108.90  

Gap-effect RT 
Mean 438.44 423.19 .61 

(SD) 103.87 116.25  

Non-
disengagement 

N 11 9 .17 

Table 5-6. Response times (ms) to each condition of the Gap-Overlap task and the total number of 

trials where disengagement from the central stimulus did not occur during the 12 month 

assessment by study group. 

 

Figure 5-6. Response times (ms) of each condition within the Gap overlap task at 12 months of age 

by study group. 
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Figure 5-7. Disengagement response time (ms) of term and very preterm infants during the Gap-

overlap task at 12 months of age. 

 

Figure 5-8. Gap-effect (ms) of term and very preterm infants during the Gap-overlap task at 12 

months of age. 
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The main outcome, disengagement RT, was explored in two linear regression 

models (Table 5-7 and Table 5-8). The variables included within the models did not 

have significant predictive effects on the disengagement RT during the 12 month 

assessment. This result was maintained when adjusting for the Bayley-III z-scores at 

12 months (Table 5-8), although a borderline effect of IMD quintile was seen (β = 

25.49, p=.06) suggesting a possible relationship with a higher deprivation score and 

slower disengagement behaviour in the Gap task.  
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Table 5-7. Linear regression model of disengagement RT during the 12 month GAP task (F(3, 50) = 1.55, p = .21). The baseline group are term-born females with an IMD 

quintile of 1. 

Overall model fit was R
2
 = 0.09 

Predictor 

Term (n=31) Preterm (n=23) 

Coef 95%CI 
  

 
Median (Range) Median (Range) P 

Study 
Group 

39+6 (37+1 – 42+0) 26+4 (23+6 – 31+4) .83 -54.4 – 67.60 .83 

Male Sex 14 (45.16) 14 (60.87) -26.45 -87.01 – 34.11 .39 

IMD 
Quintile 

4 (1-5) 3 (1-5) 22.61 -2.55 – 47.77 .08 

Disengag 
RT(Const.) 

323.87 (112.11) 317.78 (108.90) 261.43 162.35 – 360.50 .000 

 
     

-100 -50 0 50 100

Coefficient	(95%	CI)
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Table 5-8 Linear regression model of disengagement RT during the 12 month GAP task including the adjustment of the 12m Bayley-III z-score (F(3, 50) = 1.55, p = .21). 

The baseline group are term-born females with an IMD quintile of 1. 

 

Overall model fit was R
2
 = 0.13 

Predictor Term (n=31) Preterm (n=18) 

Coef 95%CI 

  

 

Median (Range) Median (Range) P 

Study 
Group 

39+6 (37+1 – 42+0) 26+4 (24+0 – 29+4) -5.11 -74.75 – 64.53 .88 

Male Sex 14 (45.16) 12 (66.67) -24.38 -88.69 – 39.93 .45 

IMD 
Quintile 

4 (1-5) 3 (1-5) 25.49 -.99 – 51.97 .06 

12m cog. 
Z-score 

-.04 (1.05) -.73 (.96) -9.18 -41.11 – 22.74 .57 

Disengag 
RT(Const.) 

323.87 (112.11) 317.78 (108.90) 250.58 146.91 – 354.24 .000 

 
     

-100 -50 0 50 100

Coefficient	(95%	CI)
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5.2.3 30 months 

During the 30 month assessment phase, 17 term and 13 VP infants completed the 

Gap-overlap task (Table 5-9). No differences were observed between the two study 

groups in the response times to the 3 task conditions: baseline, gap and overlap. 

The gap condition again produced the fastest shift in gaze (Table 5-10; Figure 5-9). 

No differences were seen in the speed to disengage from the central stimulus 

(overlap trial minus baseline; Figure 5-10) between the two study groups; nor were 

there any differences in gap effect (overlap minus gap; Figure 5-11). In this instance, 

when adjusting for the cognitive z-scores collected at 2 years, VP infants were on 

average 110 ms faster than the term born infants in their disengagement response 

times. 

  Term (n=17) VP (n=13) 

Gestational age 
Median (range); 

weeks
+d

 
40

+0
 (37

+0
 – 42

+1
) 26

+2
 (23

+6
 – 29

+4
) 

Male sex  10 (58.82%) 11 (84.62%) 

IMD Quintile  1 5 4 

 2 2 0 

 3 2 4 

 4 4 3 

 5 4 2 

Bayley-III cognitive 
composite score at 12m 

Mean (SD) 
(n:T=13; VP=12)  

 109.62 (12.33) 102.92 (12.15) 

Bayley-III Cognitive z-
score at 12m 

Mean (SD) 
(n:T=13; VP=12) 

-.15 (.99) -.39 (.98) 

Table 5-9. Demographic details of infants in Gap-overlap task at 30 month assessment. 

 

Table5-10 displays the means and SDs of the outcome variables of the GAP task at 

the 30 month assessment age. No significant differences were observed between 

the two groups in any of the response times at this age. Again, a significant main 

effect of condition was observed (F(1.44, 40.39) = 290.50, p<.001), but with no main 

effect of study group or interaction terms were reported. 



 
 

168 
 

GAP task Variable  
Term (n=17; excluded as 

<5 = 7) 
Preterm (n=13; excluded 

as <5 = 7) 
p 

Baseline RT 
Mean 347.68 380.94 .11 

(SD) 37.67 71.72 
 

GAP RT 
Mean 252.90 269.95 .20 

(SD) 31.81 39.64  

Overlap RT 
Mean 593.83 581.32 .74 

(SD) 101.68 98.61 
 

Disengagement RT 
Mean 246.16 200.38 .14 

(SD) 82.73 81.92  

Gap-effect RT 
Mean 340.93 311.37 .38 

(SD) 98.43 74.87  

Non-
disengagement 

n 15 8 .75 

Table 5-10. Response times (ms) to each condition of the Gap-Overlap task and the total number 

of trials where disengagement from the central stimulus did not occur during the 30 month 

assessment by study group. 

 

Figure 5-9. Response times (ms) of each condition within the Gap overlap task at 30 months of age 

by study group. 
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Figure 5-10. Disengagement response time (ms) of term and very preterm toddlers during the Gap-

overlap task at 30 months of age.  

 

Figure 5-11. Gap-effect (ms) of term and very preterm toddlers during the Gap-overlap task at 

the`30 months of age. 
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Disengagement RT was modelled again at this age point in two linear regression 

models (Table 5-11 and Table 5-12). In the primary model, none of the predictors 

appear to have significant effects on the disengagement RT during the 30 month 

assessment. However, when adding the adjustment for cognitive score at this age, a 

significant predictive effect of study group was observed (Table 5-12). The β-

coefficient for the study group variable indicates that the VP children are 

responding faster than the term-born children when adjusting for their scores on 

the Bayley-III at 30 months (β = -112.43, p = .001).  
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Table 5-11. Linear regression model of disengagement RT during the 30 month GAP task (F(3, 26) = 2.00, p = .14). The baseline group are term-born females with an IMD 

quintile of 1. 

Overall model fit was R
2
 = 0.19 

Predictor Term (n=17) Preterm (n=13) 

Coef 95%CI 

  
 

Median (Range) Median (Range) P 

Study 
Group 

39+5 (37+2 – 42+1) 26+4 (23+6 – 29+4) -57.45 -120.64 – 5.74 .07 

Male Sex 10 (58.82) 11 (84.62) 48.97 -19.48 – 117.41 .15 

IMD 
Quintile 

3 (1-5) 3(3) 12.39 -7.48 – 32.26 .21 

Disengag 
RT(Const.) 

246.16 (82.73) 200.38 (81.92) 180.18 96.23 – 264.12 .000 

 
     

-150 -100 -50 0 50 100 150

Coefficient	(95%	CI)
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Table 5-12 Linear regression model of disengagement RT during the 30 month GAP task including the adjustment of the 30m Bayley-III z-score (F(4, 20) = 4.31, p = .01) . 

The baseline group are term-born females with an IMD quintile of 1. 

 

Overall model fit was R
2
 = 0.46 

Predictor Term (n=13) Preterm (n=12) 

Coef 95%CI 

  
 

Median (Range) Median (Range) P 

Study 
Group 

40+1 (38+5 – 42+1) 26+5 (23+6 – 29+4) -112.43 -172.48 - -52.38 .001 

Male Sex 7 (53.85) 10 (83.33) 69.92 8.07 – 131.77 .03 

IMD 
Quintile 

4 (1-5) 3(1-5) -.63 -19.312 – 18.06 .95 

30m cog. 
Z-score 

.15 (.99) -.39 (.98) -7.81 -36.61 – 20.99 .58 

Disengag 
RT(Const.) 

246.16 (82.73) 200.38 (81.92)  167.61 – 321.80 .000 

 
     

-200 -100 0 100 200

Coefficient	(95%	CI)
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5.3 Results – longitudinal data 

5.3.1 6 to 12 months 

At 6 and 12 months, 20 term-born and 16 VP infants had usable data sets (Table 5-

13). Both the groups displayed a small increase in time to disengage from the 

central stimulus at 12 months, and the gap between stimulus presentations created 

a slightly longer delay in gaze shift (Table 5-14); however neither measure were 

significantly different from the times at 6 months (Figure 5-12 and Figure 5-13). 

These results were not influenced by male sex, IMD quintile or after adjustment for 

cognitive score at 12 months. 

  Term (n=20) VP (n=16) 

Gestational age 
Median (range); 

weeks
+d

 
39

+6
 (37

+1
 – 41

+2
) 26

+2
 (23

+6
 – 31

+4
) 

Male sex  7 (35%) 10 (62.50%) 

IMD Quintile  1 2 2 

 2 6 2 

 3 3 7 

 4 7 4 

 5 2 1 

Bayley-III cognitive 
composite score at 12m 

Mean (SD) 
(n:T=34; VP=15)  

108.00 (13.02) 101.25 (8.56) 

Bayley-III Cognitive z-
score at 12m 

Mean (SD) 
(n:T=34; VP=15) 

.01 (1.10) -.55 (.72) 

Table 5-13. Demographic details of infants in Gap-overlap task at 6 and 12 months of age. 

 

A repeated measure ANOVA on both the gap-effect and disengagement response 

times at 6 to 12 months, showed no main effects of age or group and no significant 

interactions. When fitting a multi-level mixed-effects model to the data, none of the 

predefined variables significantly predicted either outcome variable. The full models 

for each outcome, including the adjustment for Bayley-III z-scores at 12 months, are 

displayed in Table 5-15 and Table 5-16. 
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GAP task Variable  Term (n=20) Preterm (n=16) 

Disengagement 
RT 

6m 
Mean (ms) 318.95 281.24 

(SD) 121.43 123.82 

12m 
Mean (ms) 329.2 326.04 

(SD) 91.07 115.63 

 Mean diff 10.25 44.8  

 (95%CI) -58.46 – 78.96 -41.70 – 131.30 

Gap-effect 

6m 
Mean (ms) 427.52 395.01 

(SD) 126.99 125.57 

12m 
Mean (ms) 434.69 439.23 

(SD) 93.51 112.46 

 Mean diff 7.17 44.22 

 (95%CI) -64.22 – 78.56 -41.85 – 130.29 

Table 5-14. Response time to disengage (ms) and speed of gaze shift for gap-effect in the Gap-

Overlap task at 6 and 12 months, including mean difference in response across the two time 

points. 
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Figure 5-12. Two displays of the change of disengagement response times (ms) over the 6 to 12 

months (A) illustrates the individual changes over time in each study group; (B) illustrates group 

difference by age to visually display how the mean responses change over time 
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Figure 5-13. Two displays of the change of gap-effect  (ms) over the 6 to 12 month assessment (A) 

illustrates the individual changes over time in each study group; (B) illustrates group difference by 

age to visually display how the mean responses change over time 
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Table 5-15. Multi-level mixed effects regression model of disengagement RT across 6 and 12 month assessment including the adjustment of the 12m Bayley-III z-score. 

The baseline group are term-born females at 6 months with an IMD quintile of 1.  

 

 
Wald chi

2
 = 2.96 (p = .56) 

Predictor Term (n=20) Preterm (n=16) 

Coef 95%CI 

  

Median (Range) Median (Range) P 

Study 
Group 

39+5 (37+0 – 41+2) 26+5 (24+4 – 29+4) -2.73 -63.56 – 58.09 .93 

Age (12) 329.2 (91.07) 307.87 (109.36) 15.85 -35.23 – 66.94 .54 

Male sex 7 (35) 9 (75) -32.0 -91.37 – 27.37 .29 

IMD 
Quintile 

3 (1-5) 3 (2) -.15 -23.46 – 23.15 .99 

12m cog. 
Z-score 

.01 (1.10) -.55 (.72) 23.38 -4.45 – 51.21 .10 

Gap-
effect 
RT(Const.) 

- - 327.47 237.63 – 417.32 .000 

 
     

-100 -50 0 50 100

Coefficient	(95%	CI)
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Table 5-16. Multi-level mixed effects regression model of gap-effect across 6 and 12 month assessment including the adjustment of the 12m Bayley-III z-score. The 

baseline group are term-born females at 6 months with an IMD quintile of 1. 

 

Wald chi
2
 = 4.90 (p = .43) 

Predictor 

Term (n=20) Preterm (n=12) 

Coef 95%CI 

  
 

Median (Range) Median (Range) P 

Study 
Group 

39+5 (37+0 – 41+2) 26+5 (24+4 – 29+4) -1.80 -65.06 – 61.47 .96 

Age (12) 434.69 (93.51) 422.79 (106.26) 16.19 -36.94 – 69.32 .55 

Male sex 7 (35) 9 (75) -24.33 -86.08 – 37.42 .44 

IMD 
Quintile 

3 (2) 3 (2) -1.13 -25.37 – 23.11 .93 

12m cog. 
Z-score 

.01 (1.10) -.55 (.72) 22.26 -6.69 – 51.20 .13 

Gap-
effect 
RT(Const.) 

- - 434.65 341.21 – 528.10 .000 

 
     

-100 -50 0 50 100

Coefficient	(95%	CI)
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5.3.2 12 to 30 months 

At 12 to 30 months, 7 term-born and 10 VP infants had usable data sets (Table 5-

11). Both the groups displayed a decrease in time to disengage from the central 

stimulus at 30 months (Table 5-18; Figure 5-14). The VP toddlers increased the 

speed they disengaged on average by 155ms, compared to the term-born infants 

whose speed decreased on averaged by 23ms. The gap between stimulus 

presentations also had a smaller impact in the gaze shift speed with the VP infants 

displaying a greater increase in speed compared to the term born (Table 5-18; 

Figure 5-15). These results were not influenced by male sex, IMD quintile or 

adjustment for cognitive score at 30 months. 

  Term (n=7) VP (n=10) 

Gestational age 
Median (range); 

weeks
+d

 
39

+4
 (38

+5
 – 40

+2
) 26

+2
 (23

+6
 – 29

+4
) 

Male sex  3 (42.86%) 8 (80%) 

IMD Quintile  1 3 3 

 2 2 4 

 3 1 0 

 4 0 2 

 5 1 1 

Bayley-III cognitive 
composite score at 12m 

Mean (SD) 
(n:T=6; VP=9)  

105.83 (8.61) 105.00 (13.23) 

Bayley-III Cognitive z-
score at 12m 

Mean (SD) 
(n:T=6; VP=9) 

-.15 (.69) -.22 (1.07) 

Table 5-17. Demographic details of infants in Gap-overlap task at 12 and 30 months of age. 

 

A repeated measure ANOVA on the disengagement RT across the 12 to 30 months 

assessments showed a main effect of age (F(1, 15) = 7.04, p=.018), and a borderline 

interaction between age and group (F(1, 15) = 3.85, p<.07), with the preterm born 

participants showing a greater decrease in RT from 12 to 30 months compared to 

the term born participants (t(9)= 3.01, p = .02). When exploring the gap-effect over 

the 12 and 30 month time points, there was a significant main effect of age in an 
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repeated measures ANOVA (F(1,15) = 15.05, p = .001). There were no interactions 

effects or main effect of study group. 

GAP task 
Variable 

  Term (n=7) Preterm (n=10) 

Disengagement 
RT 

12m 

Mean 
(ms) 

269.63 336.63 

(SD) 49.82 135.97 

30m 

Mean 
(ms) 

246.26 180.84 

(SD) 70.51 75.60 

 Mean diff -23.37 -155.79 ** 

 (95%CI) -94.47 – 47.73 -259.15 – -52.43 

Gap-effect 

12m 

Mean 
(ms) 

386.61 443.61 

(SD) 40.29 141.04 

30m 

Mean 
(ms) 

322.80 298.46 

(SD) 80.64 74.98 

 Mean diff -63.81 -145.15** 

 (95%CI) -138.05 – 10.43 -251.27 – -39.03 

Table 5-18. Mean and SDs of disengagement RTs and gap-effect variables across the 12 and 30m 

assessment ages within the two groups; *p<.05; **p<.01; ***p≤.001 
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Figure 5-14. Two displays of the change of disengagement response times (ms) over the 12 to 30 

month (A) illustrates the individual changes over time in each study group; (B) illustrates group 

difference by age to visually display how the mean responses change over time. 
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Figure 5-15. Two displays of the change in gap-effect  (ms) over the 12 to 30 month assessments 

(A) illustrates the individual changes over time in each study group; (B) illustrates group difference 

by age to visually display how the mean responses change over time. 
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The first multi-level mixed effects model explored the disengagement RTs from 12 

to 30 months. When adjusting for study group, male sex, IMD quintile, age of 

assessment and an interaction term between age and study group, a significant 

effect of prematurity at the 30 month time point was observed and continued to 

effect the model when additionally adjusting for 30m Bayley-III z-scores ((-132.41, 

95% CI (-248.67–--16.16), p = .03) and (-153.30, 95% CI (-275.26–-32.35), p = .01) 

respectively). The more complex model including the adjustment for cognitive 

scores is reported in Table 5-19. 

The second multilevel mixed-effects model explored the Gap-effect over the 12 and 

30 month assessments. When adjusting for the same variables as the previous 

model, the interaction term did not have a significant impact on the gap-effect 

outcome and was therefore omitted. The gap-effect significantly decreased with 

age before and after adjustment for cognitive score ((-111.65, 95% CI (-170.15–-

53.155), p < .001) and (-103.78, 95% CI (-165.97–-41.60), p = .001) with cognitive 

score adjustment). IMD quintile had a significant impact on gap-effect outcome, 

with a higher deprivation status predicting a longer gap-effect (23.64, 95% CI (1.71–

45.56), p = .04), however, this effect is no longer significant at a 95% confidence 

level when adjusting for 30m cognitive scores (21.32, 95% CI (-1.26–43.91), p = .06). 

The more complex model including the adjustment for cognitive scores is reported 

in Table 5-20. 
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Table 5-19. Multi-level fixed effects regression model of disengagement RT across the 12 and 30 month assessments including the adjustment of the 30m Bayley-III z-

score. The baseline group are term-born females at 12 months with an IMD quintile of 1. 

 

 
 
 
Wald chi

2
 = 18.40 (p>chi2 = .005) 

Predictor Term (n=7) Preterm (n=10) 

Coef 95%CI 
  

Median (Range) Median (Range) P 

Study 
Group 

39+3 (38+5 – 40+2) 26+3 (23+6 – 29+4) 49.73 -41.57 – 141.04 .29 

Age (30m) 266.60 (49.92) 167.14 (65.70) -4.51 -98.20 – 89.18 .93 

Study 
Group# 
30m 

- - -153.30 -274.25 – -32.35 .01 

Male sex 2 (33.33) 7 (77.78) -4.23 -71.82 – 63.37 .90 
IMD 
Quintile 

2 (1-5) 3 (1-5) 13.30 -8.22 – 34.82 .23 

30m cog. 
Z-score 

-.15 (.69) -.22 (1.07) -1.16 -35.34 – 33.01 .95 

Disengag 
RT(Const.) 

- - 241.30 154.34 – 328.27 .000 

 
     

-300 -200 -100 0 100 200

Coefficient	(95%	CI)
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Table 5-20 Multi-level mixed effects regression model of gap-effect RT across 12 and 30 month assessment including the adjustment of the 12m Bayley-III z-score. The 

baseline group are term-born females at 12 months with an IMD quintile of 1.  

 

 
 
 
Wald chi

2
 = 14.20 (p>chi2 = .01) 

Predictor Term (n=6) Preterm (n=9) 

Coef 95%CI 

  

Median (Range) Median (Range) P 

Study Group 39+3 (38+5 – 40+2) 26+3 (23+6 – 29+4) -16.76 -88.55 – 55.03 .65 

Age (30m) 266.60 (49.92) 167.14 (65.70) -103.78 -165.97 – -41.60 .001 

Male sex 2 (33.33) 7 (77.78) -.67 -71.61 – 70.27 .99 

IMD Quintile 2 (1-5) 3 (1-5) 21.32 -1.26 – 43.91 .06 

30m cog. 
Z-score 

-.15 (.69) -.22 (1.07) -6.88 -42.74 – 28.99 .70 

Disengag 
RT(Const.) 

- - 368.82 285.87 – 451.76 .000 

 
     

-200 -150 -100 -50 0 50 100

Coefficient(95%	CI)
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5.3.3 6, 12 and 30 months 

Infants with data in all three time points included 5 term-born and 8 VP infants 

(Table 5-21). Overall, there was a significant decrease in disengagement response 

time with age, once accounting for study group, male sex, SES and cognitive score at 

30 months. Within the two study groups, the term born cohort displayed a general 

decrease in time to disengage with age; compared to the VP cohort who displayed 

an initial increase in RT to disengage at 12 months, before decreasing again at 30 

month (Table 5-22; Figure 5-16). A similar pattern was displayed in the gap-effect 

(Table 5-22; Figure 5-17).  

  Term (n=5) VP (n=8) 

Gestational age 
Median (range); 

weeks
+d

 
39

+1
 (38

+5
 – 40

+0
) 26

+2
 (23

+6
 – 29

+4
) 

Male sex  2 (40%) 7 (87.5%) 

IMD Quintile  1 2 2 

 2 2 0 

 3 1 4 

 4 0 2 

 5 0 0 

Bayley-III cognitive 
composite score at 12m 

Mean (SD) 
(n:T=4; VP=7)  

103.75 (6.29) 108.57 (12.15) 

Bayley-III Cognitive z-
score at 12m 

Mean (SD) 
(n:T=4; VP=7) 

-.32 (.51) .07 (.98) 

Table 5-21. Demographic details of infants in Gap-overlap task at 6, 12 and 30 months of age. 

 

The final longitudinal investigation looked at the data across all three time points. 

For a direct comparison to the previous longitudinal data sets in the first instance, 

infants were excluded if they had <5 trials in each condition across any of the time 

points, and no imputations were carried out. This lead to a small sample size and 

the results in this section should only be considered exploratory (Table 5-22). 
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GAP task 
Variable 

  Term (n=5) Preterm (n=8) 

Disengagement 
RT 

6m 

Mean 
(ms) 

371.42 266.24 

(SD) 143.51 101.77 

12m 

Mean 
(ms) 

277.6 341.88 

(SD) 47.25 147.95 

 
30m 

Mean 
(ms) 

234.67 190.29 

 (SD) 82.87 81.31 

Gap-effect 

6m 

Mean 
(ms) 

490.92 371.18 

(SD) 161.07 109.84 

12m 

Mean 
(ms) 

378.79 452.91 

(SD) 41.33 142.06 

 
30m 

Mean 
(ms) 

302.45 312.79 

 (SD) 87.53 69.41 

Table 5-22. Mean and SDs of disengagement RTs and gap-effect variables across the 12 and 30m 

assessment ages within the two groups. 

 

A repeated measures ANOVA for disengagement RTs over the 3 time points 

suggested a borderline main effect of age (F(1.75, 19.27) = 3.42, p = .06). There 

were no main effects of study group, nor any interaction effects. 

When exploring the longitudinal relationship of the gap-effect outcome variable, a 

repeated measures ANOVA again produced a main effect of age (F(1.59, 17.51)  = 

4.47 , p = .03). No main effect of group or any interactive effects were observed.   
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Figure 5-16. Two displays of the change of disengagement response times (ms) over the 3 

assessments (A) individual changes over time in each study group (B) grouped by age to visually 

display how the mean responses change over time. 
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Figure 5-17. Two displays of the change in gap-effect  (ms) over the 3 assessments (A) illustrates 

the individual changes over time in each study group; (B) illustrates group difference by age to 

visually display how the mean responses change over time. 
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The multilevel mixed effects models fitted to the disengagement RTs across the 3 

time points, found a significant main effect of age when entered as a continuous 

variable before and after adjustment for cognitive performance ((-4.59, 95% CI (-

7.87–-1.31), p < .01) and (-4.30, 95% CI (-7.87–-.74), p < .02) respectively). When 

treating age as a categorical variable, and setting the 6 month time point as 

baseline, there was a significant effect at of age at 30 months, again before and 

after adjustment for cognitive score ((-99.33, 95% CI (-180.38–-18.29), p < .02) and 

(-92.30, 95% CI (-180.37–-4.22), p = .04) respectively). The most complex model is 

again displayed in Table 5-23. 

The multilevel mixed effects model for the gap-effect over the 3 time points, found 

a significant effect of age when treated as a continuous ((-4.96, 95% CI (-8.31–-

1.61), p < .01) and (-4.28, 95% CI (-7.80–-.76), p < .02) with the adjustment of 

cognitive scores). When treating age as a categorical variable, it was again the 30 

month time point that had a significant predictive effect on the gap-effect outcome 

(before adjustment (-108.42, 95% CI (-191.27–-25.57), p = .01) and after adjustment 

(-91.32, 95% CI (-178.21–-4.42), p = .03) respectively). The more complex model is 

displayed in Table 5-24. 
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Table 5-23. Multi-level mixed effects regression model of disengagement response time across 6, 12 and 30 month assessments including the adjustment of the 30m 

Bayley-III z-score in the primary longitudinal sample with infants that had complete 3 time point samples. The baseline group are term-born females at 6 months with 

an IMD quintile of 1.  

 

 
Wald chi

2
 = 6.98 (p>chi2 = .22) 

Predictor 

Term (n=5) Preterm (n=8) 

Coef 95%CI 
  

Median (Range) Median (Range) P 

Study 
Group 

39+0 (38+5 – 
39+4) 

26+2 (23+6 – 
29+4) 

-30.85 -130.46 – 68.76 .54 

Age - - -4.30 -7.87 - -.74 .02 

Male sex 3 (25) 18 (85.71) -22.50 -121.25 – 76.25 .66 

IMD 
Quintile 

2 (1) 3 (1.5) 2.43 -33.95 – 38.81 .89 

30m cog. 
Z-score 

-.22 (.6) .18 (.8) 3.24 -46.34 – 52.83 .90 

Disengag 
RT(Const.) 

- - 368.88 250.28 – 487.48 .000 

 
     

-150 -100 -50 0 50 100

Coefficient	(95%	CI)
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Table 5-24. Multi-level mixed effects regression model of gap-effect RT across 6, 12 and 30 month assessments including the adjustment of the 12m Bayley-III z-score in 

the primary longitudinal sample with infants that had complete 3 time point samples. The baseline group are term-born females at 6 months with an IMD quintile of 1.  

 

 
 
Wald chi

2
 = 7.12 (p>chi2 = .21) 

Predictor Term (n=5) Preterm (n=8) 

Coef 95%CI 
  

 
Median (Range) Median (Range) P 

Study 
Group 

39+0 (38+5 – 
39+4) 

26+2 (23+6 – 
29+4) 

7.22 -91.18 – 105.63 .89 

Age - - -4.28 -7.80 - -.76 .02 

Male sex 1 (25) 6 (85.71) -44.67 -142.22 – 52.89 .37 

IMD 
Quintile 

2 (1) 3 (1.5) 6.05 -29.89 – 41.98 .74 

30m cog. 
Z-score 

-.22 (.6) .18 (.8) -7.24 -56.23 – 41.75 .77 

Disengag 
RT(Const.) 

- - 455.33 338.17 – 572.50 .000 

 
     

-200 -100 0 100 200

Coefficient	(95%	CI)
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The nature of multilevel models means missing data can be handled relatively 

efficiently. A second sample was therefore explored, including all infants who 

completed >5 trials per condition over a minimum of 2 assessment ages. The 

summary of this cohort can be found in Table 5-25. 

GAP task Variable   Term Preterm 

Disengagement RT 

6m 
N 26 17 

Mean (SD) 312.38 (119.97) 279.20 (120.19) 

12m 
N 22 18 

Mean (SD) 321.97 (91.01) 324.88 (111.88) 

30m 
N 13 11 

Mean (SD) 249.58 (81.20) 182.53 (71.94) 

Gap-effect RT 

6m 
N 26 17 

Mean (SD) 419.44 (120.38) 398.96 (122.66) 

12m 
N 22 18 

Mean (SD) 432.10 (89.83) 435.58 (115.28) 

30m 
N 13 11 

Mean (SD) 342.74 (100.27) 301.78 (71.98) 

Table 5-25. Means of Disengagement RTs and Gap-effect in longitudinal sample of infants with 2 or 

more valid datasets. 

 

A significant predictive effect of age at 30 months was observed in a mixed effects 

linear regression model for disengagement RT before adjustment for cognitive 

performance (-73.67, 95% CI (-8.31–-1.61), p < .01). Upon adjustment, an 

interaction term between study group and age had a significant effect on the 

model, with preterm birth at 12 months displaying a greater disengagement RT 

(110.36, 95% CI (4.45–216.28), p = .04). This model also suggested a main effect of 

prematurity (-87.66, 95% CI (-162.81–-12.52), p = .02), see Table 5-26.  

Due to interaction term the model presented in Table 5-26 this becomes hard to 

interpret; therefore for clarity, the main effect of prematurity allowed for two 
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separate models to be fitted to the data between the two study groups. Within the 

preterm model, a borderline effect of age at both 12 (70.78, 95% CI (-1.97–-143.53), 

p < .06) and 30 months (-80.67, 95% CI (-160.65–-.68), p < .05) was observed with 

the infants showing an increase in disengagement RTs from 6 month to 12 months, 

before decreasing at 30 months (Table 5-27). This effect of age was not observed 

within the term born infants (Table 5-28). 

When exploring the gap-effect within this second cohort before when controlling 

for cognitive performance, a main effect of age was observed (-3.67, 95% CI (-5.87–-

1.47), p = .001). A shorter gap effect at 30 months creating this age effect (-81.44, 

95% CI (-133.55–-29.34), p = .002). Within this model, IMD quintile also had a 

significant predictive effect on the gap-effect outcome where greater deprivation 

status related to long gap effects (15.11, 95% CI (.28–29.95), p <.05). Upon 

adjustment for the cognitive performance, no interaction terms had a significant 

impact on the model parameters, however, the effect of age still remained (-3.41, 

95% CI (-5.82– 1.00.), p = .006), again with this specifically driven with the shorter in 

gap-effect RT at 30 months (-72.72, 95% CI (-131.10–-14.34), p = .015). The more 

complex model is reported in Table 5-29. 

All longitudinal models reported in the chapter were not significantly different from 

a standard regression model, indicating there are no group-level random effects.    
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Figure 5-18. Disengagement response time (ms) of term and very preterm toddlers during the Gap-

overlap task across the 3 assessments including infants with a minimum of 2 sets of data. 

 

Figure 5-19. Gap-effect (ms) of term and very preterm toddlers during the Gap-overlap task across 

the 3 assessments, including infants with a minimum of 2 sets of data 
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Table 5-26. Multi-level mixed effects regression model of disengagement RT across 6, 12 and 30 month assessments including the adjustment of the 30m Bayley-III z-

score in the second longitudinal sample with infants that had ≥2 valid time points, including interaction term between study group and age. The baseline group are 

term-born females at 6 months with an IMD quintile of 1.  

 
Wald chi

2
 = 25.7 (p>chi2 = .001) 

Predictor Term (n=14) Preterm (n=15) 

Coef 95%CI 

  

Median (range) Median (range) P 

Study 
Group (SG) 

40+1 (38+5 – 41+5) 26+2 (23+6 – 29+4) -87.66 -162.81 - -12.52 .02 

Age – 12m - - -39.35 -118.72 – 40.01 .33 

        – 30m - - -56.24 -134.71 – 22.22 .16 

12m#SG - - 110.36 4.45 – 216.28 .04 

30m#SG - - -23.68 -133.95 – 86.60 .67 

Male sex 7 (50) 11 (73) -4.20 -53.19 – 44.80 .87 

IMD 
Quintile 

3.5 (3) 3 (2) 7.28 -9.56 – 24.13 .40 

30m cog. 
Z- score 

-.22 (.8) .18 (1.2) -18.11 -43.27 – 7.06 .16 

Disengag 
RT(Const.) 

- - 314.77 235.84 – 393.70 .000 

 
     

-200 -100 0 100 200 300

Coefficient	(95%	CI)
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Table 5-27. Multi-level mixed effects regression model of disengagement RT across 6, 12 and 30 month assessments including the adjustment of the 12m Bayley-III z-

score in the second longitudinal sample with infants that had ≥2 valid time points within the very preterm group only. The baseline group are females at 6 months with 

an IMD quintile of 1.  

 

Wald chi
2
 = 15.41 (p>chi2 = .009) 

Predictor Preterm (n=15) 

Coef 95%CI 

  
 

Median (range) P 

Age – 12m - 70.78 -1.97 – 143.53 .06 

        – 30m - -80.67 -160.65 - -.68 .05 

Male sex 11 (73) 15.22 -64.82 – 95.27 .71 

IMD 
Quintile 

3 (2) .02 -50.57 – 9.92 1.0 

30m cog. 
Z-score 

.18 (1.2) -20.33 133.96 – 333.09 .19 

Disengag 
RT(Const.) 

- 233.52 133.96 – 333.09 .000 

 
    

-200 0 200 400

Coefficient	(95%	CI)



 
 

 

1
9

8 

Table 5-28. Multi-level mixed effects regression model of disengagement RT across 6, 12 and 30 month assessments including the adjustment of the 12m Bayley-III z-

score in the second longitudinal sample with infants that had ≥2 valid time points within the term group only. The baseline group are females at 6 months with an IMD 

quintile of 1.  

 

Wald chi
2
 = 4.13 (p>chi2 = .53) 

Predictor Term (n=14) 

Coef 95%CI 
  

 
Median (range) P 

Age – 
12m 

- -38.13 -112.90 – 36.64 .32 

        – 
30m 

- -51.72 -125.57 – 22.13 .17 

Male sex 7 (50) -24.72 -102.78 – 53.34 .54 

IMD 
Quintile 

3.5 (3) 15.32 -10.26 – 40.90 .24 

30m cog. 
Z-score 

-.22 (.8) -33.12 -107.10 – 40.87 .38 

Disengag 
RT(Const.) 

- 294.92 195.12 – 394.72 .000 

 
    

-150 -100 -50 0 50 100

Coefficient	(95%	CI)
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Table 5-29. Multi-level mixed effects regression model of gap-effect RT across 6, 12 and 30 month assessments including the adjustment of the 30m Bayley-III z-score in 

the second longitudinal sample with infants that had ≥2 valid time points. The baseline group are term-females at 6 months with an IMD quintile of 1.  

 

 
 
Wald chi

2
 = 16.80 (p>chi2 = .01) 

 

Predictor Term 
(n=14) 

Preterm  
(n=15) 

Coef 95%CI 
 

 
 

Median 
(Range) 

Median 
(Range) 

P 

Study 
Group 

40+1 (38+5 
– 41+5) 

26+2 (23+6 
– 29+4) 

-38.20 -87.87 – 11.47 .13 

Age – 12m - - 19.69 -36.32 – 75.69 .49 

        – 30m - - -72.72 -131.10 - -14.34 .02 

Male sex 7 (50) 11 (73) -2.97 -54.72 – 48.79 .91 

IMD 
Quintile 

3.5 (3) 3 (2) 15.16 -2.66 – 32.97 .10 

30m cog. 
Z-score 

-.22 (.8) .18 (1.2) -23.91 -50.47 – 2.65 .08 

Disengag 
RT(Const.) 

  377.93 302.86 – 452.99 .000 

 
     

-150 -100 -50 0 50 100

Coefficient	(95%	CI)
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5.4 Discussion 

This chapter investigated differences in visual attention between term and preterm 

born infants at 6, 12 and 30 months of age. The Gap-overlap paradigm administered 

utilised eye-tracking technology to track the speed of ocular saccades to a 

peripheral target from a central stimulus. The paradigm comprised of 3 conditions: 

the gap condition, where the target appeared after a short interval following the 

central stimulus disappearance; the baseline condition, where the target appeared 

simultaneously to the central stimulus disappearance; and finally the overlap 

condition, where both the central and peripheral targets were presented 

concurrently. Previous research has found an effect of condition on the saccadic 

response times within the paradigm, with the gap condition eliciting the fastest 

responses, and the overlap creating the greatest delay (Hood and Atkinson, 1993). 

This was replicated in the current investigation, with this pattern presenting at all 

time points within the current study.    

The overall reduction in speed over time to all conditions is consistent with previous 

findings within the literature. However, cross-sectional investigations did not 

produce any main effects of group or any group by condition interactions, 

suggesting no clear sign of visual attention dysfunction within the VP infants at any 

age. When exploring the longitudinal relationship across the assessment ages to 

explore how performance changes with time on the task, no significant effects of 

age were observed within the first model, exploring the 6 to 12 month RTs. 

However, when looking across the 12 to 30 month data, there was an interaction 

observed between the study groups and age of the disengagement RTs; the VP 

infants showed a greater reduction in RT from 12 to 30 months. When modelling 

the full 3 time points and including all infants that had 2 or more valid data sets, it 

was the VP infants who displayed significant changes across assessments in their 

disengagement behaviour. A significant increase in response time at 12 was 

observed before a decrease again at 30 months within the VP group. This difference 

in study group performance is only apparent once controlling for cognitive 

performance. Upon adjustment, the VP infants displayed the greatest variation in 
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RTs over the assessments compared to the term infants who remained relatively 

consistent. 

When looking at the gap-effect variable (the difference between the fastest and 

slowest trial responses), the effect of age was a main effect, showing a decrease in 

response across both groups between 12 and 30 months, and again when looking 

across all 3 time points. There were no interaction effects when exploring this 

variable suggesting the effect of the gap, even if not significantly so within each age 

point, was slower in the response of the VP infants, leading to no group 

differentiation in the gap-effect variable.  

The main variable investigated throughout was the disengagement reaction time 

(RT). This variable was calculated with the subtraction of the baseline responses 

from the overlap trial responses, adjusting for individual variation and producing a 

measure of the extent the overlap trial challenges the infants’ attentional system. 

The overlap trials create attentional competition as the infant is required to look 

away from the more visually pleasing central stimulus to the target in the periphery. 

Failure to disengage from this stimulus has been interpreted as a deficit in young 

children (Hood and Atkinson, 1993), and has been compared to prolonged fixation 

behaviour, termed ‘obligatory attention’ reportedly found in adults (Stechler and 

Latz, 1966). The delay created from the overlap trials is thought to be caused by the 

initial engagement with the central stimulus before the presentation of the 

peripheral target. This engagement prevents the ocular movement to the periphery 

and it has been suggested that attentional processes are required to be disengaged 

before the shift in gaze can be made. Following the saccade, the visual attention is 

then reengaged with the peripheral target (Posner and Petersen, 1990; Fischer and 

Weber, 1993). Removal of the central stimulus increases the speed of saccades to 

the periphery, as this automatically disengages the attention and allows saccades to 

the next visual movement on the screen. These theories correspond to the RTs 

produced previously and within the current study to the 3 conditions in the Gap-

overlap paradigm.   
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In children with autism, attentional deficits, specifically visual attention and 

attentional shifting, have been reported and are thought to correlate with the 

social-communication difficulties typically observed in this population (Elsabbagh et 

al., 2009). A large study, BASIS, investigating young autistic populations and those at 

high-risk of the disorder, used the Gap-overlap paradigm and have repeatedly found 

longer RTs to the disengagement within the high risk and vulnerable groups 

(Elsabbagh et al., 2009; Green et al., 2015). When this group trialled intervention 

procedures to help with later known problems within this disorder, the 

disengagement RTs decreases, speculated to be a sign of positive response from the 

intervention (Green et al., 2015). This pattern of results has also been observed in 

health controls following executive training (Wass, Porayska-Pomsta and Johnson, 

2011). The suggestion within these studies is that a slower disengagement response 

is reflective of later atypical attention, and appears to be the strongest theory 

within the literature.  

In terms of the exploration of preterm attentional abilities, literature searches did 

not produce any studies utilising the Gap-overlap paradigm within this population. 

However, it has been shown on a number of occasions that preterm infants are at 

risk of later attentional difficulties (Mulder et al., 2009; Anderson, 2014). These 

difficulties have been associated with lower achievements later in life (Sigman et al., 

1991; Rose, Feldman and Jankowski, 2001). 

A number of studies have found disengagement times to be slower in high-risk 

preterm cohorts (Landry et al., 1985; Rose, Feldman and Jankowski, 2001, 2002), 

whilst others, investigating of low risk preterm cohorts, report response times to be 

faster than that of term controls within the first year of life (Foreman et al., 1991; 

Hunnius et al., 2008). Studies that have found these reduced RTs theorise that the 

early exposure to visual stimuli created by premature birth leads to faster 

maturation of the visual system in the infants that are not as high risk (Hunnius et 

al., 2008). The perinatal complications are likely to be higher in high risk cohorts and 

may confound these developments in high risk infants (Hitzert et al., 2014). Preterm 

infants have also been reported to have different patterns of exploratory behaviour 
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in terms of investigating their environment. Previous literature has suggested these 

infants can spend less time examining objects around them (Landry and Chapieski, 

1988), with this potentially having knock on effects to later cognitive development 

(de Haan et al., 2000).  

Although it is commonly accepted that the shorter the look, the more efficient the 

information processing, as seen in habituation paradigms and in accordance to the 

theories above (Rose, Feldman and Jankowski, 2001, 2002), an alternative theory 

has been suggested in the case of disengagement times. In a study by van der 

Geest, et al.,(2001) the gap-overlap paradigm was utilised to explore again, the 

visual attentional difficulties in children on the autistic spectrum at the age of 10 

years (van der Geest et al., 2001). This group found that autistic children displayed 

faster reaction times in the gap-effect to the gap-overlap task compared to healthy 

controls in contrast to previous findings. The authors concluded that instead of an 

inability to disengage, these children displayed a poorer engagement of attention to 

the central stimulus in the first instance, and therefore the disengagement response 

is faster and saccades quicker than that of the term controls (van der Geest et al., 

2001). They propose this lack of engagement could offer a possible explanation for 

high saccadic frequency, previously reported in autistic individuals (Kemner et al., 

1998). However, this difference was not observed within the disengagement RTs in 

previous publications and the results could be reflective of slower saccadic 

reactions to the gap trials. 

The literature presents with conflicting theories regarding the explanation of 

saccadic responses to visual attention tasks. When reflecting on the results of this 

longitudinal observation of a high risk VP cohort, it is possible that both theories 

have merit. If considering the first year of assessments, although not significantly 

different from the term controls at each age point, the VP cohort presented with a 

significant increase at 12months from the 6 month in the gap-effect and 

disengagement RTs. This could be an indication of latter attentional problems as 

seen within the studies of autistic populations discussed above. However, at 30 

months, the preterm response decreases significantly in line with term controls. 



 
 

204 
 

This could be a possible indication of engagement deficits beginning to emerge 

within the cohort, as suggested by van der Geest et al. (2001). Given the support in 

the literature for slow disengagement as an earlier indicator of later cognitive 

deficits, the data collected at the 12 month assessment may be a better identifier of 

later attentional deficits.  

Overall the responses of visual attentional system assessed with the use of the gap-

overlap paradigm appear to be more variable within the preterm cohort compared 

to term born controls. Although both groups consistently responded within 

statistically similar timeframes across the 3 time points, the changes from one time 

point to the next were greater within the preterm infants when controlling for 

global cognitive abilities. The overall performance of the children on the task was 

consistent with previous research, replicating the response time patterns to each 

condition at each age. In terms of predictive validity of the assessment, it will be 

crucial to correlate the data collected with cognitive abilities and visual attentional 

performance later in life. 
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Chapter 6 Information Processing  

Processing speeds have been found to be associated, if not fundamental, to EF 

abilities in both typical and atypical populations (Kail and Salthouse, 1994; Mulder, 

Pitchford and Marlow, 2010). A historical view within the literature associates 

efficient processing to superior cognitive domain performance over time, as it is has 

been interpreted as a marker of domain experience; the more experienced a 

domain, the more established the neural links and thereby the faster and better the 

performance (Chi, 1977; Kail and Salthouse, 1994). An alternative, but not unrelated 

theory, considers a more global perspective reflective of the developmental 

changes in the brain, such as myelination and synaptic pruning (Luna, 2009). These 

models allude to the same outcome however, both highlighting the importance of 

processing speed in the interpretation of global cognitive abilities.  

Developmental improvements in processing speeds have been proposed to be 

significant in infancy and early childhood, continue to improve in middle to late 

childhood and become ‘asymptotic’ in adolescence (Kail and Salthouse, 1994; Kail 

and Ferrer, 2007), seemingly a non-linear trajectory (Kail and Ferrer, 2007). In 

infancy, information processing is often assessed using visual paradigms with 

‘length of look’ evaluated; visual recognition memory and habituation tasks are 

frequently utilised (McCall and Carriger, 1993; Kavsek and Bornstein, 2010; Rose, 

Feldman and Jankowski, 2012). It is theorised that if an infant spends a prolonged 

time looking at an image, their visual processing is slower than that of a child with a 

shorter look (Kavsek and Bornstein, 2010). It has been proposed that habituation 

reflects both memory consolidation and learning, with speed of processing of 

information clearly linked to both abilities (Colombo and Mitchell, 2009). An 

alternative paradigm to demonstrate learning within this literature is that of the 

conjugate reinforcement paradigm by Rovee and Rovee (1969) and will be further 

explored later in this chapter (Heathcock et al., 2004).  

In childhood and into adolescence, processing speed is typically evaluated using 

manual response time tasks. For example, a match-to-sample paradigm, a visual 
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search task whereby the participant must find a match to a target and performance 

is defined according to the quantity found within 1 minute (Rose et al., 2012) has 

been used to investigate processing speeds in 11 year olds.  However, assessments 

such as these can be confounded with fine motor performance difficulties 

particularly in early childhood but also more generally (Kyllonen and Zu, 2016; Ebaid 

et al., 2017). A relatively new approach to limitations such as these, is the use of 

touchscreen technology (Pitchford and Outhwaite, 2016). This medium eliminates 

the need for precise motor abilities and those as young as two have been shown to 

have the acquired motor abilities for this assessment structure (Nacher et al., 2015). 

This medium is explored with the preterm cohort later in the chapter. 

Associations have been made between reduced processing speeds and the 

academic difficulties and behavioural patterns observed following preterm birth 

(Mulder, Pitchford and Marlow, 2011a). These observations associated to poor 

academic achievement have been primarily from later childhood studies (Mulder, 

Pitchford and Marlow, 2010, 2011b; Aarnoudse-Moens et al., 2013). Although there 

have been reports of reduced processing speed in infancy, it is not clear whether 

problems observed in the early years are directly translated to the later 

observations (Rose, Feldman and Jankowski, 2009; Rose et al., 2012). As with many 

cognitive areas the assessment of processing speed in the toddler years is limited 

(Rose, Feldman and Jankowski, 2009). The work by Rose et al. (2009) begun to 

address this gap by exploring the processing speeds difficulties reported in ex-

preterm populations, and found an element of continuity in the problems reported. 

The group later proposed a model that incorporated processing speed, memory, 

attention and representational competence that predicted global outcomes at 11 

years (Rose et al., 2012). Although minimal, this provides evidence to suggest it may 

be possible to identify deficits as early as infancy that later predicts performance 

outcomes.  

Preceding conscious cognitive effort is the speed in which the brain handles sensory 

information (Escera et al., 2000). Information from sensory systems is initially 

required to be processed and collated. This is considered a ‘lower-order’ cognitive 
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process that underlines ‘higher-order’ functions such as EF (Demetriou et al., 2002; 

Aarnoudse-Moens, Smidts, et al., 2009). In preterm infants, the white matter tract 

abnormalities often reported have been associated to slow processing of 

information across brain regions, leading to poorer cognitive performances and 

behavioural difficulties (Aarnoudse-Moens, Smidts, et al., 2009). It is therefore 

possible that detection of slower neural processing speeds could be a predictor of 

later cognitive function.  

Event-Related Potentials or ERPs have long been considered the most temporally 

accurate method of measuring the speed of neural processes. ERPs are 

electroencephalography (EEG) waves time-locked to a specific stimulus. The 

oscillating electrical impulses naturally produced by the brain at rest are interrupted 

when presented with new sensory information, such as a short sound burst, 

generating a change the electrical activity across the brain (EEG waves). When the 

stimulus presentation is time-locked to the electrical activity (ERPs) the speed of 

transfer of information across multiple brain networks can be evaluated. This 

technique allows the speed of transient changes within the brain to be compared 

across populations (Woodman, 2010; Sokhadze et al., 2017).  

Involuntary attention is the initial detection of sensory information by the brain and 

can be observed in ERP responses. For auditory stimuli, a component is elicited 

approximately 100ms after a sound is played, reflecting this involuntary processing 

(Escera et al., 2000). ERP paradigms are often considered the most feasible method 

for assessing neurological function in infants and young children due to the 

versatility of the technique. Exploration of the neural response to sound has been 

used to assess processing speeds in infants as it does not require active focus. In a 

preterm cohort at 12 months of age, correlations have been reported between 

auditory ERP components differences and later developmental scores compared to 

infants born at term (Fellman et al., 2004). This group later observed differences in 

the same cohort at 5 years of age, leading them to conclude that the primary 

auditory processing could be impaired within the cohort (Mikkola et al., 2007). A 

trend is emerging within the preterm literature, with the implication that the 
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auditory delays being observed could be impacting language development and may 

explain the delays frequently reported in the population (Jansson-Verkasalo et al., 

2003, 2010; Hövel et al., 2014). As alluded to in Chapter 1, section 1.4, language 

delays have been correlated to reduced neural volume in regions connecting the 

auditory cortices (Northam et al., 2012). By further investigating the auditory 

processing in terms of auditory attention, it could shed further light on this topic. 

Both behavioural and neuropsychological techniques were implemented during the 

PDP to investigate performance speed differences in both EF and attentional 

measures within the two cohorts.   

6.1 Behavioural processing speeds  

The behavioural techniques used within the PDP battery investigate information 

processing alongside EF abilities. Both the speed of response and overall 

performance was investigated. The measure from the first year utilised the 

conjugate reinforcement paradigm to investigate the speed of learning. In the 

second year, the toddlers were assessed on a newly developed touchscreen base 

application, the BabyScreen application, and an established paradigm from the 

literature, the Multi-location Multi-step task.  

The classic mobile paradigm (Rovee and Rovee, 1969) was selected as it has 

previously been used to explore learning in preterm cohorts. Preterm infants have 

demonstrated a reduced level of learning compared to that of term born controls in 

a number of studies (Heathcock et al., 2004, 2005; Haley et al., 2008). The criterion 

used in Haley et al., (2008) was used to determine whether the infants learnt during 

the task, in order to make the work comparable to results found previously in the 

field. The speed in which the infants achieved this criterion was also investigated by 

averaging the number of kicks per minute over the duration of the task. 

The BabyScreen app, designed by Deirdre Murray and colleagues (Twomey et al., In 

press) used a touchscreen tablet to assess multiple domains of executive function, 

in combination with the speed in which toddlers could process and respond to 
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visual stimuli. The BabyScreen application used multiple touch responses to assess 

learning and speed of processing within the different EF domains through a novel 

app that the children had not seen before. The instructions for the app were 

minimal and very little verbal communication was given during administration. The 

premise of the design prompted the infant to ‘discover’ what to do as they 

interacted with the task. It was theorised that the process of discovery 

demonstrated a greater representation of naturalistic EF. The task also did not 

require highly precise movements and recorded touch response type and time 

automatically. The rationale behind the design was to remove any biases caused by 

receptive language delay and fine motor difficulties, the common limitations to 

traditional cognitive tests in use today (Twomey et al., In press).  

The ‘multi-location multi-step task’ (Zelazo, Reznick and Spinazzola, 1998) is an 

advanced version of the A-not-B task (Piaget, 1954) and was carried out at the 30 

month time point. Zelazo et al., modified the typical AB task, to see if perseverative 

errors often observed with the first year after birth continue at the age of 2 years 

(Zelazo, Reznick and Spinazzola, 1998). In the study in 1998, perseverative errors 

were observed, postulated to be a sign of cognitive inflexibility in relation to motor 

learning. In a similar structure to the AB paradigm, the MLMS apparatus included 

multiple wells in which the snack or toy was hidden. However, rather than a simple 

request to the child to find the snack or toy, multiple actions had to be completed 

before the snack or toy could be obtained. This task has been analysed based on 

time to correct response, with this reflecting information processing capacity within 

the EF task. Given the inclusion of the AB paradigm at the assessment at 12 months 

of age, this task was a logical continuum when exploring EF performance at 30 

months of age.  

6.1.1 Methods 

6.1.1.1 Conjugate Mobile Reinforcement Paradigm: Apparatus and procedure 

The infants were placed supine, at a 45 degree angle, into a Graco Travel Cot, with 

the dimensions 80cm x 26cm x 26cm. Attention of the infant was directed to the 
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mobile by covering the sides and base of the cot in white sheets to remove any 

distractions from outside. The mobile was positioned in the bottom left hand corner 

of the cot, and was suspended at a height of 50cms above the cot. The infants’ legs 

were in line with a mobile in the bottom left hand corner and their head in the top 

right hand corner.  

Two mobiles were used during the task, the order of which was counterbalanced 

equally within the two cohorts. The first of the two mobiles was approximately 

34cm in length, with four three dimensional soft toys with bells hanging from a 

circular hoop which was suspended from the mobile stand. The second mobile was 

42cm long and composed of 3 strands of two dimensional cardboard shapes of 

multiple colours with bells that hung from the bottom. The two mobiles were 

intentionally visually very distinctively as in this version of the task the mobile is 

changed in the third phase to test the infants understanding of their learnt skill.  

The task comprised 3 test phases. The first, the baseline condition, was 2 minutes in 

length, and involved attaching a stationary ribbon to the infants’ right ankle. The 

ribbon was considered stationary as it was attached to the cot at the base of the 

mobile stand. This phase recorded the frequency of natural leg kicks produced per 

minute by the infant. The second phase, the training phase, was 6 minutes in length 

and required switching to a ribbon attached to the top of the mobile. A kick from 

the infant now caused a displacement of the mobile. This ribbon was maintained for 

the final phase of the task, the generalisation phase. This condition required the 

removal of the mobile that had been in place for the baseline and training 

conditions and was replaced with the second visually distinctive mobile. This final 

phase was 2 minutes in duration. The ribbon length was adjusted to ensure it 

remained taut for all phases of the task.  
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Figure 6-1. Photograph of the conjugate mobile reinforcement paradigm lab set up. 

A video camera (model: Panasonic HDMI HM-TA2) was positioned in the bottom 

right hand corner of the cot, and was adjusted to ensure the infant was in full view 

during the recording. 

Coding and Analysis: 

Each phase of the task was video recorded; offline coding recorded the number of 

independent and simultaneous leg kicks per 30s intervals within each phase of the 

task. Although recorded, the simultaneous leg kicks were not considered in the 

analysis. A kick was defined as an extension or flexion of the hip and/or knee joints 

(with enough force to create movement on the ribbon), which returns along the 

route from which it came (Rovee and Rovee, 1969).  

To account for the variation in natural baseline movements, a relative response 

ratio (RRR) was calculated for each minute of the training phase (training leg kick 

response per minute/ average baseline leg kick response per minute; see Figure 6-

2). In order to categorise performance within the mobile reinforcement paradigm, 
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other studies within the literature have defined ‘learning behaviour’ by  calculating 

the RRR and employing a criterion alongside this that infant has to meet to be 

considered to have learnt during the paradigm (Haley et al., 2008). The criterion 

states the infant must display a ratio of 1.5 (50% increase from baseline response) 

in two consecutive minutes of training to achieve a ‘learner’ status (Haley et al., 

2008). If this criterion is not met the infant is considered a non-learner in this task. 

To ensure the data is comparable to results from previous studies the same criteria 

was employed here. Accordingly, the infants were therefore categorised into 4 

groups in the analysis of this paradigm: term learner (TL); term non-learner (TNL); 

preterm learner (PL); preterm non learner (PNL).  

 

Figure 6-2. Relative response ratio calculation, used to remove baseline leg kick bias. The RRR was 

calculated for each minute of the training phase and of the generalisation phase. The learning 

definition was defined only by performance within the training phase. 

  

Interrater reliability was performed and produced a reliability coefficient of .97 

when double coding 25% of the data. 

RRR has been criticised following its use in previous studies. Those with higher 

nature baseline kick frequencies are potentially at a disadvantage when needing to 

meeting this criterion as they are required to kick at an even greater frequency to 

achieve the specified 1.5 ratio (Millar and Weir, 2015). Furthermore, preterm 

infants have previously been reported to display a higher spontaneous kick 

frequency compared to term controls (Heathcock et al., 2005). This suggests the 

disadvantage discussed by Millar and Weir (2005) could bias the groups that we are 

investigating here. In response to this, baseline kick rates were investigated by 

study group to confirm no significant differences were present dependent on 

gestation at birth. Baseline data was not normally distributed and could not be 

RRR = Number of ribbon leg kicks during each minute of training/generalisation Phase  
Average ribbon leg kicks during baseline 

 
Definition of learning: 

Learner = RRR ≥ 1.5 for 2 consecutive minutes of the training phase 
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corrected with transformation, this was therefore investigated using a Mann-

Whitney U-test. 

An odds ratio was used to investigate relationship between learner status and study 

group (term vs preterm and learner vs non-learner). Speed of learning was 

determined by comparing response rates between the different learning status 

groups (learner vs non-learner) in 2 minute intervals across the training phase. A 

mixed effects model was also fitted to the data to further explore the relationship 

between the groups including the previously stated confound variables determined 

in chapter 2. Initially a single, mixed effects model was fitted to the data including: 

the ‘study group/learning status’ 4-way between-subject grouping variable; time 

(repeated within-subject predictor, detailing responses from the 2 minutes of 

baseline, and the training phase split into 3 epochs of 2 minutes) and the other 

stated predictors: male sex and IMD quintile. However, the best model fit included 

an interaction between the group status and time, as determined by a likelihood 

ratio test. This produced a complex 4-way interaction that was difficult to interpret, 

therefore for clarity, the learning status groups were separated and differences in 

study group were explored within each model. Reported in the subsequent sections 

are two mixed effect models for each learning category, adjusting for study group; 

male sex; IMD quintile; and time. As previously, these relationships were explored 

before the additional adjustment of cognitive z-scores at 12 months. Post-hoc t-

tests were then run to examine any interactions.  

To investigate whether those that met the learning criterion displayed a specific 

increase in kick rate on the leg attached to the mobile, leg kicks were analysed 

independently across the 4 groups (term-learner; term-non-learner; preterm-

learner; preterm-non-learner). Kick rate difference was computed by subtracting 

the non-ribbon leg from the ribbon leg, with a positive kick rate difference 

indicating a higher level of kicking on the ribbon leg. The kick rate difference at 

baseline was compared to the difference in the last two minutes of training. As 

before, the two learning status groups (learner vs non-learner) were analysed 

independently to investigate the relationship between study groups. Mixed linear 
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regression models were fitted to both groups adjusting for study group, time (kick 

rate difference at baseline and at the end of training), male sex and IMD quintile. 

Independent models were then run with the additional adjustment of cognitive z-

scores.  

RRR were calculated again during the generalisation phase. Employing the same 

criterion as before, infants who displayed a RRR of 1.5 for the 2 minutes of the 

generalisation phase were considered to have transferred their learnt behaviour 

from the training phase. Again, separate mixed-effect linear regression models were 

fitted to the two learning status groups (learner vs non-learner) both adjusting for 

study group, time (RRR at baseline and during the generalisation phase), male sex 

and IMD quintile. Lastly, the models were repeated, adjusting for cognitive z-scores.  

The variable selected a priori to best reflect the performance on this task was the 

binary learning status outcome. 

6.1.1.2 BabyScreen application 

During the 30 month assessment, cognitive processing was tested using a newly 

developed touchscreen application. For the administration, the child was seated at 

a table, with the touchscreen device place flat on the table in front of them. The 

experimenter and parent in the room remained in the room but the parent was 

instructed not to talk during the assessment. The application was administered on 

an Apple iPad Air 2, with the volume set at 70% of the maximum capacity. Before 

starting, the parent was asked to estimate their child’s touchscreen exposure.  

The BabyScreen software version 1.5 (Hello Games Ltd, UK) assesses 4 areas 

associated with EF, termed ‘constructs’, being selective attention, working memory, 

hidden object retrieval, and object permanence. Each construct comprised a varying 

number of items. Overall 18 different items were administered. The rationale and 

design of each construct was developed utilising basics concepts from established 

experimental designs, including the AB paradigm and Multi-Location Multi-step 

task, both of which were used in the current study.  
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The paradigm starts in demonstration mode. The experimenter says ‘let me show 

you’, and completes the action required to complete the item. This is the only 

verbal instruction given during the session. The application utilises multiple 

different touchscreen techniques, which at the age of 30 months, may or may not 

be familiar to the child, depending upon prior touchscreen exposure. Throughout 

the different test items, it was expected that the child would make trial and error 

responses in order to determine the correct touch response to complete it. 
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Figure 6-3. Visual representation of the BabyScreen items, separated into the 4 EF constructs, with 

the addition of training and overall learning. 

 

Items 1-3 

 

Items 4-9 

 

 

Item 18 

 

Items 10, 11, 13 

 

Items 12-14 

 

Items 15-16 

 

Item 17 
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The application starts with 3 training items, to familiarise the child with the concept 

of the paradigm, please see Figure 6-3 (A). The main theme running through the 

application is the target image. The child is required to press or repeatedly tap the 

gold star with a face until it disappears. The length of press or repeated tapping 

motion is set such that it is unlikely the child achieves the required level of touch by 

accident. This ensures the behaviour to obtain the target is intentional. When 

reaching the required touch level on the target, the star disappears, accompanied 

by a musical sound signifying this achievement and the app progresses to the next 

item. 

Selective attention is assessed in items 4 through 9, and in an additional item at the 

very end of the paradigm, item 18, which is a repeat of items 8 and 9 (B). This is 

theorised to assess selective attention as there are multiple distractor stimuli 

alongside the target, which the child had to inhibit to pass the item. Progression 

through the 6 items of this construct gradually increased in difficulty, for instance, 

additional distractors and dimensions (such as colour), and ended with a rule 

change on item 8, where the target changed to the blue star with no face. 

The working memory was assessed in items 10, 11 and 13 (C). These items 

presented the target initially, but was then cover by one of two cups that fell from 

the top of the screen. The child had to swipe the correct cup in an upward motion 

to reveal the target star, the cups then disappeared and the target was then 

pressed/tapped until it disappeared, as learnt previously. 

For the hidden object construct, the child had to move the red box to reveal the 

target star, as shown in image D. Items 12 and 14 assessed this construct, with item 

14 adding an additional target star. 

Object permanence, assessed by items 15 and 16, displayed a blue button with a 

smiley face. The child was required to press and hold the button to display the 

target star. The target was only achieved when the child simultaneously held the 
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button and tapped/pressed the star to complete the item. The second of these 

items had two buttons and two stars. 

Item 17 (F), is an amalgamation of touch responses utilised over the application to 

obtain an overall measure of learning over the task. Tapping, holding, swiping and 

pressing were all needed to achieve the items within the paradigm and item 17 

required all of these motions. 

The structure of each item was the same. Upon the initiation the child was given 30 

seconds to successfully complete the item by making the target star disappear. If 

the child was not able to complete the item in this timeframe, the screen would go 

into ‘demo mode’. At this point the experiment said ‘watch me’, and successful 

completed the item. The child was then given a further 30 seconds to complete the 

item. If it was apparent that the child was not going to accomplish the required 

action to achieve a pass on that particular item, at the end of the second block, the 

experimenter could choose to skip the item. The task would then move on to the 

next item. 

Coding and Analysis: 

The key variables produced by the BabyScreen app were: number of items 

completed (without and with a demonstration), the response time of the child to 

each item, and finally, in those where distractor stimuli were present, accuracy of 

the child’s first press was also analysed. Each item was investigated separately, and 

performance on each construct as a whole were analysed. 

Irrespective of whether the child required a demonstration, the total amount of 

time taken was summated from the first and second attempts at each item, as 

required. In cases where the items were skipped, this was either due to an inability 

to complete the item or, if circumstances indicated the child was not going to be 

able to achieve a pass, if a previously similar item was not passed, or if the child had 

become distressed. Due to this, when exploring the response times to all items 

within the paradigm, these RTs could have skewed findings and not truly reflect a 
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child’s difficulties with a particular item. Accordingly, the highest response time in 

the cohort was applied to all cases where the item was skipped and the item was 

considered to be a ‘failed’ attempt. 

It was only possible to measure accuracy, as mentioned, on items where distractor 

stimuli were present; items 4-11, 13 and 18. This score was calculated based on 

which attempt successful completion of the item occurred and whether the first 

touch on the screen due the successful attempt was an interaction with the 

distractor stimulus or the target. The scale for accuracy was from 0 to 4. A score of 4 

indicated the highest accuracy, where the target was obtained in the first attempt 

and the target was the first interaction. Scores of 1 indicated the poorest accuracy 

where success on the item was achieved during the second attempt and an 

interaction with a distractor stimulus was the first interaction. Task failure gave an 

accuracy score of 0. 

Statistical analysis approach was as detailed in chapter 2. Total task performance by 

study group was first explored with a particular interest in the proportion of items 

completed without the need of a demonstration. Each construct was then explored, 

investigating overall performance on the construct and performance within the 

individual items. Whole constructs and individual items were explored in terms of 

performance (pass/fail), response time (RT) and, where applicable, accuracy score 

(ACC) between the two study groups.  

Multiple linear regression models were fitted to explore the relationship of 

predictor variables with the overall number of items completed without demo and 

with the RTs of the main learning measure, item 17. These models were fitted with 

and without the adjustment using 30 month Bayley-III cognitive z-scores. 

The variable selected a priori to best reflect the performance on this task was the 

response times to overall learning measure, task 17. 
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6.1.1.3 MLMS 

The Multi-location Multi-step paradigm was an adaptation on the experimental 

design reported by Zelazo et al., in 1998. The paradigm explores various aspects of 

EF, with a particular focus on working memory skills and cognitive flexibility. The 

MLMS task was designed to be undertaken at 30 months as an extension to the A 

not B paradigm at 12 months. The MLMS was primarily designed to provoke 

subjects into making preservative errors, as observed in the 12 month AB paradigm. 

During data collection, it was clear that the children within this cohort were not 

making traditional errors however, and a ceiling effect was being observed. 

Nevertheless, the subjects started to perform motor responses indicative of 

preservative errors, but modified their responses before the errors were made, 

considered perseverative hesitations. Although it was not possible to accurately 

code this hesitation, it was accounted for by measuring the response time. It is 

theorised that this visible updating of working memory, is reflective of slower 

information processing speeds.  

The MLMS apparatus (Figure 6-4) comprised a set of horizontal drawers attached to 

a cardboard base, with a long rectangular cardboard box and cloth. There were 5 

spaces but only 3 drawers were used for this task, the central and two end spaces. 

Attached to each draw was a string which extended to a spot of Velcro 13cm away 

on the cardboard base. 4 symbols were used during the task; a green triangle, red 

square, blue circle and yellow star. The triangle was used for the training phase and 

the other 3 for the experimental phases.  

The task begun with the experimenter hiding a snack in the central draw, pointing 

to the green triangle attached to the equivalent string to indicate the food is in that 

draw, the experiment then covered the green triangle with the cardboard box and 

placed the cloth over the whole apparatus. The experimenter then demonstrated 

the 3 steps the child had to follow to locate the snack. The first step required the 

lifting of the cloth to reveal the apparatus, followed by the removal of the 

cardboard box to reveal the symbols attached to the strings. Lastly, the appropriate 
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string is pulled to reveal the snack. The training phase is initiated following the 

demonstration of the task procedure. On each trial, the experimenter hides and 

covers the apparatus, and asks ‘can you find the snack?’. On the first attempt, 

prompts were offered where necessary to ensure the child executed the 3 steps 

correctly. The same verbal direction was given in each instance.  

The training phase comprised of 3 trials or continued until the child could follow the 

3 steps without any significant verbal prompts. The green triangle was then 

removed, and replaced with the 3 other symbols. The yellow star was always in the 

centre, but the red square and the blue circle were counterbalanced between the 

two sides. The pre-switch phase was then initiated with the snack being hidden in 

one of the two far side positions. The same procedure for each trial was followed as 

described previously, but with a small modification. After the experimenter had 

hidden the snack, they stated ‘the snack is in this one’, whilst simultaneously 

pointing to the equivalent symbol. The experimenter then opened the middle draw 

and stated ‘it is not in this one’ whilst pointing to the star, ‘and not in this one’, 

again simultaneously pointing to the final symbol. The child is lastly reminded of the 

foods location again by opening the draw it is in and pointing to the corresponding 

symbol. The apparatus is then covered in the same procedure as the training phase. 

The pre-switch phase was completed when the child located the food in 3 

consecutive trials. 

Upon completion of the pre-switch phase, the post-switch phase was initiated. The 

same trial procedure was followed, but the location of the snack was switched to 

the draw at the opposite end of the apparatus. The child then was asked to locate 

the snack in the new location. The time for the child to locate the final snack 

location was then measured. 

Coding and Analysis: 

The MLMS task was video recorded and coding performed offline. Time to retrieve 

the snack was recorded for each trial. The timer was started once the experiment 
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asks ‘can you find the snack?’, and stopped when the subject selected the correct 

draw. Any perseverative errors made during the task were additionally recorded.  

The time taken during training trials was averaged and used to adjust responses in 

the pre-switch and post-switch phases, in order to account for individual variation. 

Baseline responses were compared to ensure no fundamental differences were 

observed between study groups.  

The child’s performance during the task dictated the number of pre-switch trials 

they completed. As stated the child had to correctly identify the location of the 

snack on 3 consecutive trials to reach the post-switch phase. If an error was made 

following 2 correct trials, the child had to pass another 3 additional trials 

consecutively, completing 6 pre-switch trials in total before the post-switch phase 

was initiated. The maximum number of pre-switch trials was set at 8, if a child was 

unable to correctly locate the snack in 3 consecutive trials after 8 attempts, the 

child was considered to have failed the task. The total number of pre-switch trials 

was compared between study groups as a whole, and within those that went on the 

meet the criterion. The trial theorised to display the highest error rate within the 

pre-switch phase was the first after training. The differences between groups were 

therefore explored within the first pre-switch trial. Subsequently, the response 

times to the three consecutively correct trials were then explored across study 

groups. The response times for each trial were calculated as a proportion of time 

taken to complete the training trials, referred to as ‘adjusted RT’. This adjustment 

accounted for individual variation during the training (or baseline) condition.  

To further investigate the speed of processing over the task, a multi-level mixed 

effect model was produced to investigate how the time taken to complete the trials 

varied across the task. It was hypothesized that time taken would decrease over the 

pre-switch period as the child practiced the multiple step routine to locate the 

snack. An increase in response time was then hypothesised during the post-switch 

trial due to the higher working memory load required to modify the prepotent 

response established during the preswitch phase. The data was transformed into 
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long format to conduct this analysis, including the adjusted training variable as the 

baseline group, the adjusted trial times for the 3 consecutive pre-switch trials and 

the adjusted post-switch trial response time as the main outcome variable. Post-hoc 

investigations then independently explored the change in time taken from one trial 

to the next throughout the paradigm. 

The number of errors made during the post-switch trial and the change in adjusted 

time taken from the final pre-switch to the post-switch trial was investigated. The 

relationship between the adjusted RT for the post-switch trial and study group, 

male sex and IMD quintile were then explored using a multiple regression model, 

before lastly adjusted for 30 month cognitive z-scores in a separate model, to 

determine the extent to which performance was dependent on overall cognitive 

ability. 

The variable selected a priori to best reflect the performance on this task was the 

adjusted response time for the post-switch trial. 
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Figure 6-4. MLMS apparatus show the multi-step procedure children were asked to imitate. 1- shows the training phase where only one symbol was attached to the 

base board, the food was hidden, the drawer closed and the cardboard cover placed over the symbol line (2). 3 illustrates the cloth being placed over the apparatus. 4 

shows the pre- and post-switch set up with the additional symbols. The food is hidden in one of the end drawers and the same procedure is followed in images 5 and 6. 
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6.1.2 Results 

6.1.2.1 Mobile task results 

At 3 months, results for the conjugate mobile reinforcement paradigm were 

available for 71 infants (Table 6-1).  Fourteen of 31 VP infants (45%) met criterion 

for learning compared to 25 (61%) of 41 term infants (odds ratio: .41 (95% CI .12, 

1.10), p = .15, when adjusting for 12 month cognitive z-scores, male sex, and IMD 

quintile). Overall, both term and VP learners displayed a gradual increase in kick 

rate in response to the mobile throughout the training phase, in contrast to the 

non-learners. The learner groups additionally displayed a specific increase in 

effector leg within this phase. In the generalisation phase, 75% of the term 

learners and 71% of the VP learners maintained the kick response to the new 

mobile. 

  Term (n=41) VP (n=31) 

Gestational age 
Median 
(range); 
weeks

+d
 

40
+0

 (37
+1

 – 42
+0

) 26
+0 

(23
+4 

– 30
+2

) 

Male sex  20 (48.78) 21 (67.74) 

IMD Quintile  1 5 4 

 2 6 6 

 3 5 11 

 4 17 6 

 5 8 4 

Bayley-III cognitive 
composite score at 12m 

Mean (SD) 
(n:T=35; VP=26)  

109.14 (.11) 98.27 (9.15) 

Bayley-III Cognitive z-
score at 12m 

Mean (SD) 
(n:T=35; VP=26) 

.11 (1.01) -.81 (.77) 

Table 6-1. Demographic details of infants in mobile conjugate task during the 3 month 

assessment. 

Baseline kick rates were similarly distributed between study groups, with term 

infants displaying a median of 5.25 kicks per minute (IQR: 2.75–7.5) and VP infants 

a median of 5.75 kicks per minute (IQR: 2.75 – 10.5); z = -.64, p = .52). Baseline 

kicks were also similar rates between learners and non-learners (Table 6-2; Figure 

6-5).   
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 Baseline (Median kick rate in 2 minutes (IQR)) 

Term (n=41) 5.25 (2.75–7.5) 

Term Learner (n=25) 3.75 (2 – 7.5) 

Term Non-learner (n=16) 5.75 (4 – 10.63) 

Preterm (n=31) 5.75 (2.75 – 10.5) 

Preterm Learner (n=14) 3.63 (2 – 6.5) 

Preterm Non-learner (n=17) 6.5 (5.5 – 12.25) 

Table 6-2. Median and IQR of baseline kick rate per minute in Mobile Task by study group and 

further subdivided in to learner and non-learners according to the study criterion (Figure 6-2). 

 

Figure 6-5. Baseline kick rate per min across the Term and Very Preterm infants to complete the 

Mobile Task at 3 months of age. 

From baseline, non-learners showed no change over the three training phases.  In 

contrast, learners showed progressive increase in kick rates over the first two 

epochs (Table 6-3; Figure 6-6). 
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 Baseline 
RRR  

Training phase 0-
2 minutes 

(Median RRR 
(IQR)) 

Training phase 3-
4 minutes 

(Median RRR 
(IQR)) 

Training phase 5-
6 minutes 

(Median RRR 
(IQR)) 

Term (n=41) 1 
1.17 (.8 – 2) 1.61 (1.14 – 1.61) 1.56 (.91 – 2.13) 

Term  
Learner (n=25) 

1 
1.93 (1.23 – 2.67) 2.64 (1.88 – 3.5) 2 (1.57 – 4.69) 

Term  
Non-learner (n=16) 

1 
.69 (.32 - .93) .94 (.61 – 1.35) .88 (.58 – 1.23) 

Preterm (n=31) 1 1.14 (.74 – 1.71) 1.23 (.8 – 2.19) 1.35 (.73 – 3.13) 

Preterm  
Learner (n=14) 

1 
1.65 (1.32 – 1.88) 2.22 (1.62 – 4.6) 3.31 (2.08 – 5.5) 

Preterm Non-learner 
 (n=17) 

1 
.9 (.69 – 1.14) .88 (.76 – 1.22) .76 (.65 – 1.15) 

Table 6-3. Median kick rate for baseline phase, and median RRR for each 2 min epoch of the 

training phase and generalisation phase of the mobile reinforcement paradigm.  

 

Figure 6-6. Changes from baseline in relative response rates in term and Very Preterm infants by 

learning status 
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Both learning groups showed a significant rise in kick rates from baseline to time 1 

and then to time 2 (Figure 6-6). The kick rates for term infants plateaued at this 

point, whereas those for VP infants continued to increase (p=.35 and p=.01, 

respectively). 

In a mixed effects model among learners, when adjusting for study group, male 

sex and IMD quintile, a significant main effect of time was observed (baseline to 

RRR3) with an increase of .35 in the RRR for each phase of the task (95% CI (.29 – 

.41), p < .001; Table 6-4). This effect persisted after further adjustment for the 12 

month cognitive z-scores (β =.34, 95% CI (.28 – .40), p < .001; Table 6-5). No effects 

were seen for non-learners (not shown).  



 
 

 

2
2

9 

Table 6-4. Multilevel mixed effects model with the learner category modelling the RRR across the training phase. The baseline group was the baseline RRR in term-born 

females learners with an IMD quintile of 1. 

 

 
Wald chi

2
 = 152.11 (p<.001) 

Predictor Term (n=25) Preterm (n=14) 

Coef 95%CI 
  

 
Median (Range) Median (Range ) P 

Time - - .35 .29 - .41 .000 

Study 
group 

39+6 (37+1 – 42+0) 26+2 (23+4 – 29+3) .06 -.21 - .33 .68 

Male sex 15 (60%) 9 (64%) .03 -.23 - .30 .80 

IMD 
quintile 

4(1-5) 4(1-5) -.02 -.12 - .08 .68 

 (Const.) - - .14 -.26 - .55 .48 

 
     

-0.4 -0.2 0.0 0.2 0.4 0.6

Coefficient	(95%	CI)



 
 

 

2
3

0 

-0.4 -0.2 0.0 0.2 0.4 0.6

Coefficient	(95%	CI)

Table 6-5. Multilevel mixed effects model with the learner category modelling the RRR across the training phase additionally adjusting for 12 month cognitive z-scores. 

The baseline group was the baseline RRR in term-born females learners with an IMD quintile of 1. 

 

 
Wald chi

2
 = 126.00 (p<.001) 

Predictor 

Term (n=25) Preterm (n=14) 

Coef 95%CI 
  

 
Median (Range) Median (Range ) P 

Time - - .34 .28 - .40 .000 

Study 

group 
40+0 (37+1 – 42+0) 25+5 (24+4 – 29+3) .10 -.25 - .44 .59 

Male sex 15 (71 %) 7 (58%) .06 -.25 - .36 .72 

IMD 

quintile 
4(1-5) 4(1-5) -.04 -.14 - .07 .49 

12m cog  
z-score 

.06 (.94) -.87 (.46) .03 -.15 - .21 .74 

 (Const.) - - .18 -.29 - .65 .45 
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To determine if leg kicks were lateralised to the effector leg, the leg kick difference 

was compared between the learning and study groups (Table 6-6; Figure 6-7). 

Overall, the term born infants displayed an increase from baseline in the effector 

leg (z = 2.65, p = .008); the VP infants did not (z = 1.00, p = .31). However, when 

separating into learner and non-learner groups, there was lateralisation of the 

learnt response in the learners (Terms p<.005; VP p<.05), which persisted after 

adjustment for the study confounds (Table 6-7; Table 6-8), in contrast to no 

lateralisation in either of the non-learner groups was observed.  

 

Median leg 

difference during 

baseline (IQR) 

Mean leg kick difference 

during last 2 minutes of 

training (SD) 

MWU; p 

Term (n=41) .5 (-.5 – 1.5) 1.89 (3.01) 2.65; .008 

Term Learner  

(n=25) 
.25 (-.5 - 1) 2.49 (3.32) 2.83; .005 

Term Non-learner 

(n=16) 
.63 (.25 – 1.88) 1.03 (2.35) .29; .78 

Preterm (n=31) -.25 (-1.5 - .75) .65 (3.50) 1.00; .31 

Preterm Learner 

(n=14) 
-.63 (-1.25 - .25) 1.66 (3.43) 1.98; .05 

Preterm Non-learner 

(n=17) 
0 (-1.5 – 2.75) -.3 (3.41) -.63; .53 

 
Table 6-6. Differences between kick rates of each leg from baseline to the end of training; Mann 

Whitney U (MWU) tests were used to compare the difference from baseline to the end of training 

in each study group; then by learning status (exact p values reported; Significance following 

Bonferroni correction: p<.008) 
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Figure 6-7. Difference in kick rate of each leg at baseline and the end of the training phase by study 

group and learner status; Mann Whitney U tests used to compare between groups. 
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Table 6-7. Multilevel mixed effects model with the learner category modelling leg kick difference from baseline to the end of training. The baseline group was the 

baseline leg kick difference in term-born female learners with an IMD quintile of 1. 

Wald chi
2
 = 23.37 (p<.000) 

Predictor Term (n=25) Preterm (n=14) 

Coef 95%CI 

  

Median (Range) Median (Range ) P 

Time - - 2.20 1.21 – 3.19 .000 

Study 
group 

39+6 (37+1 – 42+0) 26+2 (23+4 – 29+3) -.72 -1.98 - .54 .26 

Male sex 15 (60%) 9 (64%) .66 -.58 – 1.90 .30 

IMD 
quintile 

4(1-5) 4(1-5) .32 -.13 - .76 .16 

 (Const.) - - -1.16 -3.07 - .76 .24 

 
     

-4 -2 0 2 4

Coefficient	(95%	CI)
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4 

-4 -2 0 2 4

Coefficient(95%	CI)

Table 6-8. Multilevel mixed effects model with the learner category modelling the leg kick difference from baseline to the end of training additionally adjusting for 12 

month cognitive z-scores. The baseline group is the baseline leg kick difference in term-born female learners with an IMD quintile of 1. 

 
Wald chi

2
 = 27.67 (p<.001) 

Predictor 

Term (n=25) Preterm (n=14) 

Coef 95%CI 

 
 

 

 
Median (Range) Median (Range ) P 

Time - - 2.43 1.38 – 3.48 .000 

Study 

group 
40+0 (37+1 – 42+0) 25+5 (24+4 – 29+3) -.37 -1.92 – 1.18 .64 

Male sex 15 (71%) 7 (58%) .84 -.51 – 2.19 .23 

IMD 

quintile 
4(1-5) 4(1-5) .53 .07 – 1.00 .02 

12 m cog  
z-score 

.06 (.94) -.87 (.46) -.13 -.93 - .67 .75 

(Const.) - - -2.00 -4.11 - .11 .06 
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During the generalisation phase (Table 6-9; Figure 6-8), 18 of the 24 term-learners 

(75%) and 10 of the 14 VP learners (71%) displayed RRR of 1.5 or greater, a 

significant increase from baseline (z = 5.11; p < .001) compared the non-learners (z 

= 1.07; p < .29). This effect of time persisted within the learning category after 

adjustment for the study demographic variables (Table 6-10 and Table 6-11). 

 

 

 

 

 

 

Table 6-9. Median and IQR relative response ratio during the generalisation response across study 

group then subdivided into learning status. Not all infants that completed the training phase 

completed the additional generalisation phase and therefore were omitted from this analysis. 

 

Figure 6-8. Relative response ratio from baseline to the generalisation phase across study group 

and learning status; Mann Whitney U tests used to compare between groups and learning status. 
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-0.5 0.0 0.5 1.0 1.5

Coefficient	(95%	CI)

Table 6-10. Multilevel mixed effects model with the learner category modelling the RRR from baseline to the generalisation phase. The baseline group was the baseline 

RRR in term-born female learners with an IMD quintile of 1. 

Wald chi
2
 = 68.67 (p<.000) 

Predictor 

Term (n=24) Preterm (n=14) 

Coef 95%CI 

  
 

 

Median (range) Median (range ) P 

Time - - 1.00 .76 – 1.24 .000 

Study 
group 

39+6 (37+1 – 42+0) 26+2 (23+4 – 29+3) .10 -.15 - .35 .43 

Male sex 14 (58%) 9 (64%) .15 -.10 – .40 .24 

IMD 
quintile 

4(1-5) 4(1-5) -.01 -.10 - .08 .75 

(Const.) - - -.8 -.47 - .31 .68 
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Table 6-11. Multilevel mixed effects model with the learner category modelling the RRR from baseline to the generalisation phase additionally adjusting for 12 month 

cognitive z-scores. The baseline group is the baseline RRR in term-born female learners with an IMD quintile of 1. 

 

 
 

Wald chi
2
 = 58.93 (p<.001) 

Predictor Term (n=24) Preterm (n=14) 

Coef 95%CI 
  

 
Median (range) Median (range) P 

Time - - .99 .73 – 1.25 .000 

Study 

group 
40+0 (37+1 – 42+0) 25+5 (24+4 – 29+3) .07 -.25 - .39 .66 

Male sex 14 (70 %) 7 (58%) .06 -.22 - .34 .67 

IMD 

quintile 
4(1-5) 2.5(1-5) -.05 -.14 - .05 .32 

12 month 

Cog z-score 
.06 (.94) -.87 (.46) .09 -.07 - .26 .28 

 (Const.) - - .10 -.33 - .54 .64 -0.5 0.0 0.5 1.0 1.5

Coefficient	(95%	CI)
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6.1.2.2 BabyScreen Application Results 

Eighteen term-born children and seventeen VP children completed the BabyScreen 

programme (Table 6-12). Overall 45% of the children had daily use of a touchscreen, 

similarly distributed between the two groups.  VP children completed a median 16 

of the 18 items (range 14-18) compared to a median of 18 for the Term children (r: 

15-18; z = 2.39, p<.02). VP children completed fewer items overall without a 

demonstration (med: 13; r: 10-17) compared to term children (med: 16; r: 8-17; z = 

2.54, p=.01; Figure 6-9). The number of trials completed showed no correlation with 

the frequency of touchscreen exposure or the composite cognitive z-scores at 30 

months. 

  Term (n=18) VP (n=17) 

Gestational age 
Median (range); 

weeks
+d

 
40

+2
 (37

+0
 –42

+1
) 26

+3
 (23

+6
 – 29

+4
) 

Male sex  9 (50) 14 (82.35) 

IMD Quintile  1 2 3 

 2 2 0 

 3 3 7 

 4 7 5 

 5 4 2 

Bayley-III cognitive 
composite score at 12m 

Mean (SD) 
(n:T=16; VP=17)  

109.38 (13.77) 101.47 (11.29) 

Bayley-III Cognitive z-
score at 12m 

Mean (SD) 
(n:T=16; VP=17) 

.13 (1.11) -.50 (.91) 

Table 6-12. Demographic details of infants to complete the BabyScreen Application 
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Figure 6-9. Total number of items completed without and with demonstration in the BabyScreen 

application by study group at 30 months of age. Mann Whitney U (MWU) tests were used to 

compare the number completed in each study group (exact p reported to account for tied values). 

 

When exploring the number of children to complete each item (Table 6-13), no item 

had significantly more failures with or without Bonferroni adjustment (p=.05/18 or 

.003); however, 65% and 53% VP children failed tasks 15 and 16 respectively, the 

object permanence construct (Figure 6-10). 

Response times (RTs) in seconds were then compared for each item (Table 6-14).  

No differences were observed in the RTs to each item before or after Bonferroni 

adjustment (p=.05/18 or p=.003) up to item 14. In the object permanence items, VP 

infants were slower in their responses, significantly so in the second item before 

Bonferroni correction (Figure 6-10; item 15: z = -1.89, p = .06; item 16: z = -2.34, p = 

.02).  
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Item Number/ Construct Completed 
(No Demo - %) 

Completed 
(Demo - %) 

Failed (%) Chi
2

trend P 

Task 1 (Training Item)      
Term 16 (88.9%) 2 (27.3%) 0 (0%)   
Preterm 11 (64.7%) 5 (29.4%) 1 (5.9%) 3.19 0.20 
Task 2 (Training Item)      
Term 14 (77.8%) 3 (16.7%) 1 (5.6%)   
Preterm 12 (70.6%) 5 (29.4%) 0 (0%) 1.63 0.44 
Task 3 (Training Item)      
Term 16 (88.9%) 2 (11.1%) 0 (0%)   
Preterm 16 (94.1%) 1 (5.9%) 0 (0%) .31 0.58 
Task 4 (Selective Attention)      
Term 18 (100%) 0 (0%) 0 (0%)   
Preterm 16 (94.1%) 1 (5.9%) 0 (0%) 1.09 0.30 
Task 5 (Selective Attention)      
Term 17 (94.4%) 1 (5.6%) 0 (0%)   
Preterm 17 (100%) 0 (0%) 0 (0%) 0.97 0.32 
Task 6 (Selective Attention)      
Term 18 (100%) 0 (0%) 0 (0%)   
Preterm 16 (94.1%) 1 (5.9%) 0 (0%) 1.09 0.30 
Task 7 (Selective Attention)      
Term 17 (94.4%) 1 (5.6%) 0 (0%)   
Preterm 17 (100%) 0 (0%) 0 (0%) 0.97 0.32 
Task 8 (Selective Attention)      
Term 14 (77.8%) 3 (16.7%) 1 (5.6%)   
Preterm 11 (64.7%) 4 (23.5%) 2 (11.8%) 0.81 0.67 
Task 9 (Selective Attention)      
Term 16 (88.9%) 1 (5.6%) 1 (5.6%)   
Preterm 12 (70.6%) 5 (29.4%) 0 (0%) 4.21 .12 
Task 10 (Working Memory)      
Term 11 (61.1%) 5 (27.8%) 2 (11.1%)   
Preterm 5 (29.4%) 10 (58.8%) 2 (11.8%) 3.89 0.14 
Task 11 (Working Memory)      
Term 17 (94.4%) 1 (5.6%) 0 (0%)   
Preterm 16 (94.1%) 1 (5.9%) 0 (0%) 0.00 0.97 
Task 12 (Hidden Object Retrieval)      
Term 15 (83.3%) 3 (16.7%) 0 (0%)   
Preterm 17 (100%) 0 (0%) 0 (0%) 3.10 .08 
Task 13 (Working Memory)      
Term 18 (100%) 0 (0%) 0 (0%)   
Preterm 16 (94.1%) 1 (5.9%) 0 (0%) 1.09 0.30 
Task 14 (Hidden Object Retrieval)      
Term 15 (83.3%) 3 (16.7%) 0 (0%)   
Preterm 16 (94.1%) 0 (0%) 1 (5.9%) 4.01 0.14 
Task 15 (Object Permanence)      
Term 6  (33.3%) 7 (38.9%) 5 (27.8%)   
Preterm 2 (11.8%) 4 (23.5%) 11(64.7%) 5.04 0.08 
Task 16 (Object Permanence)      
Term 9 (50.0%) 6 (33.3%) 3 (16.7%)   
Preterm 4 (23.5%) 4 (23.5%) 9 (52.9%) 5.30 0.07 
Task 17 (Combined Learning)      
Term 12 (66.7%) 2 (11.1%) 4 (22.2%)   
Preterm 5 (29.4%) 5 (29.4%) 7 (41.2%) 4.96 0.08 
Task 18 (Selective Attention)      
Term 17 (94.4%) 1 (5.6%) 0 (0.0%)   
Preterm 15 (88.2%) 1 (5.9%) 1 (5.9%) 1.10 0.58 
Table 6-13. Total number of children to complete each item with and without a demonstration. 
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Construct N Median RT IQR Min - max 

Task 1 (Training Item)     
Term 18 10.15 3.117 - 17.716 .73 - 33.367 
Preterm 17 13.30 2.30- 39.719 1.23- 90 
Task 2 (Training Item)     
Term 18 9.03 3.58 - 16.58 1.567- 90 
Preterm 17 14.316 4.93- 37.85 1.467-68.28 
Task 3 (Training Item)     
Term 18 3.43 1.4  -7.63 .93- 66.27 
Preterm 17 7.017 2.35-10.00 .75-34.935 
Task 4 (Selective Attention)     
Term 18 3.28 1.25-6.05 .55-27.035 
Preterm 17 3.917 1.5- 8.916 1.033 -41.118 
Task 5 (Selective Attention)     
Term 18 2.62 1.43-10.05 .717-53.05 
Preterm 17 3.117 2.13-5.43 .717- 22.53 
Task 6 (Selective Attention)     
Term 18 3.48 1.53-5.55 .649-22.95 
Preterm 17 3.766 2.33-9.15 1-31.749 
Task 7 (Selective Attention)     
Term 18 3.225 1.38-6.88 .916-51.768 
Preterm 17 4.65 1.649-6.917 .732- 14.23 
Task 8 (Selective Attention)     

Term 18 17.68 10.42-26.12 1.716-90 

Preterm 17 16.5 5.349-37.95 1.3-90 
Task 9 (Selective Attention)     
Term 18 5.375 2.916-13.45 .583-90 
Preterm 17 11.7 4.467-38.37 .716-50.25 
Task 10 (Working Memory)     
Term 18 26.90 10.73-44.15 4.48-90 
Preterm 17 41.82 26.80-52.02 2.38-90 
Task 11 (Working Memory)     
Term 18 9.217 4.35-12.75 2.218-52.268 
Preterm 17 7.05 4.449-10.03 1.267-54.419 
Task 12 (Hidden Object Retrieval)     
Term 18 7.28 5.032-19.117 3.917-60.435 

Preterm 17 6.13 4.53-13.918 2.017 - 22.58 

Task 13  (Working Memory)     
Term 18 8.14 4.28-10.83 .88 - 15.55 
Preterm 17 7.78 5.53-12.18 1.685-34.23 
Task 14 (Hidden Object Retrieval)     
Term 18 10.08 7.033-20.418 4.083-56.335 
Preterm 17 9.28 8.73-13.666 7.117 - 90 
Task 15 (Object Permanence)     
Term 18 35.81 17.685 -90 12.13-90 
Preterm 17 90 42.75-90 5.835 - 90 
Task 16 (Object Permanence)     
Term 18 31.30 15.45-60.638 6.65-90 
Preterm 17 90 48.169 -90 11.05-90 
Task 17 (Combined Learning)     
Term 18 23.09 13.23 - 52.586 5.968 – 90 
Preterm 17 61.25 25.735-90 8.3-90 
Task 18 (Selective Attention)     
Term 18 5.24 2.6-7.699 1.28-31.75 
Preterm 17 4.03 2.717-23.15 1.18-90 
Table 6-14. Median response times to each trial for the two study groups. 
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Figure 6-10. Response times on BabyScreen on object permanence and overall learning items 

completed by Term and Very Preterm children at 30 months of age. Fisher’s exact test was used to 

compare the proportions in each group that failed each item; Mann Whitney U (MWU) tests were 

used to compare the response times in each study group (exact p to account for tied values). 

 

To explore overall RT performance for each construct, the RTs were averaged across 

items (Table 6-15). The constructs were compared across study groups (Bonferroni 

adjustment: p = .05/6 or p = .008).  In the RTs of the 6 overall constructs, VP 

children were significantly slower on the object permanence construct (Figure 6-10; 

z = -2.30, p = .02) and the overall learning measure (z = -2.30, p = .05).  
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Table 6-15. The median and range response time of each construct 

 

The overall constructs were then correlated with frequency of touchscreen use and 

the Bayley-III cognitive z-score (Table 6-16). There were no correlations before or 

after Bonferroni adjustment for the touchscreen use, and only a weak correlation 

with the Bayley-III in the overall learning construct within the VP group (Figure 6-11; 

r2 = -.47, p = .06).  

 
Term (n=18) 

Median (range) 
VP (n=17) 

Median (range) 
z; P 

Training Construct 11.50 (1.52 – 55.63) 14.60 (1.62 – 45.10) -.86; .39 

Selective Attention 
Construct 

8.20 (2.22 – 30.51) 11.39 (3.30 – 21.89) -1.45; .15 

Working Memory 
Construct 

13.20 (3.21 – 50.65) 18.00 (4.42 – 55.77) -1.06; .29 

Hidden Object Constuct 11.97 (4.32 – 47.79) 7.59 (4.57 – 48.88) .96; .34 

Object Permanence 
Construct 

35.48 (13.15 – 90) 72.93 (21.94 – 90) -2.30; .02 

Overall Learning 23.09 (5.97 – 90) 61.25 (8.3 – 90) -2.01; .05 
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A: Term (n=18) 
Touchscreen use;  

r
2 

(p) 
Cognitive z-score ; r

2 

(p) 

Training Construct .09 (.73) .13 (.13) 

Selective Attention 
Construct 

.07 (.8) .10 (.72) 

Working Memory 
Construct 

-.01 (.98) .41 (.12) 

Hidden Object Constuct -.04 (.89) .41 (.12) 

Object Permanence 
Construct 

.19 (.48) -.14 (.61) 

Overall Learning .32 (.23) .16 (.56) 

 

B: VP (n=18) 
Touchscreen use; 

 r
2 

(p) 
Cognitive z-score; 

 r
2 

(p) 

Training Construct .11 (.68)  .53 (.03) 

Selective Attention 
Construct 

.30 (.24) -.36 (.16) 

Working Memory 
Construct 

.34 (.18) -.15 (.57) 

Hidden Object Construct .04 (.89) .27 (.29) 

Object Permanence 
Construct 

-.01 (.96) .19 (.46) 

Overall Learning -.07 (.79) -.47 (.06) 

Table 6-16. Correlations between frequency of touchscreen use and Bayley-III cognitive z-score at 

2 years of age for A) term born toddlers and B) Very Preterm toddlers. 
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Figure 6-11. Correlation between the Bayley-III cognitive z-scores from the 2 year assessment. 

 

Next the BabyScreen application accuracy scores were compared (Table 6-17). The 

only item to indicate a significant difference between study group in terms of 

accuracy was in response to the first working memory trial (Figure 6-12; z = 2.12, p = 

.03), where the term children demonstrated a higher level of accuracy. Overall 

mean accuracy (on a 4 point scale) for VP children was 2.97 (SEM: .08) compared to 

3.08 for the term born children (SEM: .07; p=.32). 
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Term (n=18) 
Median (range) 

VP (n=17) 
Median (range) 

z; P 

Selective 
attention 

Item 4 (n: T=18; VP=17) 3 (3 – 4) 4 (1 – 4) -.98; .33 

Item 5 (n: T=18; VP=17) 4 (1 – 4) 4 (3 – 4) -.32; .75 

Item 6 (n: T=18; VP=17) 3 (3) 3 (1 – 3) 1.03; .30 

Item 7 (n: T=18; VP=17) 3.5 (2 – 4) 3 (3 – 4) .00; 1.00 

Item 8 (n: T=17; VP=15) 3 (1 – 3) 3 (1 – 3) .61; .54 

Item 9 (n: T=17; VP=17) 3 (1 – 3) 3 (1 – 3) 1.77; .08 

Item 18 (n: T=18; VP=16) 3 (1 – 3) 3 (1 – 3) .09; .93 

Working 
memory 

Item 10 (n: T=16; VP=15) 3 (1 – 4) 2 (1 – 4) 2.12; .04 

Item 11 (n: T=18; VP=17) 3.5 (2 – 4) 4 (2 – 4) -.47; .64 

Item 13 (n: T=18; VP=17) 3 (3 – 4) 3 (1 – 4) -.88; .38 

Table 6-17. Median and range of accuracy scores (on a 4 point scale) for Term and VP children on 

all correctly passed items with distractor stimuli on the BabyScreen Application 

 

Figure 6-12. Accuracy scores on BabyScreen application for correctly passed working memory 

items completed by Term and Very Preterm children at 30 months of age. Mann Whitney U 

(MWU) tests were used to compare the accuracy scores in each study group (exact p to account for 

tied values). 
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Finally, the relationships between the two main outcome variables, total number of 

trials completed without a demo (shown in Figure 6-9), and the speed of 

completion of the main learning measure, item 17 (shown in Figure 6-10) were 

explored. Using multiple linear regression models, the group differences observed 

in these two outcomes remained after adjusting for the predetermined study 

confounds: male sex, IMD quintile and Bayley-III cognitive z-score at 2 years (Table 

6-18 and 6-19).  
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Table 6-18. Linear multiple regression model for the total number of trials completed without a demonstration from the experimenter (F(3, 31) = 2.77, p = .06). Baseline 

group were term born females with an IMD quintile of 1. 

 

Overall model fit was R
2
 = .21 

Predictor Term (n=16) Preterm (n=17) 

Coef. 95%CI 
  

 
Median (Range) Median (Range) P 

Study 
group 

39+6 (37+0 – 42+1) 26+3 (23+6 – 29+7) -2.08 -3.63 - -.53 .01 

Male sex 9 (50%) 14 (82%) 1.22 -.39 – 2.84 .13 

IMD 
quintile 

4 (1-5) 3 (1-5) -.26 -.84 - .33 .38 

Const - - 15.06 12.64 – 17.48 .000 -6 -4 -2 0 2 4

Coefficient	(95%	CI)
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Table 6-19. Linear multiple regression model for the total number of trials completed without a demonstration from the experimenter with the adjustment of the 30 

month cognitive z-scores (F(4, 28) = 1.27, p = .31). Baseline group were term born females with an IMD quintile of 1. 

 

 
 
Overall model fit was R

2
 = .15 

Predictor 

Term (n=16) Preterm (n=17) 

Coef. 95%CI 

 

 
 

Median (Range) Median (Range) P 

Study 
group 

40+1 (37+0 – 42+1) 26+2 (26+3 – 29+4) -1.94 -3.76 - -.11 .04 

Male sex 7 (43%) 14 (82%) .90 -.88 – 2.69 .31 

IMD 
quintile 

4 (1.5) 3(1) -.10 -.82 - .61 .77 

2 year 
cog 
z-score 

.13 (1.11) -.50 (.91) -.31 -1.10 - .48 .43 

Const - - 14.54 11.61 – 17.47 .000 

-4 -2 0 2 4

Coefficient	(95%	CI)
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Table 6-20. . Linear multiple regression model for the time for completion of overall learning measure, trial 17 (F(3, 31) = 2.78, p = .06). Baseline group were term born 

females with an IMD quintile of 1. 

 

 

Overall model fit was R
2
 =.21 

Predictor Term (n=16) Preterm (n=17) 

Coef. 95%CI 
  

Median (Range) Median (Range) P 

Study 
group 

39+6 (37+0 – 42+1) 26+3 (23+6 – 29+7) 30.61 7.70 – 53.53 .01 

Male sex 9 (50%) 14 (82%) -18.29 -42.23 – 5.66 .13 

IMD 
quintile 

4 (1) 3 (1) 4.15 -4.53 – 12.84 .34 

Const - - 30.93 -4.97 – 66.82 .000 
-50 0 50 100

Coefficient	(95%	CI)
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Table 6-21. . Linear multiple regression model for the total number of trials completed without a demonstration from the experimenter with the adjustment of the 30 

month cognitive z-scores (F(4, 28) = 1.93, p = .13). Baseline group were term born females with an IMD quintile of 1. 

 

 

 
Overall model fit was R

2
 = .22 

Predictor Term (n=16) Preterm (n=17) 

Coef. 95%CI 
  

Median (Range) Median (Range) P 

Study 
group 

40+1 (37+0 – 42+1) 
26+2 (26+3 – 

29+4) 
26.91 .07 – 53.76 .05 

Male sex 7 (43%) 14 (82%) -20.37 -46.57 – 5.84 .12 

IMD 
quintile 

4 (1.5) 3(1) 4.18 -6.39 – 14.74 .43 

2 year 
cog  
z-score 

.13 (1.11) -.50 (.91) -7.25 -18.86 – 4.36 .21 

Const - - 32.60 -10.55 – 75.75  

-50 0 50 100

Coefficient	(95%	CI)



 
 

252 
 

6.1.2.3  Multi-Location Multi-Step (MLMS) results 

Twenty-five term-born and 24 VP toddlers completed the Multi-Location Multi-Step 

paradigm (Table 6-22). Twenty-one infants from each study group passed the pre-

switch criterion (Table 6-23). Those that did not pass the pre-switch criterion were 

excluded from the subsequent analyses. During data collection, physical hesitations 

were observed where the toddlers often paused over incorrect locations without 

making a physical error. By using the ‘time to correct response’, delays in motor 

responses were reflected in the response time. 

Overall there were no differences observed between the term and VP responses to 

the MLMS task. However, term born infants appeared to show a greater increase in 

speed of response from the training trials the first of the consecutive pre-switch 

trials, compared to the VP infants that displayed a greater decrease to the second 

pre-switch trial. 

  Term (n=25) VP (n=24) 

Gestational age 
Median (range); 

weeks
+d

 
40

+2
 (37

+0
 –42

+0
) 26

+2
 (23

+4
 – 31

+4
) 

Male sex  11 (44%) 17 (70.83%) 

IMD Quintile  1 3 5 

 2 4 1 

 3 3 9 

 4 9 6 

 5 6 3 

Bayley-III cognitive 
composite score at 12m 

Mean (SD) 
(n:T=23; VP=22)  

106.52 (11.22) 101.81 (10.18) 

Bayley-III Cognitive z-
score at 12m 

Mean (SD) 
(n:T=23; VP=22) 

-.10 (.90) -.47 (.82) 

Table 6-22. Demographic details of toddlers to complete the Multi-Location Multi-Step Paradigm. 

 Term  Preterm  

Criterion reached 21 21 

Criterion not-reached 4 3 

  Fisher’s exact = 1.00 

Table 6-23. Proportion of Term and Very Preterm children to pass the pre-switch criterion 
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Term born infants took a median of 8.64 seconds to complete the training phase 

compared to the VP who took 9.45 (z = -.29, p = .77). The first pre-switch trial 

created the greatest number of errors, 6 within the term group (24%) and 4 within 

the VP group (19%). The children had to correctly locate the snack in 3 consecutive 

tasks during the pre-switch phase, 17 of the 21 term-born children achieved this in 

3 trials compared to 18 of the VP children (z = .33, p = .74; Table 6-24). 

 

 

 

 

 

 

 

 

Table 6-24. Total number of trials to reach pre-switch criterion by study group. 

 

The three consecutive pre-switch trials for each child were then explored. The 

response times (RTs) were calculated as a proportion of the training RT, with term 

born children showing a greater decrease from the training phase in the first pre-

switch trial compared to the VP infants (z = -2.73, p < .006; -1.55, p = .12  

respectively). The VP infants then display a greater decrease from trial one to trial 

two (z = -1.20, p = .23), whereas the term- born children plateau (z = -3.46, p < .001; 

Table 6-25). From the final pre-switch trial, the VP children displayed a greater 

increase in their relative response to the post-switch trial but not significantly so 

(Figure 6-13) 

Number of 

Preswitch trials 

Term  

(n = 21) 

Preterm 

(n = 21) 

3 17 18 

4 2 1 

5 2 1 

6 0 1 

 MWU: z = .33, p = .74 
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Term  

Median RTs (IQR) 

Preterm  

Median RTs (IQR) 

Training phase 

(Adjusted training phase = 1) 
8.64 (6.56 – 10.28) 9.45 (6.30 – 14.18) 

Preswitch 

 trial 1 (adjusted) 
.74 (.62 – 1.29) .88 (.65 – 1.06) 

Consecutive preswitch  

trial 1 (adjusted) 
.73 (.62 – .88) .79 (.65 – 1.02) 

Consecutive preswitch  

trial 2 (adjusted) 
.77 (.48 – .96) .61 (.46 – .79) 

Consecutive preswitch 

 trial 3 (adjusted) 
.76 (.48 – 1.00) .66 (.45 – .94) 

Post-switch (adjusted) .71 (.53 – 1.15) .76 (.59 – 1.49) 

Table 6-25. Median trial times for MLMS task including children that met the task criterion. 

 

Figure 6-13. Time taken relative to training phase across the duration of the Multi Location Multi 

Step task; Mann Whitney U was used to assess relative response times from the previous time 

points; adjusted according to the training RT (baseline) through the pre-switch trials (PST1–3) and 

post-switch trial. 
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When controlling for study group, male sex and IMD quintile, a decrease in relative 

RT of .05 across each phase of the trial was observed using a mixed effects models 

(β = -.05, 95% CI (-.09 – -.015), p = .006; Table 6-26). This effect persisted after the 

additional adjustment of the 2 year cognitive z-scores (Table 6-27). When inputting 

each time point into the model as an independent predictor, each trial was 

significantly lower than the baseline, with the greatest decrease being observed 

over the pre-switch phase. There was no significant relationship between time and 

study group.  
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Table 6-26. Multilevel mixed effects model of the time taken to complete the MLMS trials from baseline to the post-switch phase. The baseline group was the average 

time taken during the training trials in term-born females with an IMD quintile of 1. 

 

 
 
Wald chi

2
 = 9.77 (p=.04) 

Predictor Term (n=21) Preterm (n=21) 

Coef 95%CI 
  

 

 

Median (range) Median (range ) P 

Time - - -.05 -.09 - -.02 .006 

Study 

group 

39+6 (37+0 – 

42+0) 

26+5 (23+4 – 

31+4) 
-.06 -.32 - .20 .67 

Male sex 8 (38%) 16 (76%) .18 -.08 - .45 .18 

IMD 

quintile 
4 (1-5) 3 (1-5) -.01 -.10 - .08 .78 

 (Const.) - - -.20 -.58 - .18 .30 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Coefficient	(95%	CI)
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Table 6-27. Multilevel mixed effects model of the time taken to complete the MLMS trials from baseline to the post-switch phase additionally adjusting for 12 month 

cognitive z-scores. The baseline group was the average time taken during the training trials in term-born females with an IMD quintile of 1. 

 
 
Wald chi

2
 = 7.97 (p<.16) 

Predictor Term (n=19) Preterm (n=20) 

Coef 95%CI 
  

 
Median (range) Median (range) P 

Time - -  -.04 -.08 - -.00 .04 

Study 

group 

39+6 (37+0 – 

42+0) 

26+3 (23+4 – 

29+4) 
-.09 -.36 - .19 .53 

Male sex 7 (37%) 16 (80%) .22 -.06 - .50 .12 

IMD 

quintile 
4 (1-5) 3 (1-5) -.04 -.14 - .06 .42 

2 year Cog 

z-score 
-.03 (.93) -.38 (.80) .09 -.06 - .23 .26 

Time from 
baseline 
(Const.) 

- - -.10 -.49 - .29 .60 -0.4 -0.2 0.0 0.2 0.4 0.6

Coefficient	(95%	CI)
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6.1.3 Discussion of behavioural Information processing measures 

In the current study, 3 behavioural paradigms were used to investigate the 

processing speed difference. Firstly, at 3 months of age, the mobile reinforcement 

paradigm was used to investigate the speed of learning within the cohort.  

In the current investigation a proportion of both term born and VP infants learnt to 

adapt their movements in response to the mobile during the conjugate 

reinforcement paradigm as measured by the relative response ratio previously 

utilised by Hayley et al., (2008). The speed at which the infants detected the mobile 

movement following the initiation of the training phase was fundamental to 

assessing speed of processing within the paradigm.  During this phase, the term 

born infants appeared to plateau in their kick response to the mobile in contrast to 

the VP infants that showed a continual increase. This could be reflective of slower 

information processing by the VP infants, as the term born infants appeared to 

display a level of habituation to the mobile which was not displayed by the VP 

infants in the time provided. Slower habituation has been speculated to indicate 

less effective visual processing and could be suggestive of possible cognitive delays 

later in life (Slater, 1997). Previous reports have suggested that  preterm infants 

displayed a reduced level of learning behaviour using similar paradigms to the 

mobile reinforcement at 3 months of age (Heathcock et al., 2004; Haley, Weinberg 

and Grunau, 2006; Haley et al., 2008; Lobo and Galloway, 2013). However, as there 

were no significant differences in the proportion of infants from each study group 

to learn at the task, it is not possible to conclude the same from the current cohort.  

There are concerns within the literature regarding the use of the RRR due to the 

dependency of the measure on the natural leg kick frequency, particularly within a 

preterm cohort, who have been previously reported to display a higher kick rate 

than term born infants naturally (Heathcock et al., 2005). In those with a high 

baseline, the infant would be expected to kick at a much faster rate than those with 

a lower kick rate (Millar and Weir, 2015). However, in this investigation, there was 

no significant difference between the term and preterm baseline leg kick rate. 
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Another confirmation of the validity of this measure was the significant increase in 

the effector leg within both learner groups during the training phase, with no 

association within the non-learner groups. This is in contrast to a previous report by 

Heathcock et al. (2005) who found poor lateralisation of response leg response in 

preterm infants. In the absence of longer term outcomes, Heathcock et al. (2005), 

speculated that failure to lateralise might identify infants in need of developmental 

support. This may still be a valid prediction, as the infants within the current study 

do not fall within the clinical cut off for developmental delay, at 12 or 30 months of 

age. The lateralisation observed here in combination with the higher proportion of 

VP infants to learn at the paradigm compared to previous investigations could 

therefore be an indication of higher cognitive performance within this cohort of 

preterm infants. The main effects of the investigation remained following 

adjustment for global cognitive performance as measured by the Bayley-III 12 

month z-scores.  

The infants within the learning groups also went on to generalise their response to 

the new mobile in the final phase. Both the lateralisation of leg kick response and 

the maintained RRR during the generalisation phase gives support to the tasks 

validity. However, the term and VP infants that did not learn during the task could 

be reflective of one or more of the paradigm limitations. Although infants that were 

clearly distressed and/or tired were excluded from the analysis, the paradigm was 

the last to be run in an hour long assessment and therefore, although appeared 

reactive, infants may have performed differently on a different day. Other 

limitations include possible vision difficulties, particularly within the preterm 

infants. Notes were kept on reported problems but more subtle difficulties may not 

have been detected in the timeframe of the study. Both mobiles, however, 

produced noise upon movement, and it was agreed that the sound response from 

the mobile could stimulate those with poor vision in a similar manner to the visual 

movement. 

The second assessment explored within this chapter was a pilot investigation of the 

BabyScreen Application using touchscreen technology. The results suggested a 
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difference in overall performance according to study group, with the term born 

children completing more items, with fewer instances of assistance required in the 

form of item demonstrations, compared to the VP children. This result was still 

present after adjusting for cognitive scores, suggesting that the application was 

accessing an aspect of cognitive performance that was not accounted for by the 

Bayley-III cognitive scale. The initiation of the demonstration occurred 

automatically at 30 seconds, suggesting that the VP infants required more time to 

complete each item overall, even though not significantly so on an item by item 

basis. 

When looking within the specific constructs within the task, VP children were 

significantly less accurate that their term born counterparts on the first item 

designed to assess working memory. The nature of this trial required the child to 

recognise the location of the target and to use that information before initiating 

their response. It could be speculated that the VP children did not process this 

information fast enough to update their motor responses accordingly before 

starting their search for the target. This accuracy improved in the second working 

memory item. Speed of processing and working memory capacity have long since 

been associated within the preterm population in relation to later cognitive 

difficulties (Rose and Feldman, 1996; Mulder, Pitchford and Marlow, 2010). The 

difficulties in this item may reflect this. 

The final item structure of the paradigm could be argued to be of greatest difficulty 

and therefore most informative. Item 17 included all touch processes used within 

the paradigm. The preterm children were significantly slower to complete this item 

than their term born counterparts, and although the response times were 

significantly but weakly correlated with the z-scores on the Bayley-III, there was still 

a significant effect of study group following global score adjustments. This suggests 

the paradigm may access difficulties within the VP children that the Bayley-III scale 

is not detecting.  
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The technology focused world we live in today means that children are exposed to 

different types of information and information platforms that have not been 

investigated fully in the developmental literature. The use of touchscreens in our 

everyday society has become unavoidable and children have been shown to attend 

well to such devices (Lovato and Waxman, 2016). Traditional developmental 

assessments in early childhood are known to be difficult to administer and arduous 

(Marlow, 2013), utilising the attraction of this technology on 2 year olds as a 

method of assessing EF skills hoped to overcome some of these issues.  

Recent studies exploring the use of such technology have found favourable results 

suggesting its reliability and validity of testing psychometric profiles within young 

populations (Pitchford and Outhwaite, 2016). The application design used in the 

current investigation was developed to reduce the amount of verbal 

communication required to assess a child’s cognitive performance profile and relied 

on the application recording the learning process displayed by the child’s 

interactions with the touchscreen. Although primarily designed to assess the 

cognitive profile of individuals, the time-restricted element throughout the 

paradigm provided a measures of processing speed in association with the main 

cognitive outcomes. 

Overall the performance on the paradigm was high, as the pass rate on a lot of the 

items was at ceiling. This could suggest that the initial items were too simple to 

detect any difference in constructs such as selective attention within this cohort. As 

the application is still under development, these results are exploratory in nature. 

Evidence is limited on how well the different constructs are targeting the domains 

proposed. However, although only a weak correlation, the association of the final 

item with the cognitive performance on the Bayley-III is encouraging for the task 

developers. The presence of a study group effect after cognitive score adjustment 

also supports theories that the Bayley-III scale is missing aspects of cognitive 

performance that could be reflective of later difficulties (Anderson and Burnett, 

2017). Previous studies have reported the proportion of variance accounted for by 

cognitive performance equates to that of information processing speed 
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performance (Rose, Feldman and Jankowski, 2009; Mulder, Pitchford and Marlow, 

2010). The association of speed of information processing and cognitive abilities 

here is consistent with previous research within the preterm literature linking 

information processing difficulties with later difficulties in IQ.  

The final behavioural task utilised, was the Multi-Location Multi-Step. Typically used 

to assess working memory and cognitive flexibility, following observations of 

hesitation behaviours during data collection, it was concluded that the paradigm 

was potentially reflecting processing speed difficulties. On a number of trials, the 

children would pause over an incorrect location before changing to correct one, 

almost visibly demonstrating an update in working memory. By measuring the 

speed of locating the snack within the task proposed to incorporate the hesitation 

behaviour as reliably categorising behaviours was not possible. The results, 

although not significantly different between groups, indicate that the term children 

performed at a more consistent level throughout the pre-switch phase of the 

paradigm and were able to update their motor responses sufficiently following the 

switch of snack location in contrast to the VP children. A gradual decrease in 

response times to the multi-step procedure during the pre-switch phase was 

observed within the VP cohort and when comparing responses from the last trial of 

the pre-switch phase to that of the post-switch, performance appeared to slow in 

the completion of the final trial following the switch. This delay could be picking up 

on the hesitation behaviours observed during data collection and could reflect a 

slower relay of information required to update the motor responses in order to 

make the correct box identification in the final phase.  

Previous investigations have not utilised this task to assess processing speed, but 

rather working memory and cognitive flexibility. The study by Pozzetti et al., (2014) 

utilised the performance on this task in combination with other experimental EF 

measures (spin the pots; reverse categorisation) to perform an exploratory factor 

analysis to determine which of the EF domain differentiated a cohort of preterm 

infants from a control group. Of the 3 factors they generated from the multiple 

paradigms, cognitive flexibility discriminated between the two groups. This factor 
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was in part provided by performance on the Multi location Multi step paradigm 

(Pozzetti et al., 2014). Perseverative errors within this paradigm have been 

observed in previous investigations of 2 year olds. The developers of the MLMS 

Zelazo et al., (1998) reported preservative errors in a cohort of 2 years olds with a 

mean age of 24 months. When the children were asked to physically search during a 

pre-switch phase, they display perseveration in the post-switch trials. The absences 

of these behaviours in the current study could be an effect of maturity, with the 

children able to modify their responses sufficiently to not produce these errors by 

30 months of age. 

Although not traditional measures of processing speed, the tasks included within 

this chapter were posited to tap into this ability. Delays in information processing 

speeds have been commonly reported within the preterm literature (Rose, Feldman 

and Jankowski, 2009; Mulder, Pitchford and Marlow, 2010) and many suggest it is a 

primary cause of global cognitive impairments (Rose, Feldman and Jankowski, 2009) 

and the academic difficulties seen later in life (Mulder, Pitchford and Marlow, 

2010). Information processing abilities are vital to later cognitive performance, and 

have been shown to mediate performance on EF tasks in ex-preterm cohorts at 10 

years of age (Mulder, Pitchford and Marlow, 2011b). In contrast Aarnoudse-Moens 

et al.(2009) observed differences in inhibition and shifting behaviours that were still 

apparent following adjustment of processing speeds. Few studies have investigated 

processing speed in very preterm infants within the second year on life. However 

from those that have, difficulties in processing speeds appear to effect the 

performance of various cognitive domains throughout the early years (Rose, 

Feldman and Jankowski, 2009). 

Overall the differences in speed of information processing within these two 

populations are subtle. Although there are some clear differences in performance 

throughout the different tasks, the results are not conclusive of processing 

difficulties. One explanation might be the relative high cognitive scores of our VP 

sample. The processing speed differences are more apparent within the 30 month 

tasks compared to the performance at 3 months. This is perhaps suggestive that the 
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3 month time point is too early to display any significant processing speed 

differences; or it could be indicative of developmental changes within the brain 

over the 2 years that is impacting processing performance. If to consider the 

interactive specialisation framework proposed by Johnson (2000), interactions 

between cortical regions and networks sharpen with age, becoming more refined 

and specialised. The reduced processing speeds observed at 30 months could 

therefore be indicative of abnormal connectivity development between networks. A 

more detailed investigation of processing speed advancements through 

toddlerhood was run by Rose et al. (2009). A consistency of processing speed delays 

within a group of preterm infants was reported from 7 months to 3 years in this 

investigation (Rose, Feldman and Jankowski, 2009). Within the PDP assessment, 

supplementary tasks were performed that could have provided additional measures 

of processing speed, a gaze-shifting paradigm for example. However, these tasks 

contained social components and it was concluded that this additional element 

could bring confusion to conclusions in the current context. 
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6.2 Neural Measures: Auditory processing 

Arguably the most effective way to investigate information processing speeds is 

with the use of electroencephalography (EEG) recordings, specifically with Event 

Related Potentials (ERPs) that illustrate the brains response to a specific stimulus. 

The temporal accuracy of this technique lends to the exploration of individual and 

group variability in speed of information processing. 

Highlighted in section 1.4, MR research by Northam et al., postulated an association 

between reduced interhemispheric fibres connecting the two auditory cortices and 

the language delays typically reported in preterm children (Northam et al., 2012). 

These findings in combination with the multiple studies implying auditory 

discrimination difficulties within preterm cohorts (Jansson-Verkasalo et al., 2003, 

2004, 2010; Therien et al., 2004; Mikkola et al., 2007; Ortiz-Mantilla et al., 2008) led 

to the development of an ERP paradigm designed to investigate the auditory 

attentional response between the two cohorts. The research question posed was 

whether any temporal delays across the hemispheres of the brain could be 

observed in preterm toddlers, indicative of auditory information processing 

difficulties. The primary objective of this investigation was to simply look at the 

speed of processing of auditory sounds in the cohort at 2 years.  

The neural pathway of auditory information following initial detection is not 

conclusively understood. Unlike the clear hemi-decussation of the ophthalmic 

pathways (Winawer and Horiguchi, 2015), the auditory pathway has multiple points 

where the two ears converge. This aids with spatial orientation and sound location 

interpretation (Scott and Wise, 2004). However, there does appear to be a 

consensus in the literature that suggests the dominant pathway runs contralaterally 

from the ear of stimulation (Scott and Wise, 2004; Stefanatos et al., 2008). The 

information then is required to be passed between the two hemispheres following 

the long-standing accepted view that the two auditory cortices are responsible for 

different aspects of sound interpretation and understanding (Nicholls, 1996). The 

structure responsible for relaying this information is the interhemispheric pathways 
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via the Corpus Callosum; specifically the splenium (Bamiou et al., 2007). This 

structure has been identified as small in size within preterm populations (Northam 

et al., 2012; Thompson et al., 2012; Nosarti et al., 2014; Pannek et al., 2014), and it 

is speculated that it is the inefficient transfer of information across this structure 

that impacts language development (Chiara Nosarti et al., 2004; Northam et al., 

2012; Bruneau et al., 2015).  

With this as a focus, an auditory ERP paradigm aimed to assess the speed of 

auditory processing across hemispheres. To achieve this, sounds were presented 

monaurally in an oddball structure, employing the rationale that sounds are first 

processed contralaterally to the ear of presentation and following interhemispheric 

communication, are secondarily processed in the ipsilateral hemisphere. There are 

numerous theories surrounding the trajectory of a sound with speculations as to 

whether a sound is always required to be bisymmetrically processed (direct access 

model by Zaidel (1986)). A detailed review of this literature is provided in Appendix 

4, explaining the current theoretical auditory pathway and the different models 

proposed for the path trajectory of a sound following detection. In any regard, 

auditory attention will be the primary focus of the current investigation. The 

following components were hypothesised to be observed: the involuntary 

attentional response (typically termed the N1 component) and the later more 

analytical component for an auditory sound (P3). These predicted components are 

characteristically observed within auditory ERP investigations (Escera et al., 2000), 

however, it is important to consider the age of the participants. 

Developmental changes of auditory ERP components are complex as they are 

reflective of cortical folding throughout the early years and are known to flip 

polarities as maturation occurs (Kushnerenko, Van den Bergh and Winkler, 2013). 

Typically, a large amount of research has been conducted within the first year of 

life, and then later at approximately 5 years (Hövel et al., 2014). A few studies have 

investigated ERP components after the first year (Choudhury and Benasich, 2011; 

Putkinen et al., 2012), however, the predominant focus has been on the deviant 

response during auditory oddball paradigms with the components of interest 
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peaking in the fronto-central region (Mismatch Negativity or MMN).  Due to the 

ambition of the current investigation to target possible dysfunction within the 

interhemispheric transfer of auditory information, the MMN response was not the 

main focus of the investigation. Although the N1 and P3 components are 

hypothesised to be observed, due to the attempt to address the question of 

reduced speed of transcallosal transfer, the monaurally presentation proposed an 

additional complication when predicting the location of these components. 

Although a number of monaural ERP paradigms have been conducted within the 

literature (Gilmore, Clementz and Berg, 2009; Bruneau et al., 2015), few have been 

run in children, and to the authors’ knowledge, none in a 30 month old population. 

A gap is therefore inherently present within the literature and due to this, 

component analysis was primarily data driven. 

The paradigm comprised two simple speech sounds, presented monaurally in an 

oddball design. Due to the age of the infants, a paradigm that required prolonged 

active attention in order to obtain sufficient data was not going to be possible. The 

paradigm was therefore designed to be passive, to allow for maximum data 

collection. Hemispheric differences in ERP responses were investigated to compare 

possible transcallosal delays. To the authors’ knowledge, no other ERP study has 

explored the neural response described, in a preterm population at 2 years of age. 

6.2.1  Auditory Oddball Paradigm - methods 

The two monosyllabic, computer-synthesized consonant-vowel sounds were 

utilised: da/-/ga/ continuum. The two 100ms phoneme variants were chosen as 

both were voiced sounds with consistent voice onset time (VOT), however, were 

distinctly different due to the articulation location of the consonant sounds. /da/ is 

an alveolar sound, as the tongue is placed behind the alveolar ridge at the front of 

the mouth to produce the sound, whereas, /ga/ a velar sound, is produced by 

placing the tongue further back on the soft palate at the roof of the back of the 

mouth. The two sounds were clearly distinguishable but comparative in the wave 

structure for use in this paradigm. Amplitude and frequency of both sounds were 

explored to ensure the sounds did not deviate too greatly from one another, see 
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Figure 6-14 – 6-16. An initial sound burst was present to a greater extent in the /ga/ 

sound, this had the potential to cause timing issues if the sounds were 

counterbalanced between the frequent and infrequent stimuli between subjects. 

The sounds were therefore kept consistent to avoid any timing differences. Both 

were shared with the PDP study by a fellow research group within the ICH 

Developmental Cognitive Neurosciences and Neuropsychiatry section, headed by 

Professor Baldeweg. 

 

Figure 6-14. Waveform display of both stimuli used in the auditory oddball paradigm (/da/ and 

/ga/ sounds respectively). 

 

 

Figure 6-15. Spectral view of /da/ and /ga/ sounds respectively.  
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Figure 6-16. Frequency/amplitude spectrum plots for /da/ and /ga/ sounds respectively. 

 

The paradigm was structured in an oddball design within MATLAB. The frequency of 

the two phonemes was presented in a 70:30 ratio. /da/ was presented as the 

deviant sound and /ga/ as the standard. The sounds were presented monaurally in 

4 blocks of 100 trials with a random inter-stimulus interval of between 0.7-1s. Each 

block alternated between the left and right ear presentation, with the first ear of 

presentation counterbalanced between subjects. 

A note here on the paradigm design. Due to the age of the participants, the 

maximum number of trials tolerated was 400 trials. This gave 280 standard sounds 

and 120 deviant sounds. The ratio of the frequent to infrequent was set marginally 
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higher than that of traditional oddball paradigms in an attempt to increase the 

number of deviant trials without losing the novelty response. This was a risk in the 

design, however, the novelty response was not the predominant response of 

interest, as explained above. Due to this, the deviant trials were compared to the 

standard trials to explore the novelty response, but the standard trials are the 

primary focus of the analyses. 

The geodesic EGI system was used for the recordings. The toddlers were either sat 

on a parents lap or on a small chair in front of the VDU. Distance from the VDU was 

not measured as it was not fundamental to the task. The child was positioned so 

that the video camera could see the child throughout the task however. The net 

was placed using the procedure described below. Lightweight children’s 

headphones, supplied by Urbanz, were then gently placed over the EGI net, taking 

care to not rest on the reference electrode.  

To reduce movement artefacts the toddlers watched either a popular children’s 

cartoon without sound on the VDU or were able to watch a video of choice on an 

iPad, again without sound. The lights were switched off and experimenters and 

parents did not speak throughout the administration. 

6.2.1.1 ERP Pre-processing 

The EEG was acquired using a 32-channel EGI Geodesic Array Sensor net against an 

online vertex reference. Netstation 4.5.1 was used to record the data (Electrical 

Geodesic, Eugene, Oregon), at a sampling frequency of 250 Hz and impedences kept 

below 80 kohm.  

Participant head circumference was measured prior to the initiation of the EEG 

session and the appropriate sensor net was prepared accordingly. The nets were 

soaked for a total of 5 minutes in 1000mls of lukewarm water, with 5ml of baby 

shampoo and 10g of Potassium Chloride. When placing the net, the central 

electrode, 18, was positioned in line with the nasion, and the reference vertex 

electrode centred between the ears and in line with the inion. Once positioned, the 
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impedances were measured, corrected and saved before the start of each 

recording. 

Post-recording, the data was passed through a bandpass filter offline of 0.1-30Hz. 

The data was segmented into 1000ms epochs; 200ms pre-stimulus onset and 

800ms post-stimulus.  The artefact detection tool was programmed to mark 

channels as bad according to the following parameters within each epoch or trial: if 

the maximum to minimum peak amplitude exceeded 100μV, accounting for eye-

movement and eye-blink artefacts; if ≥ 5 channels were marked bad within one 

trial, the entire trial was excluded; and lastly, if the >4 channel were in the same 

topographic position the trial was marked as bad. A participant was excluded from 

further analysis if less than 10 good trials per condition resulted from this 

processing tool. The automated process was check manually, ensuring that all bad 

channels had been correctly identified.  

Following artefact detection, the bad channel replacement tool used a pre-

programmed algorithm to estimate the voltages of the channels marked bad by 

using the voltage patterns of surrounding electrodes. The data was then averaged 

across each participant and re-referenced to the average reference, excluding the 

EOG channels, before being baseline corrected, 100ms pre-stimulus onset.  

Grand average waveforms were created for the two groups, term and preterm. The 

waveforms for each condition were compared within and between groups. 

Maximum and minimum amplitudes were calculated for each component within 

the waveforms, using a maximum and minimum peaks and time-window analysis. 

The steps for data processing were as follows: segmentation, artefact detection, 

bad channel replacement, averaging, averaged referencing, and baseline correction 

before all participant data was compiled into one grand average file. 
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6.2.1.2 ERP Analysis 

Butterfly plots were used to determine the components present within the data and 

for electrode selection. The plots were explored across all individuals, with the 

electrodes and time window of the component peaks noted from each. From these 

plots, two components were identified: a negative peaking component around 

100ms (will be termed N1) with a window of 80-200ms, with the most prominent 

electrode grouping as: 15, 23, 25 (left hemisphere); and 16, 24, 26 (right 

hemisphere) according to the EGI 32 channel geodesic map (see Figure 6-17); and 

positive peaking component around 300ms (will be termed P3) with a window of 

235-395ms, with the most prominent electrode grouping as: 13, 15, 23, 25 (left 

hemisphere); and 14, 16, 24, 26 (right hemisphere), according to the EGI 32 channel 

geodesic map (see Figure 6-18). 

The paradigm therefore produced responses to: standard and deviant phonemes, 

responses according to the ear of presentation (sounds presented to the left or 

right ear), and each component was investigated in the left and right hemisphere 

independently. Therefore the standard and deviant sounds were handled separately 

in the first instance for clarity, with the standard sounds the primary focus. For each 

component, amplitude and latency measures were investigate using a repeated 

measures ANOVA with the between-subject factor as study group and with within-

subject measures of ear of stimulation and hemisphere. This was repeated within 

the deviant sounds.  

For the N1 component, the minimum amplitude was reported for the standard 

phonemes along with the latency measures, however for the P3 component, the 

mean amplitude was investigated and no latency measures were investigated due 

to the broader nature of the component. For the deviant tones, due to the fewer 

number of trials available, the mean amplitudes for both components were 

investigated. Finally, differences in the two components were compared between 

the standard and deviant sounds. Although the novelty response is often 

centralised, there was little evidence available to formulate a prediction for where 

the novelty response might be observed in monoaural presentations as reports are 
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mixed (Gilmore, Clementz and Berg, 2009). As such, it was decided to persist with a 

data lead approach and for these analyses the data were collapsed across the ear of 

presentation and hemisphere, to explore the novelty effect of the deviant 

phonemes within the N1 and P3 components. Both the minimum and mean peaks 

and peak latencies were explored for the N1, and the only the mean peak 

investigate for the P3 component. The electrode selection remained consistent with 

the independent trial type analysis as the butterfly plots did not elect a strong 

centralised response in the central region.  

The variable selected a priori to best reflect the performance on this task was the 

left hemisphere N1 latency measure, collapsed across ear of sound presentation 

and standard and deviant tones. This was selected as the left hemisphere is 

considered the predominant hemisphere for speech processing therefore 

hypothesised to display the greatest response. As difference in speed processing 

was hypothesized, a latency response was selected as the most appropriate 

reflection of a speed difference. Evaluation of the sound is most likely to be 

reflected in the P3 component; however, the more prominent response was 

hypothesised to be the N1 due to the automaticity of detecting a sound and was 

therefore selected on this basis. 

 

Figure 6-17. EGI 32 channel Geodesic map display electrode selection for N1 component 
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Figure 6-18. EGI 32 channel Geodesic map display electrode selection for N1 component 

 

6.2.2 Results 

Fourteen term born and fourteen VP infants were included in the auditory oddball 

ERP analysis (Table 6-28).  

  Term (n=14) VP (n=14) 

Gestational age 
Median (range); 

weeks
+d

 
40

+4
 (37

+2
 – 42

+1
) 24

+6 
(23

+6 
– 29

+4
) 

Male sex  7 (50%) 10 (71.43%) 

IMD Quintile  1 1 2 

 2 1 1 

 3 3 6 

 4 5 3 

 5 4 2 

Bayley-III cognitive 
composite score at 2 years 

Mean (SD) 
(n:T=13; VP=14)  

110.77 (14.98) 101.07 (12.28) 

Bayley-III Cognitive z-score 
at  2 years 

Mean (SD) 
(n:T=13; VP=14) 

.25 (1.21) -.56 

Bayley-III language 
composite score at 2 years 

Mean (SD) 
(n:T=11; VP=14) 

121.18 (10.83) 96.35 (18.39) 

Bayley-III language z-score 
at 2 years 

Mean (SD) 
(n:T=11; VP=14) 

.17 (1.04) -2.22 (1.77) 

Table 6-28. Demographic details of toddlers to complete the auditory oddball paradigm 
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6.2.2.1 Standard Phonemes trials 

In the exploration of the N1 component, the term born children produced a greater 

negative response to a left ear sound across both hemispheres compared to the VP 

infants (Figure 6-19; main effect of study group: F(2,26) =3.46, p = .074; with post 

hoc tests suggesting greater negativity in the terms with Bonferroni correction: 

t(26) = -2.01, p = .06). No notable differences were observed with sounds to the 

right ear between the study groups or across hemispheres. 

 

Figure 6-19. Mean amplitude response of the N1 component across the left (LH) and right (RH) 

hemispheres according to ear of presentation for standard sounds between term and very preterm 

toddlers. 

For the P3 component, sounds to the left ear elicited a greater mean amplitude 

response in the right (contralateral) hemisphere for the term born infants 

compared to the VP infants (Figure 6-20; hemisphere by study group interaction: 

(F(2,26) = 12.81, p = .001); with post hoc tests suggesting a greater response in the 

terms: z = 2.25, p = 0.02). In addition, a significant effect of hemisphere was 

observed within groups, with terms showing a greater amplitude in the right 

(contralateral to the ear of stimulation; z = -2.54, p = 0.01); and the preterms 
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showing a greater response in the left hemisphere (ipsilateral to the ear of 

stimulation; z = 2.04, p = 0.04).  

 

Figure 6-20. Mean amplitude response of the P3 component across the left (LH) and right (RH) 

hemispheres according to ear of presentation for standard sounds between term and very preterm 

toddlers. 

 
 

Term (n=14) Preterm (n=14) 

Component 
Ear of stimulation; 
measure 

Left  
hem (SD) 

Right 
hem (SD) 

Left  
hem (SD) 

Right 
hem (SD) 

N1 

Left Ear; mean amp -.77 (2.16) 
-.68 

(2.18) 
1.21 

(2.97) 
.60 

(2.88) 

Right Ear; mean amp -.28 (2.02) .18 (1.76) 
-.28 

(1.42) 
.67 

(2.69) 

Left Ear; latency 
126.29 
(28.90) 

120.57 
(26.81) 

132.67 
(30.38) 

133.43 
(31.31) 

Right Ear; latency 
130.57 
(24.45) 

118.67 
(21.40) 

124.67 
(18.89) 

120.95 
(15.82) 

      

P3 

Left Ear; mean amp 2.27 (2.35) 
4.27 

(1.79) 
4.72 

(4.32) 
2.19 

(4.39) 

Right Ear; mean amp 2.40 (2.88) 
3.50 

(2.42) 
2.43 

(2.64) 
3.32 

(3.33) 

Table 6-29. Auditory ERP N1 and P3 component mean amplitudes and latencies for the standard 

sounds across study groups. 
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Figure 6-21. Auditory ERP waveform of the N1 and P3 component response to left ear stimulation 

across hemispheres with standard sounds; the N1 electrode grouping was used for this illustration. 

 

Figure 6-22. Auditory ERP waveform of the N1 and P3 component response to right ear stimulation 

across hemispheres with standard sounds; the N1 electrode grouping was used for this illustration. 
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6.2.2.2 Deviant Phonemes trials 

For the N1 component in response to the deviant tones, the contralateral 

hemisphere displayed a greater negativity in both study groups when sounds were 

presented to the right ear (Figure 6-23; F(2,26) = 7.51, p = .011). However, the N1 

component peaked faster in the ipsilateral hemisphere (latency main effect of 

hemisphere: F(2,26) = 7.78, p = .01; post-hoc exploration indicates a faster response 

in the right hemisphere: z = 2.29, p = .022; Figure 6-25). No differences were 

observed following deviant tones to the left ear (Figure 6-24). 

For the P3 component, there were no significant main effects or interactions 

between the groups in either ear of presentation. 

 

Figure 6-23. Mean amplitude response of the N1 component across the left (LH) and right (RH) 

hemispheres according to ear of presentation for deviant sounds between term and very preterm 

toddlers. 
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  Term (n=14) Preterm (n=14) 

Component 
Side of sound 

presentation; measure 

Left  
hem (SD) 

Right 

hem (SD) 

Left  
hem (SD) 

Right  

hem (SD) 

N1 

Left Ear; mean amp 
-.51 

(2.59) 

-.27 

(3.16) 

.10  

(2.52) 

.51 

 (4.26) 

Right Ear; mean amp 
-1.72 

(3.13) 

.15  

(2.57) 

.11  

(4.18) 

1.93 

(2.46) 

Left Ear; latency 
126.76 

(25.63) 

121.10 

(33.09) 

135.71 

(30.16) 

125.71 

(41.14) 

Right Ear; latency 
132.57 

(23.75) 

119.43 

(22.36) 

130.67 

(16.78) 

110.48 

(27.41) 

      

P3 

Left Ear; mean amp 
2.46 

(2.48) 

4.42 

(5.28) 

3.38 

(4.58) 

2.39 

(5.27) 

Right Ear; mean amp 
1.57 

(2.43) 

2.90 

(2.21) 

2.05 

(5.68) 

4.97 

(4.88) 

Table 6-30. N1 and P3 components mean amplitudes and latencies for deviant sounds from the 

auditory ERP oddball paradigm 

 

Figure 6-24. Waveform of the N1 and P3 response across hemispheres to the deviant sounds 

following left ear presentation. The electrode grouping used for this illustration was those for the 

N1 analyses. 
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Figure 6-25. Waveform of the N1 and P3 response across hemispheres to the deviant sounds 

following right ear presentation. The electrode grouping used for this illustration was those for the 

N1 analyses. 

6.2.2.3 Standard vs Deviant phoneme response 

When comparing the differences in response between the deviant and standard 

phonemes, the responses were collapsed across hemisphere and ear of 

presentation as there were no expectations that one hemisphere or a particular ear 

of presentation would elect a greater response to a novel sound over the other 

(Table 6-31; Figure 6-26).  
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  Term (n=14) Preterm (n=14) 

Component Measure Standard Deviant Standard Deviant 

N1 

Mean amp 
-1.2 

(3.11) 

-1.46 

(4.16) 

1.53 

(4.76) 
.90 (5.49) 

Min amp 
-6.61 

(3.48) 

-8.44 

(5.12) 

-4.01 

(5.10) 

-7.32 

(5.88) 

Latency 
124.02 

(16.48) 

125.19 

(17.67) 

127.93 

(17.39) 

125.64 

(20.23) 

Combined latency 124.61 (16.16) 126.79 (15.47) 

Combined latency, left 

hemisphere only* 
129.05 (19.58) 130.93 (16.45) 

     

P3 

Mean amp 
6.48 

(3.32) 

6.18 

(4.89) 

7.86 

(7.11) 

6.84 

(7.76) 

Max amp 
12.17 

(3.79) 

13.17 

(5.04) 

14.55 

(7.54) 

14.69 

(7.85) 

Table 6-31. N1 and P3 components mean, minimum and max amplitudes and latencies for 

standard and deviant sounds from the auditory ERP oddball paradigm. *Variable selected a priori 

as most informative reflection of performance: left hemisphere response collapsed across ear of 

sound presentation and sound frequency. 

 

The deviant sounds elicited a greater minimum N1 response in both study groups 

(F(2,26) = 5.61, p = .02) compared to the standard tones; although this effect was 

weakened when averaging the peak N1 response (F(2,26) = .225, p = .64). However, 

the term mean amplitude was larger in response to a deviant tone compared to the 

VP infants (F(1,26) = 3.31, p= .08). 

The P3 component did not appear to significantly differ between the two trial types, 

when exploring the mean amplitude of the component. 
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Figure 6-26. Auditory ERP waveform of the N1 and P3 components in response to the standard and 

deviant tones, averaged across ear of sound presentation and hemisphere; the N1 electrode 

grouping was used for this illustration. 

 

The variable selected a priori was the N1 latency response from the left hemisphere 

collapsed across the ear of presentation and standard and deviant responses. 

Although no latency differences were observed, this was variable was further 

explored in relation to the study confound variables. IMD quintile had a significant 

impact on the first model, before adjustment for Bayley-III cognitive score, with 

greater deprivation suggesting a slower latency response to these sounds (Table 6-

32). This however did not withstand adjustment for cognitive score (Table 6-33). 

This additional model also included the language z-score from the Bayley-III due to 

the speech sounds used within the paradigm. No significant relationships were 

highlighted (Table 6-32 and 6-33). 
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Table 6-32. Linear regression model of left hemisphere response to speech sounds in auditory oddball paradigm, collapsed over ear and frequency of sound 

presentation (F(3, 24) = 1.44, p = .25). The baseline group are term-born females at 12 months with an IMD quintile of 1.  

 

 
 
Overall model fit R

2
 = 0.15 

Predictor 

Term (n=14) Preterm (n=14) 

Coef 95%CI 

  

 

Median (Range) Median (Range) P 

Study 
Group 

40
+4

 (37
+2

 – 42
+1

) 24
+6 

(23
+6 

– 29
+4

) 4.70 -9.58 – 18.99 .50 

Male sex 7 (50%) 10 (71.43%) 1.96 -12.25 – 16.17 .78 

IMD 
Quintile 

4 (1–5) 3 (1–5) 5.67 -.09 – 11.43 .05 

 (Const.) - - 106.99 82.69 – 131.28 .000 

 
     

-20 -10 0 10 20

Coefficient	(95%	CI)
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Table 6-33. Linear regression model of left hemisphere response to speech sounds in auditory oddball paradigm, collapsed over ear and frequency of sound 

presentation including the adjustment of the 12m Bayley-III cognitive and language z-score (F(5, 19) = .91, p = .50). The baseline group are term-born females at 12 

months with an IMD quintile of 1.  

 
Overall model fit was R

2
 = .19 

Predictor 

Term (n=11) Preterm (n=14) 

Coef. 95%CI 
  

 

 

Median (Range) Median (Range) P 

Study group 39+6 (37+0 – 42+1) 26+3 (23+6 – 29+7) 10.51 -10.78 – 31.82 .31 

Male sex 4 (36.36%) 10 (71.43%) -2.92 -18.97 – 13.14 .71 

IMD quintile 4 (1-5) 3 (1-5) 6.33 -.53 – 13.19 .07 

2 year cog  
z-score 

.44 (1.21) -.54 (.99) -1.11 -8.76 –6.53 .76 

2 year lang  
z-score 

.17 (1.04) -2.22 (1.77) .40 -5.15 – 5.94 .88 

Const - - 102.89 74.14 – 131.64 .000 
-20 0 20 40

Coefficient	(95%	CI)
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6.2.3 Discussion of Neural Information processing measures: Auditory ERP  

The ERP auditory oddball paradigm elicited some very interesting differences 

between the term and VP toddler responses. The waveforms in Figure 6-19 and 6-

20 highlight the main differences observed during the paradigm. Two components 

were identified: the N1 at approximately 100ms post stimulus presentation, and the 

P3 at approximately 300ms post-stimulus presentation. The N1 is typically regarded 

as the brains involuntary attention response and the P3 as conscious processing of 

the stimulus (Escera et al., 2000). 

During standard tone presentation to the left ear the term born infants displayed a 

greater N1 response compared to the VP infants and the P3 was largest in the term 

born right hemisphere, contralateral to the ear stimulated. In contrast the VP group 

displayed a stronger ipsilateral P3 response to a left ear standard tone. There were 

no distinguishable differences to the right ear sound presentations and no latency 

differences were observed to either ear presentation. 

Multiple cerebral processes are speculated to contribute to the generation of the 

N1 component, with the primary process being the synchronisation of the primary 

and secondary auditory cortices after sensory perception. The N1 is classically 

recorded in the front-central location (Tomé et al., 2014). Due to the monaural 

presentation in the current paradigm, the N1 was recorded over the temporo-

parietal areas. An investigation conducted previously utilised an auditory oddball 

paradigm with sounds presented monaurally and similarly detected the N1 

component in the temporo-parietal regions (Gilmore, Clementz and Berg, 2009). 

This investigation into interhemispheric lateralisation found a stronger response 

detected in the contralateral hemisphere to the ear of stimulation (Gilmore, 

Clementz and Berg, 2009). Although there were no significant differences observed 

across hemispheres, the N1 amplitudes in the current investigation suggest a 

greater contralateral response by both study groups to the ear of presentation (see 

Figure 6-19). This supports the theory that the contralateral pathways through the 

brain stem from the ear of stimulation are dominant in the processing of a sound in 

the first instance (Scott and Wise, 2004). 
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The P3 is classically observed in central locations and is typically produced in 

response to conscious processing of a sound (van Dinteren et al., 2014). When a 

sound is presented monaurally, disagreements over the laterality of the P3 

response are present within the literature (for a review please see (Gilmore, 

Clementz and Berg, 2009). It is plausible that the P3 observed in the current 

paradigm is not the classic component often reported in the literature, but it may 

reflect the auditory evaluation process due to the timing of the component (Escera 

et al., 2000). 

When comparing the P3 amplitudes of term and VP toddlers, the responses were 

very different. Using standard sounds, a hemisphere by group interaction was 

observed in response to left ear stimulation. The term born toddlers displayed a 

greater right hemisphere response; and the VP infants a greater left hemisphere 

response. The response of the term group reflects previous reports implying that 

the contralateral pathway is the dominant trajectory of a sound and upon detection 

is processed primarily in the contralateral hemisphere (Gilmore, Clementz and Berg, 

2009). The VP toddlers however displayed a greater ipsilateral response. This 

difference is intriguing. 

The broad nature of the P3 component in this instance prohibited the exploration of 

peak latency comparisons across hemispheres. On visual inspection of the 

waveforms following left ear stimulation in the term group (Figure 6-21) the latency 

of the contralateral response peaked before the ipsilateral response.  This may 

reflect interhemispheric transmission of the sounds from the right to the left 

hemisphere. The sounds used in the paradigm were speech-based.  This information 

may require transference to the left auditory cortex in order to be processed, as the 

left is typically considered to be the language dominant hemisphere. In contrast, 

the VP group response shows the reverse, with the ipsilateral response displaying 

greater amplitude and a considerably depressed left hemisphere response. This 

suggests that the VP group is handling the speech information differently to the 

term group.  
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There are multiple theories regarding when and how speech is then processed in 

ipsilateral hemisphere (Musiek, 1986; Musiek et al., 1989; Bamiou et al., 2007). The 

consensus appear to suggests that for speech sounds to be processed efficiently, 

they must be transferred to the speech dominant cortex, classically the left auditory 

cortex (Bamiou et al., 2007). When a sound is presented to the left ear, in order to 

be processed in the left hemisphere, the theory dictates the information must be 

transferred through the transcallosal fibres. The greater ipsilateral response in the 

VP toddlers in response to left ear stimulation may suggest the VP children have 

stronger ipsilateral connections as a result of poorer communication across 

hemispheres via the transcallosal pathway.  This interpretation is supported by the 

MR studies that have reported poorer tract formation and reduced speed of 

transfer of speech information across the corpus callosum (Northam et al., 2012). 

The language scores are lower in the current cohort suggesting some language 

impairments may be present. It was not possible to fully explore the language 

association with the P3 component as it was considered too broad in this instance. 

However, this greater response in the left ipsilateral hemisphere to a left ear sound, 

could suggest that compensatory mechanisms have changed how the brain handles 

speech stimuli within this cohort, probably due to difficulties in interhemispheric 

communication, thereby ensuring direct processing to the language dominant 

hemisphere of the brain. In imaging studies of acallosal patients, the number of 

ipsilateral fibres exceeds that of those crossing contralaterally, suggesting the 

reduction or absence of interhemispheric fibres creates compensatory connections 

(Nowicka and Tacikowski, 2011). These findings are consistent with this explanation.   

These data are interpreted with caution for several reasons. Firstly, the mean 

amplitude was the only possible measure for the P3 component and therefore the 

latencies could not be properly investigated. Handedness was not identified during 

the assessments due to inconsistent reports in the accuracy of handedness 

measures in individuals so young (for review see Scharoun and Bryden, 2014). Hand 

preference is often associated with the language domain hemisphere and it is 

possible that some within the cohort have right sided language dominance.  
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Typically in the literature, the deviant sounds within an oddball paradigm are 

detected by voltage deflections in the P3 response. The P3a component is often 

considered as an indication of conscious auditory attention, and reported in 

paradigms where the participants are asked to actively focus on the deviant sounds 

(van Dinteren et al., 2014). This was not the case in the current investigation in 

which the N1 amplitude was significantly greater in response to the deviant sounds 

across both study groups, when collapsing across ear of sound presentation and 

hemisphere. A number of factors could explain this discrepancy. Firstly, due to the 

monaural presentation, the P3 was not detected in the typical fronto-central 

location. Therefore it is conceivable the subtlety of the voltage deflection caused by 

deviant sounds is lost due to current topography of the P3 component measured 

(Gilmore, Clementz and Berg, 2009). Secondly, the deflection in the P3 may reflect 

the active conscious acknowledgment of the sound deviation (Escera et al., 2000). 

The current paradigm was conducted passively without the toddlers actively 

attending to the sounds, therefore was not asked to actively attend to the deviant. 

Thirdly, the response may have been lost due to the higher deviant to standard 

phoneme ratio (30:70) as the greater the difference the larger the response 

(Näätänen and Winkler, 1999). The length of the paradigm had to be shorter due to 

the age of the participants, therefore a higher ratio was set in order to acquire more 

deviant sounds in a shorter paradigm. However, this could have weakened the 

response to the deviant sounds as they occurred at a greater frequency. A final 

explanation could be the phonemes used were too subtle in structure to elect this 

response within the toddler brain. Nevertheless, the difference observed in N1 

amplitude is likely to reflect the involuntary processing of the brain detecting the 

deviant sound and suggests the components detected are reflective of active 

processing of the sounds (Tomé et al., 2014).  

Future work to strengthen these findings would require increasing the number of 

trial within each condition in order to clarify the P3 peak and obtain latency 

measures. It would also be preferable to reduce the number of deviant stimuli and 

to administer the paradigm binaurally; jointly this would increase the likelihood of 

the detecting a novelty response and allow for better predictions on the component 
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location. The final modification would be to include simple tones to investigate 

whether there is a difference in how the brain responds to the tones over the 

speech sounds. This has the potential to provide the necessary evidence to qualify 

the theory above regarding how the preterm brain processes speech sounds. 

This paradigm has ultimately not demonstrated a difference in speed of neural 

processing due to the absence and inability to measure the latency response 

between term and preterm infants. It does provide evidence to suggest the VP 

infants are processing auditory information utilising different neural mechanisms 

and may indicate functional connectivity differences within the VP brain that have 

not before been observed in an ERP investigation. These differences are consistent 

with my original predictions. 
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Chapter 7 Prediction of global cognitive performance at 12 months 

and 2 years from earlier measures of EF, IP and Attention. 

Established paradigms assessing Executive function (EF), information processing (IP) 

speeds and attentional abilities have identified deficits that emerge around 2 years 

of age in very preterm children, with particular difficulties in the EF measures. These 

difficulties are evident after adjusting for cognitive performance. The question still 

remains to what extent the variation in the Bayley-III cognitive score is accounted 

for by EF performance. The aim of the current chapter is to explore: the relationship 

of the EF, IP and attentional measures to the Bayley-III cognitive scores at both the 

12 months and 2 year time points, and to explore the relationship between the EF, 

IP and attentional scores to the overall learning construct from the BabyScreen 

application as a comparative measure for global cognitive performance.  

Although no study group differences were observed in the first year experimental 

EF, IP and attention tasks, it is possible the variation in these measures reflects the 

variation in cognitive scores. Although first year EF performance is not correlated 

with the second year EF task scores as explored in Chapter 4, it is possible the 

variation across scores in the first year could still be, in part, reflective of the 

variability in cognitive scores at 2 years. 

In the second year, differences were observed in the Bayley-III cognitive scale 

performance between the term and VP children. These scores only partly correlated 

with the EF, IP and attentional measures. It is plausible that collectively the 

variation across the EF, IP and attentional measures could account for a greater 

amount of variation in the Bayley-III cognitive scores at 2 years.  

The BabyScreen application differentiated EF performance whilst incorporating a 

measure of IP speed. The overall learning construct from this application was 

designed to be a measure of broad cognitive ability and may be considered to be 

targeting similar abilities as the Bayley-III cognitive scale. The variation in this 

measure will be explored in relation to the other EF, IP and attentional scores from 
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the 30 month assessment, as an additional insight as to how the experimental 

scores reflect variability in this alternative measure of global cognitive performance. 

The research questions for the follow chapter are as follows:  

1) Will the targeted assessments of EF, IP and attention within the first year relate 

to the cognitive z-scores at: 

a) 12 months? 

b) 2 years? 

2) To what extent do the EF, IP and attentional variables from the 30 month 

assessment: 

a) Explain the variation in cognitive z-score of the Bayley-III at 2 years? 

b) Account for variation in the BabyScreen overall EF construct?  

7.1 Methodology 

Due to study numbers it was not practical to perform the preferred multi-level 

cluster analysis on the data collected within this longitudinal study. Given this, the 

relationship between the data collected at each time point of the study was 

addressed by a series of sequential linear regressions.  

Cognitive z-scores of the Bayley-III at both 12 months and 2 years were utilised as 

the outcome measures. All the experimental predictor variables utilised were those 

selected a priori in previous chapters: Learning status (Mobile paradigm), 

proportion of trials correct (DRT), disengagement RT at 6, 12 and 30 months (GAP), 

level of AB error (AB paradigm), highest level achieved (DCCS), post-switch trial RT 

(MLMS), overall learning construct RT (BabyScreen), and Left hemisphere N1 

latency measure (ERP auditory oddball). All continuous data were reduced to z-

scores.  
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The predetermined demographic factors: IMD quintile, male sex and study group, 

are also included within the models. The R-squared values will be reported for each 

model, reflective of the proportion of the variation in the dependent variable 

accounted for by the predictors within each model. 

For the 12 month and 2 year Bayley-III cognitive score data, all predictor variables 

from the first year were added incrementally according to age of assessment.  

For the 2 year Bayley-III cognitive score data, 4 models were fitted to fully 

investigate the contributions of the 30 month variables to the data. Model 1 

included the well-established 30 month EF and attentional task variables from the 

literature (DCCS; MLMS; and GAP disengagement RT) that have direct theoretical 

links with the first year tasks. Model 2 included the more experimental variables 

from the 30 month assessment, the overall learning construct RTs from the 

BabyScreen, and the left hemisphere N1 latency response collapsed over ear of 

presentation and standard and deviant tones from the auditory oddball paradigm. 

Model 3 includes all measures from the 30 month assessment phase. The final 

model, model 4, included the demographic variables stated above, and the 12 

month Bayley-III cognitive z-score. 

A final set of sequential regression models were performed with the overall learning 

RT construct from the BabyScreen as the dependent variable. As for the 2 year 

Bayley-III data, the established EF and attention measures were included primarily; 

the auditory oddball was explored as a solitary experimental predictor in the second 

model and the final model included all 30 month measures. 

7.2 Results 

7.2.1 Predictive effects of the first year EF, IP and attentional performances on 

the cognitive score of the Bayley-III at 12 months of age 

Overall the first model, including just the 3 month mobile task variable and the 

study demographic variables accounted for only 26% of the variation observed in 
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the 12 month Bayley-III cognitive z-score. This increases to 44% with the addition of 

the 6 month variables and to 62% for the full model at 12 months. In both the 6 

month and final models the inclusion of the attentional measure from the GAP task 

at 6 months was a significant influence on the model fit (Table 7-1). 

The forest plot in Table 7-1 displays the model with all predictor variables from the 

first year. 
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Table 7-1. Sequential linear regression modelling the cognitive z-score of the Bayley-III at 12 months utilising EF, IP and attentional variables from the first year of 

assessments. The baseline group was term-born females. 

 

*p<.05; **p<.01; ***p≤.001 

Predictor 
3 months - Coeff 

(95%CI) 

6 months - Coeff 

(95%CI) 

12 months - Coeff 

(95%CI) 

 

 

N (T/PT) 61 (35 / 26) 33 (22 / 11) 22 (15 / 7) 

Study Group -.85 (-1.34 – -.35) *** -1.10 (-1.78 – -.41)** -.82 (-1.79 – .15) 

Male .09 (-.40 – .58) .51 (-.14 – 1.17) .88 (-.03 – 1.79) 

IMD Quintile .19 (.00 – .37) * .19 (-.10 – .48) .40 (-.04 – .85) 

Mobile  -.05 (-.54 – .43) -.29 (-.96 – .37) -.72 (-1.88 – .44) 

DRT - -1.78 (-4.29 – .74) -1.89 (-4.90 – 1.12) 

Gap at 6m - .45 (.09 – .82)* .61 (.10 – 1.11)* 

A-not-B - - .04 (-.05 – .14) 

Gap at 12m - - -.29 (-.99 – .41) 

Bayley-III cog at 

12m (Const.) 
-.53 (-1.37 – .31) .23 (-1.56 – 2.02) -.56 (-2.77 – 1.64) 

R2  .26 .44 .62 

-6 -4 -2 0 2 4

Coefficient	(95%	CI)
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7.2.2 Predictive effects of the first year EF, IP and attentional performances on 

the cognitive score of the Bayley-III at 2 years of age 

Table 7-2 presents the 3 sequential linear regression models fitted to the 2 year 

Bayley-III cognitive z-score and a fourth that included only the 12 month Bayley-III 

cognitive z-score and demographic variables as predictors. As in Table 7-1, the 

progressive addition of age related variables allowed the level of variability 

accounted for by each to be explored. Again the model that included all first year 

variables had the greatest predictive effect on the 2 year Bayley-III cognitive score 

outcome, with 48% of the variance accounted for by these measures. This level of 

variance accounted for by the experimental predictors is substantially greater than 

that of the model that included solely the Bayley-III cognitive scores at 12 months as 

a predictor; with only 26% of the variance at 2 years accounted for.  

Unlike in the models for the 12 month Bayley-III cognitive scores, the attentional 

measures from the GAP task are no longer significantly impacting the models for 

the 2 year outcome.  

The forest plot presented in Table 7-2 represents the full model with all first year 

variables.  
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 Table 7-2. Sequential linear regression modelling the cognitive z-score of the Bayley-III at 30 months. The baseline group was term-born females. 

 

*p<.05; **p<.01; ***p≤.001 

Predictor 3 months - Coeff 

(95%CI) 

6 months - Coeff 

(95%CI) 

12 months - Coeff 

(95%CI) 

Bayley  

(95% CI) 

 

N (T/PT) 35 (14 / 21) 21 (11 / 10) 13 (7 / 6) 40 (18 / 22) 

Study Group -.61 (-1.27 – .05) -.42 (-1.39 – .55) -1.03 (-4.17 – 2.12) -.02 (-.75 – .71) 

Male -.12 (-.80 – .56) .18 (-.77 – 1.12) 1.02 (-2.25 – 4.29) -.36 (-1.12 – .39) 

IMD Quintile .03 (-.21 – .21) .12 (-.25 – .49) .63 (-.40 – 1.66) -.08 (-.16 – .33) 

Mobile  -.43 (-1.08 – .21) -.34 (-1.33 – .65) -.53 (-4.87 – 3.81) - 

DRT - .93 (-3.05 – 4.92) -1.71 (-10.38 – 6.96) - 

Gap at 6m - -.10 (-.59 – .39) -.48 (-2.22 – 1.25) - 

A-not-B - - -.15 (-.66 – .37) - 

Gap at 12m - - -.44 (-3.28 – 2.39) - 

Bayley-III 12m 

z-score 
- - - 

.31 (-1.19 – .81) 

Bayley-III cog 

at 30m 

(Const.) 

.12 (-.87 – 1.12) -.91 (-3.30 – 1.48) -.71 (-5.81 – 4.39) -.19 (-1.19 – .86) 

R2  .15 .13 .48 .26 

-15 -10 -5 0 5 10

Coefficient	(95%	CI)
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7.2.3 Predictive effects of the second year EF, IP and attentional performances 

on the cognitive score of the Bayley-III at 2 years 

Table 7-3 explores to what extent the variance in the 2 year Bayley-III cognitive z-

score is accounted for by the 30 month experimental variables. The first of the 

three models included the established EF and attentional measures from the 

literature and accounted for 11% of the Bayley-III cognitive z-scores.  

The second model included the more experimental measures from the 30 month 

assessment stage, the Babyscreen RTs to the overall EF construct and the ERP 

auditory attentional measure. This model accounted for 32% of the variation in 

Bayley-III cognitive performance at 24/30 months, accounting for a greater level of 

variance than those from well-established EF tasks.  

The final model incorporated all measures to explore the total variance accounted 

for by the 30 month experimental variable, with 38% of the variance accounted for. 

None of the predictor variables significantly impacted any of the models suggesting 

equal contribution of each predictor to the variance accounted for by the models. 

Table 7-4 displays additional regression models fitted to the overall EF construct 

from the BabyScreen paradigm. Model 3 includes all 30 month experimental 

variables and indicates 76% of the variation in this outcome is accounted for within 

this model. The forest plot represents the largest model. 
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Table 7-3. 3 Linear regression models with the cognitive z-score of the Bayley-III at 30 months as the outcome variable. The baseline group was term-born females. 

 

*p<.05; **p<.01; ***p≤.001 

Predictor Model 1 (95%CI) Model 2 (95%CI) Model 3 (95%CI)  

 N (T/PT) 24 (12 / 12) 23 (12 / 11) 11 (6 / 5) 

Study Group -.09 (-1.42 – 1.25) -.15 (-1.45 – 1.15) -2.66 (-16.61 – 11.28) 

Male -.22 (1.22 – .78) -.52 (-1.70 – .66) -.34 (-8.27 – 7.59) 

IMD Quintile .15 (-.13 – .43) .02 (-.49 – .53) -.24 (-3.85 – 3.36) 

DCCS .06 (-.43 – .54) - -1.41 (-7.82 – 5.00) 

MLMS -.13 (-.71 – .45) - .81 (-5.42 – 7.03) 

Gap at 30m -.05 (-.51 –.41) - -.35 (-3.79 – 3.09) 

Babyscreen (task 

17) 
- -.49 (-1.06 – .07) -.98 (-6.14 – 4.18) 

Auditory ERP - -.23 (-.81 – .36) .84 (-5.56 – 7.25) 

Bayley-III cog at 

30m (Const.) 
-.49 (-2.62 – 1.64) .46 (-1.64 – 2.56) 6.45 (-25.54 – 38.44) 

R2  .11 .32 .38 

-20 -10 0 10 20

Coefficient	(95%	CI)



 
 

 

2
9

9 

Table 7-4. 3 Linear regression models fitted on the Babyscreen overall EF construct at 30 months as the outcome variable. The baseline group was term-born females. 

*p<.05; **p<.01; ***p≤.001 

Predictor Model 1 (95%CI) Model 2 (95%CI) Model 3 (95%CI)  

 N (T/PT) 16 (7 / 9) 24 (13 / 11) 11 (6 / 5) 

Study Group .99 (-1.09 – 3.07) .94 (.02 – 1.86)* -1.03 (-5.6 – 3.56) 

Male -1.03 (-2.46 – .40) -.52 (-1.45 – .42) -.74 (-3.22 – 1.74) 

IMD Quintile .27 (-.30 – .74) .12 (-.26 –.50) -.23 (-1.44 – .98) 

DCCS -.16 (-.82 – .51) - -.83 (-2.53 – .86) 

MLMS .11 (-.63 – .85) - .69 (-1.13 –2.51) 

Gap at 30m -.05 (-.58 – .48) - -.34 (-1.39 – .71) 

Auditory ERP - -.18 (-.66 – .31) .25 (-1.98 – 2.49) 

Babyscreen: 

Overall EF 

construct 

(Const.) 

.45 (-2.66 – 3.56) -.16 (-1.73 – 1.41) 3.93 (-4.88 – 12.74) 

R2  .48 .21 .76 

-6 -4 -2 0 2 4

Coefficient	(95%	CI)
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7.3 Discussion 

Through the use of sequential regression analyses, the variances in the Bayley-III 

cognitive scores at both 12 months and 2 years of age were explored in relation to 

the EF, IP and attentional measures acquired during the PDP battery.  

For the Bayley-III cognitive scores at 12 months of age, 62% of the variance was 

accounted for by the performances on the EF, IP and attentional measures. The 

same measures accounted for 48% of the Bayley-III cognitive score variation at 2 

years. This is in contrast to the Bayley-III cognitive scale itself, where the 12 month 

scores only accounted for 24% of the variation at 2 years.  

The EF, IP and attentional measures at 30 months were poor predictors of the 

contemporaneous Bayley-III cognitive score, only accounting for 38% of the 

variance. Contrastingly, these measures at the 30 months predicted 76% of the 

variance in the overall learning construct from the BabyScreen application. These 

results are discussed in the subsequent section as they leave interesting questions 

regarding the specificity and sensitivity of the Bayley-III.  

7.3.1 Predictive nature of the EF, IP and attentional measures from the first year 

of the PDP on Bayley-III performance variability at 12 months and 2 years 

The EF, IP or attentional measures nor cognitive composite scores differentiate VP 

and term groups in the first year, but they appear to be accessing the same areas of 

performance, explaining 62% of the variance in cognitive scores at 12 months. It is 

less clear what accounts for the remaining variance of Bayley-III scores however. 

The cognitive scale may access other areas that contribute to the final score and the 

relative importance of these can only be shown by looking at how they predict later 

outcomes. 

It is plausible that the experimental assessments included within the first year do 

not provide sensitive enough measures of EF abilities to account for the additional 

variation in the Bayley-III outcome. It is equally likely that the Bayley-III is not 
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accurately assessing EF abilities within the cognitive scale, as seen in the second 

year assessments with EF deficits still present after adjustment for the Bayley-III 

scores.  

An interesting observation within these analyses is level of variation accounted for 

by the first year EF, IP and attention measures in the Bayley-III cognitive scores at 2 

years. The predictors that accounted for 62% of the variability in the Bayley-III 

cognitive scores at 12 months accounted for 48% of the variability in the cognitive 

scores at 2 years. This is in contrast to the Bayley-III itself, which only accounted for 

26% of the 2 year scores variability. This poor predictive validity of the Bayley-III 

cognitive scores across the two time points was observed in Chapter 3 and suggests 

the EF, IP and attentional measures from the first year are accessing abilities that 

give a greater indication of later cognitive performance in line with the Bayley-III 

cognitive scores at 2 years. However, this is not to say that the Bayley-III cognitive 

scale at 2 is assessing the necessary skills to detect deficits later in life. It is likely 

that the EF difficulties observed in VP populations are more subtle and therefore 

more specific assessments of EF, IP speeds and attentional abilities are required in 

the early years in order to detect these deficits. 

The Gap task measure at 6 months had a significant impact on the model fitted to 

the 12 month Bayley-III cognitive score. The positive relationship of the 6 month 

Gap disengagement RTs within the models suggests the greater the time to 

disengage during the gap task, the better the performance on the Bayley-III. The 

implication from these findings is that the attentional ability targeted by the Gap 

task, specifically attention orientation, is having a greater influence in the Bayley-III 

cognitive performance at 12 months. Within Chapter 5, an increase in 

disengagement RT is seen from the 6 to the 12m time point within the preterm 

cohort. One theory proposed to explain this relationship between the Gap measure 

at 6 months and the Bayley-III score at 12, is a faster disengagement time reflects 

poorer engagement with the primary stimulus (van der Geest et al., 2001). If an 

infant is displaying poor focus during the Bayley-III, the scores are likely to be 

reflective of this. However, when including the 12 month Gap disengagement RT, 
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this measure no longer significantly impacts the model. The preterm infants’ 

disengagement response was slower at 12 months and was in line with the term 

response; as the GAP variable is not significant at 12 months, it is unlikely that the 

attentional focus is a responsible for the poorer performance in the 12 month 

Bayley-III cognitive score data. This result is hard to interpret without the use of a 

multilevel analysis, and is likely the result is confounded by the repeated measures 

aspect of the data within the 12 month model. Inclusion of both Gap measures 

when not accounting for repeated effects could be misleading and therefore should 

be disregarded in the larger model.  

In summary, the first year of assessments of EF, IP and attention appear better 

predictors of later Bayley-III cognitive scale performance in contrast to the Bayley-III 

itself. The question that remains is how effective is the Bayley-III cognitive score at 2 

years at detecting later problems.  

7.3.2 Predictive validity of the experimental measures from the 30 month 

assessment on the Bayley-III performance variability at 24/30 months 

When exploring the relationship between the experimental variables and the 

Bayley-III scores in the second year, it is clear that there is a disagreement between 

the two batteries as to what skills are being measured. When using all predictor 

variables available, only 38% of the variation in Bayley-III cognitive score was 

accounted for.  

Although the Bayley-III has been shown previously to detect cognitive impairment 

in numerous populations, it is frequently reported to miss those with mild cognitive 

impairments later in life. In the current cohort, none of the infants were considered 

to fall within the mild to moderately delayed category according to the Bayley-III 

cognitive score at 2 years of age. This result, in combination with the differences 

observed between the study groups in the EF tasks at 30 months of age, is likely 

suggestive that a proportion of the cohort will later present with cognitive 

impairments and/or academic difficulties. This lack of correlation between the 

study predictors and the amount of variation accounted for in the Bayley-III is 
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therefore not surprising. What remains to be seen, is whether the EF tasks 

administered during the PDP are a better reflection of later abilities over the Bayley-

III cognitive scale. This question unfortunately cannot be answered in the current 

investigation without subsequent follow-ups. However, by looking at the 

relationship of the experimental variables with an alternative measure that reflects 

global cognitive ability, additional evidence could support the experimental EF 

approach.  

The Babyscreen application, reported in Chapter 6, is still under development. 

However, the task has been designed around well-established measures in the 

developmental literature that assess EF performance. The overall learning construct 

was selected as the best measure from the PDP battery to explore as an alternative 

measure for more general cognitive performance. The overall learning construct 

incorporated both EF and processing speed elements from the task. 76% of the 

variation of this construct was accounted for by the EF, IP and attentional measure 

collected at 30 months of age. This high percentage suggests that this construct is 

likely tapping into the same abilities as the other well established measures utilised 

in the 30 month assessment phase; unlike the Bayley-III cognitive scale at this time 

point. 

Another interesting point to consider is the 48% of variation accounted for by the 

first year EF, IP and attentional measures to the 2 year Bayley-III cognitive scores. As 

this variability is not reflected in the EF, IP and attentional measures in the 30 

month assessment, this result could suggest that the Bayley-III is measuring more 

immature EF abilities which are more reflective of abilities in the first year of 

development. The emergence of EF and its sub-domains is highly theorised, 

however, a common opinion many researchers adopt is the differentiation of EF sub 

domains over time (Miyake et al., 2000). During the second year, although 

considered in this thesis as a unified construct in terms of assessing EF, it is not 

disregarded that the different EF domains are likely to be emerging. Given what is 

understood by later preterm studies, specific EF domain deficits are often reported 

to be the probable cause of impairments and academic difficulties. If these domains 
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are beginning to emerge in the second year, assessments that better differentiate 

the domains are likely to be better suited at detecting the emerging deficits. 

Although the EF tasks included in the current PDP 30 month assessment were not 

specifically targeting each of the different EF sub-domains, each task does have a 

predominant domain focus. Likewise, the BabyScreen application is subdivided into 

constructs that overlap with the different EF subskills. The experimental tasks at 30 

months could therefore be considered to be more sensitive to the different EF 

domains that, perhaps, the Bayley-III cognitive scale is not. This theory is supported 

by the predictive nature of the more simplistic first year task structures to the 2 

year cognitive scores.   

7.4 Concluding comments 

The first year of experimental assessments are better predictors of later Bayley-III 

scores; however, it appears that the Bayley-III may not be targeting the same 

abilities as those assessed in EF tasks at 30 months. Although it cannot be 

concluded that the EF tasks from the 30 month assessment are a better indication 

of later EF abilities, there are difficulties observed in the preterm population that 

are not being detected in the Bayley-III at 2 years. Making a prediction in the first 

year of life about later cognitive performance is therefore not simple. A possible 

explanation as to why the EF abilities in the first year are not reflective of the 

abilities in the second could be down to an evolving structure of EF into a 

differentiated construct. Due to the broad array of difficulties observed following 

preterm birth and the different levels of impairments observed in later life, it could 

be proposed that cognitive development in different children will take different 

trajectories, and therefore a linear relationship of EF function from the first year 

into the next is unlikely. Equally, these difficulties could be present from birth, but 

detecting these difficulties may not possible until later in development when the 

different EF domains can be assessed. 

Another area highlighted in the preterm literature as having a modulating effect on 

the later EF performances is speed of processing. The Bayley-III is not particularly 

sensitive to processing speeds as it is predominantly experimenter lead and it 
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therefore not likely to be assessing the same skills as those targeted in the EF, IP 

and attentional measures. This is in contrast to the BabyScreen application that is 

regarded to incorporate both in the overall learning construct. The EF, IP and 

attentional measures account for a much greater proportion of the variation in the 

overall learning construct of the BabyScreen and although this is not yet an 

established measure of EF or general cognitive function, it highly probable from 

these observations that it is tapping into the same cognitive abilities as those 

measured by classic EF tasks. The self-driven aspect of the application allows for 

processing speed abilities of the infant to be incorporated into the evaluation of 

performance in an EF measure.  
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Chapter 8 Discussion 

Cognitive impairments are typically reported in later childhood of children born 

preterm. Current assessments conducted within the early years appear to miss 

children in the mild to moderate impairment range and it is often not until the 

children reach school age that these problems are recognised. Once at school, the 

reported difficulties impact transition into school and have lasting effects on 

academic attainment. This highlights the importance to improve early identification 

methodologies in order to formulate targeted intervention schemes to aid the 

developmental trajectories of preterm children in the early years and optimise 

developmental outcomes.  

Within this thesis, a cohort of very preterm and term born infants were followed 

from infancy through to 30 months of age in a longitudinal design incorporating 4 

assessment stages at 3, 6, 12 and 30 months of age. The main study objectives 

were: 

1. To explore differences in EF, information processing speed and attention at 

3 time points within the first year and additionally at 2 years of age between 

the term and very preterm cohorts before and after adjustment for global 

cognitive score. This sought to identify the emergence of any EF difficulties 

not accounted for by global cognitive performance.  

2. The variation in first year measures of EF, IP and attention were compared 

to the variation in cognitive scores of the Bayley-III at both: 

a. 12 months 

b. 2 years 

This sought to explore the extent to which performance in EF tasks in the 

first year predicted the variation on the Bayley-III cognitive scores and 

examined the effectiveness of the cognitive scale at detecting variation in EF 

abilities within a very preterm cohort. 



 
 

307 
 

3. Finally, the EF, IP and attention scores at 2 years were used to investigate 

the variation of the Bayley-III at 2 years. 

8.1 Objective 1:  The exploration of Executive Function, Information Processing 

speed and Attention over the first 2 and a half years  

In middle to late childhood, ex-preterm infants are often observed to suffer from a 

range of cognitive impairments and attentional difficulties which later lead to 

reduced academic attainment that is typically not accounted for by IQ scores. The 

cognitive impairments described in ex-preterm populations are unusual as they do 

not appear to be global, but rather specific difficulties in EF sub-skills, namely, 

working memory, in combination with reduced information processing speeds and 

attention deficits (Johnson, 2007; Mulder, Pitchford and Marlow, 2010, 2011b; Rose 

et al., 2012). The area that is of fundamental importance to the preterm 

developmental literature is identification of measures that can highlight deficits 

within the population early in life, before they impact academic attainment and 

other outcomes.  

In the current investigation, no group differences were detected between the two 

study groups within the first year of assessments. At 30 months of age particular 

differences were observed in EF and IP related measures. The attentional measures 

from the Gap task did not suggest conclusive differences between the two groups 

although the VP responses were less consistent over time compared to the term 

born responses. Overall, the VP toddlers displayed a poorer performance in the 

DCCS task completing fewer levels and passing a fewer number of trials, completed 

fewer items on the BabyScreen application with more experimental demonstrations 

required to aid completion and overall displayed slower responses to the overall 

learning construct of the task, and although not significantly different, the VP 

toddlers displayed a greater response time following the post-switch trial of the 

MLMS task. The auditory oddball paradigm additionally indicated possible 

differential mechanisms regarding the processing of speech sounds between the 

two study groups. Overall study finding are summarised in Figure 8-1. Following 
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adjustment for global cognitive score, the group differences observed were 

maintained across the battery. 
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Figure 8-1. Diagrammatic representation summarising the divergence of term and preterm abilities at the 30 month assessment stage with the prominent findings from 

each task. 
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Investigations in infancy and early childhood have sought to identify early signs of 

difficulties in specific EF sub-domains in preterm populations due to the difficulties 

reported in middle childhood. Upon review of the literature, it is clear EF abilities 

differentiate into sub-domains later in life, specifically: working memory, inhibition 

and cognitive flexibility (Diamond, 2013). How the different domains interrelate 

early on is a matter debate (Barkley, 1997; Miyake et al., 2000; Anderson, 2002) and 

there is limited evidence to suggest a differentiated construct within the first two 

years (Garon, Bryson and Smith, 2008). It is plausible that the emergence of the 

sub-domains begins within the first two years after birth. However, it has been 

proposed that it is more likely basic EF skills emerge within the early years and only 

later differentiate into the different sub domains (Garon, Bryson and Smith, 2008).  

The results of this longitudinal investigation suggest that EF difficulties, 

independent of global cognitive abilities, being to emerge within this VP population 

at 2 years of age. This is in line with previous investigations (Rose, Feldman and 

Jankowski, 2009; Pozzetti et al., 2014), where the populations reported could be 

considered lower risk to those in the current investigation, with older gestational 

ages (Pozzetti et al., 2014) and higher birth weights (Rose, Feldman and Jankowski, 

2009). These differences observed previously were primarily within the EF sub-

domains. To the author’s knowledge, this current study is the first detailed 

investigation incorporating the performances of EF, IP and attentional measures 

through the first year with a follow up within the second year.  

Within the current battery of assessments, although viewed to assess EF as a 

unified construct, each task has previously been associated with a specific EF 

domain, as detailed in the relevant chapters. It is unlikely one domain can be 

assessed without the influence of another (Pozzetti et al., 2014). However, should 

these tasks assess specific domains, it could be postulated from the cognitive profile 

in school-aged ex-preterm children, that VP infants would present with a more 

prominent difficulty in the paradigms assessing working memory, for example the A 

not B task. This was not the case in the current investigation as the VP toddlers 

displayed a more general difficulty across all EF measures.  
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The gradual emergence of EF difficulties within VP populations could be explained 

by the neuroconstructive approach to cognitive development, whereby the 

neuronal connectivity patterns later on in development are the product of 

abnormal developmental trajectories, rather than an impaired origin (Oliver et al., 

2000). This approach would provide further clarity to the absence of performance 

differences in the first year observations. Alternatively or in combination with, the 

developmental trajectory of these abilities could reflect the interactive 

specialisation theory proposed by Johnson (2000). This theory considers that the 

refining of cortical activity during development and the strengthening of inter-

regional communications reflect the emerging behaviour profiles observed in the 

early years. The strengthening of neuronal networks could offer an explanation for 

the commonly reported association of processing speeds difficulties and EF 

performances. It is likely a combination of these two frameworks could offer 

explanations regarding the difficulties differentiating EF sub-domains within the 

early years, and the association of EF performances with information processing 

abilities. Nevertheless, a commonality across EF domains is likely in the early years 

and although the various EF domains may be emerging in the second year, the 

current investigation suggests targeting specific difficulties may not be possible in 

children so young. We do have to consider that specific EF sub-domain differences 

may not be observed within the current cohort later in childhood. More general EF 

difficulties reported at 30 months of age in this current investigation may be a true 

reflection of later cognitive performance differences. Until future follow ups are 

conducted, this cannot be confirmed. 

EF performance differences were not present in the first year of the current 

investigation. However, it is plausible the measures utilised, although established EF 

tasks in the literature, may not be sensitive enough to detect subtle performance 

difference at this early stage of development. For example, it was clear the delayed 

response task at 6 months did not surpass chance in this instance, but the 

parameters may have been too challenging for infants this young. Previous 

investigations have reported performance differences in VP populations in the first 

year. Sun et al. (2009) reported EF difficulties at 8 months of age in a VP population 
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of similar medical risk to those in the current investigation. Sun et al., (2009) utilised 

a modified A not B task that provided inhibition and working memory measures, 

although the classic AB switch was not incorporated and therefore could be 

considered simply a delayed response task. The differences observed in the 8 

month cohort could therefore reflect the development of EF abilities from 6 to 8 

months and supports reports from the literature that delayed response tasks are 

more reliable at assessing EF abilities at 8 months (Diamond, 1990). The classic AB 

paradigm incorporates the inhibition of prepotent responses during the AB switch 

trials and has be argued to be a greater EF challenge than the simple DRT format 

(Diamond, 1991). The lack of performance differences in the AB task in the current 

investigation could therefore suggest differences in EF between term and VP infants 

are subtle and are lost in the additional challenge created by the inhibition of 

prepotent response. Additional research into paradigm sensitivity could find subtle 

differences in EF are detectable within the first year.  

One important factor that must also be considered in the interpretation of these 

results is the use of age adjustment of the infants within the investigation. As 

highlighted within Chapter 1, correcting for gestational age at birth is commonly 

employed before the age of 2 years. After this age, there is disagreement within the 

literature as to whether corrected age or chronological age is more appropriate. 

Many research studies will employ corrected age so as not to disadvantage the 

individuals, however, at school these children are typically compared to their year 

group. VP infants could be considered older than the term born participants within 

the current investigation based on dates of birth, and differences in cohort 

performance would therefore be even more pronounced in this case. Using 

chronological age rather than corrected age will identify more VP children with 

problems as they are assessed against ‘older’ children’s standards. This may identify 

children in whom later EF problems appear better than conventional age correction 

(Wilson and Cradock, 2004). Later outcomes are required to assess this issue. 

In this study, EF difficulties are present independent of global cognitive difficulties. 

In preterm cohorts, it is has been reported that speed of IP and attentional abilities 
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similarly impact global cognitive performances and therefore are also important 

factors to consider when exploring the variability in Bayley-III cognitive scores. The 

Bayley-III cognitive scale is a measure of developmental progression. Although the 

measure is relied upon to identify children at high risk for later difficulties it was not 

originally designed to assess individual executive processes. It is therefore 

important to explore to what extent each measure contributes to the cognitive 

scores in order to understand how a generalised measure such as the Bayley-III 

could be adapted to formulate more efficient earlier identification methods. 

8.2 Objective 2:  To what extent do Executive Function, Information Processing 

speed and Attention measures from the first year account for the variation 

in cognitive scores in the Bayley-III at 12months and 2 years 

Identification of early measures that can highlight deficits within the preterm 

populations is of importance if we are to establish targeted interventions to help 

improve developmental outcomes. Deficits although may be subtle during the first 

two years, could be the first signs of a deviant developmental trajectory that leads 

to the difficulties in academic progress identified in studies of school-aged children 

born preterm (Johnson, Fawke, et al., 2009). Currently, it is believed that the 

Bayley-III is not providing the necessary sensitivity for this level of early 

identification (Johnson, Moore and Marlow, 2014; Spencer-Smith et al., 2015). 

Irrespective of whether EF differences were observed within the current 

investigation, it was important to explore the level of variation accounted for by the 

EF measures utilised within the battery in relation to a standardised assessment 

commonly used to identify later cognitive delays.  

At 12 months of age, the Bayley-III cognitive score suggested the VP infants were 

performing on average 7 points lower than the term born infants in the cognitive 

scale. There were no differences observed in the EF, IP nor attentional measures 

within the first year and adjustment for the Bayley-III 12 month cognitive score had 

no effect on the overall study group differences. Although no significant differences 

were observed between the study groups, the variation within the EF, IP and 
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attention scores may have accounted for a level of variation in the Bayley-III 

cognitive score at 12 months.  

Sequential regression analyses in Chapter 7 revealed that with each additional EF 

measure through the first year, progressively more variation in the Bayley-III 

cognitive score at 12 months was explained by the models. The final model 

including all measure of EF, IP and attention measures from the first year accounted 

for 62% of the variation in the Bayley-III at 12 months. Previously, the Bayley-III 

cognitive scale has been criticized for the poor predictive validity of later cognitive 

impairments in preterm populations (Lobo and Galloway, 2013). From these results 

it could concluded that a moderately high proportion of the Bayley-III is targeting EF 

abilities within the first year. Rather than the measure being observed as having 

poor predictive validity, instead it could be reflective of the significant 

developmental changes in EF abilities during the first year. If this was the case it 

could be expected that the EF, IP and attentional measures from the first year and 

the 12 month cognitive scores should account for the same amount of variation in 

the second year Bayley-III cognitive scores. However, this was not evident and gives 

rise to speculation regarding the different skills the developmental test is assessing 

at the two ages. As discussed, the Bayley-III was designed to evaluate 

developmental progression, therefore assesses much broader areas than the EF 

tasks utilised in the current investigation (Bayley, 2006).  

The variability in first year EF, IP and attentional measures were then explored in 

relation to the variability of the Bayley-III cognitive scores at 2 years. In chapter 3, 

the Bayley-III scores were explored independently at the first and second year 

assessments and followed up with a longitudinal exploration of the scores. This 

demonstrated a poor relationship between the measures at the two time points, 

with the 12 month scores only accounting for 23% of the variation at 2 years. In 

contrast, the EF, IP and attentional measures from the first year accounted for 48% 

of the variability in the second year assessment. This could be considered a high 

proportion of variability to be accounted for when the measure are taken up to two 

years prior.  
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The Bayley-III cognitive scores could therefore be interpreted to be reflective of EF, 

IP and attentional abilities from the first year; however, in the second, the measure 

appears to be targeting a different set of abilities. Before commenting on the 

implications of these findings, objective 3 also needs to be considered. The final 

question that remained in the current investigation was whether the EF, IP and 

attentional abilities at 30 months were reflective of the 2 years Bayley-III cognitive 

scores. 

8.3 Objective 3:  To what extent do Executive Function, Information Processing 

speed and Attention measures from the 30 month assessment account for 

the variation in cognitive scores in the Bayley-III at 2 years 

The Bayley-III has been shown to display a level of predictive validity at 2 years 

within the literature (Bode et al., 2014). This measure reliably identifies those at risk 

of severe impairments, but mild to moderate delays are often missed (Aylward, 

2002; Hack et al., 2005). To better understand why the measure is not identifying 

these individuals, the variation in the EF, IP and attentional scores were compared 

to the variation in Bayley-III 2 year cognitive scores. Only 38% of the variability in 

Bayley-III scores was accounted for by these measures. Given the difference 

observed within the measures obtained at 30 months of age, it could be strongly 

argued that a proportion of the infants within the current study will go on to 

develop cognitive difficulties later in life. Future follow ups will explore this 

relationship to investigate whether better predictor variables are apparent in the 

current study over the traditional measures.  

Upon review of the relationship between the Bayley-III scores and the experimental 

data, two interpretations could be made. Firstly, it could be proposed that the 

Bayley-III is targeting more immature measures of EF abilities. In the first year it is 

likely the Bayley-III cognitive score is sufficient for assessing EF performance as only 

basic EF abilities have developed. However, during the second year, the 

developmental changes within the EF construct are such that these Bayley-III 

cognitive measures may not be sensitive enough to detect subtle differences 
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beginning to emerge in the preterm population, differences that could be reflective 

of later academic performance.  

An alternative view considers the developmental trajectory of cognition as a whole. 

Cognitive assessments typically incorporate additional functions above EF, IP and 

attention, for example long-term memory, which is not assessed in the current 

investigation. As the variation in the Bayley-III is well explained by the EF, IP and 

attentional measures within the first year, this could be reflective of an 

undifferentiated state of cognition within the first year. This could again reflect the 

interactive specialisation theory whereby immature connections reflect less 

specialised behavioural profiles. However, as these connections become more 

refined and interregional communication becomes more rehearsed with 

experiences in the second year, this could be indicative of differentiation of global 

cognition in the same vein as the EF sub-domains. As such, the Bayley-III may be 

targeting broader aspects of cognition that the EF, IP and attentional measures do 

not account for, explaining the reduction in variation accounted for by these 

measures. Of these two interpretations however, if to take the view the Bayley-III 

cognitive scale is targeting additional aspects of cognition, a more accurate 

reflections of later abilities might be expected, it is therefore likely there is an 

element of overlap across these two interpretations. 

Thus I conclude that EF and IP difficulties are present within this current VP cohort 

at 2 years of age that are not fully identified by the cognitive scale of the current 

edition of the Bayley Scales of Infant and Toddler development. These findings 

provide further evidence for the need to improve identification methods used in 

standard clinical practice before interventions schemes can be established. 

Typically children born preterm present with a greater need for special educational 

support once at school (special educational needs, SEN) (Bowen et al., 2002; 

Johnson et al., 2009a; Saavalainen et al., 2008). A strong positive correlation of SEN 

with increasing gestational age at birth has been observed (Mackay et al., 2010); 

extremely preterm cohorts (<26 weeks of gestation) are up to 13 times more likely 
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to need additional support than term born infants (Johnson, Fawke, et al., 2009). 

The rise in preterm survival rates has led to a substantial increase in pressure on the 

educational systems and its resources (Marlow, 2004). Earlier detection of cognitive 

impairments would enable the development of targeted interventions with the 

objective to elevate some of these economic pressures as well as improving the 

transition from nursery to school for these children (Johnson, Wolke and Marlow, 

2008). Infants in need of support may benefit most from schemes that are started 

early, targeting the cognitive functions as they develop, although current attempts 

have not produced long term changes in outcome (Spittle et al., 2007).  

This research provides additional evidence to the rich and varied literature. A 

significant proportion of studies referenced within this thesis have very different 

approaches, from broad recruitment criteria in terms of gestational age, to neonatal 

factors, to specific changes in the methodologies of particular paradigms. The 

nature of current research requires the scientific community to explore new areas 

in order to extend prior knowledge. However, in areas wishing to determine 

patterns of performance in order to achieve interventions, such as preterm 

research, a level of consistency is required to advance scientific understanding. 

These discrepancies in the literature highlight the need for longitudinal 

observations such as this one to remove individual variability to purely focus on age 

dependent changes (Garon, Bryson and Smith, 2008). The unique longitudinal and 

broad focus of tests utilised here are important if evolving deficits in EF are to be 

understood in this group. 

8.4 Clinical implications  

The EF tasks utilised in the current investigation show performance differences 

between the term and VP groups that are not explained by the Bayley-III cognitive 

scores. These results suggest that the Bayley-III cognitive scale at 2 years may not 

be sensitive enough to detect the specific delays typically observed in the VP 

population and therefore may be missing children that later go on to present with 

mild cognitive delays. Although the current population need to be explored at a 
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later time point to confirm these suspicions, these results may be of interest to 

practicing clinicians that assess infants in clinics following preterm birth.  

Similarly, parents of children born very preterm should be aware of the sensitivity 

of the measures used within current clinical practice. Although it must be 

emphasized that the Bayley-III has been shown to reliably detect those likely to 

present with severe cognitive impairments (Aylward, 2002; Hack et al., 2005), the 

current findings suggest this measure may not have the necessary sensitivity for 

early identification of milder impairments and is in agreement with previous 

research (Johnson, Moore and Marlow, 2014; Spencer-Smith et al., 2015). Further 

follow-ups are required to draw definitive conclusions on the accuracy of these 

current findings. 

8.5 Limitations 

In terms of cohort selection bias, the study groups were unbalanced in relation to 

the child’s sex and the VP group had an excess of males.  Bias could be introduced 

as males are known to have poorer cognitive and motor outcomes when assessed 

at later ages (Peacock et al., 2012).  This was addressed by controlling for sex 

differences in all secondary analyses.  

Similar levels of education were found between groups, but 87% of mothers had a 

university degree suggesting selection bias. This may be reflected in the higher 

Bayley-III cognitive scores for VP children than expected from other published 

studies (Christian, Morrison and Bryant, 1998; Spencer-Smith et al., 2015). 

Additionally, both groups displayed a variety of ethnic backgrounds. It could be 

argued that a marginally greater level of diversity was present within the preterm 

cohort. This could reflect a recruitment bias within the term born cohort, however 

all ethnic groups were given equal opportunity to take part in study during 

antenatal class recruitment sessions. By utilising scores from the Index of Multiple 

Deprivation (a nationally available score related to postcode (NPEU, 2013)), a range 

of values were shown but again did not vary by quintile. 
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Recruitment from the tertiary level neonatal unit at UCH led to a cohort mean 

gestational age of approximately 26 weeks, with a ratio of 17:33 very preterm (<32 

weeks of gestation) to extremely preterm infants (EP; <27 weeks of gestation) 

respectively. Poorer prognosis is often reported in infants born before 27 weeks in 

terms of academic success. It was not possible to stratify the early performance 

outcomes assessed in this current investigation by gestational weeks due to the 

ratio of VP to EP infants. Again, by controlling for cognitive z-scores on the Bayley-III 

in the secondary analyses, any bias created by this excess of extremely preterm 

children was addressed. 

Attrition occurred at each level of the study. This was typically due to participating 

families moving away from the London area and therefore not able to attend within 

the month timeframe set in the study protocol. Travel to the hospital was necessary 

for the assessments as some of the study equipment was not transportable. It was 

therefore possible some families declined the study follow-up invitations due to 

transportation difficulties into the hospital for the visit. Reimbursement for travel 

and taxis were offered to minimise this potential deterrent in participation. 

Within each phase of the study, each task detailed within this thesis has a 

marginally different sub-cohort for each task analysed. This was due to attrition 

within the assessments; although the family attended the follow-up, the child may 

not have completed all aspects of the assessment. This could reflect a potential bias 

within the results, as children that are underperforming may have been more likely 

to not to complete all tasks. However, when exploring the attrition rates at each 

time point for each task reported in this thesis, the greatest difference in proportion 

of term and VP children not to complete the task was within the Bayley-III scores at 

12 months where 30% of the VP infants’ scores are missing. The VP scores were 

collected by the hospital and therefore outside of the control of this study. When 

exploring the data collected within the remit of the study, there were no significant 

differences between the proportion of term born infants and VP infants in each task 

reported. Although there may have been bias introduced by those that did not 

complete each task, and this could be explored in future works, there was not a 
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significant difference between the study groups and delays were still being 

observed at 30 months independent of any task attrition.  

The distribution of cognitive scores on the Bayley-III within the current VP group 

was unusual as previously preterm cohorts have been reported to score lower than 

the standardised mean, which was not evident in the current cohort (Spencer-Smith 

et al., 2015). The current VP cohort did not include any children with severe 

disabilities as defined by cognitive scores <-2SD below the mean, suggesting the 

scores are reflective of previous VP populations once those with severe disabilities 

are excluded. It should also be noted that scores increased by .8SD on the Bayley-II 

over the 11 years prior to the updated Bayley-III release (Moore, Johnson, et al., 

2012). These higher performances could therefore be indicative of a continued 

gradual increase in performance over time. 

Within the term born cohort, there was a level of selection bias in the scores 

acquired for the Bayley-III scales at both the 12 month and 30 month follow up. This 

was due to the volume of data acquired during the assessment timeframe. The 

focus was on the Bayley-III cognitive scale as this was fundamental to the research 

question framing this thesis. If the infants and/or toddlers were capable of 

completing the additional language and motor scales of the Bayley then these were 

completed. In many circumstances this was too much for the participants and had 

fatigued by this stage of the follow-up. It is therefore it is likely that the higher 

performing infants completed the language and motor scales and explains the 

unusually high term scores on page 87. It was for this reason that the language and 

motor scores were not exclusively taken into account at any point within the thesis. 

The moderate cohort sample size reported in this thesis was reflective of the 

challenges faced by longitudinal research studies. The number of children to 

complete the 4 assessment phases was not as high as desired, but achieving a 

detailed longitudinal investigation with multiple follow-ups was going to face 

challenges with group numbers. Although a multivariate cluster analysis was not 

possible due to missing data across the multiple paradigms performed, this was a 
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consequence of the highly detail assessment batteries for each assessment. A 

primary objective of the study was to obtain a detailed understanding of the 

emergence of EF, IP and attentional abilities across the first 2 years. In order to 

achieve this, detailed batteries were necessary. Performance bias was addressed by 

administering each assessment day in the same order for each subject, however, 

occasions arose where data collection was not possible, primarily due to ill health 

and temperament of the infant which could not be accounted for. Overall, the 

attrition rate across the 4 time points was low and the sample size at the final time 

point was reflective of the time constraints of a PhD.  

The potential bias from un-blinded assessments was addressed by scoring offline 

where possible and using blinded secondary scorers.  Bayley training was accredited 

by the person leading the team doing the clinical testing. 

8.6 Future work 

From the current investigation both the ERP auditory oddball paradigm and the 

BabyScreen Application would benefit from additional follow-up work. The 

opposing VP and term brain responses to the monaural speech sound within the 

ERP paradigm are intriguing. To further explore these differences, inclusion of 

simple tones to investigate whether the neural response changes to tones over the 

speech sounds would be of particular interest. Similarly, the ceiling effects 

produced by the early items in the BabyScreen application indicate the tool needs 

refining for children of this age. The results reported here make it an interesting 

pilot investigation. The child driven aspect of the task could be beneficial to future 

investigations, as it provides more accurate measures of processing speed in 

association to EF abilities and removes administrative bias. The removal of language 

dependent instructions also holds considerable promise for the utility of this tool 

with other clinical populations where communication is a particular challenge.  

The current investigation has provided the initial steps in exploring EF, IP and 

attention in a VP population suggesting differences are first detectable after 12 

months of age. Further research is required before these results can be utilised in 
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clinical practice and translated into interventions. The logical next step to the 

current study would be to investigate the relationships observed in a larger sample 

of VP children. This would allow for a clear range of EF performances to be 

identified in response to the tasks administered in the second year within the VP 

group.  

Although differences were not observed within first year of assessments, EF, IP and 

attentional differences could still be apparent from birth using more sensitive tests. 

The question remains as to whether detecting these differences would be possible. 

Future work could refine these measures. The challenge to overcome behavioural 

capabilities to reach the level of complexity required to accurately identify the 

subtle performance differences however may prove challenging. 

The next assessment of this longitudinal cohort has been initiated to follow up on 

the findings in the current investigation. I have discussed the problems in accepting 

early assessments as outcomes for the tests performed in infancy.  It is vital to 

follow this group into school age and characterise the middle childhood outcome 

further. Only then can the predictive validity of these early tests be accurately 

assessed. Cognitive performance on global measures is fairly constant from early 

school IQ assessments through to 19 years (Linsell et al., In Press) or young adult life 

(Breeman et al., 2015) so associations between early testing and middle childhood 

findings will be important indicators of the stability of cognitive processes. 

To date, a number of intervention studies have been conducted in an attempt to 

improve cognitive outcomes in preterm populations post-discharge from hospital, 

but evidence is limited, and only short-term benefits have been observed (for 

reviews see Spittle et al., 2007; Guralnick, 2012). The implication from the current 

findings could suggest formulating targeted interventions is not appropriate in early 

childhood for VP populations. If EF is to be accepted as an undifferentiated 

construct in the early years, targeting interventions to specific domains difficulties 

identified in later life may not be appropriate or feasible in early childhood 

(Aarnoudse-Moens, Weisglas-Kuperus, et al., 2009; Mulder, Pitchford and Marlow, 
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2010; Aarnoudse-Moens et al., 2011). A more generalised approach aimed at 

collectively improving memory, flexible thinking, attentional abilities, inhibitory 

behaviours and processing speeds, may be more advantageous in the first two years 

after birth in those that indicate signs of difficulty. The schemes may then need to 

adapt with age, in line with the emergence of the EF sub-domains. If the changes in 

impairments within VP populations can be mapped though childhood, ideally with 

the use of longitudinal observations such as the one reported here, a clearer picture 

of the developmental trajectory could be obtained. EF sub-domains are 

distinguishable within middle childhood (Brydges et al., 2014) with specific 

difficulties in IP and working memory reported in VP populations (Mulder, Pitchford 

and Marlow, 2011a, 2011b). Whether this differentiation occurs within the third 

year after birth is still to be seen (Howard, Okely and Ellis, 2015). By establishing this 

trajectory, more targeted interventions can be developed and applied as soon as 

they are applicable to the child’s stage of development. This would likely provide 

the greatest chances of success in improving the developmental outcomes of VP 

children. The current research suggests differences in developmental abilities are 

apparent in the early years and therefore interventions should be put in place to aid 

development and reduce the gap that appears between the VP populations and 

term born peers. The development and assessment of interventions need to be 

tracked through to middle childhood, as long term effects need to be observed 

before clinical programmes can be established. The future focus of VP research 

should primarily look to explore the differentiation of EF after the 2 year time point 

reported here, before intervention schemes can be developed accordingly.  

When considering the future of EF assessment, ease of administration should also 

be of high importance. As highlighted in the introductory chapter, the current 

clinical recommendations are not consistently achieved due to various constraints 

within the hospital trusts. A more efficient and easily attainable assessment would 

ease of detection of developmental delay within preterm and other clinical 

populations requiring prolonged follow-up. An example of this could be the 

development of the BabyScreen application for clinical use. An application based 

programme would reduce administrator error and could be completed within a 
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shorter timeframe compared to current clinical follow-up. This therefore could be a 

valuable direction for future EF research. 

More detailed observations exploring the underlining causes of the impairments 

reported in this population are additionally required. An area that has shown 

promise but requires further clarity is the use of neuroimaging techniques in the 

identification of later developmental outcomes. White matter tract abnormalities 

have been reported within ex-preterm populations in adulthood (Nosarti et al., 

2014) and in infancy (Counsell et al., 2008), with relationships between 

microstructural abnormalities and cognitive (Counsell et al., 2008; Thompson et al., 

2012) and language performances observed (Northam et al., 2012). However, 

regions of interest are still being explored and biomarkers to later cognitive 

outcomes are yet to be identified. Within the wider PDP study neonatal MRI scans 

were collected. These are currently being utilised to explore structure function 

relationships within the current cohort. 

In addition, medical factors during the perinatal period are likely to impact later 

cognitive development, however further epidemiological work is required in order 

to classify the risks. Although there is limited evidence to suggest the perinatal 

complications consistently influence outcomes, it is likely this is due to the poor 

categorisation of risk severity within the neonatal period across the literature. A 

recent investigation has observed significant correlations between gestational age, 

maternal steroids and number of surgeries in relation to later EF performance 

(Duvall et al., 2015). By expanding on studies such as these and including 

neuroimaging measures, whilst continuing to explore the developmental trajectory 

of cognitive abilities in ex-preterm children, a more detail picture of how and why 

these problems emerge would be clarified.   

8.7 Concluding remarks 

Advances in neonatal care have continued to progress over the past decades and 

babies are surviving from much lower gestations than ever before. In comparison, 

the early developmental profile of these children following preterm birth is yet to 
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be fully understood. The current investigation has provided a detailed longitudinal 

observation of the developmental trajectories of EF, IP and attentional measures in 

a cohort of very preterm children through the first two years after birth. Overall, VP 

scores in the first year assessments tend to reflect the scores of term infants. Once 

aged 2 years, VP performance to assessments show similar patterns to those 

expected at early school age but further follow up is required to confirm whether 

the low scores at 2 are identifiable of later challenges. The poorer performances 

observed at 2 were not accounted for by global cognitive score in the Bayley-III. 

Moreover, performances in the EF, IP and attentional measures are poor predictors 

of the Bayley-III at 2 years. Alternative general EF measures including the 

BabyScreen application may prove to be the best way of identifying individuals at 

risk in future.  

Experimental measures appear to be able to target specific difficulties in cognitive 

performance in the early years. Currently no clinical assessments are able to 

accurately identify proportional levels of cognitive impairment likely to be observed 

later in life. Currently, developmental assessments such as the Bayley-III cognitive 

tests assess much broader areas of development and therefore do not purely target 

EF abilities. Clinically these tests are relied upon to identify those who are not 

following typical developmental trajectories. The principles of these developmental 

measures are therefore not designed to detect the subtle variability in EF 

performances and it is not surprising the identification of later cognitive 

impairments is poor. The question that remains is whether it is in fact possible to 

accurately identify cognitive impairments within the first year of life and whether 

general measures can be adapted to predict these difficulties. Multiple factors 

currently stand in the way of achieving this objective; predominantly the evolution 

of EF abilities. From observations in the current study, in addition to evidence from 

the developmental literature, EF abilities appear to develop dramatically over the 

first few years of life. This makes detecting impairments in this domain challenging, 

if not impossible. Although the aim of the developmental literature is to identify 

difficulties within the first year, this may not be feasible given the developmental 

trajectory of the construct. The current investigation provided important 
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information regarding the emergence of these cognitive abilities across the first two 

years of life in children born preterm. It is of fundamental importance to follow-up 

on these findings to clarify the stability of these performances in relations to the 

bigger developmental picture. 
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SYNOPSIS 

 

Title 
The UCH preterm Development Project: Growing up after extremely 
preterm birth 

Acronym UCH PDP 

Chief Investigator Neil Marlow 

Objectives 

In very preterm children, compared to children born at full term: 

1. How do cortical folding, thickness and connectivity differ at full term 
equivalent age? 

2. Do MRI based indices of brain structure and growth in preterm 
infants relate to measures of neurological maturity and 
neurophysiologic functions measured in infancy? 

3. How do measures of EEG maturation made in the preterm group 
relate to neuropsychological and neurophysiological function in 
infancy? 

4. Do measures of MRI structures and neurophysiologic function relate 
to behavioural measures of executive function over the first year and 
developmental attainment at 2 years? 

5. Do measures of socialisation/communication reflect early indicators 
of autistic symptoms in very preterm infants? 

6. Do measures of neuropsychological function made in infancy relate 
similarly to MRI structural and spectroscopic findings after neonatal 
encephalopathy in term babies? (Appendix 2) 

Study Configuration Prospective cohort study 

Setting Neonatal unit and outpatient clinics  

Sample size estimate 
Prospective cohort study of 50 newborn babies born <32 weeks of 
gestation, 50 babies following neonatal encephalopathy, and a similar 
number of term born controls 

Number of participants 
50 index and up to 50 control babies 
50 babies following neonatal encephalopathy  

Eligibility criteria 

All babies born in UCH <32 weeks of gestation without life threatening 
congenital malformations and considered likely to survive 
Babies delivered at term who received care in UCH with neonatal 
encephalopathy 

Description of 
interventions 

Babies will receive 2 MRI scans in the first weeks after birth and at term 
equivalent age; serial EEG recordings will be made over the preterm 
period and a range of neurobehavioural tests undertaken over the first 
year after discharge home 

Duration of study 7 years from October 2010  

Outcome measures 
 Measures of brain growth and metabolite ratios on MRSpectroscopy 

on MRI 
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 EEG maturity 

 Attention, processing speed, working memory and overall 
development as infants 

Statistical methods 

Frequentist statistics: Data will be compared between subgroups and 
over time using appropriate categorical or continuous statistical 
methods. Linear regression will be used to adjust associations for 
confounding variables. Two statistical software packages will be used 
SPSS and Stata in their most up to date version at the completion of the 
study. 

POSTNATAL BRAIN GROWTH AND EARLY INFANCY OUTCOMES IN VERY PRETERM CHILDREN  

BACKGROUND 

Birth before 32 weeks of gestation (very preterm birth) is associated with a range of cognitive 
and learning problems that become more frequent with lower gestations at birth.(1) Despite 
attempts to ameliorate these impairments using a range of general developmental interventions 
either no or only small intercurrent effects have been demonstrated with little evidence of lasting 
benefit.(2-4) As a result of these impairments very preterm children frequently have special 
educational needs(5) with consequent high societal costs.(6-8) More focussed and targeted 
interventions are thus required to reduce this individual and societal burden. Recent research has 
shown that core impairments involve executive function deficits that are age and gestation 
dependent in their prevalence.(9) From current work at Nottingham (PI: NM), we have shown that 
verbal processing speed and working memory are independent predictors of cognitive function, 
behaviour, inattention and educational attainment in very preterm children, explaining much of the 
effect of prematurity on functional outcomes at 10 years of age (Mulder H PhD Thesis 2009 
(submitted)).  Working with educationalists from the University of Durham, NM and SJ are 
developing studies of preschool intervention strategies targeted for very preterm children to 
determine whether specific changes in the manner of presenting information may ameliorate later 
educational and behavioural problems in this population.  However there is concern that these 
interventions may be too late. It is clear that we need better markers of function earlier in life in 
order to identify individuals at greatest risk and commence targeted interventions.  We propose to 
use a dual approach to identifying such markers in infancy combining MR measures of brain 
development and neuro-behavioural measures of cognitive function in order to develop biomarkers 
for later impairment that can act as selection criteria for interventional studies and as short-term 
outcome measures for use in neonatal interventional studies. 

 MR measures: Brain growth over the period from very preterm birth to full term appears 
suboptimal compared to babies who deliver at full term.  Studies have shown that both overall head 
growth (10) and brain development in terms of size and complexity(11, 12) are impaired in these 
children. Global scaling factors appear related to 2 year global developmental outcomes(12) and 
brain velocity or focussed measures of grey matter thickness and folding appear related to 
contemporaneous neurobehavioural measures.(13, 14) Associations between perinatal illness and 
cortical growth(15) and between global developmental outcomes and white matter 
microstructure(16) or apparent diffusion coefficients(17) have been described.  Because on an 
individual basis global developmental scores are poorly predictive of later outcomes, identification of 
specific and trackable executive functions would provide a more effective manner of identifying 
children who are likely to require intervention, thereby increasing the power of future intervention 
studies. 

Changes in the periventricular white matter also may be seen on MRI – termed diffuse 
excessive high intensity signal intensity (DEHSI)(18, 19) – which are thought to relate to underlying 
developmental changes in the brain, possibly secondary to impairment in oligodendroglial lineage 
development.(20)  Recently we have used T2 relaxometry to quantify DEHSI in babies <32 weeks of 
gestation.(21) Among 62 preterm children qualitative DEHSI was associated with higher (i.e. more 
abnormal) relaxometry values compared to preterms without DEHSI or term control infants; the 
qT2R values were increased in the posterior white matter (where lesions are associated with worse 
sensorimotor outcomes) than in frontal or central white matter.  Furthermore, apparent diffusion 
coefficient (ADC) values were also higher in preterm compared to control infants indicating less 
organized white matter structures (see Table) which been associated with global DQ at 2 years.(17) 
Two-year follow up of this cohort is under way. 
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Table: Mean (SD) MRI values in White Matter (WM) in three study groups 

ROI 
Control 

infants (n=7) 
c 

Preterm 
infants 

without DEHSI 

(n=12) 
a
 

Preterm 
infants with 

DEHSI 

(n=41) 
b
 

‘p’ 
(a v b)

 ‘p’ 
(a v c)

 ‘p’ 
(b v c)

 

qT2 values      

Frontal WM 222 (25) 237 (34) 260 (28) 0.03 0.24 <0.001 

Central WM 212 (26) 214 (26) 248 (38) 0.02 0.84 0.01 

Posterior WM 221 (22) 246 (28) 294 (42) <0.001 0.05 <0.001 

ADC values      

Frontal WM 1.46 (0.59) 1.58 (0.14) 1.54 (0.14) 0.40 0.84 <0.001 

Central WM 1.45 (0.13) 1.55 (0.17) 1.45 (0.18) 0.12 0.98 0.085 

Posterior WM 1.50 (0.09) 1.72 (0.16) 1.54 (0.16) 0.005 0.47 <0.001 

 

 Although the specific location of abnormality is of interest, it is possible that lack of integrity 
anywhere in the white matter tracts will result in later deficits because of the interruption in 
development of effective neural connections. At the Centre for Medical Image Computing  (CMIC) at 
UCL, we have developed image processing tools to quantify changes in brain structure and 
development using strategies developed to study conditions of old age where brain tissue is lost.(22-
25) Through this application we intend to apply these to the development of the brain in infancy.  

 Electroencephalography: The EEG of the preterm baby is unique and patterns of electrical 
activity are seen that mirror the rapid maturational changes taking place in the brain (Boylan & 
Murray, in Rennie Hagmann and Robertson). The preterm EEG shows a characteristic discontinuous 
pattern alternating between periods of quiescence and mixed frequency bursting activity. The 
duration of quiescent periods termed ‘interburst intervals’ (IBI) are related to the degree of 
prematurity, with longer IBI seen in babies that are extremely premature. These periods of 
quiescence decrease in duration as the baby matures and prolonged IBI for gestational age have 
been associated with abnormal development at 3 years (Holmes et al J Clin Neurophysiol 1993).    In 
addition, patterns such as delta brush activity, temporal saw-tooth activity and frontal sharp 
transients appear at specific gestational ages and then wane (Vecchierini-Blineau et al Clin 
Neurophysiol 2007, Brain & Development 2003). State cycling is identifiable in the preterm EEG from 
around 27 weeks of gestation. and Positive temporal sharp waves have also been found to persist to 
term in ex-preterm babies (Scher et al EEG Clin Neurophysiol 1994) (Biagioni et al 1999). 
Disorganised EEG patterns have been described in babies who developed white matter injury of 
prematurity, as have changes in spectral edge frequency (Hayakawa et al Neuropediatrics 1997; 
Inder  et al Pediatrics 2003) (Kidokoro Pediatrics 2009) (Vermeulen et al Dev Med 2003).  

By recording serial multichannel video-EEGs between birth and term, it will be possible to 
examine the progression of interburst interval duration, emergence and persistence (or not) of 
gestation-specific patterns such as delta brushes, frontal and temporal sharp transients, and the 
presence of any injury potentials such as positive Rolandic sharp waves . These data will provide 
objective measures of the speed of maturation of an individual baby’s functional activity and if they  
prove to be an accurate predictor of later neuropsychological and neurophysiological outcome, they 
will enable serial EEG monitoring to be used as a basis for future intervention studies.  

Behavioural and Neurophysiologic measures: Functional and behavioural correlates of 
MRI-based indices of abnormality using conventional or novel techniques are required to identify 
those infants who are at risk of developing specific deficits in the various critical domains of function 
prior to school entry. We have experience of behavioural (NM, SJ), neurophysiologic (MdH, NM) and 
psychological testing during infancy (MdH) both in normal babies and in clinical groups including 
preterms (26-29).  Using a visual attention paradigm we have demonstrated differences between 
very preterm and term infants in habituation time and in the maturation of habituation between full 
term and 3 months post term (Figure; NM unpublished observations). Such measures can be reliably 
measured at 3-4 months of age at which time shorter fixation durations and higher shift rates are 
purported to reflect greater processing speed and more efficient disengagement or shifting of 
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attention and are thus linked 
to the development of neural 
attentional systems (30-32) 
(33, 34)). Such measures have 
been shown to underpin the 
reported relationship 
between infant visual 
recognition memory (VRM) 
and later IQ (35-38) and are 
thus purported to be stronger 
predictors of later intellectual 
outcomes than traditional 
developmental tests (39-41)). 

Later in infancy visual 
event related potentials (ERP) 
may be used to evaluate 
processing of information. 
One ERP component reliably 

elicited in visual cognition tasks is believed to reflect attention allocation and is generated in 
prefrontal and anterior cingulate cortex (reviewed in (26)). The same task can also provide a 
measure of the functional integrity of other neurocognitive systems: the N290 component is elicited 
in response to faces and generated in occipito-temporal cortex (42) and the positive slow wave is 
generated in response to familiar stimuli and believed to reflect memory functions of the temporal 
lobe (43). In addition, latencies of ERP components provide robust measures of speed of processing. 

Impaired executive functions are emergent and already evident in infancy in VP children. 
Piagetian A-not-B tasks and other delayed-response type tasks can be used in infancy to assess early 
executive functions such as working memory and inhibitory control.(44) Studies using such tasks 
have shown that VP children have impaired performance compared with their term counterparts in 
the first year of life (45) and during the preschool years, particularly for indices of working 
memory.(44) Furthermore differences in attention and inhibition may persist through to young 
adulthood.(46) Studies with non-human primates indicate that successful performance on A-not-B 
and delayed-response tasks involves dorsolateral prefrontal cortex (47) and in normal human infants 
has been related to frontal cortex EEG signals (48, 49). 

Further evidence suggests that very preterm infants show impaired memory on deferred 
imitation tasks compared to their full-term counterparts, with the degree of impairment related to 
gestational age at birth.(50) Such tasks rely on the integrity of the medial temporal lobes.(51, 52) 
Comparison of performance at immediate and delayed recall will give an indication of whether 
memory impairments in VP infants are isolated to short-term working memory or also encompass 
long-term memory.  

Thus a range of approaches may be taken to determine executive functioning during 
infancy.  The correlation of these emerging executive deficits with MRI-derived variables will help us 
to identify brain-behaviour relationships so that we can determine the relative value of robust MRI, 
neurophysiologic and behavioural measures as potential biomarkers.  Later follow-up of the assessed 
population using our routine service arrangements will facilitate the confirmation of association with 
developmental outcomes using the Bayley Scales (3

rd
 Edition) and, in later funding applications, will 

facilitate the identification of longitudinal stability in executive functioning in this population and 
provide a method of refining interventions in infancy.  We believe that these investigations will lead 
to studies of targeted interventions within 3-5 years. 

 
Broad hypotheses to be tested: 

In very preterm children, compared to children born at full term: 

1. How do cortical folding, thickness and connectivity differ at full term equivalent age? 

2. Do MRI based indices of brain structure and growth in preterm infants relate to measures of 
neurological maturity and neurophysiologic functions measured in infancy? 

3. How do measures of EEG maturation made in the preterm group relate to neuropsychological 
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and neurophysiological function in infancy? 

4. Do measures of MRI structures and neurophysiologic function relate to behavioural measures of 
executive function over the first year and developmental attainment at 2 years? 

5. Do measures of socialisation/communication reflect early indicators of autistic symptoms in very 
preterm infants? 

Children recruited to this study will then be entered into our longitudinal outcome evaluation 
programme alongside children recruited into other perinatal studies, in order to determine the 
relationship of these infancy measures via research-based studies with later cognitive and executive 
functional measures. 

 

PLAN OF INVESTIGATION: 

Population: Babies born at <32 completed weeks of gestation with comparison children born 
at full term at University College Hospital London.  In the first instance, preterm parents will be 
approached at the end of the first week after birth and permission sought to include them in the 
study.  Exclusion criteria will be low likelihood of survival and severe congenital abnormality. Term 
comparison children will be recruited from the postnatal wards.  Inclusion criteria for term group: 
gestation 37-42 weeks, birthweight between 10

th
 and 90

th
 percentile for gestation, no perinatal 

complications and Apgar score at 5min >7.  Additional methods of recruitment will include a flyer 
briefly detailing the study and project providing contact details. In the case of preterm infants, the 
flyer will be included in an information pack sent to parents when organising routine medical follow-
ups. For full-term infants, the flyer will be distributed via local parent and infant groups and their 
venues. Participants may also be recruited via email notices. Children will be recruited from parents 
resident within the North Central London Neonatal Network on the understanding that follow up 
evaluations and a MRI scan at full term are carried out at UCH.  This is our current practice for 
Network-based follow up. No alteration to clinical care will be necessary as part of the project other 
than the two imaging procedures and EEG recordings. 

 

MRI Scanning: Two MRI scans will be carried out using the 1.5T Siemens MR scanner at UCH.  
The first will be at a point where the child is physiologically stable and the equivalent of 30 weeks of 
gestation or two weeks after birth which ever is the later.  Infants will be transported to the MRI 
(200y from the Neonatal Unit) using a MR-compatible incubator, with integral monitoring, 
ventilation/CPAP facility and head coil in situ (Lammers GmbH).  Infants will be stabilised in the 
Neonatal Unit before transport and not disturbed during the scan process away from the unit, unless 
necessary.  Scans are supervised by one of two “imaging” fellows with specific responsibility (trainee 
neonatologists) and a senior neonatal nurse (usually an ANNP). The scanning protocol will comprise:   

 High-resolution T1w anatomical scan (MP-RAGE) - T1 values of T1(GM, 3T)=±1900ms, and 
T2(WM, 3T)=±2100ms for grey and white matter, respectively will be initially considered in 
order to optimize contrast. 

 High resolution quantitative T1 and T2 measurements using the multiple saturation technique 
and a high-resolution 3D-CPMG-based methods respectively, the latter also providing T2 
weighted anatomical scans.(53) 

 High-resolution 3D-DTI will be used to assess the early maturation process in white matter fibres 
(54) with a second DTI scan using a high angular resolution diffusion to allow neurite orientation 
dispersion and density imaging (NODDI) (56) 

 3D-MTR scan will be acquired using a standard 3D-FLASH sequence in combination with an off-
resonance pre-pulse to estimate the degree of myelination and correlate these measures with 
cortical development. 

 Single voxel point-resolved spectroscopy (PRESS) to derive proton and phosphorus spectroscopy 

 The combination of multiple scans included in a modern clustering algorithms will allow clear 
distinction of the cortical layers in these children, as conventional segmentation algorithms might fail 
since they are not optimized for the type of image contrast apparent in this patient population.(55) 
The complete MRI protocol should not take more than 60min using modern parallel imaging 
techniques. 
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   The analyses that we propose comprise three major components: cortical thickness estimation 
methods; connectivity matrix estimation; and correlation of the cortical thickness and the 
connectivity over time. In our previous work, we have demonstrated that we could estimate 
accurately the cortical thickness of controls and aging population. CMIC is uniquely placed to 
develop these methods further using its unique set of analysis tools in non-rigid registration,(24) 
diffusion image analysis,(25) tissue classification(22)] and cortical thickness estimation.(23)  Some of 
these tools have been provided to the community through open-source projects and have been 
widely used, such as CAMINO (www.cs.ucl.ac.uk/research/medic/camino) and our newly released 
NiftyReg (http://sourceforge.net/projects/niftyreg).  

 

            EEG studies: A 8-channel EEG and video will be collected at weekly intervals over the first 
three weeks starting as soon as is feasible within the first week with one recording on a day adjacent 
to the first MRI scan.  The neonatal EEG set up is complete in about 30 minutes and space is left for 
cerebral ultrasound scanning through the anterior fontanelle.  The adapted hat has been in use for 
some time now and acts as a robust mount for our endotracheal tube holder system or as a CPAP 
mount system. Each EEG will be recorded for two hours to ensure state cycling in the EEG is captured 
but tracing will where possible carry on between nursing “cares” to minimise the disruption to the 
baby. A final EEG will be recorded for 2 hours on the same day as the Term MRI scan is done.  
Control children will have a single 2h EEG recorded. 

The EEG trace is digitised and is automatically uploaded onto a central server with 
anonymised identifiers for confidentiality.  Current work (REC Application: ) is developing automatic 
seizure detection software and video-EEG is routinely in use on the neonatal unit.  Working in 
collaboration with colleagues from the University College Cork (Dr Geraldine Boylan) and a second 
group at UCL/University of Sussex (Drs Simon Farmer and Luc Berthouse, respectively) we wish to 
develop new markers of EEG maturation that can be used alongside other experimental measures to 
build up a unique picture of preterm brain development.  These colleagues will only work from 
anonymised EEG records with simple clinical data – sex of the baby, gestation at birth, and postnatal 
age for the purpose of software development.  In turn their summary data will be merged with an 
anonymised study database for later formal analysis alongside other study measures. 

We will commence this additional investigation after we have established routine recruitment 
into the first part of the study at a later date. 

 

Feedback to parents:  All MRI scans and EEG traces are reported by a clinical 
radiologist/neurophysiologist respectively.  Feedback of relevant clinical information to parents 
occurs as part of the routine clinical care and is led by the attending neonatologist; this is recorded in 
the clinical case-record.  Feedback of the term scan findings, where the baby will usually be an 
outpatient, is done by the Imaging fellow or consultant at the next available outpatient appointment 
as appropriate. 

 

Clinical Assessment:  Routine cerebral ultrasound scanning will be carried out as per protocol 
and perinatal/neonatal data abstracted from the clinical record.  The imaging fellow will be trained 
and responsible for carrying out a NAPI neuro-behavioural assessment at 36w postmenstrual age 
(pma) and a formal neurological assessment (Amiel-Tison) at 36w and 40w pma.  The postdoctoral 
psychologist (and SJ) will assess function over the first year based in our new baby lab (dedicated 
space within the Clinical Research Facility (ground floor EGA wing, UCH)).  Because it is unclear as to 
which tests are likely to be the most predictive in this group we will take a range of age-appropriate 
approaches to function and behaviour integrated through the first year. The full test battery for 
preterm children is shown in the table below. At 3m general movements (routine) and Visual 
attention tests (experimental) are video recorded and checked/scored off line. We will also video the 
delayed response task at 6m and all 3 tests at 12 months.  All video records will be destroyed 3 years 
after the conclusion of the study following write up and publication unless the parent gives explicit 
permission for their use for further research or teaching. 



 
 

363 
 

Outcome Test Age 
(Corrected) 

 Examiner Time Location 

Neuro-behaviour NAPI 36w pma  Clinician 40min NICU 

Neurological integrity Amiel-Tison 36w/40w 
pma 

+ Clinician 15min NICU 

 General 
Movements 

3m  Clinician 15min Clinic* 

 Flash VEP 40w pma & 
6m 

+ Psychologist 15min Baby lab 

Visual function Clinical test of 
vision 

40w pma + Psychologist 5min Baby lab 

Neuropsychology  Visual 
attention test 

3m + Psychologist 20min Baby Lab 

(Memory, attention, 
inhibition, planning 
and/or processing 
speed) 

ERP 6m + Psychologist 15 min Baby Lab 

Delayed-
response task 

6m + Psychologist 10 min Baby Lab 

A-not-B task 12m + Psychologist 5min Baby Lab 

Means-End 
task 

12m + Psychologist 5min Baby Lab 

 Deferred 
Imitation task 

12m + Psychologist 10min Baby Lab 

Developmental status Bayley III  6 & 12m + Clinician 25/45m Clinic* or 
Home-
visit 

Language/motor skills Questionnaire 12m + Parent 20min Baby Lab 

Perinatal data & SES Questionnaire Discharge + Parent 10min NICU 

 Clinical Record 
Form 

Discharge  Clinician 20min NICU 

*Routine follow up information; + assessments for term children;  Test itself takes only ~5 min but 
time quoted includes that for settling the baby and waiting for a suitable state to perform the test. 

In addition measures of socialisation/communication will be made as detailed in Appendix 1 
as part of a nested study to evaluate the appearance of abnormal social interaction reported 
frequently in this population at 2 years. 

Parents will be approached for consent during the first week after birth.  A second 
recruitment point into the clinical psychological evaluation will also be possible to boost numbers for 
the psychological and socialisation studies.  Parents will be approached in outpatients to collect 
initial pilot data at 3m age, and also at term equivalent age, following a single MRI scan, which is 
routine practice for clinical prognostic purposes. For this a slightly modified PIL and consent for will 
be used.    

Feasibility/facilities:  We have reserved time for research and clinical MRI scans and are 
purchasing the MR-compatible incubator currently.  Space is available in the CLRN-sponsored EGA 
wing Clinical Research Facility and we have appropriate neurophysiology equipment installed there.  
We have experience in making reliable and repeatable neurophysiologic measures (MdH) and 
behavioural assessments (SJ, NM) in young infants and have performed longitudinal cohort studies 
with good family retention. Indeed the UCH very preterm longitudinal cohort from the 1980s is still 
under investigation by the Institute of Psychiatry, with excellent retention over many years. We 
perform clinical and research based MRI regularly, having two clinical fellows and nurse practitioners 
dedicated to staffing our MRI sessions.  

Outputs: 

These data will be presented at national and international paediatric, radiological and 
psychological research meetings and written up for publication in peer-reviewed journals.  
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Study written and electronic records 

 Each participant will be assigned a study identity code number, for use on all paper records, 
other study documents and the electronic database. The documents and database will also use 
the date of birth as a second identifier.  

 All written records will be treated as confidential documents and held securely in accordance 
with regulations. The investigator will make a separate confidential record of the participant’s 
name, date of birth, local hospital number or NHS number, and Participant Study Number, to 
permit identification of all participants enrolled in the study, for the purposes of later follow-up.  

 All paper forms will be completed using black ballpoint pen. Errors shall be lined out but not 
obliterated by using correction fluid and the correction inserted, initialled and dated. 

 The person completing each paper form shall sign and date each form. 

Quality assurance & audit  

Insurance and indemnity 

 Insurance and indemnity for clinical study participants and study staff is covered within the NHS 
Indemnity Arrangements for clinical negligence claims in the NHS, issued under cover of HSG 
(96)48. There are no special compensation arrangements, but study participants may have 
recourse through the NHS complaints procedures. 

 University College London has taken out an insurance policy to provide indemnity in the event of 
a successful litigious claim for proven non-negligent harm.  

 

Conduct of the Study 

 Study conduct will be subject to systems audit for inclusion of essential documents; permissions 
to conduct the study; CVs of study staff and training received; local document control 
procedures; consent procedures and recruitment logs; adherence to procedures defined in the 
protocol (e.g. inclusion / exclusion criteria, timeliness of visits); and accountability of study 
materials.  

 The Study Manger, or where required, a nominated designee of the Sponsor, shall carry out a 
site systems audit at least yearly and an audit report shall be made.  

 Monitoring of study data shall include confirmation of informed consent; source data 
verification; data storage and data transfer procedures; local quality control checks and 
procedures, back-up and disaster recovery of any local databases and validation of data 
manipulation. The Study manager, or where required, a nominated designee of the Sponsor, 
shall carry out monitoring of study data as an ongoing activity.  

 Data will be effectively double entered using SPSS Data Entry continuous comparison techniques 
to ensure accurate electronic data records 

 Study data and evidence of monitoring and systems audits will be made available for inspection 
by the REC as required. 

 

Data Management and analysis 

 Access to all study documents is limited to the study personnel (see below) excepting that the 
CRF and all source documents will be made be available at all times for review by the Chief 
Investigator, Sponsor’s designee and inspection by relevant regulatory authorities.  

 All study staff and investigators will endeavour to protect the rights of the study’s participants to 
privacy and informed consent, and will adhere to the Data Protection Act, 1998. The Assessment 
procedures will only collect the minimum required information for the purposes of the trial. All 
records will be held securely, in a locked room, and a locked cabinet. Access to the information 
will be limited to the trial staff and investigators and any relevant regulatory authorities. 
Computer held data including the study database will be held securely and password protected. 
All data will be stored on a secure dedicated web server. Access will be restricted by user 
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identifiers and passwords (encrypted using a one way encryption method). 

 Information about the study in the participant’s medical records / hospital notes will be 
treated confidentially in the same way as all other confidential medical information. 

 Two postdoctoral fellows (physics and computing and psychology, respectively) will carry 
out data analysis under supervision from the co-investigators.  Where off-line analysis of 
data is undertaken these data are managed anonymously using a unique study identifier.  
Summary data are then returned to the main study database, which is again anonymised to 
maintain confidentiality. 

 Electronic data will be backed up every 24 hours to both local and remote media in 
encrypted format. 

 Data will be entered onto study forms and posted back to the study centre where they will 
be encoded for computer analysis using SPSS Data Entry and SPSS for Windows.  Data will 
be checked in real time using the facility built into the Data Entry Module.  Once clean the 
database will be combined with data from the 1995 cohort study for analysis. 

 Data will be analysed using appropriate categorical and continuous comparisons using SPSS 
and STATA statistical software packages.  Major outcomes will be examined for known 
explanatory variables (sex of the child, gestational age, multiple birth) and regression 
analyses will be performed to look for antecedents and associates of good and poor 
outcome. 

 Most very preterm babies are successfully scanned at full term for clinical purposes within 
our unit.  We anticipate being able to recruit 50 infants <32w gestational age over a 12-
month period at UCH from a population of 100 babies and have funding to do this.  For two-
tailed comparisons of preterm and term born children on continuous measures with normal 
distributions differences of 0.6sd will be detected with 90% power at 5% significance or a 4 
fold increase in the proportion of children with abnormal developmental scores in the 
preterm compared to the term group (16% versus 5%), which is comparable to other 
published studies.  For within the preterm group correlations of scan findings with 
neuropsychological outcomes the power is more difficult to predict but given paired data 
we anticipate that the power will be sufficient. 

 Electronic data will be archived at the completion of the study for a period of 25 years to 
allow for later follow up of this unique population. Paper records will be kept for 10 years 
after the last assessment is carried out on the population. 
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Protocol appendix 1: Additional Measures for Social Communication Development 
Many children born very preterm experience difficulties with social communication and peer 
relationships throughout childhood.

1, 2
  Very preterm infants are also at an increased risk of 

developing an autism spectrum disorder and related symptoms.
3-5

 These are disorders characterised 
by abnormalities of social interaction and communication, presenting alongside repetitive 
behaviours and restricted interests (APA, 2001).  Children with these difficulties require highly 
targeted interventions, which are most successful when commenced early in life.

6
 Recent work with 

other high-risk populations has indicated various possible early behavioural and brain markers for 
abnormalities in social development. These markers have not been examined in preterm 
populations, but could help us to identify infants at greatest risk and commence targeted 
interventions as early as possible. 

EEG Measures: For both VP and term controls (at 6m), we wish to measure the neural correlates of 
eye-gaze processing using a visual event-related potential (ERP) paradigm (32-electrode Geodesic 
Sensor Net). In the task, which will be completed in the same ERP session as the information 
processing paradigm (see  main Protocol), infants will be presented with images of female faces, with 
either direct or averted gaze. Infants will continue with trials as long as they show interest in looking 
(max. 150 trials, approx. 10min). 

Prior research using this paradigm has shown that direct gaze elicits a larger negativity (N170) than 
averted gaze in infants as young as 4 months,

7, 8
 particularly over mid-line scalp/occipital regions.  

This early sensitivity to direct eye contact is thought to be crucial to infants’ adaptive social and 
communication development. Research has demonstrated abnormalities in the ERP responses to 
direct and averted gaze in certain clinical and at-risk-groups (e.g. prolonged latency of the occipital 
P400 in children with autism and in their infant-siblings). This task will therefore allow us to identify 
atypical features of eye-gaze processing within the first year of life in VP infants. 

Eye-tracking Measures: We wish to measure looking behaviour of VP and term controls (at 6 and 12 
months) whilst viewing a range of visual displays of social and non-social stimuli. Looking behaviour 
(i.e. location of first “looks” and looking time to elements of displays) will be recorded using a 
remote, non-intrusive Tobii corneal reflection eye-tracker (T60/T120), whilst seated on their parent’s 
lap. Measures will include looking behaviour whilst viewing faces and eye-gaze cues, visual 
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preference for social over non-social stimuli, and ability to disengage and shift visual attention 
between objects. In total, this series of tasks will last no longer than 15 minutes (including the eye-
tracker calibration). 

Abnormal looking-responses to faces and eye-gaze cues, and impaired disengagement of attention, 
have been observed in infants at-risk of developing disorders of social communication. These 
paradigms will allow us to examine visual scanning behaviours and preferences in this population – 
and with longitudinal follow-up, allow us to relate these findings to longer-term neurodevelopmental 
outcomes. 

Observational Assessments: For both VP and term controls, we wish to administer the Autism 
Observation Scale for Infants (AOSI) at 6 and 12 months. The AOSI is an 18-item direct observational 
measure designed to detect and monitor putative signs of autism in infants aged 6–18 months. It is a 
semi-structured play-based assessment, in which systematic presses are used to elicit target 
behaviours. Target behaviours include visual tracking and attentional disengagement, coordination 
of eye gaze and action, imitation, early social-affective and communicative behaviours, behavioural 
reactivity, and various sensory-motor behaviours. The AOSI is conducted at a small table, with the 
infant seated opposite the examiner, on his/her parent’s lap. The assessment will be videoed for 
rating and takes approximately 15-20 min to administer.  

Following the AOSI, a 10-minute free-play session of parent and infant will be video-recorded (for 
both VP and term controls). Play interactions will be coded blind to group (FT/PT), according to a 
validated global rating scale. 

Additional Questionnaire Measures: Parents will be asked to complete the Infant Behaviour 
Questionnaire (IBQ-R)

9
 to obtain a measure of infant temperament at both time points. 

 
 
References 
1. Hoy EA, Sykes DH, Bill JM, Halliday HL, McClure BG, Reid MM. The social competence of very-

low-birthweight children: teacher, peer, and self-perceptions. Journal of abnormal child 
psychology. 1992; 20(2): 123-50. 

2. Johnson S, Marlow N. Positive screening results on the modified checklist for autism in 
toddlers: implications for very preterm populations. J Pediatr. 2009; 154(4): 478-80. 

3. Johnson S, Hennessy E, Hollis C, Kochhar P, Wolke D, Marlow N. Screening for Autism Spectrum 
Disorders in Extremely Preterm Children. Acta Paediatrica. 2009; 98: 163-. 

4. Johnson S, Hollis C, Kochhar P, Hennessy E, Wolke D, Marlow N. Autism spectrum disorders in 
extremely preterm children. J Pediatr. 2010; 156(4): 525-31 e2. 

5. Moore T, Johnson S, Hennessy E, Marlow N. Screening for autism in extremely preterm infants: 
problems in interpretation. Dev Med Child Neurol. 2011; Resubmission under reveiw. 

6. Yirmiya N, Charman T. The prodrome of autism: early behavioral and biological signs, 
regression, peri- and post-natal development and genetics. Journal of child psychology and 
psychiatry, and allied disciplines. 2010; 51(4): 432-58. 

7. Farroni T, Csibra G, Simion F, Johnson MH. Eye contact detection in humans from birth. 
Proceedings of the National Academy of Sciences of the United States of America. 2002; 99(14): 
9602-5. 

8. Farroni T, Johnson MH, Csibra G. Mechanisms of eye gaze perception during infancy. Journal of 
cognitive neuroscience. 2004; 16(8): 1320-6. 

9. Gartstein MA, Rothbart MK. Studying infant temperament via the revised infant behavior 
questionnaire. [References]. Infant Behavior & Development. 2003; 26(1): 64-86. 

 
 
Protocol appendix 2a: Inclusion of babies recruited to longitudinal studies following Neonatal 
Encephalopathy entered into the Baby Brain Study to PDP neuropsychology protocol only. 
 
Long term outcome following perinatal hypoxic-ischaemic encephalopathy (HIE) is increasingly 
recognised to be complex and associated with a range of only recently identified and subtle defects 
of working memory and executive function, which combine to produce a significant rate of school 

file://///ad.ucl.ac.uk/home/sejjkld/Documents/Kayleighs_Documents/Write%20Up%20and%20General%20PhD%20Docs/Thesis/Appendices/uch%20pdp%20protocol%20v1.4%2025.07.15_submitted.doc%23_ENREF_9


 
 

369 
 

failure (figures 1 & 2) [1-3].  Because of the relatively infrequent occurrence of intrapartum asphyxia 
leading to encephalopathy (approximately 1.5-2.0 per 1000 live births) little attention has been 
directed at early detection and intervention in this group, aside from early recognition of signs of 
cerebral palsy using gestalt recognition of abnormal general movements.[4] Among older children 
acute hypoxia is recognised to cause a reduction in hippocampal size and subsequent functional 
deficits in working memory.[5] 

 

Based on our current experience we hypothesise that among infants who have had neonatal 
encephalopathy, and do not go onto to develop severe cerebral palsy: 

1. Measures of processing speed and working memory obtained in early infancy (3-12m) will 
predict poor performance on developmental tests at 2 years of age  

2. Measures of socialisation made in early infancy will predict behavioural outcomes at 2 years 
3. Neuropsychological measures will relate to structural brain injury evaluated on MRI, 

metabolic changes assessed using MR spectroscopy and background EEG in the neonatal 
period. 

4. Commonalities in infancy assessments are present with preterm development in infancy 
reflecting core neuropsychological processes in infancy. 

We are currently recruiting babies with encephalopathy to one randomised trial of Xenon 
neuroprotection (TOBY-Xenon – www.npeu.ox.ac.uk/tobyxenon; PI Robertson) and one longitudinal 
cohort study, the Babies Brains Study (PI Robertson).  All studies include long-term follow up using 
the UCH-based follow up team.  

We propose to recruit families of babies who have been entered into the longitudinal studies above 
to our BabyLab protocol, used in the UCH Preterm Development Project. Key to this project is the 
determination of infant measures of cognitive function, memory and socialisation at 3, 6 and 12 
months after birth.  We will invite parents to enter this study at discharge from hospital so that it will 
not compromise recruitment to these ongoing studies and we will carry out the testing alongside the 
routine follow up provided at UCH for these children, which also doubles as outcome evaluation at 2 
years of age using a neurological assessment and the Bayley 3 Scales of Infant and Toddler 
Development.  The advantages for this project will be correlation with high resolution MRI imaging, 
spectroscopy and automated EEG analysis carried out as part of these studies and determination of 
outcomes at 2 years.  We believe that this is a unique study in the area and will provide novel data to 
enhance the other ongoing studies. 

Population:  We provide a regional service for therapeutic hypothermia as treatment for HIE and 
cool approximately 50 babies per year.  Some of these will be referred from remote units but we 
anticipate approximately 20 babies will be available for this study each year.  We propose to run this 
protocol alongside our current control group, who will act as a reference group.  Recruiting over two 
years will result in approximately the same sample size as for the main PDP study and thus has 
similar power to detect differences as in the main protocol. These are exploratory studies and formal 
power calculation is thus not as yet possible. 

 

Additional references for protocol appendix 2  
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Protocol appendix 3 Details of the 2-3 year assessments for all babies 

The brain goes through notable large and dramatic changes during the first two years of life, making 
this a crucial age to investigate and monitor how these changes are effecting cognitive performances 
at each stage (1). Very few studies have performed thorough investigations of the multiple domains 
that are potentially affected by preterm birth at 2 years of age, and those that have touched the 
surface of these problems, express the need for more in depth investigations (2), such as those 
proposed here. 

All clinical subjects are followed to 2 years (corrected for preterm birth if appropriate) by the clinical 
service and receive a formal outpatient neurological and developmental assessment.  In addition we 
will invite each family to attend on another day for additional testing (control subjects will have all 
assessments at one visit including a Bayley-III assessment). 

EEG Measures: Preterm infants are known to have difficulties with their speech development. Up to 
now there have been a number of studies investigating the neural processing involved in the 
language deficits in older children (4-5 years), once speech problems are more apparent (3, 4). The 
common consensus from these studies is the deficits are likely to be related to auditory processing 
abilities, with the opinion that assessments of the neural correlates are required at a much younger 
age to investigate this further (3). What we aim to do with this ERP task is to investigate auditory 
processing at 2 years of age to see if there are any apparent delays at this earlier stage of 
development. Recent MRI findings have suggested that the detection of impaired maturation of the 
brain microstructure after birth may have the potential to be strong predictors of language and 
cognitive impairment in these children. By taking a measure of their language development, both 
behaviourally and in terms of auditory processing, we determine any correlation between that and 
the structural data obtained at birth (5, 6).   

For all groups (at 24-30m), we will use an auditory event-related potential (ERP) paradigm (32-
electrode Geodesic Sensor Net). In one EEG session, we will first run the same resting state paradigm 
as in the main Protocol; this will be followed by a novel assessment: the toddlers will watch an 
unrelated visual video presentation whilst listening to auditory speech or non-speech-related sounds 
in trial sets. Subjects will continue with alternating trials as long as they show interest in the 
paradigm (maximum time estimation 20 min). 

Eye-tracking Measures: We will measure looking behaviour and in both the VP and term infants in 
order to both assess their ability to successfully switch visual attention and investigate their social 
preferences. For visual attention, we will administer the same task as previously performed at 6 and 
12m of age in order to obtain longitudinal measures of switching abilities. The GAP task displays 
visual cues in the center of the screen and after a period of time, in the baseline condition, the 
central stimulus disappears and a peripheral stimulus is shown. In the test trials, the peripheral 
stimulus appears but the central stimulus remains. A non-intrusive Tobii corneal reflection eye-
tracker (T60/T120) is used to record the time taken for the child to disengage from the central 
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stimulus, whilst seated on their parent’s lap. We will also use the same equipment to investigate 
social preferences as previously determined. In total, this series of tasks should last no longer than 
15 min. 

Neuropsychology paradigms: A number of behavioural paradigms have been devised to assess the 
developing executive functions as this age. In order to try and tease apart possible specific executive 
function deficits, as shown in previous investigations (7), we will use a composite assessment of 
inhibition, working memory and cognitive flexibility skills (8). The selection of tasks should take no 
longer than 30 minutes to administer. These are important as end points for our infancy assessments 

Observational Assessments: Following a break, for all subjects we wish to administer the Autism 
Diagnostic Observation Scale-2 (ADOS-2). This 30-45 min assessment is designed to highlight key 
behaviours and language abilities that lend to the diagnosis of autism, from very mild cases to more 
broad general developmental disorders. The assessment involves a series of social interactions 
between the toddler and the examiner in a series of structured and semi-structured tasks; the total 
score has defined cutoffs for autism and autism spectrum disorders. The assessment is modular and 
the appropriate module is determined by the trained examiner according to the developmental and 
language level of the child. Should a child score highly the PI (NM) will discuss with the parents if 
they would accept referral to community services for further management.  At most this will include 
no more that 4 children.   

Lastly, we will video record 10 minute free-play observation between the parent and the toddler. 
Interactions with the mother and infant will be coded blind to the study group, using to a validated 
global rating scale. 

In total this will mean 70 minutes of assessment followed by the ADOS-2 and 10 minutes free play 
after a break. 

Additional Questionnaire Measures: Parents will be asked to complete prior to the visit the Toddler 
Behaviour Assessment Questionnaire (9), continuing on from the IBQ recorded in the previous 
assessment ages; the Family Environment Scale (FES), to provide an idea of the family home 
environment, as has been shown to have an impact on learning; lastly, the MacArthur 
Communicative Development Inventory (MCDI), as a measure of the child’s language abilities.  
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Appendix 4: Cross-sectional recruitment of typically developing 2-3 year olds for the 4
th

 stage of 
the Preterm Development Cohort. 

The Preterm Development Project has been designed to track a group of preterm infants and a 
comparison group of term born infants through their first few years of life. The aim for this study is 
to have a clear understanding of the executive function, information processing speeds, and social 
skill abilities of infants at four different points through the first three years of life. As with many 
longitudinal studies, there are always a number of infants that fail to attend one or more of the 
follow-up visits and/or withdraw before completion. In order to ensure an acceptable sized cohort 
comparison group (i.e. sufficiently powered), an additional cross-sectional group of children born at 
term are required for the two to three year time point. Below highlights the methods for the 
recruitment of this cohort, the inclusion/exclusion criteria for inclusion, the information to be 
requested and what will be expected from infants during the assessment.  

 

Population: Term born children are to be recruited by advertisement in local nurseries. Nurseries to 
be approached include the ULCH nursery, GOSH nursery, and the UCL Nursery. Inclusion criteria: 
birth at 37-42weeks gestation, birthweight between 10

th
 and 90

th
 percentile for gestation, no 

perinatal complications and Apgar score at 5min >7. The study will be advertised, with the nurseries 
agreement, with fliers, and posters in the reception areas, and the parents will be asked to approach 
the team if they are interested in participating in the study. Once the parent has expressed interest 
in taking part, a member of the team will be in touch to clarify the above inclusion information 
before they are able to take part. If the child is eligible to take part, a visit to the CRF facility in the 
EGA wing will be organised. The parent will be sent an information leaflet and map to the EGA wing 
via email along with a confirmation of the study visit date and time. On the day of the assessment 
the parent will be asked to complete a consent form to provide their consent for participation in this 
follow-up visit only. However, the consent form will also ask parents whether they are happy to be 
contacted by the team about future follow-ups, should they be arranged. Parents will provide their 
consent for this on an opt-in basis only. 

 

Assessment: The assessment will be identical to that run with the term-born infants currently 
participating in the full longitudinal Preterm Development Project. The study uses four key 
assessment methodologies: EEG, eye-tracking and neuropsychological assessment, and play-based 
standardised assessments (Bayley Scales of Infant and Toddler Development®, Third Edition; Autism 
Diagnostic Observation Schedule, ADOS). The preterm infants complete the Bayley assessment as 
part of their routine clinical follow-up within the trust, and therefore do not complete the 
assessment with us. These scores are obtained from clinical records, with parent permission. Where 
we have completed standardised assessments, parents are given feedback on their child’s 
performance. If concerns are indicated by a child’s score profile on the Bayley or ADOS (i.e. within a 
clinical range), the principal investigator (Prof Neil Marlow) will contact the parents, and offer to 
make a referral to local services for further investigation. 
 

EEG Measures: Preterm infants are known to have difficulties with their speech development. Up to 
now there have been a number of studies investigating the neural processing involved in the 
language deficits in older children (4-5 years), once speech problems are more apparent (1, 2). The 
common consensus from these studies is the deficits are likely to be related to auditory processing 
abilities, with the opinion that assessments of the neural correlates are required at a much younger 
age to investigate this further (2). What we aim to do with this ERP task is to investigate auditory 
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processing at 2 years of age to see if there are any apparent delays at this earlier stage of 
development. Recent MRI findings have suggested that the detection of impaired maturation of the 
brain microstructure after birth may have the potential to be strong predictors of language and 
cognitive impairment in these children. By taking a measure of their language development, both 
behaviourally and in terms of auditory processing, we determine any correlation between that and 
the structural data obtained at birth (3, 4).   

For all groups (at 24-30m), we will use an auditory event-related potential (ERP) paradigm (32-
electrode Geodesic Sensor Net). In one EEG session, we will first run the same resting state paradigm 
as in the main Protocol; this will be followed by a novel assessment: the toddlers will watch an 
unrelated visual video presentation whilst listening to auditory speech or non-speech-related sounds 
in trial sets. Subjects will continue with alternating trials as long as they show interest in the 
paradigm (maximum time estimation 20 min). 

Eye-tracking Measures: Eye-tracking assessments will use remote eye-tracking technology (Tobii T60 
corneal reflection eye-tracker) to record infants’ eye-movements in response to visual stimuli whilst 
they sit on a parent’s lap. This permits inferences to be made about infants’ visual attention skills. 
Looking behaviour will be recorded in response to two developmentally sensitive tasks, identical to 
those used at earlier follow-ups at 6 and 12 months. The first is a non-social task, measuring infants’ 
ability to successfully disengage visual attention (the Gap-Overlap Task).  In this task, infants are 
presented with animated visual cues at the centre of a screen, which is then replaced by a peripheral 
stimulus.  In the baseline condition, the central target disappears prior to the appearance of the 
peripheral target, which facilitates disengagement in order to shift attention. In the test trials, 
however, the central stimulus remains on-screen when the peripheral target appears, meaning that 
the infant has to actively disengage their attention in order to shift. The second task measures 
infants’ responsiveness to adults’ social looking cues (the Gaze-Following task). Infants are presented 
with short video recordings of a lady shifting her gaze from direct towards the infant, to objects 
positioned to her left and right. Infants’ looking behaviour in response to these gaze cues is 
measured. In total, completion of these two tasks should take no longer than 15 min. 

Neuropsychology paradigms: A number of behavioural paradigms have been devised to assess the 
developing executive functions as this age. In order to try and tease apart possible specific executive 
function deficits, as shown in previous investigations (5), we will use a composite assessment of 
inhibition, working memory and cognitive flexibility skills (6). The selection of tasks should take no 
longer than 30 minutes to administer. These are important as end points for our infancy assessments 

Observational Assessments: Following a break, for all subjects we wish to administer the Autism 
Diagnostic Observation Scale-2 (ADOS-2). This 30-45 min assessment is designed to highlight key 
behaviours and social-communication difficulties associated with a diagnosis of autism spectrum 
disorder (ASD) according to DSM-V criteria. Researchers trained in the administration and reliable 
coding of the instrument will complete the assessment. The ADOS consists of both structured and 
semi-structured tasks, and involves a series of presses and social interactions between the toddler 
and the examiner. Defined cutoffs for autism and autism spectrum disorders are provided, based on 
total scores. The assessment is modular and the appropriate module is determined by the trained 
examiner according to the developmental and language level of the child. Should a child score within 
the clinical-range, the PI (NM) will discuss with the parents if they would accept referral to 
community services for further investigation and management.  Based on known prevalence rates, it 
is expected that this will involve no more than four children.   

Lastly, we will video record 10 minute free-play observation between the parent and the toddler. 
Interactions with the mother and infant will be coded blind to the study group, using to a validated 
global rating scale. 

In total this will mean 70 minutes of assessment, followed by the ADOS-2 and 10 minutes free play 
after a break. 

Additional Questionnaire Measures: Parents will be asked to complete prior to the visit the Toddler 
Behaviour Assessment Questionnaire (7), continuing on from the IBQ recorded in the previous 
assessment ages; the Family Environment Scale (FES), to provide an idea of the family home 
environment, as has been shown to have an impact on learning; lastly, the MacArthur 
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Communicative Development Inventory (MCDI), as a measure of the child’s language abilities.  
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Appendix 2. Ethical Approval 

 

Research
Ethics Service London - 

Hampstead Research Ethics 
Committee 

23 December 2015 

Study title: The UCH Preterm Development Project: growing up after very 
preterm birth 

Amendment number: Substantial Amendment 4 
Amendment date: 27 July 2015 
 
The above amendment was reviewed by the Sub-Committee in correspondence.  

Ethical opinion 
Approval was sought for the request to recruit from local nurseries. The Participant 
Information Sheet and Consent Form were also updated and submitted for review. 

The members of the Committee taking part in the review gave a favourable ethical 
opinion of the amendment on the basis described in the notice of amendment form and 
supporting documentation. 

Approved documents 

The documents reviewed and approved at the meeting were: 

Document Version Date 

Notice of Substantial Amendment (non-CTIMP)  27 July 2015 

Other [Letter to Nursery] 1 25 July 2015 

Participant consent form [Parent] 1.0 25 July 2015 

Participant information sheet (PIS) [Parent] 1.0 25 July 2015 
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R&D approval 

All investigators and research collaborators in the NHS should notify the R&D office for the 
relevant NHS care organisation of this amendment and check whether it affects R&D 
approval of the research. 

Statement of compliance 

The Committee is constituted in accordance with the Governance Arrangements for 
Research Ethics Committees and complies fully with the Standard Operating Procedures for 
Research Ethics Committees in the UK. 

We are pleased to welcome researchers and R & D staff at our NRES committee members’ 
training days – see details at http://www.hra.nhs.uk/hra-training/  
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Appendix 3. PDP demographics questionnaire 

 

           Study Number : _________________ 
      Infant ID:  _________________ 

  Infant Gender:   _________________ 
          Date complete _________________ 
  Age of Infant: _________________ 

      
 

 
 

Brain development after very preterm birth 
 

Questionnaire for parents -  

About your family 
 
 

Thank you ever so much for coming back to see us in the Baby lab. As it has been a little while since 
we last saw you, we would like to make sure our records are still up to date.  Please could you 
complete this form and either bring it along to your next visit with us in the baby lab or complete 
and send it back to a member of our team in a reply to our confirmation email that you will have 
received for your visit.  
 
We realise that some of these questions are similar to the ones we have asked in the past, but we 
would be extremely grateful if you could complete the whole booklet as some of the information we 
are requesting are essential to the tasks we will ask your child to perform at the next visit. 
 
We realise these are personal data. 
All the information will be treated in the strictest confidence and will not be seen by anyone 
outside the study.  
The family information will be coded and will be used anonymously in all our analysis 
The questionnaire will also be destroyed when we have finished with it. 
 
If you have any questions, or would like any help in completing this questionnaire, please speak to 
the staff member who gave you the form or you can telephone the Study office 

 

 
Thank you very much for your help 
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To begin, please can you provide us with the following information: 
 
 

i) Name of Baby 
Taking Part: 

 

 
 
 

ii) This form was 
completed by 
(name): 

  
Date 

 

 
 
 
iii)         Please state your relationship to child: 
 

 Mother  1   
        Father  2   
        Other (please specify below)*  3   

 

If “Other”, please specify (e.g. 
Grandmother):  

 

 
 

 

Section A: Your address and contact details 

 

Please tell us your Home 
Address 

 
 
 
 
 

Postcode  
 

  

Your telephone number at 
home 

 

  

Your mobile or cell phone 
number 

 

  

Your email address  
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Section B: Your family Doctor (GP) and contact details 
 

Your Doctor’s Name  
 

  

Your Doctor’s Practice 
Address 

 
 
 
 
 

Postcode  
 

  

The practice telephone 
number  
 

 

 
 

Section C: Another family member’s address and contact 
details 
 
Although this seems odd it has been very helpful for us to have the contact details of 
another family member (e.g. one of your baby’s grandparents) to check we have the 
correct contacts for you should you move.  
 

Their name  
 

  

Relationship to your child  
 

  

Their Home Address  
 
 
 
 

Postcode  
 

  

Their telephone number at 
home 
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Their mobile or cell phone 
number 

 

  

Their email address  
 

  
 

 

Section D:  About your family 
 
1 Who lives with you (adults)?    
 No other adults  1  
 Husband or wife or partner  2  
 Other adults (aged 18 or more)  3  
 If other adults live with you, who are they?  

(E.g. Your child’s maternal grandmother etc.) 
   

  
 
 

   

2 How many children (aged up to 18 years) are there in the household 
(including the child taking part in the study)?   

   

 
 

 Children 

 

 Please list the dates of birth of the other children.    
 NAME AND DATE OF BIRTH e.g. Joe - 24/06/1994    

 
 
 
 
 

 
 

  

 
3 

 
If any of the other children have received a diagnosis of learning 
difficulties or a developmental disorder (e.g. Autism Spectrum Disorder; 
ADHD; Dyslexia), please specify. 
 
NAME, DIAGNOSIS AND AGE AT DIAGNOSIS e.g. Hannah – ADHD, diagnosed at 5 years 

  

 
 

  

4   Are you:                                                                                                      Married?  1  
 Single?  2  
 Living together?  3  
 Widowed?  4  
 Separated / Divorced?  5  
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5 Are you:                             Living with the father or mother of the study child?  1  
 Living with other partner?  2  
 Previously living with partner, now alone?  3  
 Never living together?  4  
 Other situation, e.g. family or friends?  5  

 
  

6 Is your current partner the biological father/mother of this child?             
 Yes  1  
 No  2  
     

7 What is your current age? 
  

Years 

     

8 What is your partner’s current age? 
  

Years 

 
   

   

Section E:  About your home 
 
1 Do you rent or own your accommodation?   
 Owner (mortgage)  1 

 Council rented  2 

 Private rented (furnished)  3 

 Private rented (unfurnished)  4 

 Housing society or co-operative  5 

 Tied to occupation  6 

 Other (please describe below)  7 

    
  

 
 

  

  
  

2 How long have you lived at this present address?  Years  

    
3 If less than 6 years how many moves in the last 5y?  Moves  

    

4 What language is spoken at home?   
 English only  1 

 Other language(s)  2 

 Please tell us which is the other language(s)   
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Which language is the most predominately spoken in the home? 
 

Please give us a percentage of the time spoken in the language (rough 
estimate) 
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Section F:  About your education 
 
 
1 What is your highest qualification from school or college?      

 You Your 
Partner

 

None of the below  1  1 

    

Vocational qualification, NVQ, or CSE  2  2 

    

O Level, GCSE, or Scottish Standards  3  3 

    

BTEC, A Levels or Scottish Highers  4  4 

    

Diploma or HND  5  5 

    

Nursing qualification  6  6 

    

University degree  7  7 

    

Postgraduate University degree  8  8 

    

Other qualification after A Level (please 
describe)  

 9  9 

 
 
 

Section H:  About your work 
 

EMPLOYMENT 
                    

1 Are you currently in paid employment? Please tick for yourself and your partner (if 
applicable) as appropriate: 
               

  You Your 
Partner 

 

     

 Employed   1  1 

 Self-employed  2  2 

 Unemployed  3  3 

 Retired  4  4 

 Other (please describe)  5  5 

      
 If you are currently in paid employment please complete the following questions for 

your current job.  If you are currently unemployed, please complete the following 
questions for your last job. 
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Section G:  About your baby 
 
Part 1: Questions about your baby’s birth. 
 
1 What is the date of birth of the child taking part in this study?    

2 What is your current/last job? Please describe 
below: 
 You 

  
 

Your Partner 

  

 
Job title: 

    

 
Company/organisation: 

    

 
Type of Industry: 

    

 
 

    

3 Please describe what you mainly do/did in this job. 
    

 
Job description:  

 
 
 

 

4 
How many hours a week 
do/did you work? hours  hours  

5 How many people are/were employed at the 
place where you work/worked? 

 

 1 to 24  1  1 

 25 to 499  2  2 

 500 or more  3  3 

6 Are you a manager? 
    

 No  1  1 

 Yes  2  2 

 
 

7 
If you are not a manager, do you supervise other members of staff? (not including 
supervision of children, patients etc).                   

 No  1  1 

 Yes  2  2 

8 If you are self employed, do you employ other 
people? 

    

 I work on my own/with a partner, but have no 
employees 

  
 
1 

  
 
1   

 I have 1 to 24 employees  2  2 

 I have 25 to 499 employees  3  3 

 I have 500 or more employees  4  4 

 Not applicable - not self-employed  5  5 
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 dd/mm/yy / /  
2 What was your expected due date of delivery?   

dd/mm/yy / /  

3 Did you need any assistance with the birth?   
  

  Yes  1 

  No  2 

4 If yes, was the birth a caesarean section/ forceps delivery/ ventouse 
delivery/other (please specify)? 

  

    
    
5 If the birth was by caesarean section was this -   

Emergency?  1 

Elective?  2 

  
 
6 

 
What was your baby’s birthweight? 
 

 

 
7 

 
Did your baby need to be admitted to the neonatal unit for any reason? 

  

 Yes  1 

 No  2 

 If yes, please tell us why   
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Appendix 4. Auditory processing 

Upon hearing a sound, the ear transforms the raw sensory information into 

mechanical energy via the cochlea to the auditory nerve. From here, the processing 

pathway through the brain is complex and not completely understood. The speed in 

which one processes a sound can have a significant impact on various aspects of 

life, from conversing to spatial awareness (Scott and Wise, 2004). Upon reaching 

the auditory nerve, the sound information projects to the contralateral superior 

olivary nucleus via the ascending auditory pathway, reaching via the inferior 

colliculus it is bilaterally represented to the medial geniculate nucleus. From there it 

is projected to the auditory cortex bilaterally but asymmetrically with connectivity 

between auditory cortices via the corpus callosum (see Figure 8-2 for one proposed 

model). A certain amount of decussation occurs at each level of the pathway 

(Lazard, Collette and Perrot, 2012). However, common consensus appears to 

suggest the dominant fibres are those that transmit information contralaterally 

(Scott and Wise, 2004).  

 

Figure 8-2. Auditory pathways modified from Posit Science, (2014). 

The medial geniculate nucleus is the final relay before the primary auditory cortex, 

found in the thalamus. Once the auditory signal hits the Primary Auditory Cortex 

Corpus Callosum 

Pons 

Midbrain 

Temporal 

lobe 

Thalamus 
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(PAC), there are multiple projections to surrounding temporal areas (Scott and 

Wise, 2004; Lazard, Collette and Perrot, 2012). The PAC contains two structures; 

Heschl’s gyrus, the area considered as the primary auditory cortex, and the Planum 

Temporale (PT). The PT is considered part of Wernicke’s area and has been seen to 

respond to a variety of acoustic non-speech stimuli and differences in articulation. 

Projections from surrounding areas form the posterior and anterior stream.  

The anterior stream is thought to correlate sounds to meaning, projecting to the 

higher cortical regions in the PFC and medial temporal lobes (Brocas and wernicka’s 

area respectively). The posterior stream is stipulated to correlate ‘speech sounds to 

motor representations of articulation’, and associates sensory and motor stimuli, 

therefore thought as a step beyond initial auditory processing (Scott and Wise, 

2004).  

Broca and Wernicke’s areas are the two best known higher cortical areas associated 

to speech processing. Broca’s area, discovered back in 1861, is associated to speech 

production, predominantly on the left hand side of the brain; Wernicka’s area is 

linked to the understanding of speech and is considered the secondary auditory 

cortex (Steinmann and Mulert, 2012). The main intrahemisphere connection 

between these two areas is the Arcuate Fasciculus (AF) and the interhemispheric 

connection linking the two auditory cortices runs through the posterior of the 

Corpus Callosum, the splenium (Steinmann and Mulert, 2012).  

The Corpus Callosum (CC) is responsible for the majority of communication 

between the two hemispheres; for auditory, motor, cognitive and voluntary 

information. The contribution of the CC in auditory processing and speech 

perception is a matter of debate (Bamiou et al., 2007); however, it is clear from 

numerous patient populations studies that both hemispheres are involved in typical 

speech interpretation (Musiek et al., 1989). The two large fibre tracts involved in 

interhemispheric communications are the Corpus Callosum and the Anterior 

Commissure (AC). It is in the AC and the posterior section of the CC that Northam et 
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al., saw a reduced volume in preterm participants correlating to language 

impairments.  

How these connections come into play during the processing of sound remains 

uncertain, however, it is clear that the two hemispheres have to communicate via 

the corpus callosum (CC) (Bamiou et al., 2007) upon receiving auditory information 

(Steinmann and Mulert, 2012). Numerous auditory experiments have led to the 

proposal of multiple different models regarding how the CC is involved in the 

processing of auditory information (Bamiou et al., 2007). 

The first of the models, by Kimura (Kimura, 1961, 1967), utilised dichotic listening 

tasks where two different sounds are presented to the two ears simultaneously. 

The sounds presented to the right ear appear to be heard over those presented to 

left in typical subjects, suggesting that the dominant pathway crosses over within 

the brain if taking the left hemisphere as dominant for language. Kimura also 

suggests the ipsilateral pathways are inhibited by the contralateral pathways in this 

competing situation (Bamiou et al., 2007). In split brain patients, where the Corpus 

Callosum (CC) has been severed, a left ear disadvantage is seen, suggesting that the 

sounds presented to the left is ear is not being processed directly on the left hand 

side and a decussation of hemispheres across the CC is necessary for the processing 

of sounds (Musiek et al., 1989).  

Zaidel (Zaidel, 1986) proposed two alternative models; the ‘Callosal Relay’; and 

‘direct access’ model. Within the callosal relay model, speech stimuli require 

callosal transfer from the right to the left hemisphere for complete comprehension 

of the sounds. Supporting this, results from dichotic listening tasks find a longer 

reaction time to verbal information presented to the left ear, suggesting the 

information was not processed as quickly due to the interhemispheric transfer from 

the contralateral hemisphere to speech centres on the left (Bamiou et al., 2007).  
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The alternative ‘direct access model’ (Zaidel, 1986), suggests sounds are processed 

within the contralateral hemisphere to the side of presentation without the need to 

cross the brain. Less efficient processing occurs in the right hemisphere to verbal 

stimuli presented to the left ear according to this theory (Bamiou et al., 2007).  

When presenting sounds monaurally, the literature is mixed as to how the brain 

deals with this information, with some reporting the contralateral pathway remains 

dominant even in the absence of stimulation from the other ear (Stefanatos et al., 

2008); yet others suggest the interhemispheric transfer of information is no longer 

required as the ipsilateral fibres are no longer being inhibited by simultaneous ear 

stimulation (Musiek, 1986).  

Further investigations are required to determine the involvement of 

interhemispheric connections during a monaural stimulation tasks. In terms of the 

more dominant auditory pathways, excluding results from split brain patients, it 

seems the literature would support contralateral dominance. Although large 

inconsistencies are apparent in the literature regarding the proportional 

involvement of the interhemispheric connections in speech perception  it is clear 

that the two hemispheres have to communicate upon hearing auditory information 

(Steinmann and Mulert, 2012), via the corpus callosum (CC) (Bamiou et al., 2007). If 

there are reduced volume or delays in interhemispheric transfer, evidence would 

suggest this would be observable in the ERP components in response to auditory 

stimulation, either in latency or in hemispheric dominance of response. 

 The speculation in relation to the preterm literature, however, is that the reduced 

volume of the CC and associated connections leads to a reduction in speed of 

processing across these interhemispheric connections, and ultimately leading to 

delays in language.  

Auditory and language impairments in children born preterm 
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A common problem reported in the preterm population is delays in language 

production. The literature in this area is unclear, however, it is postulated that it is 

the speed in which infants process sounds that may determine the production of 

speech (Ramon-Casas 2013; Jansson-Verkasalo 2004). Axons pass though the CC to 

produce interhemispheric connections.  Differences in size relate to the volume and 

number of axons that traverse this area. White matter injury may cause the various 

areas of the CC to have a reduced volume, but likewise poorly myelinated fibres 

(fewer oligodendroglia) are smaller and will occupy less of the cross sectional area. 

Reduction in cortex cell counts or connectivity through altered developmental 

trajectories will produce similar findings. Poor splenium development therefore 

may reflect the end stage of any of these processes. Much of the white matter 

damage we see on MRI scans is not easily identifiable in the neonatal period. The 

posterior portion of the CC is last to develop with the fastest growth observed after 

birth. It is this section of the CC, the Splenium, that has most widely been found to 

be effected by preterm birth; the area responsible hosting connections between the 

two auditory centres of the brain (Chiara Nosarti et al., 2004).  

Language deficits are often reported in preterm populations with the speculation 

these differences are due to the encoding of speech sounds. Most studies 

investigate the neural correlates associated with auditory processing in preterm 

children though language, but do not look at the simple processing of a sound. 

Auditory ERPs are a measure of activity following auditory stimulation and 

frequently explored with the use of Mismatch Negative (MMN) paradigms (Hövel et 

al., 2014). A MMN paradigm investigates the auditory discrimination response; a 

component elicited when the brain automatically computes a change in a physical 

stimulus (Naatanen, 2001). The correlation of this component to the specific 

mechanisms within auditory perception is not clear and is therefore commonly used 

to investigate simple sensory stimulation (Jansson-Verkasalo et al., 2003). For 

example, an MMN paradigm used by Jansson-Verkasalo et al., (2003) investigated 

this response to 3 standard syllables across term and preterm children. The 

amplitude of the MMN response was considerably reduced in the preterm 
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participants and correlated to deficits within the object naming task. The authors 

concluded that deficits observed were reflective of preattentive auditory processing 

difficulties that could later contribute to language delays (Jansson-Verkasalo et al., 

2003).  

Jansson-Verkasalo et al., continued their investigations the following year (2004) in 

a cohort 2 years olds. Children born preterm achieved significantly lower scores on 

the language comprehension tests than their term born peers which later 

correlated to the performance in the auditory discrimination task at 4 years. It is 

therefore possible that auditory processing could be responsible for aspects of the 

language difficulties seen in this population (Jansson-Verkasalo et al., 2004). This 

supports the link between the CC size and its involvement in the transmission of 

auditory information between the hemispheres. What remains to be determined is 

whether it is the speed of transmission that is to blame for this delay or whether is 

it due to the poor connectivity of the structure that leads to insufficient 

transmission of information that is the cause of the processing delays. 

What is perhaps surprising, given the volumetric differences observed in the CC 

within ex-preterm populations, is the lack of investigations exploring the 

hemispheric difference in response to sounds. Although no MR data is available 

within this current thesis, the processing of auditory information will be explored 

looking at possible delays in interhemispheric transmission give the evidence 

discussed above. This will be the focus of the neural information processing section 

of this thesis. 

 


