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SUMMARY

The bioenergetics and molecular determinants of
themetabolic response tomitochondrial dysfunction
are incompletely understood, in part due to a lack
of appropriate isogenic cellular models of primary
mitochondrial defects. Here, we capitalize on a
recently developed cell model with defined levels
of m.8993T>G mutation heteroplasmy, mTUNE, to
investigate the metabolic underpinnings of mito-
chondrial dysfunction.We found that impairedutiliza-
tion of reduced nicotinamide adenine dinucleotide
(NADH) by the mitochondrial respiratory chain leads
to cytosolic reductive carboxylation of glutamine
as a new mechanism for cytosol-confined NADH
recycling supported by malate dehydrogenase 1
(MDH1). We also observed that increased glycolysis
in cells with mitochondrial dysfunction is associated
with increased cell migration in an MDH1-dependent
fashion. Our results describe a novel link between
glycolysis and mitochondrial dysfunction mediated
by reductive carboxylation of glutamine.

INTRODUCTION

Central carbon metabolism is regulated by the fine balance be-

tween mitochondrial function and glycolysis. The full oxidation

of glucose through the mitochondrial tricarboxylic acid (TCA) cy-

cle is a defining feature of eukaryotes and is tightly regulated by

genetic and post-transcriptional control of enzyme activity as

well as allosteric mechanisms (Cairns et al., 2011; Ros and

Schulze, 2013). It has been observed that impairment of mito-
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chondrial function by mutations in mitochondrial enzymes (Scia-

covelli et al., 2014) or by pharmacological inhibition of the respi-

ratory chain (RC) (Dickman andMandel, 1990) leads to activation

of glycolysis. This switch toward glycolysis has been observed in

most cancer cells even in the presence of oxygen, a phenome-

non known as aerobic glycolysis, and it is thought to contribute

to the increased demand for biosynthetic intermediates gener-

ated from glucose (Pavlova and Thompson, 2016). Although

the link between mitochondrial dysfunction and aerobic glycol-

ysis has been extensively reported, its molecular underpinnings

remain poorly characterized.

Mitochondrial dysfunction has been associated with induction

of reductive carboxylation, an alternative pathway for glutamine

catabolism that supports biosynthesis of lipids (Metallo et al.,

2011) and nucleotides (Birsoy et al., 2015; Sullivan et al., 2015),

as well as mitochondrial redox state (Jiang et al., 2016). Yet

themetabolic determinants of the activation of reductive carbox-

ylation remain elusive. Moreover, it is unclear whether reductive

carboxylation that results from impaired mitochondrial function

contributes to the rewiring of glycolytic metabolism.

Anobstacle to clarifying the linkbetweenmitochondrial function

andcentral carbonmetabolism is thedifficulty ofdisentangling the

direct consequences of dysregulated mitochondrial metabolism

from secondary and indirect effects caused by mitochondrial de-

fects. Cytoplasmic hybrids (cybrids) are established models to

investigate the effects of primary mitochondrial dysfunction on

cell physiology. Cytoplasts with wild-type or mutated mitochon-

drial DNA (mtDNA) are fused with the nucleus from a donor cell

to evaluate the effect of a specific mtDNA mutation. However,

cybrid generation is prone to artifacts. For instance, ethidium

bromide used to eliminate mtDNA of the host cells also induces

mutations in the nuclear genome. Moreover, the selection of indi-

vidual clones often leads to unrepresentative clone-specific phe-

notypes, with marked interclonal heterogeneity being attributable

to simple founder effects (King and Attardi, 1989;Martı́nez-Reyes
uary 15, 2018 ª 2018 The Author(s). Published by Elsevier Inc. 581
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Figure 1. Increasing Levels of m8993T>G

Mutation Are Associated with Changes in

Mitochondrial Function

(A) Schematic representation of m8993T>G het-

eroplasmy in the mTUNE models.

(B) RFLP analysis of last-cycle hot PCR products

(mtDNA nt positions 8339–9334) amplified from

total DNA samples of 143B cells harboring indi-

cated levels of m.8993T>G, obtained by treatment

withmtZFNs.Wild-type cells and 99%m.8993T>G

cybrids were used as controls.

(C) Basal extracellular acidification rate (ECAR) and

oxygen consumption rate (OCR) in mT7, mT45, and

mT80 cells. Data are normalized to protein content.

(D) Heatmap representation of mitochondrial

respiratory complex protein expression in mT7,

mT45, and mT80 cells as determined by mass

spectrometry. Data represent values from three

independent experiments and log2 fold change

values are color-coded as indicated.

(E–G) Respiration of digitonin permeabilized

mT7, mT45, and mT80 cells in the presence of (E)

glutamate-malate (complex I) and succinate

(complex II), (F) duroquinol (complex III), and (G)

TMPD-ascorbate (complex IV).

(H) Proliferation of mT7, mT45, and mT80 cells in

the presence of galactose instead of glucose. Cell

growth was determined by calculating the slope of

respective proliferation curves.

(I) Heatmap representation of significantly different

intracellular metabolites (corrected ANOVA,

p < 0.05) in mT7, mT45, and mT80 cells. Data

represent values from three independent experi-

ments and log2 fold change values are color-coded

as indicated.

(C and E–H) Data are mean ± SEM from three

independent cultures.

*p % 0.05, **p % 0.01, ***p % 0.001, one-

way ANOVA.
etal., 2016). Toovercome these issues, theselectiveeliminationof

mutated mtDNA with mitochondrially targeted zinc-finger nucle-

ases (mtZFNs) has been recently used to generate isogenic cell

lines with different levels of heteroplasmy of the mtDNA mutation

m8993T>G. Thismutation affects ATP6, a key subunit of ATP syn-

thase, leading to neuropathy, ataxia, retinitis pigmentosa (NARP)
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syndrome, and fatal childhood maternally

inherited Leigh’s syndrome (MILS) (Gam-

mage et al., 2014, 2016a). We therefore

used this model of tunable mitochondrial

dysfunction to investigate how mito-

chondrial function affects central carbon

metabolism.

RESULTS

‘‘mTUNE’’: A Model of Tunable
Mitochondrial Dysfunction
To investigate the effects of primary mito-

chondrial dysfunction on cellular meta-

bolism, we used a panel of isogenic cell
lines in which heteroplasmy of the mtDNA mutation m8993T>G

was shifted by treatment with mtZFNs (Gammage et al.,

2016a). This model allows the generation of isogenic cell lines,

hereafter called mTUNE (mT), with defined and stable low (7%,

mT7), medium (45%, mT45), or high (80%, mT80) levels of

m8993T>G heteroplasmy (Figures 1A and 1B). While growth



rate under basal conditions was comparable among cell types

(Figure S1A), basal oxygen consumption rate (OCR) dramatically

decreased proportionally to the levels of m8993T>G hetero-

plasmy (Figure 1C). Of note, the reduction in OCR was not

caused by differences in mitochondrial mass among cell types

(Figures S1B–S1D). Parallel to the decrease in OCR, we

observed an increase in the extracellular acidification rate

(ECAR) proportional to the levels of m8993T>G heteroplasmy

(Figure 1C), consistent with the expected switch toward glycol-

ysis in cells with mitochondrial dysfunction.

We then investigated in more detail how the m8993T>Gmuta-

tion affects RC activity. A proteomic analysis revealed that,

together with low levels of ATP6 and other subunits of ATP syn-

thase, the abundance of most RC components is decreased

in mT80 compared to mT45 and mT7 cells (Figure 1D). In line

with this finding, the activity of individual RC complexes

decreased in correlation with the level of heteroplasmy (Figures

1E–1G). Consistent with the presence of mitochondrial dysfunc-

tion, mT80 cells failed to grow in galactose (Figure 1H), a sub-

strate whose slower catabolism requires compensatory activa-

tion of mitochondria for ATP generation (Marroquin et al., 2007).

We then performed steady-state metabolomics by liquid

chromatography-mass spectrometry (LC-MS) on our cell lines

to further investigate the metabolic changes caused by

m8993T>G mutation. Hierarchical clustering of intracellular

metabolite levels grouped together cell lines according to

mtDNA heteroplasmy (Figure 1I). Importantly, we observed that

levels of the glycolytic metabolites phosphoenolpyruvate

(PEP), pyruvate, and lactate were increased in mT80, while me-

tabolites linked with mitochondrial function, such as aspartate

(Birsoy et al., 2015; Sullivan et al., 2015), citrate, and malate,

were decreased, compared to mT7 and mT45 (Figure 1I).

To gain a deeper understanding of the metabolic response to

mitochondrial dysfunction, we measured the consumption and

release of extracellular metabolites in our mTUNE models

(Table S1). In line with ECAR measurements, we found that

lactate secretion was increased in mT80, compared to mT7

and mT45 (Figure S1E). Together, these data indicate that the

mTUNE models exhibit a degree of mitochondrial dysfunction

proportional to the level of heteroplasmy, which results in distinct

and stable metabolic configurations. Therefore, this model

represents an ideal setting to investigate the consequences of

a primary mitochondrial dysfunction on cellular metabolism.

Constraint-Directed Metabolic Modeling Predicts
Association between Cytosolic Reductive Carboxylation
and Glycolysis
To systematically investigate the metabolic changes associated

with mitochondrial dysfunction in these cells, we took advantage

of a recently published in silico metabolic model that provides a

detailed reconstruction of mitochondrial and central carbon

metabolism reactions (Zieli�nski et al., 2016). We refined this

model by including consumption and release rates of metabo-

lites (Table S1) and by constraining RC activity with RC com-

plex-dependent measurements of OCR (Figures 1E–1G; Table

S2). We then compared the predicted metabolic fluxes in mT7

andmT80. Besides the expected changes in RC activity, oxygen

exchange, and ATP production, themodel predicted an increase
in several glycolytic reactions and decreased activity of multiple

enzymes of the TCA cycle and malate-aspartate shuttle (MAS) in

mT80 cells (Figures 2A and S2A). Interestingly, the model pre-

dicted activation of cytosolic reductive carboxylation of gluta-

mine in mT80 cells, while this pathway is inactive in mT7 cells

(Figure 2A). To assess the validity and robustness of our predic-

tions, we investigated alternative solutions to reaction fluxes by

performing flux variability analysis (FVA) (Mahadevan and Schil-

ling, 2003). This analysis confirmed the uniqueness of reaction

flux solutions predicted for, among others, glycolysis, MAS,

and cytosolic reductive carboxylation (Table S3).

To experimentally test the predictions of themodel, we cultured

cells in the presence of uniformly labeled (U)-13C-glucose (Fig-

ure S2B) and (U)-13C-glutamine (Figure 2B) and assessed by

LC-MS the labeling profile of downstream metabolites. We

observed increased levels of 13C-PEP and 13C-lactate, and

decreased levels of 13C-labeled TCA cycle intermediates, such

as 2-oxoglutarate, fumarate, and malate, in mT80 cells (Figures

S2C and S2D) upon incubation with (U)-13C-glucose. Consistent

with an increased dependency on glycolysis, mT80 cells were

more sensitive to inhibition of GAPDH by heptelidic acid (Fig-

ure S2E), comparedwithmT7 (Figure S2F). The incubation of cells

with (U)-13C-glutamine (see Figure 2B for a schematic) revealed

changes in glutamine oxidation in mT80, compared to mT45 and

mT7 cells. In particular, we observed a decrease in m+4 isotopo-

logues of citrate and aconitate, consistent with reduced oxidation

of glutamine via the TCA cycle (Figure S3A). We also observed a

substantial increase in aconitate and citrate m+5, and in malate

and fumaratem+3 inmT80cells compared tomT7andmT45 (Fig-

ure 2C), indicative of reductive carboxylation of glutamine propor-

tional to level of heteroplasmy. Of note, this metabolic rewiring

was observed even when cells were cultured in medium with a

differentcomposition (FigureS3B), indicating that thesemetabolic

changes are robust under different conditions. To further confirm

the link betweenmitochondrial dysfunction and reductive carbox-

ylation,weperformed (U)-13C-glutamine tracing in thepresenceof

the complex I-specific inhibitor rotenone. Consistently, rotenone

led to increased contribution of reductive glutamine metabolism

to citrate and malate pools in all our cell lines (Figure S3C).

To assesswhether induction of reductive carboxylation inmT80

cells occurred in the cytosolic or mitochondrial compartment,

we silenced either the cytosolic isocitrate dehydrogenase (IDH),

IDH1, or the mitochondrial isoform, IDH2, in mT80 cells (Fig-

ureS3D).We then followed incorporationof (U)-13C-glutaminecar-

bons into downstreammetabolites using LC-MS. Accumulation of

aconitate and citrate m+5 was markedly reduced when IDH1was

suppressed, while downregulation of IDH2 had only minor effects

(FigureS3E). Thesedataare in linewith thepredictionsof themeta-

bolic model and suggest thatmitochondrial dysfunction induces a

glycolytic switch, triggering cytosolic reductive carboxylation.

Reductive Carboxylation Is Regulated by
NAD+/NADH Ratio
We then investigated the possible determinants of cytosolic

reductive carboxylation triggered by mitochondrial dysfunction.

Reductive carboxylation has been associated with altered levels

of NAD+/NADH ratio (Fendt et al., 2013), although it is not

clear whether these changes are sufficient to drive reductive
Molecular Cell 69, 581–593, February 15, 2018 583



Figure 2. Mitochondrial Function of mT7, mT45, and mT80 Cells Is Associated with Induction of Reductive Carboxylation in the Cytosol

(A) Bubble representation of reactions involved in glycolysis, respiration, MAS, and cytosolic reductive carboxylation as predicted by mT7 and mT80 metabolic

models. Bubble size is indicative of predicted reaction flux (mmoles/min/gDW). Blue and red bubbles indicate forward and reverse reactions. Gray arrows show

the predicted direction of reactions, while gray dots represent reactions present in the depicted pathways, but with no predicted flux change.

(B) Schematic representation of metabolite labeling pattern from (U)-13C-glutamine. Gray circles indicate 13carbon.

(C) Proportion of total pool of metabolites originating from reductive carboxylation of U-13C-glutamine; aconitate m+5, citrate m+5, malate m+3, and fumarate

m+3 are shown. Data are mean ± SEM from three independent cultures. ***p % 0.001, one-way ANOVA.
carboxylation. To investigate whether mitochondrial function af-

fects NAD+/NADH ratio in our cell lines, we measured total

cellular NAD+/NADH levels using an enzymatic assay, and mito-

chondria-specific NAD(P)H using confocal microscopy (Blacker

and Duchen, 2016). NAD+/NADH ratio was significantly lower

in mT80 cells, compared with mT45 and mT7 (Figure 3A), and

it correlated with decreased NAD(P)H oxidation in mitochondria

(Figures 3B, S4A, and S4B). These results indicate that impair-

ment of respiratory activity in mT80 cells alters NADH oxidation

in mitochondria, leading to a decreased total cellular NAD+/

NADH ratio. Of note, reduced availability of NAD+, by altering

malate dehydrogenase 2 (MDH2) activity, could explain the sup-

pression of MAS predicted by our metabolic model.

To further assess the role of NAD+/NADH balance in our cell

lines, we rescued mitochondrial NADH oxidoreductase activity
584 Molecular Cell 69, 581–593, February 15, 2018
by expressing yeast-derived NADH dehydrogenase internal

(NDI)-1 in mT80 cells (Figures 3C and 3D), where RC complex I

activity is compromised. Expression of NDI-1 restored basal

respiration, which was partially resistant to rotenone, but not to

antimycin A (Figure 3E), consistent with the lack of sensitivity

of NDI-1 to rotenone. Importantly, NAD+/NADH ratio increased

upon expression of NDI-1 (Figure 3F). To assess whether

NDI-1 affected glutamine reductive metabolism, we performed

1-13C-glutamine labeling, which selectively tracks reductive

carboxylation (Metallo et al., 2011). Consistent with our hypoth-

esis, NDI-1 expression diminished reductive metabolism (Fig-

ure 3G). In further support of a causative link between mitochon-

drial dysfunction, changes in NAD+/NADH ratio, and cytosolic

reductive carboxylation, the RC complex I-specific inhibitor

rotenone led to decreased glutamine oxidation and increased



Figure 3. Reductive Carboxylation Is Dependent on NAD+/NADH Levels

(A) Total levels of NAD+/NADH in mT7, mT45, and mT80 cells measured using an enzymatic assay. Data are mean ± SEM from four independent experiments.

(B) Levels of basal mitochondrial NAD(P)H measured by NAD(P)H autofluorescence.

(C)Schematic representationof the rescueofmitochondrialNADHoxidoreductaseactivityby the expressionof yeast-derivedNADHdehydrogenase internal (NDI-1).

(D) Western blot analysis of NDI-1 expression upon infection of mT80 cells with pWPI control or NDI-1 lentiviral vectors. Representative blot of two independent

experiments.

(E) OCR of pWPI and NDI-1 mT80 cells in basal conditions or after injection of oligomycin, FCCP, rotenone, and antimycin A. Data are mean ± SD from one

representative experiment, performed with five replicates (out of two).

(F) Total levels of NAD+/NADH in pWPI and NDI-1 mT80 cells. Data are mean ± SEM from three independent cultures.

(G) Proportion of total pool of citrate, malate, and fumarate in pWPI and NDI-1 mT80 cells grown in the presence of 1-13C-glutamine. Data are mean ± SEM from

three independent cultures.

*p % 0.05, one-way ANOVA (A and B). *p % 0.05, **p % 0.01, ***p % 0.001, two-sided t test (E–G).
reductive carboxylation (Figure S4C). Together, these data indi-

cate that impairment of cellular NAD+/NADH ratio by mitochon-

drial NADH turnover induces reductive carboxylation of

glutamine.

Reductive Carboxylation Is Coupled with Glycolysis
via MDH1
We then assessed the functional relevance of cytosolic reductive

carboxylation in themetabolic reprogrammingof our cells. To this

end, we first simulated the suppression of IDH1 in silico, followed

by computation of the changes in metabolic fluxes. Of note, the

in silico depletion of IDH1 led to significant changes to reactions

belonging to glycolysis and MAS (Figure S5A). Indeed, among

the top reactions affected by the suppression of reductive

carboxylation were major glycolytic enzymes, such as GAPDH

and pyruvate kinase (PK), as well as glutamate oxaloacetate

transaminase1 (GOT1) andMDH1, twocomponents ofMAS (Fig-

ure S5A). Interestingly, we found that the in silico deletion of IDH1

led to a reduction of ATP yield in mT80 (Figure 4A) but had no

effects in mT7. In support of this prediction, the silencing of
IDH1 in mT80 cells led to decreased lactate secretion and cell

proliferation, but it had no effects in mT7 (Figures S5B and

S5C). Moreover, among the components of MAS, we observed

a striking increase in the contribution ofMDH1 to ATP production

in mT80 compared with mT7 model (Figure 4A). These results

suggest that cytosolic reductive carboxylation and MDH1 may

be linked to glycolysis and subsequent ATP generation. In addi-

tion, these results are in line with the recent observation that

MDH1 can support glycolysis via recycling of cytosolic NADH in

proliferating cells (Hanse et al., 2017).

We investigated whether the synthesis of cytosolic malate

via MDH1 could support glycolysis in cells with mitochondrial

dysfunction. To this aim, we first assessed the functional conse-

quences of the silencing ofMDH1 in mT80 cells (Figure S5D). The

production of malate m+1 and fumarate m+1 from 1-13C-gluta-

mine was markedly reduced in MDH1-depleted mT80 cells,

compared to non-targeting control (Figure S5E). These results

confirmed our prediction that IDH1-dependent reductive

carboxylation can generate cytosolic malate via MDH1 activity

in mT80 cells.
Molecular Cell 69, 581–593, February 15, 2018 585
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MDH1 generates NAD+ upon reduction of oxaloacetate to

malate. We therefore hypothesized that MDH1 could support

glycolysis by providing NAD+, a key cofactor required by

GAPDH. Importantly, the silencing of either IDH1 or MDH1

affected NADH redox state in mT80 cells, but had little effect in

mT7 cells (Figure 4B), suggesting that IDH1 and MDH1 play a

role in NADH oxidation in cells with mitochondrial dysfunction.

To further investigate the possible coupling between glycolytic

NADH and MDH1, we performed a hydrogen tracing experiment

with 4-2H-glucose, which allows measurement of the transfer of

hydrogen atoms from GAPDH-derived NADH to cytosolic me-

tabolites (Figure 4C) (Lewis et al., 2014). We found that malate

m+1 was increased in mT80 cells, compared with mT45 and

mT7 (Figure 4D), confirming the functional coupling between

GAPDH and MDH1, as well as the directionality of MDH1 (Fig-

ure 4E). Furthermore, we found that treatment with rotenone

led to increased levels of malate m+1 in mT7 cells incubated

with 4-2H-glucose (Figure S6A), demonstrating that the coupling

of MDH1 and GAPDH can be induced by pharmacological

suppression of mitochondrial function. To expand our findings

to additional cell models of mitochondrial dysfunction, we per-

formed labeling experiments on a panel of succinate dehydroge-

nase b (Sdhb)-deficient mouse cell lines, which exhibit profound

impairment of mitochondrial function (Cardaci et al., 2015). Of

note, these cells exhibited reductive carboxylation of glutamine

(Figure S6B) and showed increased levels of malate m+1 upon

incubation with 4-2H-glucose (Figure S6C), indicating that recy-

cling of glycolytic NADH byMDH1 is a bona fidemetabolic rewir-

ing induced by mitochondrial dysfunction.

To assess whether MDH1 can support glycolytic flux, we per-

formed (U)-13C-glucose labeling and assessed lactate secretion

in mT7 and mT80 cells upon silencing of MDH1. We observed

decreased lactate secretion in mT80 cells when MDH1 was

silenced, while little or no effect was observed in mT7 cells (Fig-

ure 4F). Furthermore, we found that the silencing of MDH1

reduced cell proliferation of mT80 cells, but not of mT7 cells

(Figure S6D). Together, these results suggest that MDH1 can

support glycolysis and proliferation of cells with mitochondrial

dysfunction.

To further corroborate the crosstalk between reductive

carboxylation, MDH1 activity, and glycolysis, we assessed the

contribution of reductive carboxylation to malate upon inhibition

of GAPDH with heptelidic acid. Together with the expected

accumulation of glyceraldehyde 3-phosphate (Figure S2E), we

observed diminished levels of citrate andmalatem+1 (Figure 4G)
Figure 4. Reductive Carboxylation Supports Glycolytic Flux via NADH

(A) Percentage of contribution to ATP production for the indicated enzymes, as p

(B) Total levels of NAD+/NADH in shIDH1 and shMDH1 mT7 and mT80 cells, com

(C) Schematic representation of labeling pattern originating from 4-2H1-glucose.

(D and E) Proportion of total pool of malate m+1 originating from 4-2H1-glucose

(F) Levels of secreted lactate m+3 upon incubation of shMDH1 mT7 and mT80 c

(G) Proportion of total pool for citrate m+1 and malate m+1 originating from 1-13

GAPDH inhibitor heptelidic acid.

(H) GAPDH IP on lysates of mT7, mT45, andmT80 cells. The interaction betweenG

isotype controls. Representative images from two independent experiments.

(I) Immunofluorescence images of mT7, mT45, and mT80 cells stained with DAP

(B and D–G) Data are mean ± SEM from at least three independent cultures.

*p % 0.05, **p % 0.01, ***p % 0.001, two-sided t test (B and E–G). *p % 0.05, on
upon incubation with 1-13C-glutamine, indicating that reductive

carboxylation is intimately linked with GAPDH activity.

We then hypothesized that, to sustain uninterrupted flux

through MDH1 and to avoid its accumulation, malate would be

further converted to downstream metabolites. Malate could be

metabolized via cytosolic malic enzyme 1 (ME1), producing py-

ruvate and NADPH; alternatively, malate could be shuttled into

the mitochondria via MAS and enter the TCA cycle via oxidation

through MDH2; finally, malate could be secreted into the me-

dium (see Figure S6E for a schematic). In order to investigate

the fate of malate generated by cytosolic reductive carboxyla-

tion, we performed U-13C-glutamine tracing experiments and

measured the levels of pyruvate, citrate, and extracellular ma-

late. Interestingly, we observed reduced levels of pyruvate

m+2 and citrate m+3 in mT80 cells, compared to mT7 and

mT45 (Figure S6E), indicating that malate is not metabolized

through ME1 and does not enter the CAC. Unexpectedly, we

observed an increased secretion of malate m+3 in the medium

of mT80 cells, indicating that malate generated via reductive

carboxylation is secreted in the extracellular space (Figure S6E).

Furthermore, we observed higher levels of extracellular fumarate

m+3 in these cells, suggesting that malate can also be converted

to fumarate by cytosolic fumarate hydratase (FH) and secreted

out of the cell. Overall, these results suggest that increased cyto-

solic reductive carboxylation is coupled with secretion of malate

and its product fumarate, likely to sustain MDH1 activity.

Finally, we hypothesized that the NADH shuttling between

GAPDH and MDH1 could be facilitated by the physical interac-

tion between the two enzymes, as observed for the interaction

between LDH and GAPDH (Svedruzi�c and Spivey, 2006). Using

co-immunoprecipitation (coIP) assays, we found that GAPDH

interacts with MDH1 (Figure 4H). Strikingly, we observed that

mT80 cells displayed a greater interaction between GAPDH

and MDH1, compared to mT45 and mT7 (Figure 4H). Impor-

tantly, increased interaction between GAPDH and MDH1 in

mT80 cells was not due to higher protein expression of MDH1

in mT80 cells (Figure S6F). In addition, we observed interaction

between GAPDH and LDH in mT7, mT45, and mT80 cells (Fig-

ure S6G), thus confirming previous evidence of formation of a

complex between these two enzymes (Svedruzi�c and Spivey,

2006). Finally, immunofluorescence experiments demonstrated

increased co-localization between GAPDH and MDH1 in mT80

cells, compared to mT45 and mT7, thus further indicating an

increased interaction between the two enzymes in the presence

of mitochondrial dysfunction (Figures 4I and S6H).
Channeling between MDH1 and GAPDH

redicted by metabolic modeling in mT80 and mT7 models.

pared to shNTC controls, in basal conditions measured by enzymatic assay.

Deuterium atoms are represented as green filled circles.

in mT7, mT45, and mT80 cells (D) and shMDH1 mT80 cells (E).

ells with (U)-13C-glucose. Data are normalized to shNTC controls.

C-glutamine in mT7, mT45, and mT80 cells upon treatment with 0.5 mM of the

APDH andMDH1 is shown by coIP. Immunoglobulin G (IgG) is used in negative

I (blue), GAPDH (green), and MDH1 (red).

e-way ANOVA (D). GAA, glutamate aspartate antiporter.
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Figure 5. Aspartate Transamination Supports Flux through MDH1 and Generation of Malate
(A) Schematic representation of MAS and labeling patterns originating from (U)-13C-aspartate.

(B andC) Proportion of total pool of malatem+4 (B) and fumaratem+4 (C) inmT7,mT45, andmT80 cells grown in the presence of U-13C-aspartate upon treatment

with vehicle control or 0.5 mM rotenone.

(D) Malatem+4 levels originating from (U)-13C-aspartate inmT80 cells upon silencing of GOT1. Data are normalized to intracellular levels of aspartatem+4 and are

mean ± SD from one independent experiment.

(E and F) Cell growth of mT7, mT45, and mT80 cells grown in 25 mM galactose and supplemented with 5 mM aspartate (E) upon treatment with 2 mM of the

transaminase inhibitor aminooxyacetate (F). Data are normalized on cell growth of vehicle control (E) or on cell growth in the presence of aspartate only (F).

(G) Cell growth of mT80 cells grown in 25 mM galactose and supplemented with 5 mM aspartate upon silencing of GOT1. Data are normalized to the cell growth

rate of vehicle control.

(H and I) Total levels of NAD+/NADH in mT7, mT45, andmT80 cells (H) or shMDH1mT80 cells (I) upon supplementation with 5 mM aspartate. Data are normalized

on vehicle control.

(J and K) Secretion of lactate of mT7, mT45, and mT80 cells (J) or shMDH1 mT80 cells (K) upon supplementation with 5 mM aspartate. Data are normalized on

vehicle control.

(B, C, and E–K) Data are mean ± SEM from at least three independent cultures.

*p % 0.05, **p % 0.01, ***p % 0.001, two-sided t test; n.s., not significant (B, C, E, and G–K). ***p % 0.001, one-way ANOVA (F).
Aspartate Supports Flux via MDH1 and Generates
Malate
Our results indicate that the cytosolic component of the MAS,

including GOT1, could function as an additional source of oxalo-

acetate for MDH1 (Figure 5A). To further investigate the direc-
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tionality of the MAS in our models, cells were cultured in the

presence of (U)-13C-aspartate. Importantly, (U)-13C-aspartate

was taken up from the extracellular medium to a greater extent

in mT80 cells, compared with mT7 and mT45 (Figure S7A). We

found that aspartate is converted to m+4 malate and fumarate,



displaying the highest proportion of labeling in mT80, compared

to mT45 and mT7 cells (Figures 5B and 5C). Furthermore, the

accumulation of malate m+4 was also observed when cells

were cultured in different media conditions (Figure S7B), sug-

gesting that this reaction is independent from nutritional cues.

Surprisingly, we could not detect labeled succinate, and the

labeling of citrate from aspartate did not correlate withmitochon-

drial function and was not further increased by rotenone (Fig-

ure S7C), indicating that utilization of aspartate in our cell model

is predominantly cytosolic. In support of this hypothesis, defects

of cellular respiration in mT80 cells were not rescued by exoge-

nous aspartate (Figure S7D). Furthermore, the treatment with

rotenone led to increased m+4 labeling of malate and fumarate

(Figures 5B and 5C) from (U)-13C-aspartate, suggesting that

contribution of aspartate to these metabolite pools is linked

with mitochondrial function.

The synthesis of cytosolic malate from aspartate requires

transamination to oxaloacetate (OAA), followed by reduction of

OAA to malate via MDH1. Therefore, we reasoned that mT80

cells might be dependent on aspartate transamination for the

regeneration of malate. To validate this hypothesis, we silenced

the glutamate-oxaloacetate transaminase (GOT) 1 (Figure S7E),

the enzyme responsible for aspartate transamination in the

cytosol. The silencing of GOT1 led to decreased labeling of

malate m+4 from 13C-aspartate (Figure 5D), indicating that cyto-

solic aspartate transamination by GOT1 can support generation

of malate. Finally, we showed that aspartate supplementation

could rescue proliferation of mT80 cells grown in galactose,

while only minor effects were observed in mT7 and mT45

cells (Figure 5E), an effect that is blunted by aminooxyacetate

(AOA), an inhibitor of transaminases (Figure 5F), as well as

through GOT1 silencing (Figure 5G).

Consistent with a role for aspartate as a source of OAA to

fuel MDH1-dependent NADH recycling in cells with mitochon-

drial dysfunction, we observed that aspartate supplementation

increased NAD+/NADH levels to a greater extent in mT80 cells,

compared to mT7 and mT45 (Figure 5H), an increase that was

due, at least in part, to flux through MDH1 (Figure 5I). Moreover,

aspartate supplementation increased lactate secretion (Fig-

ure 5J) in anMDH1-dependent fashion (Figure 5K). Overall, these

results indicate that cytosolic transamination of aspartate sup-

ports flux through MDH1 and synthesis of cytosolic malate, ulti-

mately contributing to NADH recycling and glycolytic flux, to

support proliferation of cells with mitochondrial dysfunction.

MDH1 Regulates Cell Migration
Finally, we investigated a functional consequence of the

metabolic rewiring prompted by dysfunctional mitochondria.

Recently, it was shown that production of ATP by glycol-

ysis, rather than by mitochondrial oxidative phosphorylation

(OXPHOS), supports cell migration (Yizhak et al., 2014). Of

note, we found that the contribution of glycolysis to ATP produc-

tion is higher in mT80 compared to mT7 and mT45 cells (Fig-

ure S7F). Therefore, we hypothesized that the switch to glyco-

lytic ATP production might be associated with increased cell

motility in our model. A proteome analysis of mT7 and mT80

cells, followed by gene ontology (GO) enrichment analysis, re-

vealed that processes involved in cell migration and cytoskel-
eton remodeling were significantly altered between mT7 and

mT80 cells (Figure 6A; Table S4). We therefore assessed cell

migration in mT7, mT45, and mT80 cells by performing a

wound-healing assay in vitro. We found that the migratory ca-

pacity increased proportionally to the degree of mitochondrial

dysfunction, with mT80 cells displaying highest migration speed

(Figures 6B and S7G). In line with this result, greater amounts of

ATP were used for cytoskeletal remodeling in mT80, compared

to mT7 and mT45 (Figure 6C). Finally, we assessed the role of

MDH1 in supporting this process. We found that the migratory

abilities of mT80 were markedly reduced upon silencing of

MDH1, compared to non-targeting control (Figures 6D and

S7H), and shMDH1 cells demonstrated reduced utilization of

ATP for cytoskeleton dynamics (Figure 6E). In addition, we

observed that co-localization of MDH1 with actin followed the

trend of mitochondrial dysfunction inmT7,mT45, andmT80 cells

(Figures 6F and 6G). Together, these results indicate that mito-

chondrial dysfunction is associated with increased migration

and that MDH1 might play a role in this process by sustaining

glycolytic ATP generation.

DISCUSSION

In this study, we exploited a panel of isogenic cell lines that

harbor varying degrees of mtDNA mutation that affects ATP

synthase, mTUNE, for investigating the effect of mitochondrial

dysfunction on cell metabolism. Other studies have modeled

mitochondrial dysfunction in isogenic cell lines. For instance,

the expression of a dominant-negative mutant of polymerase

gamma was used to induce the depletion of mtDNA in cultured

cell lines, identifying links between mitochondrial function and

epigenetic changes (Martı́nez-Reyes et al., 2016), and serine

metabolism (Bao et al., 2016). The expression of amutant variant

of the mtDNA helicase Twinkle was used to model mitochondrial

dysfunction, confirming the association between mitochondrial

function and serine and purine biosynthetic pathways (Nikkanen

et al., 2016). Compared to these models, the mTUNE model al-

lows the generation of a panel of isogenic cell lines displaying

varying degrees of mitochondrial function. In addition, mTUNE

cells display mild mitochondrial dysfunction andmight represent

a more physiological model of mitochondrial function compared

to pharmacological inhibition of respiration (Birsoy et al., 2015) or

profound loss of mitochondrial respiratory complexes (Bao et al.,

2016; Sullivan et al., 2015; Martı́nez-Reyes et al., 2016).

Reductive carboxylation is known to support proliferation

of cancer cells with mitochondrial dysfunction (Mullen et al.,

2011) or when treated with metformin (Liu et al., 2016), and con-

tributes to de novo lipid synthesis under hypoxia (Metallo et al.,

2011). Yet its biochemical determinants remain unclear. In this

work, we demonstrate that reductive carboxylation supports

metabolic flux through the NADH-consuming MDH1, regenerat-

ing cytosolic NADH to support glycolysis. Notably, the require-

ment of high NADH turnover to support glycolytic flux has

been previously hypothesized, especially in conditions in which

mitochondrial function is not sufficient to recycle cytosolic

NADH and high biomass generation is required (Dai et al.,

2016). For instance, high cytosolic NADH turnover has been

suggested to support anabolic reactions that branch out of
Molecular Cell 69, 581–593, February 15, 2018 589



Figure 6. Mitochondrial Dysfunction Is Linked with Cell Migration

(A) Enrichment p values (�log10) of gene ontology (GO) biological processes involved in cell migration and cytoskeleton remodeling as obtained with mea-

surements of protein abundance by proteomics. Red dashed line indicates false discovery rate (FDR) = 0.05.

(B and D) Migration speed of mT7, mT45, and mT80 cells (B) or shMDH1 mT80 cells (D) measured by wound healing assay.

(C and E) Values of JATP consumption due to cytoskeleton remodeling based on calculations from OCR and ECAR data upon treatment with 1 mM nocodazole in

mT7, mT45, and mT80 cells (C) or mT80 shMDH1 cells (E).

(F) Immunofluorescence images of mT7, mT45, andmT80 cells stained with DAPI (blue), phalloidin (green), or antibody against MDH1 (red). White arrows indicate

areas of co-localization between MDH1 and actin in mT80 cells.

(G) Quantification of co-localization between MDH1 and phalloidin (actin). Data were obtained from 20–30 ROIs per condition.

(B–E) Data are mean ± SEM from three to four independent cultures and were normalized on mean values of each experiment.

*p % 0.05 and ***p % 0.001, ANOVA (B, C, and G) or Dunnett’s test (D).
glycolysis, such as the serine biosynthesis pathway (Liberti and

Locasale, 2016). In this scenario, cytosolic reductive carboxyla-

tion operates as substitute for MAS, tightly coupling the oxida-

tion of glutamine with glycolysis and likely enabling glycolytic

flux for ATP synthesis and biomass generation.

Our studies show that MDH1 is an important enzyme when

high glycolytic capacity is required to support anabolic demands

or to compensate for NAD redox imbalance upon mitochondrial

dysfunction (see Figure 7 for a schematic). These results are

in line with a recent study that demonstrated that MDH1 can

recycle glycolytic NADH and support proliferation of cancer cells

and activated lymphocytes (Hanse et al., 2017), two settings

characterized by diminishedmitochondrial function and high reli-

ance on glycolysis (Vander Heiden et al., 2009; Pearce et al.,

2013). Furthermore, our study concurs with the finding that

MDH1, but not MDH2, is required for proliferation of lung cancer

cell lines (Zhang et al., 2017). While the study from Hanse and
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colleagues (Hanse et al., 2017) lacked a formal demonstration

of the role of reductive carboxylation and MDH1 in recycling

NADH to fuel glycolysis, our functional and metabolic labeling

studies provide compelling evidence that NADH shuttling cou-

ples cytosolic reductive carboxylation of glutamine with glycol-

ysis in cells with mitochondrial dysfunction.

Recent studies have demonstrated that cells with mitochon-

drial dysfunction, through either genetic or pharmacological inhi-

bition of the RC, experience a drop in intracellular aspartate and

undergo a profound rewiring of the MAS (Birsoy et al., 2015; Sul-

livan et al., 2015). In this scenario, the reversal of MDH1 con-

sumes NAD+ and provides OAA for the generation of aspartate

and nucleotide synthesis. Although our findings are in line with

the depletion of aspartate in cells with mitochondrial dysfunc-

tion, we found increased flux through the forward, NAD+-pro-

ducing MDH1 reaction. Discrepancies between our findings

and prior observations are likely due to the different level of



Figure 7. Reductive Glutamine Carboxyla-

tion Regulates NAD Redox Balance and

Supports Glycolysis in Response to Mito-

chondrial Dysfunction

Reduced turnover of NADH by mitochondria leads

to impairment of theMAS and increase of cytosolic

NADH. This in turn induces reductive carboxyla-

tion of glutamine, providing carbons for NADH-

coupled MDH1, thus regulating NAD redox state

and enhancing GAPDH activity. Increased glyco-

lytic turnover supports ATP production in the

cytosol, and this is associated with cell migration.
mitochondrial dysfunction in these models. Indeed, mitochon-

drial dysfunction in mTUNE is milder than that triggered by phen-

formin (Birsoy et al., 2015) or by loss of CYTB (Sullivan et al.,

2015) and might represent a more physiological dysregulation

of mitochondrial function in which the MAS still operates in the

forward direction.

We also provided evidence that MDH1 may interact with the

key glycolytic enzymeGAPDH, enhancing the recycling of glyco-

lytic NADH. Interaction of glycolytic enzymes into a single multi-

enzyme complex has been observed previously (Menard et al.,

2014). Importantly, multienzyme complexes can offer several

advantages, including higher solvation and substrate chan-

neling. Formation of a multienzyme complex between GAPDH

and LDH has already been reported (Svedruzi�c and Spivey,

2006), and NADH channeling between these two enzymes is

known to be rate limiting for glycolytic flux. Moreover, the gener-

ation of a multienzyme complex for maximization of GAPDH flux

is in line with the central role of GAPDH as the limiting step regu-

lating aerobic glycolysis (Shestov et al., 2014). Our data suggest

that the interaction between MDH1 and GAPDH might be

dictated by mitochondrially driven changes in the biochemical

environment of the cytosol, such as the availability of NAD+

or pH. However, we do want to emphasize that our work has

not conclusively demonstrated or characterized the physical

interaction between GAPDH and MDH, and that more work is

required to establish the biophysical and biochemical basis of

this interaction.

Recently, published work has highlighted the link between

mitochondrial dysfunction and acquisition of cell migratory abil-

ities, whereby pharmacological inhibition of the RC (Porporato

et al., 2014), genetic impairment of the TCA cycle (Loriot et al.,

2012; Sciacovelli et al., 2016), or loss of transcriptional regula-

tion for mitochondrial biogenesis (Torrano et al., 2016) can lead

to acquisition of migratory properties and induce metastasis of

cancer cells. In addition, we have recently reported that downre-
Molecul
gulation of nuclear encoded mitochon-

drial enzymes is associated with the

induction of epithelial-to-mesenchymal

transition (EMT), a genetic signature sup-

porting migration and metastasis (Gaude

and Frezza, 2016). Yet the underlying

mechanisms remain unclear. Our results

show that mitochondrial dysfunction is

associated with increased production of
ATP from glycolysis and increased migratory capacity. These re-

sults are in line with the observation that increased glycolytic

versus oxidative generation of ATP increases cell migration (Yiz-

hak et al., 2014) and with the recent evidence that glycolytic en-

zymes can sustain cell motility by localizing with components of

the cytoskeleton and providing local generation of ATP (De Bock

et al., 2013). Together, our results suggest that, in the presence

of mitochondrial dysfunction, increased flux through MDH1 can

enhance ATP yield from glycolysis and is associated with

increased cell migration.
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Bertherat, J., Plouin, P.-F., Jeunemaitre, X., Gimenez-Roqueplo, A.-P., and

Favier, J. (2012). Epithelial tomesenchymal transition is activated inmetastatic

pheochromocytomas and paragangliomas caused by SDHB gene mutations.

J. Clin. Endocrinol. Metab. 97, E954–E962.

Mackay, G.M., Zheng, L., van den Broek, N.J.F., and Gottlieb, E. (2015).

Analysis of cell metabolism using LC-MS and isotope tracers. Methods

Enzymol. 561, 171–196.

https://doi.org/10.1016/j.molcel.2018.01.034
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref1
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref1
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref1
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref2
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref2
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref2
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref3
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref3
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref3
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref4
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref4
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref5
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref5
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref5
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref6
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref6
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref6
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref6
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref7
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref7
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref7
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref8
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref8
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref8
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref8
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref9
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref9
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref10
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref10
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref10
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref10
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref11
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref11
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref11
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref12
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref12
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref12
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref12
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref13
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref13
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref13
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref13
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref13
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref14
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref14
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref14
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref15
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref15
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref15
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref16
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref16
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref16
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref16
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref17
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref17
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref17
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref18
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref18
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref18
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref18
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref19
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref19
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref20
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref20
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref20
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref20
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref21
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref21
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref22
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref22
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref22
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref23
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref23
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref23
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref23
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref23
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref24
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref24
http://refhub.elsevier.com/S1097-2765(18)30093-5/sref24


Mahadevan, R., and Schilling, C.H. (2003). The effects of alternate optimal so-

lutions in constraint-based genome-scale metabolic models. Metab. Eng. 5,

264–276.

Marroquin, L.D., Hynes, J., Dykens, J.A., Jamieson, J.D., and Will, Y. (2007).

Circumventing the Crabtree effect: replacing media glucose with galactose in-

creases susceptibility of HepG2 cells to mitochondrial toxicants. Toxicol. Sci.

97, 539–547.

Martı́nez-Reyes, I., Diebold, L.P., Kong, H., Schieber, M., Huang, H., Hensley,

C.T., Mehta, M.M.,Wang, T., Santos, J.H.,Woychik, R., et al. (2016). TCA cycle

and mitochondrial membrane potential are necessary for diverse biological

functions. Mol. Cell 61, 199–209.

Menard, L., Maughan, D., and Vigoreaux, J. (2014). The structural and func-

tional coordination of glycolytic enzymes in muscle: evidence of a metabolon?

Biology (Basel) 3, 623–644.

Metallo, C.M., Gameiro, P.A., Bell, E.L., Mattaini, K.R., Yang, J., Hiller, K.,

Jewell, C.M., Johnson, Z.R., Irvine, D.J., Guarente, L., et al. (2011).

Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypox-

ia. Nature 481, 380–384.

Mookerjee, S.A., Gerencser, A.A., Nicholls, D.G., and Brand, M.D. (2017).

Quantifying intracellular rates of glycolytic and oxidative ATP production and

consumption using extracellular flux measurements. J. Biol. Chem. 292,

7189–7207.

Mullen, A.R., Wheaton, W.W., Jin, E.S., Chen, P.-H., Sullivan, L.B., Cheng, T.,

Yang, Y., Linehan, W.M., Chandel, N.S., and DeBerardinis, R.J. (2011).

Reductive carboxylation supports growth in tumour cells with defective mito-

chondria. Nature 481, 385–388.

Nikkanen, J., Forsström, S., Euro, L., Paetau, I., Kohnz, R.A., Wang, L., Chilov,

D., Viinam€aki, J., Roivainen, A., Marjam€aki, P., et al. (2016). Mitochondrial DNA

replication defects disturb cellular dNTP pools and remodel one-carbonmeta-

bolism. Cell Metab. 23, 635–648.

Orth, J.D., Thiele, I., and Palsson, B.Ø. (2010). What is flux balance analysis?

Nat. Biotechnol. 28, 245–248.

Pavlova, N.N., and Thompson, C.B. (2016). The emerging hallmarks of cancer

metabolism. Cell Metab. 23, 27–47.

Pearce, E.L., Poffenberger, M.C., Chang, C.-H., and Jones, R.G. (2013).

Fueling immunity: insights into metabolism and lymphocyte function.

Science 342, 1242454.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

mTUNE cells were generated by Dr Michal Minczuk’s lab and derive from female human osteosarcoma 143B (RRID: CVCL_2270)

cybrid cells (Porteous et al., 1998), after correction of m.8993T>G mutation with mitochondrially-targeted zinc finger nucleases

(Gammage et al., 2016a). Authentication was performed by assessing m.8993T>G heteroplasmy (detailed below). Except when

indicated differently, cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM, Life Technology cat. no. 41966-029) con-

taining 25 mM glucose and 4 mM glutamine, with added 10% v/v fetal bovine serum (FBS) and grown in a humidified incubator at

37�C and 5% CO2. Cells were allowed to grow for two to three days until 90%–95% confluent before next subpassaging.

METHOD DETAILS

Cell growth assays
For cell proliferation assays 2*104 cells were seeded in 24-well plates and allowed to attach for at least 16 hours. Medium was then

changed to normal DMEM or DMEMwith added/substituted nutrients or drugs. Cell growth in galactose was performed by culturing

cells in glucose-free and pyruvate-free DMEM (Life Technology cat. no. 11966-025), with added 10% v/v FBS, 25 mM D-galactose

(Sigma, G0750) and 1mMsodiumpyruvate (Sigma, P2256). To assess cell proliferation in the presence of aminooxiacetate (AOA) and

aspartate normal DMEM was supplemented with varying concentrations of AOA (Sigma-Aldrich, C13408) and 4 mM L-aspartic acid

(Sigma-Aldrich, A9256). At least 4 independent replicates were recorded for each condition, in each experiment. Cell growth

was assessed with an IncuCyte FLR (Essen Bioscience) and assay was stopped when all cell conditions reached full confluency

or confluency started to decrease consistently.

Oxygen consumption and Extracellular acidification rate measurement
To assess oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) 6*104 cells were seeded the night before exper-

iment in XFe24 Cell Culture microplate in 100 mL normal DMEM. The next day cells were washed twice in phosphate buffer saline

(PBS) and medium was replaced with 675mL of bicarbonate-free DMEM (Sigma-Aldrich, D5030) supplemented with 25 mM glucose,

1 mM pyruvate, 4 mM glutamine, 40 mMphenol red and 1% v/v FBS. To eliminate residues of carbonic acid frommedium, cells were

incubated for at least 30 minutes at 37�C with atmospheric CO2 in a non-humidified incubator. OCR and ECAR were assayed in a

Seahorse XF-24 extracellular flux analyzer by the addition via ports A–C of 1 mMoligomycin (port A), 1 mMcarbonyl cyanide-p-trifluor-

omethoxyphenylhydrazone (FCCP, port B), 1 mM rotenone and 1 mMantimycin A (port C). Two or three measurement cycles of 2-min

mix, 2-min wait, and 4-min measure were carried out at basal condition and after each injection. At the end of the experiment,

each well was washed twice with 1mL of PBS and proteins were extracted with 100mL of radioimmune precipitation assay (RIPA)

lysis medium (150 mM NaCl, 50 mM Tris, 1 mM EGTA, 1 mM EDTA, 1% (v/v) Triton X-100, 0.5% (w/v) sodium deoxycholate,

0.1% (v/v) SDS, pH 7.4) at room temperature. Plates were incubated at �80�C for 30 min and allowed to thaw at room temperature.

Protein concentration in each well was measured by a BCA assay according to the manufacturer’s instructions (Thermo). OCR and

ECAR values were normalized on total mg of proteins in each well.

Activity of individual respiratory complexes was assessed by following a modified version of the method proposed by Salabei and

colleagues (Salabei et al., 2014). Cells were seeded in XFe24 Cell Culture microplate as mentioned above. On the day of experiment
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each well was washed twice with 500mL of mannitol and sucrose buffer (70 mM sucrose, 220 mM mannitol, 10 mM KH2PO4, 5 mM

MgCl2, 2 mM HEPES, 1 mM EGTA, 4 mg/mL fatty acid-free bovine serum albumin, pH 7.2), replaced with 675mL of MAS buffer with

added 20mg/mL digitonin (Sigma-Aldrich, cat. no. D141) and plate was immediately inserted into the Seahorse XF-24 analyzer.

Activity of complex I and II was assayed on the same plate by adding in port A-D 5 mM glutamate and 2.5 mM malate (port A),

1 mM rotenone (port B), 10 mM succinate (port C) and 1mM antimicyn A (port D). Activity of complex III was assayed by addition

via port A-B of 500 mM duroquinol (port A) and 1 mM Antimycin A (port B). Activity of complex IV was assessed by adding in port

A-B 500mM TMPD and 2 mM ascorbate (port A) and 20 mM sodium azide (port B). All drug solutions were prepared in MAS buffer.

Two or three measurement cycles of 2-min mix, 2-min wait, and 3-min measure were carried out at basal condition and after each

injection. Protein concentrations in each well were determined as detailed above. OCRmeasurements were normalized on total mg of

proteins in each well.

Estimation of ATP production and consumption from oxidative phosphorylation and glycolysis was obtained as described by

Mookerjee et al. (2017). Briefly, 4*104 cells were seeded in XFe24 Cell Culture microplate in 100 mL normal DMEM. The next day cells

were washed twice with, and medium was replaced by, 675 mL Krebs-Ringer phosphate HEPES (KRPH) medium (2 mM HEPES,

136 mM NaCl, 2 mM NaH2PO4, 3.7 mM KCl, 1 mM MgCl2, 1.5 mM CaCl2, 0.1% (w/v) fatty-acid-free bovine serum albumin,

pH 7.4 at 37�C) and incubated for 30 minutes at 37�C with atmospheric CO2. OCR and ECAR were assayed in a Seahorse XF-24

extracellular flux analyzer by the addition via ports A–D of 10mM glucose (port A), 1 mM oligomycin (port B), 1 mM carbonyl

cyanide-p-trifluoromethoxyphenylhydrazone (FCCP, port C), 1 mM rotenone and 1 mMantimycin A (port D). To assess ATP consump-

tion by cytoskeleton dynamics injections were: (A) 10 mM glucose, (B) 1 mM nocodazole (Sigma-Aldrich cat. no. M1404), (C) 1 mM

oligomycin and (D) 1 mM rotenone and 1 mM antimycin A. Two or three measurement cycles of 1-min mix, 1-min wait, and 3-min

measure were carried out at basal condition and after each injection. At the end of the experiment, protein concentration was

quantified as described above. Calculations of JATP were performed as described in Mookerjee et al. (2017). For each experiment,

5-7 technical replicates were collected per condition.

Western blotting
For analysis of protein expression proteins were extracted in RIPA lysismedium (150mMNaCl, 50mMTris, 1mMEGTA, 1mMEDTA,

1% (v/v) Triton X-100, 0.5% (w/v) sodium deoxycholate, 0.1% (v/v) SDS, pH 7.4) at room temperature. 20-50mg of protein was heated

at 70�C for 10min in the presence of sample buffer 13 (Bolt loading buffer 13 (Life Technologies cat. no. B0007) supplemented with

4% b-mercaptoethanol (Sigma-Aldrich cat. no. M6250)). Samples were then loaded onto Bolt gel 4%–12% Bis-Tris (Invitrogen cat.

no. NW04122BOX) and run usingMES 13 buffer (Life Technologies cat. no. B0002) at 200V constant for 30-40min. Dry transfer of the

gels was carried out using IBLOT2 system (Life Technologies). Membranes were then incubated in blocking buffer (5% milk in TBS

13 + 0.01%Tween 20) for 30minutes at room temperature. Primary antibodies in blocking buffer were incubated overnight at 4�C or

2 hours at room temperature. Secondary antibodies (conjugated with 680 or 800nm fluorophores from Li-Cor) were diluted 1:2,000 in

blocking buffer and incubated for 1h at room temperature. Images were acquired using a Li-Cor Odyssey CLx system linked with

Image Studio 5.2 software (Li-Cor). Primary antibodies were: mouse anti-human GAPDH (Abcam cat. no. ab8245), mouse anti-hu-

man Mitochondria OXPHOS cocktail (Origene cat. no. MS601-360), rabbit anti-human LDH (Abcam cat. no. ab47010), rabbit anti-

human MDH1 (Abcam cat. no. ab180152), rabbit anti-human Calnexin (Abcam cat. no. ab22595), rabbit anti-NDI-1 (Cambridge

Research Biochemicals), mouse anti-human TOMM20 (Abcam cat. no. ab56783).

Immunoprecipitation assay
For immunoprecipitation assay cells were seeded in 15 cm dishes and allowed to grow until 95% confluent. Cells were then washed

twice with PBS on ice, 500mL of lysis buffer (140 mM NaCl, 5mM EDTA, 1% Triton X-100, 20 mM Tris pH 7.4) was added and cells

were scraped and collected. Extracted samples were incubated overnight at�20�C, centrifuged at 16000 g for 2 minutes at 4�C and

supernatant was collected. For each immunoprecipitation reaction, 35 mg of mouse anti-human GAPDH (Abcam cat. no. ab8245) or

mouse anti-humanMDH1 (Abcam cat. no. ab76616) were coupled to 1.5mgDynabeadsM-270 Epoxy beads (Life Technologies, cat.

no. 14311D) followingmanufacturer’s instructions. Antibody-coupled beads were incubated with 3 mg of protein lysate per condition

(total volume 1 mL) on a spinning wheel for 30 minutes at 4�C. After incubation, samples were placed on a magnet rack and beads

were washed three times with lysis buffer. Elution was performed by two cycles of beads resuspension in 20 mL of sample buffer

1 3 (see above) followed by incubation at 70�C for 10 minutes. Immunoprecipitation and co-immunoprecipitation were assayed

via western blotting.

Immunofluorescence assay
2*104 cells were seeded in 8-well m-Slide chambers (Ibidi Labware cat. no. 80821). The next day cells were washed twice with PBS,

fixed with 4% formaldehyde for 10 minutes at room temperature and washed twice with tris-buffered saline (TBS, 50 mM Tris,

150mMNaCl, pH 7.6). Cells were then permeabilisedwith 2%BSA, 0,1%Triton X-100 in TBST (TBS + 0,1%Tween 20) for 10minutes

at room temperature, washed three times with TBS and blocked with 1% BSA, 10% goat serum (Abcam) in TBST for 30 minutes at

room temperature. Cells were washed three times with TBS and incubated overnight at 4�C with a solution containing mouse anti-

humanGAPDH (Abcam cat. no. ab8245) and rabbit anti-humanMDH1 (Abcam cat. no. ab180152) at a 1:100 dilution. After incubation

with primary antibodies, cells were washed three times with TBS (5 minutes each wash) and stained with goat anti-mouse IgG
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coupled with Alexa Fluor 488 (Thermo Fisher Scientific cat. no. A11001) and goat anti-rabbit IgG coupled with Alexa Fluor 568

(Thermo Fisher Scientific cat. no. A11011) for 2 hours at room temperature in the dark. Cells were washed three times with TBS,

DNA was stained with a solution of 1 mg/mL of diamidino 2-phenylindole (DAPI) or with a solution of DAPI supplemented with

1 mM Alexa Fluor Phalloidin 488 (Thermo Fisher cat. no. A12379) for ten minutes at room temperature and cells were washed three

times with TBS before image acquisition. Images were acquired on Leica confocal microscope TCS SP5 with 63 3 objective. Each

channel was acquired separately to avoid bleed through and laser intensity, magnification, andmicroscope settings weremaintained

equal for all conditions. Co-localization of GAPDH andMDH1 or Actin and MDH1was quantified by assessing the overlap coefficient

between channels with the use of Volocity software v6.3 (PerkinElmer).

Proteomics
Cells were seeded in 15 cm dishes and allowed to grow until 95% confluent. Cells were then washed twice with PBS on ice and

500 mL of extraction buffer (20mMHEPES, 8M urea, protease inhibitors cocktail 1X (Sigma-Aldrich cat. no. P8340) and phosphatase

inhibitors cocktail (Sigma-Aldrich cat. no. P2850 and P5726), pH 8) were added. Protein concentration was quantified as described

above and 400 mg of proteins were submitted to further processing. Samples from three independent experiments were collected.

Protein samples (93 360 mg each) were prepared in 200 mL lysis buffer (8M urea, 20mMHEPES pH8, supplemented with protease

and phosphatase inhibitors) were reduced with 5 mM DTT at 56�C for 30 min and alkylated with 10 mM iodoacetamide in the dark at

room temperature for 30 min. After this, the samples were digested with Lys-C (mass spectrometry grade, Promega), 120:1 (protein:

Lys-C ratio, w/w) for 4.5hr at 25�C. Next, the samples were diluted from 8M to 1.8 M urea with 20 mM HEPES (pH 8.5) and were

digested with trypsin (Promega) 45:1 (protein: trypsin ratio, w/w) over night, at 25�C. Digestion was stopped by the addition of tri-

fluoroacetic acid (TFA) to a final concentration of 1%. Any precipitates were removed by centrifugation at 8000 rpm for 8 min.

The supernatants were desalted using a home-made C18 stage tips (3M Empore) contained 7 mg of poros R3 (Applied Biosystems)

resin. Bound peptides were eluted with 30%–80% acetonitrile (MeCN) in 0.1% TFA and lyophilized.

Peptide mixtures from each condition was re-suspended in 100 mL of 3%MeCN and the peptide concentrations were determined

by PierceQuantitative Colorimetric Peptide assay (ThermoScientific) according tomanufacturer instructions, except the absorbance

was measured by NanoDrop Spectrophotometers (Thermo Scientific) at 480nm. TMT 10plex reagent (Thermo Fisher Scientific) of

0.8 mg each was re-constituted in 41 mL anhydrous MeCN. The labeling reaction was performed in 150 mM triethylammonium

bicarbonate for 1hr at room temperature (r.t.), then terminated by incubation with 8 mL 5% hydroxylamine for 15 min. The labeled

peptides were combined into a single sample and partially dried to remove acetonitrile in a SpeedVac. The labeled peptides mixture

was desalted using Sep-Pak Plus Short tC18 cartridges (Waters). Bound peptides were eluted with 60% acetonitrile in 0.5% acetic

acid and lyophilized.

About 100 mg of the labeled peptides were separated on an offline, high pressure liquid chromatography (HPLC). The experiment

was carried out using XBridge BEH130 C18, 5 mm, 2.13 150mm (Waters) column with XBridge BEH C18 5 mm Van Guard cartridge,

connected to an Ultimate 3000 Nano/Capillary LC System (Dionex). Peptides were separated with a gradient of 1%–90% B (A: 5%

MeCN/10 mM ammonium bicarbonate, pH8; B: MeCN/10 mM ammonium bicarbonate, pH8, [9:1]) in 60 min at a flow rate of

250 ml/min. A total of 60 fractions were collected, they were combined into 20 fractions and partially dried in a Speed Vac to about

50 mL. The rest of the lyophilized labeled peptides were re-suspended in 1.5 mL of loading buffer (50% MeCN/ 2M lactic acid) and

incubated with TiO2 beads (12 mg, prewashed with loading buffer) for 1 hour at r.t. while shaking. After incubation, TiO2 beads

were transferred to a home-made C18 stage tips, washed on tip twice with loading buffer and once with 50% MeCN/ 0.1% TFA.

Phosphopeptides were eluted sequentially with 50 mM K2HPO4, pH10; 50% MeCN/50mM K2HPO4, pH10 and 50% MeCN/0.1%

TFA. The eluates were combined, acidified with formic acid, partially dried in a SpeedVac and desalted with home-made C18 stage

tip (3M Empore) that contained 1 mg of Poros R3 resin (Applied Biosystems).

Liquid chromatography was performed on a fully automated Ultimate 3000 RSLC nano System (Thermo Scientific)) fitted with a

100 mm x 2 cm PepMap100 C18 nano trap column and a 75 mm3 25 cm reverse phase C18 nano column (Aclaim PepMap, Thermo

Scientific). Samples were separated using a binary gradient consisting of buffer A (2% MeCN, 0.1% formic acid) and buffer B (80%

MeCN, 0.1% formic acid). Peptides were dissolved in solvent A and eluted with a step gradient of 5 to 50% B in 87-105 min, 50 to

90% B in 6-10 min, with a flow rate of 300 nL/min. The HPLC system was coupled to a Q Exactive Plus mass spectrometer (Thermo

Scientific) equipped with a nanospray ion source. The mass spectrometer was operated in standard data dependent mode, per-

formed MS full-scan at 350-1600 m/z range, with a resolution of 140000. This was followed by MS2 acquisitions of the 15 most

intense ions with a resolution of 35000 and NCE of 32%. MS target values of 3e6 and MS2 target values of 1e5 were used. Isolation

window of precursor was set at 1.2 Da and dynamic exclusion of sequenced peptides was enabled for 40 s.

The acquired MSMS raw files were processed using MaxQuant (Cox and Mann) with the integrated Andromeda search engine

(v.1.5.5.1). MSMS spectra were searched against Homo sapiens, UniProt Fasta database (Jan 2017). Carbamidomethylation of cys-

teines was set as fixed modification, while methionine oxidation, N-terminal acetylation (protein) (for both parameters groups) and

phosphorylation (STY) (for phospho- group only) were set as variable modifications. Protein quantification requires 1 (unique+ razor)

peptide. Other parameters inMaxQuant were set to default values. MaxQuant output file, proteinGroups.txt was then processed with

Perseus software (v 1.5.5.0). After uploading the matrix, the data was filtered, to remove identifications from reverse database and

modified peptide only, and common contaminants. Each peptide channel was normalized to the median and log2 transformed.
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Quantification of m.8993 heteroplasmy
Heteroplasmy at position m.8993 was measured using a previously described PCR RFLP assay, exploiting the creation of a unique

SmaI/XmaI site in the mutated molecule (Gammage et al., 2016b). Inclusion of [ a 32 P]-dCTP in a final cycle of PCR prevents false

detection of wild-type mtDNA due to heteroduplex formation.

Fluorescence associated cell sorting (FACS)
To assess mitochondrial mass 2.5*105 cells were seeded in 6-well plates and allowed to reach 90%–95% confluency. On the day of

experiment cells were incubated with normal DMEM containing 50nM MitoTracker Green FM (Thermo Fisher Scientific, cat. no.

M7514) for 30 minutes. Cells were detached with 0.25% trypsin and washed three times with PBS. Washed cells were then analyzed

by FACS using a LSRII (BD) flow cytometer bymonitoring the fluorescence emission at 530 nm± 15 nmupon excitation with a 488 nm

laser. FACS data were analyzed with FlowJo software (Treestar).

NADH measurements
To measure whole cell NAD+/NADH we used an adapted version of the method proposed by Frezza et al. (2011). 6*104 cells were

seeded in a 96-well plate the day before experiment and an enzymatic cycling reaction was performed. On the day of experiment

cells were washed twice with PBS and 100 mL of EB-DTAB buffer (1% w/v dodecyltrimethylammonium bromide (DTAB), 20 mM

sodium bicarbonate, 100 mM sodium carbonate, 10 mM nicotinamide, 0.05% v/v Triton X-100, pH 10.3) was added into each

well, cell lysis was facilitated by pipetting and 50 mL of lysed cells were transferred into a new empty well. 25 mL of 0.4 N HCl

were added to the last well (acid-treated sample) and plate was incubated at 60�C for 15 minutes. Plate was then equilibrated at

room temperature for 10 minutes and 25 mL of 0.5 M Trizma base were added to the acid-treated wells. 50 mL of HCl/Trizma solution

(0.4 N HCl: 0.5 M Trizma base 1:1 v/v) were added to the untreated wells (base-treated samples). 5 mL of each acid-treated and

base-treated samples were transferred to a new 96-well plate and 195 mL of cycling solution (CS) were added. CS was composed

of 84% v/v of reaction cocktail (120 mM bicine, 3.7% EtOH, 5 mM EDTA, pH 7.8), 3% v/v of 5 mg/mL alcohol dehydrogenase (ADH,

Sigma-Aldrich cat. no. A3263) in ddH2O, 8.5% v/v 20 mM Phenazine Thosulfate (PES, Sigma-Aldrich cat. no. P4544), 4.5% v/v

10 mM 3-[4,5-Dimethylthiazole-2-yl]-2,5-diphenyltetrazolium Bromide (MTT, Sigma-Aldrich cat. no. M2128). Plate was incubated

at room temperature for 30minutes andMTT absorbance was read at 570 nmwith a Tecan 200 Promicroplate reader. Blank samples

composed of EB-DTAB buffer only were prepared and subtracted to all other samples. Standard curves with NAD+ and NADH in the

range of 0.05-5 mM were prepared for quantification.

To assess mitochondrial NADH 5*105 the day before experiment cells were seeded on a 15 mm coverslip and incubated overnight

in standard medium. The next day medium was washed and replaced with 500 mL of phenol red-free DMEM (Sigma-Aldrich cat. no.

D5030) supplemented with 25 mM glucose, 1 mM pyruvate, 2 mM glutamax (Thermo Fisher Scientific cat. no. 35050061), 10 mM

HEPES, pH 7.4. Each coverslip was then placed in a metal ring and fitted on a heated stage at 37�C. NAD(P)H fluorescence intensity

time series were performed on an inverted LSM 510 laser scanning confocal microscope (Carl Zeiss) with 351nm illumination from an

argon ion laser (Coherent Enterprise UV). NAD(P)H fluorescence was detected using a 351-nm long-pass dichroic and 460 ± 25nm

band-pass emission filter with a 3 40, 1.3 NA quartz oil immersion objective. Images (12-bit 512 3 512) were obtained with a pixel

dwell time of 1.6ms. To reduce noise, the image recorded at each time point was an average of two consecutive scans. Time series

measurements were obtained by acquiring one image everyminute following this pattern: 1) basal conditions (5minutes); 2) dropwise

addition of 100 mL of 6 mM cyanide was added (1 mM final concentration, 4 minutes); 3) replacement of medium with 800 mL of fresh

medium (5 minutes); 4) dropwise addition of 200 mL of 5 mM FCCP (1 mM final concentration, 4 minutes). Three coverslips per con-

dition were assayed in each experiment and three independent experiments were carried out. Images were analyzed with ImageJ

1.49. Same value (1280) of thresholding was used to detect objects in each image for each condition, watershed processing was

applied and intensity was analyzed by detecting particles larger than 20 pixels. Determination of basal NADH levels in all conditions

were obtained by calculating the average intensity value after CN addition and setting this value to 100 (maximal intensity). Intensity

values after FCCP addition were set to 0 (minimal intensity). Basal levels of NADH were calculated by referring basal fluorescence

levels to the calculated maximal and minimal intensity values.

Metabolomics analysis
For steady-state metabolomics or metabolite tracing experiments 1.2*105 cells were seeded in 12-well plates. After 24 hours cells

were washed twice with PBS and medium was changed with normal DMEM or medium containing metabolite tracers. For glucose

tracing experiments 25 mM U-13C-glucose (Cambridge Isotope Laboratories, cat. no. CLM-1396-MPT-PK) or 4-2H-glucose (Cam-

bridge Isotope Laboratories, cat. no. DLM-9294-PK) was added to glucose-free and pyruvate-free DMEM (Life Technology cat. no.

11966-025), together with 10% v/v FBS and 1 mM sodium pyruvate. For glutamine tracing experiments 4 mM U-13C-glutamine

(Cambridge Isotope Laboratories, cat. no. CLM-1822-SP-PK) or 1-13C-glutamine (Cambridge Isotope Laboratories, cat. no. CLM-

3612-PK) was added to glutamine-free DMEM (Life Technology cat. no. 21969-0.35), together with 10% v/v FBS. For aspartate la-

beling experiments 4mMU-13C-aspartate (Cambridge Isotope Laboratories, cat. no. CLM-1801-H) was added to normal DMEMwith

10% v/v FBS. After incubation with normal medium or medium containing metabolite tracers, one well from each condition was used

to estimate cell number. To extract extracellular metabolites, 50 mL of medium were collected from each well, centrifuged at 10000 g

for 1 minute and metabolites were extracted by adding 750 mL of metabolite extraction buffer (MEB, 50% v/v methanol, 30% v/v
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acetonitrile, 20% v/v ddH2O). To extract intracellular metabolites, cell plates were placed on ice, washed twice with ice-cold PBS and

1mL of MEB / 106 cells was added to each well and cells were scraped. One cycle of freeze-thawing at �80�C was performed to

further lyse the cells. Both extracellular and intracellular fractions were then incubated in a thermomixer (Eppendorf) at max speed

for 15 minutes at 4�C. Proteins were then pelleted by centrifuging samples at 16000 g for 10 minutes at 4�C and supernatants were

transferred into glass vials and stored at �80�C until further analysis.

Liquid chromatography–mass spectrometry (LCMS) analysis was performed on a QExactive Orbitrap mass spectrometer coupled

to a Dionex UltiMate 3000 Rapid Separation LC system (Thermo). The LC system was fitted with a SeQuant ZIC-pHILIC (150mm 3

2.1mm, 5mm) with the corresponding guard column (20m 3 2.1mm, 5mm) both from Merck. The mobile phase was composed of

20cmM ammonium carbonate and 0.1% ammonium hydroxide in water (solvent A), and acetonitrile (solvent B). The flow rate was

set at 200 mL/min with a previously described gradient (Mackay et al., 2015). The mass spectrometer was operated in full MS and

polarity switchingmode scanning a range of 50-750m/z. Sampleswere randomized, in order to avoidmachine drift, andwere blinded

to the operator. The acquired spectra were analyzed using XCalibur Qual Browser and XCalibur Quan Browser software (Thermo

Scientific) by referencing to an internal library of compounds. Calibration curves were generated using synthetic standards of the

indicated metabolites.

Intensity of intracellular metabolites were normalized on total ion sum (normalized intensity values). For interpretation of labeling

patterns normalized intensities of isotopologues were further normalized on total isotopologue sum for each metabolite species

(proportion of total pool values). Values of consumption and release of extracellular metabolites were normalized on cell counts

and values of metabolites measured in fresh medium were subtracted.

Metabolic modeling
Modeling ofmetabolic rewiring followingmitochondrial dysfunctionwas performedwith flux balance analysis (FBA) (Orth et al., 2010),

under the assumption of mass conservation. Alternative reaction flux solutions were investigated with flux variability analysis (FVA)

(Mahadevan and Schilling, 2003). To investigate metabolic rewiring, we constrained a recently published metabolic reconstruction

of central carbon metabolism (Zieli�nski et al., 2016) with experimental data obtained from consumption and release of extracellular

metabolites and oxygen consumption driven by individual complexes (Table S1). We maximized ATP yield as objective function and

calculated the flux difference between mT7 and mT80 models by subtracting the predicted flux of each reaction for mT7 from mT80

model. Top 10% altered reactions were considered. To assess contribution of each reaction to ATP production, we individually

blocked (upper bound = 0, lower bound = 0) each reaction inmT80 andmT7models and calculated the difference in ATP yield against

the complete model. Contribution of reductive carboxylation to metabolic rewiring was predicted by blocking IDH1 reaction in mT80

model and calculating the flux difference of each reaction against the complete mT80 model. Top 10% altered reactions were

considered. Simulations were performed with MATLAB R2016A (MathWorks) with the COBRA toolbox 2.0 and by using GLPK

4.48 as solver.

Lentiviral vectors generation and transduction
The viral supernatant for cell transduction was obtained from the filtered growth media of the packaging cells HEK293T transfected

with with 3 mg psPAX, 1 mg pVSVG, 4 mg of shRNA constructs and 24 ml Lipofectamine 2000 (Life Technology). 13 106 cells were then

plated on a 6 cm dish and infected with the viral supernatant in the presence of 4 mg/ml polybrene. After 2 days, the medium was

replaced with selection medium containing 2 mg/ml puromycin. The expression of the shRNA constructs was induced by incubating

cells with 2 mg/ml doxycycline. The shRNA sequences targeting IDH1, IDH2 or MDH1 were purchased from Thermo Scientific

and are as follows: shNTC #RHS4743; shIDH1 #1: TTTCGTATGGTGCCATTTG; shIDH1 #2: TTGACGCCAACATTATGCT; shIDH2 #1:

TCTTGGTGCTCATGTACAG; shIDH2 #2: TTCTTGTCGAAGTCGGTCT; shMDH1 #1: CAATTTGAGCTTTAGCTCG; shMDH1 #2:

TATTCTTGATTACAACAGG. For NDI-1 expression, 3*106 HEK293T cells were plated in 10 cm dishes, allowed to attach overnight,

and transfected with 5 mg psPAX, 5 mg pMD2G and 2 mg of pWPI control or NDI-1 plasmids (Cannino et al., 2012). The shRNA

sequences targeting GOT1were kindly donated by the Lyssiotis lab (Son et al., 2013). Viral supernatant was used as described above

for infecting mT7 or mT80 cells.

Cell migration
6*106 cells were seeded in a 96-well plate and cultured overnight in standard conditions. A 700-800 mmwound was obtained in each

well with a 96 pins IncuCyte WoundMaker (Essen Bioscience). After applying the wound, cells were washed with PBS twice and

medium was replaced with 100 mL DMEM. Images were acquired with an IncuCyte FLR (Essen Bioscience) every 2 hours for at least

10 consecutive hours. Wound widths at time point 0 hours and 6 hours were extracted and used to calculate migration speed. 8-16

wells per condition were used as technical replicates in each experiment, and at least 4 independent experiments were acquired.

qPCR
mRNA was extracted using RNeasy Kit (QIAGEN) following manufacturer’s instructions. 1 mg of mRNA was retrotranscribed into

cDNA using High Capacity RNA-to-cDNA Kit (Applied Biosystems, Life Technologies, Paisley, UK). For the qPCR reactions

0.5 mM primers were used. 1 ml of Fast Sybr green gene expression master mix; 1 ml of each primers and 4 ml of 1:10 dilution of

cDNA in a final volume of 20 ml were used. Real-time PCR was performed in the Step One Real-Time PCR System (Life Technologies
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Corporation Carlsbad, California) using the fast Sybr green program and expression levels of the indicated genes were calculated

using the DDCt method by the appropriate function of the software using actin as calibrator. Primer sequences are as follows:

IDH1: Fwd: GTGTGCAAAATCTTCAATTGACTT; RV: GGTGACATACCTGGTACATAACTTTG; IDH2: Fwd: GGAGCCCGAGGTCA

AAATAC; RV: TGGCAGTTCATCAAGGAGAA; Actin: QuantiTect primer QT00095431 (QIAGEN), sequence not disclosed.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed with Graphpad Prism 5.0a. At least 3 independent experiments were used for each test. Statistical

analysis of metabolomics data was performed with the R package muma v1.4 (Gaude et al., 2013) on R software 3.3.2. Statistical

details of each experiment including statistical test used, number of replicates, center and dispersion measures can be found within

corresponding figure legends. False discovery rate (FDR) of 5% was used to determine statistical significance. For metabolomics

data analysis multiple hypothesis correction with Benjamini-Hochberg method was applied. For proteomics data analysis differential

analysis was performed on the proteomic data using the limma R package (Ritchie et al., 2015). The considered contrast were

mT45 against mT7, mT80 against mT7 and mT80 against mT45. An enrichment analysis was performed with the resulting statistics

of each considered contrast using the piano R package (V€aremo et al., 2013). The gene set collections used were obtained from

mSIGDB (c5.GO.bp). Each gene set collection was enriched independently. The consensus enrichment p value for each considered

gene set was obtained using all available methods of the piano package, except GSEA. The p values were corrected with the

Benjamini-Hochberg procedure for false discovery rate.

DATA AND SOFTWARE AVAILABILITY

Metabolites detected in our metabolomics analysis, together with corrected ANOVA p values are reported in Table S1. Consumption

and release (CORE) data used to constrain the metabolic model is reported in Table S2. Flux range predictions obtained with FVA

are reported in Table S3. GSEA data obtained from proteomics analysis of mT7 andmT80 cells are reported in Table S4. Raw images

have been deposited to Mendeley Data and are available at http://dx.doi.org/10.17632/bmvrzxgs6c.1.
e7 Molecular Cell 69, 581–593.e1–e7, February 15, 2018

http://dx.doi.org/10.17632/bmvrzxgs6c.1

	NADH Shuttling Couples Cytosolic Reductive Carboxylation of Glutamine with Glycolysis in Cells with Mitochondrial Dysfunction
	Introduction
	Results
	“mTUNE”: A Model of Tunable Mitochondrial Dysfunction
	Constraint-Directed Metabolic Modeling Predicts Association between Cytosolic Reductive Carboxylation and Glycolysis
	Reductive Carboxylation Is Regulated by NAD+/NADH Ratio
	Reductive Carboxylation Is Coupled with Glycolysis via MDH1
	Aspartate Supports Flux via MDH1 and Generates Malate
	MDH1 Regulates Cell Migration

	Discussion
	Supplemental Information
	Acknowledgments
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Method Details
	Cell growth assays
	Oxygen consumption and Extracellular acidification rate measurement
	Western blotting
	Immunoprecipitation assay
	Immunofluorescence assay
	Proteomics
	Quantification of m.8993 heteroplasmy
	Fluorescence associated cell sorting (FACS)
	NADH measurements
	Metabolomics analysis
	Metabolic modeling
	Lentiviral vectors generation and transduction
	Cell migration
	qPCR

	Quantification and Statistical Analysis
	Data and Software Availability



