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Abstract. We present a new approach to calculating the combined mass of the Milky Way
(MW) and Andromeda (M31), which together account for the bulk of the mass of the Local
Group (LG). We base our work on an ensemble of 30,190 halo pairs from the Small MultiDark
simulation, assuming a ΛCDM (Cosmological Constant and Cold Dark Matter) cosmology.
This is used in conjunction with machine learning methods (artificial neural networks, ANN)
to investigate the relationship between the mass and selected parameters characterising the
orbit and local environment of the binary. ANN are employed to take account of additional
physics arising from interactions with larger structures or dynamical effects which are not
analytically well understood. Results from the ANN are most successful when the velocity
shear is provided, which demonstrates the flexibility of machine learning to model physical
phenomena and readily incorporate new information. The resulting estimate for the Local
Group mass, when shear information is included, is 4.9 × 1012M�, with an error of ±0.8 ×
1012M� from the 68% uncertainty in observables, and a r.m.s scatter interval of +1.7

−1.3 ×
1012M� estimated scatter from the differences between the model estimates and simulation
masses for a testing sample of halo pairs. We also consider a recently reported large relative
transverse velocity of M31 and the Milky Way, and produce an alternative mass estimate
of 3.6 ± 0.3+2.1

−1.3 × 1012M�. Although the methods used predict similar values for the most
likely mass of the LG, application of ANN compared to the traditional Timing Argument
reduces the scatter in the log mass by approximately half when tested on samples from the
simulation.
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1 Introduction

Precise estimates of the mass of the Local Group (LG) remain an outstanding problem for
both observers and theorists, with physical properties being difficult to observe and reliable
models remaining elusive. Recent interest has been fuelled by the advent of large N-body
simulations and the introduction of dark energy models. We introduce here a new approach
to the problem by using machine learning to model complex phenomena present in the
simulation.

For over fifty years, the timing argument (TA), introduced in [13], has been used as a
simple dynamical estimate for the the mass of the LG, assuming that the mass is dominated
by the Milky Way and Andromeda. The argument uses simple Newtonian mechanics to
calculate the combined mass of the halo pair.

The various mass estimates of the LG, some of which are discussed and compared in
[33], demonstrate the lack of consensus in determining the LG mass. In order to build a
coherent picture of the near universe, and how it fits into the universe as a whole, we require
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robust estimates of the LG mass and the ability to rule out particular models. Far from being
an isolated system, the LG sits within a filament of the vast cosmic web, and its history is
cosmology dependent through the expansion of the universe and the formation of structure.
Given the dependence on Λ and large scale structure, we must work towards a means of
utilising a variety of aspects of cosmology. A better understanding of the mass of the LG and
other systems would help us to evaluate which models are successful in galaxy formation,
dynamics, and near field cosmology.

A number of more detailed models have been made to estimate the mass of the LG.
[23] includes observations on smaller bodies (other than MW and M31) in the LG. The
introduction of a Cosmological Constant has also been explored ([1], [28], and references
therein), which manifests as an additional expansion term and increases the mass estimate
for the LG by 13%. The use of data from large cosmological simulations was introduced by
[16] and furthered by [19], which allowed for an analysis of the robustness of the TA, and
calibration of the TA mass estimate to a simulation mass to resolve biases. Li & White find
that the TA is an (almost) unbiased estimator of the mass of an LG like system, based on a
selection of halo pairs selected for their similarity to the LG from the Millennium simulation,
and assuming no effect from a cosmological constant. A more recent study by [11] uses
simulations to calculate a likelihood for the masses, and [2] uses a constrained simulation
approach to generate LG like objects and study their mass distribution.

From the previous work done estimating the LG mass, it seems clear that there is still
a large uncertainty in predicting the simulation mass (Msim) using available analytic models.
Since these models approximate the galaxy as a point mass, and we know that galaxy and
the dark matter halo which it occupies is an extended mass distribution, the mass estimate
MTA is not necessarily inherently physically meaningful. From a practical point of view we
would like to have an estimate of more physical mass, such as the virial mass or M200 (the
mass contained within a radius r200 such that the density within r200 is a factor of 200 greater
than the mean density of the universe).

In this work we combine data from N-body simulations with machine learning methods
to exploit information about the environment of the LG within larger scale structure to im-
prove estimates of the LG mass in the context of ΛCDM cosmology. We use Artificial Neural
Networks (ANN), a class of machine learning algorithms which have been widely applied
in other areas of physics. The network is trained by providing it with the salient physical
parameters and masses for halo pairs selected from the simulations; the algorithm seeks a
function which best predicts the output (combined halo mass) from the inputs (observable
dynamical and local environmental parameters). Once it has converged on a solution, the
relevant inputs for the LG (from observations) are fed into the function, which then returns
a mass.

In the next section we describe the simulation used, and the criteria for identifying and
selecting halo pairs. In section three we review some of the TA models which have been used
in the literature, apply them to our simulation data set, and look at the robustness of the
assumptions of the TA. In the fourth section we give a brief introduction to artificial neural
networks, and in section five we apply these techniques to mass estimation. In section six we
apply our models and ANN to the case of the LG itself.
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2 Simulations & Selection Criteria

The simulation data is taken from the Small MultiDark Planck (SMDPL) simulation, down-
loaded from the publicly available cosmosim database (www.cosmosim.org, [34]). The sim-
ulation box size is 400Mpc/h (h = 0.6777), with 38403 particles, with a particle mass of
9.63× 107M�/h and a force resolution of 1.5kpc/h ([15]). Halos are identified using a friends-
of-friends algorithm ([14]). Suitable halo pairs are selected as follows:

1. Candidate halos are selected with a mass 5× 1011M� ≤M ≤ 1013M�.

2. If the candidate is between 1.5 Mpc and 3 Mpc of a another halo of mass > 1012M�
then the candidate is discarded.

3. If the candidate is within 0.5 Mpc of a another of mass> 5× 1011M� then the candidate
is discarded.

4. If there is another candidate (i.e. halo with mass 5× 1011M� ≤M ≤ 1013M�) at a
distance 0.5Mpc≤ r ≤1.5Mpc then the pair is accepted.

Our criteria are less restrictive than those used in many other studies, such as [19], because
we also wish to investigate broader applicability of the TA outside of the LG. We have in total
30190 halo pairs. This data includes the position, velocity and mass of each halo, as well as
environmental data such as the local density, shear (see equation 5.1), and velocity fields. We
can easily calculate dynamical parameters (r, vr) from r = |xB − xA| and vr = (vB − vA) · r̂,
as well as the tangential velocity vt.

3 The Timing Argument and its Extensions

In this section we will discuss some of the variants of the TA that have been proposed,
and compare their performance on our dataset. These provide an important benchmark for
estimators of the binary mass, as these still form a basis of our understanding of the LG
mass. This is the first time different TA-like models have been systematically compared on
a simulation data set, allowing us to select the best TA-based estimator. The results can be
seen in Figure 1 and section 3.1.

TA predicts mass as a function MTA = M(r, vr, tu), where r is the separation between
galaxies (or halos), vr is radial velocity, and tu is the age of the universe (i.e. time at current
epoch assuming t = 0 at “big bang”). Given tu from experiments such as Planck and the
relevant cosmological model (we shall use tu = 13.8 Gyr [32]), we may write MTA = M(r, vr).
The assumptions made by the TA are:

1. Galaxies have no transverse (non-radial) velocity.

2. Galaxies can be modelled as point masses.

3. Galaxy pairs are isolated; there is no external gravitational field.

4. Galaxies start their orbits in the early universe close to (r, t) = (0, 0).

Under these simple conditions the system evolves as

d2r

dt2
= −GM

r2
+

Λc2r

3
(3.1)
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where in most treatments (and the original formulation) one takes Λ = 0. The simple form
with no Λ term has a well known cycloid solution which may be found in [13] amongst others.

This can be extended to include transverse velocities by treating the separation and
velocity as vectors, and there is an analytic solution for this case presented in [8]. Intuitively
including tangential velocity might increase the mass estimate, but because the boundary
condition is different (periapsis at t = 0) it can in fact raise or lower the mass estimate. The
results of applying this method can be compared to the traditional TA in Figure 1.

Another simple extension to the TA is to include a Cosmological Constant [28]; un-
fortunately, this equation no longer has a simple parametric solution and must be solved
numerically. This theory result in an estimated mass increase of about 13% for the Local
Group parameters.

This method can be extended to model other forms of Dark Energy or Modified Grav-
ity once the appropriate radial equation is derived. These would also require a numerical
integration, and would need to be compared to specially prepared non-ΛCDM simulations
for statistical work (and hence will not be considered further in this paper).

3.1 Results of applying the timing argument

To obtain benchmark results for estimators of the halo mass, we may simply apply the TA
models to the set of halo pairs. As we can see from Figure 1a, the TA manages to match a
basic trend in the data, but is unsuccessful in a wide range of low mass halos whose masses
are drastically overestimated.

The correlation between the TA estimate and the bound mass is strong in the innermost
contours, although there is a visible bias when using the traditional TA (Figure 1a). This
bias is not remedied by the inclusion of transverse velocity to the TA (Figure 1b). Including
a Cosmological Constant appears to be effective in removing this bias (Figure 1c). This is
an important inclusion because the additional term from the Cosmological Constant models
the expansion term which is present in the simulation. This highlights a dependency of the
estimate on the cosmological model: for a ΛCDM model we must include this correction to
achieve a best estimate. This may be complicated further if one wishes to consider dynamical
Dark Energy models such as scalar field models or modified gravity theories.

The primary problem is that for low mass halos the TA predicts a very wide range of
masses including some of the highest estimates (Figure 1). These account for a large fraction
of the total population, with 40% of the halo pairs being outside the three innermost contours
which show a strong trend. Thus far we do not have a way of identifying a priori whether or
not our galaxy lies in this region, so the uncertainty in the TA remains very large.

We may calculate the rms scatter and Pearson product-moment correlation coefficient
for this data, which provide a benchmark for further estimators which we will develop. The
Pearson product-moment correlation coefficient can be calculated for a sample of data using
the following equation

p =

∑n
i=1(xi − x̄)(yi − ȳ)

[(
∑n

i=1(xi − x̄)2)(
∑n

i=1(yi − ȳ)2)]
1
2

(3.2)

For the TAΛ estimate we find that p = 0.32 when we look at log(MTAΛ) and log(Msim).
The rms scatter is 0.41 in the log mass, which would correspond to a multiplicative factor of
roughly 2.6 in the mass itself.

The large scatter between the TA estimates and the simulation masses is a concern for
anyone wishing to use it to estimate dynamical masses, e.g. [37] and [28]. We are well aware
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(b) Angular Momentum
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Figure 1: The results of applying the TA (left), TA with angular momentum (middle), and
TA with a Cosmological Constant (right) to the data set, with the simulation mass plotted
on the x-axis and the estimation plotted on the y-axis. We can see that the bias in the right
panel is greatly reduced compared to the left. The middle panel shows that including vt
(without Λ) does not produce an improvement, and in fact widens the contours. This may
be because the tangential component of the velocity is not primordial, but acquired at later
times by interaction with larger scale structure or tidal fields. Contours show the shape of a
2D histogram, with all the pairs plotted by their simulation mass and predicted mass. The
contours are drawn by ordering the grid by number density of halo pairs; grid points are then
added from highest density to lowest density and contours drawn at intervals where they
have reached 20%, 40%, 60%, 80%, and 90% of the pairs in the sample; over plotted is the
equality line Msim = Mmodel.

of the shortcomings of the TA models, despite its many extensions; we will see if we can
improve this using machine learning methods.

4 A Brief Introduction to Artificial Neural Networks & Their Application
to Mass Estimation

In addition to the simple models outlined in section 3, there are many complications to the
history of galaxies compared to the simple Newtonian paths considered. Halos may form at
different times, accumulate or shed mass in complex ways over time, or interact significantly
with external tidal or gravitational fields. Rather than constructing ever more complicated
analytic models from first principles, which may lead to long or unstable calculations with
ambiguous boundary conditions, we instead explore the possibilities of capturing some com-
plex behaviour by using machine learning techniques.

We wish to find a function which will calculate the mass, M, of a pair of halos based
on ΛCDM simulations, given some input parameters; these include information about the
dynamics of the system such as (r, vr, vt), as well as parameters which characterise the envi-
ronment such as local density or shear information. The problem is therefore a (non-linear)
regression problem, in which we require an algorithm to find a best fit model to our simula-
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tion pairs from our inputs. ANN are one such class of machine learning algorithms, which
model unknown functions using a combination of compositions of (typically) sigmoid func-
tions. The particular program that we use is called ANNz, an ANN code developed by [3]
for the purposes of predicting photometric redshifts (although the technique is general). The
composition of weighted sigmoid functions is unintuitive, and makes their output more dif-
ficult to interpret, but means that they are much more flexible with respect to the kinds of
functions that they can model, and do not require any special knowledge about the problem
which might be needed in order to choose an appropriate set of basis functions. In our case
we do not have an obvious set of basis functions which could be used since we have no clear
idea of how our additional parameters will affect our mass estimates in terms of functional
forms. Thus we may resolve that ANN are a good starting point for modelling this behaviour.

The interested reader may consult and [5], [24], [3], [35], (amongst many others) for
background information on ANN algorithms, their theoretical properties, and their manifold
applications.

4.1 Applying ANN to mass estimation

To apply the ANN to the problem at hand our observables such as r and vr, divided by some
appropriate unit of measurement, are used as input values i.e. the first layer of our network.
The simulation masses are the target outputs used in the training and validation sets. In
order to produce more stable calculations and avoid large weights (which lead to very large
regularising terms), units are scaled so that all inputs and outputs are within a few orders of
magnitude of unity, with the following units being used:

1. Mass in MG = 1012M�

2. Time in Gyr = 109 years

3. Distance in Mpc

4. Velocity in Mpc Gyr−1

The network needs only one node in the final layer for the output, which is the predicted
mass in MG. The ANN algorithms have randomised elements which require a random seed
which can produced small variations in the results; because of this we use an ensemble of five
ANN regressions with different seeds to produce each result.

All ANN runs were required to converge to be included in the ensembles. The architec-
ture used for the results included in this paper had 5 hidden layers of 10 nodes each; more
complex architectures did not yield an improvement indicating that the functions were not
being limited by their number of free parameters.

The training, validation, and testing sets include ≈ 5000 halo pairs each, selected at
random from the full set (subject to any data cuts) and with no halo pair appearing in more
than one of the three sets. These contain, for each pair, the input parameters {r, vr, ...} and
the target parameter Msim. Performance is tested by comparing the predicted values of the
ANN on the testing set with the genuine values Msim for each pair therein.

4.2 Comparing the ANN to the TA with Λ

We would like to get an idea of how much improvement the machine learning methods have
offered compared to our earlier application of the TA. We can measure then the rms scatter
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Model rms scatter Pearson correlation

TA with Λ 0.43 0.32

ANN 0.23 0.53

Table 1: rms scatter in the log between predicted mass and simulation masses, using the
TA or the ANN to predict the masses of the halo pairs using only the dynamical parameters
(r, vr).

of the predictions from their ‘true’ mass taken from the simulation. We apply the ANN
directly to log(Msim) using (r, vr) as inputs, and compare this to the prediction from the TA.

To calculate the scatter we the use simple measure:

srms =

√
(log(Mp)− log(Msim))2

N
(4.1)

Where Mp is the predicted mass (ANN or TA), Msim is the mass from the simulation, and
N is the number of points in the sample. This is the measure that is typically taken (plus
an additional regulation term) as the cost function of the ANN and other machine learning
algorithms.

The results are summarised in Table 1 and Figure 2a. At a first glance, the numerical
results in Table 1 suggest that machine learning methods can reduce the scatter by almost half
using only the same inputs as the analytic model, and significantly improve the correlation
coefficient as well. This would imply that if we feel confident in our distribution of halo
masses within large cosmological simulations, then machine learning methods may provide a
significant improvement upon TAΛ.

Figure 2a however demonstrates an interesting problem. The shape of the contours are
not well in line with the equality lineMp = Msim, indicating that the estimate is highly biased,
and the shape of the contours is notably compressed into the middle of the range. Considering
that the TA is very successful for many halo pairs, and that it is easily reconstructable by an
ANN, can we understand why the ANN produced the behaviour that it did? Despite the fact
that the TA appears to show much less bias for many halos, there are a very large number
of low mass galaxies which are drastically overestimated by the TA. These would contribute
very heavily to the cost function of the ANN ∼

∑
(Mp −Msim)2 if it tried to reproduce the

TA. With only (r, vr) as inputs however, the ANN cannot find a solution which is satisfactory
for these outlier halos, and therefore finds it beneficial to compress the estimates down into a
narrower mass region clustered around the mean mass. This has happened to an extent that
the function appears to have little visible correlation with the mass; high mass estimates in
particular (where the simulation mass spans almost the entire range) are moved towards the
centre of the mass range to minimise the scatter. This is a fairly generic problem in machine
learning when presented insufficient information to solve a problem: the best way to reduce
the scatter is to cluster around the mean. If the TA is to be improved upon, we will need
to find out why some galaxies have much lower masses than we näıvely expect, or find a
parameter which can break the degeneracy.

5 Extending the Model and Cuts to the Data

We now look at the effect of using some of the additional parameters we have at our disposal
from the large simulation data set.
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(a) ANN, run with only (r, vr) as input, and TA
estimates of mass against the bound mass from
simulations.
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shear with the mass in the simulation. The result
shows significantly better correlation than ANN
estimates without shear (correlation coefficient =
0.63).

Figure 2: Contours comparing the mass estimates from the ANN with those from the TA.
TA (with a Cosmological Constant) is shown by the dashed red lines, the relevant ANN
estimate in solid blue, with the diagonal (equality line) overplotted. Points here are taken
from the ‘testing’ subset of the data (roughly 5000 points); contours are drawn as in Fig. 1,
but due to the smaller sample size are rougher and enclose 30%, 60%, and 90% of the pairs.
The equality line is over plotted in black.

Table 2: Table showing the rms scatter in the log mass for each ANN model using different
input parameters and cuts to transverse velocity, alongside the TAΛ for comparison. For
all ranges of vt the ANN with input (r, vr, λi, µi) reduces the scatter in the log significantly
compared to the TA: by approximately 50% when there is no cut on vt, or approximately
40% when there are strict cuts.

Max vt (r, vr) (r, vr, vt) (r, vr, ρ) (r, vr, λi, µi) TAΛ

None 0.23 0.23 0.23 0.21 0.41

500 km/s 0.23 0.23 0.23 0.20 0.39

250 km/s 0.23 0.22 0.22 0.20 0.35

125 km/s 0.20 0.20 0.20 0.17 0.28

62.5 km/s 0.18 0.19 0.17 0.13 0.21
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5.1 Transverse velocities

The first additional parameter used was the transverse velocity. We use the modulus of
the transverse velocity as a one dimensional quantity rather than using a two dimensional
vector, since the direction (which must be perpendicular to the radial vector) should not be
relevant in the absence of other information. Thus vt = |v − vr|. We run the ANN with
input (r, vr, vt)→ log(Msim).

Adding the transverse velocity on its own has little effect on the scatter (see Table 2),
where we show the scatter in the log for ANN results with different additional parameters
and cuts.

5.2 Cuts to transverse velocity

Cuts to the transverse velocity have a significant impact on the scatter (see Table 2). Samples
which are limited to small transverse velocities show significant improvement in both the TA
and in the ANN. For the TA this is obvious – the argument is based upon the assumption of
a radial orbit. The ANN improves alongside it, with the ANN scatter remaining ∼ 40− 50%
less than the scatter for the TA for each cut. This may be because the range of possible orbits
that the ANN has to reconstruct is restricted when the system is closer to one dimensional,
leading to a simpler target function.

5.3 Environmental parameters

We may be able to improve our results by including parameters which characterise the en-
vironment of the halos. We are interested in observable parameters which may affect the
dynamics of the pair, such as the large scale density field, velocity and shear fields.

Environmental parameters show that some improvement may be made compared to the
application using only the traditional dynamical variables (distances, velocities).

5.3.1 Density

The density parameter ρ/ρ̄ (smoothed over 2Mpc) was added to the ANN, although the
improvement is not significant (see Table 2). Perhaps a more fruitful parameter would be a
density gradient vector, which would give an indication of the strength and direction of the
external gravitational field which may perturb the orbit, although this is beyond the scope
of this paper.

5.3.2 The velocity shear tensor

The most useful parameter investigated in this paper is the shear tensor (also smoothed over
2Mpc). The shear tensor ([20], [12]) is defined as

Σij = − 1

2H0

(
∂vi
∂rj

+
∂vj
∂ri

)
(5.1)

At a given point the eigenvalues and eigenvectors of this tensor can be calculated. The
shear tensor has three eigenvalues λ1,2,3 with three unit eigenvectors ê1,2,3. We order the
eigenvalues such that:

λ3 ≤ λ2 ≤ λ1 (5.2)

We calculate the absolute value of the cosine of the angle between the eigenvectors and the
radial separation vector µi = | cos(θi)| = |êi · r̂|. (We must use the absolute value since the
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Figure 3: Error histograms for the TA and the ANN run with shear information (with no
cuts on vt). The ANN manages to avoid the large tail of overestimates that is produced by
the ANN. ∆ log(M) = log(Msim)− log(Mmodel).
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eigenvector only defines an axis rather than a specific direction, so alignment with êi or −êi is
physically identical.) We use the ANN with an input of the form (r, vr, λ1, µ1, λ2, µ2, λ3, µ3)→ log(M).
This provides the ANN with information about how the orientation of our physical system
lines up with the principles axes of any local expansion or collapse. The scatter in the log
mass, as shown in Table 2, reduces by about 10–15% compared to the most basic form using
(r, vr) with an equivalent cut on vt. Perhaps more importantly, there is a change in shape of
the contours between Figure 2a (the results without environmental information) and Figure
2b (the results utilising shear information). The upper bound on the estimated masses has
now been relaxed and the results look significantly more intuitive, with a less dramatic bias.
We can see from Figure 3 that the tail TAΛ overestimates is significantly reduced.

Why might the inclusion of shear have improved things? The velocity shear tensor
contains information about the movements of matter on large scales, and hence may be
linked to variations in behaviour from what one would expect in an isolated environment.
The tensor may be used as a map of the cosmic web (as in [20], [12]), with the sign and
magnitude of eigenvalues determining if a halo is occupying a knot, filament, sheet, or void.
Such a classification method has already been used to examine how halos and galaxies align
with the large scale structure ([22], Forero-Romero, Contreras, & Padilla 2014, [27]), how
galaxy properties are affected by their cosmic web environment ([26], [25]), and how LG-like
systems are formed in filaments ([9]).

In order to understand something about the way that the shear is influencing the solu-
tion, we look at the output with some physical insight and intuition. Whilst the fundamental
representation of the function – encoded in dozens of weights – is no doubt difficult to inter-
pret on its own (it is, after all, a rather garbled way to write a function and even the most
brilliant mathematician would balk at diving into a quagmire of sigmoid functions analyti-
cally), we may achieve significant insight by plotting cross sections of this multidimensional
function. By varying just one variable at a time and holding all others constant we may
see the impact of that variable on systems which are otherwise totally similar. For exam-
ple, we may hold (r, vr) fixed, thus considering only systems which have identical observable
dynamics at present, and vary just one of the shear magnitudes λ2. (We choose λ2 since
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expanding regions and lower in collapsing regions.
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(b) The dependence of the ANN mass estimate on
the alignment with the eigenvectors. Here we have
held the eigenvalues at λ1 = 0.15, λ2 = 0, and
λ3 = −0.15 i.e. collapse along the e1 direction,
no shear on the e2 direction, and expansion along
the e3 direction. The angle is measured between
the radial separation vector and the eigenvector
e2, when rotating in the e3 × e2 plane (from full
alignment with e2 to full alignment with e3), and
rotating in the e1 × e2 plane (from full alignment
with e2 to full alignment with e1). We see that
as we rotate to align with the collapsing vector
(e1) our mass estimate decreases, and as we rotate
to align with the expanding vector (e3) our mass
estimate increases.

Figure 4: Cross sections of the ANN function FANN : (r, vr, λi, µi) → log(M) where one
parameter is varied and the others kept constant to visualise the mass dependence on that
parameter for a LG-like halo pair. In both cases r = 0.77 Mpc, and vr = −130 km s−1, and
these parameters are not varied.

we must always respect λ3 ≤ λ2 ≤ λ1 which can be done by setting λ1,3 and varying λ2

between them.) This is shown in Figure 4a. We wish to inspect a case where λ2 has great
impact and the other shear parameters have as little as possible, so we choose a system
which is aligned totally with e2. The result is the mass estimate decreases with increasing
λ2, i.e. with increasing degree of ‘collapse’ along the radial axis of the system. This is the
behaviour of the function that has been derived, and now it is prudent to ask whether this
makes physical sense. In order to ask such a question, we must be very sure about what
has changed and what has not. The background has changed, but the observed dynamics
have not. Let’s compare to a case with no shearing at all – two bodies orbit one another in
empty space. Heavy halos turn around sooner and will fall into one another faster; lighter
halos will turn around later and fall into one another more slowly. Let’s say in the empty
space scenario, a mass of M∗ will yield the dynamics we see (r, vr). Now let us consider the
case where there is a larger scale tendency towards compression along the radial axis (high
λ2). Our smaller bodies are also part of this flow, and will be involved in this larger scale
collapse. This will bring us to a quicker turnaround than the empty space case, and thus we
will not produce the same dynamics with M∗. In order to delay our turnaround and slow
the collapse back down to our observed dynamics, we must reduce the mass estimate, and so
we have a collapsing mass MC < M∗. The same reasoning may be applied to the expanding
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case to yield an expanding mass ME > M∗.

It is worth at this point addressing some issues of structure formation. We may look
towards the Raychaudhuri equation, or its Newtonian equivalent, as a means of calculating
the mass in the presence of shear. Here, crucially, the shear only enters as σ2 = σijσ

ij , and
thus any shear regardless of sign or alignment (the case is spherical) will enter in the same
way; when applied to structure formation we obtain a reduced mass. As a result, one might
expect that we should see our mass estimate reduce in the presence of any shearing, but this
is not the case. Remember that we are not tracking the growth of an initial over density,
but looking at the dynamics of two bodies and asserting the mass which would produce it.
The presence of shear might cause the galaxies to initially form with lower masses than they
would otherwise, but the mass with which they are formed is irrelevant to our purposes: we
only see deviations of the trajectories from empty space dynamics, e.g. when light galaxies
look heavier than they are due to their distorted dynamics. This is very similar to why the
density parameter is not useful – it affects the formation of halos but, if it is not much varying
over the distance scale of the orbit, it does not affect much the dynamics of the halos.

Figure 4b explores the significance of the alignment of the radial vector with the shear
eigenvectors. The eigenvalues are set up so that one axis is ‘collapsing’, one axis is ‘ex-
panding’, and the other is ‘neutral’ (λ = 0). The observed dynamics (r, vr) are again kept
constant, and the alignment of the radial vector is rotated (via the parameters ζ1,2,3) from
total alignment along one eigenvector to the next. The results show that the impact of the
collapsing and expanding effects that we previously discusses are dependent on the alignment
of these axes with the radial axis. If there is collapse close to orthogonal to the radial system,
it does not much impact the trajectories along the radial line, so there is little change to mass.
This is physically to be expected.

5.3.3 Shortcomings of additional parameters

The scatter is still very significant, and the additional parameters make a relatively small
impact on the result. Our inability to reduce it further may be for a number of reasons

1. There are further important variables which may have a more significant effect.

2. The relationship between the dynamics of the pair and the environment is highly com-
plex and non-linear, perhaps even chaotic.

3. We only have a snapshot of these parameters at the present time; they are however dy-
namical and the impact on dynamics would depend on the variation in these parameters
throughout the history of the universe.

6 Application to the Local Group

We may apply what we have learned directly to the LG i.e. the Milky Way (MW) and its most
massive partner, Andromeda (M31). We have learned that the TA’s range of applicability
may be narrow, and both the TA and ANN are more successful if we make cuts to look at LG-
like galaxy pairs. Results of the different methods of calculating the LG mass is summarised
in Table 4.
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Table 3: A table of observed velocity values for the LG from three papers. van der Marel
& Guhathakurta (2012) is the most reliable recent result. van der Marel & Guhathakurta
(2008) is included for comparison with earlier papers such as Partridge et al. 2015, which
use values for the LG closer to this. Salomon et al. (2015) is a controversial recent result
suggesting very different relative motion of MW and M31, which is included to explore the
implications of such a result. These parameters will be referred to in the text and table as
vdM. 2008, vdM. 2012, and Sal. 2015 respectively.

vdM. 2008 vdM. 2012 Sal. 2015
vr / km s−1 −130± 8 −109.4± 4.4 −87.5± 13.8
vt / km s−1 42± 56 17± 17 149.4± 92.3

Table 4: A table presenting the mass estimates for the local group for each model, as applied
to the input parameters with velocities from vdM. 2008, vdM. 2012, and Sal. 2015 (see Table
3). Quoted errors are first for propagating the errors in the observables through the TA/ANN
functions, and second for ± the r.m.s. scatter on the log mass between the TA/ANN model
and the simulation set. For vdM. 2008 and vdM. 2012 we may use strict cuts on vt, whereas
for Sal. 2015 we must use cuts that include the higher transverse velocity, thus leading to a
higher uncertainty. The Bayesian results quote only a 68% confidence interval.

MLG / 1012M�

Model (vdM. 2008) (vdM. 2012) (Sal. 2015)

TAΛ 5.8+1.0+3.6
−0.9−2.2 4.7+0.7+2.9

−0.6−1.8 3.8+1.1+4.7
−0.9−2.1

ANN 3.7+0.3+1.9
−0.3−1.3 3.6+0.3+1.8

−0.3−1.2 3.3+0.6+2.3
−0.5−1.4

ANN + Shear 6.1+1.1+2.1
−1.1−1.6 4.9+0.8+1.7

−0.8−1.3 3.6+1.3+2.1
−1.1−1.3

Bayesian 3.4+1.9
−1.2 3.1+1.3

−1.0 3.4+2.3
−1.3

6.1 Input parameters

We use r = 770± 40 Mpc, and velocity parameters from three studies referred to as vdM.
2008, vdM. 2012, and Sal. 2015 (see Table 3 for details). The most reliable case is represented
by vdM. 2012, from [37]. vdM. 2008 is taken from an earlier paper and included only in Table
4 for comparison to earlier results. [36] (Sal. 2015) represents a controversial new study which
suggests a non traditional relative motion, which a much larger transverse motion. For both
cases we will use the same range of r, as it contains the values of r used in both papers.

The shear parameters of the local universe are taken from [21], and are λ1 = 0.148± 0.038,
λ2 = 0.051± 0.039, and λ3 = −0.160± 0.033. To calculate the angle between the eigenvec-
tors and the MW-M31 separation vector, we use [21] for the shear eigenvectors and [6] for
the direction of the separation vector.

6.2 TA estimates

Our most accurate TA model is the TA with Λ, which applied to the LG with vdM. 2012
gives a mass estimate of 4.7+0.7

−0.5 × 1012M� by propagating the errors in the input through
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the TA model. On top of this we must take into account the intrinsic ‘cosmic scatter’
which we can calculate from the r.m.s. scatter when we apply the TA to our data set (see
Table 2). Applying this error on top of the upper and lower limits from the TA gives a
LG mass of 4.7+2.9

−1.8 × 1012M�. Using the velocity observations with Sal. 2015, we have an

estimate with propagated errors of 3.8+1.1
−0.9 × 1012M�, on top of which we have cosmic scatter

of 3.8+4.7
−2.1 × 1012M�.

The primary reason for evaluating the TAΛ mass estimate is to set a benchmark for the
other methods, although it remains a significant estimator in the literature. The result we
retrieve is slightly higher than TA mass in [37], as we have included a Λ term.

6.3 ANN estimates

To calculate the estimates for each case, we use the ANN which we trained previously with
cuts on transverse velocity. For the high transverse velocity case we may use vt ≤ 250km s−1,
and for the low transverse velocity case we may use vt ≤ 62.5km s−1. One could approach
this by making stricter cuts on each of the parameters to create a LG like set, but we do not
have a large enough set to collect enough pairs for the training, validation, and testing sets in
such a narrow band of parameters. Errors in the input parameters are propagated through
by running the ANN with all variations of mean, max, and min parameters for (r, vr, vt).

6.3.1 Using only (r, v)

Using vdM. 2012, which has the more conventional (smaller) transverse velocity, we have an
estimate of 3.6+0.3

−0.3 × 1012M� by propagating errors from the input. This error is dwarfed

however by the random scatter, which gives us 3.6+1.9
−1.3 × 1012M�. With the higher transverse

velocity and lower radial velocity of Sal. 2015 we get an estimate of 3.3+0.6
−0.5 × 1012M� by

propagating the errors through. Once again, this is small compared the intrinsic scatter,
3.3+2.3

−1.4 × 1012M�. The very small variation due to propagating the uncertainties in the
inputs is a consequence of the clustering around the mean mass; the ANN trained on (r, vr)
is strikingly insensitive to input.

6.3.2 Including shear

The estimate of the LG mass is boosted when shear information is taken into account. Using
this ANN model, we obtain estimates of 4.9+0.8+1.7

−0.8−1.3 and 3.6+1.3+2.1
−1.1−1.3 for vdM. 2012 and Sal.

2015 respectively (propagated errors are quoted first, followed by intrinsic scatter).There is
a somewhat larger propagated error from the uncertainties in the input than even the TAΛ;
this is both due to having more parameters in our inputs and the difficulty in acquiring
very accurate shear information. The velocity shear tensor identifies the MW-M31 system
as being in a filament; the largest collapse eigenvector is almost perpendicular to the radial
separation vector (and hence can be safely ignored), but there is an appreciable component
along the other two. Although one of the eigenvalues indicates collapse, we also have a large
expansion term with an appreciable component along the radial separation direction. This
may be causing the overall boost in the system mass when included in the calculation. The
effect of the shear compared to the TA is well within the errors of either method, so it is
not necessarily possible to say what additional dynamics are at play, or whether the mass
estimate is distinctly higher in the presence of shear for the case of the LG.
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6.4 A probabilistic approach

Another approach is to look at the simulation data from a Bayesian perspective to estimate a
probability distribution for mass, given the masses in the simulations. This can be calculated
using an MCMC approach or a numerical integration. A simple approach is to start by cutting
the data to select only binaries which have parameters within the limits set by observations
of r, vr, and vt for the LG. A probability distribution for the simulation masses can then
be fitted to this subset of the data, which is assumed to be Gaussian in the log mass with
some mean µ and standard deviation σ. A probability distribution over the mass given the
ensemble of masses from the simulation is given by the following expression:

P (M |Msim) =

∫
P (M |µ, σ,Msim)P (µ, σ|Msim)dµdσ (6.1)

where Msim is the data vector, composed of each binary i with mass M i
sim in the cut of

data (these data vectors are represented as histograms in Figure 5), and µ, σ characterise
the probability distribution in the log mass. Since we don’t know the mean and standard
deviation of the underlying probability distribution a priori, we are marginalising over values
of µ and σ in equation 6.1. We must then calculate the probability distribution on (µ, σ) as
follows:

P (µ, σ|Msim) =
P (Msim|µ, σ)P (µ, σ)

P (Msim)
(6.2)

We must now make some assumptions in order to proceed. As mentioned above, we will
assume that masses in Msim, as well as the LG mass, are drawn from an underlying Gaussian
distribution in the log mass, and that samples are independent:

P (log(M)|µ, σ) =
1

σ
√

2π
exp

(
(log(M)− µ)2

2σ2

)
(6.3)

P (Msim|µ, σ) =
∏
i

P (log(M i
sim)|µ, σ) (6.4)

We shall also assume flat priors (since we have no prior knowledge) on the parameters µ
and σ, which means that both P (µ, σ) and P (Msim) are simply multiplicative constants.
(In practice we need to assume some hard limits on µ and σ so that we can terminate the
integration, so their distribution is a top hat function which determines the integration limits
for equation 6.1. The limits must be wide enough so that P (Msim|µ, σ) is negligible outside;
we have taken µ ∈ [0, 1] and σ ∈ [0.1, 1].)

With these equations it is simple to evaluate P (M |Msim) for a particular cut (see Figure
6). The posterior resembles to some extent the histograms in Figure 5, but the Bayesian
approach allows us to take into account uncertainties – particularly those associated with the
small number of samples – in a more robust way, as well as allowing confidence intervals to
be calculated. Cuts are made to match the error bars given at the beginning of the section
with the exception of vr which ranges between 0.5 and 1.5 times the best estimate of vr in
each case in order to give use enough pairs. (A strict cut on all parameters yields less than
two dozen pairs for each set.) For a system with low transverse velocity we find a mass of
3.1+1.3

−1.0 × 1012M�, and for high transverse velocity we find a mass of 3.2+2.1
−1.2 × 1012M� at the

68% confidence level. Best estimates are calculated by the median because this is the same
point whether we use a distribution in M or log(M), whereas the peak moves. The median is
the peak of the distribution in the log, which is most comparable to the other results since
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Figure 5: Normalised histograms of the simulation samples, with each estimate of transverse
velocity. There are 118 galaxy pairs with vt ≤ 34 km s−1, and 349 with 57 km s−1 ≤ vt ≤ 242
km s−1.
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they were calculated using in the log mass. This is largely compatible with the results from
ANN, although errors have been calculated in a slightly different way so they may not be
directly comparable.

The disadvantages of this method for generating a precise estimate are two-fold. Firstly,
we do not have enough pairs to sufficiently cut the data to match observations whilst leaving
sufficient pairs to make a statistical judgement calculable. (Even with the relaxed cuts we
have made, there are only O(102) pairs, which is not enough to make a strong statistical
statement on such a varied group.) Secondly, it does not produce any information on the
dependence on different parameters. In order to do this, we would have to create a param-
eterised probability distribution P (r, vr, ...) and solve for it. It is challenging to produce a
flexible enough function form for this distribution in terms of multiple inputs without essen-
tially entering the world of ML. (Methods such as ANN can, after all, be cast as a maximal
likelihood method.) Rather, this procedure may be taken as illustrative, and providing a
rough probability distribution of LG-like galaxy masses. It demonstrates that the distribu-
tion is broad, particularly when the transverse velocity is higher, and the varied results in
the literature (see Table 5) are well within a sensible range of this distribution.

7 Discussion

We find that, despite some advance in the analytic models, the application of ML provides a
rapid route to improved estimates of the LG mass. Analytically, the inclusion of Λ in the TA
can provide an important improvement in the bias of the mass estimate when analysing a
large collection of galaxies from ΛCDM simulations, however the inclusion of vt is if anything
disruptive. The uncertainty in which parameters to base our model around is a significant
stumbling block for this calculation, and ML methods are a valuable tool in analysing the
potential of different parameters to improve the solution. Furthermore we find that the
application of ANN presents a more significant improvement than analytic extensions to the
TA. When trained (on a suitably large population) using only parameters (r, vr) one finds
the scatter in the log mass which is reduced by approximately half, but the estimator highly
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Figure 6: Normalised posterior distributions for the mass of the LG calculated from equation
15, with each estimate of transverse velocity.
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Table 5: A table comparing LG mass estimates of some recent papers. Errors between
papers have been estimated with various methods and confidences, and may not be directly
comparable. Results are compiled from Li & White (2008) [19]; Phelps, Nusser, & Desjacques
(2013) [31]; Peñarrubia et al. (2015) [29]; González, Kravtsov, & Gnedin (2014) [11]; van der
Marel (2012) [37]; Carlesi et al. (2016) [2].

Paper Method Mass Comments / other Esimates

[19] Large ΛCDM 5.27+4.96
−1.82 × 1012M� r = 784 kpc vr = 130 km s−1

n-body Sim. MTA = 5.32± 0.48× 1012M�

[31] Numerical Action 6± 1× 1012M� r = 790 kpc, vr = 119 km s−1

Method MMW = 2.5± 1.5× 1012M�

MM31 = 3.5± 1× 1012M�

[29] Extended LG 2.3± 0.7× 1012M� r = 783 kpc, vh = 300 km s−1

Simulation Uses heliocentric coordinates

[11] Large ΛCDM 4.2+3.4
−2.0 × 1012M� r = 770 kpc, vr = 109.3 km s−1

n-body Sim. Finds MMW +MM31 = 2.4× 1012M�

[37] TA (Λ = 0) 4.93± 1.63× 1012M� r = 770 kpc, vr = 109.3 km s−1

converted to virial MTA = 4.27× 1012M�

Multi-probe M = 3.17× 1012M�

[2] Constrained 1.79± 0.51× 1012M� 0.35 Mpc < r < 0.7 Mpc

Simulations −135 km s−1 < vr < −80 km s−1
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biased towards the mean mass of the sample, so that it fails to make predictions. Additional
parameters, particularly the shear field, pushes this scatter lower, approximately half of the
TA scatter and with a significantly reduced bias compared to the ANN with only (r, vr) when
tested on a sample with no cuts to vt.

The velocity shear tensor provides a key improvement to the ANN prediction of mass.
Without it, the ANN cannot find an explanation for why many halo pairs which appear to
have high dynamical masses (judging from the TA) actually have much lower masses in the
simulations; this leads to a mass cap for the ANN function in order to reduce the scatter.
The addition of shear information breaks to some extent this uncertainty and produces an
improved correlation between log(M)ANN and log(Msim). Since the influence of this param-
eter is poorly understood from an analytic perspective, an investigation into the behaviour
of the derived function from the ANN trained on shear information may be used to gain
physical insight. A possible explanation is that there is a change in mass estimate due to
the bulk motion on large scales affecting the motion of the binary system. In other words,
our halo pairs cannot be taken to interact in isolation, but their place within in the cosmic
web structure determines their motion to some extent due to local velocity flows creating
‘expansion’ or ‘collapse’ along different axes. This is an effect not previously included in
studies of the LG mass, and hints at the deficiencies of our isolated physical models.

Applications of trained ANN using the observed LG parameters provide an estimate
of the mass of the MW and Andromeda (see Table 4). This is consistent with other mass
estimates, of which some recent examples are summarised in Table 5. Some mass estimates
of the LG are also summarised in [4], which tend to range from 2.5 – 5× 1012M�. There
is some tension in the results of the LG mass, with a divide between low estimates [29] [2],
and high estimates [19][28][31][37]. One potential source of discrepancies is the assumption
that MLG ≈ MMW + MM31. In [11], they find a significant mass difference between the LG
(4.2× 1012M�) and the sum of the two major galaxies (2.4× 1012M�). Part of this may be
due to the fact that dynamical methods that work on the basis of a binary system implicitly
include the mass of any bound satellites with the mass of the galaxy. Hence, the Milky Way
or Andromeda mass found by such a method would include all the satellites that move with
it, and thus push the mass estimates of the individual galaxies much higher. In [2] they find
a particularly low LG mass, at only 1.8 × 1012M�. It is notable however that the range of
r is much lower than in the other studies, being contained in the range 0.35 Mpc < r < 0.7
Mpc, whereas others (including this one) use r ∼ 0.77 Mpc. This may go some way towards
explaining the comparably low result. For example, taking a TA estimate for the LG mass
from the middle of their range, which would have r = 0.525 Mpc, and vr = 107.5 km s−1,
gives MTAΛ

= 2.3+1.6
−1.1× 1012M�, with the lower and upper bounds calculated using r = 0.35

Mpc and 0.7 Mpc respectively. The mean (using r = 0.525 Mpc) is just at the upper estimate
of [2] (1.8 ± 0.5 × 1012M�), and with significant overlap in errors in the TA are taken into
account. This suggests that the results in [2] may indeed be consistent with this paper (and
others in line with the TA) after all.

Given that there is only one LG, statistical methods cannot overcome the possibility that
the LG is a ‘special case’, occupying an less than maximally likely part of the distribution,
due to some hitherto unknown or unobservable parameters. The action of additional bodies,
as in [29] and [31], may have an effect as well, which could make the system highly sensitive
to configurations. It is also suggested in [29] that the uncertainties in the sun’s transverse
motion may be a significant source of error in determining correctly the relative motions;
it also however asserts that the TA must be systematically biased by a factor of about 1.5
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in order to match with their result, which is not seen in this study or in [19] for galaxies
with small transverse velocities. All of these mass estimation methods have significant error
bars, and overlap at the one or two sigma level. Refinement of these methods will be crucial
to identify a genuine tension between these results, which could point to the need to new
physical models.

When we apply the ANN trained on shear information, we have a mass estimate of
4.9+0.8+1.7

−0.8−1.3 × 1012M�, compared to a TAΛ estimate of 4.7+0.7+2.9
−0.6−1.8 × 1012M�. These are very

similar, although the scatter is significantly improved. Bayesian methods based on a cut of
data from the simulation also offer a competitive estimate of 3.1+1.3

−1.0 × 1012M�, although this
is forced to be use few parameters and thus effectively averages over any other influences such
as shear effects. (Making strict cuts on the all the parameters, including shear parameters,
would require a larger dataset than used in this paper; a Bayesian analysis based on cuts
on all parameters would require millions of halo pairs.) It is therefore unsurprising that the
Bayesian analysis produces a result similar to the ANN trained on just two parameters (see
Table 4). It is interesting to compare the ANN results with the Bayesian analysis on the
data; if we look at the distributions in Figure 6 we notice that the value estimated by the
shear ANN is not by any means surprisingly unlikely. The distributions in Figure 6 really
represent the distributions when shear effects are averaged over, and hence the probability of
the ANN mass estimate in the context of the marginalised probability distribution is related
to the probability of being in an LG-like local shear environment in the simulation.

To improve the estimates for the LG, one may wish to refine this estimate by using a
larger simulation, selecting more strictly “LG like” pairs, and using additional criteria such
as morphology as in [19]. Applications to the LG may also be complicated by uncertainties in
additional parameters. The transverse velocity (usually taken to be small) has been contested
recently, implying that strict cuts on vt in LG-like sets may not be justified, which jeopardises
the use of simple dynamical models such as the TA. In such a case it is particularly useful to
have methods such as ML; the ANN estimates have only slightly higher scatter for analyses
with no cut to vt as for sets restricted to low vt. The results of both the exploration of
the TA with a Cosmological Constant term (TAΛ) and the significance of the shear tensor
(Σij) indicate that successful dynamical estimates of mass are unlikely to be independent
of cosmological context. We note that taking into account both the cosmological model (in
order to model expansion terms such as Λ or more complex models such as modified gravity
or dark energy) and the larger scale structure (as traced by Σij) is crucial to understanding
how galaxies are interacting. Our methods are dependent upon ΛCDM simulations, and
thus are only applicable within this framework. Estimates of the LG mass in the context
of other cosmological models – alternative dark energy models, modified gravities, or warm
dark matter – could yield different results and must be explored separately using appropriate
simulations. It is possible that a greater understanding of galaxy formation physics will
inform such mass estimates even better, providing clues to possible boundary conditions
for dynamical arguments, or linking galaxy masses to their environments and cosmological
models in a more direct way.
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[11] González R.E., Kravtsov A.V., Gnedin N.Y., 2014, arXiv:1312.2587v2

[12] Hoffman et al., 2012, MNRAS, 425, 2049

[13] Kahn F.D. and Woltjer L., 1959, ApJ, 130, 705

[14] Knebe A. et al., 2011, MNRAS, 415, 2293

[15] Klypin A. et al., 2014, arXiv:1411.4001v2

[16] Kroeker T.L., Carlberg R.G., 1991, ApJ, 376, 1

[17] Lahav O., Lilje P.B., Primack J.R., Rees M.J., 1991, MNRAS, 251, 128
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