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Evaluation of Close-range Stereo Matching Algorithms Using Stereoscopic Measurements 1 

 2 

Description 3 

This paper describes a new assessment protocol for close range stereo matching algorithms using 4 

a stereo display and presents evaluation results of three stereo processing pipelines used in current 5 

and future Mars rover operations. 6 

Abstract  7 

The performance of binocular stereo reconstruction is highly dependent on the quality of the 8 

stereo matching result. In order to evaluate the performance of different stereo matchers, several 9 

quality metrics have been developed based on quantifying error statistics with respect to a set of 10 

independent measurements usually referred to as ground truth data. However, such data are 11 

frequently not available, particularly in practical applications or planetary data processing. To 12 

address this, we propose a ground truth independent evaluation protocol based on manual 13 

measurements. A stereo visualization tool has been specifically developed to evaluate the quality 14 

of the computed correspondences. We compare the quality of disparity maps calculated from three 15 

stereo matching algorithms, developed based on a variation of GOTCHA, which has been used 16 

in planetary robotic rover image reconstruction at UCL-MSSL (Otto and Chau, 1989). From our 17 

evaluation tests with the images pairs from Mars Exploration Rover (MER) Pancam and the field 18 

data collected in PRoViScout 2012, it has been found that all three processing pipelines used in 19 

our test (NASA-JPL, JR, UCL-MSSL) trade off matching accuracy and completeness differently. 20 

NASA-JPL’s stereo pipeline produces the most accurate but less complete disparity map, whilst 21 

JR’s pipeline performs best in terms of the reconstruction completeness. 22 
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1. Introduction  1 

Stereo matching has long been a fundamental and challenging research topic in computer vision. 2 

A large number of fully automated stereo matching algorithms have been developed since the 3 

earliest approach made by Hannah (Hannah, 1974) and further variations of local algorithms, 4 

which rely on the computation of correlations of local patches, developed in the 1990s. Follow-5 

on optimisation and statistical machine learning techniques including dynamic programming 6 

(Birchfield and Tomasi, 1998), Markov random field (Geman, 1984), graph cuts (Boykov, 2001), 7 

belief propagation (Sun et al., 2003), semi-global matching (Hirschmuller, 2008), and seed-8 

growing algorithms (Lhuillier and Quan, 2002), have been shown to be able to produce high 9 

quality disparity maps, but it is getting difficult to evaluate various matching algorithms 10 

developed for different purposes. 11 

To our best knowledge, the Middlebury test is the most influential work on recent stereo 12 

evaluation (Scharstein and Szeliski, 2002). In this test, the authors propose a new taxonomy of 13 

comprehensive stereo algorithms and a C++ test bed for the quantitative evaluation of dense two-14 

frame stereo correspondence algorithms. The Middlebury test basically performs an evaluation 15 

based on the error metrics computed from sparse “ground truth” point pairs or by synthesizing a 16 

warped image from pre-computed dense disparity maps. Therefore, the reference data plays an 17 

important role in the evaluation process. 18 

When the algorithms were not strong enough to process complicated scenes, the 3D geometry of 19 

reference data does not need to be complex, but it needs to be dense enough to evaluate a sparse 20 

set of point correspondences produced by test algorithms. For this reason, Scharstein et al. 21 

configured a test scene with a set of slanted 2D planes. Since a 2D homography of a planar object 22 

can be easily defined by 4 point correspondences, this approach can produce a virtually complete 23 

disparity map of two images from a few manual correspondences (Scharstein et al., 2001). 24 

However, as stereo algorithms evolve, a simple geometry is no longer able to differentiate 25 

advanced algorithms and people need more complex geometry at higher pixel resolution.  26 
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Synthetic images can be an option to improve the scene complexity (Morales and Klette, 2011) 27 

but they are generally insufficient to synthesize practical scenes affected by a range of noise and 28 

various lighting conditions. Alternatively, an active 3D sensor can be used to produce reference 29 

data. For example, a special structured light system was developed in the 2003 Middlebury test, 30 

where one or two projectors are used with a translating camera to create a dense reference 31 

disparity map for a stereo pair (Scharstein and Szeliski, 2003). This approach is particularly useful 32 

as we can have control over the spatial resolution of a disparity map with higher depth accuracy. 33 

However, a structured light is more suitable for capturing small objects in a controlled indoor 34 

environment. Geiger et. al. also pointed out this limitation, mentioning that higher ranking 35 

algorithms from the Middlebury reference data can go below average when it is tested against the 36 

images from outside the laboratory (Geiger et al., 2012). 37 

Creating reference data for multiview stereo algorithms could be even more challenging. In 38 

addition to classic stereo matching, estimating external transforms between image pairs and 39 

locating the position of a camera in a previously reconstructed scene are other imperative features 40 

of a multiview stereo algorithm (e.g. visual odometry or SLAM). Therefore, the reference data 41 

should be registered with correct positional information. This normally requires combining 42 

multiple heterogeneous sensors and more complicated calibration steps. 43 

For example, the Middlebury test images for multiview stereo algorithms were obtained using a 44 

robotic arm that can move on the surface of one-metre radius sphere with high precision (Seitz, 45 

2006). In addition, to improve the accuracy of a 3D model, the initial point cloud from multiple 46 

images was registered with a more refined laser scanning result using an ICP method. Jensen et. 47 

al. recently published a data set containing 80 scenes for large scale multiview stereo evaluation 48 

using a similar approach but with a structured light (Jensen et al., 2014). For outdoor scenes, 49 

Strecha et. al. proposed a method that can combine multiple Lidar scans with images based on 50 

physical markers placed on a test scene (Strecha et al., 2008). Later, Geiger et al. proposed more 51 

automated method which combines Lidar and two video cameras with accurate localisation 52 
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systems (e.g., GPS and IMU) to cover a wider area from a long-distance drive (39.2 km) (Geiger 53 

et al., 2012). 54 

It is possible to produce a good quality of reference data for outdoor scene by registering active 55 

sensors to stereo cameras as mentioned above, and in fact it is widely used in the orbital sensor 56 

calibration process in many remote sensing applications. For example, the performance of the 57 

SIMBIO-SYS imagining suite employed in ESA BepoColombo mission was assessed during a 58 

pre-flight calibration process, where laser scans of a small target object are used to validate a 59 

stereo reconstruction result of the sensor (Simioni et al., 2014). Also, the high-resolution stereo 60 

camera (HRSC) on Mars Express was validated based on various outdoor scenes captured during 61 

on-ground and airborne test (Jaumann et al., 2007). However, this approach is not always 62 

available, especially, when performing planetary 3D reconstruction using robotic vision systems. 63 

Also, creating reference data using multiple sensors would be a very expensive process in terms 64 

of computation complexity and labour, even though a new set of test data is frequently required 65 

to evaluate advanced algorithms. To address this, we introduce a new accuracy evaluation method 66 

to assess stereo matching results when there is no prior knowledge about the depth of points within 67 

a scene. This “ground truth” independent evaluation criteria were inspired by the use of manual 68 

measurements in stereo photogrammetry, originally performed using film media and optic 69 

mechanical instrumentation but since the early 2000s using so-called softcopy stereo workstations 70 

based on stereoscopic displays. An early example of the use of these manual photogrammetric 71 

measurements using an analytical stereoplotter is discussed by Day and Muller, 1989. A recent 72 

paper also showed that the use of 3D stereoscopic display can improve human performance in 73 

locating objects and inferring depths of surfaces within a scene (Mcintire, 2014), so that this 74 

approach is not only more effective than the manual point selection used by the computer vision 75 

community in early days (Nakamura et al., 1996), but also closely related to the local cross-76 

correlation process inspired by a biological vision system (Fleet et al. 1996). 77 
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(a)  (b)  78 

Figure 1: Example of stereoscopic visualisation with a passive stereo display where images from 79 

upper and lower displays are reflected on a polarised beamspliter in the middle (a), whereas an 80 

active stereo display uses a high refreshing LCD screen (120 HZ) with synchronised NVIDA 81 

shutter glasses (b). 82 

 83 

In this work, a Java-based stereo workstation has been developed based on work performed at 84 

JPL on being able to display stereo data on different stereo displays (Pariser and Deen, 2009). We 85 

trained a group of research participants to make repeat measurements of the three-dimensional 86 

position of fixed points in the same scenes using a stereo cursor on a stereo workstation display 87 

(Azari et al., 2009; Shin et al. 2011). A stereo display is afforded either using anaglyptic fusion 88 

of stereo-pairs on a colour display or by using different specialist stereo display devices [Fig. 1(a) 89 

and (b)] of increasing sophistication and cost. These tie-points are then used to compute error 90 

metrics of different stereo matching algorithms by comparing the computed disparity map with 91 

the corresponding manual measurements under three different manual selection scenarios. A 2D 92 

Gaussian function based scoring metrics have also been introduced for a quantitative evaluation. 93 

The proposed evaluation method can be used to complement the Middlebury test when we need 94 

new test images from more complex scene at higher image resolution. More importantly, it can 95 

complement the missing evaluation work of stereo matching of rover imagery from planetary 96 

robotic missions, such as the NASA Mars Exploration Rover (MER) or Mars Science Laboratory 97 
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(MSL), where obviously we do not have either any “ground truth” 3D data nor any prior 98 

knowledge of the scene. 99 

This evaluation method was proposed within the EU FP-7 Planetary Robotics Vision Ground 100 

Processing (PRoVisG: EU FP-7 PRoVisG project, http://provisg.eu/), and has been applied to 101 

evaluate the accuracy of disparity maps computed from stereo pairs in the PRoVisG Mars 3D 102 

challenge campaign (http://cmp.felk.cvut.cz/mars/) as well as additional stereo-pairs captured in 103 

the ExoMars Pancam test campaign at Clarach Bay in Aberystwyth (ExoMars test campaign: 104 

https://www.youtube.com/watch?v=6gRo8QSXX5c), using state-of-art planetary stereo 105 

technologies from NASA-JPL (USA), Joanneum Research Institute (Austria) and UCL-MSSL 106 

(UK). 107 

We explain more details of the proposed evaluation protocol in the following section. Based on 108 

which, we present the evaluation results of a couple of disparity maps produced by JPL, JR, and 109 

UCL in Sec. 3, followed by our discussion in Sec. 4. 110 

 111 

2. Method  112 

2.1 Stereo Workstation  113 

Most stereo matching algorithms used in the remote sensing community employ an automated 114 

workflow that has been built based on different mathematical definitions of image features (e.g. 115 

corners and edges) and/or matching (dis-)similarity of corresponding points on a stereo pair. 116 

However, this often neglects the impact of different detection errors from various imaging 117 

conditions such as image noise, viewing angle, resolution, and scale difference. In addition, there 118 

is normally no proper visual validation of the detected point pairs. 119 

 120 
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(a)  (b)  121 

Figure 2: Example of a stereo anaglyph showing a stereo cursor: (a) the offset of a stereo cursor 122 

is automatically set according to the supplied disparity map; (b) triangulated 3D position of a 123 

corresponding pair is also displayed when there is calibration data based on the use of the 124 

CAHVOR calibration model employed by NASA for MER and MSL cameras (Di and Li, 2004). 125 

 126 

To address these issues, we developed a Stereo WorkStation (StereoWS) under the PRoVisG 127 

project. The proposed system is capable of visualizing tie-points on a stereo pair in a hardware-128 

independent manner, e.g. with a conventional colour display, it will automatically switch the   129 

rendering mode to stereo anaglyphs [see Fig. 2(a)].  130 

We also developed intuitive user interfaces to facilitate the tie-point validation and selection 131 

process. For example, provided there is no pre-existing disparity map, users can make 132 

measurements using a floating 3D cursor, or fix the cursor in the left image at a pre-defined point 133 

and only allow the right image cursor to move in 3D (i.e. by changing the disparity of the stereo 134 

cursor) in order to be able to place the 3D cursor onto a visually perceived surface. When there is 135 

an initial disparity map available, however, the offset of the stereo cursor will be automatically 136 

adjusted to speed up the tie-point selection process. 137 

Information on each collected tie-point such as tie-point ID, coordinates, can also be displayed in 138 

a separate window [see Fig. 2(b)], so that a user can easily edit the incorrect tie-point as well as 139 

monitor progress. To assist a user to select a tie-point more efficiently, a range of basic image 140 
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processing tools are also included, and our in-house stereo matching algorithm, i.e. Adaptive 141 

Least Squares Correlation (ALSC) (Gruen, 1985) and Region growing (GOTCHA) (Otto and 142 

Chau, 1989) have been integrated into the software to produce a denser disparity map from the 143 

collected manual tie-points, if required. 144 

 145 

2.2 Selection of tie-points 146 

In this work, we define three types of tie-points and employ slightly different selection procedures 147 

to prepare a sub-pixel reference tie-points: 148 

(a) Feature based: Irregularly distributed tie-points. 149 

(b) Regular grid: Regularly distributed tie-points. 150 

(c) Discontinuities: Tie-points around depth discontinuities. 151 

Type (a) (i.e. feature-based) tie-points are collected to generate highly detectable reference tie-152 

points from standard feature matching algorithms. Since many detectable image features are 153 

found around highly textured areas, we can easily select feature-based tie-points from visual 154 

identification. The selection procedure initially defines a number of “interesting” points from the 155 

left image using generic feature extraction algorithms, and then ask participants to identify the 156 

corresponding right point by adjusting the offset of a stereo cursor. Corresponding tie-points in 157 

the right image are, therefore, defined at integer resolution initially. However, an average is taken 158 

of a set of manual selections that result in sub-pixel selection. Alternatively, ALSC can be applied 159 

to the right tie-point to refine the pixel position. 160 

Type (b) (i.e. regular grid) tie-points are proposed to collect regularly distributed reference tie-161 

points across the whole image. This will improve the chance of getting reference tie-points from 162 

small depth discontinuity or from less-textured areas. Unlike the feature based selection, it will 163 

be a bit more challenging to pick a correct tie-point from visual identification. Therefore, 164 

participants are asked to collect tie-point from visual validation, i.e. an initial guess for a right tie-165 
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point is given at the beginning. To provide good starting points to participants, a dense disparity 166 

map is generated using an in-house stereo processing pipeline and sampled at regular grid points. 167 

These initial tie-points are then visually inspected, e.g. moving the stereo cursor around the grid 168 

points and check if there is any abnormality, or adjusting the disparity offset of a stereo cursor at 169 

the point to check whether the estimation appears to be the best solution, and/or do both with 1.5 170 

or 2 times scaled-up images, which will increase the chance of getting correct correspondences 171 

(Chan et al., 2003). Finally, collect the resulting tie-points that pass the validation test. 172 

Type (c) tie-points (i.e. discontinuities) aims to collect reference tie-points from the places that 173 

general automated matchers may fail (so-called pathological cases). These areas are normally 174 

resulted from occlusions, insufficient texture, and strong depth discontinuities, i.e. pixels whose 175 

neighbouring disparities differ by more than a threshold (refer to the Middlebury stereo evaluation 176 

(Scharstein et al., 2001)). Amongst these, we are particularly interested in matching performance 177 

around depth discontinuity, since some algorithms deliberately enforce the local smoothness 178 

around depth discontinuities in order to densify a disparity map. We manually select two pairs of 179 

tie-points around this area, i.e. one tie-point from background and another one from foreground 180 

and evaluate how correctly an algorithm can handle the scene occlusions (see Fig. 3 and Sec. 2.4). 181 

The scene occlusion is a well-known issue in classic stereo matching, therefore it might be 182 

interesting to see if it is possible to design an automated pipeline for populating type (c) tie-points 183 

(i.e. discontinuities) with conventional feature detectors. However, without knowing true 184 

foreground and background segmentation, we found this would be difficult to make it fully 185 

automated.   186 

To select type (c) tie-points, an expert manually chooses a set of challenging tie-points around a 187 

typical problematic area, and participants are asked to validate them. The validation process is 188 

quite similar to the regular grid selection, except that this time no clues are given around tentative 189 

tie-points. 190 

 191 
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2.3. Error metrics 192 

 The next step is to estimate the error bounds according to the statistics recorded in the three types 193 

of manual tie-point selection process. Suppose that 𝑇𝑘 is a set of left tie-points from type (k) 194 

dataset, i.e.𝑇𝑘 = {𝒕0
𝑘, ⋯ , 𝒕𝑀

𝑘 }, where 𝑘 ∈ {𝑎, 𝑏, 𝑐} and 𝑀 is the number of left tie-point defined in 195 

type (k). Similarly, we can define a set of right tie-points corresponding to 𝒕𝑖
𝑘 from manual 196 

selections as  𝑆𝑖
𝑘 = {𝒔0𝑖

𝑘 ,  ⋯ , 𝒔𝑁𝑖
𝑘 }, where 𝑁 is the number of participants performing manual 197 

measurement. 198 

Although it is not always true that some of the measurements in 𝑆𝑖
𝑘 happen to be identical to 199 

ground truth, it is highly likely that a true correspondence of 𝒕𝑖
𝑘 can be found within a cluster of 200 

selected points. Thus, our scoring method basically defines a local cluster of 𝑆𝑖
𝑘 based on the 201 

mean 𝒎𝑖
𝑘 and the standard deviation 𝝈𝑖

𝑘 and evaluates final matching score. 202 

When estimating the statistics from manual measurements, it should be considered that not 203 

everyone is good at fusing a stereo pair and few people are not even capable of perceiving depth 204 

difference from the stereo fusion. Therefore, the outliers need to be identified and removed before 205 

evaluating statistics of the tie-point positions from a large group of manual selections. 206 

To identify outliers, we define a simple error function using a pre-computed disparity map 𝐷. For 207 

example, a selection error of a tie-point (𝒕𝑖
𝑘,  𝒔𝑚𝑖

𝑘 ), can be defined as the pixel difference between 208 

the manual measurement and computed disparity map for a point, i.e. 209 

𝑒(𝒕𝑖
𝑘, 𝒔𝑚𝑖

𝑘 : 𝐷) = 𝑑(𝒕𝑖
𝑘, 𝒔𝑚𝑖

𝑘 ) − 𝑑(𝒕𝑖
𝑘, 𝐷(𝒕𝑖

𝑘)),                                   (1) 210 

where 𝑑(𝒕𝑖
𝑘, 𝒔𝑖

𝑘) =   𝒔𝑖
𝑘 −  𝒕𝑖

𝑘 and 𝐷(𝒕𝑖
𝑘) =  �̃�𝑖

𝑘 is a corresponding point of 𝒕𝑖
𝑘 defined by a pre-211 

computed disparity map 𝐷. 212 

With this error metric (1), we can define an inlier set �̂�𝑖
𝑘 containing all reliable right tie-points,  213 

�̂�𝑖
𝑘 = {𝒔𝑚𝑖

𝑘 |𝒔𝑚𝑖
𝑘 ∈  𝑆𝑖

𝑘, 𝒔𝑚𝑖
𝑘 ∈ 𝐶𝑚

𝑘 , ‖𝑒(𝒕𝑖
𝑘, 𝒔𝑙𝑖

𝑘 : 𝐷)‖ <  𝛿 ∀𝒔𝑙𝑖
𝑘 ∈  𝐶𝑚

𝑘 },                (2) 214 
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where 𝛿 is an error threshold which is normally set to around 10 pixels, and 𝐶𝑚
𝑘  is a set of right 215 

tie-points collected by the m-th participant. Thus, an error bound of 𝒕𝑖
𝑘 (denoted by 𝒃𝑖

𝑘 in this 216 

paper) can be defined as 217 

𝒃𝑖
𝑘 = [ 

𝒎𝑖
𝑘

𝝈𝑖
𝑘  ] = 1

|�̂�𝑖
𝑘|

[ ∑ 𝒔𝑚𝑖
𝑘

𝑖

√∑ (𝒔𝑚𝑖
𝑘 −𝒎𝑖

𝑘)
2

𝑖

].                                           (3) 218 

As a general quality metric of a set of stereo measurements, we can also define a total 219 

measurement error as 220 

𝑒𝑡𝑜𝑡(𝑇𝑘, 𝑆𝑘: 𝐷) =  1
𝑀𝑁

∑ ∑ ‖𝑑(𝐷(𝒕𝑖
𝑘), 𝒔𝑗𝑖

𝑘 )‖𝑁
𝑗

𝑀
𝑖 ,                              (4) 221 

where 𝑆𝑘 represents all measurements, i.e. 𝑆𝑘 = ∪𝑖 𝑆𝑖
𝑘. Similarly, we can also define a 222 

measurement error of an inlier set and an outlier set, i.e.  𝑒𝑖𝑛(𝑇𝑘, �̂�𝑘: 𝐷) and 𝑒𝑜𝑢𝑡(𝑇𝑘, 𝑆𝑘 −223 

�̂�𝑘: 𝐷), respectively. 224 

 225 

2.4 Assessment criteria 226 

The proposed evaluation method basically assesses a disparity map in terms of matching score 227 

(M) and rewarding score (R). A matching score is similar to the classic quality metric used in 228 

stereo evaluation but the main difference is that our method evaluates it based on a set of error 229 

bounds rather than ground truth. The proposed method also introduced a rewarding score. The 230 

main purpose of this is to award more scores when an algorithm can cope well with challenging 231 

matching problem defined in the discontinuous point selection. 232 

In order to compute matching score, we define a 2D Gaussian function from an error bound. For 233 

example, a scoring function for �̃�𝑖
𝑘 (i.e. the right pixel position of 𝒕𝑖

𝑘 obtained from an input 234 

disparity map for evaluation) is 235 
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𝑔(�̃�𝑖
𝑘, 𝒃𝑖

𝑘) = 𝑒𝑥𝑝 {−0.5(�̃�𝑖
𝑘 − 𝒎𝑖

𝑘)
𝑇 [

𝜎𝑥𝑖
2 0

0 𝛽𝜎𝑥𝑖
2 ]

−1

(�̃�𝑖
𝑘 − 𝒎𝑖

𝑘)},                  (5) 236 

where 𝒃𝑖
𝑘 is the error bound of 𝒕𝑖

𝑘, 𝜎𝑥𝑖
2  is the variance of the x values of the i-th tie-points in type 237 

(k) data set, and 0 < 𝛽 < 1. 238 

This means that we give a higher matching score when an input disparity is closer to the mean of 239 

inlier measurements. If a stereo selection is not confident (i.e. 𝜎𝑥 is high), then we penalise less 240 

even if a tie-point is further away from the mean. Another thing to note is that the covariance 241 

matrix in (5) is defined by a horizontal standard variance only, i.e. 𝜎𝑥𝑖. This is because  𝜎𝑦𝑖 of 242 

manual measurements is nil as we rectify an input stereo pair for stereo measurement. However, 243 

to allow a little variation in y direction as some algorithms do refine vertical positions even if an 244 

input stereo pair is rectified, we have used 𝜎𝑦𝑖 =  0.2𝜎𝑥𝑖 in our test. Please note that this weighting 245 

value was selected empirically based on our ALSC refinement results of the manual 246 

measurements.  247 

A matching score of a set of right points from a disparity map is then defined as a weighted sum 248 

of (5), i.e. 249 

𝑀(𝐷, 𝐵) = 1
𝐿

∑ ∑ 𝑤𝑖𝑔(�̃�𝑖
𝑘, 𝒃𝑖

𝑘)|𝑇𝑘|
𝑖𝑘 ,                                     (6) 250 

where 𝐿 = |𝑇𝑎| + |𝑇𝑏| + |𝑇𝑐|, 𝐵𝑘 is a set of all error bounds, D is a disparity map for evaluation 251 

which defines �̃�𝑖
𝑘, and  𝑤𝑖 = 1 − 𝜎𝑥𝑖

2max (𝜎𝑥0,⋯,𝜎𝑥𝑘,)
, i.e. a higher weight is given to a more confident 252 

measurement. 253 

The proposed rewarding score is defined for the tie-points at discontinuities (i.e. type (c)). As 254 

briefly explained earlier in Sec. 2.2. we have defined a pair of tie-points around object boundary. 255 

Supposing that 𝑃𝑖 is the i-th pair of the discontinuous tie-points obtained around object boundary, 256 

we can define the i-th pair 𝑃𝑖 =  {(𝒕2𝑖
𝑐 , �̃�2𝑖

𝑐 ), (𝒕2𝑖+1
𝑐 , �̃�2𝑖+1

𝑐 )} and an example of a pair can be found  257 
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 258 

Figure 3: Example of a pair of tie-points around object boundary, e.g. 𝒕5 and 𝒕6 are a pair of left 259 

tie-points collected from background and foreground to evaluate rewarding score. 260 

 261 

in Fig. 3. In this case, our rewarding function is defined as an averaged sum of sigmoid function 262 

values, i.e. 263 

𝑅(𝐷, 𝐵, 𝑃) =  1
|𝑃|

∑ 𝛾(−|𝑑(𝒕2𝑖+1
𝑐 , 𝒕2𝑖

𝑐 ) − 𝑑(�̃�2𝑖+1
𝑐 , �̃�2𝑖

𝑐 )|)|𝑃|
𝑖=0 ,                 (7) 264 

where 𝛾(𝑥) is a sigmoid function, 2
1+exp(−𝑥) , and P is a set of all pairs of tie-points, 𝑃 = ∪𝑖 𝑃𝑖. 265 

Thus, (7) gives additional scores when a disparity map can give a similar estimation to the average 266 

of manual measurements around a depth discontinuity. 267 

Finally, a total score (TS) is defined as a weighted sum of the matching score and the rewarding 268 

score, i.e. 269 

𝑇𝑆(𝐷, 𝐵, 𝑃) = (1 − 𝛼)𝑀(𝐷, 𝐵) +  𝛼𝑅(𝐷, 𝐵, 𝑃),                             (8) 270 
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where 0 < 𝛼 < 1. The weighting coefficient in (8) can be set up differently depending on 271 

applications, e.g. a higher weight (e.g. 0.5 < 𝛼) could be given to put the matching score ahead 272 

over the rewarding score of a disparity map. 273 

3. Experiment results  274 

The evaluation work described in this paper is based on the stereo matching results from UCL-275 

MSSL, NASA-JPL, and the Joanneum Research Institute (JR hereafter) with respect to the 276 

datasets from the PRoVisG Mars 3D challenge and the ExoMars PanCam test campaigns. The 277 

PRoVisG Mars 3D challenge 2011, aimed at testing and improving the state of the art algorithms 278 

of visual odometry and 3D terrain reconstruction in planetary exploration.  279 

The task of the PRoVisG Mars 3D challenge was to reconstruct depth, camera trajectory and 3D 280 

maps of Mars landscapes observed by MER. The ExoMars PanCam test campaign also focused 281 

on the 3D processing results, as they are an essential component of mission planning and scientific 282 

data analysis for the ESA's ExoMars Rover mission, planned for launch in 2020. 283 

We demonstrate the evaluation with 3 test sequences, taken from one of the PRoVisG Mars 3D 284 

challenge I datasets (sets C33) and the ExoMars PanCam test campaign (“65246” and “70000”). 285 

Examples of the images from each of these 3 test sequences are shown in Fig. 4. The evaluation 286 

work demonstrated in this paper was achieved through a workshop hosted at UCL-MSSL with 15 287 

participants including 9 students and 6 trainers. 288 

 289 

3.1 Test datasets 290 

During this stereo matching evaluation workshop, the students were trained on how to use the 291 

StereoWS tool including the stereo display, manual measurements, and statistical analysis 292 

procedure. In this workshop, we have collected manual measurements, which were selected by 293 

different members of the workshop. 294 
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 295 

Figure 4: Test datasets from PRoVisG Mars 3D Challenge and ExoMars PanCam Test Campaign, 296 

showing left-eye images randomly picked from each test dataset; (a) C33 (b) 65246 (c) 70000. 297 

 298 

During the manual measurement process, each participant was asked to collect 20 feature based 299 

points, 16 regular grid points, and 10 discontinuity tie-points for each pair of test images shown 300 

in Fig. 4. Figure 5 illustrates an example of left tie-points of some of the test images (i.e. C33, 301 

65246, 7000) prepared for measurement. 302 

For the feature based tie-points (see the first column of Fig. 5), participants only needed to identify 303 

the corresponding right points using the stereo display. 20 left points are selected from the 304 

extracted Scale Invariant Feature Transform (SIFT) key-points (Lowe, 2004) with the highest 305 

matching similarity values. For the regular gird tie-points (see the second column of Fig. 5), we 306 

collected 16 left points from the dense disparity map generated by our in-house GOTCHA 307 

matcher. Participants were then asked to validate their matching correctness based on visual clues 308 

by moving the stereo 3D cursor around the grid points to check if there were any abnormalities 309 

and adjusting the disparity offset of the stereo cursor at certain points to seek for better solutions. 310 

Results in this case that passed the validation were collected and averaged. For discontinuity tie-311 

points (see the last column of Fig. 5), an expert user from the workshop manually selected 10 312 

pairs of left points around the object edge and other problematic areas. 9 pairs of discontinuity 313 

tie-points are defined around an object boundary in C33, whilst the last two tie-points are selected  314 
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 315 

Figure 5: Example of left tie-points used in the stereo workshop: (a), (d), and (g) show 20 left tie-316 

points defined on the test images shown in Fig. 4(a), (b), and (c), respectively; (b), (e), and (h) 317 

show 16 regular grid tie-points for the same test images; (c), (f), and (i) are for 20 tie-points 318 

around discontinuities. 319 

 320 

from a relatively smooth and less-textured area. [see Fig. 5(c)]. Other workshop participants then 321 

defined the correspondences on the right image. 322 

 323 

3.2 Evaluation of collected tie-points 324 
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 325 

Figure 6: Example evaluation results of manual selection: (a) and (b) left and right input image 326 

of C33; (c) a disparity map of (a) produced by UCL which was used to identify outliers in manual 327 

measurements; (d), (e), and (f) show all measured right tie-points for type (a), (b), and (c), 328 

respectively. 329 

 330 

The manual selection results from the 9 workshop participants are presented in Fig. 6, where input 331 

data are shown in the first row, whilst the positions of measured right tie-points are presented in 332 

the second row. 333 

It appears that some of the workshop participants can perform good visual identification and 334 

visual validation with all three types of tie-points. On the other hand, a few workshop participants 335 

were not good at fusing the stereo images. For example, participant 1, participant 3, participant 5, 336 

participant 6 were not able to select good right points for the feature based tie-points [see Fig. 337 

7(a)], and the performance of participant 5, participant 6, participant 8 was particularly worse 338 

with discontinuity tie-points [see Fig. 7(e)]. Their average measurement error (i.e. 𝑒𝑜𝑢𝑡) is 16.65 339 

pixels which is significantly above the error bounds from a normal visual identification and 340 

validation results. Their performance was improved when a pre-computed disparity map is given  341 
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 342 

Figure 7: Example of evaluation of manual measurements of C33: (a), (c), and (e) simple 343 

measurement error from (1) of type (a)-(c) tie-points, respectively; (b), (d), and (f) show bar charts 344 

of difference between inlier measurements and 𝑚𝑥 345 

 346 

although two participants still cannot visualise the tie-points in 3D, i.e. Participants 5 and 6 [see 347 

Fig. 7(c)]. These outliers were then removed before calculating the error bounds. 348 

Figure 7(a), (c), and (e) summarise the errors from the inlier means 𝑑(𝒕𝑖
𝑘, 𝒎𝑖

𝑘) of all tie-points 349 

from 9 participants. It is observed that tie-points from the indistinctive textures are generally 350 
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difficult to select, for example, 𝒕1
𝑎, 𝒕4

𝑎, 𝒕5
𝑎, 𝒕7

𝑎, and 𝒕9
𝑎 in the feature based tie-points have larger 351 

measurement variation and more outliers [see Fig. 7(b)]. This reconfirms our understanding that 352 

a stereo visualisation can help us detect correct tie-points better around the object boundary than 353 

within plain/repetitive texture. 354 

One interesting observation from the error graph is that the performance of participant 5, who 355 

consistently produced a large measurement error regardless of the type of dataset, deteriorates 356 

when a tie-point is closer to a camera (i.e. a larger 𝑥 disparity). For example, the measurement 357 

errors for 𝒕3
𝑏, 𝒕7

𝑏, 𝒕11
𝑏 , and 𝒕15

𝑏  (which is the bottom row of the grid in Fig. 5(b)) are getting worse 358 

than the rest and we can see this pattern in Fig. 7(c). 359 

The error metrics of measurements are evaluated and summarised in table 1. Without the removal 360 

of outliers, the total measurement error increases significantly. The maximum of 𝑒𝑡𝑜𝑡 was 361 

recorded with the feature based tie-points (20.83), whereas the minimum (8.39) was obtained 362 

from the discontinuity tie-points. However, after removing obvious outliers (i.e. 𝛿 > 10 in (2)), 363 

the measurement errors drop sharply to less than 2 pixels with small standard variation (see 𝑒𝑖𝑛 364 

and avg. 𝜎𝑥 in table 1). As mentioned earlier, we believe this happens because of the outliers 365 

introduced by a few participants who fuse a stereo pair differently than the rest. 366 

Table 1 Measurement errors of C33 (N.B. the Type (a) results of participant 2 was excluded due 367 

to the incomplete of measurements.) 368 

Type etot ein eout avg. σx 
a 20.83 1.61 40.04 0.92 
b 10.83 1.10 22.98 1.71 
c 8.39 1.78 16.65 0.93 

avg. 13.35 1.50 26.56 1.19 
 369 

The bar charts of the inlier measurements for 3 datasets are shown in the second column of Fig. 370 

7. Each bar chart summarises the differences between the inlier measurements and the mean of 371 

the inlier measurements. Type (b) tie-point selection appears to be more difficult as participants 372 
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are often required to fuse the stereo cursor around textureless or smooth (i.e. small depth 373 

separation) areas. As a consequence, the inlier measurements of regular grid tie-points are 374 

generally inconsistent (i.e. avg. 𝜎𝑥 = 1.71) compared to the others [see Fig. 7(d)]. On the other 375 

hand, strong depth discontinuity around an object boundary from type (c) tie-points improve the 376 

consistency of the measurements [see Fig. 7(f)]. We have found that the maximum standard 377 

deviation is 2.56 pixels, the minimum standard deviation is 0.37 pixels, and the average is 0.93 378 

pixels.  379 

It is also interesting to see that SIFT keypoints performs the best for stereo fusion. Its average 380 

standard deviation is 0.92 which is marginally better than the second best but the left tie-points of 381 

type (a) were selected simply based on the texture information [see Fig. 7(b)]. We think that the 382 

distinctive gradient information around a keypoint can improve the performance of stereo 383 

measurements. 384 

 385 

3.3. Results of automated stereo matching 386 

In our evaluation, we have collected two sets of processing results (i.e. a 𝑥 and 𝑦 disparity map) 387 

from UCL, JPL, and JR. Fig. 8(a) and (b) respectively represent these disparity maps of dataset 388 

65246 and 70000 from ExoMars PanCam Test Campaign, and each column of the figure 389 

represents the results from different organisations. To our best knowledge all three algorithms 390 

have been developed based on a variation of a correlation based stereo matching algorithm with 391 

an adaptive least square fitting technique (Deen and Lorre, 2005; Otto and Chau, 1989), but all 392 

results seem to be slightly different in terms of the completeness and the estimated values of a 393 

disparity map. All three results were able to produce a relatively denser disparity map with dataset 394 

65246. However, the results seem different with the other dataset, e.g. the JR result shown in the 395 

last column of Fig. 8(b) looks overly smoothed and its density is more incomplete than the other 396 
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two (but this does not mean it is sparse). Please also note that both 𝑦 disparity maps from JPL 397 

(see the second column of Fig. 8) contains a few spikes which are removed for visualisation. 398 

 399 

Figure 8: Example of disparity maps: (a) x and y disparity maps of dataset 65246; (b) and dataset 400 

70000. UCL, JPL, and JR results are shown in the first, the second and the last column. 401 
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 402 

Figure 9: (a) Individual matching scores of the processing results of two datasets; (b) Rewarding 403 

scores from 10 tie-point pairs in two datasets. 404 

 405 

Given the error bounds calculated from the manual measurements, the matching scores and 406 

rewarding scores of each tie-point are evaluated and the results are shown in Fig. 9. Matching 407 

scores of three algorithms are generally similar when they can define a tie-point, but when it fails 408 

to define a tie-point no score was awarded, e.g. see JPL matching scores of ID 23 and 49 in Fig. 409 

9(a). The rewarding score of UCL's disparity map is generally lower than the other two with the 410 

dataset 65246 [see Fig. 9(c)]. However, it is improved with the other dataset having more depth 411 

discontinuities. 412 
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The total scores were calculated using an equal weight of the matching scores and rewarding 413 

scores, and the results are summarised in table 2, where the best scores for certain datasets are 414 

labelled in bold font. We can observe that for dataset 65246 that JR's stereo matching pipeline 415 

produced the best result for the overall area. To understand this result clearly, it is worth 416 

mentioning that the total score (TS) shown in (8) has been designed to award more scores if a 417 

disparity map defines all queried tie-points; in other words, no score is given if there is no 418 

corresponding tie-point in a disparity map. Thus, this metric is generally favoured for a dense and 419 

smooth disparity map, which we believe why JR's results perform best on both test datasets. 420 

Table 2: Total score (TS) estimated from (8) with 𝛼 = 0.5 421 

Dataset 65246 70000 
  UCL JPL JR UCL JPL  JR 

Matching score 63.96 61.26 64.16 50.45 45.15 57.01 
MFR(%) 0.00 3.50 0.00 16.10 26.80 10.70 

Rewarding score 50.11 61.87 67.15 43.07 31.05 44.64 
MFR(%) 0.00 10.00 0.00 10.00 30.00 0.00 

TS 55.65 61.63 65.95 46.02 36.69 49.59 
 422 

To give more weight on the accuracy of an algorithm, we modified (8) not to penalise when they 423 

failed to define a queried tie-point in a disparity map, and called this score, TS-B. The results of 424 

TS-B of both datasets are also presented in table 3. 425 

Table 3: Total score B (TS-B) which is similar to TS but removes the effect of missing tie-points 426 

Dataset 65246 70000 

  UCL JPL JR UCL JPL  JR 

Matching score 63.96 63.45 64.16 60.11 61.67 63.86 

Rewarding score 50.11 68.75 67.15 47.85 44.35 44.64 

TS-B 55.65 66.63 65.95 52.75 51.28 52.33 

  427 
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We also introduce a new term MFR representing the Matching Failure Rate. MFR can be used as 428 

an indicator for either the incompleteness of a disparity map or how conservative the algorithm 429 

is. As shown in table 2, JPL's results have higher MFR, but without counting on the match failure 430 

area (i.e. using TS-B) JPL's pipeline produced the best result on the dataset 65246. For dataset 431 

70000, JPL's pipeline gets the second best score whilst UCL's processing pipeline has produced 432 

the best accuracy. 433 

 434 

4. Discussions and Conclusions  435 

In this paper, we introduced an accuracy evaluation method to assess the stereo matching results. 436 

The main motivation of this work is to provide a straightforward method which can be applied to 437 

the stereo matching evaluation work of planetary rover missions, where it is currently impossible 438 

to obtain ground truth data. 439 

We have demonstrated the use of a generic portable stereo workstation including a stereo cursor 440 

from the open source StereoWS tool to produce visually correct tie-points of a stereo pair, i.e. 441 

manual tie-points, with the help of a softcopy stereo display. The manual tie-points from stereo 442 

measurements are not identical for all candidate tie-points, but our assumption is that the variation 443 

of multiple measurements can be used to estimate the confidence of a tie-point and this confidence 444 

values can quantitatively evaluate the quality of disparity maps from different algorithms. Based 445 

on this idea, we have defined useful evaluation metrics using the statistics of multiple 446 

measurements (such as means and variance). We also define three types of tie-points to test the 447 

performance at highly textured region, textureless region, and occluded region. The performance 448 

of textureless region is quite interesting for DTM construction from orbital imagery but this is left 449 

for the future work. Type (b) tie-points are related to the scene occlusion. At the moment, we 450 

populate these points manually but it is also possible to design a semi-automatic pipeline to collect 451 
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these points, e.g. detect one tie-point by conventional feature detector and find adjacent feature 452 

from background manually. 453 

It is worth noting that in these experiments, the number of tie-points, particularly for the 454 

discontinuities, may not be sufficient in some cases. It would have been better to add more tie-455 

points. However, we erred on the side of setting an experiment which could be accomplished with 456 

a group of ten “citizen scientists” within a limited time period (a week). Other comparison results, 457 

e.g. disparity density or 3D accuracy, could also be employed in future experiments to improve 458 

the final matching score. 459 

During the evaluation work, we implemented an open source stereo workstation with an 460 

integrated stereo matching method that is used to produce the UCL results shown in the 461 

evaluation. We have published the Java code of the Stereo Workstation on SourceForge under a 462 

BSD license (available from SourceForge, http://sourceforge.net/projects/stereows/) to encourage 463 

other stereo researchers to use and modify our system for their own evaluation. 464 

The experiments reported in this paper focused on planetary images. It would be straightforward 465 

to apply this method and our StereoWS to any future stereo research projects when any 466 

quantitative evaluation is required, wherever it is on Mars or the Earth or anywhere else for that 467 

matter. In the future, we hope our efforts could also benefit the stereo correspondence evaluation 468 

work and include more datasets, in particular the results from a wider variety of general stereo. 469 

Also, we expect that the same idea behind StereoWS could be applied to develop a more intuitive 470 

and immersive stereo measurement system using recent virtual reality technologies. In 471 

conjunction with the stereo measurement workshop held in 2011, we can provide the possibility 472 

of evaluation of these stereo matching results including more methods from our collaborators. 473 

As future work, it is also interesting to investigate the performance of manual measurements from 474 

different lighting conditions (Kirk et. Al., 2016). We could measure the variation of human depth 475 
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perception under different illumination effects and reflect this on (5) to define more accurate 476 

metrics. However, this is currently beyond our research scope and left for the future work. 477 

 478 
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