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Abstract    Global warming is one of the most important environmental problems the world is 

facing and the changes it is causing on ecosystems is drawing great attention from scientists. In 

particular, how lake ecosystems, which are an important part of continental ecosystems, will 

change is a problem that needs to be investigated. In this study, we combined geochemical and 

diatom analyses of a sediment core retrieved from Lake Kanas (N.W. China) to assess how climate 

change has affected this ecosystem over the past  ~100 years. Our results show that the aquatic 

ecosystem of Lake Kanas was sensitive to changes in the regional climate over the past ~100 years. 

The lake has been affected by change in its hydrology (e.g. influx of glacier meltwater, variations 

in precipitation) and change in its hydrodynamics (water column stability). The variations in 

abundance and composition of the diatom assemblages observed in the sedimentary record have 

been subtle and are complex to interpret. The principal changes in the diatom community were: 1) 

a rise in diatom accumulation rates starting in the AD 1970s that is coeval with changes observed 

in temperate lakes of the Northern Hemisphere and 2) an increase in species diversity and 

assemblage turnover and a faster rate-of-change since ~ AD 2000. The diatom community is 

expected to change further with the projected melting of the Kanas glacier throughout the twenty-

first century. 

 

  



Introduction 

Global warming is one of the most important environmental problems that the world is facing. 

Air temperatures in temperate latitudes of the Northern Hemisphere have increased over the last 

century, with an amplification of this warming trend over the past 30-40 years that is unprecedented 

in the last ~1300 years (Jansen et al., 2007). Global warming is having a significant impact on the 

functioning and biodiversity of the natural ecosystems, including lakes, which represent an 

important component of the global ecosystem. Lakes are effective sentinels for climate change 

because they are sensitive to climate, respond rapidly to change, and integrate information about 

changes in their catchment (Adrian et al. 2009; Mills et al. 2017). Diatoms, which are among the 

most important primary producers in lakes, are often used as proxy indicators in paleoclimatic 

reconstructions because of their sensitivity to changes in their aquatic environment and the 

characteristics of their siliceous frustules that promote their preservation in the sediment record of 

lakes. Moreover, they can be identified to the species level based on the shape and ornamentations 

on the valves (Battarbee, 1986). Many arctic freshwater ecosystems have experienced dramatic 

and unidirectional regime shifts within the last ~150 years. In shallow lakes, these shifts can be 

characterized by taxonomically diverse and increasingly productive aquatic ecosystems, with more 

complex community and trophic structures. In deeper lakes, plankton development has been 

enhanced (Smol et al., 2005). In subarctic regions of Finland and Canada, under the forcing of 

global warming, the relative abundances of small-sized diatoms, such as Cyclotella spp., increased 

sharply, and was concurrent with decreases in heavily silicified Aulacoseira species and/or small, 

benthic taxa belonging to the Fragilariaceae (Sorvari and Korhola, 1998; Sorvari et al., 2002; 

Rühland et al., 2003; Rühland and Smol, 2005). 

    Regarding diatom species diversity, it seems that the response to climate change differs from 

lake to lake, as it appears to increase in some situations and decrease in others. This may be because 

the effects of recent temperature increases on freshwater ecosystems are blurred at temperate 

latitudes, as these regions are typically subjected to multiple stressors that can mask or override 

climatic signals (Smol, 2008). However, in remote regions where extensive anthropogenic 

disturbances are reduced, the effects of climatic fluctuations on physical, biological and chemical 

processes of freshwater ecosystems are more clearly evident (Schindler et al., 1996; Gerten and 

Adrian, 2002).  



Lake Kanas (48°11’~49°11’N, 86°23’~88°05’E, 1370m) has great potential for studying the 

way aquatic ecosystems respond to climate change as it is located in the deep forests of the Altay 

Mountains and has been so far little affected by human activities. There are, however, few studies 

about Lake Kanas to build upon. In this study, we investigate how Lake Kanas is responding to the 

recent climate change by analyzing the diatom assemblage of a short sediment core that spans the 

last ~100 years. 

 

Study area 

Lake Kanas (latitude 48°11’~49°11’N, longitude 86°23’~88°05’E, altitude 1370 m a.s.l.) is a 

lake surrounded by the deep forests of the Altay Mountains (Fig. 1). It is a large and deep lake with 

a surface area of 45.73 km2, about 24 km long and 2 km wide and its maximum and mean water 

depths are 188.5 m and ~100 m, respectively (Li, 1987). It is located at the junction between the 

Burqin and Habahe counties, in the most northern part of Xinjiang Province (Li, 1987) and is only 

60 km away from Khüiten Peak (altitude 4374 m), the highest peak of the Altay Mountains (Gao, 

1986). The lake basin was excavated by ancient glaciers and dammed by the glacier end moraine. 

It formed during Marine Isotope Stage 6 with the outermost moraine dated at 167 ±16 ka (Zhao et 

al. 2013). The Kanas River flows into the lake from the northeast to the southwest (Fig. 1). The 

lake surface water is slightly alkaline (pH=7.23), weakly mineralized (conductivity = 46 μS.cm-1) 

and dominated by calcium-carbonates with the following sequence of dominant cations 

Ca2+>Na+>Mg2+>K+ and anions HCO3
->Cl->>SO4

2->NO3
- (Zhu et al. 2013). The lake volume and 

surface area of this open system have been stable in the recent past (Wu et al. 2012). 

As an alpine lake surrounded by the deep forests of the Altay Mountains, historically Lake 

Kanas has been barely influenced by human activities. However, in recent years the number of 

tourists visiting the area has increased rapidly: from ~9000 visitors per year in 1997 when the area 

became opened to tourism to ~1 million tourists in 2013, with 5000 tourists a day during the peak 

of the tourism season (Han et al. 2011; Yang et al. 2014; Shi & Shi 2016). The impact of tourism 

is however limited to the southern part of the lake. Core KNS14B was retrieved from the upper 

reaches of the lake, near the west shore and the estuary, from a position that can considered as 

unaffected by direct human impact. 



Present climate conditions are determined by the Westerlies which brings water vapor and 

precipitation in summer. In winter this area is influenced by the Asian anticyclone that causes cold 

but sunny conditions. The polar air from the north penetrates along the valley of the Erqis River 

(Bai, 2012). The temperature and precipitation over the period AD 1958-2014 recorded at the 

Habahe meteorological station, the nearest to Lake Kanas, are shown in Fig. 2. The average annual 

temperature is 5.5°C while the average annual precipitation is 160 mm. Most of the rain falls in 

July (21.7 mm) and November (21.5 mm) while the minimum precipitation is in February (2.8 

mm). Monthly mean temperature varies from 22.1° (July) to -14.9°C (January). 

 

Materials and methods 

Sediment sampling and chronology development 

In September 2014, a sediment core was retrieved from a water depth of about 15 m near the 

northern shore of the lake (48°53'34.01"N, 87° 7'50.47"E) using a Uwitec® modified piston corer. 

The core, KNS14B, was 51 cm long and sliced in the field at 1 cm interval. Fifty samples from 

core KNS14B were analyzed for 210Pb and 137Cs at the γ Radiation Laboratory of the Institute of 

Geology and Geophysics, Chinese Academy of Sciences, Beijing. The chronology was established 

based on the constant rate of supply (CRS) model (Appleby and Oldfield 1978).  Error in the 

sediment chronologies was determined from the uncertainty in the 210Pb gamma counts. 

Geochemical analysis 

The grain size and the content in total organic carbon (TOC) of the sediments were measured 

in the Key Laboratory of Western China’s Environmental Systems, Ministry of Education (MOE) 

in Lanzhou University. The grain size was measured with a Mastersizer 2000 laser granularity 

analyzer (Malvern Instruments Ltd, UK). Details of the analytical method are given in Peng et al. 

(2005). TOC was measured using a TOC Analyzer (Analytik Jena AG, Germany). Details of the 

method are given in Liu et al. (1996) and Bao et al. (2000).  

The elemental composition of KNS14B core was investigated by X-ray fluorescence 

spectrometry (XRF-SR) for the quantitative analysis of 36 trace elements and major constituents. 

All collected samples were dried by air and pulverized into powder. A volume of 5 g of powdered 



material was pressed into a bead, 4‒6 mm thick and 30 mm in diameter, under 30 t/m2 of pressure. 

Elemental concentrations ranging from 0.1 ppm to 100% can be measured by the spectrometer. 

The measuring errors for reported elements are <10%. These analyses were carried out at the MOE 

Key Laboratory of Western China’s Environmental System in Lanzhou University. The 

coefficients of correlation (r) were computed between down-core variations in these elements in 

order to identify significant geochemical associations (e.g. Beaudoin et al. 2016).  

 

Diatom analysis and taxonomy 

All 51 samples from core KNS14B were analyzed for diatoms. Diatom samples were prepared in 

test tubes from approximately 0.05 g of freeze-dried sediment using hot H2O2 to remove organic 

matter (Renberg, 1990). Diatom concentrations (valves per g of dry matter) were calculated by the 

addition of divinyl-benzene microspheres (Battarbee and Kneen 1982). Diatom fluxes (in 

valves/cm2/yr) were then calculated by multiplying the diatom concentration by the dry bulk 

density (in g/cm3) and the sediment accumulation rate (in cm/yr). Subsamples of the homogenized 

suspension were diluted by adding distilled water and left to settle onto glass coverslips until dry 

(Gao et al. 2016). The coverslips were fixed onto glass slides with Naphrax®. For all samples at 

least 300 valves were counted under a Leica DM6000 light microscope using oil immersion phase-

contrast at ×1000 magnification. Diatom identification and taxonomy were mainly based on 

Krammer & Lange-Bertalot (1986, 1988, 1991a, 1991b) and Hofmann et al. (2011). We also used 

other taxonomic publications to aid with the identification of difficult groups of diatoms, like Kling 

and Håkansson (1988) for Cyclotella gordonensis (recently renamed Pantocsekiella gordonensis). 

Light microscope and scanning electron microscope photographs of P. gordonensis are shown in 

the appendix. 

 

Numerical analyses on diatom data 

Diatom assemblage zones (DAZ) were delimited by optimal partitioning (Birks & Gordon 

1985) based on the diatom percentage data using the unpublished program ZONE (version 1.2) 

(Lotter & Juggins, pers. comm.).  



To estimate the down-core diatom compositional turnover or beta-diversity, of the core 

diatom assemblages, relative abundances were analyzed using detrended canonical 

correspondence analysis (DCCA) constrained to time. The larger the beta-diversity value obtained 

over the interval under consideration, the greater the assemblage turnover. Beta-diversity is 

estimated in units of standard deviations (SD)(Hobbs et al., 2010). The DCCA analysis was 

performed using the program CANOCO 5 (ter Braak and Šmilauer 2012). In addition, to estimate 

the rate at which compositional change is occurring we determine the rate-of-change. This was 

done by calculating the down-core diatom species turnover as the Bray-Curtis distance between 

adjacent samples, and the down-core rate of change as this measure divided by the time interval 

between samples (Juggins et al. 2013).    

Although biodiversity assessments would ideally require complete samplings, only partial 

samplings are ordinarily achieved when species abundances distributions are highly heterogeneous 

within a community which is often the case with micro-organisms such as diatoms (Béguinot, 

2015a). In this study, we used Jack-2, a nonparametric estimator of species richness (Béguinot, 

2015a, b) defined according to the following formula: 
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Here, f1(N) and f2(N) are the numbers of singletons (i.e. the species for which only one 

individual was counted) and doubletons (i.e. the species for which two individuals were counted) 

among the R(N) recorded species within a sample of size N (Béguinot, 2015b). N0 is the number 



of counted valves and S represents the expected total richness (Béguinot, 2015a). R0 is the number 

of recorded species, which for this study corresponds with a valve count of 300. 

 

4. Results 

4.1 Chronology of the sequence 

Unsupported 210Pb activity (210Pbex), which was calculated by substracting supported 210Pb (as 

226Ra) activity from the total 210Pb activity, declines irregularly with depth (Fig. 3). Equilibrium 

between the total 210Pb activity and the supported 210Pb is reached at the level 32-33 cm. Small 

irregularities in 210Pbex below this depth are probably not significant as they are in the same order 

of magnitude as the uncertainties in the measured activities. The maximum for 210Pbex is 64.4 ± 

6.3 Bq kg-1 measured in the uppermost sample (0-1 cm).  

The chronological error increased from 0.2 years at the top to 25.6 years at 33 cm, where 

sediments are dated to 19XX by this method. The 137Cs activity reaches a maximum value of 

23.4 ± 0.6 Bq kg-1 in the core sample 21-22 cm. This corresponds to the large fallout from the 

atmospheric testing of nuclear weapons in AD 1963. It is in good agreement with the CRS model 

that dates this layer as AD 1962.8 ± 3.9.     

There are considerable changes in sediment accumulation rates in the upper part of the core so it 

was not appropriate to extrapolate the 210Pb chronology into the deeper part of the core using the 

average sediment accumulation rate (Appleby 2000).  

 

4.2 Geochemical analyses 

Core KNS14B was retrieved closed to the estuary of the River Kanas and also near the shore 

(Fig. 1c). Thus, we can assume that the grain size characteristics of core KNS14B are influenced 

by inputs from the river, runoff from the lake catchment and the hydrodynamic of the lake. The 

median grain size varies from 12 to 20 µm with a mean value of ~16 µm for the whole profile. 

Grain size is dominated by coarse silt (>16 μm) below 29 cm and by fine silt (< 4 μm) in the upper 

part of the sequence. TOC of core KNS14B varied from 0.3 to 0.7% (mean value of 0.45%). nIts 



value is mostly stable from the bottom (51 cm) to ~20 cm. From that point, TOC fluctuates 

reaching its minimum value for the whole sequence at 10 cm before rising sharply up to the top of 

the sequence. The variations of TOC and median grain size are shown in Fig. 4. 

Among the elements derived by XRF analysis, only those that exhibit trends considered to be 

significant variations in elemental composition of the sediment core are mentioned in this paper 

(Fig 4, Table 1). Variations in the core of Rb, Rb/Sr ratio and K2O, that are generally associated 

with feldspars and clay minerals follow those of the fine particle (< 4 μm) as shown by their strong 

positive correlations (r > 0.8, p < 0.01, α < 0.001). By contrast Zr, which is associated with 

weathering-resistant, coarse mineral particles such as zircon (ZrO2) and the Zr/Rb ratio are 

strongly and positively correlated with coarse particles (r > 0.8, p < 0.01, α = 0.001). K2O and to 

a lesser extend Fe2O3 and Ti are strongly negatively corrected with the Zr/Rb ratio. CaO and Sr 

are positively correlated with each other (r > 0.7, p < 0.01, α = 0.001). A peak in Cu is observed in 

the AD1970s, between 17-19 cm core depth, and matches with high TOC content. The curve for 

the Mn content is marked by a modest increase at ~19 cm and a sharp rise in the uppermost sample.  

 

4.3 Diatom analysis 

In total, 300 species of diatoms were identified in the 51 samples. Only species with relative 

percentages >2% and that appeared in more than 3 samples are shown in the diatom stratigraphy 

in Fig. 4. In total, 25 species fulfilled these criteria, including 7 species of planktonic diatoms 

Pantocsekiella gordonensis, which is largely dominant throughout he sequence, Aulacoseira 

ambigua, Discostella stelligeroides, Asterionella edlundii, Fragilaria gracilis, Fragilaria tenera 

and Fragilaria nanana and 18 species of benthic diatoms including Achnanthidium minutissimum 

(which is the dominant benthic species), Diatoma mesodon, Encyonema silesiacum, Encyonema 

minutum, Staurosirella pinnata, Fragilaria capucina, Gomphoneis pseudookunoi, Hannaea arcus 

var. amphioxys, Hannaea recta, Staurosira venter, Cocconeis placentula var. euglypta, Reimeria 

sinuata, Nitzschia perminuta, Fragilaria vaucheriae, Meridion circulare, Psammothidium 

subatomoides, Staurosira construens and Gomphonema sp.#1. The sequence was divided into 5 

DAZ using optimal partitioning on the percentage data. The maximum DCCA axis-1 score is 1.90 

standard deviation. This indicates that the diatom community of Lake Kanas has a medium scale 



assemblage turnover. Such turnover value is considered as significant in diatom ecology (Smol et 

al., 2005; Hobbs et al., 2010). It indicates that over the last ~100 years, the aquatic ecosystem of 

Lake Kanas is sensitive to environmental change. 

A summary diagram of diatom abundance plotted against core depth is shown in Fig. 5. 

Diatom flux, species diversity (observed and expected) and the results of rate-of-change analysis 

and the DCCA are shown in Fig. 6. 

HERE MENTION THAT FULL NAMES WITH AUTHORITIES ARE LISTED IN A 

TABLE, IN APPENDIX. 

DAZ 1: 51 – 20.5 cm, before ~AD 1916- to 1969 

From the start of the record to ~AD 1969 diatom assemblages change little in composition and are 

largely dominated by the planktonic species P. gordonensis. The most abundant benthic species 

are A. minutissimum, S. pinnata, E. silesiacum, G. pseudookunoi and D. mesodon. Diatom flux is 

low throughout the zone but diatom diversity is variable (29<S<73, mean = 48). 

DAZ 2: 10.5 – 20.5 cm, AD 1969-1998 

This zone is characterized by an increased in the percentages of P. gordonensis and a decrease in 

benthic diatoms. Compared with the previous zone, the diatom flux and planktonic:benthic ratio 

increase. Diatom diversity is generally higher than in the previous zone (38<S<62, mean = 53). 

DAZ 3: 6.5 – 10.5 cm, AD 1998-2003 

The rate-of-change increases markedly at the transition between this zone and the previous one. 

There is a drop in the percentages of P. gordonensis but those of other planktonic species such A. 

ambigua, D. stelligeroides and F. gracilis increase. The diatom flux and planktonic:benthic ratio 

decrease. Diatom diversity increase further (47<S<68, mean = 56). 

DAZ 4: 3.5 – 6.5 cm, AD 2003-2007 

The percentages of P. gordonensis and that of other planktonic species increase sharply as well as 

the diatom flux and the planktonic:benthic ratio. The decrease in benthic is associated with a 

decrease in diatom diversity (41<S<48, mean = 44). 



DAZ 5: 0 – 3.5 cm, AD 2007-2014 

This zone is characterized by a sharp drop in the planktonic:benthic ratio and the diatom flux. 

Besides P. gordonensis, planktonic Fragilaria species such as F. gracilis, F. tenera and F. 

saxoplanctonica and A. ambigua are also abundant. The uppermost sample is characterized by a 

sharp increase in species diversity (S = 100). 

  

5. Discussion  

Interpretation of geochemical proxy 

As discussed by Liu et al. (2014), variations in the lake sediment record in grain size and in 

some elements can be used to indicate glacial erosion and the downstream transport of particles 

and therefore reflect glacier activity. In particular, abrasion by glaciers is known to produce large 

quantity of silt-sized particles in periods of glacier advances. The Zr/Rb ratio traces grain size 

changes with high Zr/Rb ratios indicating coarse-grained and inversely, low Zr/Rb ratios indicating 

fine-grained material. In the context of Lake Kanas, high Zr/Rb ratios reflect glacier advance.  

Sr is normally associated with autochthonous precipitation of carbonates in lake, itself 

associated with summer thermal stratification. In a glaciolacustrine context such as Lake Kanas, 

however, seasonal melting of the glacier caused by high air temperature result in high input of 

glacier meltwater, which is unfavorable to the precipitation of carbonates and therefore cause low 

content of Sr. Sr content is therefore a mixed signal, driven by the opposite effects of summer 

stratification and meltwater input. In the lower part of the core, the Rb/Sr ratio mainly depends on 

the amount of Rb (r > 0.9, p < 0.01, α = 0.001, Table 1). In such conditions, high values of the 

Rb/Sr ratio indicate glacier retreat (Liu et al. 2014).     

Ti is typical of clastic material primarily transported as suspended particulates (Stepanova et 

al. 2015) that can be considered as indicator of detrital sediment input and of a water body strongly 

influenced by river runoff (Biskaborn et al. 2012). K2O and Fe2O3 on the other hand are considered 

as highly mobile and closely associated with the intensity of weathering (Stepanova et al. 2015). 

Mn is also a highly mobile element but additionally it is susceptible to reduction and mobilization 

in sediments (Engstrom et al. 1985; Kauppila et al. 2012). Cu is autochthonous in origin and high 



content of this element indicates high lake productivity due to an increase in the rate of supply of 

nutrients into the lake from the catchment area at a high soil water saturation (Fedotov et al. 2015). 

 

Lake Kanas recent palaeoenvironmental changes 

Zone 1 (from before ~AD 1916- to 1969). The geochemical data for the lowermost zone 1 in core 

KNS14B suggest 3 periods of glacier advance that are characterized by high values for the large 

(?) grain-size and Zr/Rb ratio. On the other hand, there is also a noticeable ~10-year interval 

centered around AD 1940 in which the median grain size markedly decreased while the Rb/Sr ratio 

and K2O content increase. These data indicate higher clay content and increased river input 

(Possibly(?)=meltwater). This is consistent with temperature reconstructions for the Northern 

Hemisphere that show that the AD 1940s were a warm interval (e.g. IPCC 2014). Simultaneously 

there is an increase in the planktonic:benthic ratio associated with low values for the observed and 

expected species richness. The diatom response to this climate shift is rather muted, and the lack 

of large change in the composition of diatom assemblages in zone 1 suggests that no ecological 

threshold was crossed during the time interval covered by this zone. The large dominance of the 

planktonic freshwater diatom P. gordonensis in Lake Kanas is in accordance with what is known 

about the ecology and distribution of this species that was described from deep oligotrophic lakes 

in Canada (Kling & Håkansson 1988) and has also been found in similar settings in Europe 

(Wunsam et al. 1995; Hausmann & Lotter 2011) and the Far-East (Genkal & Lepskaya 2014). The 

most abundant benthic diatom, A. minutissimum, is one of the most frequently occurring freshwater 

diatom species all over the world with a broad ecological spectrum (Krammer and Lange-Bertalot 

1991b). Its continuous large abundance in the assemblages of the core reflects the fact that the core 

was retrieved near the shore, at only 15 m water depth.   

In the Habahe meteorological record the interval from AD 1958 to 1969, that corresponds with the 

uppermost part of DAZ 1, was characterized by colder and drier conditions compared to the 

average values obtained for the whole period covered by the meteorological record (i.e. AD 1958-

2013). In agreement with drier conditions, the geochemical data in this interval is characterized by 

very low content of Ti and Fe2O3, which are detrital indicators associated with river input 

(Biskaborn et al. 2012). Yet, for that interval too, there was no obvious response in the diatom 



assemblage. 

Zone 2 (AD 1969-1998). At the start of this zone, the simultaneous increases in diatom flux, in the 

abundance of planktonic diatoms and in the TOC content suggest a more productive aquatic system. 

Simultaneously, in the geochemical data we observed increases in Cu, Mn and Fe, elements that 

are indicators of bio-productivity and diagenesis (Fedotov et al. 2005; Stepanova et al. 2005). The 

rise in Mn in particular may have come from reduced sediments on the slope of the lake basin 

(where the core was taken) associated with summer stratification and increased redox cycling 

across the sediment-water interface (Engstrom et al. 1985).   

The transition between the zones 1 and 2 is also marked by a sharp increase in the Rb/Sr ratio and 

in the content of K2O and Ti. This geochemical data suggest an increase in the influx of fine 

particules by meltwater input. The local meteorological data indicate that this period was generally 

less cold than the previous one, while precipitation was generally higher albeit variable. In 

summary, warmer temperature may have promoted more stable thermal stratification for the whole 

euphotic zone, conditions that promote the growth of planktonic species such as P. gordonensis 

(Tolotti et al., 2007), while at the same time causing melting of the Kanas glacier. These 

observations match with the findings of Wei et al. (2015) who estimated the changes in glacier 

volume in the Chinese Altai using geodetic methods. In particular, their results indicate a glacier 

mass loss of 0.43 ± 0.02 m a-1 water equivalent during the interval 1959-1999. Interestingly, the 

changes that occurred in Lake Kanas in the AD 1970s are coeval with the onset of biological 

responses to warming reported in temperate lakes throughout the Northern Hemisphere (Rühland 

et al. 2008, 2015).   

This warming trends is however interrupted in the mid-1980s, which are characterized in the 

Habahe meteorological record by 4 years colder than average. This cold spell is clearly marked in 

the tree-ring record for the Chinese Altai (Shang et al. 2010). It is well expressed in the 

geochemical record of Lake Kanas by an increase in the percentage of coarse particles, a decrease 

in the Rb/Sr ratio and a sharp rise in the Zr/Rb ratio. In the diatom record, only a slight decrease 

in the percentages of P. gordonensis occurred in that interval.  

Zone 3 (AD 1998-2003). The sedimentation rate increases steadily from the start of this zone which 

is also marked by high Ti content (an indicator of clastic material) and a sharp rise in the 



concentration of 226Ra. High 226Ra is also an indicator of enhanced delivery of bedrock material 

(Brenner et al. 1994). High concentrations in radium are also found in the very fine powdered 

abrasion material from glaciers (Kies et al. 2011). These geochemical proxies may suggest a steady 

influx into the lake of glacier meltwater. Yet, the Rb/Sr ratio decrease in this zone while we would 

expect an increase with the melting of glaciers in agreement with what we observed in DAZ 2 and 

what we know from the literature (Liu et al. 2014; Vorobyeva et al. 2015). An alternative 

explanation is that the influx of clastic material was not only caused by glacier meltwater but also 

by increased precipitation. The significant increase in Fe2O3 would suggest increased weathering. 

The meteorological data indeed show that this interval had high precipitation and high summer 

temperature. Simultaneously, in the diatom assemblages there is a drop in the percentages and flux 

of P. gordonensis but other planktonic species such A. ambigua, D. stelligeroides and F. gracilis 

increase and there is an increase in species diversity, rate-of-change and turnover (DCCA).  The 

slight decrease in diatom flux may reflect the “dilution” of diatom concentration in the sediment 

caused by the large increased sedimentation rate rather than a decrease in diatom primary 

production.  

Zone 4 (AD 2003-2007). The diatom assemblages of this short interval are characterized by the 

highest percentages and fluxes of planktonic species observed in the whole sequences with 

increased abundance of P. gordonensis and planktonic Fragilaria such as F. gracilis, F. tenera and 

F. saxoplanctonica. In lakes of the Italian Alps, increased abundances of planktonic Fragilaria spp. 

has been found to be positively correlated with the relative thermal stability of the euphotic zone, 

an increase in total water inflow and lake water level and with nutrient concentrations (especially 

NO3-N) (Tolotti et al. 2007). Planktonic Fragilaria species have also been linked to nitrogen 

enrichment from glacial meltwater in various remote lakes (Slemmons et al. 2915, 2016). The 

meteorological data, which indicate continuing high summer temperature and high precipitation 

for this zone, suggest that conditions similar to the ones observed by Tolotti et al. (2007) prevailed 

in Lake Kanas during that interval. It is interesting to note that the mass loss of the Kanas glacier 

continued and even accelerated during that interval according to Wei et al. (2015), reaching -0.54 

± 0.13 m a-1 water equivalent during the period 1999-2008. This is not clearly reflected in the 

geochemical record of Lake Kanas that shows only small variations in grain-size and the Rb/Sr 

ratio. 



Zone 5 (AD 2007-2014). The diatom record is marked by the sharp decline in the abundance of P. 

gordonensis and to a lesser extent that of the planktonic Fragilaria spp. while the relative 

percentages. The flux data however, indicate that the productions of both planktonic and benthic 

diatoms actually decline. In that interval meteorological data indicate that summer temperature 

generally remained high and that precipitation increased further. It is therefore unlikely that the 

decline in diatoms was caused directly by a return to cold conditions that would have limited 

diatom production.  Large amounts of suspended minerogenic particles (= glacier flour) associated 

with glacier meltwater would be detrimental to algal production due to its very low temperature 

and turbidity that affects light conditions. This is however unlikely to have occurred in Lake Kanas, 

because like in the previous zone, the geochemical evidence do not indicate a large influx of clastic 

material into the lake, while the sedimentation rate and sediment accumulation rate are even 

decreasing.  

An alternative explanation for the diatom decline is a change in lake water chemistry, and in 

particular nutrient concentrations such as silica. A strong decline in the abundance of diatoms was 

also observed by Vorobyeva et al. (2015) who studied the impact of global warming on proglacial 

lakes in East Siberia. These authors linked that decline to the large supply of dilute freshwater from 

the increased melting of snow patches and seasonal snow cover. Snow meltwater is very nutrient-

poor and much less chemically enriched than glacier meltwater (Brown 2002).  The significant 

increase in January precipitation (= snowfall) detected in the Southern Altay Mountain (Yang et al. 

2017), while summer temperature remain high, supports the hypothesis of increasing influx of 

snowmelt water to the lake.  

Although the flux of diatoms decreased in DAZ 1, diversity of benthic species increase 

markedly, especially in the uppermost sample in which the expected species richness reaches its 

maximum for the whole profile. Such increase in diversity may be a response to the warming 

trends as increased temperature leads to a longer growing season and more diverse micro-habitats 

in the lake. These changes provide more ecological niches for diatoms in both temporal (seasonal) 

and spatial terms so overall the species diversity increases. 

Finally, the high TOC and Mn content recorded in the uppermost sample do not signal that the lake 

has become eutrophic but most likely, reflect the fact that biochemical decomposition and 

diagenesis had not yet fully taken place, and Mn has been affected by redox changes in the surface 



sediments and enriched there.  

 

6. Conclusions 

The diatom and geochemical data presented here for Lake Kanas core KNS14B provide a 

detailed record of climatic and environmental change during the last ~100 years. It reveals the 

water ecosystem response to the regional climate change. The aquatic ecosystem of Lake Kanas 

appears sensitive to the climate change with little direct human impact. Global warming is the 

main force that drives the ecological change of Lake Kanas but its impact on the ecosystem is 

complex as it affects the hydrology, through the melting of the Kanas glacier and of snow patches 

on the lake catchment as well as the lake hydrodynamic by its effects on key limnological processes 

such as the duration of ice-cover and the intensity of mixing and thermal stratification of the water 

column. In addition to the complexity of Lake Kanas glaciolacustrine setting, planktonic diatoms 

such as P. gordonensis, the dominant species in Lake Kanas, do not respond directly to climate but 

to proximal growing conditions (a combination of nutrients, light, temperature, mixing regimes), 

which can appear or disappear under different combinations of factors forcing the lake system 

(Catalan et al. 2013). Nonetheless, the increase flux of P. gordonensis observed in Lake Kanas 

around AD 1970 matches with the average timing of ecological change observed in temperate 

lakes of the Northern Hemisphere (Rühland et al. 2008). Geochemical data showed some 

corresponding changes. Over the last ~20 years, the diatom community has changed further, 

although in the subtle way. The assemblages have remained dominated by P. gordonensis and A. 

minutissimum but species diversity and assemblage turnover has increased while the rate-of-

change accelerated. Planktonic Fragilaria spp. have also become more abundant and suggest that 

the thermal stability of the euphotic zone was strengthened and/or that the delivery of nutrients 

such as nitrogen has increased.  

Considering that the Altai Mountains are projected to experience significant warming 

throughout the century and that the Altai glaciers are predicted to continuously lose mass 

throughout the twenty-first century with large variations in meltwater discharge (Zhang et al. 2016) 

we should expect larger change in Lake Kanas ecosystem, and in particular its diatom community. 
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