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Abstract

Pharmacologically refractive temporal lobe epilepsy and malignant glioma brain tumours are ex-

amples of pathologies that are clinically managed through neurosurgical intervention. The aims

of neurosurgery are, where possible, to perform a resection of the surgical target while minimising

morbidity to critical structures in the vicinity of the resected brain area. Image-guidance technol-

ogy aims to assist this task by displaying a model of brain anatomy to the surgical team, which

may include an overlay of surgical planning information derived from preoperative scanning such

as the segmented resection target and nearby critical brain structures. Accurate neuronavigation

is hindered by brain shift, the complex and non-rigid deformation of the brain that arises during

surgery, which invalidates assumed rigid geometric correspondence between the neuronavigation

model and the true shifted positions of relevant brain areas. Imaging using an interventional MRI

(iMRI) scanner in a next-generation operating room can serve as a reference for intraoperative

updates of the neuronavigation. An established clinical image processing workflow for iMRI-based

guidance involves the correction of relevant imaging artefacts and the estimation of deformation

due to brain shift based on non-rigid registration. The present thesis introduces two refinements

aimed at enhancing the accuracy and reliability of iMRI-based guidance. A method is presented

for the correction of magnetic susceptibility artefacts, which affect diffusion and functional MRI

datasets, based on simulating magnetic field variation in the head from structural iMRI scans.

Next, a method is presented for estimating brain shift using discrete non-rigid registration and a

novel local similarity measure equipped with an edge-preserving property which is shown to im-

prove the accuracy of the estimated deformation in the vicinity of the resected area for a number

of cases of surgery performed for the management of temporal lobe epilepsy and glioma.
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Impact Statement

Pharmacologically refractive temporal lobe epilepsy (TLE) and malignant glioma brain tumours

are examples of pathologies managed by resective neurosurgery in which the imperatives are to re-

move the surgical target and to minimise morbidity to nearby critical brain areas. Image-guidance

technology can assist this task by displaying to the surgeon a model of brain anatomy that may

include surgical planning information such as critical brain areas identified from preoperative MRI.

Image-guidance assumes a rigid transformation between pre/intraoperative positions of brain ar-

eas, which is invalidated by severe non-rigid deformation (brain shift). The advanced operating

suite at the National Hospital for Neurology and Neurosurgery (NHNN) is equipped with an in-

terventional MRI (iMRI) scanner that enables intraoperative imaging. A previous collaboration

between the UCL Centre for Medical Image Computing, the UCL Institute of Neurology and the

NHNN established novel fast, automated software methods to enable an intraoperative update of a

surgical plan. These include the correction of iMRI-specific imaging artefacts, and the estimation

of brain shift based on non-rigid registration whereby the best and most plausible alignment is

sought between preoperative MRI and intraoperative iMRI images. In this thesis, the above steps

were investigated with regard to accuracy near the resection boundary where accuracy is required.

A significant imaging artefact in iMRI is the susceptibility artefact, which is the geometric

distortion of diffusion MRI (dMRI) and functional MRI (fMRI) data that arises near the air-

tissue transition at the resection boundary. This work confirmed that it is feasible to partially

correct for the artefact by simulating the magnetic field from iMRI structural scans acquired at

an advanced stage of anterior temporal lobe resection (ATLR) performed for the management

of TLE in 12 surgical cases. A refinement of this approach may complement more established
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artefact correction methods such as MRI-acquired field maps that exhibit reduced reliability near

the resection boundary due to the low signal-to-noise ratio of iMRI. The proposed method can in

principle correct non-interventional dMRI and fMRI datasets from retrospective studies, as many

older studies did not acquire field maps and supplementary artefact correction may be needed to

enable their seamless inclusion within new studies.

Next, an investigation was performed into non-rigid registration for brain shift estimation. An

important aspect of registration schemes is how similarity between the image pair is measured for

local neighbourhoods. An investigation of the effect of introducing an edge-awareness property

into local similarity measurement revealed improvement in registration accuracy near the resection

boundary for 12 iMRI ATLR cases and 8 iMRI cases of glioma tumour resection. This is beneficial

because the extent of retained vs. resected tissue is challenging to determine automatically due

to liquid in the resection cavity and contrast changes. The proposed similarity measurement can

be used for non-interventional MRI datasets for registration-based image analysis where effect of

interest occurs near intensity edges such as for evaluation of dementia-related disease progression

where volume change tends to occur near the ventricles or for lung inhale/exhale pairs where the

rigid ribcage borders the lungs that undergo sliding motion.
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Chapter 1

Introduction

Pharmacologically refractive temporal lobe epilepsy and malignant glioma brain tumours are ex-

amples of pathologies that are clinically managed through neurosurgical intervention. The aims

of the surgeons throughout a neurosurgical procedure are, where possible, to perform a resection

in such a manner that the the area of pathological tissue is completely resected while choosing a

surgical approach trajectory that stays clear of critical brain structures. Obviously, these tasks

may get in conflict with each other during surgery and the surgeon may need to make a decision

regarding which goal takes precedence.

Neurosurgical procedures may follow a patient-specific surgical plan that is designed and agreed

by the clinical team prior to surgery and which outlines the surgical target, the approach trajectory

and the areas to be avoided. These data are derived from preoperative imaging performed within

the weeks before the surgery. Magnetic resonance imaging (MRI) has emerged the imaging modal-

ity of choice for both diagnosis and for preoperative imaging due to its high resolution, low signal to

noise (SNR) ratio and flexible imaging capabilities. At its most basic, MRI enables high-resolution

high-contrast structural imaging that can yield a rich tomographic image of anatomical structures

in the brain stem, as well as the cortical folding pattern with substantial detail. Diffusion-weighted

MRI (DW-MRI) imaging followed by a probabilistic tractography post-processing step can reveal

locations of axonal nerve fibre tracts that cross the white matter which are neither visible in the

1
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structural scans nor recognisable by the naked eye during surgery and which exhibit intra-patient

variability [Essayed et al., 2017]. Functional MRI (fMRI) can reveal eloquent (activity-specific)

cortical regions such as the motor cortex or the brain speech centres, which again exhibit intra-

patient variability. The mentioned modalities are useful for mapping the brain areas to be avoided

as part of the surgical planning. MRI can also partly reveal the location and extent of patho-

logical areas. This information is crucial for surgical planning and will be outlined further in

Section 1.1.

A practical task that arises during neurosurgery is how to display preoperative planning infor-

mation to the surgical team in an effective manner. In conventional surgery the surgeons would

simply keep a “mental picture” of the surgical plan as they progress through the procedure and

navigate using the anatomical landmarks which they reach and recognise as points of reference in

the neuroanatomy. However, this is inaccurate due to the difficulty of identifying landmarks, due

to the linear/planar nature of landmarks and due to uncertainty of localisation in areas between

the sparse landmarks that are visually present to the surgeon as homogeneous tissue.

This problem attempts to be solved in a practical manner by the image-guided neurosurgery

(IGNS) technology (also image-based guidance, neuronavigation, frameless stereotaxy), which was

first introduced by [Roberts et al., 1986]. In the setting of IGNS, a reference frame is rigidly

attached to the patient’s head and its position and orientation in the 3D physical space of the

operating theatre is tracked in real time, often using optical tracking technology. Further, a rigid

transformation is established by means of features that can be sampled on the patient’s skull.

Corresponding features can be identified in the preoperative scan. Options to achieve this include

the use of anatomical landmarks, fiducial markers or skull surface. The estimation of this rigid

transformation is referred to as rigid registration. Finally, surgical instruments can be tracked

in real-time and thus any point in the physical space can be located in the virtual space of the

preoperative image. For instance, the most basic instrument is a tracked pointer (stylus) with

whose distal end the surgeon can touch a surface anatomical landmarks (e.g. a cortical blood

vessel bifurcation) and thus locate the corresponding point in the preoperative image and, by

extension, the surgical plan.

There are three sources of error in the IGNS technology that may contribute to a given point
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of interest in the virtual space to be displaced from its true corresponding location in the physical

space [Gerard et al., 2017]. Firstly, there is an error in the tracking of the reference frame com-

pounded by error in the rigid transformation between the physical landmarks and their positions

in the preoperative image. Secondly, imaging artefacts may displace points of interest in the vir-

tual space of the preoperative image. Thirdly, there is an error in the assumption that the brain

forms a rigid system together with the skull to which the reference frame is attached. The latter

assumption is violated by the complex and difficult to characterise non-rigid deformation of the

soft tissue of the brain, also termed brain shift, which arises after craniotomy and develops with

the progress of the surgery.

The phenomenon of brain shift can be mitigated by intraoperative imaging. Intraoperative

IMRI (iMRI) has emerged as the gold-standard modality for intraoperative imaging of the brain

whereby the MRI scanner is located directly in the advanced operating room. iMRI enables accu-

rate structural imaging of the brain affected by brain shift [Nimsky et al., 2000, Nabavi et al., 2001]

and resection control [Nimsky et al., 2001]. In the context of IGNS the intraoperative image can

serve as an update to the neuronavigation. Indeed, the surgical plan and the delineations of brain

areas of interest can potentially be geometrically transformed or warped to reflect the intraoper-

ative state of the neuroanatomy if the non-rigid deformation of the brain is accurately estimated

in a principled manner. There exist several approaches for estimating brain shift that involve the

preoperative image and intraoperative scanning using an interventional imaging modality.

Recently an experimental clinical study performed at UCL and the National Hospital for Neu-

rology and Neurosurgery (NHNN) in London [Winston et al., 2014] demonstrated a clinical benefit

of using neuronavigation updated based on reference scans acquired on an iMRI scanner during

21 surgeries performed for management of pharmacologically refractive temporal lobe epilepsy

(TLE). Technologically their work was centered around a brain shift estimation step that took

additional advantage of a limited multi-modal imaging capability of a high-field 1.5 T iMRI scan-

ner [Daga et al., 2012]. Their pipeline also involved a correction of MRI magnetic susceptibility

artefact [Daga et al., 2014], which is severe for iMRI data and which requires correction in order

to facilitate reliable brain shift estimation.

In the present thesis, I investigate whether accuracy of neuronavigation based on iMRI imaging
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can be improved in the vicinity of the resection boundary, as this is the most relevant brain area

in terms of clinical importance. I explore this point with focus on the MRI susceptibility artefact,

which can only be corrected based on data which may itself suffer from noise near the resection

boundary. I also investigate the influence of the resection cavity in the context of brain shift

estimation, as it may be challenging to delineate the resection cavity accurately in intraoperative

iMRI scans. The rest of this chapter provides a more detailed introduction and an outline of the

contributions of my work.

1.1 Pathologies Requiring Neurosurgical Management

Epilepsy is a common and debilitating neurological disorder that develops in 50 in 100,000 peo-

ple per year. In approximately third of these people, antiepileptic drugs do not control seizures.

About half of these latter people have focal epilepsy, in which seizures spread from a spatially

limited epileptogenic zone (an epileptic focus) in the brain. The epileptic seizures in these in-

dividuals can potentially be resolved by neurosurgical treatment if the patient is eligible for the

surgery based on clinical and safety criteria and if the patient accepts the risks associated with the

surgery [Duncan et al., 2016].

Anterior temporal lobe resection (ATLR) is an established treatment for temporal lobe epilepsy,

in which the epileptogenic zone is located in the temporal lobe of the brain. A complication of

ATLR commonly observed post-surgery is the visual field deficit (VFD) in the contra-lateral visual

field caused by damage to the optic radiation nerve fibre tract whose location exhibits large inter-

patient variability and whose part, called the Meyer loop, shown in Fig. 1.1(a), can pass through

the area affected by ATLR for some patients [Daga et al., 2012, Duncan et al., 2016], as shown in

Fig. 1.1(b). The VFD can reduce the quality of life for the seizure-free patient that limits their

return to full activity and therefore, it is highly desirable to limit any damage to the optic radiation

tract.

Malignant brain tumours are cancers with extremely poor prognosis, which are further feared

due to their adverse effects on quality of life and neurological functions. Malignant gliomas

form 80% of the malignant brain tumours and had an annual incidence of 5.26 per 100,000 of
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Fig. 1.1: The visual system in the human brain. (a) The paths of the fiber tracts to the visual cor-
tex (courtesy http://www.thebrain.mcgill.ca). (b) The morphology of the human brain (courtesy
Virtual Hospital) with the part resection during the ATLR procedure highlighted.

population (in the US in 2005–2009) [Dolecek et al., 2012]. The more common malignant glioma

is glioblastoma (World Health Organisation (WHO) histological grade IV) and the less common

is anaplastic astrocytoma (WHO grade III). Fig. 1.2 shows the appearance of a malignant glioma

in diagnostic MRI and demonstrates a possible size of a growing tumour. The diagnostic proto-

col usually consists multi-modal morphological MRI imaging composed of T1-weighted imaging

enhanced with a contrast agent such as gadolinium, T1-weighted imaging with the FLAIR pulse

sequence (FLluid Attenuation Inversion Recovery) that nulls fluids, susceptibility-weighted imag-

ing that is sensitive to potential hemorrhagic components of the tumour and perfusion imaging

using the dynamic contrast enhancement imaging approach [Omuro and DeAngelis, 2013].

The recommended therapy consists of symptomatic treatment followed by neurosurgical

management, further followed by a combination of chemotherapy and radiotherapy. The me-

dian survival time is only 15 months for glioblastoma and 2–3 years for anaplastic astrocy-

toma [Omuro and DeAngelis, 2013]. The aims of neurosurgery are relief of the mass effect, cy-

toreduction (the removal or reduction of the tumour mass) and for histological sampling. Due to

the aggressively infiltrative nature of glioma, resection is not expected to prevent secondary tu-

mours. A growing body of evidence suggests that a maximum extent of tumour-volume resection
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(a) (b)

Fig. 1.2: The appearance of a malignant glioma in (a) a T1-weighted structural scan and (b) a
T1-weighted FLAIR scan. The images are taken from preoperative imaging performed prior to the
surgery for the patient #3 from the glioma registration dataset described in Section 4.4.3.

is a positive predictor of patient outcome [Kuhnt et al., 2011] but this has to be balanced with the

preservation of cognitive and neurological functions. The eloquent (functionally-specific) cortical

areas that are removed as part of the surgical access to the tumour site are the most direct source of

functional loss, which depends on the location of the tumour and the function associated with the

resected cortical region. As in the case of ATLR, resection near eloquent cortical areas may involve

disruption to nerve fibre tracts. For instance, the corticospinal tract, which connects the spinal

cord with the motor cortex and the somatosensory cortex, has been studied extensively in the con-

text of neurosurgical planning in patients with gliomas [Nimsky et al., 2005, Essayed et al., 2017].

1.2 Use of iMRI Guidance in an Operating Room

The iMRI suite at the National Hospital for Neurology and Neurosurgery (NHNN) is an example

of a next-generation OR, in which the iMRI 1.5 Tesla MAGNETOM R© Espree scanner (Siemens,

Erlangen, Germany) is installed directly in the OR, and is fully integrated with the Brainlab

VectorVision R© Sky IGNS system [Gumprecht et al., 1999]. The setup of the OR is shown in

Fig. 1.3. The operating table is located beyond the 5 Gauss field line of the scanner, which

enables the surgery to be performed using standard surgical instrumentation and equipment. The

operating table can be swivelled and docked with the gantry of the iMRI scanner and subsequently
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Fig. 1.3: The INGS suite at the NHNN in London with an integrated iMRI scanner. (Image
courtesy of Dr Pankaj Daga.)

the patient can be moved into the scanner for imaging. In a recent study, the scanning protocol

was kept to approx. 30–40 minutes and the transport of the patient from the operating table to

the scanner and back took 7 to 10 minutes either way [Winston et al., 2014].

The closed-bore high-field 1.5T iMRI design is capable of structural scanning at approx.

1.1 × 1.1 × 1.25 mm resolution with relatively low signal to noise ratio (SNR). The Brainlab

data processing workflow can download image data from the iMRI scanner and also facilitates

real-time instrument tracking and visualisation. The tracking is facilitated by an infrared opti-

cal stereo camera, which establishes a 3D coordinate system of the operating theater. Prior to

craniotomy, the surgical team fixates a head holder onto the patient’s head using titanium pins

at several points in the skull. The head holder doubles as an MRI receive/transmit coil but also

contains an arrangement of spheres reflective in the infrared spectrum, which form a reference for

the tracking system. Since these spheres are also visible as white outlines in the iMRI scan, a rigid

geometric transformation between the virtual image space and the head holder (the skull) can be

established in a fully automated fashion with high accuracy.

The most recent iMRI structural scan is visualised using a three-plane view on the heads-
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up display whose viewing plane intersection point or the “current view” can be adjusted using

a tracked pointer. Crucially, heads-up display view also includes outlines of segmented areas of

interest established as part of surgical planning. For instance, in ATLR procedures performed at

the NHNN, the outlines of the optic radiation tract (Section 1.1) are displayed (an in-plane outline

and a projection of maximum extent outline). An alternative means of visualisation is provided by

the surgical microscope (OPMI Pentero, Carl Zeiss, Germany) which the surgical team use during

advanced stages of surgery. The optical head of the microscope is tracked and the binocular input

is digitally recorded and re-projected to the eyepiece, and the BrainLab system augments the video

with outlines of segmented areas in a manner similar to the heads-up display.

The 1.5T field of the iMRI scanner also in principle enables multi-modal imaging in the form

of DW-MRI data and fMRI. However, in practice, the use of these two modalities intraoperatively

has so far remained limited. In the case of DW-MRI, the relevant information is a reliable out-

line of the tract expected to pass through or near the resected area. Determining an accurate

tractography of DW-MRI data requires the interaction of an expert radiologist and also demands

data processing times that are prohibitive for the intraoperative setting. While DW-MRI data

acquired intraoperatively using iMRI were used successfully to reveal a coarse mapping of voxels

with a high assumed content of nerve fibres, this relied on simple modelling assumptions and was

thus only use in order to complement the use of precomputed tractography that was itself derived

from preoperative imaging [Daga et al., 2012]. Further, the feasibility and practicality of perform-

ing intraoperative fMRI are still very open research areas and to my knowledge, this modality is

not being used in the iMRI suite. Should this technique be developed in the future, the main

assessment criteria of its benefit would be whether it could be used to locate brain activation areas

in their intraoperative locations with a sufficient accuracy and reliability. However, clearly any

imaging of brain activation areas that would require awaking the patient from anaesthesia would

be bound to considerably increase the complexity of the surgical procedure. Thus, in summary,

the locations/extent of relevant tracts and/or task-specific brain activation areas can be considered

as information that is part of preoperative surgical planning only.

The boundaries of the critical anatomical structures are presented to the surgeon as outlines

rendered by the IGNS system. While an iMRI scan acquired during surgery implicitly presents
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an up-to-date structural model of the neuroanatomy, the assumption by the BrainLab system

of a rigid relationship between the patient’s head and the virtual image space does not change.

Therefore, the boundaries of critical structures in the IGNS system retain locations as they were

in the rigidly registered preoperative image.

At the time of the writing there are two competitors that dominate the IGNS market: Brainlab

with its IGNS portfolio (which contains more recent models) and the Medtronic (Louisville, CO,

USA) StealthStation R© range (with StealthStation R© S8 the current flagship system). Both com-

petitors primarily offer stand-alone rack-based display systems that can be installed in any OR.

To the best of my knowledge, their offerings contain rigid registration of preoperative images only.

1.3 Key Challenges in iMRI-Guided Neurosurgery

In the following I will outline in more detail the sources of error to neuronavigation in the context

of iMRI image guidance. While some of the following reiterates what has already been outlined

above, it is now possible to describe the phenomena involved in more detail.

Brain shift is an effect associated with both keyhole neurosurgery (limited surgery through

burr holes in the skull) and open neurosurgery (extensive surgery following craniotomy) and is a

collective term for the biomechanical deformation of the brain due to cerebrospinal fluid (CSF)

drainage, gravity, edema and tissue resection and retraction. Fig. 1.4 illustrates the situation for

two representative cases of ATLR. In a classical iMRI study by [Nimsky et al., 2000] the authors

report cortical surface displacement of up to 24 mm for 62 cases of open neurosurgery for tumour

removal. While brain shift occurs primarily in the direction of gravity, complex and irregular

displacements also occur perpendicular to the direction of gravity.

As mentioned earlier, brain shift presents a significant complication even in the presence of

neuronavigation as surgical planning information is presented based on rigid registration only and

thus becomes offset. Therefore a dense estimate of the deformation due to brain shift is needed

in order to propagate the surgical planning information. However, this estimation problem is

challenging due to a number of issues. There are highlighted on the T1-weighted MRI image pair
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(a) (b)

(c) (d)

Fig. 1.4: Brain shift for two representative cases of ATLR. Top row, patient #1. Bottom row,
patient #9. The ATLR dataset is described in Section 3.2.4. Left, preoperative structural T1-
weighted scan acquired about one month prior to surgery, shown affinely pre-registered to the
intraoperative scan. Right, intraoperative scan acquired using an closed-bore iMRI scanner in
the operating room with the patient’s head in the intraoperative orientation. Highlights A–E are
explained in the main text.

in Fig. 1.4 and can be summarised as follows:

• The most obvious presentation of brain shift is the severe non-rigid deformation (see

highlights C and D in Fig. 1.4) which occurs as the brain tissue is deforming due to the

absence of the pressure of the CSF. Moreover, the deformation is most prominent near the

resection cavity as the soft tissue sags due to the missing tissue.

• There is a complex intensity relationship between the image pair. The global relationship

is affected by the increased noise in the iMRI dataset and also by the fact that different

scanners and pulse sequences (even within sub-modalities such as T1-weighted MRI) are used.

Further, local contrast changes occur due to CSF leakage (Fig. 1.4, highlight C); bleeding

near the resection margin (Fig. 1.4, highlight B); and the bias field artefact (intensity varying
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Fig. 1.5: Missing correspondences. Left and middle: Example pre/intraoperative image slice
(patient #9 from the ATLR dataset, Section 3.2.4). Right, top row: A schematic phantom with
landmarks. Right, bottom row: arrow ends mark each landmark’s corresponding location in the
other image. Preoperative landmarks E and F have no correspondence in the intraoperative space.
The other landmarks do not move and so map to the same location.

across the image due to variations in power of received/transmitted MRI signal).

• The tissue missing in the intraoperative image due to resection (Fig. 1.4, highlight A) gives

rise to missing correspondences in the mapping from the preoperative to the intraopera-

tive image space. In a strict sense, the voxel locations in the preoperative image inside the

tissue that is later resected do not map to any voxel in the intraoperative image; this is shown

schematically in Fig. 1.5. In a looser sense, the said voxels map to some arbitrary locations

in the resection cavity whose exact coordinates are irrelevant.

• CSF leakage can lead to a collapse of the ventricles and the consequent touching of the inner

surfaces of ventricles (Fig. 1.4, highlight D), which introduces folding as multiple points in

the preoperative image map to the same point in the intraoperative image at the interface

of the touching surfaces and the volume inside the ventricle in the preoperative space folds

into a surface in the intraoperative space (as in a paper-folding analogy implying differing

space continuity of either space). This is schematically illustrated in Fig. 1.6. CSF leakage

can also lead to touching surfaces of adjacent sulci (Fig. 1.4, highlight C).

• Neurosurgery potentially involves the use of the “retractor”, which is a firm planar instru-

ment (a blade applied along its face) that can be fixed to keep part of brain tissue pulled aside
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Fig. 1.6: Volume folding due to partial collapse of the ventricles. Left and middle: Example
pre/intraoperative slice (patient #9 from the ATLR dataset, Section 3.2.4). Right, top row: a
schematic of volume between landmarks D, E, F in the preoperative space collapsing into a line
segment in the intraoperative space. Right, bottom row: arrow ends mark each landmark’s corre-
sponding location in the other image.

to allow better access to deep brain structures. The gap, as seen in the intraoperative space,

maps onto an surface/interface in the preoperative image. This is schematically illustrated

in Fig. 1.7. Retraction also alters the stresses in the tissue: while at the preoperative time

point the stresses are at equilibrium, at the intraoperative time point there will be a compres-

sion on the pushing side of the retractor and a relaxation on the other side [Miga et al., 2001].

• Datasets that include tumours may exhibit tumour mass effect i.e. the expansive pressure

of the tumour on the surrounding structures that can potentially induce complex and variable

tissue displacement within and outside of the tumour margin dependent on the specific shape,

composition and location of the tumour. The mass effect in the intraoperative time-step is

likely to be significantly altered for an exposed or partially/fully resected tumour.

Imaging Artefacts in iMRI. The high-field of the closed-bore iMRI scanners enables good

quality structural imaging at 1.1×1.1×1.25 mm spatial resolution. However, the design constraints

of iMRI imply a lower image quality than that of conventional MRI, which results in lower SNR

and the presence of artefacts:

• The gradient-nonlinearity artefact is a geometric distortion, which arises due to the wide
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Fig. 1.7: Volume folding due to tissue retraction. A schematic phantom of the segment connecting
B–D being retracted to the right during surgery. Top row: The volume between F, D, B in the
intraop. image folds into a line segment in the preop. image. Bottom row: Arrow ends mark each
landmark’s corresponding location in the other image.

diameter of the bore of the main magnet in the iMRI design. As a consequence, the field

of the magnet is not as uniform as for conventional MRI scanners. This artefact can be

completely corrected in a lossless manner using spherical harmonics and a set of parameters

for the iMRI scanner which have been established as part of the design and/or commissioning

of the scanner [Janke et al., 2004, Glover and Pelc, 1986].

• An advantage of high-field iMRI is the availability of DW-MRI and functional MRI (fMRI).

However, these two techniques rely on the echo planar imaging (EPI) pulse sequence, which

is affected by the susceptibility artefact. This artefact arises because EPI is sensitive to small

inhomogeneities in the magnetic field of the main superconducting magnet (the B0 field) that

arise near air-tissue boundaries in the head. In intraoperative iMRI, the boundary between

the soft tissue of the brain and the air-filled resection cavity leads to severe distortion that

coincides with the anatomical area relevant to the surgery.

Time Constraints of Surgery. The scanning protocol at the NHNN is kept to approx. 30

minutes while the transfer of the patient from the operating table to the scanner and back takes

approximately 7 to 10 minutes [Winston et al., 2014]. As it is essential not to add to the duration

of the surgery, the iMRI processing pipeline must finish during the transfer of the patient to the

surgical table. This creates a strict time requirement for all the processing steps. In particular,
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the brain shift estimation step should ideally be kept to well under the patient transfer time.

1.4 Aims of the Thesis

The aims of the present thesis are to improve surgical navigation for neurosurgery in the advanced

operating room. The direction adopted in this thesis follows from encouraging outcomes of a

recent clinical experimental study performed at UCL and the NHNN, whose findings were reported

in [Winston et al., 2014]. In this study, 21 patients underwent ATLR under iMRI guidance in which

a T1-weighted structural iMRI scan was overlaid with a tractography of the ORT derived from

preoperative data. For the first 9 of these patients, the tractography was shown without brain

shift compensation. For the 12 subsequent patients, a novel brain shift estimation method based

on fast multimodal non-rigid registration by [Daga et al., 2012] was applied to geometrically shift

(propagate) a parcellation of the ORT, as illustrated in Fig. 1.8. An important part of the brain

shift correction pipeline was also a MRI susceptibility artefact correction step [Daga et al., 2014].

The iMRI guidance led to a significant reduction of post-operative VFD relative to a control group

of 44 patients who underwent ATLR without iMRI guidance. The post-operative VFD was not

significantly different between the iMRI cases with or without brain shift compensation, possibly

due to small number of patients or because the surgeons could guess the shifted position of the ORT

without brain shift compensation. However, this work opens the field of intraoperative brain shift

estimation based on iMRI to further investigation, in particular with a view toward procedures in

which the approach trajectory to the surgical target is less repeatable than in ATLR, or procedures

in which the brain shift is especially severe such as on gliomas. Therefore, the aims of this thesis

are to enhance the steps in the above pipeline in order to improve the accuracy of iMRI guidance.

1.5 Methodological Contributions of the Thesis

This thesis presents two main methodological contributions:

• A scheme for the correction of the susceptibility artefact that arises in DW-MRI datasets
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Fig. 1.8: A schematic of the image registration part of the software pipeline used clinically at the
NHNN during the study of [Winston et al., 2014] for brain shift estimation based on multi-channel
registration. The susceptibility artefact correction step is not shown here.

acquired intraoperatively during ATLR surgeries. The scheme is based on simulating the B0

field map from an intraoperative iMRI structural scan. I demonstrate that it is feasible to

avoid the need for field map acquisition by the iMRI scanner, which has a reduced reliability

near the resection boundary. The scheme is presented in Chapter 3.

• A non-rigid registration scheme for the estimation of brain shift from an intraoperative iMRI

structural scan and an preoperative MRI structural scan. The scheme employs a local simi-

larity measure with an edge-preservation property. I demostrate on clinical data from ATLR

and glioma tumour resection surgeries that the proposed method increases registration accu-

racy near the resection boundary and provides an invariance to the intensity variations that

arise between pre/intraoperative time-steps. The scheme is presented in Chapter 4.

The chapters dedicated to these contributions are followed by a discussion, in Chapter 5, of

research directions that could be pursued to build on the presented work.



Chapter 2

Review of Image Guided

Neurosurgery

In this chapter I describe the work on brain shift estimation in the literature. Section 2.1 describes

the imaging technology that is used to image the intraoperative brain deformation. Section 2.2

describes approaches to estimating brain shift based on biomechanical modelling (physical simula-

tion) constrained by sparse imaging data and a discussion of the basic limitation of these models.

Section 2.3 describes estimation based on non-rigid registration.

2.1 Intraoperative Imaging of Brain Shift

Brain shift has been recognised in neurosurgery since its inception as a clinical discipline. An early

attempt to assess brain shift was by [Kelly et al., 1986] who attached small metal spheres to cortical

landmarks and observed their displacement. [Hill et al., 1998] sampled cortical landmarks with a

tracked pointer and measured their motion, but could not observe movement in deep structures.

Interventional MRI is an established technology in clinical use at a small number of fa-

cilities around the world since the mid-1990s. A good review of iMRI technology is given

16
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in [Hall and Truwit, 2008]. In the early 0.5T Signa double-coil design, which was in operation

at the Brigham and Women’s Hospital (Boston, Massachusetts), used a pair of coils separated

by a 56-cm gap, which enabled access to the patient [Black et al., 1997]. However, long imag-

ing times were required which offset the advantage of easy access to the patient, and the im-

ages had a poor SNR and were distorted due to field-inhomogeneity. Closed-bore high-field

(1.5T and 3T) systems enable imaging with favourable SNR and minor (fully corrigible) field-

inhomogeneity and enable the acquisition of DTI and fMRI. The high-field mandates that surgery

be performed beyond the 5-Gauss line. In one design of the advanced operating room, the sur-

gical table can be operated by the surgical team and can dock with the gantry of the scan-

ner, thus allowing the transport of the patient from beyond the 5-Gauss line into the bore of

the scanner [Hall and Truwit, 2008, Winston et al., 2014]. According to [Hall and Truwit, 2008],

the 5-Gauss line requirement can potentially be relaxed, as they reported that advances in MR-

compatibility of instrumentation and equipment enabled them to perform minimally-invasive and

open cranial procedures in the immediate vicinity of the bore of a 3T scanner. An alternative de-

sign of the operating room, which is implemented for instance in the new Advanced Multimodality

Image Guided Operating suite at the Brigham and Women’s Hospital [Jolesz, 2011], involves an

iMRI scanner suspended on a rail that can be moved over the patient for scanning and also out

of the theatre when not needed, which increases the utilisation of the scanner. The duration of

patient transport and of iMRI scanning have to be considered when planning the surgery. As

mentioned in Section 1.2, a combined structural and diffusion scanning protocol can take almost

an hour (including patient transport). However, this disadvantage has to be weighted against the

strong benefits of iMRI imaging.

Interventional MRI is regarded as the gold-standard for visualising and quantifying brain shift.

[Nimsky et al., 2000] performed the first large-scale iMRI study using a 0.2T open-bore scanner

(n = 64; 32 were gliomas), which revealed cortical shifts of up to 24 mm and shifts of deep

tumour margins in excess of 3 mm for 66% of cases. The complex nature of brain shift-induced

deformations became clear. This was corroborated by [Nabavi et al., 2001] who performed serial

scanning (n = 25, 4 or more time-points per case) at 0.5T and noticed complex motion. A follow-

up study [Nimsky et al., 2001] demostrated the benefit of iMRI for resection control. Considerable
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brain shift was observed in deep brain stimulation (DBS) electrode implantations through frontal

burr holes by [Ivan et al., 2014] at 1.5T (n = 44) who reported shifts of 0.0–10.1 mm for landmarks

throughout the brain and shifts in excess of 2 mm in deep brain structures for 9% of cases.

In addition to iMRI, several sparse imaging modalities have emerged in the context of neu-

rosurgery, namely intraoperative ultrasound (iUS), stereovision (iSV) and laser range scanning

(iLRS). These modalities are minimally distruptive to the surgical procedure. 3D iUS imaging

using a probe touching the exposed brain surface provides imaging of structures below the sur-

face such as ventricles [Comeau et al., 2000] and tumour margins [Unsgaard et al., 2005]. iUS in

the Doppler mode was used to image vasculature which can be used opposite to MRI angiog-

raphy [Reinertsen et al., 2007]. While iUS image quality is poor, suffers from heavy artefacts

and the origin of contrast is different from MRI, [Wein et al., 2013] and [Rivaz et al., 2015] aimed

to locally match intensities of iUS and structural MRI volumes with reasonable results. iSV is

based on reconstruction of brain surface using a pair of calibrated cameras [Škrinjar et al., 2002,

Sun et al., 2005, Paul et al., 2009, Ji et al., 2014] and is ideal for workflow integration with the

surgical microscope. iLRS [Miga et al., 2003, Ding et al., 2011, Miga et al., 2016] probes acquire

intensity-encoded point clouds of the exposed surface. Surface-based methods require registration

with brain surface from preoperative imaging [Miga et al., 2003, Sun et al., 2005]. Some authors re-

lied on tracking surface features in video to maintain accuracy [Paul et al., 2009, Ding et al., 2011].

Recently, [Ji et al., 2014] presented a method for reconstruction of surface using microscope even

after its focus has been readjusted. Since iSV and LRS provide only cortical surface, they are

mostly used to constrain biomechanical models which require fewer and less dispersed data-points

than volumetric 3D registration.

2.2 Biomechanical Modelling Based Brain Shift Estimation

Biomechanical models attempt to physically model the brain. The preoperative image is meshed

into tetragonal finite elements and physical modelling is performed with each element treated

as interacting with its neigbouring elements. The models are run in iterative fashion until an

equilibrium condition is met. Intraoperative imaging is used to provide boundary conditions or
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otherwise inform the behaviour of the model.

Basic models treat the tissues in the brain as elastic material [Ferrant et al., 2001,

Škrinjar et al., 2002] that follows Hooke’s laws. [Paulsen et al., 1999] presented a biphasic model

in which each element contains an elastic phase, which represents the solid/cellular tissue that

can deform instantaneously, and a viscous fluid phase, which represents a transient flow of the

extracellular CSF based on pressure gradient. This original model was extended to account for

gravity sag and resection and retraction. Follow-up work introduced increasingly complex models

that included the effect of gravity sag, resection and retraction, the brain swelling effects of edema,

influence of mannitol that is often administered to manage swelling.

An important part of the model is how the sparse intraoperative data is introduced. For

instance, [Ferrant et al., 2001] and [Škrinjar et al., 2002] introduce the brain surface as a given

boundary condition, which has the disadvantage that an inaccurately extracted surface may confuse

the model. [Lunn et al., 2005, Ji et al., 2009] attempted to allow for inaccurate data by using re-

laxed models that better match sparse data. For similar purposes, [Dumpuri et al., 2007] presented

a method that pre-computes an atlas of brain deformations for a set of common parameters (head

angle, degree of CSF evacuation) and then attempts to estimate a deformation that best fits the

observed data points. An advanced degree of integration with sparse modalities has been achieved.

[Ji et al., 2009] used sparse iUS data, [Ji et al., 2014] used iSV data and [Miga et al., 2016] used

iLRS data to constrain their models. These models have been able to provide estimates within the

time-constraints of brain shift.

Clearly, biomechanical modelling offers compelling methods for brain shift estimation. However,

these models suffer from the reliance on many steps and parameters which may potentially not be

accurate but which influence each other. For instance, any tissue segmentation in the presence of

pathology or brain surface extraction steps have limited accuracy; the mechanical parameters of

tissue, CSF, tumour mass and edema are only known approximately; the motion is constrained by

the falx cerebri and the tentorium cerebelli, which require more complex models; amount of CSF

drainage and/or ventricular collapse are highly unpredictable; the extent of edema or response to

administred mannitol may be difficult to predict. Thus, while modelling using complex models

is certainly valuable and accurate in a range of situations, there are clearly many unknown and
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coupled parameters.

In the next section, I will explore the technique of non-rigid registration in general and in

particular its use for estimating brain shift. This methodology is suitable for situations when

there is a good coverage of data to drive the process, which is primarily the case for iMRI and,

to a lesser extent, for iUS. Potentially in such circumstances, running a simpler method which

is nevertheless regularised in a principled manner can produce results that are more robust to

unpredictable physical behaviour. However, I envisage that in the future there will be more fusion

between biomechanical modelling and non-rigid registration based-methods.

2.3 Registration Based Brain Shift Estimation

In registration, a geometric transformation is sought from the space of a floating image into the

space of a reference image such that the transformation takes into account the physical correspon-

dences between the image pair: a geometric transformation is sought such that the locations in

the floating image that are in physical correspondence (also, are homologous) with locations in the

reference image are moved until they become aligned with the locations in the reference image.

The result of the registration is the geometrically transformed (also, warped) floating image, or al-

ternatively, the found geometric transformation. Image registration is a very active research topic

in the medical image analysis community. A comprehensive recent review of the topic is given

in [Sotiras et al., 2013]. In the following, I present a limited review aimed at registration-based

brain shift estimation.

In the context of neurosurgery, one has the preoperative (further, preop.) and the intraoperative

(further, intraop.) MRI volumes of the same patient. The choice of reference and floating image

is ambiguous as illustrated in Fig. 2.1: both preop. volume and intraop. volume can in theory

be chosen as the registration reference while the other volume is warped into alignment with the

reference. However, a choice of the intraop. image as the reference has the advantage that it

maps every voxel of the brain in the preop. image to a location in the intraop. image that can be

either inside the brain or inside the resected area. This allows for the portion of the brain to be

delineated in the preop. image which is resected in the intraop. image. Consider, for instance,
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(a) (b) (c)

(d) (e) (f)

Fig. 2.1: Registration for an ATLR dataset. The input volumes are: (a) the preoperative T1w
with the head in the standard orientation and (f) the intraoperative T1w volume with the head in
the intraoperative position. The results are: (b) preop. registered to intraop. affinely i.e. using
a global transformation, (c) preop. registered to intraop. non-rigidly, (d) intraop. registered to
preop. non-rigidly, (e) intraop. registered to preop. affinely. Note: all images are 2D slices through
3D volumes.

the correspondence between the points marked by the crosshairs in the image pair in Fig. 2.1(c,f)

and the fact that the locations in the warped preop. image (c) that are aligned with the resection

cavity in the intraop. image (f) represent the portion of the temporal lobe that has been resected

during the surgery.

The utilised geometric transformation establishes a mapping from the reference to the floating

image space. Let R be the reference image R : ΩR → RM where the discrete domain ΩR ⊂ R3

consists of a uniformly-spaced grid of points and where M is the number of image channels.

Similarly, let F : ΩF → RM be the floating image. The discrete nature of ΩR and ΩF implies that

one can regard either image as a discrete sampling of an underlying intensity function defined on

a continuous space R3, whereby the intensity of a voxel is the intensity at the voxel centre. The

goal of registration is to find a mapping t : ΩF → R3 that ensures that for every image grid point

in the discrete domain ΩF , its corresponding location in the reference image is found. The range
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R3 of the mapping t is not restricted to grid points ΩR but also includes the space between the

grid points in order to enable the estimation of sub-voxel motion.

Once the transformation is found, it remains to find the intensities of the warped floating image

sampled at the discrete grid points ΩR of the reference image (also, to resample the floating image

into the reference image grid); in the case of a multi-channel floating image (M > 1) the resampling

step is performed for each channel individually as the channels are in implicit alignment with each

other. However, the resampling step is not straightforward to perform using the transformation

t because of the aforementioned permitted sub-pixel motion. Namely, t does not map to points

restricted to be on the image grid ~x ∈ ΩR of the reference image but to locations that are potentially

between the grid points. Therefore, there is a need to invert the transformation t, which cannot

in general be done in an unambiguous way. On the other hand, if the registration problem is

formulated as seeking the backward transformation T : ΩR → R3, then for every grid location

~x ∈ ΩR in the reference image, a general location T (~x) is naturally assigned in the geometric space

of the floating image. Subsequently, the intensity of the warped point is found by interpolating

the intensities of the floating image grid points that neighbour the mapped point T (~x). In the

following, the latter formulation using the backward mapping T will be used to remain consistent

with a widespread convention in the registration literature.

The transformation T models possible ways of aligning images. The simple models are global,

such as rigid transformation, illustrated in Fig. 2.3, which models translation and rotation of the

floating image. Another global model is the affine transformation, illustrated in Fig. 2.4, which

models translation, rotation, scaling and shearing. Global transformations can model alignment

between rigid objects (e.g. the skull, ribs) and/or are useful for initialisation: e.g. brain shift is

relatively mild away from the resection as illustrated in Fig. 2.1(b,e). As mentioned in Section 1.2,

a limitation of IGNS systems is that they only perform affine registration. However, soft tissue

deformations e.g. brain shift in the vicinity of resection, can clearly only be modeled as local

non-linear transformations or non-rigid deformation, as illustrated in Fig. 2.5 and Fig. 2.1(c,d).

Models for representing transformations are reviewed in Section 2.3.1 and all involve a vector of

parameters, its length determining the degree of freedom (DOF).

Correspondences and/or similarity between the reference and floating image can only be iden-
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Fig. 2.2: For the convenience of a simpler resampling of the warped floating image, the registration
problem can be posed so that the backward transformation T is sought which maps each reference
image voxel grid point ~x to a location T (~x) in the geometric space of the floating image that is
allowed to lie between the grid points of the floating image. The sought intensity of the point in
the warped floating image can be found by interpolating the intensities of the floating image grid
points that neighbour T (~x). (Image courtesy of Dr Marc Modat.)

tified in areas with relatively clear and unique (also, salient) features e.g. the cortical folds in

Fig. 2.1(a,f). Conversely, in homogeneous areas such as the white matter in structural images,

the correspondences are not identifiable or are ambiguous in terms of location. This implies that

multiple transformations satisfy the correspondence criterion, which makes registration an ill-posed

problem.

Registration can be posed as an optimisation problem in which the aim is to find a geometric

transformation that is optimum in the sense that it achieves the best similarity between the ref-

erence and the transformed floating image while being in some way biologically plausible. There

are broadly two algorithmic approaches to this optimisation problem described in the registration

literature [Sotiras et al., 2013]. In feature-based registration, the registration begins with the de-

tection of highly salient areas (features) in either image; these sparse features inform subsequent

steps. In intensity-based registration, all locations in either image are considered as relevant or

“feature-rich” in principle and it is considered necessary to evaluate the similarity between both

images in such a way that takes into account all the image voxels. Thus intensity-registration reg-
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Fig. 2.3: Rigid transformations of a cube involve translations and rotations. (Image courtesy of
Dr Marc Modat.)

Fig. 2.4: Affine transformations of a cube involve translations, rotations, scaling and shearing.
(Image courtesy of Dr Marc Modat.)

istration scheme address the optimisation problem by combining the following components: Hence

every intensity-based registration scheme consists of:

• The geometric transformation as outlined above.

• The similarity measure that reveals the degree of similarity between the reference and the

transformed floating image. Every point in either image is assumed to be equally relevant.

• The regularisation of the transformation that ensures that the transformation behaves in

a biologically plausible manner.

Due to the volume of the literature devoted to image registration, I only review intensity-based

registration methods and omit their qualification as such for brevity.

Formally, registration can formulated as an optimisation problem whereby a transformation is
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Fig. 2.5: Two examples of non-rigid transformation of a cube using distinct deformations. (Image
courtesy of Dr Marc Modat.)

sought T̂ that maximises a functional composed of two energies (costs),

T̂ = argmax
T

λS · ES(R,F (T ))− λR · ER(T ), (2.1)

where ES(R,F (T )) is the similarity measure energy, ER(T ) is the regularisation energy and λS

and λR are the respective weights of these terms. The transformation T is in practice represented

using a vector of parameters.

The optimisation of Eq. 2.1 is typically performed using gradient-based continuous optimi-

sation. This is possible if the gradient of the terms ES(R,F (T )) and ER(T ) with respect to

the transformation parameters can either be derived analytically or is available in approximate

form using finite derivatives. Non-linear optimisation methods such as gradient ascent, Newton’s

method or conjugate gradient are applicable. The are two major disadvantages of continuous

optimisation: firstly, deriving the analytical gradient of the similarity term ES(R,F (T )) can be

challenging for more complex similarity measures, and secondly, non-linear optimisation search can

only find a local optimum and relies on a good initialisation. In the case of non-rigid registration

such initialisation can come from affine registration or from feature-based registration. The lat-

ter is a conceptually different approach to registration compared to the general approach which

relies on matching potentially quite distant and typically sparse features (highly salient regions)

and subsequently interpolating or approximating the deformation field; an overview is included

in [Sotiras et al., 2013].

An alternative approach to solving the non-linear optimisation problem is to employ discrete

optimisation, in which the parameters that specify the geometric transformation are quantised
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and thereby rendered discrete-valued. The use of this approach was first proposed in the context

of non-rigid registration by [Glocker et al., 2008a] and it relies on methods such as Markov Ran-

dom Field (MRF) optimisation [Glocker et al., 2008a, Heinrich et al., 2013]. The gradient of the

similarity measure is not required, which enables the use of a wider range of similarity measures.

Discrete registration in theory aims to find the global optimum but even for a moderate number of

parameters (in the hundreds or thousands), an exact solution is intractable due to combinatorial

explosion. Thus authors used various heuristics; this is outlined at greater length in Section 2.4.2.

2.3.1 Geometric Transformations

Global (rigid and affine) registration was introduced above. [Ourselin et al., 2000] performed rigid

registration by calculating a local displacement map using block-matching. First an exhaustive

search is performed at every relevant reference image position for the displacement, out of an

allowed set, with the best similarity between the block pair. Then the translation and rota-

tion parameters are estimated from the displacement map. While [Ourselin et al., 2000] used this

scheme to register histological sections, it generalises trivially to 3D and affine transformation.

[Modat et al., 2014] presented a symmetrical extension of this scheme.

As per above, non-rigid transformation is required for brain shift estimation. The simplest

representation is the dense deformation field,

~U(~x) = ~x+ ~u(~x), (2.2)

where the term “deformation” refers to absolute coordinate mapping, the adjective “dense” (often

omitted) refers to the transformation being precisely given at every voxel (centre) location x ∈ ΩR.

Note that the transformation values ~T (~x) at locations x here arbitrarily inside the convex hull

of ΩR, i.e. evaluated in between the voxel centres, the transformation parameterised using the

dense field ~U(~x) can be interpolated similarly as the image intensities themselves. Analogously to

the deformation field, the mapping ~u : ΩR → R3 is referred to as the (dense) displacement field

as matter of convention. The dense formulation has 3 |ΩR| degrees of freedom, which leads to

increased computational complexity and potentially (in the absence of further regularisation) to
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over-fitting.

To mitigate this problem, approaches for parametrising the deformation based on a limited

number of parameters have been proposed as follows. [Ashburner et al., 1999] used a linear com-

bination of cosine basis functions of multiple frequencies; however, due to the periodic nature of

cosine, only few low-frequency basis functions can be used, which only enables coarse registration.

A widely-used and flexible approach to parametrise the deformation is the free-form deformation

(FFD), which was proposed by [Sederberg and Parry, 1986] in the field of computer graphics, was

introduced into the medical image analysis field by [Bardinet et al., 1996] who used it to model

the deformation of the heart, and was first employed for intensity-based registration in the seminal

work of [Rueckert et al., 1999]. A grid of control points {~µi,j,k} is overlaid onto ΩR. Each control

point acts as the center of a cubic B-Spline whose local influence (i.e. it being non-zero) reaches to

within two grid spacings in x, y, z directions. Each control point has a 3× 1 vector of coefficients

~µi,j,k associated with it, which determines its contribution the component fields Tx(~x), Ty(~x), Tz(~x)

of the interpolated deformation T (~x).

T (~x) = ~x+
∑
i,j,k

β3

(
x

δx
− i
)
β3

(
y

δy
− j
)
β3

(
z

δz
− k
)
~µi,j,k, (2.3)

where i, j, k are the grid indices of the control points, δx, δy, δz are the control point grid spacings

along image dimensions, and β3(ξ) is a cubic B-spline kernel with a limited support −2 ≤ ξ < 2.

Note that the B-spline coefficients of the control points are different from the displacements at the

control points, as the latter are a result of a linear combination, but an inverse relation exists. The

kernel β3(ξ) is piece-wise composed of polynomial basis functions, which are chosen so that the

kernel has continuous first and second order derivatives. A further advantage of FFD is that exact

coefficients/displacements exist for a grid with twice the resolution (half the spacing).

Both non-parametric and parametric representations of deformation result in a relatively large

number of parameters to optimise, which may lead to over-fitting and long running times. For

this reason, often a multi-resolution scheme is employed, in which a multi-resolution pyramid is

created by downsampling the original images several times; subsequently, it is possible to perform

a registration for the lowest resolution initially and use the results as initialisations for subsequent
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higher resolutions e.g. as in [Heinrich et al., 2014c]. Alternatively, for parametric representations

it is possible to use a multi-level scheme, in which registration is performed initially with the

transformation represented by a small number of parameters, e.g. with a coarse FFD grid, and

the results are used to initialise registrations performed with a higher number of parameters, e.g.

with a denser FFD grid; this approach is used e.g. in [Modat et al., 2010, Heinrich et al., 2013]

whereby in [Modat et al., 2010] the multi-level and multi-resolution are combined.

Diffeomorphic Registration

For data with no missing correspondences and no topological changes (folding) there exists a true

mapping that is bijective for which it holds that T−1(T (~x)) = ~x. Hence it is highly desirable to

constrain registration to find a mapping that is diffeomorphic, which is one that is bijective and

also smooth with a smooth inverse. This is a more representative model of the deformation and

also ensures that no folding arises in the transformation.

A useful property is that a composition of diffeomorphisms is also a diffeomorphism.

[Rueckert et al., 2006] also presented a “hard-constraint” approach, in which they ensured the

final transformation of an iterative registration scheme to be diffeomorphic, by maintaining a

composition chain of transformations known to be diffeomorphic, i.e. Tn(· · · ((T2(T1(~x))))). Each

time an iteration failed a specific diffeomorphism test, the result of the preceding iteration was

added to the chain. The relevant test had been presented for the case of cubic B-spline FFD by

[Choi and Lee, 2000] who found that, assuming a control point grid spacing δ, iff all displacements

at control point positions are below 0.4δ, the transformation is bijective and C2 continuous. How-

ever, in theory, if a diffeomorphic transformation cannot be found immediately after extending the

chain, the final transformation will not be diffeomorphic.

An elegant approach to obtain a diffeomorphism is to integrate a velocity field over continuous

time. [Beg et al., 2005] presented a method called Large Deformation Diffeomorphic Metric Map-

ping (LDDMM) in which a velocity field that is non-stationary in continuous time is optimised so

as to minimise the SSD similarity cost along with the time integral of the norm of the velocity

field. The result is a gradual morph from the floating to the reference image. The continuous time
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is represented by a large number of discrete short time steps. However, the number of parameters

to optimise is extremely large, because a dense velocity field needs to be estimated for every time

step.

[Arsigny et al., 2006] observed that integration of a velocity field that is stationary in time is

equivalent to an exponentiation operation within Lie group theory and, conversely, that a logarithm

of a diffeomorphism constructed in this manner is the original stationary velocity field. They remark

that a log-Euclidean metric can be defined for these diffeomorphisms which is the difference between

the vector field norms of the logarithms of a pair of diffeomorphism. They also present an efficient

“scaling and squaring” method for velocity field exponentiation that requires only N compositions

when using 2N discrete time steps. [Ashburner, 2007] presented a registration algorithm called

Diffeomorphic Anatomical Registration using Exponentiated Lie Algebra (DARTEL), which uses

the stationary velocity field and the scaling and squaring approach. While the optimisation of a

stationary velocity field is less flexible than that of non-stationary field, the optimisation of a single

velocity field is much faster.

Symmetric Registration

Symmetry means that the algorithm should produce the same result no matter which of the image

pair is chosen as the reference image or the floating image, respectively. This can be stated more

precisely. Let A and B be images and let TAB be the result of running a registration algorithm with

A (B) as the reference (floating) image, and let TBA be the result of running the same algorithm

with B (A) as the reference (floating) image, respectively. Then the algorithm is symmetric if

it supports diffeomorphism (i.e. TAB and TBA are both diffeomorphic) and TAB = T−1
BA for all

~x ∈ ΩA and T−1
AB = TBA for all ~y ∈ ΩB .

[Avants et al., 2008] presented a method that relies on maintaining a virtual mid-point image,

say, denoted D. Therefore mappings TAD (with associated inverse T−1
AD) and TBD (with associated

inverse T−1
BD) are optimised together; both A and B are resampled to the space of D to enable

the use of a similarity measure. This approach can be regarded as a special case of group-wise

registration, in which multiple images are collectively registered to a common virtual mid-point
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image.

2.3.2 Similarity Metrics

Global similarity measures are the most basic similarity measures and return a scalar value for a

given pair of the reference image R (or R(~x) in an expanded form) and the (resampled) warped

floating image F (T ) (or F (T (~x)) in an expanded form). The simplest similarity measure, the sum

of absolute differences (SAD), is based on the voxel-wise difference image R−F (T )) and is defined

as

SAD(R,F (T )) =
∑
~x∈ΩR

‖R(~x)− F (T (~x))‖. (2.4)

A related measure is the sum of squared differences (SSD) defined as

SSD(R,F (T )) =
∑
~x∈ΩR

(R(~x)− F (T (~x)))
2
. (2.5)

However, the assumption that an image pair must be identical to depict the same structure

is incorrect. Firstly, every image includes acquisition noise, whereby in MRI the noise is Rician,

which is often approximated by Gaussian noise. Secondly, imaging settings may vary between

acquisitions and scanners for the same modality such as different echo (TE) and relaxation time

(TR) in T1w images, different noise levels etc., which leads to changes in contrast. Thirdly, both

SSD and SAD do not have an upper bound that would be easily reproducible for various images,

which precludes a meaningful choice of relative weights of the similarity and regularisation terms

in Eq. 2.1.

The correlation coefficient (CC) is defined as

CC(R,F (T ))
2

=
〈R,F (T )〉2

〈R,R〉 · 〈F (T ), F (T )〉 ,
(2.6)

where 〈R,R〉 and 〈F (T ), F (T )〉 are the variances and 〈R,F (T )〉 = R · F (T ) − R · F (T ) is the

covariance expressed using intensity means R and F (T ), and the variances in Eq. 2.6 are defined
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analogously. CC reveals the affine correlation between the images, which makes it invariant to

intensity offset and scaling such as can be observed in images of the same structural modality but

acquired on different scanners, is well-behaved for moderate noise levels and constrained to the

interval [0, 1]. However, the affine relationship is not sufficient to capture the complex intensity

relationship of multi-modal image pairs such as T1w/T2w MRI or MRI/CT (X-ray computed

tomography) pairs.

[Viola and Wells III, 1997] and [Collignon et al., 1995, Maes et al., 1997] independently intro-

duced mutual information, which builds on the intuition that a tissue gives rise to a limited range

of intensities. Let H(r, w) be a joint histogram that is built by partitioning the allowed intensity

levels in the images R and F (T ) into discrete bins and counting the number of occurrences when

the voxel intensities at a given location jointly belong in the bins r and w in the images R and F (T ),

respectively. Since the same tissue gives rise to a limited range of intensities, for co-registered im-

ages the joint histogram tends to exhibit a reduced dispersion. Let mutual information be defined

using the Shannon-Wiener entropy [Shannon, 1948] as

I(R;F (T )) = H(R) +H(F (T ))−H(R,F (T )), (2.7)

where H(R) and H(F (T )) are marginal entropies obtained by marginalising over either

other image and H(R,F (T )) is mutual entropy based on the joint histogram: H(R,F (T )) =

−
∑
r

∑
w p(r, w) log p(r, w). The probabilities are calculated from the joint histogram as per

p(r, w) = H(r,w)∑
r,wH(r,w) . [Viola and Wells III, 1997] proposed to fill the joint histogram using a

so-called Parzen Window to account for discrete intensities typical for most acquisitions and

[Thévenaz and Unser, 2000] proposed to use a cubic B-spline kernel this purpose, whereby the

joint histogram becomes

H(r, w) =
∑
~x∈ΩR

β3(r,R(~x)) · β3(w,F (T (~x))) (2.8)

where β3(·, ·)is the cubic B-spline kernel. [Studholme et al., 1999] observed that mutual informa-

tion alone is not invariant to a partial lack of image overlap, which can arise frequently in affine

registration or when registering images with differing field-of-view: they proposed the normalised
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mutual information (NMI), which they defined as

NMI(R,F (T )) =
H(R) ·H(F (T ))

H(R,F (T ))
. (2.9)

The measures mentioned so far (global measures) assume that there exists a constant relation-

ship between tissue class and tissue intensity in the whole image, which is generally not true for

MRI datasets because of the so-called “bias field” artefact i.e. local fluctuations in the intensity

level of the same tissue across the MRI image based on the physical proximity of any given location

to the MRI receive coils. A more fundamental problem with global measures is that they are not

ideally suited for images where non-rigid deformation is highly localised, such as due to brain shift.

The contribution of a given voxel location ~x to the similarity measure is simply the pair of intensi-

ties exactly at the voxel pair at the given location, which do not fully represent the morphological

similarity of the neighbourhood centered at the considered location. By contrast, local similarity

measures capture some relationship between the voxels in the neighbourhood of a given location

in the images R and F (T ). [Cachier et al., 2003] introduced a local version of the CC, termed the

local normalised correlation coefficient (LNCC), which measures the Pearson correlation coefficient

between the voxel intensities and therefore captures an affine intensity relationship. The measure

is thus invariant to local intensity level variations such as those that arise due to the MRI bias

field artefact. The measure also captures local morphological similarity unless the local deforma-

tions are severe. Since the result of this computation is a map LNCC(~x), [Cachier et al., 2003]

simply considered its sum over the image domain to derive the gradient with respect to the dense

deformation field.

Another limitation of the above measures is that they only reveal similarity between volumes

with one intensity value (channel) per voxel. The multi-modal capability of MRI gives rise to

multi-channel data so that, for instance, the merging of a T1-weighted MRI structural scan and

an MRI scan acquired using the FLAIR pulse sequence (Section 1.1, Fig. 1.2) into a multi-channel

(4D) volume enables the appreciation of the details of the anatomy alongside the extent of the

tumour. A trivial way to employ multiple channels is to apply the similarity measure on each
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channel separately and then sum up the similarity values, which can be performed for both global

and local similarity measures. However, this simple approach has several limitations. Firstly, the

additive mixing of similarity values introduces ambiguity about the contributions of individual

channels. Secondly, the correlations that exist between different channels within the respective

images R and F (T ) are ignored, which makes it impossible to evaluate the degree of redundancy

between the channels in either image. Thirdly, the cross-correlations between the channels in R

and those channels in F (T ) that are not their direct counterparts, are also ignored.

Various authors aimed to find similarity measures that can include some of the aforementioned

information. [Daga et al., 2012] extended NMI by adding two dimensions to the joint histogram

from the second channel of the reference and the floating image; however, the joint histogram

grows prohibitively sparse for more channels. Correlation-based measures are less susceptible to

this dimensionality problem. [Wein et al., 2008, Wein et al., 2013] proposed a measure (LCLC,

linear combination of local correlation) that produces a similarity value for each voxel location

by considering patches i.e. windows surrounding the voxel in the image pair; the returned value

is the voxel-wise correlation of a single-channel patch with a least squares-fitted linear combina-

tion of the channels of a multi-channel patch. The latter paper showed that this can be useful

for registering preoperative MRI and iUS images for neurosurgery. [Heinrich et al., 2014a] used

local canonical correlation analysis (LCCA) to find an optimum mapping of floating multi-channel

patch into the space of the reference multi-channel patch space where they maximally correlate.

[Rivaz et al., 2015] presented a local weight approach to MI based on self-similarity which they

demonstrated on an MRI to iUS registration use in neurosurgery.

2.3.3 Regularisation

The final component of registration algorithms is the regularisation part whose purpose is to

constrain the resulting transformation so that it is more biologically plausible, especially in ho-

mogeneous areas. Note that regularisation naturally arises as a feature of some transforma-

tion models: for example, the FFD imposes smoothness proportional to the coarseness of the

grid [Rueckert et al., 1999] and a diffeomorphism naturally prevents folding [Beg et al., 2005].

However, virtually all registration algorithms also contain a way of imposing a further soft con-
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straint on the transformation to make it less likely that an implausible solution is found. This is

achieved by an inclusion of a regularisation term ER(T ) as in Eq. 2.1.

However, separate similarity E(R,F (T )) and regularisation ER(T ) terms do not arise in some

algorithms; I will refer to such algorithms to having an “implicit” regularisation scheme. Con-

versely, I will regard the algorithms in which ES(R,F (T )) and ER(T ) can be written as indepen-

dent terms as having an “explicit” regularisation scheme.

Implicit Regularisation

Some classical optimisation strategies that are particularly suitable for algorithms operating with

the transformation parametrised using the dense deformation field ~U(~u), rely on an intermediate

unconstrained deformation field, which can be obtained by relying solely on similarity matching, for

instance using continuous methods such as the gradient of SSD and/or related methods (e.g. the

classical “optical flow” of [Horn and Schunck, 1981]) or by evaluating a local similarity measure for

image pair shifted by a discrete set of translations (as e.g. in [Heinrich et al., 2014c]). Regardless

of the method employed to find the unconstained field, the regularisation is achieved by processing

the field. The two steps are then repeated until the processed field result does not vary anymore

significantly between iterations.

A well-known example is the demons algorithm [Thirion, 1998]. Let ~Un(~x) be the current dense

deformation estimate at the start of n-th iteration and let ~vn be the unconstrained deformation

field that has been obtained by applying a similarity measure between for the reference image and

the floating image warped using ~Un(~x). Then the regularisation of the deformation is performed

by applying an isotropic smoothing filter S (e.g. by convolution with a Gaussian kernel) on the

field to yield a “fluid-like” deformation

~Un+1(~x) = ~Un + S( ~vn), (2.10)

or alternatively, by applying the filter on the updated field to yield an “elastic-like” deformation:

~Un+1(~x) = S( ~Un + ~vn). (2.11)
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The fluid-like regularisation is more suited to large deformations while elastic-like regularisation

is more likely to enforce joint tissue movement in homogeneous tissues. The authors noted an

analogy between the smoothing filter and heat-diffusion of the unconstrained field. The algorithm

is fast and easy to implement. However, while the smoothing step is inspired by diffusion, no

real physical modeling of the deformation field takes place, which renders the working principle

relatively tenuous.

[Christensen et al., 1996] modelled the deformation field as a viscuous fluid (with specific ma-

terial/viscosity constants) that reacts to body forces generated by the image pair at the given

iteration; in this case the body forces are simply given by the gradient of the SSD. The registration

corresponds to finding the equilibrium of such a model physical system. The solution of the fluid

model for a given iteration is based on solving a PDE, which presents a significant computational

hurdle in the original work and also in later work that uses a faster Fast Fourier Transform (FFT)

based solver [Cahill et al., 2007]. The approach is sensitive to the choice of the viscosity constants

and the physical analogy remains tenous as no tissue modeling is performed.

A general limitation of the above methods is that the regularisation of the transformation

cannot be decoupled from the application of similarity measure. In particular, it is not possible to

write independent similarity and regularisation terms that could be optimised jointly and neither

can the regularisation term be extended easily.

Explicit Regularisation

I now review commonly used penalty terms: linear elastic energy, bending energy and the Jacobian

determinant. Since these are independent terms, they can also be used in tandem.

Let J(~x) denote the Jacobian matrix of T , sampled at image grid locations:

J(~x) =

[
∂ ~T (~x)

∂x

∂ ~T (~x)

∂y

∂ ~T (~x)

∂z

]
. (2.12)
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Then the linear-elastic energy is employed as a penalty e.g. in [Ashburner and Ridgway, 2013] as:

ELE =
∑
~x∈ΩR

‖J(~x) + (J(~x))T)‖2F, (2.13)

where ‖ • ‖2F is the Frobenius norm. By analogy to elastic-like demons, the linear-elastic energy

may enforce joint motion in homogeneous areas but also may hamper the estimation of large

deformations.

The bending energy as used [Rueckert et al., 1999] is motivated by the bending energy of a thin

(metal) and expresses the overall degree of deformation:

EBE =
∑
~x∈ΩR

((
∂2 ~T (~x)

∂x2

)2

+

(
∂2 ~T (~x)

∂y2

)2

+

(
∂2 ~T (~x)

∂z2

)2

+

2

[(
∂2 ~T (~x)

∂xy

)2

+

(
∂2 ~T (~x)

∂yz

)2

+

(
∂2 ~T (~x)

∂xz

)2]). (2.14)

The bending energy tends to prevent the optimisation from clearly implausible deformations. How-

ever, it does not prevent local volume expansion (compression).

[Rohlfing et al., 2003] proposed a penalty term based on the map of the determinant of the

Jacobian |J(~x)|, which describes the local volume change at ~x. A clear consequence is that this

tends to limit small volume changes in anatomically homogeneous areas where there typically is

no good reason why such changes should arise. Furthermore, since a negative value of the Jaco-

bian determinant implies volume loss, [Rueckert et al., 2006] also propose to use a log-transformed

Jacobian determinant term as a soft-constraint to prevent folding.

2.4 Advanced Registration Algorithms

In this section I review more advanced techniques with focus on brain shift estimation using

registration and related work.
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2.4.1 Modelling Missing Correspondences

As outlined in Section 1.3 and illustrated in Fig. 1.5, the resection gives rise to missing corre-

spondences due to resected tissue in the intraoperative image. Clearly the registration can be

improved by modelling the extent of the resected tissue. On the other hand, the problems of brain

deformation estimation and of detecting missing correspondences are coupled as either problem

complicates the solution of the other.

One approach is to use a pre-segmented binary inclusion mask on the reference image

and to ensure that only voxels from the mask influence the similarity measure. For instance

[Brett et al., 2001] masked out focal lesions in this manner. More recently, [Daga et al., 2012]

included the brain and excluded the resected area/cavity in iMRI structural scan in this way.

However, for the pre/intraoperative MRI/iMRI volume pair, binary masking has two limitations.

Firstly, an accurate pre-segmentation of the brain in iMRI that excludes the resection is compli-

cated by the presence of the saline solution and surgical gauze in the cavity (Fig. 1.4). Secondly,

the knowledge of the extent of the missing correspondence in the preoperative time-step does not

follow from knowing the extent of the resection in the intraoperative time-step.

A simple approach was presented in [Ou et al., 2011] who observed that some local areas exhibit

high mutual saliency between the reference and floating image, while by contrast, areas with

homogeneous features or missing correspondences have low mutual saliency. Here, the mutual

saliency can be thought of as a location-specific value that determines how much the value of a

chosen local similarity measure depends on whether the reference and the floating image are exactly

aligned as opposed to when the floating image is artifically slightly displaced. More specifically,

an overall ratio is calculated between a set of smaller and a set of larger considered displacements.

A high ratio at a given location implies a greater local sensitivity to artificial displacements, and

vice-versa. Such mutual saliency values can also be used to weight the influence of voxels when

aggregating local similarity measure values into a single global value. The authors used such

a weighting in a registration scheme and reported improved registration accuracy near missing

correspondence regions. However, the approach cannot distinguish between homogeneous and

missing correspondence areas.
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A more principled approach is to model the missing correspondences explicitly. In machine

vision the analogical problem of optical flow estimation in the presence of occlusions has attracted

attention. [Alvarez et al., 2007] proposed a symmetrical estimation scheme that can accomodate

occlusions and discontinuities. Following from this work, [Risholm et al., 2009] proposed a sym-

metrical demons scheme that aims to account for resection (i.e. occlusions) and retraction (i.e. dis-

continuities). They detect resection by evolving a level set driven by image intensity and gradient

and detect retraction by thresholding the strain/stress in the last deformation estimate. They next

use an anisotropic diffusion step for the demons update whereby the diffusion is restricted pointing

outward from the detected resected area and also across the detected retraction boundary. The

paper thus treats multiple phenomena inherent in brain shift. The authors test the method on

a synthetic dataset with an inserted resection cavity and a retraction channel, and on a clinical

iMRI dataset, in both cases with a visually convincing result. This work has several limitations.

Firstly, the authors report the detection methods as sensitive to a choice of parameters. Secondly,

the anisotropic diffusion step is reported as very slow and the demons scheme is not extensible

(Section 2.3.3). Thirdly, while the level set successfully enforced the spatial consistency of the

correspondence labelling, it is dependent on the evolution of the level set and so may potentially

not behave robustly for complicated iMRI cases; a similar argument applies to a recent work on

MRI/iMRI registration [Chen et al., 2015] that also relies on evolving a level set for the same

purpose.

Perhaps the most flexible and principled treatment of the joint problem is afforded by proba-

bilistic inference models. [Periaswamy and Farid, 2006] presented an algorithm that classifies each

voxel of the reference image into having a valid/missing correspondence in the floating image, and

calculates the similarity measure as the joint log-likelihood of all the voxel pairs, whereby for a

valid correspondence voxel pair the error between intensities is assumed to follow a Gaussian dis-

tribution, while for a missing correspondence voxel pair the error is assumed to follow a uniform

distribution (as an outlier). The authors assume the correspondence labels to be independent.

The authors make use of the Expectation Maximisation (EM) algorithm [Dempster et al., 1977] to

alternately estimate the labels and the deformation. This work is limited by the use of a poly-affine

transformation model, the SSD as the similarity measure, and the fact that no priors are imposed



CHAPTER 2. REVIEW OF IMAGE GUIDED NEUROSURGERY 39

directly on the correspondence labelling.

The latter problem is best solved by using a full maximum a posteriori (MAP) frame-

work in which both the deformation and the labelling parameters are modeled probabilistically.

Chitphakdithai et al. studied the joint correspondence segmentation and registration problem

for pre- and post-resection MRI datasets using the EM algorithm: they imposed an inten-

sity prior [Chitphakdithai and Duncan, 2010] and later a location prior and an MRF-based spa-

tial consistency regularisation of the segmentation [Chitphakdithai et al., 2011]. More recently,

[Parisot et al., 2012] presented a similar joint scheme for the problem of glioma segmentation in

the presence of heavy mass effect, which builds on the discrete framework of [Glocker et al., 2008a]

(Section 2.3.1); the discrete formulation arguably makes it easier to model the joint registration and

segmentation problem, as the latter is discrete in nature. Recent work on the analogous problem

of joint occlusion detection and optical flow estimation is outlined in [Fortun et al., 2015].

2.4.2 Fulfilling Time Constraints of Neurosurgery

As explained in Section 1.3, the transport of the patient from the iMRI scanner to the surgical

table takes 7–15 minutes after the conclusion of the intraoperative scanning. This imposes a limit

on the running time for the image registration, which should ideally finish within several minutes.

One way to achieve a speed-up is to take advantage of GPU-based acceleration if particular

steps of a registration scheme lend themselves to parallelisation. An example of a parallelisable al-

gorithm is the popular FFD parametrisation of the non-rigid transformation (Section 2.3.1). FFD

itself provides a considerable optimisation by limiting the number of parameters that need to be

optimised. However, the calculation of the FFD interpolation can become a time bottleneck, which

can become especially problematic if the interpolation step is used as part of a non-linear optimi-

sation scheme in which each iteration involves an FFD interpolation. This problem was resolved

by [Modat et al., 2010] who implemented the FFD interpolation using the CUDA R© programming

interface to the GPU cards made by Nvidia (Santa Clara, Calif.) [Sanders and Kandrot, 2010].

They also parallelised the NMI similarity measure (Section 2.3.2) in the same fashion and intro-

duced some additional optimisations unrelated to parallelisation. The resulting registration scheme
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could execute within a few minutes for a pair of 3D volumes with 1 mm voxel resolution. In a sub-

sequent work, [Daga et al., 2012] extended this scheme with a two-channel extension of the NMI

similarity measure (Section 2.3.2), for which they also employed CUDA acceleration. They applied

the modified scheme to estimate brain shift from MRI/iMRI image pairs and confirmed that the

running time satisfied the time constraints of neurosurgery. This paved the way to the deployment

of the scheme within an experimental clinical pipeline [Winston et al., 2014]. The clinical value of

this pipeline was already outlined in Section 1.4.

Recently, discrete registration has attracted attention due to lack of need for the gradient of the

similarity measure, and the fact that it aims to find a global optimum. Due to these advantages,

I apply discrete registration to brain shift estimation later in Chapter 4. An exact solution is not

tractable due to a combinatorial explosion and various heuristics are employed in the literature

to circumvent this problem. [Glocker et al., 2008a] limited the set of displacement labels that

were allowed at MRF nodes to those along the normal axes. [Heinrich et al., 2013] used a full 3D

displacement label set at MRF nodes, but limited optimised MRF edges to a minimum spanning

tree (MST), which enabled a running time of several minutes. Both [Glocker et al., 2008a] and

[Heinrich et al., 2013] used a grid of MRF nodes and interpolated the dense deformation using

FFD, in order to achieve speed-up. Recently, [Heinrich et al., 2016] used supervoxels as MST

nodes, and their algorithm also has a running time of several minutes.

2.4.3 Incorporating Registration Uncertainty

The majority of registration algorithms yield a point estimate of the deformation parameters i.e.

the optimum deformation as per Eq. 2.1. However, the ill-posed nature of registration implies

inherent uncertainty in the estimated deformation as multiple solutions may exist that are close in

terms of total energy, as the similarity measure varies mildly in homogeneous areas and may have

low specificity for complex/noisy data, and the regularisation energy of the transformation may

vary mildly for possible parameter values near the resection margin. This uncertainty is clearly

relevant to surgical guidance.

One approach to uncertainty estimation requires the registration problem to be reformu-
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lated in the Bayesian probabilistic modelling and inference framework, which is a general-

isation of the MAP framework outlined in Section 2.4.1 [Chitphakdithai and Duncan, 2010,

Chitphakdithai et al., 2011], and Markov Chain Monte Carlo (MCMC) sampling from the joint

posterior distribution of the transformation parameters. In this vein, [Risholm et al., 2013] pre-

sented a registration scheme with an SSD-based Boltzmann distribution likelihood term and a

Boltzmann distribution prior on the elasticity parameters of a finite element (FE) elastic biome-

chanical model. They applied this method on neurosurgical MRI/iMRI structural scans and found

that the posterior distribution of deformation was multi-modal (i.e. had multiple local optima) in

the vicinity of the resection cavity. A key limitation of the sampling approach is an extremely long

running time, on the order of days, required to cover the high-dimensional parameter space, which

is exacerbated by the fact that individual sample draws involve long Markov chains.

A considerably faster approach also based on the Bayesian formulation of the problem is ap-

proximate inference, where the true (unknown) joint distribution is approximated by a simpler

analytical distribution. For instance, [Simpson et al., 2012] applied Variational Bayes to continu-

ous non-rigid registration, whereby they approximated the distribution of FFD coefficients by the

multivariate Gaussian distribution and minimised an information-theoretic that decreases along

with an improving approximation. The limitation of this approach is that it does not easily allow

for modelling multi-modal distributions.

In discrete registration, where transformation parameters are optimised using an MRF, ap-

proximate marginal distributions of the parameters can be obtained. The marginal distributions

effectively denote the uncertainty in the assignment of particular labels (3D displacement) to in-

dividual MRF nodes. For instance, [Glocker et al., 2008b] estimated the uncertainty of discrete

displacement labelling for each FFD control point by evaluating so-called min-marginal energies,

from which approximate marginal distributions can be derived within only several multiples of

the running time that is needed to find just the global optimum [Kohli and Torr, 2008]. Similarly,

[Heinrich et al., 2016] used approximate marginal distributions for a discrete registration scheme

defined on an MRF with edges limited to a spanning tree (Section 2.4.2), for which approximate

marginal distributions could be obtained with favourable approximation bounds; they generated

many instances of perturbed spanning trees in order not to bias the uncertainty estimates toward
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a single spanning tree and, finally, fused the uncertainty estimates to obtain marginal distributions

for a dense deformation field.

2.4.4 Evaluating Estimated Brain Shift

The evaluation of estimated brain shift is a challenging task as outlined below.

An incomplete approach to validate registration accuracy is to annotate point anatomical land-

marks in the structural pre/intraoperative image pair and to compare the target registration error

(TRE) for the affinely and non-rigidly registered datasets [Shamir et al., 2009]. However, it

should be noted that it is not straightforward to annotate point landmarks. First, the number

of landmarks that can be reliably identified in the image pair is limited. Secondly, it may be

challenging to identify the movement of landmarks in the presence of complex deformations as

medical image viewing tools are based on the three anatomical planes (coronal, sagittal, axial) but

the deformations due to brain shift are not restricted along these planes (out-of-plane deforma-

tions) [Nimsky et al., 2000, Nabavi et al., 2001]. Despite these limitations, manual annotation is a

valuable validation method. A good example of an open dataset for evaluating brain shift estima-

tion algorithms that includes manual annotations was provided by [Mercier et al., 2012] although

the annotations were made for iUS volumes only.

To offer a reliable landmark-based means of validating brain deformations,

[Chen et al., 2012] presented a physical phantom based on polyvinyl alcohol cryogel, which

is cast from a mold based on a standard brain atlas and contains two baloons that can be filled

with water using a catheter and emptied to simulate brain deformation loosely akin to brain shift,

while ball-shaped MRI/US-contrast landmarks are inserted in the cortical part of the phantom;

the authors released T1w and T2w MRI and US volumes for the phantom that are usable to

validate registration assuming the inserted landmarks are inpainted to prevent introducing bias.

The disadvantage of this dataset is that the cortical model does not contain a white/gray matter

separation.
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2.5 Summary

In this chapter, I reviewed the literature on image guided neurosurgery, namely the relevant inter-

ventional modalities including iMRI as well as brain shift estimation techniques based on biome-

chanical modelling and image registration methods. In Section 2.2, I argued that the use of

biomechanical models is complicated by the need for a highly accurate tissue segmentation and the

need to know a large number of parameters, many of which are only known with a large degree of

uncertainty. On the other hand, the iMRI data considered in this thesis are relatively high-quality

and high-resolution volumetric images with a relatively dense coverage of features such as cortical

folds and deep structures. These data are thus sufficient to drive image registration with a rela-

tively high degree of accuracy. For these reasons, in the remainder of the review, I focused on the

registration based approach to brain shift estimation; the most revelant work is listed in Table 2.1.

The registration based approach also provides the context for subsequent chapters.

In Chapter 3, I will explore the potential of DW-MRI data acquired using iMRI that are

a powerful source of data for multimodal registration [Modat et al., 2010, Daga et al., 2012]; in

particular I will build on previous work [Daga et al., 2014] and focus on the need to compensate

for distortions that arise in these data and affect the accuracy of guidance. In Chapter 4, I will

focus directly on the image registration problem, with regard to the need to account for specific

appearance differences that exist between preoperative and iMRI structural images.



Chapter 3

Field Map Simulation for

Distortion Correction

In Chapter 1 an outline was given of the utility of multi-modal iMRI imaging in the context of

brain shift estimation. Structural scans such as T1w MRI volumes can reveal anatomical changes

such as deformed cortical sulci. Other modalities can reveal tissue characteristics that are not

present in structural scans. Such characteristics can be especially useful if they are not discernible

to the surgeon by the naked eye. An important category are the nerve fibre tracts such as the optic

radiation tract (Section 1.1). DW-MRI has emerged as a modality that can reveal the locations of

nerve fibre tracts and can be acquired by high-field iMRI scanners (Section 1.2).

In DW-MRI, a series of diffusion-weighted images are acquired with pulsed diffusion-encoding

magnetic field gradients [McRobbie et al., 2017]. In each diffusion-weighted image, the MRI

signal from water molecules that diffuse along the gradient direction becomes attenuated

[Stejskal and Tanner, 1965]. A separate image is acquired with no diffusion-encoding gradient

applied in order to serve as a signal intensity reference. Subsequently, the signals acquired for

a given voxel are fitted to a voxel-based model of water diffusion. A widely used model, Diffu-

sion Tensor Imaging (DTI), assumes that the water molecules have reached a symmetric Gaussian

distribution in space after being allowed to diffuse for a short period. This model is agnostic of

45
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tissue microstructure in the voxel and can be parametrised in a simple manner by a diffusion ten-

sor [Basser et al., 1994]. More complex models aim to explicitly represent tissue microstructure

and its influence on the measured signals. For instance, fibre bundle geometry or presence of ex-

tracellular space can be factors in such models [Essayed et al., 2017]. DW-MRI data are the source

of data for probabilistic tractography techniques that aim to identify nerve fibre tracts spanning

many voxels such as the optic radiation and the corticospinal tract (Section 1.1). Tractography

based on preoperative DW-MRI imaging has emerged as a key step in neurosurgical planning

[Nimsky et al., 2005, Duncan et al., 2016, Essayed et al., 2017].

High-field (1.5T) iMRI systems opened another compelling application area for DW-

MRI [Hall and Truwit, 2008]. As I mentioned in Section 1.2, tractography from DW-MRI data

acquired using iMRI has remained elusive. However, [Daga et al., 2012] attempted to overcome

this problem by instead propagating tractography derived from preoperative DW-MRI using non-

rigid registration with iMRI images. In order to utilise DW-MRI data acquired using iMRI, they

built an intensity channel from a fractional anisotropy (FA) map, which they computed using

the DTI model. FA is a value that can be calculated for each voxel from the diffusion tensor to

provide a normalised measure of diffusion anisotropy such that zero (unity) may indicate the lack

(presence) of a crossing nerve fibre tract. The FA map was used alongside the structural scan

and provided an outline of tracts in white matter areas where the structural scan lacks features.

This demonstrates that DW-MRI data acquired on an iMRI scanner can be used to improve the

accuracy of neuronavigation.

However, a question arises regarding how favourably the DW-MRI datasets compare to struc-

tural iMRI scans in terms of localisation accuracy. An important factor is that in DW-MRI,

many diffusion-weighted images need to be acquired per dataset. For instance, the DTI model

requires at least 30 diffusion-weighted images in order for the diffusion tensor to be fitted ro-

bustly [Jones, 2004]. More complex diffusion models require further diffusion-weighting direc-

tions acquired at multiple strengths of diffusion-encoding gradients in order to fit the mod-

els [Tuch et al., 2002]. A conventional acquisition of an MRI volume (using a conventional pulse

sequence) takes up to several minutes to acquire a volume at high resolution (e.g. 1 mm isotropic

voxels). DW-MRI volumes have a lower resolution (e.g. 2.5 mm isotropic voxels) but it would
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(a) (b) (c) (d)

Fig. 3.1: Susceptibility artefact correction. (a) An intraoperative T1-weighted image which is
not itself affected by the distortion. The brain surface outlined using a surface extraction tool is
shown for reference (red outline). (b) An image from the DW-MRI dataset affected by the artefact.
Arrows point at the region of severe distortion which coincides with the resection margin. (c,d)
The same image corrected using (c) an acquired and (d) a simulated field map.

still be prohibitively slow to acquire volumes for all the diffusion directions using a conven-

tional pulse sequence. Instead, DW-MRI volumes are acquired using the echo planar imag-

ing (EPI, [Mansfield, 1977]) sequence, which is considerably faster. However, EPI suffers from

a so-called susceptibility artefact, which is described further below.

The susceptibility artefact distorts features revealed though DW-MRI imaging such as the

outlines of putative tracts in FA maps. In the case of DW-MRI imaging using iMRI, the distortion is

particularly severe near the air-tissue boundary presented by the resection cavity. Several methods

for correcting the artefact exist and are outlined below. However, the existing methods tend to

rely on data which have a reduced reliability near the resection margin, which is the same region

for which an accurate correction is sought.

In this chapter I propose an alternative method which relies on the conventional T1-weighted

structural scan and on simulating the physical phenomena that give rise to the artefact. My main

motivation is that the structural scan is routinely acquired as part of iMRI guidance at high-

resolution and does not itself suffer from the same type of imaging artefact. I perform an extensive

evaluation of the proposed method and discuss its usability within and beyond the context of

image-guidance for neurosurgery.



CHAPTER 3. FIELD MAP SIMULATION FOR DISTORTION CORRECTION 48

3.1 Introduction

The susceptibility artefact in EPI is a geometric and intensity distortion. The artefact manifests

itself in the affected areas in three ways: first, voxels get locally translated relative to where they

would be placed in a scan performed with a conventional pulse sequence; second, the signal from

several voxels may get compressed into fewer voxels (local non-linear translation); third, the signal

strength severely drops, giving rise to areas of low intensity and poor signal-to-noise ratio (SNR),

which is also referred to as signal dropout. The image areas affected by the susceptibility artefact

are located near air-tissue boundaries. In non-interventional MRI images, the affected brain areas

are adjacent to the air-gaps in the paranasal sinuses and the petrous part of the temporal bone, and

the resulting translations can be up to 1—1.5 cm for 3 T scanners [Jezzard and Balaban, 1995].

In iMRI data of open neurosurgery, an obvious and large air-tissue boundary is presented by

the resection and is implicitly located in the region where as accurate DW-MRI data as possi-

ble are desirable. To illustrate the problem, Fig. 3.1(a) shows a slice through an intraoperative

T1w scan acquired using a conventional pulse sequence and hence without the artefact, while

Fig. 3.1(b) shows a slice through one of the DW-MRI volumes of the same surgical case, in which

the susceptibility artefact is apparent and is marked with arrows.

Note that the volume used in Fig. 3.1(b) is the so-called b0 volume (further, b0-DW-MRI),

which is actually the only volume from the DW-MRI dataset for which the diffusion is not con-

strained along any physical direction; because DW-MRI is based on T2w imaging, the b0-DW-MRI

volume is simply a T2w scan acquired using EPI. Thus it is straightforward to visually compare

the b0-DW-MRI volume with the conventional T1w scan in order to appreciate the susceptibility

artefact. Note that all the volumes from the DW-MRI dataset are equally affected by the same

distortion. Therefore the results of any post-processing, such DTI fitting and/or tractography, will

be geometrically displaced. Furthermore, the signal dropout and the additive compression of the

MRI signal, both of which are irrecoverable, can complicate DW-MRI post-processing in the areas

affected by the artefact [Kim et al., 2006].
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3.1.1 The Origin of the Susceptibility Artefact

The artefact arises during EPI imaging as follows. In MRI, the spatial origin of signal along

the three imaging dimensions is always determined (or encoded) by linear gradient fields that

are sequentially superimposed onto the main field, or the B0 field, of the superconducting mag-

net [McRobbie et al., 2017]. The spatial encoding implies that for image acquisition, each of the

image dimensions has to be chosen to serve as one of the nominal “slice select”, “phase encode” (PE)

or “frequency encode” (FE) dimensions. The spatial encoding implicitly assumes that the B0 field

is spatially homogeneous throughout the imaged volume and conversely, any inhomogeneity will

necessarily result in the perceived spatial origin of the MRI signal being virtually shifted i.e. the

corresponding voxels are displaced in the image. The degree of the displacement along a given

imaging dimension is inversely proportional to the signal bandwidth in that imaging dimension. A

key disadvantage of EPI is that it has a limited bandwidth in the PE imaging dimension. In prac-

tice, this causes even small B0 field inhomogeneities on the order of several parts per million (ppm)

to cause perceptible linear displacements along the PE dimension, while shifts along the other two

nominal dimensions of the image are negligible.

Some B0 inhomogeneities arise due to design constraints on the magnet; they are reduced (or

shimmed) to several ppm by means of dedicated superconducting shim coils [Clare et al., 2006].

Further B0 inhomogeneities arise due to the perturbations of the field by non-uniform geomet-

ric distribution of magnetic susceptibility in the imaged volume. Such perturbations are largest

near air-tissue boundaries such as the paranasal sinuses and the petrous part of the temporal

bone [Jezzard and Balaban, 1995]; in the case of open neurosurgery, an obvious and large air-tissue

boundary is presented by the resection and is implicitly located in the region where as accurate

DW-MRI data as possible are desirable. The perturbation due to tissue susceptibility distribu-

tion is shimmed using another set of dedicated room-temperature shim coils whose currents are

optimised dynamically by the scanner during scanning.

However, some B0 inhomogeneities due to higher-order field perturbations due to magnetic

susceptibility cannot be shimmed. The effect of these residual inhomogeneities is what is referred

to as the susceptiblity artefact characterised above.
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(a) (b) (c)

Fig. 3.2: B0 field maps for subject #3 from the below study. (a) A raw acquired field map which
contains modulo-2π phase-wraps. (b) The acquired field map phase-unwrapped. (c) The proposed
simulated field map. An advanced view is shown in Fig. 3.7.

3.1.2 Susceptibility Artefact Correction

I introduce two methods for susceptibility artefact correction for DW-MRI and remark on scenarios

where correction is not possible due to omissions in the imaging protocol.

B0 Field Map Based Correction

One approach to correct the susceptibility artefact is to acquire a residual B0 inhomogeneity map

(“field map”), for which several minutes of additional acquisition time are required. The EPI image

can then be corrected by considering the field map as defining the linear displacement along the PE

dimension. This approach was recently used in a clinical iMRI study and facilitated a reduction

of the intraoperative susceptibility artefact [Daga et al., 2014].

The acquisition of the field map is based on the gradient-recalled echo pulse se-

quence [Jezzard and Balaban, 1995], which measures the (nuclear spin) phase evolution between a

pair of consecutive MRI signal echoes. The resulting phase-difference map (“acquired field map”)

is modulo-2π wrapped due to the unknown true number of elapsed phase revolutions. An ex-

ample phase-wrapped acquired field map is shown in Fig. 3.2(a). Techniques for the necessary

phase-unwrapping to recover the true field map include the widely used deterministic algorithm

of [Jenkinson, 2003] and a recent graphical probabilistic inference model of [Daga et al., 2014]. An

example field map phase-unwrapped using their model is shown in Fig. 3.2(b) and an example

b0-DW-MRI image undistorted using the same phase-unwrapping method is shown in Fig. 3.1(c).
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The phase-unwrapping of B0 field maps is ill-posed and challenging due to low SNR of raw field

maps as can be appreciated in Fig. 3.2(a). The noise is most problematic in areas where phase-

wraps are tightly spaced as this causes ambiguity about the true number of phase-wraps. Such

problem tends to occur in areas of highest distortion i.e. near the resection. Thus the estimated

field map may not reflect the true field in the same area which is most relevant clinically. However,

the phase-unwrapping approach could potentially benefit from a spatial prior that was based on a

physically meaningful simulation of the distribution of the magnetic field.

Registration Based Correction

Another approach to correcting the artefact is to use registration to estimate the 1D deforma-

tion constrained along the PE dimension. For instance the b0-DW-MRI volume (being a low-

resolution distorted T2w volume) can be registered to a high-resolution non-distorted structural

volume (a T1w or a T2w volume), for instance using a multi-modal similarity measure such as

NMI [Studholme et al., 1999]. All the diffusion-weighted volumes can then be corrected by ap-

plying the same 1D deformation, as they are affected by the artefact in the same way as the

b0-DW-MRI volume [Pujol et al., 2015]. This registration approach has been shown to reduce

tensor fitting errors in DW-MRI datasets [Kim et al., 2006]. However, using this relatively simple

method in an iMRI setting is not ideal as accurate registration near the resection cavity is very

challenging and likely inaccurate due to the heavy susceptibility artefact itself as can be appreciated

in Fig. 3.1(b).

A more advanced registration approach involves the acquisition of the b0-DW-MRI volume

twice using opposite direction for the PE dimension (blip-up blip-down EPI), which causes the

distortion to manifest itself in opposite directions in both volumes. The registration then aims to

jointly estimate the mid-point deformation field while explicitly compensating between the heavy

compression and the heavy expansion the two volumes [Andersson et al., 2003]. The estimated

deformation can then again be applied to the diffusion gradient volumes. This approach is appealing

as it avoids the intermediate step of field map acquisition and operates directly on the distorted

images. The time required to acquire an opposite PE direction volume for the b0-DW-MRI volume

is less than the time required for field map acquisition. However, this method has to my knowledge
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not been applied in an iMRI data setting yet and so it is not clear whether it would be sufficiently

robust to the heavy signal dropout near the resection cavity.

Registration approaches tend to find an accurate alignment between images in areas with

sufficiently dense and clear salient features to drive the registration (Section 2.3). Conversely,

in areas with homogeneous appearance (such as the white matter) or with low-quality features

(such as areas with image blurring/fading), registration results depend primarily on the employed

regularisation term(s) and the corresponding parameter settings (Section 2.3.3). However, in the

context of distortion correction, it is not immediately clear what these settings should be. For

these reasons, for instance [Daga et al., 2014] employed a phase-unwrapped field map as a prior

that informed a subsequent registration step; the inclusion of the prior was enabled by a graphical

model formalism employed by their scheme. Note that in principle any meaningful prior could be

used for this purpose.

Scenarios with Missing Data Needed for Correction

The susceptible artefact is not severe only for intraoperative iMRI data but is also significant for

non-interventional data. Despite that, the correction of the artefact has in practice been neglected

by the neuroimaging community [Glasser et al., 2013]. Thus in many DW-MRI studies the B0 field

maps were not collected alongside EPI datasets and neither has blip-up blip-down EPI acquisition

been used. A mean to crudely correct DW-MRI is to non-rigidly register the b0-DW-MRI volume(s)

to the structural scan, but this is not optimal as per Section 3.1.2. Thus it will not be possible

to retroactively correct DW-MRI data to assess reliability of results reported in previous studies

and/or to include these data in new studies alongside data for which correction is included in the

imaging protocol.

While the focus of this chapter is on DW-MRI, functional MRI (fMRI) also relies on

EPI [Hutton et al., 2002] and a similar logic applies to datasets with missing field maps. In fact

registration based correction (registration against structural MRI, blip-up blip-down EPI) may be

unfeasible for fMRI as brain activation maps lack sufficient texture, which underlines the problem

with missing field map data.
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3.1.3 Proposed Correction using Simulated Field Maps

In the previous section I outlined situations in which it would be useful to obtain a physically

reliable model of the geometric distribution of the magnetic field in the head at an intraoperative

time-step. I propose to simulate a field map from air-tissue segmentations generated using non-EPI

T1-weighted (T1w) and T2w iMRI images acquired as part of a clinical iMRI scanning protocol.

The structural scans are appealing for this purpose as they are high-resolution and are not affected

by the susceptibility artefact.

Previously, Jenkinson et al. [Jenkinson et al., 2004] developed a perturbation method to cal-

culate a B0 inhomogeneity field from air-tissue segmentation derived from computed tomography

(CT) images. Poynton et al. [Poynton et al., 2009] demonstrated that non-interventional T1w im-

ages can be segmented into air and tissue classes using a probabilistic CT atlas and reported that

a subsequent application of the method [Jenkinson et al., 2004] results in a close overall agreement

between the acquired and simulated field maps. Their results are heavily motivated by the prob-

lem of datasets with missing field maps as per Section 3.1.2 and based on the observation that the

structural scan reflects the anatomy and the position of the head in the scanner and is naturally

always included in the imaging protocol.

In the present problem with iMRI the main issue instead is that the phase-unwrapping of field

maps can potentially have low confidence near the resection cavity due to the combination of noise

and the tight packing of phase-wraps in this area. A specific problem posed by the iMRI data is

that, since a resection cavity and an air-filled craniotomy area are present in the intraoperative

image, thus a probabilistic atlas derived from non-interventional datasets is not well-suited for the

air-tissue segmentation.

I propose to instead inform the air-tissue segmentation using priors derived from a synthetic

CT image, which I propose to be computed from the preoperative T1w image based on a database

of MRI/CT pair templates. I also propose to subsequently feed the air-tissue segmentation into the

simulation step due to [Jenkinson et al., 2004]. To illustrate this approach, an example simulated

field map is shown alongside the acquired one in Fig. 3.1(c). The correction that can be obtained

using the proposed simulated field map approach is illustrated in Fig. 3.1(d).



CHAPTER 3. FIELD MAP SIMULATION FOR DISTORTION CORRECTION 54

I evaluate the proposed field map simulation method by comparison with field maps acquired

during iMRI guided ATLR neurosurgery for 12 cases and show that the proposed method generates

field maps in close agreement with the acquired field maps; this result was already presented

in [Kochan et al., 2014]. I further interpret the differences between the acquired and simulated field

maps based on a quantitative evaluation of the effects of susceptibility correction using manually

annotated anatomical landmarks and tensor fit error maps; this result was already published

in [Kochan et al., 2015].

3.2 Methods

The methods are described as follows. Section 3.2.1 introduces the method used to correct EPI

images based on field maps and Section 3.2.4 outlines the preprocessing step used for raw acquired

field maps in order to enable the comparison of acquired and simulated field maps. Section 3.2.2

describes an air-tissue segmentation scheme used to bootstrap a field map simulation outlined in

Section 3.2.3. An overview of the processing pipeline, needed to correct a DW-MRI image based

on either an acquired or a simulated field map, is shown in Fig. 3.3.

3.2.1 Field Map in Terms of Voxel Displacement

Let the magnetic field at point ~x be B0 + ∆B0(~x) [T] where B0 is the homogeneous field and

∆B0(~x) is the inhomogeneity field map, which can be equivalently expressed as γ∆B0(~x) [rad/s] or

γ∆B0(~x)
2π [Hz]. For the purposes of image correction, one is interested in the millimeter displacement

along the PE direction that the inhomogeneity causes to an EPI image. The displacement can

be calculated based on theory in [Jezzard and Balaban, 1995, Hutton et al., 2002]. Consider the

acquisition of a single EPI slice with matrix size N×N and voxel dimensions rFE in the FE direction

and rPE in the PE direction, respectively. The EPI slice is reconstructed by the inverse Fourier

transform of the MR signal. In the PE direction, the MR signal sampling rate is N
TRO

[Hz], where

TRO is the readout time. The image bandwidth in the PE direction is N
NTRO

= 1
TRO

[Hz/pixel]

or TRO [pixel/Hz]. Since the PE gradient is used to encode position along the PE direction, the
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Fig. 3.3: The processing pipeline for correcting the susceptibility artefact in a DW-MRI image.
The dashed lines represent the step into which either a phase-unwrapped acquired field map or a
simulated field map can be fed. The entry points of the simulation are non-distorted preoperative
T1w and intraoperative T1w and T2w images.

above offset corresponds to a distortion along the PE direction of size

dPE(~x) =
γ∆B0(~x)

2π
TROrPE (3.1)

in millimeters. The magnetic field ∆B0(~x) is either found by simulation or, in case of the acquired

field map, can be derived from the phase evolution ∆φ(~x) [rad] of phase during the echo time

difference TED:

∆B0(~x) =
∆φ(~x)

γTED
(3.2)

A scalar displacement map was calculated using Equation 3.1 and was converted into a dense dis-

placement field along the PE direction [Daga et al., 2014]. Identical displacement was applied to all

the EPI images in each DW-MRI dataset by resampling the images with cubic spline interpolation

using the resampling utility from the NiftyReg package [Modat et al., 2010].
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(a) (b) (c) (d)

Fig. 3.4: Air-tissue segmentation. (a) Intraoperative T1w+T2w sum image. The section runs
through a plane close to the anatomical coronal plane with the head at an angle due to intraop-
erative orientation. (b) An accompanying pseudo-CT (range -1000–1000 HU). (c) The result of
the proposed segmentation within the intraoperative FOV (red for air, green for soft-tissue, blue
for bone). (d) The final air-tissue segmentation (black for air, white for tissue). The appended
inferior volume outside of the intraoperative FOV is an approximate air-tissue segmentation based
on preoperative T1w MRI.

3.2.2 Air-Tissue Segmentation

The magnetic susceptibility values for soft-tissue (≈ −9.1× 10−6) and bone (≈ −11.4× 10−6) are

similar, but both are significantly different from that of air (≈ 0.4× 10−6) [Poynton et al., 2009].

Therefore, a binary labeling of the head was needed, into tissue (which combines soft tissue and

bone) and air.

For each subject, a segmentation was performed on the sum (T1w+T2w) of the intraoperative

T1-weighted (T1w) and T2-weighted (T2w) MRI images, which were already co-registered, as the

head was fixed during acquisitions. In T1w images, soft tissue with low free water content (e.g. the

brain, muscles, fat) appears bright, while in T2w images, the voxels with high free water content

(such as CSF and the eyes) appear bright. Therefore, an accurate delineation of the soft-tissues

can be obtained by summing the T1w and T2w MRI images. However, since bone and air have

similar low intensities in both T1w and T2w images, they are indistinguishable based on intensity

alone. In order to distinguish between air and bone, a spatial prior probability map (spatial prior)

was used for each class, which enabled the segmentation of the T1w+T2w image into three partial

volume classes (air, soft-tissue and bone).
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Air and bone have distinct attenuation properties, which makes CT images a good candidate

for the spatial priors, as their intensities expressed in Hounsfield units (HU), are a linear transfor-

mation of the linear attenuation coefficients. However, CT images were not part of the preoperative

planning imaging protocol. The attenuation information was derived from a pseudo-CT, synthe-

sised from a preoperative T1w image, as shown in Fig. 3.4(b).

CT Synthesis

The CT synthesis method, developed by Burgos et al. [Burgos et al., 2013, Burgos et al., 2014]

relies on a pre-acquired set of aligned T1w MRI/CT image pairs from multiple subjects forming

an MRI-CT database. Two gender-specific databases were used, both comprising 35 subjects part

of an epilepsy study. To generate the CT from the preoperative T1w MRI image, each MRI

image from the database was non-rigidly registered to the preoperative T1w MRI image. The CT

images were then mapped using the same transformation to the preoperative T1w MRI image.

A local image similarity measure between the preoperative T1w MRI and the set of registered

MRIs from the database was used as a surrogate of the underlying morphological similarity, under

the assumption that if two MRIs are similar at a certain spatial location, the two CTs will also

be similar at this location. Finally, the set of registered CTs was fused using a spatially varying

weighted averaging, with weights derived from the similarity measure, generating a pseudo-CT.

Constrained Spatial Priors

To constrain the spatial priors to the probability range 0–1, the sigmoid intensity transformation

sig(I(~x)) = 1/(1+exp(φ0 +φ1I(~x))) was used, where I(~x) is the image intensity at voxel ~x and the

constants φ0 and φ1 are chosen so as to transform a particular intensity range to the transitional

interval 0.001–0.999. The soft-tissue prior was established by intensity-transforming the T1w+T2w

image intensity range 50–90 (mild gray).

The pseudo-CT, synthesised from the preoperative T1w MRI, was rigidly propagated to the

intraoperative space. The advantage of using CT images is that the Hounsfield scale is quantitative,

whereby air corresponds to -1000 HU, soft-tissue ranges from 0 to 100 HU and bone from 700 to
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3000 HU. Using the sigmoid function, the air prior was allowed to vary from 0.999 to 0.001 for

-1000–0 HU and the bone prior was allowed to vary from 0.001 to 0.999 for 100–700 HU.

The spatial priors had no biological basis in the areas altered by the surgery. The air prior

was linearly reduced into the range 0.1–0.9 to enforce the resection cavity to become segmented as

air. The spatial priors were smoothed with a Gaussian kernel (σ = 2mm) to enforce the skull to

become segmented as bone, and the part of the skull that is removed by the surgeon during the

craniotomy to become segmented as air.

Segmentation Scheme

The segmentation was obtained using the seg EM tool from the NiftySeg pack-

age [Cardoso et al., 2009], which provides an intensity-based segmentation scheme based on the

Gaussian Mixture Model (GMM) implemented using the Expectation-Maximisation (EM) algo-

rithm and a Markov Random Field (MRF) spatial regularisation to provide a Maximum a Poste-

riori solution, as per Fig. 3.4(c). Fig. 3.5 shows the corresponding fitted GMM. The MRF prior

strenth was set to an increased value (β = 1.0) to further enable a correct air segmentation in the

craniotomy area.

iMRI and pseudo-CT fields of view (FOV) are largely limited to the cranial part of the head.

The subsequent field map estimation step (Section 3.2.3) assumes that the voxels outside of the

segmentation FOV are air-filled, which I observed to result in unrealistic field maps due to the

virtual tissue cut-off below the cranium. I utilised the wide FOV of the rigidly registered preopera-

tive T1w and appended a 100 mm-deep volume inferiorly to the intraoperative FOV containing an

approximate air-tissue segmentation obtained by thresholding the preoperative T1w (Fig. 3.4(d)).

3.2.3 Field Map Estimation

The field map estimation was performed using the tool b0calc from the FSL software pack-

age [Smith et al., 2004, Jenkinson et al., 2004], which models the first order perturbations of the

main magnetic field. The susceptibility χ can be expanded as χ = χ0 + δχ1, where χ0 is the

magnetic susceptibility of air, δ is the susceptibility difference between air and brain tissue and χ1
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Fig. 3.5: Histogram (cropped for clarity of the figure) of the T1w+T2w image in Fig. 3.4(a) and
the fit of the GMM model for the segmentation in Fig. 3.4(a). The data come from intraoperative
scans for subject #3.

is a binary variable describing the tissue type. The first order perturbations of the z-component

of the main magnetic field (B1
z ) can be written in terms of the main magnetic field (B0

z ):

B1
z =

χ1

3 + χ0
B0
z −

1

1 + χ0

((∂2G

∂z2

)
∗ (χ1B

0
z )

)
(3.3)

where G is the Green’s function G(x) = (4πr)−1 and r =
√
x2 + y2 + z2. Note that the expression

is simplified considerably due to the fact that there only is a non-zero component B0
z in the

longitudinal axis (z-direction) of the main magnetic field.

Equation (3.3) cannot be evaluated analytically for an arbitrary susceptibility distribution χ1.

However, an analytical solution H(~x) exists for a single voxel of size (a, b, c) centered at origin

(with χ1 = 1 inside a voxel and χ1 = 0 outside of the voxel) for a constant field along the z-axis

and is given by:

H(~x) =
(∂2G

∂z2

)
∗ (χ1B

0
z ) =∑

i,j,k∈(−1,1)

(ijk)F

(
x+

ia

2
, y +

jb

2
, z +

kc

2

) (3.4)
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where F (~x) = 1
4π arctan(xyzr ).

Due to the linearity of Equation (3.3), the shifted single voxel solutions H(~x− ~x′) can be added

together using a discrete convolution to compute the total field:

B1
z (~x) =

∑
~x′

χ1(~x′)H(~x− ~x′) (3.5)

where ~x′ are the voxel locations, χ1(~x′) is the voxel-based susceptibility map and ~x is the point

where the field is evaluated. The discrete convolution can be implemented using the 3D Fast

Fourier Transform (FFT).

Although this approach simulates the field distribution due to the main coil, it does not account

for the decrease in inhomogeneity as effected by the room-temperature shim coils, which are wound

to form fields that follow first and second order spherical harmonics S(~x) = [x, y, z, z2 − (x2 +

y2)/2, xz, yz, x2 − y2, 2xy](~x), where ~x = ~0 at the magnet isocentre [Gruetter and Boesch, 1992].

The field in the scanner becomes B1
z (~x) − S~θ, where the coefficients ~θ = [θ1, θ2, . . . , θ8]T are

proportional to the currents in the shim coils, which are dynamically optimised by the scanner

during image acquisition based on the field in the imaged volume [Gruetter and Boesch, 1992].

In this simulation, I approximate the shim currents as a linear combination that minimises the

inhomogeneity field across the field of view, as used in [Poynton et al., 2009]. I perform a least-

squares fit of the spherical harmonics to determine ~̂θ = argmin~θ

((
B1
z (~x)− S~θ

)T (
B1
z (~x)− S~θ

))
.

3.2.4 Data Acquisition

The proposed algorithm was validated on 12 datasets that were acquired using interventional MRI

during ATLR procedures. The study was approved by the National Hospital for Neurology and

Neurosurgery and the UCL Institute of Neurology Joint Research Ethics Committee. Written

informed consent was obtained from all participants. The images were acquired using a 1.5T

Espree MRI scanner (Siemens, Erlangen, Germany) designed for interventional procedures. The

intraoperative protocol included a conventional T1-weighted FLASH image (TR = 5.25 ms, TE =

2.5 ms, flip angle = 15◦, 0.547×0.547×1.25 mm grid of 512×512×176 voxels) a conventional T2-
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Fig. 3.6: Scatter plot of the acquired and the simulated field map in corresponding voxels inside
the brain for subject #3.

weighted turbo spin echo image (TR = 3200 ms, TE = 510 ms, flip angle = 120◦, 1.0×1.0×1.0 mm

grid of 256× 256× 176 voxels), and a DW-MRI dataset acquired using a single shot EPI sequence

with GRAPPA-based parallel imaging (acceleration factor of 2, 2.5 × 2.5 × 2.5 mm grid (rPE =

2.5mm) of 84× 84× 49 voxels, signal readout time TRO = 35.52 ms) and a field map (see further

below). The DW-MRI dataset consisted of set of 64 diffusion-weighted EPI images with diffusion

weighting strength b = 1000 s · mm−2 accompanied by a b0-DW-MRI image. The GRAPPA

imaging resulted in a halving of EPI echoes acquired in each readout but the readout time above

is given nominally with the reduction factored in.

Field Map Acquisition

The field maps were acquired using a gradient-recalled echo pulse se-

quence [Jezzard and Balaban, 1995] (2.91667× 2.91667× 2.9 mm grid of 72× 72× 43 voxels, echo

time difference of TED = 4.76 ms). The phase-unwrapping was performed using a method detailed

in [Daga et al., 2014], which uses a Markov random field (MRF) formulation to enforce spatial

smoothness in the estimated true field map. Since the recovered phase difference necessarily had
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Fig. 3.7: Field maps expressed as mm of displacement along the phase encode direction. The
view is centered at anterior temporal lobe resection cavity. The brain surface outlined using a
surface extractor is shown for reference (red outline). (a–c) A phase-wrapped acquired field map for
subject #3, showing a step-change in phase value close to the resection margin. (d–f) The acquired
field map after phase-unwrapping; only the volume inside the brain mask is shown, because the
phase-unwrapping was restricted to the brain only. (g–i) The proposed simulated field map. (j–l)
A voxel-wise absolute difference between the simulated and the phase-unwrapped acquired field
maps, only considered within the brain. Left to right: coronal (a,d,g,j), sagittal (b,e,h,k) and axial
sections (c,f,i,l), respectively. Slice orientations are close to the standard anatomical planes. I used
a brain surface extractor included in NiftyView (http://cmic.cs.ucl.ac.uk/home/software).
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(a) (b) (c)

Fig. 3.8: Several axial slices through absolute difference between the simulated and phase-
unwrapped acquired field maps, expressed as mm of displacement along the phase encode direction
shown for subject #3. (a) Contralateral temporal lobe level. (b) Eye level. (c) Superior frontal
and parietal lobe level.

an arbitrary constant component, the map was de-meaned based on the voxels inside the brain

mask. The resulting map (∆φ(~x)) was converted using Eqs. 3.1 and 3.2 into displacement units.

3.3 Experiments with Clinical Data and Results

Since there is no direct way of measuring the true field maps in vivo, I compared the simulated

field maps to the acquired field maps. I expressed the field maps in terms of mm of displacement

along the PE direction (as per Equation 3.1). In all except one of the given DW-MRI datasets,

the PE direction coincided with the anatomical anterior-posterior axis i.e. a positive field map

value corresponded to displacement toward the posterior end of the image, while in one DW-MRI

dataset, the PE direction was inverted. A scatter plot of the two types of maps for subject #3 is

shown in Fig. 3.6. I also calculated an absolute difference between the two types of maps (Fig. 3.7

and Fig. 3.8). I calculated statistics for the difference between the simulated and acquired field

maps within the brain mask volume. The results for the 12 subjects are reported in Table 3.1.

For most of the brain, there is a close agreement, whereby the maps differ by 1.15 ± 1.49 mm on

average (3.43 mm in the 95th percentile) for all the subjects within the brain volume. However,

in some areas, there are larger disagreements and the differences follow a long-tailed distribution,

whereby the the maps differ by 4.51 ± 2.76 mm on average for all the subjects (9.99 mm in the 95th

percentile) in the voxels in which the absolute difference is above the voxel size (2.5 mm). I note

that a small discrepancy exists regarding the differences between the acquired and simulated field
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Subj. Whole brain Disp. > 2.5 mm
Mean ( std ) P95 Mean ( std ) P95

1 1.18 ( 1.53 ) 3.49 4.58 ( 2.86 ) 10.46
2 1.06 ( 1.24 ) 3.17 4.10 ( 2.01 ) 7.91
3 1.05 ( 1.37 ) 3.10 4.46 ( 2.65 ) 9.67
4 1.10 ( 1.53 ) 3.48 4.71 ( 3.04 ) 10.42
5 1.22 ( 1.54 ) 3.28 4.55 ( 3.08 ) 10.54
6 1.02 ( 1.36 ) 3.00 4.57 ( 2.76 ) 10.26
7 1.08 ( 1.47 ) 3.03 4.77 ( 3.24 ) 11.70
8 0.89 ( 1.35 ) 2.99 4.53 ( 2.74 ) 10.05
9 1.28 ( 1.59 ) 3.51 4.44 ( 3.05 ) 10.44
10 1.34 ( 1.72 ) 4.15 4.60 ( 2.73 ) 10.23
11 1.36 ( 1.69 ) 4.32 4.40 ( 2.45 ) 9.13
12 1.19 ( 1.46 ) 3.62 4.35 ( 2.49 ) 9.09

Avg. 1.15 ( 1.49 ) 3.43 4.51 ( 2.76 ) 9.99

Table 3.1: Absolute difference between the displacement (in mm) in the phase encode dimension
as per the proposed simulated field map and the acquired field map. The mean (std) and 95th

percentile values are reported for all the voxels in the brain and for those with the abs. difference
above the voxel size (2.5 mm), respectively. The summary line lists the column averages.

maps reported in Table 3.1 as given in publications [Kochan et al., 2014] and [Kochan et al., 2015]

in which these results were reported previously. Namely, in [Kochan et al., 2014] an incorrect value

of 2.9 mm was used for the scaling factor rPE in Eq. 3.1 while in [Kochan et al., 2015] the correct

value of 2.5 mm was used and the correct results are also reproduced here.

The acquired field maps do not constitute a ground truth and therefore the accuracy of the

simulated field maps had to be assessed by observing the corrected EPI images in several regions

of interest in the brain. The DW-MRI dataset for each subject was corrected as per Section 3.2.1

using the acquired field map and the proposed simulated field map, respectively. Examples for

two subjects are shown in Fig. 3.9. I chose the b0-DW-MRI image from each DW-MRI dataset

as the representative EPI image, because it contains visually identifiable landmarks. Since the

conventional T2-weighted image has a similar tissue contrast profile as the b0-DW-MRI image, but

has a higher resolution and is not affected by the susceptibility artefact, I used it as the ground

truth image. I manually identified anatomical landmarks in the ground truth and susceptibility-

distorted b0-DW-MRI images and measured the landmark misregistration in millimeters. I then

propagated the landmarks from the distorted b0-DW-MRI images using the acquired and simulated

field maps, respectively, and measured the misregistration between the ground truth and the
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propagated landmarks. I only considered landmarks with reliable correspondences. Although in

the T2-weighted images it was possible to identify features and localise them at image-resolution

accuracy (1 mm3), conversely in the b0-DW-MRI images in areas of signal dropout or severe

susceptibility distortion it was not possible to find reliable corresponding landmarks. In such

cases, I collected nearest reliably identifiable landmarks.

I collected landmarks in 4 brain regions of interest (ROIs): (1) near the resection margin (poste-

rior and superior from the resection cavity, 7–8 landmarks/subject, see Fig. 3.9(a)); (2) brain stem

(due to clearly distinguishable margin and proximity to the resection cavity, 5 landmarks/subject,

see Fig. 3.9(a)); (3) areas of high distortion in the proximity of the sites of the head-holder fixation

pins (4–5 landmarks/subject, see Fig. 3.9(b)); (4) landmarks evenly distributed in the rest of the

brain (6 landmarks/subject). Table 3.2 summarises the landmark distances for the four ROIs. The

titanium head fixation pins (ROI 3) are part of the head-holder (Noras, Hoechberg, Germany) and

in their vicinity DW-MRI exhibits increased distortion, while T1w and T2w images exhibit signal

dropout in the scalp.

I performed 3 one-tailed paired Student’s t-tests for each ROI with the following alternative

hypotheses: (a) landmark misregistration is smaller in images corrected using acquired field maps

than in uncorrected images; (b) the same when correcting using simulated field maps; (c) landmark

misregistration is smaller in images corrected using acquired field maps than in images corrected

using simulated field maps. I set the significance level for a test regarding one ROI at 1.25% as per

Bonferroni correction (5/4 = 1.25%) in order to keep the family-wise error rate (FWER) below

5%, where FWER is the probability of at least one null hypothesis being rejected due to chance

alone. The results are reported in Table 3.3.

However, landmark based validation is complicated due to non-repeatability of manual visual

landmark localisation, as well as by the low resolution and poor quality of the b0-DW-MRI image

and limited density of unambiguous landmarks. I corroborated the validation with an additional

approach as in [Daga et al., 2014]. Since the DW-MRI datasets are ultimately used to estimate

the presence of white matter areas in the brain, I evaluated the effect of susceptibility artefact

correction on residual tensor fitting errors from the DTI model. The rationale for this is as follows.

In the DTI model, the MRI signal intensities from the diffusion-weighted images and the b0-DW-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3.9: Landmark based evaluation of susceptibility artefact correction. Manually located
anatomical landmarks are shown color-coded based on distance from ground truth position (large
cross: in-slice, small cross: projection of landmark onto the shown slice). (a,e) Intraoperative
T2-weighted image unaffected by the distortion (ground truth image for landmarks). (b,f) An
uncorrected susceptibility-distorted b0-DW-MRI image. (c,g) The b0-DW-MRI image corrected
using the acquired field map. (d,h) The b0-DW-MRI image corrected using the proposed simulated
field map. The top row (a–d) shows the vicinity of the resection cavity (ROI 1 in Table 3.2) and
brain stem (ROI 2 in Table 3.2) for subject #3 with resection in the right hemisphere. The bottom
row (e–h) shows the area of strong brain surface distortion (ROI 3 in Table 3.2) for subject #4.

Subj. ROI 1 ROI 2 ROI 3 ROI 4

U A S U A S U A S U A S

1 2.80 0.40 1.80 4.86 3.26 4.26 10.75 4.00 8.75 2.80 1.00 2.20
2 2.33 1.17 1.33 4.20 2.62 4.80 4.00 1.45 3.00 1.67 1.00 2.01
3 3.50 0.88 2.37 3.00 1.52 2.18 6.00 2.40 5.60 4.75 3.86 4.89
4 3.51 1.77 1.90 3.40 1.60 1.80 6.07 2.65 6.07 1.94 0.88 1.21
5 2.04 0.79 0.92 3.05 0.68 1.20 8.00 4.75 7.75 2.17 0.67 2.00
6 2.56 1.51 1.81 2.40 1.45 1.10 8.00 4.25 6.75 2.00 1.00 1.50
7 2.83 0.67 1.50 2.95 1.80 1.55 8.75 5.25 7.50 2.00 0.50 1.50
8 3.43 1.28 2.00 2.78 1.20 1.60 8.75 5.00 5.75 0.83 0.84 1.00
9 6.10 4.02 5.56 1.59 0.64 1.00 3.60 1.50 3.40 9.02 7.99 8.26
10 2.48 1.56 2.27 3.60 1.20 2.00 5.60 2.80 5.00 2.67 0.67 1.83
11 6.88 2.20 4.89 2.20 0.40 0.60 2.21 0.75 2.75 2.33 1.33 2.33
12 3.07 1.21 2.25 4.00 1.74 1.60 6.35 3.81 6.75 1.50 0.84 1.17

Avg. 3.46 1.46 2.38 3.17 1.51 1.97 6.51 3.22 5.76 2.81 1.72 2.49

Table 3.2: Misregistration (in mm) between the ground truth landmarks and the landmarks in
the uncorrected b0-DW-MRI images (U) and those corrected using acquired (A) and simulated
field maps (S). The results are reported for 4 ROIs: (1) near resection margin, (2) brain stem, (3)
head-holder fixation pins, (4) rest of the brain.
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Misregistration ROI 1 ROI 2 ROI 3 ROI 4

(a) Corr./AFM < Unc.
1.34× 10−5 8.91× 10−8 1.37× 10−6 1.26× 10−5

(1.25) (1.29) (2.31) (0.68)

(b) Corr./SFM < Unc.
4.34× 10−6 1.10× 10−4 1.34× 10−2 1.02× 10−2

(0.72) (0.62) (-0.012) (0.13)

(c) Corr./AFM < Corr./SFM
7.16× 10−4 1.88× 10−2 1.66× 10−6 2.58× 10−5

(0.36) (-0.045) (1.77) (0.46)

Table 3.3: Results of one-tailed Student’s t-test of landmark misregistration reduction between
uncorrected (Unc.) images and those corrected (Corr.) using acquired (AFM) and simulated
(SFM) field maps (p-value and lower bound of the CI at 1.25% significance level in mm).

MRI image are fitted to the model by regression [Basser et al., 1994]. The fitting is not perfect

because of the modeling inadequacy of the DTI model, the limited voxel resolution, and the poor

SNR. [Papadakis et al., 2002] proposed the normalised sum of square residual diffusion tensor fit

errors (χ2) as a measure of goodness of fit of the DTI model for a given voxel location. Here, the

measure χ2 is defined as:

χ2 =

∑N
i=1 (Smi− Sf i)2∑N

i=1 S
2
mi

(3.6)

where N signals are fitted, and Smi and Sf i are the measured signals and the fitted signals,

respectively.

The susceptibility artefact causes non-linear (spatially varying) distortion. [Kim et al., 2006]

showed that correcting non-linear distortions in a DW-MRI dataset reduced tensor fit errors.

This suggests that a reduction in tensor fit errors might be indicative of a better suscepti-

bility artefact correction. To support this assertion further, I note an observation made by

[Leemans and Jones, 2009] in a connection with a step for the correction of subject motion during

DW-MRI acquisition (this step is clearly not needed for iMRI). In the subject motion correc-

tion step, each diffusion-weighted image is registered affinely to the b0-DW-MRI image reference.

[Leemans and Jones, 2009] showed that during subsequent tensor fitting, it is important to rotate

the direction of each diffusion-encoding gradient. Their reason is that the affine transformation

rotates and skews the voxels. Accordingly, the gradient direction of each diffusion-weighted image

becomes rotated from the nominal direction taken from the acquisition protocol. This argument

can be extended to any non-linear displacement field, which will have a local rotational component

(curl). Consider a DW-MRI dataset geometrically distorted by such a field. For some voxels the
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effective direction of the diffusion-encoding gradient will become rotated from the nominal direc-

tion. For such voxels the tensor fit error will contain a component solely due to the non-linearity.

Therefore, a reduction in tensor fit error after the correction for non-linear distortions, such as

those due to the susceptibility artefact, should be proportional to the accuracy of the correction.

The diffusion tensors were reconstructed using dtifit from the FSL package [Smith et al., 2004],

which also calculated the normalised tensor fit error maps. For the validation, tensor fitting was

performed on the uncorrected DW-MRI datasets for the 12 subjects, on DW-MRI datasets with

every of the 65 diffusion direction images individually corrected using the acquired field maps,

and on DW-MRI datasets likewise corrected using the proposed simulated field maps, as shown

in Fig. 3.10. The maps of normalised sum of square diffusion tensor fit errors were added up

across the whole brain, as reported in Table 3.4. One-tailed paired Student’s t-tests showed a

statistically significant reduction for DW-MRI datasets corrected using both the acquired field

maps (p = 3.43×10−8, confidence interval lower bound at 5% significance level: 0.72 mm) and the

simulated field maps (p = 3.56 × 10−8, CI: 0.41 mm). The said reduction was significantly larger

for DW-MRI datasets corrected using the acquired field maps than for those corrected using the

simulated field maps (p = 2.32× 10−6, CI: 0.28 mm).

(a) (b) (c)

Fig. 3.10: Map of normalised sum of square diffusion tensor fit errors shown for subject #3
calculated from (a) an uncorrected example DW-MRI dataset, (b) the DW-MRI dataset corrected
using an acquired field map and (c) a simulated field map.



CHAPTER 3. FIELD MAP SIMULATION FOR DISTORTION CORRECTION 69

Subj. Unc. AFM SFM
1 5.16 ( 7.61 ) 4.07 ( 5.61 ) 4.60 ( 6.61 )
2 3.43 ( 5.59 ) 2.79 ( 4.21 ) 3.10 ( 5.02 )
3 3.92 ( 6.79 ) 3.09 ( 5.19 ) 3.29 ( 5.57 )
4 4.96 ( 7.58 ) 4.16 ( 6.17 ) 4.47 ( 6.70 )
5 5.06 ( 6.98 ) 4.01 ( 5.30 ) 4.50 ( 6.15 )
6 3.48 ( 6.57 ) 2.72 ( 4.81 ) 3.02 ( 5.42 )
7 3.86 ( 6.86 ) 3.06 ( 5.43 ) 3.39 ( 6.08 )
8 4.27 ( 6.40 ) 3.60 ( 5.16 ) 3.82 ( 5.55 )
9 5.39 ( 7.18 ) 4.37 ( 5.68 ) 4.72 ( 6.20 )
10 3.33 ( 6.00 ) 2.65 ( 4.67 ) 3.07 ( 5.60 )
11 5.86 ( 7.74 ) 4.60 ( 5.89 ) 5.27 ( 6.85 )
12 3.28 ( 5.55 ) 2.84 ( 4.83 ) 2.99 ( 5.03 )

Avg. 4.33 ( 6.74 ) 3.50 ( 5.25 ) 3.85 ( 5.90 )

Table 3.4: Mean (std) of normalised sum of square diffusion tensor fit errors summed up across
the whole brain volume. The results are reported for the uncorrected (Unc.) DW-MRI datasets
and those corrected using the acquired (AFM) and the simulated field maps (SFM). The summary
line contains the column averages.

3.4 Discussion

I first briefly discuss the accuracy of the air-tissue segmentation. I then compare the original

acquired field maps and the proposed simulated field maps directly. However, since the acquired

maps are not in themselves a reliable gold standard, I next compare the effects of susceptibility

artefact correction based on either type of maps in several regions of interest.

3.4.1 Accuracy of Air-Tissue Segmentation

I found that the GMM model classified T1w+T2w voxels representing the CSF and the eyes as soft-

tissue, which is correct for susceptibility modelling. The main challenge for an accurate air-tissue

segmentation was the ambiguity between the air and bone voxels. The combination of the use of a

strong MRF neighbourhood consistency parameter and the smoothing of the air prior ensured that

skull voxels were generally correctly classified as bone while resection cavity voxels were correctly

classified as air. The strong MRF also forced skull bone marrow, bright in T1w+T2w, to be

included in the bone class, which is acceptable due to their virtually identical susceptibility. The

distribution for the bone class in the GMM model received a low weight due to the sparsity of

the bone voxels in the prior (Fig. 3.5). In future work, the T1w+T2w image could be replaced by
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multimodal segmentation.

The air cavities (e.g. paranasal sinuses) appear to be slightly oversegmented with respect to

their appearance in the synthetic CT, although this is not straightforward to judge without a

reliable ground truth. This oversegmentation likely arose due to the compromises regarding pa-

rameters (MRF consistency, air prior smoothing) which in turn arose primarily due to the lack

of a robust automated method for segmentation of the resection cavity and the craniotomy area.

This limitation could be overcome in the future using a shape model such as one based on active

contours [Xu and Prince, 1998].

3.4.2 Comparison of Acquired and Simulation Field Maps

The average difference found between the acquired and simulated field maps of 1.15 ± 1.49 mm

for all subjects within the brain volume (in terms of displacement along the PE direction) is less

than the voxel size of the DW-MRI dataset (2.5 mm, typical for DW-MRI datasets) and has to be

considered with respect to the desired resection accuracy, which is patient and surgeon specific and

difficult to define. I believe that the observed near 1 mm resection accuracy in areas of low field

map difference is clinically useful. However, there are areas of difference between the two types of

field maps.

In the absence of ground truth field maps, I used landmark misregistration and sum of diffusion

tensor fit errors as surrogate measures for statistical evaluation of susceptibility distortion correc-

tion using acquired and simulated field maps. The diffusion tensor fit errors based results indicate

that both types of field maps facilitate DW-MRI dataset correction, although the acquired field

maps facilitate a better correction compared to the simulated ones (Table 3.4). The landmark

based results indicate that the acquired field maps facilitate landmark correction in all ROIs, while

the simulated field maps facilitate significant correction in all ROIs except in the regions of high

DW-MRI distortion near the head-holder fixation pins (second row, ROI 3, in Table 3.3). Also, in

all ROIs except near the brain stem the results due to acquired field maps are better than due the

simulated field maps (third row, ROI 2, in Table 3.3).

I attempt to interpret the differences between the field maps in specific areas. The simulated
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field maps are more positive in the immediate vicinity (i.e. up to 1 mm) from the resection margin,

as shown in Fig. 3.7(j–l), i.e. the simulated field maps denote a further displacement along the PE

direction than the acquired field maps. This area is challenging to evaluate using both landmark

based and tensor fit error based approach due to the heavy noise in the DW-MRI data. The

landmark based evaluation in the area up to approx. 10mm from the resection margin (ROI 1) and

in the nearby brain stem (ROI 2) (Fig. 3.9, a–d) is more conclusive and indicates that the acquired

field maps provide superior DW-MRI correction in those regions. The simulated field maps tend

to co-vary with the acquired field maps in this region (Fig. 3.7, a–i). Also, under the head-holder

fixation pins (ROI 3), the simulated field maps are more positive than the acquired field maps. In

these regions (Fig. 3.9, e–h) I found during landmark-based evaluation that only the acquired field

maps provided significant EPI correction, and hence the simulated field maps are overestimated.

This is possibly due to the perturbation of the magnetic field due to the magnetic susceptibility

of the titanium material from which the pins are manufactured. I suggest that a separate study of

the influence of the titanium pins, for instance based on simple digital phantoms inserted into an

existing air-tissue segmentation, be undertaken to investigate the influence of the titanium pins.

I finally observe that near the air-filled petrous part of the temporal bone in both hemispheres

and anteriorly in the frontal lobe (superior to the paranasal sinuses) the simulated field maps

tend to form regions that are up to 10 mm more positive than the acquired field maps, as shown

in Fig. 3.8. This is likely caused by the overestimation of the air-filled cavities as described in

Section 3.4.1.

I also note that the present basic method to estimate the room-temperature shim coil currents

(Section 3.2.3) likely does not faithfully reproduce the dynamic optimisation implemented in the

real iMRI scanner as the latter is potentially dependent on physical constraints such as maximum

allowable shim coil current [Gruetter and Boesch, 1992]. Such detailed entries are not part of the

image data produced by the iMRI scanner. These data are in the form of files in the DICOM

format, which is the standard data format for sharing medical images including but not limited

to MRI [Mildenberger et al., 2002]. The DICOM header entries in the format are evidently not

specialised enough to include information about shim coil currents. Such detailed entries may

potentially be present in the manufacturer specific sub-header.
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3.4.3 Running Time of the Pipeline

The time to apply the field maps to a DW-MRI dataset is several seconds. The computational

time to phase-unwrap the raw acquired field map is below 1 minute. However, the computational

time required to simulate the field map at the full T1-weighted iMRI resolution, in the current

unaccelerated implementation, is approx. 1 hour (Intel Core i5 @ 3.30 GHz), out of which the

air-tissue segmentation takes approx. 2 minutes. The time given assumes that the pseudo-CT is

precomputed or a real CT is imaged prior to the surgery and hence can be discounted from the

intraoperative time. Although the proposed simulation method clearly takes too long in its present

form to be applicable in an interventional setting, most of it is dominated by forward and inverse

FFT (Section 3.2.3) which lends itself relatively easily to GPU acceleration due to widely available

libraries.

3.5 Conclusion

I performed a feasibility study on an iMRI dataset of 12 cases of ALTR surgery to investigate

whether B0 field maps can be simulated from intraoperative structural scans. I found a close

agreement between the simulated and the original acquired field maps and that the simulated field

maps facilitated susceptibility artefact correction in all brain regions of interest, which is an encour-

aging result. On the other hand I found that the original acquired field maps facilitated statistically

more accurate susceptibility artefact correction in all brain regions of interest and attribute this

to sensitivity to inaccuracies in air-tissue segmentation and the lack of explicit accounting for the

titanium head-holder fixation pins in this study, both of which should be investigated in a further

study.

This study also corroborates the usefulness of field map simulation for non-interventional

datasets as reported in [Poynton et al., 2009]. I found that the inclusion of the spatial prior derived

from the synthetic CT yields reliable simulated field maps in most of the brain volume. At the same

time, while I found localised inaccuracies, I attribute these primarily due to challenges specific to

the intraoperative time-step. Since the widespread neglect of susceptibility artefact correction in
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DW-MRI and fMRI studies in general is a serious problem (Section 3.1.2), I suggest a separate

study into the use of the proposed approach for non-interventional datasets.



Chapter 4

Registration near Resection

Boundary

In the previous chapter the focus was on preparing the data to be located in the respective

preoperative and intraoperative image spaces as accurately as possible in accordance with their

physical locations. In this chapter I proceed to estimate the non-rigid deformation between the

preoperative and the intraoperative image. Previously, GPU-enabled non-rigid registration was

successfully applied to the brain shift estimation problem within the time-constraints of neuro-

surgery [Modat et al., 2010, Daga et al., 2012]. Likewise, I choose to approach the problem using

the framework of non-rigid registration.

Registration schemes are composed of an optimisation strategy, a regularisation method and a

similarity measure (Section 2.3). The quality of the registration estimate will thus depend on how

well these components account for the issues arising from iMRI imaging and the complex motion

due to brain shift. For instance, continuous registration schemes are likely to get stuck in a local

optimum for datasets with complex motion, which have many degrees of freedom that need to

be recovered: continuous registration schemes perform gradient-based search in the convex basin

of the initial (identity) transformation and for data with many degrees of freedom it is relatively

unlikely that the search for the transformation will have begun in the basin of the global optimum.

74
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Further, the regularisation scheme may need to take into account specific constraints such as

volume preservation within contiguous structures. In this chapter, I focus on the last component

i.e. similarity measure, because it drives the registration and thus significantly influences the

accuracy and plausibility of the registration.

4.1 Introduction

The complex motion due to brain shift and iMRI imaging present challenges to conventional

similarity measures described in Section 2.3.2. The most obvious challenge in MRI/iMRI T1w

structural scan pairs is the missing correspondences arising from the presence of the resection

in the intraoperative scan. This resection is typically in the form of a resection cavity that is

mostly air-filled, however the appearance of the cavity is more complex for many surgery cases

and can be filled by surgical gauze or partly filled with a saline solution to control bleeding; for

these reasons it may be challenging to produce an accurate binary segmentation delineating the

extent of the brain (brain mask) in an fast, automated manner, which is necessary due to the

time-contraints of neurosurgery. For instance, the authors in [Daga et al., 2012] employed the

widely-used FSL-BET tool to extract the brain mask automatically, however this tool is designed

for skull-stripping of structural scans of non-surgical data in the standard anatomical orientation

and even with reasonable effort at parameter tuning it tends to oversegment the brain in the

intraoperative scan to contain a substantial (20%+) part of the resection cavity near the resection

boundary as shown in Fig. 4.1. This poses a problem to conventional similarity measures. For

instance, [Daga et al., 2012] evaluate NMI (Eq.2.9) such that only voxels that lie within the brain

mask in the intraoperative scan are included in the joint histogram. However, because the brain

mask is often oversegmented, this approach may lower the accuracy of motion estimation near the

base of the resection cavity where accuracy is especially desirable. In order to avoid reliance on a

potentially incorrect externally supplied binary mask, it would be useful to introduce a similarity

measure with its own mechanism for segmenting structures.

Another challenge is the complex and heavy deformation and the highly localised nature of

brain shift whereby the most severe deformation tends to arise within a few cm from the re-
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(a) (b)

Fig. 4.1: Brain masks extracted using the FSL-BET fast automatic tool (yellow with blue border).
(a) Mask for ATLR case #1 which has an air-filled cavity. The base of the cavity is incorrectly
included in the brain mask. (b) Mask for ATLR case #9 whose resection cavity is filled with a
saline solution. (The ATLR dataset is described in Section 3.2.4.)

section. In Section 2.3.2, local similarity measures were introduced as better suited to capture

local morphological similarity than global measures, because they attempt to measure some local

relationship. Typically these measures calculate some statistic from the intensities of the voxel

pairs co-located in the reference and floating image, respectively, which are restricted to a local

neighbourhood (Section 2.3.2). The chosen statistic is then assigned to the voxel at the centre of

the neighbourhood. The calculation of the local statistic typically relies on image smoothing with

a static kernel for intermediate steps. However, filtering with a static kernel is not edge-aware:

when calculating the local statistics for a given location near a tissue or resection boundary, the

voxels located beyond the boundary are included in the local statistics, even though they are not

representative of the location within the boundary. A more meaningful measure of similarity would

arise if the influence of the voxels beyond tissue/resection boundary could be suppressed provided

the boundary could be identified in a meaningful way.

A further challenge posed by the combination of brain shift and iMRI imaging is the contrast

changes between the preoperative image (which is typically acquired on a conventional MRI scan-

ner), which arise due to CSF drainage, bleeding, edema, bias field and low signal to noise ratio

(SNR) of iMRI. These factors induce changes to the appearance of the same anatomical area and

may invalidate the local relationship that is assumed by the chosen similarity measure to exist

between brain structures such as the cortical white and gray matter and deep structures such as
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brain stem and hippocampus. It may be beneficial to only assume the measured relationship to

exist in the texture of tissues by suppressing the contribution of the voxels beyond the borders of

tissues. In this regard, it is worth to observe that brain structures tend to have a relatively stable

intensity level beyond minor variation due to texture. Therefore, most boundaries of contiguous

structures can be assumed to coincide with sudden changes in local intensity.

In this chapter, I aim to address the challenges outlined above. To this end, I propose to use

a suitable local similarity measure and introduce an adaptive weighting of the local voxels, which

endows the measure with an edge-awareness property. I embed this measure in a discrete regis-

tration scheme and perform extensive evaluation in several experiments on numerical phantoms,

on 12 clinical iMRI cases of ATLR surgery and in a parcellation propagation experiment. These

results were first published in a conference paper [Kochan et al., 2016]. Specifically in this chapter,

I also add a further validation on 8 iMRI datasets of resection for clinical management of glioma

and provide extended explanations and additional figures.

4.2 Adaptively Weighted Local Similarity Measure

In line with the reasoning presented in the previous section, I propose to use a local simi-

larity measure in order to account for tissue deformations and contrast changes between the

pre/intraoperative structural T1w scans. Since the image pair is unimodal, the LNCC (local

normalised correlation coefficient) measure (Section 2.3.2), which measures the local affine inten-

sity relationship between a pair of images, is sufficient and can serve as a simple local similarity

measure [Cachier et al., 2003]. I note that for multi-channel and/or multi-modal images, further

suitable local similarity measures are also outlined in the same section, and so LNCC is considered

in this chapter as an example of a local similarity measure without a loss of generality.

Further, in order to account for the presence of the resection cavity in the intraoperative

image and to also account for more severe contrast changes that arise between the image pair,

I propose to introduce an adaptive weighting scheme into the local similarity measure. The basic

tenet of the proposed adaptive weighting is that the contribution of a given voxel in the local

neighbourhood to the evaluation of the measure should be weighted based on whether it is likely
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to be from within or from beyond a resection boundary (or, alternatively, a tissue boundary).

Such a weighting can also be regarded as one that introduces an edge-awareness property into

the similarity measure. In order to choose a suitable adaptive weighting scheme, I draw from the

concept of bilateral filtering, in which a mean of intensities for a local neighbourhood is calculated

by weighting the influence of individual voxels based on their spatial distance to the central voxel

of the neighbourhood and also based on the difference between their intensity and the intensity of

the central voxel [Tomasi and Manduchi, 1998]. Thus, in such adaptive weighting, voxels beyond

an intensity edge become down-weighted.

An adaptive weighting approach inspired by bilateral filtering was used

by [Yoon and Kweon, 2006] in the context of a stereo reconstruction problem, which is a

1D registration problem whereby 1D displacements along scanlines (disparities) are sought

between a “left” and a “right” 2D image. More specifically, [Yoon and Kweon, 2006] presented a

patch-based SSD (Section 2.3.2) similarity measure that was tailored to the stereo reconstruction

problem by weighting of contribution of a given pixel location in a patch to the total SSD value

based on the colour-space distance of the “left” and the “right” pixels from the central pixel of

the “left” and “right” patch, respectively. This enabled a more accurate disparity search, because

pixel that lie on the same surface in the 3D scene tend to have the same colour (or slightly

varying shades of the same colour). It is clear that this reasoning can be trivially translated to the

registration of gray-scale (intensity-based) images by simply replacing the colour-space distances

with intensity differences.

In the following I define LNCC more formally and proceed to introduce the proposed bilateral

adaptive weighting into LNCC, following closely from the approach of [Yoon and Kweon, 2006],

in more concrete terms. Let R be the reference volume and F the floating volume defined on the

same voxel grid and in the same coordinate space, then LNCC for the local neighborhood of a

point ~v is defined as

LNCC~v(R,F )
2

=
〈R,F 〉~v

2

〈R,R〉~v · 〈F, F 〉~v
, (4.1)

where the 〈R,R〉~v and 〈F, F 〉~v are the local variances and 〈R,F 〉~v is the local covariance. The
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latter is defined as

〈R,F 〉~v = R · F~v −R~v · F~v, (4.2)

where R~v and F~v are the respective local means for the point ~v. The local variances are defined

analogously. The local mean for R is defined as

R~v =
1

N

∑
~x

R(~v − ~x)w~v(~x), (4.3)

where N is the number of voxels in the neighborhood of ~v, ~x is the offset relative to ~v and w~v(~x)

are the weights, here given by a generic term that depends on ~v. The local mean for F is defined

analogously. The local weights can follow any kernel, with the box filter arguably being the simplest

but anisotropic (biased toward the x, y and z axes). In the following the 3D Gaussian kernel

w~v(~x) = Gβ(~x) =
1√
2πβ

exp

(
−|~x|

2

2β2

)
, (4.4)

is used, where β controls the neighborhood’s size (negligible for |~x| > 3β). The 3D Gaussian kernel

is isotropic and also separable into three 1D Gaussian filters i.e. Gβ(~x) = 2βGβ(x)Gβ(y)Gβ(z)

where ~x = [x, y, z]
T

. If the identical kernel is applied for all neighbourhoods independently of ~v

then the local mean can be implemented using convolution

I~v = (Gβ ∗ I) (~v). (4.5)

The convolution operation can be implemented fast thanks to the separability of the Gaussian

filter.

I introduce bilateral adaptive weighting whereby a unique kernel is used for every neigbourhood

centre location ~v. The modified measure is referred to as LNCC-AW. A bilateral filtered smoothing

of an arbitrary image I is

I
bilat.

~v =
1

N

∑
~x

I(~v − ~x) ·Gβ(~x) ·Gα (I(~v − ~x)− I(~v)), (4.6)

where Gα(d) is a range kernel i.e. a kernel for the intensity difference d = I(~v − ~x) − I(~v).
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(a) (b)

(c) (d) (e)

Fig. 4.2: (a) T1-weighted reference image and (b) intensity-based weights for a point (blue cross).
(c) T1-weighted floating image and (d) intensity-based weights for the point. (e) Final weights
based on (b), (d) and distance from the point.

The edge-preserving property arises as the voxels beyond an intensity rise/drop are excluded.

Given images R and F to register, the adaptive weighting is guided by both the images as

in [Yoon and Kweon, 2006] by using the composite term

w~v(~x) = Gβ(~x) ·Gα (R(~v − ~x)−R(~v)) ·Gα (F (~v − ~x)− F (~v)) (4.7)

as illustrated in Fig. 4.2. However, since the weights w~v(~x) now vary spatially, it is no longer

possible to implement the local mean using the convolution operation. Similarly, it is no more

possible to take advantage of kernel separability. The local mean is implemented directly to assess

the benefit of the weighting.

The range kernel Gα(d) determines the adaptive weighting. A desired property is to facilitate

boundary-preservation, which implies a need for a limited width of the kernel. On the other hand,

the kernel should preferably not eliminate the whole intensity range, for two reasons. Firstly, most

brain structures are homogeneous (have little or no texture) and meaningful correlation can only
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Fig. 4.3: The employed range kernel is more long-tailed than the Gaussian kernel.

be measured if all the structures are included to some degree. Secondly, iMRI is relatively noisy

and a narrow instensity range would give rise to inconsistent weighting across homogeneous areas

as the intensity of the central voxel of each neighbourhood varied with the noise. The original

paper [Yoon and Kweon, 2006] used the Gaussian kernel Gα(d) =
(
1/
√

2πα
)

exp
(
d2/2α2

)
for

colour-space distance range. The Gaussian kernel can include a wide intensity range if a large

enough α is chosen, but this involves sacrificing the strength of achievable boundary-preservation.

I instead propose to use a range kernel shaped like the Student’s t-distribution, which has a

more gradual drop-off and a longer tail, thus allowing a lower value of α which does not involve

compromising on edge-preservation:

Gα(d) =
Γ(ν+1

2 )
√
νπα2Γ(ν2 )

(
1 +

d2

να2

)− ν+1
2

. (4.8)

I choose ν = 2 degrees of freedom, which corresponds to the most long-tailed one in the family of

Student’s t-distributions. See Fig. 4.3 for a comparison of the kernels. For α = ∞, the weighting

reduces to locally non-varying, and correspondingly, LNCC-AW reduces to LNCC.
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4.3 Registration using a Discrete Optimisation Framework

The derivation of analytical gradient of the similarity measure, for instance with respect to a

voxel-based deformation field, for use in gradient-based non-rigid registration schemes becomes

complicated when using adaptive weighting, because the gradient depends on the local weights

which in turn depend on the deformation. However, [Glocker et al., 2008a] reformulated non-

rigid registration as a discrete Markov Random Field (MRF) optimisation problem, for which the

similarity measure gradient is not needed.

The proposed measure is employed in a related discrete optimisation scheme

of [Heinrich et al., 2013]. A grid P of B-spline transformation control points p ∈ P with

positions ~cp is overlaid onto the reference image. The control point displacements in the floating

image are ~up = [up, vp, wp] with discrete valued components. For efficiency, a minimum spanning

tree N of the most relevant edges (p, q) ∈ N is optimised rather than a full MRF. Displacements

are sought minimising the energy

∑
p∈P

(
1− ‖LNCC~cp(R(~x), F (~x+ ~up))‖

)
+ α

∑
(p,q)∈N

‖~up − ~uq‖2

‖~xp − ~xq‖
. (4.9)

A multi-level scheme is used: the reference and floating image are used at full resolution at all

levels, while a B-spline control point grid is used with increasing spacing of 7, 6, 5, 4 and 3 voxels

at each level; the control point displacements estimated at a given level serve to initialise the

subsequent level. 3D displacement labels allowed for each level l = 1 . . . 5 are enumerated from

the set sl · {−rl, . . . ,+rl}3 where sl ∈ [5, 4, 3, 2, 1] are the step-sizes and rl ∈ [6, 5, 4, 3, 2] are the

ranges.

The above scheme does not guarantee symmetry of the transformation and is biased toward the

reference image. However, the choice of the preoperative and/or intraoperative image as the refer-

ence is in principle ambivalent. Moreover, the true physical deformation is invertible in the areas

where valid correspondences exist between the image pair. Therefore the recovered deformation

should be close to invertible in order to be physically plausible. The symmetry of the final transfor-

mation is enforced as follows [Heinrich et al., 2013]. Both forward and backward control point dis-
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placements are found independently using the above scheme. Then, bespoke diffeomorphic forward

and backward transformations are calculated by recasting the B-spline fields as stationary velocity

fields and integrating them using the scaling-and-squaring approach of [Arsigny et al., 2006]. Dif-

feomorphisms have a unique inverse transformation and a unique mid-point transformation (i.e. a

mapping to the mid-point image space). Thus the final transformation which is symmetric can be

found by composing the mid-point of the forward diffeomorphism with the inverse of the mid-point

of the backward diffeomorphism.

4.4 Experiments

4.4.1 Patch Matching on 2D Synthetic Phantom

The matching accuracy is compared for two 2D synthetic phantoms. A fixed patch, representing

a local neighborhood, is placed in the reference image centred at a point of interest. A moving

patch, representing an independently moving local neighborhood, is placed in the floating image

and is centred initially at the same grid location but allowed to move with respect to this location.

A similarity profile is plotted of LNCC and LNCC-AW, respectively, which is the value of the

similarity measure plotted as a function of the displacement between the fixed and moving patch

centres. Two phantoms are assessed. A contrast-enhanced lesion near a resection phantom is

shown in Fig. 4.4(a–d). The similarity profile for LNCC has a mild maximum at the true zero

displacement due to voxels included from the resected area. The similarity profile for LNCC-AW

has a clear maximum due voxels down-weighted in the resected area. A phantom of the medial

longitudinal fissure is shown in Fig. 4.4(e–h). The reference and floating image are the same axial

slice from the BrainWeb database. The patch is centered next to the medial longitudinal fissure

that contains dark voxels in the CSF and the falx cerebri. The similarity profile for LNCC has a

band of false matches due to voxels included in the fissure. The similarity profile for LNCC-AW has

a unique maximum at the true zero displacement due to these voxels being down-weighted. The

similarity profiles for both phantoms indicate that the contribution of the adaptive weighting is to

remove some false-positives in matching where at least one of the patches is near an intensity edge.
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Fig. 4.4: 2D numerical phantoms. (a–d) A contrast-enhanced lesion near a resection. (e–h) The
medial longitudinal fissure. (a,e) The reference image and the fixed patch. The cross shows the
location of the centre of the fixed patch. The outline shows the size of the fixed patch. (b,f)
The floating image and the moving patch. The cross shows the location of the centre of the
moving patch at zero displacement. The inner outline shows the size of the moving patch at zero
displacement. The outer outline shows the extent of the area within which the patch is allowed to
move (up until the edge of the patch touches the outline at maximum allowed displacement). (c,g)
The similarity profile of LNCC as a function of the displacement of the moving patch. Neg. (pos.)
x displacement is left (right) and neg. (pos.) y displacement is down (up). (d,h) The same for
LNCC-AW.

4.4.2 Recovery of a 3D Synthetic Deformation

I perform a registration experiment on a BrainWeb dataset. The reference image is made by in-

serting a synthetic resection cavity in the right temporal lobe. The floating image is resampled

using B-spline interpolation from the BrainWeb image using a synthetic sinusoidal deforming field

(period 100 mm in all directions, displacement amplitude 4 mm). The voxel intensities are nor-

malised to 0–1 range. The multi-level discrete symmetric registration scheme was used as described

in Section 4.3 and was run for LNCC (β = 5mm) and twice for LNCC-AW (β = 5mm, α = 0.30

and α = 0.10).

The registration accuracy is quantified using landmarks found in the reference using 3D-

SIFT [Toews and Wells, 2013]. I include 43 landmarks from a 2 cm region from the resection

margin. The landmarks are propagated using the true and recovered deformations. The target

registration error (TRE) is shown in Fig. 4.5(c). TRE for LNCC-AW is significantly lower (for both
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Fig. 4.5: Axial view of 3D BrainWeb based phantom. (a) Reference image (inserted resection).
(b) Floating image (synthetic deformation). (c) Target registration error. (d) Map of log Jacobian
determinant for ground truth deformation (forward field). (e) Same map for fields recovered using
LNCC, (f) LNCC-AW with α = 0.30 and (g) LNCC-AW with α = 0.10.

α = 0.30 and α = 0.10) than for LNCC (paired t-tests, p < 0.001). The degree of the reduction is

apparent from Fig. 4.5(c) and could be partly owing to the fact that local appearance is relatively

conserved between the image pair and the ground truth is exact.

I also visually assess the smoothness of the recovered deformation by calculating the absolute

log Jacobian determinant map. The Jacobian determinant measures local volume contraction

and expansion assuming a linearisation of the deformation at a voxel, while the absolute log

transformation enables contraction and expansion to be treated in the same way. The log of

Jacobian determinant maps for the true and the recovered deformation are shown in Fig. 4.5(d–g).

The deformations recovered using LNCC-AW follow the true deformation closer than using LNCC.

4.4.3 Evaluation on iMRI Surgical Datasets

Anterior Temporal Lobe Resection Dataset

I evaluate the measure on 12 cases of anterior temporal lobe resection (ATLR, Section 1.1). The

dataset is described in Section 3.2.4. For each case, I perform the following pre-processing and
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registration steps:

• The preoperative and the intraoperative images are skull-stripped using the FSL-BET tool.

• Both images are normalised by mapping the 1st–99th intensity percentile linearly onto the

intensity range 0–1.

• The intraoperative image is resampled to a resolution of 1.1× 1.1× 1.1 mm.

• The preoperative image is selected as the floating image and is registered affinely to the intra-

operative image that is selected as the reference image. The affine registration is performed

using a method described in [Modat et al., 2014], which also resamples the registered image

onto the same image grid as the reference image. The resulting image can be considered as

the floating image for the purposes of non-rigid registration and will be simply referred to as

such in the subsequent steps.

• Auxiliary guidance images are created for the reference and the floating image, respectively,

by applying the bilateral filter defined in Eq. 4.6 onto either image with the filtering pa-

rameters β = 2.2 mm and α = 0.03. I empirically found these parameters to yield a mild

smoothing in homogeneous areas whilst preserving the edges in the clinical images.

• The floating image is registered non-rigidly to the reference image using the proposed non-

rigid registration scheme. LNCC with the parameter value β = 5.5 mm is used as the

similarity measure. The discrete optimisation parameters of are identical (in voxel units) to

those used in Section 4.4.2. The guidance image pair is used to provide the image intensities

for the adaptive weighting in Eq. 4.7, in order to limit the influence of the signal noise in the

iMRI image on the weighting.

• Finally, non-rigid registration is performed using the same procedure as in the previous step

but with LNCC-AW chosen as the similarity measure. The registration is performed once

for α = 0.30 and again for α = 0.10, with β = 5.5mm in both cases.

The non-rigid registration takes approx. 10 hours per subject using 4 threads on a computing

cluster node. The outcome of the registration for the surgical case #3 with LNCC and LNCC-AW

(α = 0.10) is shown in Fig. 4.6. The left column of the figure shows the intraoperative reference
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in three nominal anatomical planes of the scan when the patient is in the intraoperative position.

The second column (Fig. 4.6(b,f,j)) shows the affinely registered preoperative structural scan in

the same planar views. Overlaid on the views is the extent of the optic radiation tract (ORT),

which has been parcellated by a clinical expert on a statistical map resulting from the probabilistic

tractography inferred from the preoperative DW-MRI dataset; the procedure to perform the ORT

parcellation is described in more detail in [Winston et al., 2012]. The third and the last columns

in the figure show the preoperative scan warped using the estimated non-rigid deformation due to

LNCC (Fig. 4.6(c,g,k)) and LNCC-AW (Fig. 4.6(d,h,l)), respectively. In the latter two columns,

the ORT parcellation is warped using the same deformation fields used for the structural scan.

Therefore, the parcellation “moves” with the structural scan, which makes it easier to appreciate

the qualitative difference between non-rigid registration due to LNCC and LNCC-AW, respectively.

For instance, the brain shift estimate due to LNCC, as seen in the plane Fig. 4.6(g), would map

the ORT just at the resection margin. By contrast, the estimate due to LNCC-AW in the same

plane, as seen in Fig. 4.6(h), would place the tract mostly outside of the resection margin. This

suggests that the application of the proposed adaptive weighting could have a clinical significance.

Unfortunately, tractography on the intraoperative DW-MRI dataset is considerably complicated

due to several factors, such as the low signal to noise ratio of iMRI, the presence of the susceptibility

artefact due to the air-tissue boundary (Chapter 3) and also due to a lack of reliable choice of seed

points in the optic tract for the tractography algorithm due to the resection. Therefore, I assess

the quality of registration without relying on DW-MRI data from iMRI.

For each case, I annotated 50–60 point-based landmarks pairs in the pre/intraoperative image

a few cm from the resection margin. The landmarks were propagated using the recovered defor-

mations. The target registration error (TRE) of landmarks is summarised in Table 4.1 and is

significantly lower for LNCC-AW with α = 0.30 (paired t-test, p = 0.0236) and LNCC-AW with

α = 0.10 (p = 0.0054), respectively, than for LNCC. I take the confidence interval (CI) at 5%

false-positive rate as the effect size. The CI is 0.440−0.200 mm for α = 0.30 and 0.010−0.126 mm

for α = 0.10, respectively, well below the image resolution of 1.10 mm. One reason for the detected

effect being small may be that the landmark pairs that are reliably identifiable as homologous

pairs are located away from the area of severe brain shift, which is highly localised, and are thus
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Fig. 4.6: Registration of ATLR resection case #3. Views are through the (a—d) axial, (e—h)
coronal and (i—l) saggital plane. (a, e, i) Reference volume (intraoperative T1w iMRI with
patient’s head in intraoperative orientation). Landmarks annotated within the slice are shown
as yellow crosses (smaller if out-of-slice). (b, f, j) Floating volume (pre-craniotomy T1w iMRI).
Homologous landmarks are shown. Reference brain surface is outlined in white for comparison.
The optic radiation tract (ORT) parcellated in the preoperative scan space is shown. (c, g, k)
Warped volume (and location of ORT) for deformation obtained using LNCC with β = 5.5 mm.
(d, h, l) Warped volume (and locatiod of ORT) for deformation obtained using LNCC-AW with
β = 5.5 mm and α = 0.10. The last row shows the estimated deformation in axial view.
(m, n) Magnitude of displacement for LNCC and LNCC-AW, respectively [0 15 mm]. (o, p)
Absolute log Jacobian determinant for LNCC and LNCC-AW, respectively [-1 1].
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Case Affine LNCC
LNCC-AW
(α = 0.30)

LNCC-AW
(α = 0.10)

1 6.55 ( 2.53 ) 1.79 ( 1.14 ) 1.64 ( 0.98 ) 1.51 ( 0.88 )
2 2.79 ( 4.24 ) 2.54 ( 4.05 ) 2.38 ( 4.04 ) 2.30 ( 4.06 )
3 2.90 ( 1.86 ) 1.73 ( 1.41 ) 1.73 ( 1.36 ) 1.70 ( 1.37 )
4 3.25 ( 1.90 ) 1.82 ( 1.28 ) 1.69 ( 1.27 ) 1.76 ( 1.21 )
5 4.54 ( 1.98 ) 1.99 ( 1.02 ) 1.97 ( 0.97 ) 1.89 ( 0.91 )
6 4.69 ( 2.70 ) 2.72 ( 2.23 ) 2.63 ( 2.19 ) 2.51 ( 2.05 )
7 3.29 ( 1.61 ) 1.68 ( 1.00 ) 1.58 ( 0.99 ) 1.50 ( 1.01 )
8 3.89 ( 2.00 ) 1.38 ( 0.97 ) 1.17 ( 0.64 ) 1.14 ( 0.60 )
9 7.08 ( 2.62 ) 3.04 ( 3.34 ) 3.15 ( 3.26 ) 3.20 ( 3.31 )

10 4.82 ( 1.84 ) 1.87 ( 1.00 ) 1.78 ( 1.00 ) 1.76 ( 1.05 )
11 7.72 ( 2.81 ) 2.12 ( 1.20 ) 2.10 ( 1.20 ) 2.01 ( 1.21 )
12 6.39 ( 2.02 ) 1.91 ( 1.16 ) 1.94 ( 1.12 ) 1.86 ( 1.03 )

Affine LNCC LNCC-AW 
 (,=0.30)

LNCC-AW 
 (,=0.10)
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Table 4.1: Mean (std) mandmark misregistration for the epilepsy (ATLR) iMRI dataset.

away from the intensity-edge of the resection boundary where the adaptive weighting would be

reasonably expected to have effect. Another reason for the small detected effect may be ambiguity

in the localisation of manually annotated landmarks as these are linear/planar in nature.

The manual annotation was performed by the author. One reason why the annotation was not

performed by an expert radiologist is that to sample a representative number of landmark pairs

(point-picking) is a very time-consuming process that needs to be repeated for all the datasets. A

similar problem was faced by [Mercier et al., 2012] who annotated landmarks in iUS image pairs

manually over the course of several months. Further, the presence of brain shift complicates the

annotation as the available viewing software to which radiologists are accustomed uses viewing

through the three standard anatomical planes (coronal, sagittal, axial). However, the motion due

to brain shift has been described as complex and difficult to characterise [Nimsky et al., 2000,

Nabavi et al., 2001, Ji et al., 2014] and can exhibit considerable out-of-plane movements. A less

severe but comparable problem arises for MRI datasets capturing inhale and exhale time-steps of

lung motion due to the sliding motion of the lungs. The research work on the development of

reliable non-rigid registration algorithms for lung motion recovery has been partly motivated by

a recognition that a visual comparison of the lung inhale/exhale datasets can be error-prone for

expert radiologists [Murphy et al., 2011].

I assess the smoothness of the estimated deformation using the absolute log Jacobian determi-

nant map as per above. I limit the region of interest (ROI) to within the brain mask less than

2 cm from the base of the resection cavity, which I locate manually in the iMRI volume. The
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Case LNCC
LNCC-AW
(α = 0.30)

LNCC-AW
(α = 0.10)

1 0.219 ( 0.181 ) 0.151 ( 0.113 ) 0.219 ( 0.196 )
2 0.151 ( 0.118 ) 0.113 ( 0.080 ) 0.154 ( 0.120 )
3 0.127 ( 0.113 ) 0.091 ( 0.065 ) 0.128 ( 0.099 )
4 0.180 ( 0.188 ) 0.119 ( 0.091 ) 0.158 ( 0.168 )
5 0.168 ( 0.128 ) 0.133 ( 0.091 ) 0.132 ( 0.104 )
6 0.161 ( 0.181 ) 0.143 ( 0.142 ) 0.152 ( 0.168 )
7 0.178 ( 0.160 ) 0.083 ( 0.085 ) 0.132 ( 0.127 )
8 0.120 ( 0.142 ) 0.099 ( 0.078 ) 0.108 ( 0.113 )
9 0.120 ( 0.100 ) 0.133 ( 0.099 ) 0.132 ( 0.111 )

10 0.151 ( 0.181 ) 0.111 ( 0.104 ) 0.137 ( 0.148 )
11 0.222 ( 0.148 ) 0.153 ( 0.098 ) 0.209 ( 0.141 )
12 0.128 ( 0.126 ) 0.078 ( 0.059 ) 0.110 ( 0.090 )
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Table 4.2: Mean (std) of abs. log Jacobian determinant map in vicinity of resection for the ATLR
iMRI dataset.

means within this ROI are shown in Table 4.2 and are significantly lower for LNCC-AW with

α = 0.30 (paired t-test, p = 0.0133) and for LNCC-AW with α = 0.10 (p < 0.001), respectively,

than for LNCC. In the context of the clinical dataset, the local smoothness of the estimated de-

formation can be regarded as a surrogate measure of biomechanical plausibility of the recovered

deformation: when the mechanical forces are at equilibrium, the strain is likely to vary smoothly

within contiguous structures i.e. ones with homogenous physical properties and it step-changes

tend to arise at boundaries of structures such as the ventricles, the tentorium, the falx cerebri, the

cortical surface, the walls of limbic system structures, the tumour boundary. Therefore a smoother

estimated deformation may indicate (although not imply) a more plausible estimate of motion due

to brain shift.

Glioma Resection Dataset

I also evaluate the measure on 8 cases of resective neurosurgery for the management of glioma brain

tumour. The iMRI datasets were acquired during surgeries performed in the iMRI operating suite

at the NHNN. The tumour location and the degree of tumour mass effect varied between cases but

in general the severity of brain shift was considerably stronger than for the ATLR dataset. In all

cases a T1w intraoperative iMRI scan from an advanced stage of surgery was used as the reference

while a T1w iMRI scan taken immediately prior to craniotomy was used as the floating volume,

in this time-step the patient’s head (skull) is at the same angle as later during the procedure
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Case Affine LNCC
LNCC-AW
(α = 0.10)

1 3.14 ( 1.65 ) 1.84 ( 1.27 ) 1.18 ( 0.52 )
2 8.01 ( 3.37 ) 2.28 ( 1.25 ) 2.26 ( 1.31 )
3 3.66 ( 1.29 ) 2.24 ( 0.97 ) 1.98 ( 0.82 )
4 3.61 ( 1.96 ) 1.58 ( 0.88 ) 1.35 ( 0.83 )
5 5.97 ( 1.47 ) 1.56 ( 0.76 ) 1.33 ( 0.76 )
6 2.22 ( 0.83 ) 1.51 ( 0.89 ) 1.27 ( 0.84 )
7 5.69 ( 2.99 ) 1.87 ( 1.22 ) 1.84 ( 1.20 )
8 2.53 ( 1.01 ) 1.20 ( 0.87 ) 1.04 ( 0.55 )
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Table 4.3: Mean (std) mandmark misregistration for the glioma resection iMRI dataset. (The
box-plot is illustrative only due to small number of samples.)

and hence no affine registration was needed. The iMRI volumes were acquired using the same

imaging protocol as the one for T1w volumes described in Section 3.2.4. Written informed consent

was obtained from all participants. I apply the same image preprocessing, the same registration

scheme and the same choice of parameters as for ATLR registration above. I only consider LNCC-

AW parameter value α = 0.10. I use reference and floating volumes for guidance directly without

intermediate bilateral filtering. The results for glioma case #3 are shown in Fig. 4.7.

I annotated 30–50 representative landmarks near the resection cavity to get a representative

sample of motion due to brain shift. The number was lower than for ATLR because the there are

typically fewer reliably identifiable landmark pairs. The target registration error (mean misreg-

istration) for propagated landmarks (Table 4.3) is significantly lower for LNCC-AW than LNCC

(paired t-test, p = 0.0098, 0.090–0.48 mm confidence interval at 5% significance level). The de-

tected effect is below voxel size but is approx. twice as strong as for ATLR, which is in line with

the brain shift being more severe. The same limitations for use of manually annotated landmarks

apply as discussed for ATLR.

I evaluate the absolute log Jacobian determinant map in a spherical ROI within the brain within

2 cm from the resection cavity base. The mean values are shown in Table 4.4 and are significantly

lower for LNCC-AW with α = 0.10 than for LNCC (paired t-test, p = 0.0309). There is a marked

improvement in the smoothness of the estimated deformation, which indicates (although does not

imply) a more plausible registration.
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Fig. 4.7: Registration of glioma resection case #3. Views are through the (a—d) axial, (e—h)
coronal and (i—l) saggital plane. (a, e, i) Reference volume (intraoperative T1w iMRI with
patient’s head in intraoperative orientation). Landmarks annotated within the slice are shown
as yellow crosses (smaller if out-of-slice). (b, f, j) Floating volume (pre-craniotomy T1w iMRI).
Homologous landmarks are shown. Reference brain surface is outlined in white for comparison.
(c, g, k) Warped volume for LNCC. (d, h, l) Warped volume for LNCC-AW. The last row
shows the estimated deformation in saggital view. (m, n) Magnitude of displacement for LNCC
and LNCC-AW, respectively [0 10 mm]. (o, p) Absolute log Jacobian determinant for LNCC
and LNCC-AW, respectively [-1 1].
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Case LNCC
LNCC-AW
(α = 0.10)

1 0.044 ( 0.062 ) 0.065 ( 0.081 )
2 0.206 ( 0.155 ) 0.179 ( 0.132 )
3 0.134 ( 0.111 ) 0.085 ( 0.091 )
4 0.195 ( 0.201 ) 0.058 ( 0.047 )
5 0.138 ( 0.102 ) 0.078 ( 0.051 )
6 0.078 ( 0.090 ) 0.073 ( 0.087 )
7 0.254 ( 0.169 ) 0.169 ( 0.117 )
8 0.034 ( 0.053 ) 0.039 ( 0.046 )
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Table 4.4: Mean (std) of abs. log Jacobian determinant map in vicinity of resection for the glioma
iMRI dataset. (The box-plot is illustrative only due to small number of samples.)

4.4.4 Segmentation Propagation Experiment

The results of the experiments on clinical iMRI data indicate reduced target localisation error

and smoother recovered deformation for LNCC-AW with respect to LNCC. However, the accuracy

of the annotated landmarks is limited and smooth recovered field is only a surrogate measure of

accurate registration. I therefore add another experiment to corroborate the above results, based

on inter-subject registration of non-surgical structural scans.

I use a database of 35 T1w scans with parcellations of 140 key structures provided by Neuro-

morphometrics for the MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas Labeling 1.

The image intensities are normalised and each image is used as a reference image and the remain-

ing images as floating images. For each of the 1190 image pairs, I perform affine registration and

non-rigid registrations using LNCC (β = 5 mm) and LNCC-AW (β = 5 mm, α = 0.10 only) using

discrete registration parameters as above. The floating image segmentations are propagated using

nearest-neighbor interpolation and calculate Dice score for each label. The average Dice score for

1190 affine registration image pairs is 0.422 ± 0.00187, for LNCC based non-rigid registrations it

is 0.517± 0.0101 and for LNCC-AW based registrations it is 0.526± 0.00947. Average Dice score

is significantly higher when using LNCC-AW than LNCC (p < 10−6).

The measurement of mapping based on overlap of parcellations enables a principled assessment

of mapping as it takes into account the region based nature of the human cortex, which is potentially

1https://masi.vuse.vanderbilt.edu/workshop2012/index.php/Challenge_Details
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more meaningful than to use approximate point landmarks if there is a missing practical means to

account for their ambiguity. Further, as the parcellations are relatively small and densely packed,

a higher degree of overlap may indicate a more plausible estimated dense deformation field. The

use of all image pairs increases the statistical power of the analysis.

4.5 Discussion and Conclusion

I introduced bilateral adaptive weighting into a local similarity measure (LNCC). The modification

facilitated a more accurate landmark localisation in several T1w registration experiments. In a

study on clinical iMRI data, a smoother deformation was recovered near the resection margin,

which is biomechanically more plausible and potentially enables a more accurate surgical guidance

near the resection margin. The brain shift I assessed in the experiments on clinical iMRI data

arose from CSF leakage and postural drainage in the ATLR cases, and also from mass effect at

the margins of tumours. However, in principle the proposed approach can improve accuracy near

distinct intensity edges at collapsed cysts or haematomas from bleeding into the brain, which could

be confirmed separately if additional iMRI data became available.

The unoptimised bilateral weighting introduced a time bottleneck which resulted in registration

time of around 10 hours per volume pair, which prevents an application of the technology based

on the proposed scheme in an intraoperative setting. I envisage that this limitation should be

first addressed through the use of an algorithm with a better time-complexity before additional

avenues are considered. The discrete optimisation and MRF-based regularisation only take approx.

one minute of the running time of the scheme. Powerful options are open toward optimising

bilateral weighting, such as guided image filtering [He et al., 2013].

The B-spline control point grid spacings (7, 6, 5, 4 and 3 voxels at consecutive levels) enabled a

gradual refinement of the estimated deformation from a coarser to a finer level. This was motivated

by the need to provide a high chance of reaching the appropriate global optimum in each step, owing

to the high number of degrees of freedom inherent in deformations due to brain shift. However,

the results of using an exponential spacing such as 32, 16, 8, 4, 2 voxels at consecutive level, or

some intermediate spacing, could also be evaluated in a separate work.
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In the present chapter, I considered the problem of unimodal registration of the MRI/iMRI T1w

structural scan pair. Therefore, LNCC was appropriate as a testing case for adaptive weighting.

However, the single-channel nature of LNCC prevents its application to multi-channel registration

if additional intensity channels become available. Examples of additional iMRI channels could

include a FLAIR T1w structural scan in which fluids are nulled in order to reveal the metabolically

active part of residual tumour (Section 1.1) or voxel-based maps derived from DW-MRI data using

the DTI model, such as FA (Chapter 3), mean diffusivity (MD, [Basser et al., 1994]) or simple

diffusion direction “colour” maps (e.g. the projections of the DTI-fitted eigenvector with the

highest eigenvalue into the x, y and z axes). A multi-channel generalisation of LNCC was recently

presented by [Heinrich et al., 2014b] and the bilateral weighting could be extended to improve the

said local measure.

Further, while the proposed approach improves the specificity of the similarity measure, the

estimated deformation field could also be regularised using bilateral filtering. This approach is

applicable with implicit regularisation methods (Section 2.3.3) in which a smoothing step is used

to filter an unconstrained deformation field. This presents a natural entry point for using the

bilateral filter in order to ensure that the enforced uniformity of motion for neighbouring lo-

cations does not extend beyond structural boundaries. Indeed, such a regularisation was used

by [Papież et al., 2014] in a demons-like registration scheme aimed at lung MRI inhale/exhale

datasets, where it helped to enforce a uniform sliding motion of the lungs while marking the im-

mediately adjacent ribs as static. I also note that a related family of medical image registration

algorithms, exemplified by [Heinrich et al., 2014c], use a smoothing step to regularise a map of

costs associated with translating the floating image by a specific displacement; here, bilateral fil-

ter could also be employed in a natural manner. Indeed, this was already done in the machine

vision field in [Hosni et al., 2013]. Finally, an interesting direction to investigate could be a unified

scheme where the proposed bilateral adaptive weighted similarity measure is used alongside the

bilateral regularisation step.

The clinical evaluation on ATLR and glioma datasets was complicated by the fact that I found

it challenging to reliably identify homologous pairs of anatomical landmarks between preoperative

MRI and intraoperative iMRI structural scans, in the vicinity of resection. The reasons for this
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were severe deformation, appearance changes and linear/planar nature of the landmarks. I believe

that the lack of veritable ground truth for evaluation of brain shift estimation algorithms is a

significant problem in the field of brain shift estimation and I return to this point in the final

discussion chapter in Section 5.1.



Chapter 5

Discussion

In my thesis I focussed on the question of whether it possible to improve the accuracy of iMRI based

image guidance in the vicinity of the resection boundary where the resection cavity itself poses

challenges to iMRI image acquisition and registration. My main motivation was that information

about the structures within a few cm from the resection boundary is the most relevant to the out-

come of surgery. I investigated the constituent steps of an interventional image processing pipeline

which had been established in a clinical experimental study described in [Winston et al., 2014].

These are essentially two constituent steps: firstly, a correction of image artefacts, in particu-

lar the susceptibility artefact in diffusion MRI, which was described in [Daga et al., 2014], and a

non-rigid registration step for the estimation of intraoperative brain shift, which was described

in [Daga et al., 2012]. I identified specific limitations of these methods and attempted to address

them.

In Chapter 3 I focussed on the correction of the susceptibility artefact in EPI that manifests

itself near the air-tissue interface of the resection boundary. The EPI modalities affected by the

artefact, namely diffusion MRI and fMRI, are potentially key to the accuracy of neuronavigation

in the vicinity of resection. The work presented in [Daga et al., 2014] introduced a fast algorithm

for correcting the susceptibility artefact, based on acquisition of field maps and their unwrapping.

Their algorithm is implemented as an MRF optimization problem and is relatively robust to noise

97
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in raw phase maps but the phase-unwrapped maps tend to be estimated with reduced confidence

near the resection boundary. For this reason, I investigated whether it is possible to simulate field

maps from structural scans. The resulting simulated field maps were in close agreement with the

acquired ones and enabled the correction of the artefact. On the other hand, the simulated maps

did not facilitate a correction statistically significantly more accurate than the correction due to the

acquired maps. This was mostly due to strong dependence on accuracy of air-tissue segmentation,

which could potentially be improved with a methodological refinement. Further, the simulations

took about one hour per case, which is too slow for intraoperative use, although this problem could

likely be overcome by GPU acceleration. In conclusion, the simulation approach is a feasible one

and has a real potential to be useful for the interventional use-case when perfected.

I envisage that simulated field maps could serve as patient-specific voxel-based spatial pri-

ors to inform phase-unwrapping in areas of low-confidence. This would enable the acquired field

maps, which were used in a clinical setting as per [Winston et al., 2014], to be retained as the

primary data source. The limitations pertaining to accuracy were mostly due to the intraoperative

nature of the images and the usefuless of the method for non-interventional datasets could be

studied as the susceptibility artefact has been ignored in many studies that relied on EPI imag-

ing [Glasser et al., 2013]. A correction approach that is becoming popular is blip-up blip-down

EPI imaging due to [Andersson et al., 2003], which is essentially a registration-based approach as

it relies on recovering a mid-step between a pair of images that are affected by the same artefact

in mutually opposite directions. In areas of homogeneous intensity the mid-point may be chal-

lenging to identify uniquely, which makes the problem ill-posed. For this reason, a meaningful

regularisation is necessary and a spatial prior based on the simulated field map could potentially

be well-suited for this application. This may be true especially for fMRI datasets which are nat-

urally sparse in the anatomical space. Finally, recent new developments in fast MRI acquisition

have opened a path for replacing EPI with pulse sequences less sensitive to B0 field inhomo-

geneities [Ben-Eliezer and Frydman, 2011] but imaging protocols in clinical use will not change

rapidly and there will likely remain a strong use-case for the presented approach for the foresee-

able future.

In Chapter 4 I explored the non-rigid registration step for brain shift estimation. The previous
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work in this topic of greatest relevance is the registration scheme presented in [Daga et al., 2012]

which provides multi-channel deformable registration with GPU acceleration which enables the

registration to run within the time-constraints of the intraoperative iMRI imaging workflow. I con-

sidered the said scheme for a new iMRI dataset of 8 cases of glioma resection surgery performed at

NHNN. I noted that the scheme tended to get stuck in local optima due to its reliance on gradient-

based optimisation strategy, and also due to its use of a global image similarity measure which is

not ideally suited for non-rigid registration. In order to overcome the said limitations, I proposed

a registration scheme which combines a discrete registration, which seeks the global optimum of

deformation parameters, with a local similarity measure equipped with an edge-preservation prop-

erty based on bilateral adaptive weighting. The proposed adaptive weighting improved registration

accuracy near tissue and resection boundaries in a number of experiments including an evaluation

on NHNN ATLR and glioma iMRI datasets.

The proposed scheme had several limitations, and in particular, the edge-awareness property

of the similarity measure introduces a speed bottleneck that renders the scheme too slow for

intraoperative application, although powerful options are open for achieving a significant speedup

(Section 4.5). The proposed scheme also only supports uni-modal and single-channel volumes

and therefore is primarily intended to be used as an initialisation of a subsequent multi-channel

registration step. Additionally, a multi-channel extension is possible (Section 4.5).

To summarise, I found that it is possible to improve the accuracy of surgical guidance in the

area near of the resection boundary. I believe the presented methods are worth of being developed

further so as to enable their experimental verification with the long-term goal of clinical translation.

The main limitation of the presented method is its long running time. However, I outlined pathways

to accelerating its implementation.

5.1 Open Research Problems

In the following I will attempt to discuss wider open research problems in the field of iMRI guidance

for neurosurgery. It is clear that this is very much a new field and there exist multiple research

directions.



CHAPTER 5. DISCUSSION 100

Propagation of surgical plans based on registration remains the most promising method to

intraoperative update of neuronavigation, for two reasons: surgical planning based on preoperative

imaging is an established and active area thereby enabling meaningful delination of critical areas;

at the same time, there have been promising results in fast and relatively accurate non-rigid

registration as exemplified by the work of [Daga et al., 2012] and [Heinrich et al., 2013]. However,

the fact that most severe brain shift arises within several cm from resection boundary, which is also

most relevant to outcome of the surgery, remains a major challenge. For instance, the registration

presented in Chapter 4 achieves a convincing degree of overlap of the cortical gyri and sulci near

the resection cavity but there the alignment becomes imperfect nearer the resection, which signifies

inaccurately recovered deformation. There are several ways in which registration for brain shift

estimation could be refined. These are briefly discussed as follows.

Firstly, conventional local similarity measures (Section 2.3.2) assume locally affine geomet-

ric transformation and fail to capture local similarity in severely deformed regions. I propose

to use patch-based feature descriptors tailored to locally non-rigid transformation. Traditionally,

such descriptors were restricted to feature-based registration as their gradient with respect to

the transformation parameters is unknown. Recently, discrete registration, which does not re-

quire the gradient, expanded their use to intensity-based schemes as a similarity value between

reference and floating image patches can be calculated as the norm of the difference of their nor-

malised descriptors. An example hand-crafted descriptor that is robust to local deformations

and contrast changes has been presented in the field of machine vision [Simo-Serra et al., 2015].

Recently, great interest has arisen in “deep learning” approaches that involve the training of con-

volutional neural networks which are apt at capturing high-dimensional features with very high

sensitivity and specificity and which are being adopted vigorously by the medical imaging com-

munity [Greenspan et al., 2016, Litjens et al., 2017]. A most fruitful path to learning robust local

image descriptors is likely to follow this route.

Secondly, the complex deformations inherent in brain shift present a challenge to gradient-

based registration schemes which only search for local optima. Discrete optimisation meth-

ods search for an approximation to the global optimum and, as corroborated by Chapter 4,

have become applicable within the time constraints of neurosurgery with state-of-the-art accu-
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racy [Heinrich et al., 2013]. Discrete registration methods necessarily employ heuristics in order

to make the solution computationally tractable. For instance, [Glocker et al., 2008a] optimised an

MRF using a full set of node edges but used a sparse set of possible labels. In order to mitigate

the latter limitation, they performed the discrete registration step repeatedly and composed the

intermediate estimated transformations. However, by doing so they in effect abandoned the search

for the global optimum. More recently, [Heinrich et al., 2013, Heinrich et al., 2016] optimised an

MRF using a tree subset of node edges, which does not provide a solution to the full problem.

Potentially a better approximation to the global optimum could be found by a method that would

perform an optimisation of the full set of edges while allowing a large set of labels. It would be

interesting to explore whether avenues toward such methodology have been explored in the wider

literature perhaps borrowing from the optical flow field [Besse et al., 2014].

Thirdly, missing correspondences due to resection cannot be decoupled from the registra-

tion near the resection. In Section 2.4.1 I outlined previous work on the joint registration and

valid/missing correspondence labelling problem. This should be pursued further, potentially within

a discrete optimisation framework similar to [Parisot et al., 2012]. A point of note is that the

valid/missing correspondence relationship is symmetrical such that resected volume (in the intra-

operative space) has corresponding would-be resected tissue (in the preoperative space) whereby

both do not have valid correspondences in each other image. The detection of volume that is

folded in the intraoperative space due to partial collapse of ventricles could also be considered

as a labelling problem involving a cost for opening a contiguous folding region similarly to strain

thresholding in [Risholm et al., 2009].

Finally with regards to registration, most registration algorithms only return a point estimate of

the deformation, which ignores the ill-posed nature of registration. The implication in the context of

image guidance is that the surgeon cannot make a fully informed decision about whether to proceed

with tissue resection. Uncertainty quantification for registration is an active field as outlined in

Section 2.4.3. The time constraints of neurosurgery restrict the methods to approximate inference.

Here, related work is that of [Simpson et al., 2012] and [Heinrich et al., 2016] whereby the latter

work presents a method to obtain a dense uncertainty estimate within several minutes of running

time.
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The above refinements to registration are meaningful research problems. However, a practical

question remains about how to actually validate results of registration. While iMRI has been

regarded as the gold standard imaging modality to visualise brain shift since it became avail-

able [Nimsky et al., 2000], validating results of brain shift estimation is not trivial. As observed

in Sections 4.4.3 and 4.4.3, an accurate annotation of preoperative MRI and intraoperative iMRI

structural scans is in fact complicated by a lack of reliably identifiable homologous pairs of anatom-

ical landmarks in the vicinity of the resection due to severe deformation, appearance changes, and

the linear/planar nature of the landmarks. A way to mitigate this problem would be to prepare a

physical phantom simulating brain shift. [Reinertsen and Collins, 2006] manufactured a phantom

from polyvinyl alcohol cryogel (PVA-C) formed inside a brain surface mold, with a membrane

which could be variably filled with water via a catheter to introduce deformation. MRI-compatible

spherical markers were embedded in the phantom. The authors imaged the phantom and released

the MRI volumes into the public domain. I assessed whether the data could be used for additional

validation on the registration study in Chapter 4 but rejected them due to the following reason.

I considered it necessary to inpaint the markers in order to prevent introducing a bias into the

registration. At the same time, I found only some of the images had enough contrast to be suitable

for registration. However, the same volumes had hyper-intense halos around the markers, which

prevented inpainting in a veritable manner. This was unfortunate, as the phantom otherwise ap-

pears ideally-suited to verifying any brain shift estimation algorithm. I believe it would be useful

to prepare a similar phantom and image it with a better MRI protocol. Alternatively, a realistic

phantom could be obtained by ex-vivo MRI imaging of an animal (porcine) brain, which to the

best of my knowledge has not been done before. It is debatable how MRI-visible markers could

be embedded in the tissue such that they remain fixed in place. Potentially markers based on

glass microspheres could be considered in this context, as [Li et al., 2005] imaged chicken breast

tissue using MRI with such markers inserted via a cannula; this could potentially be done under

ultrasound guidance for deeper structures.

Prior to concluding this discussion, it remains to comment on the obvious value of the existing

iMRI datasets. The Spencer ATLR procedure performed at NHNN appears to be quite repetitive in

terms of the location of the resection target and also in terms of the steps of the surgical procedure.
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These consist, following the opening of the dura, of tracing the floor of middle cranial fossa via

the collateral sulcus before entering the lateral ventricle and making a cut through the temporal

stem to the amygdala [Winston et al., 2014]. In the surgeries involved in the cited study, the

results of the registration of the intraoperative iMRI data taken at a time-point immediately prior

to the commencement of resection in deeper brain areas were used to make an informed decision

on the subsequent path of resection. Conversely, due to the repetitive nature of the procedure

up to this time-point, these iMRI data are representative of brain shift that arose before a point

of intervention. It may be valuable to investigate whether a statistical model of the involved

deformations can be built, perhaps using a group-wise average of the preoperative MRI images as

a normalised image space. If the fitted model proved to report acceptably low uncertainties in the

extended neighbourhood of the resection target, it could serve as a voxel-wise deformation prior.

One possible application of such a prior would be to enable an assessment, given a preoperative

MRI taken at the surgical planning stage that can be registered to the average space, of possible

future shifts of key structures (e.g. the ORT tractography) as they could be expected to arise by the

particular intraoperative time-point. Another possible application of the deformation prior could

be to improve the accuracy of registration of intraoperative iMRI data. Looking beyond iMRI, an

example of an interventional modality whose usefulness could likely be considerably improved by

using a representative deformation prior is iUS (Section 2.1), which enables the imaging of deep-set

structures at low cost and with little disruption to neurosurgery. A key disadvantage of iUS is that

the acquired images only contain sparsely distributed features, which introduces uncertainty into

iUS based guidance (Section 2.3.2). In this context, the incorporation of a deformation prior based

on iMRI datasets into the registration of a iUS image could potentially reduce the uncertainty in

the areas with few features. This could indirectly extend the benefits of iMRI to situations where its

use is deemed too disruptive to the flow of surgery. Last but not least, since the high procurement

and operational costs of iMRI limit its adoption to a small number of clinics, a publication in

the future of iMRI-based deformation priors for certain repetitive and frequent procedures such as

ATLR might be welcomed by facilities that embrace iUS as an affordable alternative to iMRI.

To conclude, in this thesis I presented techniques that have a potential to improve the accuracy

of iMRI based image guidance for neurosurgery. In Chapter 3 I demonstrated that it is possible to
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correct DW-MRI and fMRI artefacts, which greatly expand the multimodal capabilities of iMRI

imaging, in a way that is in principle robust to iMRI acquisition noise. In Chapter 4 I demonstrated

that choosing a suitable local similarity measure and endowing it with an edge-awareness property

leads to improved registration and guidance accuracy near the resection cavity. In the present

discussion, I identified ways in which these findings can be pursued further to translate them

into the clinic. Image guidance for neurosurgery remains an open area of research. Therefore,

I identified a number of relevant open problems which, I believe, can be pursued by a new PhD

student or other researchers, and which could lead to concrete advancements in this field.
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[Škrinjar et al., 2002] Škrinjar, O., Nabavi, A., and Duncan, J. (2002). Model-driven brain shift

compensation. Medical Image Analysis, 6(4):361–373.

[Smith et al., 2004] Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens,

T. E., Johansen-Berg, H., Bannister, P. R., De Luca, M., Drobnjak, I., Flitney, D. E., Niazya,

R. K., Saundersa, J., Vickersa, J., Zhanga, Y., De Stefano, N., Brady, J. M., and Matthews,



BIBLIOGRAPHY 119

P. M. (2004). Advances in functional and structural MR image analysis and implementation as

FSL. NeuroImage, 23(Supplement 1):S208–S219.

[Sotiras et al., 2013] Sotiras, A., Davatzikos, C., and Paragios, N. (2013). Deformable medical

image registration: a survey. IEEE Transactions on Medical Imaging, 32(7):1153–1190.

[Stejskal and Tanner, 1965] Stejskal, E. O. and Tanner, J. E. (1965). Spin diffusion measurements:

spin echoes in the presence of a time-dependent field gradient. The Journal of Chemical Physics,

42(1):288–292.

[Studholme et al., 1999] Studholme, C., Hill, D. L., and Hawkes, D. J. (1999). An overlap invariant

entropy measure of 3D medical image alignment. Pattern Recognition, 32(1):71–86.

[Sun et al., 2005] Sun, H., Lunn, K. E., Farid, H., Wu, Z., Roberts, D. W., Hartov, A., and

Paulsen, K. D. (2005). Stereopsis-guided brain shift compensation. IEEE Transactions on

Medical Imaging, 24(8):1039–1052.
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