
Coalgebraic completeness-via-canonicity for
distributive substructural logics

Fredrik Dahlqvist, David Pym

University College London

Abstract

We prove strong completeness of a range of substructural logics with respect
to a natural poset-based relational semantics using a coalgebraic version of
completeness-via-canonicity. By formalizing the problem in the language of
coalgebraic logics, we develop a modular theory which covers a wide variety of
different logics under a single framework, and lends itself to further extensions.
Moreover, we believe that the coalgebraic framework provides a systematic and
principled way to study the relationship between resource models on the seman-
tics side, and substructural logics on the syntactic side.

Keywords: Completeness, canonicity, coalgebraic logic, substructural logic,
resource modelling, separation logic.

1. Introduction

This work lies at the intersection of resource semantics/modelling, substruc-
tural logics, and the theory of canonical extensions and canonicity. These three
areas respectively correspond to the semantic, proof-theoretic, and algebraic
sides of the problem we tackle: to give a systematic, modular account of the
relation between resource semantics and logical structure. Our approach will
mostly be semantically driven, guided by the resource models of separation
logic. We will therefore not delve into the proof theory of substructural logics,
but rather deal with the equivalent algebraic formulations in terms of residuated
lattices ([1] and [2] give an overview of the correspondence between classes of
residuated lattices and substructural logics).

Resource semantics and modelling . Resource interpretations of sub-
structural logics — see, for example, [3, 4, 5, 6, 7] — are well-known and ex-
emplified in the context of program verification and semantics by Ishtiaq and
O’Hearn’s pointer logic [8] and Reynolds’ separation logic [9], each of which
amounts to a model of a specific theory in Boolean BI. Resource semantics and

Email addresses: f.dahlqvist@ucl.ac.uk (Fredrik Dahlqvist), d.pym@ucl.ac.uk (David
Pym)

Preprint submitted to Elsevier February 1, 2016

modelling with resources has become an active field of investigation in itself (see,
for example, [10]). Certain requirements, discussed below, seem natural (and
useful in practice) in order to model naturally arising examples of resource.

1. We need to be able to compare at least some resources. Indeed, in a com-
pletely discrete model of resource (i.e., where no two resources are com-
parable) it is impossible to model key concepts such as ‘having enough
resources’. On the other hand, there is no reason to assume that any
two resources be comparable (e.g., heaps). This suggests at least a pre-
order structure on models. In fact, we take the view that comparing
two resources is fundamental and, in particular, if two resources cannot
be distinguished in this way then they can be identified. We thus add
antisymmetry and work with posets.

2. We need to be able to combine (some) resources to form new resources
(e.g., union of heaps with disjoint domains [8]). We denote the combi-
nation operation by ⊗. An alternative, relational, point of view is that
we should be able to specify how resources can be ‘split up’ into pairs of
constituent resources. From this perspective, it makes sense to be able to
list for a given resource r, the pairs (s1, s2) of resources which combine to
form a resource s1 ⊗ s2 ≤ r.

3. All reasonable examples of resources possess ‘unit’ resources with respect
to the combination operation ⊗; that is, special resources that leave other
resources unchanged under the combination operation.

4. The last requirement is crucial, but slightly less intuitive. In the most
well-behaved examples of resource models (e.g., heaps or N), if we are
given a resource r and a ‘part’ s of r, there exists a resource s′ that
‘completes’ s to make r; that is, we can find a resource s′ such that
s⊗ s′ = r. More generally, given two resources r, s, we want to be able to
find the the best s′ such that s⊗s′ ≤ r. In a model of resource without this
feature, it is impossible to provide an answer to legitimate questions such
as ‘how much additional resource is needed to make statement φ hold?’.
Mathematically, this requirement says that the resource composition is a
residuated mapping in both its arguments.

The literature on resource modelling, and on separation logic in particular, is
vast, but two publications – [11] and [12] – are strongly related to this work.
Both show completeness of ‘resource logics’ by using Sahlqvist formulas, which
amounts to using completeness-via-canonicity ([13, 14]).

Completeness-via-canonicity and substructural logics. The logical
side of resource modelling is the world of substructural logics, such as BI, and
of their algebraic formulations; that is, residuated lattices, residuated monoids,
and related structures. The past decade has seen a fair amount of research
into proving the completeness of relational semantics for these logics (for BI, for
example, [5, 6]), using, among other approaches, techniques from the duality

2

theory of lattices. In [15], Dunn et al. prove completeness of the full Lambek
calculus and several other well-known substructural logics with respect to a
special type of Kripke semantics by using duality theory. This type of Kripke
semantics, which is two-sorted in the non-distributive case, was studied in detail
by Gehrke in [16]. The same techniques have been applied to prove Kripke
completeness of fragments of linear logic in [17]. Finally, the work of Suzuki
[18] explores in much detail completeness-via-canonicity for substructural logics.
Our work follows in the same vein but with with some important differences.
Firstly, we use a dual adjunction rather than a dual equivalence to connect
syntax and semantics. This is akin to working with Kripke frames rather than
descriptive general frames in modal logics: the models are simpler and more
intuitive, but the tightness of the fit between syntax and semantics is not as
strong. Secondly, we use the topological approach to canonicity of [19, 20,
21] because we feel it is the most flexible and modular approach to building
canonical (in)equations. Thirdly, we only consider distributive structures. This
is to some extent a matter a taste. Our choice is driven by the desire to keep
the theory relatively simple (the non-distributive case is more involved), by the
fact that, from a resource-modelling perspective, the non-distributive case does
not seem to occur ‘in the wild’ and, finally, because we place ourselves in the
framework of coalgebraic logic, where the category of distributive lattices forms
a particularly nice ‘base category’.

Completeness-via-canonicity, coalgebraically. The coalgebraic per-
spective brings many advantages to the study of completeness-via-canonicity.
First, it greatly clarifies the connection between canonicity as an algebraic
method and the existence of ‘canonical models’; that is, strong completeness.
Second, it provides a generic framework in which to prove completeness-via-
canonicity for a vast range of logics ([22]). Third, it is intrinsically modular;
that is, it provides theorems about complicated logics by combining results for
simpler ones ([23, 24]). We will return to the advantages of working coalge-
braically throughout the paper.

2. A coalgebraic perspective on substructural logics

We use the ‘abstract’ version of coalgebraic logic developed in, for example,
[25], [26] and [27]; that is, we require the following basic situation:

C

F

((
L

��
⊥ Dop

G

gg

T op

��
(1)

The left hand-side of the diagram is the syntactic side, and the right-hand side
the semantic one. The category C represents a choice of ‘reasoning kernel’;
that is, of logical operations which we consider to be fundamental, whilst L
is a syntax constructing functor which builds terms over the reasoning kernel.
Objects in D are the carriers of models and T specifies the coalgebras on these

3

carriers in which the operations defined by L are interpreted. The functors F
and G relate the syntax and the semantics, and F is left adjoint to G. We
will denote such an adjunction by F ⊣ G ∶ C → D . Note, as mentioned in the
introduction, that we only need a dual adjunction, not a full duality.

2.1. Syntax

Reasoning kernels. There are three choices for the category C which are
particularly suited to our purpose, the category DL of distributive lattices, the
category BDL of bounded distributive lattices, and the category BA of boolean
algebras. The categories DL,BDL and BA have a very nice technical feature
from the perspective of coalgebraic logic: each category is locally finite; that is,
finitely generated objects are finite. This is a very desirable technical property
for the presentation of endofunctors on this category and for coalgebraic strong
completeness theorems. We denote by F ⊣ U the usual free-forgetful adjunction
between DL (resp. BDL, resp. BA) and Set.

True and false. The choice of including (or not) ⊺ and � to the logic is
clearly provided by the choice of reasoning kernel.

Algebras. Recall that an algebra for an endofunctor L ∶ C → C is an
object A of C together with a morphism α ∶ LA→ A. We refer to endofunctors
L ∶ C → C as syntax constructors.

Resource operations. The operations on resources specified in the intro-
duction; that is, a combination operation and its left and right residuals, are
introduced via the following syntax constructor:

LRL ∶ C → C ,
⎧⎪⎪
⎨
⎪⎪⎩

LRLA = F{I, a⊗ b, a –⊗ b, a⊗– b ∣ a, b ∈ UA}/ ≡

LRLf ∶ LRLA→ LRLB, [a]≡ ↦ [f(a)]≡ ,

where ≡ is the fully invariant equivalence relation in C generated by the following
Distribution Laws for non-empty finite subsets X of A:

DL1. ⋁X ⊗ a = ⋁[X ⊗ a]

DL2. a⊗⋁X = ⋁[a⊗X]

DL3. a –⊗⋀X = ⋀[a –⊗X]

DL4. ⋁X –⊗ a = ⋀[X –⊗ a]

DL5. ⋀X ⊗– a = ⋀[X ⊗– a]

DL6. a⊗– ⋁X = ⋀[a⊗–X].

where ⋁[X ⊗ a] = ⋁{x ⊗ a ∣ x ∈ X} and similarly for the other operations.
For the categories BDL and BA we allow X to be the empty set and use the
usual convention that ⋁∅ = � and ⋀∅ = ⊺. The language defined by LRL is
the free LRL-algebra over FV which we shall denote by L(LRL, V) or simply
L(LRL) when a choice of propositional variables V has been established. It is
not difficult to see that L(LRL) is the language of the distributive full Lambek
calculus (or residuated lattices) quotiented under the axioms of C and DL1-
6. An LRL-algebra is simply an object of C endowed with a nullary operation
I and binary operations ⊗, –⊗ and ⊗– satisfying the distribution laws above.
Note that an LRL-algebra is not a distributive residuated lattice. Only some

4

features of this structure have been captured by the axioms above. But several
are still missing, and will be added subsequently as canonical frame conditions.
LRL-algebras are an example of Distributive Lattice Expansions, or DLEs; that
is, distributive lattices endowed with a collection of maps of finite arities. When
C = BA, LRL-algebras are an example Boolean Algebra Expansions, or BAEs.

Modularity. The syntax developed above is completely modular in two
respects. First, it is modular in the choice of ‘reasoning kernel’ since the same
formal functor can be overloaded to be used on several different choices of base
categories. Second, and most importantly, it allows for a very concise definition
and construction of the fusion of logics ([24]); that is, the free combination of
two logics defined on the same base categories. If L1, L2 ∶ C → C are functors
defining languages L(L1),L(L2), then the fusion L(L1) ⊕ L(L2) of these lan-
guages is simply given by L(L1+L2) where + is the object-wise coproduct in C .
As an example, consider modal substructural logics; for instance, the ‘relevant
modal logic’ of [18] or the modal resource logics of [10, 28, 29]. The language of
positive modal logic ([30]) is given by the functor

LML ∶ C → C ,
⎧⎪⎪
⎨
⎪⎪⎩

LMLA = F{◊a,◻a ∣ a ∈ UA}/ ≡

LMLf ∶ LMLA→ LMLB, [a]≡ ↦ [f(a)]≡ ,

where ≡ is the fully invariant equivalence relation in C generated by the following
Distribution Laws for finite subsets X of A:

ML1. ◊(⋁X) = ⋁[◊X] ML2. ◻(⋀X) = ⋀[◻X].

where ⋁[◊X] = ⋁{◊x ∣ x ∈ X} and similarly for ◻. When C = BA one can of
course use a single modality and define its dual in the usual fashion, but nothing
is lost by considering the full signature, so we will consider LML to be the functor
defining modal logics across all our reasoning kernels, and the language of modal
logics is then given in our framework by the free LML-algebra over FV ; that is,
L(LML). The language of the various substructural modal logics cited above,
which is the fusion L(LRL) ⊕ L(LML), is thus simply given by L(LRL + LML).
Similarly, we can consider bi-substructural languages as is done in [31]; that is,
languages which allow resources to be combined in two different ways. In this
case the language is simply given by L(LRL +LRL).

2.2. Coalgebraic semantics

Semantic domain. As we mentioned in the introduction, it is reasonable
to assume that a model of resources should be a poset, and thus taking D =
Pos is intuitively justified. This is a particularly attractive choice of ‘semantic
domain’ given that the category Pos is related to DL by the dual adjunction
Pf ⊣ U ∶ DL → Posop, where Pf is the functor sending a distributive lattice
to its poset of prime filters, and DL-morphisms to their inverse images, and
U is the functor sending a poset to the distributive lattice of its upsets and
monotone maps to their inverse images. When a distributive lattice is a boolean

5

algebra, it is well-known that prime filters are maximal (i.e., ultrafilters) and
the partial order on the set of ultrafilter is thus discrete; that is, ultrafilters
are only related to themselves. Thus the dual adjunction Pf ⊣ U becomes the
well-known adjunction Uf ⊣ P between BA and Setop.

Coalgebras. Recall that a coalgebra for an endofunctor T ∶ D → D , is an
object W of D together with a morphism γ ∶W → TW . The endofunctors that
we will consider are built from products and ‘powersets’ and will be referred to
as model constructors. Note that Pos has products, which are simply the Set
products with the obvious partial order on pairs of elements. The ‘powerset’
functor which we will consider is the convex powerset functor: Pc ∶ Pos→ Pos,
sending a poset to its set of convex subsets, where a subset U of a poset (X,≤)
is convex if x, z ∈ U and x ≤ y ≤ z implies y ∈ U . The set PcX is given a poset
structure via the Egli-Milner order (see [32, 33]). Note that if X is a set, it
can be seen as a trivial poset where any element is only related to itself, and in
this case it is not difficult to see that any subset U ⊆ X is convex. Thus in the
case of sets, the convex subset functor Pc is simply the usual covariant powerset
functor. It therefore makes sense to consider Pc over all our ‘semantic domains’.

Coalgebras for the resource operations. We define the following model
constructor, which is used to interpret I,⊗, –⊗ and ⊗– :

TRL ∶ D → D ,
⎧⎪⎪
⎨
⎪⎪⎩

TRLW = 2 × Pc(W ×W) × Pc(W
op ×W) × Pc(W ×W op)

TRLf ∶ TRLW → TRLW
′, U ↦ (Id2 × (f × f)3)[U].

The intuition is that the first component of the structure map of a TRL-coalgebra
(to the poset 2) separates states into units and non-units. The second compo-
nent sends each ‘state’ w ∈W to the pairs of states which it ‘contains’, the next
two components are used to interpret –⊗ and ⊗– , respectively, and will turn
out to be very closely related to the second component. Note that if D = Pos,
the structure map of coalgebras are monotone, intuitively this means bigger
resources can be split up in more ways.

The semantic transformations. In the abstract flavour of coalgebraic
logic, the semantics is provided by a natural transformation δ ∶ LG → GT op

called the semantic transformation. We show below how this defines an inter-
pretation map, but we first define our semantic transformation at every poset
W by its action on the generators of LRLGW :

δRL
W (I) = {t ∈ TRLW ∣ π1(t) = 0 ∈ 2}

δRL
W (u⊗ v) = {t ∈ TRLW ∣ ∃(x, y) ∈ π2(t), x ∈ u, y ∈ v}

δRL
W (u –⊗w) = {t ∈ TRLW ∣ ∀(x, y) ∈ π3(t), x ∈ u⇒ y ∈ w}

δRL
W (w ⊗– v) = {t ∈ TRLW ∣ ∀(x, y) ∈ π4(t), x ∈ v⇒ y ∈ w}

where πi,1 ≤ i ≤ 4 are the usual projections maps, and u, v ∈ GW .

Proposition 1. The natural transformation δRL is well-defined.

6

Proof. Let us first check that for any u, v ∈ UW , δRL
W (u ⊗ v), δRL

W (u –⊗ v) and
δRL
W (u ⊗– v) are upsets in TRLW . Assume first that t ∈ δRL

W (u ⊗ v) and that
t ≤ t′ ∈ TRLW , we want to show that t′ ∈ δRL

W (u ⊗ v) too. By definition of the
partial order on TRLW , we have that π2(t) ≤ π2(t

′) for the (component-wise)
Egli-Milner order; that is, for each (x, y) ∈ π2(t) there exists (x′, y′) ∈ π2(t

′)
such that x ≤ x′ and y ≤ y′. But by definition of δRL

W (u⊗ v) we know that there
exists (x, y) ∈ π2(t) such that x ∈ u, y ∈ v, and since u, v are upsets it follows that
x′ ∈ u, y′ ∈ v and thus t′ ∈ δRL

W (u⊗v) as desired. Assume now that t ∈ δRL
W (u –⊗v)

and that t ≤ t′ ∈ TRLW , we want to show that t′ ∈ δRL
W (u –⊗ v). To see that this

is the case, take any (x′, y′) ∈ π3(t
′) and assume that x′ ∈ u, we need to show

that y′ ∈ v. By definition of the Egli-Milner order we know that there exists
(x, y) ∈ π3(t) such that x′ ≤ x and y ≤ y′ (note the inequality reversal due to the
presence of (−)op in the definition of TRL). Since u is an upset, it follows that
x ∈ u and since t ∈ δRL

W (u –⊗ v), it follows that y ∈ v, and thus y′ ∈ v as v is an
upset. The proof is identical for δRL

W (u⊗– v).
Let us now show that δRL

W satisfies the distributivity laws DL1-6. For any
u1, u2, v ∈ UW we have

δRL
X (u1 ∪ u2, v) ={t ∈ TRLW ∣ ∃(x, y) ∈ π2(t), x ∈ u1 ∪ u2, y ∈ v}

={t ∈ TRLW ∣ ∃(x, y) ∈ π2(t), x ∈ u1, y ∈ v}∪

{t ∈ TRLW ∣ ∃(x, y) ∈ π2(t), x ∈ u2, y ∈ v}

=δRL
X (u1, v) ∪ δ

RL
X (u2, v),

and the proof is clearly identical for the second argument. The meet preservation
in the second argument of –⊗ is easy:

δRL
X (v –⊗ (u1 ∩ u2)) ={t ∈ TRLW ∣ ∀(x, y) ∈ π3(t), x ∈ v⇒ y ∈ (u1 ∩ u2)}

={t ∈ TRLW ∣ ∀(x, y) ∈ π3(t), x ∈ v⇒ y ∈ u1} ∩

{t ∈ TRLW ∣ ∀(x, y) ∈ π3(t), x ∈ v⇒ y ∈ u2}

=δRL
X (v –⊗ u1) ∩ δ

RL
X (v –⊗ u2).

For the anti-preservation of joins in the first argument we have

δRL
X ((u1 ∪ u2) –⊗ v) ={t ∈ TRLW ∣ ∀(x, y) ∈ π3(t), x ∈ (u1 ∪ u2)⇒ y ∈ v}

={t ∈ TRLW ∣ ∀(x, y) ∈ π3(t), x ∈ u1 ⇒ y ∈ v} ∩

{t ∈ TRLW ∣ ∀(x, y) ∈ π3(t), x ∈ u2 ⇒ y ∈ v}

=δRL
X (u1 –⊗ v) ∩ δRL

X (u2 –⊗ v),

where we use the classical equality x ∈ (u1 ∪u2)⇒ y ∈ v iff x ∉ (u1 ∪u2) or y ∈ v
iff (x ∉ u1 or x ∈ v) and (x ∉ u2 or x ∈ v). The proof for ⊗– is identical.

The semantic transformations are thus well-defined. We now show how the
interpretation map arises from the semantic transformation. Recall that, for a
given syntax constructor L ∶ C → C , the language L(L) of L is the free L-algebra
over FV . This is equivalent to saying that it is the initial L(−) + FV -algebra.

7

We use initiality to define the interpretation map by putting an L(−) + FV -
algebra structure on the ‘predicates’ of a T -coalgebra γ ∶ W → TW ; that is,
on the carrier set GW . By definition of the coproduct, this means defining a
morphism LGW → GW and a morphism FV → GW . By adjointness it is easy
to see that the latter is simply a valuation v ∶ V → UGW . For the former we
simply use the semantic transformation and G applied to the coalgebra. The
interpretation map ⟦−⟧γ is thus given by the catamorphism:

LL(L) + FV

��

L⟦−⟧γ+IdFV // LGW + FV

δW+IdFV
��

GTW + FV

Gγ+v
��

L(L)
⟦−⟧γ

// GW

Modularity. Following our point on the modularity of the syntax, we high-
light the modularity of the coalgebraic semantics too. Modal logic will be in-
terpreted in TML-coalgebra for the functor

TML ∶ D → D ,
⎧⎪⎪
⎨
⎪⎪⎩

TRLW = Pc(W) × Pc(W)

TMLf ∶ TMLW → TMLW
′, U ↦ (f)2[U].

Note that we are interpreting ◊ and ◻ using different relations. Modulo Dunn’s
interaction axioms ([30]) one can show that these two relations must be equal
in the case of boolean modal logic, and that they can be assumed to be equal in
the case of positive modal logic (although models where they are not equal will
exist too). The semantics is given as usual by the transformation δML ∶ LMLG→
GTML defined at every poset W by its action on the generators of LMLGW :

δML
W (◊u) = {(x, y) ∈ TMLW ∣ x ∩ u ≠ ∅}

δML
W (◻u) = {(x, y) ∈ TMLW ∣ y ⊆ u}

Model constructors and semantic transformations can be assembled in a way
that is dual to the the syntax constructors; that is, using products rather than
co-products. Formally, for languages defined by functors L1, L2;C → C inter-
preted in coalgebras for the functors T1, T2;D → D by semantic transformations
δ1, δ2 respectively, the fusion L(L1 + L2) is interpreted in T1 × T2-coalgebra,
where the product is taken object-wise in D , via the semantic transformation

(Gπ1 +Gπ2) ○ δ
1 + δ2 ∶ L1G +L2G→ GT1 +GT2 → GT1 ×GT2

In particular, the semantics of the modal substructural logics defined above is

8

given by the following interpretation maps:

(LML+LRL)L(LML+LRL(−))+FV

��

LML +LRL⟦−⟧(γ1×γ2) + IdFV

// LMLGW+LRLGW+FV

δML
W +δRL

W +IdFV
��

GTMLW+GTRLW+FV

G(γ1×γ2)○(Gπ1+Gπ2)+v
��

L(LML+LRL) ⟦−⟧(γ1×γ2)
// GW

2.3. Advantages of the coalgebraic approach.

Before we move on to the technical part of this paper, we return to the
advantages of our set up. From the perspective of studying the relation between
resource semantics and logics, the fundamental situation described by Diagram
1 is particularly promising. Going from substructural logics to resource models,
the coalgebraic approach allows us to ‘guess’ and generate appropriate resource
models. Indeed, starting from a ‘reasoning kernel’ C , the existence of a dual
adjunction F ⊣ G with a category D restricts the kind of model carriers we
should consider. Moreover, as we will see later, objects of the type GFA for
A ∈ C will play a crucial role and should be canonical extensions. This extra
requirement determines to a great extent the useful structure(s) one ought to
consider for the carriers of resource models. For example when C = DL, we
cannot take D = Set, because GFA is then given by PPfA which is not the
canonical extension of A. It is therefore the framework itself which suggests
that non-boolean substructural logics should have posets of resources as their
models. Similarly, as we have shown above, the choice of T , that is to say of
relational structure on the carrier, can be guessed from that of L in a systematic
fashion – at least for the languages we consider here.

Conversely, if we start from requirements on resource models, such as the
natural conditions listed in the introduction, we can work from resource model
to logic via the existence of a dual adjunction F ⊣ G and the constraint that
GFA should be the canonical model of A. In this way, the ‘natural’ logics to
reason about partially ordered models of resources are positive; that is, based on
DL. Moreover, the relational structure suggested in the introduction suggests
adding binary modalities, in other words functors L ∶ DL→DL building binary
‘modal’ formulas over DL, as was done in this section. Thus we see that in either
direction the categorical clarity of coalgebraic logics provides us with a natural
and principled methodology for building resource models from substructural
logics and vice versa.

Finally, we note that recent work on positive coalgebraic logics ([32, 33])
suggests that what is known of boolean modal logics with relational semantics
can be adapted in a systematic and principled way to the positive modal logics
that we are are considering here. Indeed, our choice of semantics in terms

9

of convex powerset coalgebras is dictated by the fact that this functor is a
universal extension to Pos of the usual powerset functor on Set. In this sense,
the coalgebraic perspective also suggests what a ‘correct’ relational model on a
poset of resources should be.

3. Jónsson-Tarski extensions

The languages L(LRL) and L(LML) which we have introduced earlier are
part a class of logics with a very strong property: they are strongly complete
with respect to their semantics. This is what we will now establish, and it is the
first step is showing strong completeness of more complex logics based on the
languages L(LRL) and L(LML). The proof is an application of the coalgebraic
Jónsson-Tarksi theorem.

Theorem 2 (Coalgebraic Jónsson-Tarksi theorem, [26]). Assuming the basic
situation of Diagram (1) and a semantic transformation δ ∶ LG → GT , if its

adjoint transpose δ̂ ∶ TF → FL has a right-inverse ζ ∶ FL → TF , then for every
L-algebra α ∶ LA → A, the embedding ηA ∶ A → GFA of A into its canonical
extension can be lifted to the following L-algebra embedding:

LA
α //

LηA
��

A

ηA

��
LGFA

δFA

// GTFA
GζA

// GFLA
GFα

// GFA

(2)

We call the coalgebra ζ ○ Fα ∶ FA → TFA a canonical model of (the L-
algebra) A. If A is the free L-algebra over FV we recover the usual notion of
canonical model. The ‘truth lemma’ follows from the definition of η. We will
call the L-algebra LGFA → GFA defined by Diagram (2) a Jónsson-Tarski
extension of the α ∶ LA→ A.

We now prove the existence of canonical models for the logics defined by
LML and LRL. The result generalizes Lemma 5.1 of [30], which builds canonical
models for countable DLs with a unary operator, and Lemma 4.26 of [13], which
builds canonical models for countable BAs with n-ary operators. We essentially
show how to build canonical models for arbitrary DLs with n-ary expansions
all of whose arguments either (1) preserve joins or anti-preserve meets, or (2)
preserve meets or anti-preserve joins. The proof is rather involved and is detailed
in the appendix.

Theorem 3. The adjoint transpose of the transformation δRL ∶ LRLG→ GTRL

(resp. δML ∶ LMLG→ GTML) has right inverses at every distributive lattice.

Strong completeness: Let us now define what we exactly mean by strong
completeness. Let C be DL,BDL or BA, L ∶ C → C , V be a set of propositional
variables, q ∶ L(L) ↠ Q be a regular epi, and let Φ,Ψ ⊆ Q be two families of
‘formulas’ such that Φ /⊢ Ψ; that is, such that no finite set Φ0 of elements of Φ

10

and no finite set Ψ0 of elements of Ψ can be found such that ⋀Φ0 ≤ ⋁Ψ0. The
statement that Q is strongly complete w.r.t. to a class T of T -coalgebras means
that for any such choice of Φ,Ψ there exists a T -coalgebra γ ∶ X → TX in T , a
valuation v ∶ FV → GX, and a point x ∈ X such that x ∈ ⟦a⟧(γ,v) for all a ∈ Φ
and x ∉ ⟦b⟧(γ,v) for all b ∈ Ψ.

Theorem 4. The logic defined by LRL (resp. LML) is sound and strongly
complete with respect to the class of all TRL- (resp. TML-) coalgebras.

Proof. We show the case of L(LRL). Let Φ,Ψ ⊆ L(LRL) and Φ /⊢ Ψ. Then
the filter ⟨Φ⟩↑ generated by Φ and the ideal ⟨Ψ⟩↓ generated by Ψ obey ⟨Φ⟩↑ ∩
⟨Ψ⟩↓ = ∅. By the PIT there exists a prime filter wΦ extending ⟨Φ⟩↑ such
that wΦ ∩ ⟨Ψ⟩↓ = ∅. By Theorems 2 and 3, the L-algebra L(LRL) has a
Jónsson-Tarski extension which provides an interpretation in the T -coalgebra

PfL(LRL) → PfLRLL(LRL)
ζL(LRL)
ÐÐÐÐ→ TPfL(LRL) coinciding with ηL(LRL). In

this interpretation wΦ ∈ ⟦a⟧ for all a ∈ Φ and wΦ ∉ ⟦b⟧ for all b ∈ Ψ.

4. Canonical extensions and canonical equations

In the previous section we have shown how to embed an L-algebra with
carrier A into an L-algebra with carrier GFA. When C = DL,BDL or BA
carriers of this shape are known as canonical extensions (and denoted Aσ) and
a great deal is known about them. The theory of canonical extensions in DL
has been to extended boolean algebras with operators (BAOs) ([34]) and to
distributive lattice expansions (DLEs) ([35, 20]) and forms the basis of the
theory of canonicity which consists in determining when the validity of an an
equation in a DLEs transfer to its canonical extension; that is, when A ⊧ s = t
implies Aσ ⊧ s = t. Note that the canonical and Jónsson-Tarski extensions are
in general not equal. This section deals only with canonical extension, but we
will see in the next section how these results can be combined with the Jónsson-
Tarski construction of Theorem 2.

4.1. Canonical extension of distributive lattices

We now briefly present the salient facts about canonical extensions for dis-
tributive lattices. For any A in DL, UPfA is known as the canonical extension of
A and denoted Aσ. It can be characterised uniquely up to isomorphism through
purely algebraic properties, namely that A is dense and compact in Aσ. For
our purpose however, defining the canonical extension of A as UPfA will be
sufficient. The canonical extension Aσ of a distributive lattice A is always com-
pletely distributive (see [20]). The following terminology will be important: Aσ

is a completion of A and all joins of elements of A therefore exist in Aσ, such
elements are called open and their set is denoted by O(A). Dually, meets in Aσ

of elements of A will be called closed and their set denoted K(A). Elements of
A =K(A) ∩O(A) are therefore called clopens.

11

4.2. Canonical extension of distributive lattice expansions

We now sketch the theory of canonical extensions for Distributive Lattice
Expansions (DLE) — for the details, see [35, 20]. Each map f ∶ UAn → UA can
be extended to a map (UAσ)n → UAσ in two canonical ways:

fσ(x) =⋁{⋀ f[d, u] ∣Kn ∋ d ≤ x ≤ u ∈ On}

fπ(x) =⋀{⋁ f[d, u] ∣Kn ∋ d ≤ x ≤ u ∈ On},

where f[d, u] = {f(a) ∣ a ∈ An, d ≤ a ≤ u}. Note that since A is compact in
Aσ the intervals [d, u] are never empty, which justifies these definitions. For a
signature Σ, the canonical extension of a Σ-DLE (A, (fs ∶ UA

ar(n) → UA)s∈Σ) is
defined to be the Σ-DLE (Aσ, (fσs ∶ U(Aσ)ar(n) → UAσ)s∈Σ), and similarly for
BAEs. We summarize some important facts about canonical extensions of maps
in the following proposition, proofs can be found in, for example, [19, 20, 21]:

Proposition 5. Let A be a distributive lattice, and f ∶ UAn → UA.

1. fσ ↾ An = fπ ↾ An = f .

2. fσ ≤ fπ under pointwise ordering.

3. If f is monotone in each argument, then fσ ↾ (K ∪O)n = fπ ↾ (K ∪O)n.

We call a monotone map f ∶ UAn → UA smooth in its ith argument (1 ≤ i ≤ n)
if, for every x1, . . . , xi−1, xi+1, . . . , xn ∈K ∪O,

fσ(x1, . . . , xi−1, xi, xi+1, . . . , xn) = f
π(x1, . . . , xi−1, xi, xi+1, . . . , xn),

for every xi ∈ A
σ. A map f ∶ UAn → UA is called smooth if it is smooth in each

of its arguments.
In order to study effectively the canonical extension of maps, we need to

define six topologies on Aσ. First, we define σ↑, σ↓ and σ as the topologies
generated by the bases {↑ p ∣ p ∈ K},{↓ u ∣ u ∈ O} and {↑ p∩ ↓ u ∣ K ∋ p ≤∈ O}.
The next set of topologies is well-known to domain theorists: a Scott open in
Aσ is a subset U ⊆ Aσ such that (1) U is an upset and (2) for any up-directed
set D such that ⋁D ∈ U , D ∩ U ≠ ∅. The collection of Scott opens forms a
topology called the Scott topology, which we denote γ↑. The dual topology will
be denoted by γ↓, and their join by γ. It is not too hard to show (see [19, 21])
that γ↑ ⊆ σ↑, γ↓ ⊆ σ↓, and γ ⊆ σ. We denote the product of topologies by ×, and
the n-fold product of a topology τ by τn. The following result shows why these
topologies are important: they essentially characterize the canonical extensions
of maps:

Proposition 6 ([19]). For any DL A and any map f ∶ UAn → UA,

1. fσ is the largest (σn, γ↑)-continuous extension of f ,

2. fπ is the smallest (σn, γ↓)-continuous extension of f

12

3. f is smooth iff it has a unique (σn, γ)-continuous extension.

From this important result, it is not hard to get the following key theorem,
sometimes known as Principle of Matching Topologies, which underlies the basic
‘algorithm’ for canonicity:

Theorem 7 (Principle of Matching Topologies,[19, 21]). Let A be a distributive
lattice, and f ∶ UAn → UA and gi ∶ UA

mi → UA,1 ≤ i ≤ n be arbitrary maps.
Assume that there exist topologies τi on A, 1 ≤ i ≤ n such that each gσi is
(σmi , τi)-continuous, then

1. if fσ is (τ1× . . .×τn, γ
↑)-continuous, then fσ(gσ1 , . . . , g

σ
n) ≤ (f(g1, . . . , gn))

σ

2. if fσ is (τ1× . . .×τn, γ
↓)-continuous, then fσ(gσ1 , . . . , g

σ
n) ≥ (f(g1, . . . , gn))

σ

3. if fσ is (τ1× . . .×τn, γ)-continuous, then fσ(gσ1 , . . . , g
σ
n) = (f(g1, . . . , gn))

σ.

The last piece of information we need to effectively use the Principle of
Matching Topologies is to determine when maps are continuous for a certain
topology, based on the distributivity laws they satisfy. For our purpose the
following results will be sufficient:

Proposition 8 ([35, 19, 20, 21]). Let A be a distributive lattice, and let f ∶
UAn → UA be a map. For every (n−1)-tuple (ai)1≤i≤n−1, we denote by fka ∶ A→
A the map defined by x↦ f(a1, . . . , ak−1, x, ak, . . . , an−1).

1. If fka preserves binary joins, then (fσ)ka preserve all non-empty joins and
is (σ↓, σ↓)-continuous.

2. If fka preserves binary meets, then (fσ)ka preserve all non-empty meets and
is (σ↑, σ↑)-continuous.

3. If fka anti-preserves binary joins (i.e., turns them into meets), then (fσ)ka
anti-preserve all non-empty joins and is (σ↓, σ↑)-continuous.

4. If fka anti-preserves binary meets (i.e., turns them into joins), then (fσ)ka
anti-preserve all non-empty meets and is (σ↑, σ↓)-continuous.

5. In each case f is is smooth in its kth argument.

4.3. Canonical (in)equations

To say anything about the canonicity of equations, we need to compare
interpretations in A with interpretations in Aσ. It is natural to try to use
the extension (⋅)σ to mediate between these interpretations, but (⋅)σ is defined
on maps, not on terms. Moreover, not every valuation on Aσ originates from
valuation on A. We would therefore like to recast the problem in such a way
that (1) terms are viewed as maps, and (2) we do not need to worry about
valuations.

13

Term functions. The solution is to adopt the language of term functions
(as first suggested in [14]). Given a signature Σ, let T(V) denote the language
of Σ-DLEs (or Σ-BAEs) over a set V of propositional variables. We view each
term t ∈ T(V) as defining, for each Σ-DLE A, a map tA ∶ An → A. This allows us
to consider its canonical extension (tA)σ, and also allows us to reason without
having to worry about specifying valuations. Formally, given a signature Σ
and a set V a propositional variables, we inductively define the term function
associated with an element t built from variables x1, . . . , xn ∈ V as follows:

� xAi = πni ∶ A
n → A,1 ≤ i ≤ n;

� (f(t1, . . . , tm))A = fA ○ ⟨tA1 , . . . , t
A
m⟩.

where πi is the usual projection on the ith component, fA is the interpretation
of the symbol f in A and ⟨tA1 , . . . , t

A
m⟩ is usual the product of m maps. Note that

in this definition we work in Set, and the building blocks of term functions are
thus the variables in V (interpreted as projections) and all operation symbols,
including ∨,∧ and possibly ¬.

Proposition 9. Let s, t be terms in the language defined by a signature Σ and
A be a Σ-DLE,

A ⊧ s = t iff sA = tA .

Canonical (in)equations. An equation s = t where s, t ∈ T(V) is called
canonical if A ⊧ s = t implies Aσ ⊧ s = t, and similarly for inequations. Following
[14], we say that t ∈ T(V) is stable if (tA)σ = tA

σ

, that t is expanding if (tA)σ ≤
tA

σ

, and that t is contracting if (tA)σ ≥ tA
σ

, for any A. The inequality between
maps is taken pointwise. The following proposition illustrates the usefulness of
these notions:

Proposition 10 ([14]). If s, t ∈ T(V) are stable then the equation s = t is
canonical. Similarly, let s, t ∈ T(V) such that s is contracting and t is expanding,
then the inequality s ≤ t is canonical.

Proof. Let A be an arbitrary Σ-DLE. If A ⊧ s = t, then sA = tA by Proposition
9. Therefore (sA)σ = (tA)σ and thus sA

σ

= tA
σ

, by stability, and it follows that
Aσ ⊧ s = t by Proposition 9.

Similarly, if A ⊧ s ≤ t then sA ≤ tA by Proposition 9 and thus (sA)σ ≤ (tA)σ.
By the assumptions on s and t, this means that we also have sA

σ

≤ tA
σ

, and
thus Aσ ⊧ s ≤ t by Proposition 9.

5. Coalgebraic Completeness via-canonicity

In this section we will combine the results of Sections 2 and 3. We will
first exhibit a set of canonical axioms which complete the definition of LRL and
completely axiomatize the distributive full Lambek calculus. This will prove
that the variety defined by these axioms is canonical; that is, closed under
canonical extension. We will then show that the canonical and Jónsson-Tarski
extensions defined by Theorems 3 and 2 coincide. This will allow us to conclude
strong completeness of the distributive full Lambek calculus.

14

5.1. Axiomatizing distributive residuated lattices

So far we have only captured part of the structure of distributive residuated
lattices, namely we have enforced the distribution properties of →,⊗, –⊗ and ⊗–
by our definition of the syntax constructor LRL. In order to capture the rest of
the structures we now add axioms which, when added to DL1-6 fully axiomatize
distributive residuated lattices. Due to the constraints that these axioms must
be canonical, we choose the following Frame Conditions:

FC1. a⊗ I = a, I ⊗ a = a

FC2. I ≤ a –⊗ a, I ≤ a⊗– a

FC3. a⊗ (b –⊗ c) ≤ (a⊗ b) –⊗ c

FC4. (c⊗– b)⊗ a ≤ c⊗– (a⊗ b)

FC5. (a⊗– b)⊗ b ≤ a

FC6. b⊗ (b –⊗ a) ≤ a.

Proposition 11. The axioms DL1-6 and FC1-6 axiomatize distributive resid-
uated lattices.

Proof. It is straighforward to check that axioms DL1-6 and FC1-6 hold in any
residuated lattice. Conversely, we show that if FC1-6 hold in an LRL-algebra,
then this LRL-algebra is a residuated lattice. It is clear from FC1 that ⊗ defines
a monoid on the carrier set. It remains to show that the residuation conditions
are satisfied. Assume that a⊗ b ≤ c. We have

I ≤ b –⊗ b FC2

a ≤ a⊗ (b –⊗ b) FC1 and monotonicity of ⊗ from LRL

≤ (a⊗ b) –⊗ b FC3

≤ c –⊗ b Monotonicity of –⊗ from LRL

Now assume that a ≤ b –⊗ c. Then we have

a⊗ b ≤ (b –⊗ c)⊗ b Monotonicity of ⊗ from LRL

≤ c FC5.

The proof for the left residual ⊗– is identical. Note that the monotonicity of
the operators are consequences of DL1-6.

We now show one of the crucial steps.

Proposition 12. The axioms FC1-6 are canonical.

Proof. The proof is an application of Theorem 7 and Proposition 10.
FC1: Since ⊗ preserves binary joins in each argument, it is smooth by Prop.

8, and it follows that it is (σ2, γ)-continuous. Since πσ1 and Iσ are trivially
(σ,σ)-continuous, it follows from Theorem 7 that (⊗ ○ ⟨π1, I⟩)

σ = ⊗σ ○ ⟨π1,1⟩
σ.

Each side of the equation is thus stable and the result follows from Prop. 10.
FC2: I is stable and thus contracting, and (–⊗○⟨π1, π1⟩)

σ = –⊗σ ○⟨π1, π1⟩
σ,

since πσ1 is (σ,σ)−continuous and –⊗σ is smooth. The RHS of the inequality is
thus stable, and a fortiori expanding, and the inequality is thus canonical.

15

FC3-4: Since ⊗σ preserve joins in each argument, it preserves up-directed
ones, and is thus ((γ↑)2, γ↑)-continuous. Since –⊗σ is smooth it is in particular
(σ2, γ↑)-continuous. Since πσ1 is (σ, γ↑)-continuous, we get that ⊗σ ○ ⟨πσ1 , –⊗σ

○⟨πσ2 , π
σ
3 ⟩⟩ is (σ3, γ↑)-continuous and thus contracting. For the RHS, note that

since –⊗σ preserves meets in its first argument, it must in particular preserve
down-directed ones, thus –⊗σ is (γ↓, γ↓)-continuous in its first argument. Simi-
larly, since –⊗σ anti-preserve joins in its second argument, it must in particular
anti-preserve up-directed ones, and is thus (γ↑, γ↓)-continuous in its second ar-
gument. This means that –⊗σ is (γ2, γ↓)-continuous. We thus have that the full
term is (σ3, γ↓) continuous, and thus expanding. The inequation is therefore
canonical.

FC5-6: The LHS is contracting by the same reasoning as above, and the
RHS is stable and thus expanding.

5.2. Jóonsson-Tarski vs canonical extensions

We have just shown that the variety of LRL-algebras defined by the equations
FC1-6 is canonical; that is, closed under canonical extension. However, since we
want to exhibit models, what we really need to show is that the variety defined
by FC1-6 is closed under Jónsson-Tarski extensions. Fortunately, for the logics
of interest to us here the two extensions in fact coincide. This is what we will
now show. The proof is not difficult but rather long, and can be found in the
appendix.

Proposition 13. The structure map of the Jónsson-Tarski extension of an LRL-
algebra is equal to the canonical extension of its structure map (in the sense of
Section 4.2).

5.3. Strong completeness

We are now ready to combine all our results and to state and prove our main
completeness theorem.

Theorem 14 (Strong completeness theorem). The Distributive Full Lambek
Calculus is strongly complete with respect to the class of TRL-coalgebras validat-
ing FC1-6.

Theorem 14. Let Φ,Ψ be (not necessarily finite) subsets of L(LRL); that is,
elements of the free LRL-algebra over FV , such that

FC1 − 6 +Φ ⊬ Ψ

We need to find a TRL-model validating the axioms FC1-6 such that each a ∈ Φ
and no b ∈ Ψ is satisfied in this model. Now consider the Lindenbaum-Tarski
LRL-algebra α ∶ LRLL→ L defined by axioms FC1-6; that is,

L = L(LRL)/(FC1 − 6),

16

where the quotient is under the fully invariant equivalence relation in C gener-
ated by the frame conditions FC1-6. Note that this algebra comes equipped with
a canonical valuation v ∶ FV → L. By construction, L validates FC1-6, and since
we’ve established, in Proposition 12, that they are canonical, the LRL-algebra

LRLUPfL
ασ

Ð→ UPfL

also validates these axioms. By Proposition 13 we know that this LRL-algebra
is the Jónsson-Tarski extension of L, and as a consequence

LRLUPfL
δRL
PfL
ÐÐ→ UTRLPfL

UζL
ÐÐ→ UPfLRLL

UPfα
ÐÐÐ→ UPfL

validates FC1-6. As a direct consequence of the definition of coalgebraic seman-
tics, we have the following commutative diagram:

LRLL(LRL) + FV

��

LRL⟦−⟧L+IdFV//

LRL⟦−⟧UPfL+IdFV

))
LRLL + FV

α

��

LRLηL+IdFV // LRLUPfL + FV

δRL
PfL+IdFV

��
UTRLPfL + FV

UζPfL+IdFV
��

UPfL + FV

UPfα+v
��

L(LRL) ⟦−⟧L
//

⟦−⟧UPfL

55L ηL
// UPfL

It follows easily that at every prime filter w ∈ PfL, w ⊧FC1-6, since ⟦−⟧UPfL
must factor through ⟦−⟧L which ensures precisely that FC1-6 are valid. Thus
PfL is a model validating the axioms. We now need to find a point in wΦ ∈ PfL
such that w ⊧ Φ but w /⊧ Ψ. For this we start by considering the filter-ideal pair

(⟨Φ⟩↑, ⟨Ψ⟩↓)

where ⟨Φ⟩↑ is the filter generated by the equivalence classes in the Lindenbaum-
Tarski algebra L of formulas in Φ, and similarly for the ideal generated by Ψ. It
is clear that ⟨Φ⟩↑ is proper, or else we would necessarily have FC1−6+Φ ⊢ Ψ, a
contradiction. For the same reason it is clear that ⟨Φ⟩↑ ∩ ⟨Ψ⟩↓ = ∅. By the PIT,
we can find a prime filter wΦ ⊇ ⟨Φ⟩↑ in PfL such that wΦ ∩ ⟨Ψ⟩↓ = ∅. It follows
immediately that

wΦ ⊧ Φ and wΦ /⊧ Ψ

which is what we wanted to show.

17

5.4. Modularity.
The coalgebraic setting allows us to combine completeness-via-cano-nicity

results from simple logics to get results for more complicated logics. It can be
shown that the coalgebraic Jónsson-Tarski theorem is modular in the following
sense.

Theorem 15 (Strong completeness transfers under fusion). Let Li ∶ C → C , Ti ∶

D → D , δi ∶ LiG → GTi, i =,1,2. For any (L1 + L2)−algebra (A,α), if δ̂iA has
a right inverse ζiA, i = 1,2, then ηA ∶ A → GFA lifts to an L1 + L2-algebra
morphism.

Proof. We show that the following diagram commutes:

L1A +L2A
L1ηA+L2ηA //

α

��

ηL1A+L2A

!!

L1GFA +L2GFA

δ1A+δ
2
A

��
GT1FA +GT2FA

Gπ1+Gπ2

��
G(T1FA × T2FA)

G(ζ1A×ζ
2
A)

��
G(FL1A × FL2A) ≃ GF (L1A +L2A)

GFα

��
A ηA

// GFA

F being left adjoint preserves colimits, and thus turns coproduct in C into
products in D . The bottom left-hand corner trapezium thus commutes by
naturality of η. So we must show the commutativity of to top-right-hand corner
triangle. For this we first show that

(Gπ1 +Gπ2) ○ (δ
1 + δ2) ○ (L1ηA +L2ηA) = G(δ̂1

A × δ̂
2
A) ○ ηL1A+L2A

This is easily seen from the following diagram, which unravels the definition of
adjoint transposes and uses the fact that F preserves colimits:

L1A +L2A

L1ηA+L2ηA

��

// GF (L1A+L2A)≃G(FL1A×FL2A)

G(FL1ηA×FL2ηA)GF (L1ηA+L2ηA)≃
��

L1GFA+L2GFA

(δ1)FA+(δ2)FA
��

// GF (L1GFA+L2GFA)≃G(FL1GFA×FL2GFA)

G(F (δ1)FA×G(F (δ2)FA)GF ((δ1)FA+(δ2)FA)≃
��

GT1FA+GT2FA

Gπ1+Gπ2

��

// GF (GT1FA+GT2FA)≃G(FGT1FA×FGT2FA)

G(εT1FA○π1×εT2FA○π2)ss
G(T1FA×T2FA)

18

All the horizontal arrows are simply given by the unit η ∶ Id → GF (we have
omitted the labels to keep the diagram readable), and thus the two top rectangles
commute by naturality. Finally, we are left to deal with the bottom triangle
which can be seen to commutes from the following commutative diagram:

GT1FA

ηGT1FA

��

i1 // G(T1FA × T2FA) ≃ GT1FA +GT2FA

ηGT1FA+GT2FA

��

GT2FA

ηGT2FA

��

i2oo

GFGT1FA
GFi1

≃Gπ1

//

GεT1FA

��

G(FGT1FA×FGT2FA)≃GF (GT1FA+GT2FA)

G(εT1FA○π1×εT2FA○π2)
��

GFGT1FA
GFi2

≃Gπ2

oo

GεT2FA

��
GT1FA

Gπ1

// G(T1FA × T2FA) GT2FA
Gπ2

oo

The top squares commute by naturality of η, the bottom squares commute by
naturality of ε and the two squares can be joined by the fact that F turns
coproducts into products. Note also that GεT1FA ○ ηGT1FA = IdGT1FA by the
fact that F ⊣ G, and the desired result follows from the unicity of the coproduct
map Gπ1 +Gπ2. It is now easy to see that

G(ζ1
A × ζ

2
A) ○ (Gπ1 +Gπ2) ○ (δ

1 + δ2) ○ (L1ηA +L2ηA)

=G(ζ1
A × ζ

2
A) ○G(δ̂1

A × δ̂
2
A) ○ ηL1A+L2A

=G((δ̂1
A × δ̂

2
A) ○ (ζ

1
A × ζ

2
A)) ○ ηL1A+L2A

=ηL1A+L2A,

by the assumption that ζ1
A and ζ2

A are right inverses.

Note that we can extract a model of the right type from the proof above,
namely

ζ1
A × ζ

2
A ○ Fα ∶ FA→ T1FA × T2FA.

6. Applications to distributive substructural logics.

6.1. Describing TRL-coalgebras validating FC1-6

The axioms FC1-6 translate as two simple frame conditions on the relational
(resource) models interpreting the logic defined by LRL and these axioms; one
dealing with the unit I of the language, and the other with the residuation
of –⊗ and ⊗– with respect to ⊗. The class of TRL-coalgebras satisfying the
second frame condition is described in Theorem 19. It is intuitive and indeed
corresponds to the usual relational semantics of distributive substructural logics
(see, e.g., [36]) or separation logic/BI. However, proving it ‘from first principles’
as we do here is much more intricate than might be expected and, indeed, much
more so than is clear in [37].

Let γ ∶W → TRLW be a TRL-coalgebra validating the axioms FC1-6. Axioms
FC1 means that every world w ∈ W must have amongst its successors pairs

19

(w,x) and (y,w) such that x, y are ‘unit states’, viz. x, y ⊧ I, moreover these
are the only successors of w containing a unit state. This condition can be
found in, for example, [11]. The other axioms are simply designed to capture
the residuation condition in such a way that canonicity can be used; so a model
in which FC2-6 are valid is simply a model in which the residuation conditions
hold, viz. a⊗ b ≤ c iff b ≤ a –⊗ c iff a ≤ c⊗– b.

To see what this means for TRL-coalgebras we need the following lemma.
For any TRL-coalgebra γ ∶W → 2×Pc(W ×W)×Pc(W

op ×W)×Pc(W ×W op),
let γI , γ⊗, γ−⊗ and γ⊗− define the four components of the structure map. We
define

γ
(↓×↓)
⊗ (w) = {(x, y) ∣ ∃(x′, y′) ∈ γ⊗(w), x ≤ x′, y ≤ y′}

γ
(↓×↑)
−⊗ (w) = {(x, y) ∣ ∃(x′, y′) ∈ γ−⊗(w), x ≤ x′, y′ ≤ y}

γ
(↑×↓)
⊗− (w) = {(x, y) ∣ ∃(x′, y′) ∈ γ⊗−(w), x′ ≤ x, y ≤ y′}

Lemma 16. Let γ ∶ W → TRLW be a coalgebra and let γ̂ ∶ W → TRLW be the

TRL-coalgebra defined by γI , γ
(↓×↓)
⊗ , γ

(↓×↑)
−⊗ , γ

(↑×↓)
⊗− defined as above, then for any

valuation v ∶ FW → UW and any w ∈W

(w,γ, v) ⊧ a iff (w, γ̂, v) ⊧ a

Proof. This is an easy consequence of the the definition of TRL and of the fact
that the denotation of any formula is an upset.

We can now formulate the residuation condition.

Lemma 17. Equations FC2-6 are valid in γ ∶W → TRLW iff

(y, z) ∈ γ
(↓×↓)
⊗ (x) iff (y, x) ∈ γ

(↓×↑)
−⊗ (z) iff (x, z) ∈ γ

(↑×↓)
⊗− (y)

Proof. The ‘if’ direction follows easily by unravelling the definition of the seman-
tics. So let us turn to the ‘only if’ direction. Assume that a⊗ b ≤ c iff b ≤ a –⊗ c

and let γ ∶W → TRLW . We will show that (y, z) ∈ γ
(↓×↓)
⊗ (x) iff (y, x) ∈ γ

(↓×↑)
−⊗ (z),

the case of (x, z) ∈ γ
(↑×↓)
⊗− (y) is treated identically.

We start by showing that if (y, x) ∈ γ
(↓×↑)
−⊗ (z), then (y, z) ∈ γ

(↓×↓)
⊗ (x). Assume

(y, x) ∈ γ
(↓×↑)
−⊗ (z) — that is, that there exist (y′, x′) ∈ γ−⊗(z) such that y ≤ y′ and

x′ ≤ x. Consider a valuation such that ⟦a⟧ =↑ y and ⟦b⟧ =↑ z. We’re assuming
that a⊗ b ≤ c iff b ≤ a –⊗ c, which means in particular that b ≤ a –⊗ (a⊗ b). Since
z ⊧ b, it must therefore also be the case that z ⊧ a –⊗ (a ⊗ b). Since ⟦a⟧ = y
and y ≤ y′ we have y′ ⊧ a and it must therefore also be the case that x′ ⊧ a⊗ b,
and hence x ⊧ a⊗ b. It follows that there exist (y′′, z′′) ∈ γ⊗(x) with y′′ ≥ y and

z′′ ≥ z; that is, (y, z) ∈ γ
(↓×↓)
⊗ (x).

For the converse, we show that if (y, x) ∉ γ
(↓×↑)
−⊗ (z) then (y, z) ∉ γ

(↓×↓)
⊗ (x).

Let x, y, z ∈W with (y, x) ∉ γ
(↓×↑)
−⊗ (z) and consider a valuation such that ⟦a⟧ =↑ y

and ⟦c⟧ = (↓ x)c. It follows that z ⊧ a –⊗c. Indeed, assume the opposite; that is,

20

that there exists (y′, x′) ∈ γ−⊗(z) such that y′ ⊧ a — that is, y ≤ y′ — and x′ /⊧ c

— that is, x′ ∉ (↓ x)c; that is, x′ ≤ x. This means exactly that (y, x) ∈ γ
(↓×↑)
−⊗ (z),

a contradiction. Thus z ⊧ a –⊗ c. Now assume that (y, z) ∈ γ
(↓×↓)
⊗ (x); that is,

there exist (y′′, z′′) ∈ γ⊗(x) such that y′′ ≥ y, z′′ ≥ z. Since y ⊧ a and z ⊧ a –⊗ c
we have y′′ ⊧ a and z′′ ⊧ a –⊗c and therefore we have x ⊧ a⊗(a –⊗c). Since we’re
assuming that a⊗ b ≤ c iff b ≤ a –⊗ c, we have in particular that a⊗ (a –⊗ c) ≤ c,
and thus x ⊧ c. But this is impossible since ⟦c⟧ = (↓ x)c. Thus we cannot have
(y, z) ∈ γ⊗(x)

(↓×↓); that is, (y, z) ∉ γ⊗(x)
(↓×↓).

The entire information required to encode a TRL-coalgebra validating FC2-6

is therefore entirely contained in γ
(↓×↓)
⊗ (or γ

(↓×↑)
−⊗ or γ

(↑×↓)
⊗−). We will now show

that we can in fact simply consider γ⊗ (or γ−⊗ or γ⊗−). Note first that Lemma 17

enforces a strict constraint on γ
(↓×↓)
⊗ : since γ

(↓×↑)
−⊗ , γ

(↑×↓)
⊗− are monotone it follows

that if z ≤ z′ we must have

{(y, x) ∣ (y, z) ∈ γ
(↓×↓)
⊗ (x)} ≤W op×W {(y′, x′) ∣ (y′, z′) ∈ γ

(↓×↓)
⊗ (x′)} (3)

and similarly, if y ≤ y′

{(x, z) ∣ (y, z) ∈ γ
(↓×↓)
⊗ (x)} ≤W×W op {(x′, z′) ∣ (y′, z′) ∈ γ

(↓×↓)
⊗ (x′)} (4)

for the Egli-Milner order on W op ×W . The inequations (3) and (4) are quite

strong and must be satisfied by any map γ
(↓×↓)
⊗ capable of reconstructing the

entire TRL-coalgebra. More generally, we say that a a monotone map γ ∶ W →
Pc(W ×W) obeys the Residuation Compatibility Condition (RCC) if

{(y, x) ∣ (y, z) ∈ γ(x)} ≤W op×W {(y′, x′) ∣ (y′, z′) ∈ γ(x′)} and

{(x, z) ∣ (y, z) ∈ γ(x)} ≤W×W op {(x′, z′) ∣ (y′, z′) ∈ γ(x′)} (RCC)

We now generalize the statement of Lemma 17 to an arbitrary monotone map
γ ∶W → Pc(W ×W) by defining

γ ∶W → Pc(W
op ×W), z ↦ {(y, x) ∣ (y, z) ∈ γ(x)} (5)

γ ∶W → Pc(W ×W op), y ↦ {(x, z) ∣ (y, z) ∈ γ(x)} (6)

Lemma 18. If γ ∶W → Pc(W ×W) satisfies (RCC), then γ and γ are monotone
maps.

Proof. Immediate from the definitions.

With this notation in place we can now state the main result of this Section,

which relies on showing that we can impose (RCC) on γ⊗ rather than γ
(↓×↓)
⊗ .

Theorem 19. The logic defined by LRL and the axioms FC2-6 is strongly com-
plete with respect the class of TRL-coalgebras of the shape

γI × γ⊗ × γ⊗ × γ⊗ ∶W → 2 × Pc(W ×W) × Pc(W
op ×W) × Pc(W ×W op)

such that γ⊗ satisfies (RCC).

21

Proof. Let γ = γI × γ⊗ × γ−⊗ × γ⊗− ∶ W → TRLW be a coalgebra in which the
frame conditions FC2-6 are valid. From Lemma 16 it follows that the frame
conditions are valid in the coalgebra

γI × γ
(↓×↓)
⊗ × γ

(↓×↑)
−⊗ × γ

(↑×↓)
⊗− ∶W → TRLW

and from Lemma 17 this coalgebra is in fact of the shape

γI × γ
(↓×↓)
⊗ × γ

(↓×↓)
⊗ × γ

(↓×↓)
⊗ ∶W → TRLW

If we can show that γ
(↓×↓)
⊗ = γ⊗

(↓×↓) and γ
(↓×↓)
⊗ = γ⊗

(↓×↓), then our claim will

follow from Lemma 16. We show the first equality, the second one being similar.

(y, x) ∈ γ
(↓×↓)
⊗ (z)

⇔(y, z) ∈ γ
(↓×↓)
⊗ (x) Def. of γ

(↓×↓)
⊗

⇔∃y′, z′ s.th. y ≤ y′, z ≤ z′ and (y′, z′) ∈ γ⊗(x) Def. of γ
(↓×↓)
⊗

⇔∃y′, z′ s.th. y ≤ y′, z ≤ z′ and (y′, x) ∈ γ⊗(z
′) Def. of γ⊗

⇒∃x′, y′ s.th. x′ ≤ x, y ≤ y′ and (y′, x′) ∈ γ⊗(z) (RCC) and z ≤ z′

⇔(y, x)γ⊗
(↓×↑)(z) Def. of γ⊗

(↓×↑)

Conversely, we have

(y, x)γ⊗
(↓×↑)(z)

⇔∃x′, y′ s.th. y ≤ y′, x′ ≤ x and (y′, x′) ∈ γ⊗(z) Def. of γ
(↓×↑)
⊗

⇔∃x′, y′ s.th. y ≤ y′, x′ ≤ x and (y′, z) ∈ γ⊗(x
′) Def. of γ⊗

⇒∃y′, z′ s.th. y ≤ y′, z ≤ z′ and (y′, z′) ∈ γ⊗(x) γ⊗ monotone and x′ ≤ x

⇔(y, z) ∈ γ
(↓×↓)
⊗ (x) Def. of γ

(↓×↓)
⊗

⇔(y, x) ∈ γ
(↓×↓)
⊗ (z) Def. of γ

(↓×↓)
⊗

Example 20. Heaps, which for the sake of brevity and convenience we shall de-
fine as partial maps on N+ with finite domain, form a model satisfying Theorem
19. To show this, we first define the set of heaps

H = {f ∶ N+ ⇀ N+ ∣ dom(f) ∈ Pω(N+)}

It forms a poset under the order

f ≤ g if f = g ↾ dom(f)

22

We now define a TRL-coalgebra structure on H as follows:

γI ∶H → 2, f ↦

⎧⎪⎪
⎨
⎪⎪⎩

0 if dom(f) = ∅

1 else

γ⊗ ∶H → Pc(H ×H), f ↦{(g, h) ∣ dom(g) ∩ dom(h) = ∅,

f ↾ dom(g) = g, f ↾ dom(h) = h}

Clearly γI is trivially monotone, and validates the axioms FC1. To see that
γ⊗ is well-typed, note first that γ⊗(f) is a down-set, and therefore also convex.
Moreover, it is not hard to see that if f ′ extends f ; that is, f ≤ f ′ then γ⊗(f) ⊆
γ⊗(f

′). The first half of the Egli-Milner definition is therefore trivially satisfied.
For the second half, if (g′, h′) ∈ γ⊗(f

′), then (g′ ↾ dom(f), h′ ↾ dom(f) ∈ γ⊗(f)
provides the witness we need. It follows that γ⊗ is also monotone and thus
well-typed. Finally, we need to check that it satisfies (RCC); that is, if h ≤ h′

{(g, f) ∣ (g, h) ∈ γ⊗(f)} ≤Hop×H {(g′, f ′) ∣ (g′, h′) ∈ γ⊗(f
′)}

Starting from (g, f) in the first set, we define f ′ by f ′ = f on dom(f) and f ′ = h′

on dom(h′)∩(dom(f))c and get an element (g, f ′) such that (g, h′) ∈ γ⊗(f
′), g ≤

g and f ≤ f ′, which shows that the first direction of the Egli-Milner order holds.
For the second, start with (g′, f ′) in the second set and define f by f = h on
dom(h) and f = g′ on dom(g′). It is easy to see that (g′, h) ∈ γ⊗(f), g

′ ≤ g′ and
f ≤ f ′, providing a witness for the second direction of the Egli-Milner order. It
follows that γ⊗ satisfies (RCC), and heaps therefore provide a class of models
for the distributive full Lambek calculus.

6.2. Additional frame conditions.

Structural rules can be added to the full distributive Lambek calculus to
form new logics. These rules are the exchange rule (e), the contraction rule (c),
the left weakening rule (lw), and the right weakening rule (rw). Relevance logic
for example consists in adding (c) and (e) to the distributive Lambek calculus,
adding only (c) defines the positive MALL+ fragment of linear logic ([36]), whilst
the combination of (lw), (rw) and (e) defines affine logic. These structural rules
correspond to (in)equations in the theory of residuated lattices (see [36, 1, 2]);
that is, in the language of LRL-algebras. Let us go through them in order.

Exchange. The exchange rule corresponds to the axiom (e) given by a⊗b =
b⊗ a. It is easy to see from the results of Section 4.2 that it is canonical. The
class of TRL-coalgebras in which this axiom is valid is characterised by

(y, z) ∈ γ⊗(x)⇒ (z, y) ∈ γ
(↓×↓)
⊗ (x)

in other words, the ternary relation defined by γ
(↓×↓)
⊗ is closed under permuting

the successor states. In the case of the boolean Lambek calculus, that is to say
in the classical case, we clearly have (y, z) ∈ γ⊗(x) iff (z, y) ∈ γ⊗(x).

23

Contraction. The contraction rule corresponds to the axiom (c) given by
a ≤ a⊗a; that is, increasing idempotency (see [1, 2]). Once again, the canonicity
of this axiom is almost immediate from Section 4.2. The class of TRL-coalgebras
in which (c) is valid is characterized by

∀x ∈W∃(y, z) ∈ γ(x) s.th. x ≤ y, z

and in the classical case, this means that (x,x) ∈ γ⊗(x).
Left weakening. The weakening rule corresponds to the axiom a ≤ I, viz.

every state is a unit state. Coalgebraically, this means that the component γI
of a TRL-coalgebra is the constant map 0 ∈ 2. In the classical case, this amounts
to saying that I = ⊺.

For the right weakening rule we need to introduce a new unit, which we
will denote J . In fact we use this as an opportunity to introduce a whole new
signature, dual to the signature defining LRL. We define

L∂RL ∶ C → C ,
⎧⎪⎪
⎨
⎪⎪⎩

L∂RLA = F{J, a⊕ b, a –⊕ b, a⊕– b ∣ a, b ∈ UA}/ ≡

L∂RLf ∶ LRLA→ LRLB, [a]≡ ↦ [f(a)]≡ ,

where ≡ is the fully invariant equivalence relation in C generated by following
the Distribution Laws for non-empty finite subsets X of A:

DL∂1. ⋀X ⊕ a = ⋀[X ⊕ a]

DL∂2. a⊕⋀X = ⋀[a⊕X]

DL∂3. a –⊕⋁X = ⋁[a –⊕X]

DL∂4. ⋀X –⊕ a = ⋁[X –⊕ a]

DL∂5. ⋁X ⊕– a = ⋁[X ⊕– a]

DL∂6. a⊕– ⋀X = ⋁[a⊕–X].

Note that the equations DL∂1-6 are dual to the equations DL1-6. In partic-
ular, ⊕ is a binary ◻, whilst ⊗ is a binary ◊. The language L(L∂RL) will also be

interpreted in TRL coalgebras, via the semantic transformation δRL∂ ∶ L∂RLG →
GTRL defined at every poset W via its action on the generators:

δRL∂

W (J) = {t ∈ TRLW ∣ π1(t) = 1 ∈ 2}

δRL∂

W (u⊕ v) = {t ∈ TRLW ∣ ∀(x, y) ∈ π2(t), x ∈ u or y ∈ v}

δRL∂

W (u –⊕w) = {t ∈ TRLW ∣ ∃(x, y) ∈ π3(t), x ∉ u and y ∈ w}

δRL∂

W (w ⊕– v) = {t ∈ TRLW ∣ ∃(x, y) ∈ π4(t), x ∉ v and y ∈ w}

A proof very similar to that of Proposition 1 shows that δRL∂ is well-defined,
and using exactly the same technique as in Theorem 3, it can be shown that

the adjoint transpose of δRL∂ has right inverses at every distributive lattice. It
follows that L(L∂RL) is strongly complete with respect to the class of all TRL-
coalgebras. However, the intended interpretation of –⊕ and ⊕– is once again
that they should be the left and right residuals of ⊕. We therefore introduce
the following axioms.

24

FC∂1. a⊕ J = a, J ⊕ a = a,

FC∂2. I ≤ a –⊕ a, I ≤ a⊕– a,

FC∂3. a⊕ (b –⊕ c) ≤ (a⊕ b) –⊕ c,

FC∂4. (c⊕– b)⊕ a ≤ c⊕– (a⊕ b),

FC∂5. (a⊕– b)⊕ b ≤ a, and

FC∂6. b⊕ (b –⊕ a) ≤ a.

These axioms capture identities and residuation, and are therefore of exactly
the same shape as axioms FC1-6. A dual construction to that of Section 6.1,
shows that equations FC∂1-6 are valid in a TRL-coalgebra γ ∶ W → TRL iff it
satisfies

(y, z) ∈ γ
(↑×↑)
⊕ (x) iff (y, x) ∈ γ

(↑×↓)
−⊕ (z) iff (x, z) ∈ γ

(↓×↑)
⊕− (y)

where γ⊕ and γ⊕ are defined by Eqs. (5), (6). The fact that γ
(↑×↓)
−⊕ and γ

(↓×↑)
⊕−

should be monotone means that γ
(↑×↑)
⊕ must satisfy (RCC). Finally, dualising

Theorem 19 we get

Theorem 21. L(L∂RL) quotiented by the axioms FC∂2-6 is strongly complete
with respect to the class of TRL-coalgebras of the shape

γJ × γ⊕ × γ⊕ × γ⊕ ∶W → 2 × Pc(W ×W) × Pc(W
op ×W) × Pc(W ×W op)

such that γ⊕ satisfies (RCC).

Combining this theorem with our earlier result on the modularity of coal-
gebraic completeness-via-canonicity (Theorem 15) we get that the logic defined
by L(LRL +L

∂
RL) and the axioms FC2-6 and FC∂2-6 is strongly complete with

respect to TRL × TRL-coalgebras of the shape:

(γI × γ⊗ × γ⊗ × γ⊗) × (γJ × γ⊕ × γ⊕ × γ⊕) ∶

W → (2×Pc(W ×W) × Pc(W
op ×W) × Pc(W ×W op))2 (7)

where both γ⊗ and γ⊕ satisfy (RCC). We can now return to the structural
rules which we described at the beginning of this section and account for right
weakening.

Right weakening. Working in the signature of the fusion L(LRL ⊕ L
∂
RL),

right weakening corresponds to the axioms J ≤ a which is clearly canonical.
Coalgebraically this axiom corresponds to saying that if γJ(w) = 1 in a model,
then w ⊧ a for any formula a and any valuation. This is clearly not possible:
let p ∈ V be a propositional variable and consider a valuation such that ⟦p⟧ =
(↓ w)c (a valid upset), clearly w /⊧ p. It follows that γJ must be the constant
monotone map 0 ∈ 2. In particular if left weakening is also allowed, then nothing
distinguishes γI and γJ and J holds precisely when I does not; that is, never.
In the classical case we clearly have J = �.

The logic defined by LRL + L∂RL and the axioms FC1-6, FC∂1-6 and the
exchange axioms a ⊗ b = b ⊗ a and a ⊕ b = b ⊕ a is the positive fragment of the

25

Multiplicative-Additive Linear Logic (MALL+ in [36]). Many additional features
could be added to the quotient of L(LRL+L

∂
RL) under FC1-6 and FC∂1-6, most

notably one could define the ‘negation’ operations ∼ a ≜ a –⊗ J and ¬a ≜ J ⊗– a
and use them to connect the behaviour of the two halves of the signature. We
refer the reader to [36],[1] and [2] for such considerations. To conclude we return
to our heap model and show that it is a model for the logic we have just defined.

Example 22 ([12]). Recall from Example 20 that the poset of heaps H can be
equipped with a map γ⊗ ∶H → Pc(H

op ×H) which satifies (RCC), and can thus
be used to reconstruct an entire TRL-coalgebra structure (modulo a monotone
map γI ∶ H → 2). We will now define a second such map which will interpret
the dual signature given by L∂RL in the way suggested by [12]. We choose an
arbitrary upset of heaps U ⊆H and define

γJ ∶H → 2, f ↦

⎧⎪⎪
⎨
⎪⎪⎩

1 if f ∈ U

s0 else

γ⊕ ∶H → Pc(H ×H),f ↦{(g, h) ∣ dom(f) = dom(g) ∩ dom(h)

g ↾ dom(f) = h ↾ dom(f)}

The map γJ is well-typed by construction. To see that γ⊕ is also well-typed, note
first that γ⊕(f) is this time an upset, and therefore convex. It is not difficult
to check in the same way as in Example 20 that if f ≤ f ′ then γ⊕(f) ≤ γ⊕(f

′)
for the Egli-Milner order; that is, γ⊕ is monotone and thus well-typed. Sim-
ple set-theoretic considerations of the same type as in Example 20 also show
that γ⊕ defined as above satisfies (RCC). It follows that the data of γ⊗, γ⊕ and
U endows the poset H of heaps with a (TRL)

2-coalgebra structure allowing the
interpretation of L(LRL +L

∂
RL)-formulas. It is shown in [12] that several addi-

tional L(LRL+L
∂
RL)-axioms may be envisaged. Most notably the axioms a ≤ a⊕0

and a⊕ 0 ≤ a (which combined give FC∂1, an axiom we have chosen not to en-
force as ‘standard’), the contraction axiom a⊕a ≤ a (dual to axiom (c)) and the
weak distribution axiom a ⊗ (b ⊕ c) ≤ (a ⊗ b) ⊕ a. These axioms are canonical,
and Theorems 14 and 15 therefore easily provides strong completeness for these
axioms too, although as was is shown in [12], no heap model can validate all
three of these axioms simultaneously.

7. Conclusion and future work

We have shown how distributive substructural logics can be formalized and
given a semantics in the framework of coalgebraic logic, and highlighted the
modularity of this approach. By choosing a syntax whose operators explicitly
follow distribution rules, we can use the elegant topological theory of canonicity
for DLs, and in particular the notion of smoothness and of topology matching,
to build a set of canonical (in)equation capturing the distributive full Lambek
calculus. The coalgebraic approach makes the connection between algebraic
canonicity and canonical models explicit, categorical and generalizable.

26

The modularity provided by our approach is twofold. Firstly, we have
a generic method for building canonical (in)equations by using the Principle
of Matching Topologies. Getting completeness results with respect to simple
Kripke models for variations of the distributive full Lambek calculus (e.g. rele-
vant logic, MALL+, etc...) becomes very straightforward. Secondly, adding more
operators to the fundamental language simply amounts to taking a coproduct
of syntax constructors (e.g., LRL + LML to define modal substructural logics)
and interpreting it with a product of model constructors (e.g., TRL×TML). This
is particularly suited to logics which build on BI such as the bi-intuitionistic
boolean BI of [12].

The operators ⊗, –⊗,⊗– all satisfy simple distribution laws, but our approach
could also accommodate operators with more complicated distribution laws and
non-relational semantics. For example, the theory presented in this work could
perhaps be extended to cover a graded version of ⊗, say ⊗k, whose interpreta-
tion would be ‘there are at least k ways to separate a resource such that...’ or
‘a resource can be split in two at a cost of k...’, the semantics would be given by
coalgebras of the type 2×B(−×−) where B is the ‘bag’ or multiset functor. Simi-
larly, a graded version →k of the intuitionistic implication whose meaning would
be ‘... implies ... apart from at most k exceptions’ and interpreted by B(−×−)-
coalgebras could also be covered by our approach. Crucially, such operators
do satisfy (more complicated) distribution laws which lead to generalizations of
the results in Section 4.2, and the possibility of building canonical (in)equations.
The coalgebraic infrastructure would then allow the rest of the theory to stay
essentially unchanged. We are currently investigating these possibilities.

Acknowledgement

The first author is funded by EPSRC grant EP/H008373/2.

References

[1] H. Ono, Substructural Logics and Residuated Lattices an Introduction,
Trends in Logic 20 (2003) 177–212.

[2] N. Galatos, P. Jipsen, T. Kowalski, H. Ono, Residuated Lattices: An Alge-
braic Glimpse at Substructural Logics: An Algebraic Glimpse at Substruc-
tural Logics, vol. 151, Elsevier, 2007.

[3] J.-Y. Girard, Linear logic., Theoret. Comp. Sci. 50 (1987) 1–102.

[4] P. W. O’Hearn, D. J. Pym, The logic of bunched implications, Bulletin of
Symbolic Logic 5 (02) (1999) 215–244.

[5] D. Pym, P. W. O’Hearn, H. Yang, Possible Worlds and Resources: The
Semantics of BI., Theoret. Comp. Sci. 315 (1) (2004) 257–305.

27

[6] D. Galmiche, D. Méry, D. Pym, The Semantics of BI and Resource
Tableaux., Mathematical Structures in Computer Science 15 (2005) 1033–
1088.

[7] M. Collinson, D. Pym, Algebra and logic for resource-based systems mod-
elling, Mathematical Structures in Computer Science 5 (2009) 959–1027.

[8] S. S. Ishtiaq, P. W. O’Hearn, BI as an assertion language for mutable data
structures, in: ACM SIGPLAN Notices, vol. 36.3, ACM, 14–26, 2001.

[9] J. C. Reynolds, Separation logic: A logic for shared mutable data struc-
tures, in: Logic in Computer Science, 2002. Proceedings. 17th Annual IEEE
Symposium on, IEEE, 55–74, 2002.

[10] M. Collinson, B. Monahan, D. J. Pym, A discipline of mathematical sys-
tems modelling, College Publications, 2012.

[11] C. Calcagno, P. Gardner, U. Zarfaty, Context logic as modal logic: com-
pleteness and parametric inexpressivity, in: ACM SIGPLAN Notices, vol.
42.1, ACM, 123–134, 2007.

[12] J. Brotherston, J. Villard, Sub-classical Boolean bunched logics and the
meaning of par, in: LIPIcs-Leibniz International Proceedings in Informat-
ics, vol. 41, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[13] P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, vol. 53 of Cambridge
Tracts in Theoretical Computer Science, Cambridge University Press, 2001.

[14] B. Jónsson, On the canonicity of Sahlqvist identities, Studia Logica 53 (4)
(1994) 473–492.

[15] J. M. Dunn, M. Gehrke, A. Palmigiano, Canonical Extensions and Rela-
tional Completeness of Some Substructural Logics, The Journal of Symbolic
Logic 70 (3) (2005) pp. 713–740.

[16] M. Gehrke, Generalized Kripke Frames, Studia Logica 84 (2) (2006) 241–
275.

[17] D. Coumans, M. Gehrke, L. van Rooijen, Relational semantics for a frag-
ment of linear logic, Proceedings of PhDs in Logic III .

[18] T. Suzuki, Canonicity results of substructural and lattice-based logics, The
Review of Symbolic Logic 4 (2011) 1–42.

[19] M. Gehrke, J. Harding, Bounded Lattice Expansions, Journal of Algebra
238 (1) (2001) 345 – 371.

[20] M. Gehrke, B. Jónsson, Bounded distributive lattice expansions., Mathe-
matica Scandinavica 94 (2004) 13–45.

28

[21] Y. Venema, Algebras and Coalgebras, in: J. van Benthem, P. Blackburn,
F. Wolter (Eds.), Handbook of Modal Logic, Elsevier, 2006.

[22] F. Dahlqvist, D. Pattinson, Some Sahlqvist Completeness Results for Coal-
gebraic Logics, in: FOSSACS 2013. Proceedings, vol. 7794 of LNCS,
Springer, 193–208, 2013.

[23] C. Ĉırstea, D. Pattinson, Modular construction of complete coalgebraic
logics, Theor. Comput. Sci. 388 (1-3) (2007) 83–108.

[24] F. Dahlqvist, D. Pattinson, On the Fusion of Coalgebraic Logics, in:
CALCO 2011. Proceedings, vol. 6859 of LNCS, Springer, 161–175, 2011.

[25] C. Kupke, A. Kurz, D. Pattinson, Algebraic Semantics for Coalgebraic
Logics, in: CMCS 2004, vol. 106 of Electr. Notes in Theoret. Comp. Sci.,
219–241, 2004.

[26] C. Kupke, A. Kurz, D. Pattinson, Ultrafilter Extensions for Coalgebras, in:
CALCO, vol. 3629 of LNCS, Springer, 263–277, 2005.

[27] B. Jacobs, A. Sokolova, Exemplaric Expressivity of Modal Logics, J. Log.
and Comput. 20 (2010) 1041–1068.

[28] J.-R. Courtault, D. Galmiche, A modal BI logic for dynamic resource prop-
erties, in: Logical Foundations of Computer Science, Springer, 134–148,
2013.

[29] J.-R. Courtault, D. Galmiche, A modal separation logic for resource dy-
namics, Journal of Logic and Computation (2015) exv031.

[30] J. M. Dunn, Positive modal logic, Studia Logica 55 (2) (1995) 301–317.

[31] M. Collinson, K. McDonald, D. Pym, Layered graph logic as an assertion
language for access control policy models, Journal of Logic and Computa-
tion In Press.

[32] M. B́ılková, A. Kurz, D. Petrişan, J. Velebil, Relation liftings on preorders
and posets, in: Algebra and Coalgebra in Computer Science, Springer,
115–129, 2011.

[33] A. Balan, A. Kurz, J. Velebil, Positive fragments of coalgebraic logics, in:
Algebra and Coalgebra in Computer Science, Springer, 51–65, 2013.

[34] B. Jónsson, A. Tarski, Boolean Algebras with Operators. Part 1., Amer. J.
Math. 33 (1951) 891–937.

[35] M. Gehrke, B. Jónsson, Bounded distributive lattices with operators.,
Mathematica Japonica 40, No. 2 (1994) 207–215.

[36] G. Restall, An introduction to substructural logics, Routledge, 2002.

29

[37] F. Dahlqvist, D. Pym, Completeness-via-canonicity for distributive sub-
structural logics, a coalgebraic perspective, in: Proc 15th Int. Conf. on
Relational and Algebraic Methods in Computer Science (RAMiCS 2015),
vol. LNCS 9348, 119–135, 2015.

Appendix

Proof of Theorem 3. We prove the result for LRL and TRL, the same technique
can readily be applied to LML and TML. We need to prove that δ̂RL has a natural
right inverse. By describing a prime filter of LA in terms of the ‘generators’ it
contains we get the following characterization of δ̂RL

A ∶ TPfA→ PfLA:

I ∈ δ̂A(U1, U2, U3, x) iff x = 0

a⊗ b ∈ δ̂A(U1, U2, U3, x) iff ∃(F1, F2) ∈ U1, (a, b) ∈ (F1, F2)

a –⊗ b ∈ δ̂A(U1, U2, U3, x) iff ∀(F1, F2) ∈ U2, a ∈ F1 ⇒ b ∈ F2

a⊗– b ∈ δ̂A(U1, U2, U3, x) iff ∀(F1, F2) ∈ U3, b ∈ F2 ⇒ a ∈ F1

At every distributive lattice A, we now define γA ∶ PfLA→ TPfA by

F ↦

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if I ∈ F,1 else

{(F1, F2) ∈ (PfA)2 ∣ a⊗ b ∈ F whenever (a, b) ∈ (F1, F2)}

{(G1,G2) ∈ (PfA)2 ∣ a ∈ G1 ⇒ b ∈ G2 whenever a –⊗ b ∈ F}

{(H1,H2) ∈ (PfA)2 ∣ b ∈H2 ⇒ a ∈H1 whenever a⊗– b ∈ F}.

By unravelling the definition of δ̂RL
A , we get that for γA to be a right inverse of

δ̂RL
A it must satisfy:

(a⊗ b) ∈ F ⇔ ∃(F1, F2) ∈ π1(γA(F)) s.th. (a, b) ∈ (F1, F2) (8)

a –⊗ b ∈ F ⇔ ∀G1,G2 ∈ π2(γA(F)) a ∈ G1 ⇒ b ∈ G2 (9)

a⊗– b ∈ F ⇔ ∀H1,H2 ∈ π2(γA(F)) b ∈H2 ⇒ a ∈H1 (10)

Note that the first component of γA poses no difficulty since

I ∈ δ̂A(γA(F))⇔ π1(γA(F)) = 0⇔ I ∈ F

Note also that the right-to-left direction of (8) and the left-to-right direction of
(9,10) follows immediately from the definitions. The hard part of the proof are
the opposite directions.

Left-to-right direction of (8): Assume that a ⊗ b ∈ F , we need to build
F1, F2 such that: (1)a ∈ F1, (2)b ∈ F2 and (3)(F1, F2) ∈ π2(γA(F)); that is,
a′ ∈ F1 and b′ ∈ F2 implies a′ ⊗ b′ ∈ F , or equivalently, a′ ⊗ b′ ∉ F implies a′ ∉ F1

or b′ ∉ F2. We will build F1, F2, using a proof which is similar to the proof of
the prime ideal theorem for filter-ideal pairs. Let us denote by P(a, b) the set
of pairs ((F1, I1), (F2, I2)) such that

30

1. ↑ a ⊆ F1

2. ↑ b ⊆ F2

3. I1 = {c ∣ ∃d ∈ F2 s.th. c⊗ d ∉ F}

4. I2 = {d ∣ ∃c ∈ F1 s.th. c⊗ d ∉ F}

5. F1 ⊆ {c ∣ ∀d ∈ F2, c⊗ d ∈ F}

6. F2 ⊆ {d ∣ ∀c ∈ F1, c⊗ d ∈ F}

We make the following observations about P(a, b)

� it is non-empty: ((↑ a,{c ∣ c⊗ b ∉ F}), (↑ b,{d ∣ a⊗ d ∉ F})) ∈ P(a, b)

� it forms a poset under component-wise set inclusion.

� I1, I2 are ideals. It is clear that they are down-sets. Moreover, if c, c′ ∈ I1
then there exist d, d′ ∈ F2 s.th. c ⊗ d, c′ ⊗ d′ ∉ F , and as a consequence
c ⊗ (d ∧ d′), c′ ⊗ (d ∧ d′) ∉ F and d ∧ d′ ∈ F2 since F2 is a filter. Since F
is prime and ⊗ distributes over joins it follows that (c ∨ c′)⊗ (d ∧ d′) ∉ F ,
and thus d∧d′ witnesses the fact that c∨ c′ ∈ I1. The proof is identical for
I2.

� F1 ∩ I1 = F2 ∩ I2 = ∅ for each ((F1, I1), (F2, I2)) ∈ P(a, b). Indeed assume
that there exist f ∈ F1, i ∈ I1 such that f ≤ i, then we have f ⊗ d ≤ i ⊗ d
for some d ∈ F2 such that i ⊗ d ∉ F . But by construction we must have
f ⊗ d ∈ F which contradicts i⊗ d ∉ F , since F is a filter.

Let us now check that P(a, b) has upper bounds of chains. Assume that
((F i1, I

i
1), (F

i
2, I

i
2)) ∈ P(a, b), i ∈ ω and define

F∞
i =⋃

j

F ji , I∞i =⋃
j

Iji , i = 1,2

It is well-known and easy to check that the union of a chain of filter (resp. ideals)
is a filter (resp. ideals). Let us now check that conditions 1.-6. are satisfied too.
The first two conditions are trivially satisfied. For 3.-4., let x ∈ I∞1 , by definition
there exists i ∈ ω s.th. c ∈ Ii1 and thus there exist d ∈ F i1 s.th. c ⊗ d ∉ F , but
clearly d ∈ F∞

1 too, which shows that I∞1 ⊆ {c ∣ d ∈ F∞
2 s.th. c ⊗ d ∉ F}. The

opposite inclusion works in exactly the same way: let c be s.th. there exists
d ∈ F∞

2 s.th. c⊗ d ∉ F , then this d can be traced back to a certain F i2 and thus
c ∈ Ii1. The proof for 5.-6. is very similar, let c ∈ F∞

1 , then there exist i ∈ ω
s.th. c ∈ F i1. Now let d ∈ F∞

2 , then there exist j ∈ ω s.th. d ∈ F j2 . By taking
k = max(i, j) we get that c ∈ F k1 , d ∈ F

k
2 from which it follows that c⊗ d ∈ F .

We can now apply Zorn’s lemma to get the existence of a maximal element
of P(a, b), which we will call

((F̂1, , Î1), (F̂2, Î2))

31

and we claim that F̂1, F̂2 are two prime filters satisfying conditions (1)-(3) which
we specified at the beginning of the proof. It is clear that a ∈ F̂1 and b ∈ F̂2,
thus (1) and (2) are satisfied. For (3), assume that a′ ⊗ b′ ∉ F and that a′ ∈ F̂1,
then by construction, b′ ∈ Î2, and since F̂2 ∩ Î2 = ∅ we get b′ ∉ F̂2 which is what
we needed to show. The last step of the proof is to show that F̂1, F̂2 are prime.
Assume that c ∨ c′ ∈ F̂1 but that c, c′ ∉ F̂1. It follows that

((F̂1, , Î1), (F̂2, Î2)) ⊊ ((⟨F̂1 ∪ {c}⟩, Î1), (F̂2,{d ∣ ∃c ∈⟨F̂1 ∪ {c}⟩ s.t. c⊗ d ∉ F}))

where ⟨F̂1 ∪ {c}⟩ is the filter generated by F̂1 ∪ {c}. Since the left-hand side of
the inequality is maximal, it cannot be the case that the right-hand side belongs
to P(a, b) that is, one of the conditions 1.-6. cannot hold. Clearly 1. and 2.
must hold, and 3. and 4. hold by construction, thus 5. or 6. cannot hold. In
fact both conditions will not hold precisely if there exist d ∈ F̂2 and f ∈ F̂1 such
that (f ∧ c)⊗ d ∉ F ; that is, f ∧ c ∈ Î1; that is, there exist i ∈ I1 s.th.

f ∧ c ≤ i

A completely similar reasoning shows that there must exist f ′ ∈ F̂1 and i′ ∈ Î1
such that

f ′ ∧ c′ ≤ i′

It thus follows that

(f ∨ f ′) ∧ (f ∨ c′) ∧ (c ∨ f ′) ∧ (c ∨ c′) ≤ i ∨ i′

Since F̂1 is a filter, Î1 is an ideal, and we’ve assumed c ∨ c′ ∈ F̂1, we get that
F̂1 ∩ Î1 ≠ ∅ which is a contradiction by virtue of the properties of elements of
P(a, b). Thus either c or c′ belongs to F̂1 which is thus prime as desired. A
completely analogous argument shows that F̂2 is prime too.

Right-to-left direction of (9-10): We show the contrapositive; that is,
that if a –⊗b ∉ F there exists F1, F2 such that a ∈ F1 and b ∉ F2. We proceed as in
the case of ⊗ by defining the set P(a, b) of filter-ideal pairs ((F1, I1), (F2, I2))
such that

1. ↑ a ⊆ F1

2. I1 = {c ∣ ∃d ∈ I2(c –⊗ d) ∈ F}

3. F2 = {d ∣ ∃c ∈ F1(c –⊗ d) ∈ F}

4. ↓ a ⊆ I2

5. F1 ⊆ {c ∣ ∀d ∈ I2(c –⊗ d) ∉ F}

6. I2 ⊆ {d ∣ ∀c ∈ F1(c –⊗ d) ∉ F)}

We make the following observations about P(a, b)

32

� it is not empty: ((↑ a,{c ∣ ∃d ≤ b(c –⊗ d) ∈ F}), ({d ∣ a –⊗ d ∈ F}, ↓ b)) ∈
P(a, b). We need only check that conditions 5. and 6. are satisfied. Let
c be s.th. there exist d ≤ b with c –⊗ d ∈ F , and assume a ≤ c, it follows
that

F ∋ c –⊗ d ≤ a –⊗ d ≤ a –⊗ b ∉ F

a contradiction. Similarly, if there exist d such that a –⊗ d ∈ F and d ≤ b,
then F ∋ a –⊗ d ≤ a –⊗ b ∉ F , a contradiction.

� it forms a poset under component-wise set inclusion

� I1 is an ideal: assume c ∈ I1 and c′ ≤ c, since –⊗ is antitone in its first
argument, we get c –⊗d ≤ c′ –⊗d and thus c′ –⊗d ∈ F . Moreover, if c, c′ ∈ I1
then there exist d, d′ ∈ I2 such that c –⊗ d, c′ –⊗ d′ ∈ F . Since F is a filter,
and I2 is an ideal, we get c –⊗ (d ∨ d′), c′ –⊗ (d ∨ d′) ∈ F and (d ∨ d′) ∈ I2.
If we now consider (c∨ c′) –⊗ (d∨ d′) we get by the anti-join preservation
law of –⊗, c –⊗ (d ∨ d′) ∧ c′ –⊗ (d ∨ d′) which is a meet of elements of F
and thus an element of F . Thus (d ∨ d′) witnesses that c ∨ c′ ∈ I1

� For completely dual reasons, F2 is a filter.

� F1 ∩ I2 = F2 ∩ I2 = ∅ for each ((F1, I1), (F2, I2)) ∈ P(a, b): assume f ∈ F1

and i ∈ I1 s.th. f ≤ i, then by definition of I1 there exist d such that
i –⊗ d ∈ F but since –⊗ is antitone in its first argument, this would mean
f –⊗d ∈ F which contradicts property 5. of F1. Dually, assume that there
exists f ∈ F2, i ∈ I2 s.th. f ≤ i, then by definition of F2, there exist d such
that f –⊗ d ∈ F , but then we would also have i –⊗ d ∈ F which contradicts
the property 6. of I2.

We now check that P(a, b) has upper bound of chains, let ((F i1, I
i
1), (F

i
2, I

)
2) ∈

P(a, b), i ∈ ω and define

F∞
i =⋃

j

F ji , I∞i =⋃
j

Iji , i = 1,2

It is not difficult to see that ((F∞
1 , I∞1), (F∞

2 , I∞2)) ∈ P(a, b) by proceeding as
in the existence lemma for ⊗. We then apply Zorn’s lemma to get a maximal
element ((F̂1, Î1), (F̂2, Î2)) of P(a, b). It is clear that a ∈ F̂1, b ∉ F̂2. We need
only check that they are prime filters. Assume c∨c′ ∈ F̂1 but c, c′ ∉ F̂1, it follows
that

((F̂1, Î1), (F̂2, Î2)) ⊊ ((⟨F̂1 ∪ {c}⟩, Î1), ({c ∣ ∃d ∈ ⟨F̂1 ∪ {c}⟩(c –⊗ d) ∈ F}, Î2)

Since ((F̂1, Î1), (F̂2, Î2)) is maximal, the right-hand side of the inequality must
violate either 5. or 6., which in fact amounts to the same thing, namely the
existence of f ∈ F̂1, d ∈ Î2 s.th. (f ∨ c) –⊗ d ∈ F ; that is, (f ∧ c) ∈ Î1; that
is, (f ∨ c) ≤ i, for some i ∈ Î1. A similar argument implies the existence of
f ′ ∈ F̂1, i

′ ∈ Î1 such that f ′ ∧ c ≤ i′ and a contradiction follows as in the proof
for ⊗. To show that F̂2 is prime is equivalent to showing that Î2 is prime, and
a proof totally dual to the above proof shows just that. The proof for ⊗– is
clearly identical.

33

Proof of Proposition 13. Recall Diagram (2):

LRLA
LRLηA //

α

��

ηLA

""

LRLUPfA

δRL
PfA

��
UTRLPfA

U(ζA)
��

UPfLRLA

UPfα
��

A ηA
// UPfA

where ζA is the canonical model structure map whose existence we have es-
tablished in Theorem 3. Recall that by definition of LRL, α is equivalent to a
nullary and three binary maps on UA, which we denote as I,α⊗, α−⊗ and α⊗−
satisfying the distribution laws DL1-DL6.

Similarly, UPfα ○ UζA ○ δRL
PfA is equivalent to a nullary operator and three

binary maps on UUPfA = UAσ which we will denote by UPfα ○UζA ○ I
′,UPfα ○

UζA ○ δ⊗,UPfα ○ UζA ○ δ−⊗ and UPfα ○ UζA ○ δ⊗− and satisfy DL1-DL6. By
commutativity of the above diagram these operators are extensions of I,α⊗, α−⊗
and α⊗− respectively. We want to show that they are in fact their unique
canonical extensions. The treatment of the nullary operator is trivial. For the
binary operators, we will show that they are smooth and thus equal to the
unique canonical extensions ασ⊗, α

σ
−⊗ and ασ⊗− respectively, by Proposition 6. We

start by proving the following claim which readily generalises to the n-ary case.
Claim: Let A,B be DLs and let f ∶ UA→ UB. Assume that f̃ ∶ UAσ → UBσ

is an extension of f that (anti-)preserves all binary joins or (anti-)preserves
binary meets, then f̃ is (σ, γ)-continuous and thus smooth.

Proof : Since f̃ preserve all binary joins, its restriction f preserves binary
joins, and is thus smooth. Moreover, we also know that the canonical extension
fσ = fπ preserves all non-empty joins. If f̃ preserves all non-empty joins, then
in particular it preserves all up-directed ones, and f is consequently (γ↑, γ↑)-
continuous. Thus we need only show that it is (σ, γ↓)-continuous too. In fact,
we show the stronger statement that f̃ is (σ↓, σ↓)-continuous. To see this, note
first that since f̃ extends f and preserves non-empty joins we have for every
u ∈ O(A)

f̃(u) = f̃(⋁{a ∈ A ∣ a ≤ u})

=⋁{f̃(a) ∣ A ∋ a ≤ u}

=⋁{f(a) ∣ A ∋ a ≤ u} = fπ(u) = fσ(u).

That is, f̃ agrees with fσ on open elements. Now we use the fact that since fσ

preserves non-empty joins, it is (σ↓, σ↓)-continuous (see Proposition 8); that is,
that for any open v ∈ O(B), there exists u ∈ O(A) such that fσ(u) = v and thus

34

(fσ)−1(↓ v) =↓ u. But since f̃ and fσ coincide on open elements, this also means
that f̃(u) = v; that is, that (f̃)−1(↓ v) =↓ u; that is, f̃ is (σ↓, σ↓)-continuous.

The proof for the other preservation properties are very similar. Assume
for example that f̃ preserves non-empty meets, it preserve down-directed ones
and is thus (γ↓, γ↓) continuous . Moreover fσ = fπ preserves non-empty meets
and f̃ agrees with fσ on all closed elements. Since fσ preserve non-empty
meets, it is (σ↑, σ↑)-continuous, and thus so is f̃ by definition of σ↑ and the fact
that f̃ and fσ agree on closed elements. The proof for the anti-preservation
properties are similar, with (σ↓, σ↑) and (σ↑, σ↓)-continuity being shown for
anti-join preservation and anti-meet preservation respectively.

This having been established, we can now return to our proof. Since UPfα
and UζA are inverse images, they preserve any meet and any join, and in par-
ticular down-directed meets and up-directed joins. They are therefore (γ, γ)-
continuous. Note that this concept makes sense for maps between any DLs, not
just canonical extensions. All that needs to be shown now is that δ⊗, δ−⊗ and
δ⊗− have one of the preservation properties of proposition 8. We start with δ⊗:
for any ui, v ∈ UPfA, i ∈ I we have

δ⊗(⋁
i∈I
ui, v) = {t ∈ TRLPfA ∣ ∃(x, y) ∈ π2(t)∃i ∈ I, x ∈ ui, y ∈ v}

=⋃
i∈I

{t ∈ TRLPfA ∣ ∃(x, y) ∈ π2(t) x ∈ ui, y ∈ v}

=⋁
i∈I
δ⊗(ui, v)

and similarly for the second argument. Thus δ⊗ preserves all non-empty joins,
and by Proposition 8 it is therefore (σ2, γ)-continuous. Since UPfα and UζA are
(γ, γ)-continuous, we get that UPfα ○ UζA ○ δ⊗ is (σ2, γ)-continuous and thus

ασ⊗ = UPfα ○ UζA ○ δ⊗

by Proposition 6.
We can similarly show that δ/ (resp. δ−⊗) preserves all non-empty meets

in its first (resp. second) argument and anti-preserves non-empty joins in its
second (resp. first) argument. As an illustration,

δ−⊗(⋁
i∈I
ui, v) = {t ∈ TRLPfA ∣ ∀(x, y) ∈ π3(t) x ∈⋁

i∈I
ui ⇒ y ∈ v}

= {t ∈ TRLPfA ∣ ∀(x, y) ∈ π3(t) x ∉⋁
i∈I
ui or y ∈ v}

=⋂
i∈I

{t ∈ TRLPfA ∣ ∀(x, y) ∈ π3(t) x ∉ ui or y ∈ v}

=⋀
i∈I
δ−⊗(ui, v)

In consequence we also get that

ασ−⊗ = UPfα ○ UζA ○ δ−⊗

and similarly for ⊗– , which concludes the proof.

35

	Introduction
	A coalgebraic perspective on substructural logics
	Syntax
	Coalgebraic semantics
	Advantages of the coalgebraic approach.

	Jónsson-Tarski extensions
	Canonical extensions and canonical equations
	Canonical extension of distributive lattices
	Canonical extension of distributive lattice expansions
	Canonical (in)equations

	Coalgebraic Completeness via-canonicity
	Axiomatizing distributive residuated lattices
	Jóonsson-Tarski vs canonical extensions
	Strong completeness
	Modularity.

	Applications to distributive substructural logics.
	Describing TRL-coalgebras validating FC1-6
	Additional frame conditions.

	Conclusion and future work

