
1 

 

Life cycle assessment of a biomass CHP plant in UK: the Heathrow energy centre case 

Tagliaferri1, C., Evangelisti1, S., Clift2, R., Lettieri1*, P. 

1Department of Chemical Engineering, University College London, Torrington Place London 

WC1E 7JE, UK.   

2Centre for Environmental Strategy, the University of Surrey, Guildford GU2 7XH Surrey, UK.  

*Corresponding author: Email: p.lettieri@ucl.ac.uk 

Abstract  

Bioenergy has an important role to play in helping the UK meet its carbon target in 2050 and 

the European Renewable Energy Directive objectives for 2030. There are however 

uncertainties associated with the use of bioenergy, and whether or how much it contributes to 

green-house gas emission reductions. In order to help identifying environmental benefits and 

burdens associated with biomass use for energy production, an attributional life cycle 

assessment has been carried out of a biomass-fired CHP plant: the Heathrow Airport energy 

centre. This facility burns woodchips sourced from nearby forests providing 2 MWe of 

electricity and 8 MWth of thermal energy which delivers heat and cooling to Heathrow 

Terminal 2 and low temperature hot water to Terminal 5. A hot spot analysis is conducted to 

identify the process steps with the largest environmental impact, starting from the harvesting 

of the forest residue to the disposal of the boiler ash. A scenario analysis is performed to 

compare the impacts of the biomass plant against fossil alternatives and to identify which 

renewable energy sources, between biomass and MSW, should be prioritised for development 

and investment. The results show a reduction in GHG emissions from using biomass, with 

further benefits if the bottom ash is collected and re-used as a soil conditioner for land-

farming or forestry. The paper also discusses the treatment of biogenic carbon in the 

assessment. 
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1. Introduction 

The Climate Change Act, which was passed in the UK in 2008, strengthened the UK’s 

commitment to action to tackle climate change under the Kyoto Protocol (CCC, 2015). This act 

established a framework to develop an economically credible emissions reduction path and set 

the 2050 targets and carbon budgets. In 2009, the UK Government announced the first carbon 

budget (Budget 1, 2008-12) which was followed by three updates (Budget 2, 2013-17; Budget 

3, 2018-22; Budget 3, 2023-2027) (DECC, 2015). The most recent budget sets a target of 15% 

renewable energy by 2020, across the entire energy spectrum of electricity, heat and 
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transport. This implies that around 30% of the electricity supply (up from current 15.5%), 12% 

of the heat supply (currently 1%) and 10% of the energy supply for transport will have to be 

from renewable sources (UK Government, 2009). The UK, as a member of the EU, was a party 

to even more stringent commitments made during COP21: to reduce emissions of greenhouse 

gases (GHGs) by at least 40% relative to 1990 by 2030, going beyond the previous undertaking 

of 20% reduction by 2020 (LATVIA AND THE EUROPEAN COMMISSION, 2015). 

Although energy consumption is set to increase, renewable sources, including biomass along 

with wind, hydro and solar, are expected to play an important role in achieving carbon-

reduction targets. To maximise the potential of biomass to contribute to delivering the policy 

goals by developing a secure, competitive and affordable supply of fuel, the UK Government 

has been promoting a major expansion in the supply and use of biomass, as reported in the UK 

Biomass Strategy and the UK Bio-energy Strategy (DECC, 2012). Biomass supply in the UK is 

projected to reach approximately 800 TWh by 2030 (including domestic and imported 

supplies), representing a potential contribution of 10% to the overall primary energy input 

(DECC, 2012). Imported biomass will account for part of the supply, so that life cycle cost and 

environmental assessment of transport is essential. However, there is also significant potential 

to expand UK domestic supply with no detrimental effect on food supplies or land use if a 

sustainable approach to woodland management is applied (Kretschmer et al., 2011).  

The Heathrow Energy Centre Biomass plant (Heathrow, 2015) is one of the largest biomass 

initiatives of its kind in the UK. Opened in 2013, the 10 MW CHP plant can provide 2 MWe of 

electricity and 8 MWth of thermal energy to Heathrow Terminals 2 and 5, helping the airport 

meet its target of cutting carbon emissions by 34 per cent against 1990 levels (Morgan Sindall, 

2015). The biomass plant is fuelled with over 25,000 tonnes per annum of woodchip, currently 

supplied by LC Energy from sustainable virgin timber sourced within no more than 100 miles 

from the airport (LC Energy, 2015). The economic driver for the plant is the output of hot 

water for heating and chilling at terminals but some electrical power is also generated. 

Because the available temperature is relatively low, an Organic Rankine Cycle (ORC) system is 

used for power generation.  

Although studies on the thermodynamic and economical assessment of Organic Rankine cycle 

are wide spread in literature (Fergani, Touil, & Morosuk, 2016; Hassoun & Dincer, 2015; 

Lecompte, Huisseune, van den Broek, Vanslambrouck, & De Paepe, 2015; Yang & Yeh, 2015), 

knowledge on the environmental impact of this technology under a life cycle perspective for 

energy production is still very limited. Some studies address the greenhouse gas reduction of 
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the Organic Rankine cycle using solid waste in the far east (Imran, Park, Kim, Lee, & Usman, 

2015; Sedpho, Sampattagul, Chaiyat, & Gheewala, 2017; Sununta, Sedpho, Gheewala, & 

Sampattagul, 2017). However, to the authors’ knowledge no studies analysed the entire life 

cycle of an energy plant based on the ORC using biomass. Hence, this paperpresents a life cycle 

assessment of the Heathrow plant, from harvesting the wood in the forest, to production of 

heat and power from the plant, including disposal of the waste. The study is attributional, 

simply assessing the supply system, because the wood fuel already exists but is otherwise 

unexploited (see Section 2.1) so that a more complex consequential study is not appropriate. 

GHG emissions from the plant are compared against generation from fossil fuels using a steam 

turbine for electricity production. Furthermore, energy production from wood biomass 

through the ORC is compared to other technologies using renewables, including MSW, to 

provide insight into the relative advantages of different fuels and associated technologies as a 

basis for guiding financial investment.  

2. Methodology: Life cycle assessment 

Life Cycle Assessment is one of the most developed and widely used environmental 

assessment tools for comparing alternative technologies when the location of the activity is 

already defined (Clift et al., 2000; Clift, 2013). LCA quantifies the amount of materials and 

energy used and the emissions and waste over the complete supply chain (i.e. life cycles) of 

goods and services (Bauman and Tillmann, 2004). Moreover, it helps in determining the ‘‘hot 

spots’’ in the system, i.e. those activities that have the most significant environmental impact 

and should be improved in the first instance, thus enabling identification of more 

environmentally sustainable options (Clift, 2006).  

In LCA, a multifunctional process is defined as an activity that fulfils more than one function, 

such as a combined heat and power plant which produce electricity and heat at the same time 

(Ekvall and Finnveden, 2001). It is then necessary to find a rational basis for allocating the 

environmental burdens between the functions. The problem of allocation in LCA has been the 

topic of much debate (e.g. Clift et al., 2000; Heijungs and Guinée, 2007). The ISO standards 

recommend that the allocation should be avoided by “expanding the product system to 

include the additional functions related to the co-products” (ISO, 2006a; ISO, 2006b). This can 

be performed by broadening the system boundaries to include the avoided burdens of 

conventional productions (i.e substitution by system expansion) (Tillman et al., 1994; Eriksson 

et al., 2007; ILCD, 2010). The same approach is recommended by the UK product labelling 

standard provided that it can be proved that the recovered material or energy is actually put 
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to the use claimed (BSI, 2011). This approach is applied in this study. 

Following the methodological approach of Clift et al. (2000) for Integrated Waste Management 

(IWM), a pragmatic distinction is made between Foreground and Background, considering the 

former as ‘the set of processes whose selection or mode of operation is affected directly by 

decisions based on the study’ and the latter as ‘all other processes which interact with the 

Foreground, usually by supplying or receiving material or energy’. The burdens evaluated here 

are considered under three categories (Clift et al., 2000): direct burdens, associated with the 

use phase of the process/service; indirect burdens, due to upstream and downstream 

processes (e.g. energy provision for electricity or diesel for transportation); and avoided 

burdens associated with products or services supplied by the process (e.g. energy produced by 

the system).  

Currently more than thirty software packages exist to perform LCA analysis, with differing 

scope and capacity: some are specific for certain applications, while others have been directly 

developed by industrial organisations (Manfredi and Pant, 2011). In this study GaBi 6 has been 

used (Thinkstep, 2015).  

Table 1 shows the impact categories analysed here, they are further described in the 

supplementary information.  

 

Table 1. Impact categories and indicators analysed in this study.  

Impact categories Impact Indicator Acronym Characterisation model Units 

Climate change 
Global warming 

potential 
GWP 

CML 2001 baseline 

(IPCC 2007) 
kg CO2eq 

Acidification 
Acidification 

potential 
AP 

CML 2001 baseline 

(Hauschild and. Wenzel, 

1998) 

kg SO2eq 

Resources 

depletion (fossil) 
Abiotic depletion AD 

CML 2001 baseline 

(Guinée et al., 2001) 
MJ 

Eutrophication 
Eutrophication 

potential 
EP 

CML 2001 baseline 

(Hauschild and. Wenzel, 

1998) 

kg 

phosphate 

eq 

Photochemical 

ozone formation 

Photochemical 

ozone creation 

potential 

POCP 

CML 2001 baseline 

(Jenkin and Hayman, 

1999) 

kg ethane 

eq 
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Ecotoxicity 

(freshwater) 

Fresh water aquatic 

ecotoxicity 

potential 

FAETP 

USEtox model 

(Rosenbaum et al., 

2008) 

kg DCB1 

eq 

Ecotoxicity 

(terrestrial) 

Terrestric 

ecotoxicity 

potential 

TETP 

USEtox model 

(Rosenbaum et al., 

2008) 

kg DCB eq 

Human toxicity 
Human toxicity 

potential 
HTP 

USEtox model 

(Rosenbaum et al., 

2008) 

kg DCB eq 

Ozone depletion 
Ozone layer 

depletion potential 
OLDP 

CML 2001 baseline 

(WMO, 2003) 
kg R112 eq 

Note: 1 DCB: dichlorobenzenes; 2R11: trichlorofluoromethane. 

 

2.1. Forest residues 

This study focuses on forest residues as fuel. The wood chips used at Heathrow are 

sourced from normal harvesting and maintenance operations in forests within 100 miles from 

the airport. Biomass forest residue is defined here as the residue gathered during harvesting; it 

includes annual whole tree thinning, small roundwood, branches and stem tips (Whittaker et 

al., 2011). 

Forest residues are not produced specifically for use as an energy resource. Rather, they 

are a waste from the production of more valuable forest products, so that harvesting of 

biowaste for energy recovery does not affect its generation. However, there are other possible 

environmental implications (Cherubini et al., 2009). The reference scenario for the 

environmental assessment is current common practice: extraction is not cost-effective so that 

residues are thinned and left in the forest to decompose along with other debris (Whittaker et 

al., 2011). This can have a significant role in sequestering carbon in soil, dead wood and leaf 

litter, and also in restoring soil nutrients, whilst also improving the habitat and hence the 

biodiversity of the forest (DEFRA, 2008; Cherubini et al., 2009; Whittaker et al., 2011). 

Harvesting the residues has a direct effect in reducing these beneficial effects but the 

environmental consequences are difficult to quantify. Changes in carbon flux are particularly 

complicated because the potential to sequester carbon in the soil is dependent on former and 

current agronomic practices, climate and soil characteristics and is therefore site-specific. 

Furthermore, the timescale for decomposition of forest residues is many orders of magnitude 
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greater than the timescale over which they are used as fuel. Therefore as recommended by 

Whittaker et al. (2011), the assessment does not include the background effects on forests of 

extracting the residues. 

At the level of consequential effects, creation of a market for forestry wood waste can 

make the production of the main forest products more attractive, leading to an expansion of 

forest land to displace other land uses. This may have negative or positive environmental 

impacts, depending on the activities replaced. However, the consequences are even more 

uncertain, and differ between different scenarios. They are therefore not included in this 

assessment. 

Two different forest tree species are considered in this study: a Sitka spruce forest, 

which is representative for a softwood species and a poplar forest, which represents a 

hardwood species.  

2.2. Biogenic carbon 

Biogenic CO2 emissions are defined as ‘emissions from a stationary source directly resulting 

from the combustion or decomposition of biologically-based materials other than fossil fuels’ 

(US EPA, 2011). In this study, following the approach of Christensen et al. (2009) and Manfredi 

et al. (2011), the CO2 emitted from combustion of biomass at the Heathrow energy centre is 

considered neutral with respect to global warming because the sequestration of CO2 during 

forest regrowth offsets the emissions from burning the biomass. In effect, it is assumed that 

the biomass is sustainably harvested so that forest is considered to be at steady state with no 

changes to the carbon stock (Guest et al., 2013). This conforms with general practice followed 

when considering emissions due to biomass burning, and is in agreement with the guidelines 

of the Organization for Economic Cooperation and Development (OECD, 1991) for estimating 

national GHG emissions and sinks (OECD, 1991). The simplification is supported by the work of 

Cherubini et al. (2011): the emission factor for the CO2 emitted by burning forest residues 

integrated over the 20/100/500-year is negligible because the rotation period (i.e. the thinning 

cycle) for this kind of feedstock is usually less than 10 years (Kerr and Haufe, 2011).  

2.3. Goal and Scope definition 

Figure 1 shows the system considered in this paper. The overall aim of the study is to assess 

the environmental impacts associated with production of heat and power from forest residues, 

to identify the environmental “hot spots” in the system and to compare it with alternative 

energy systems. The specific goals are therefore to:  

1) Evaluate the environmental impacts of the Heathrow energy centre biomass plant, 
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through an attributional life cycle assessment;  

2) Analyse individual plant operations through a hot spot analysis;   

3) Conduct a comparative analysis considering different forest species and different 

devices for energy production, such as ORC and steam turbine, as summarized in Table 

1. 

4) Compare the carbon footprint of electricity production from forest residues against 

fossil sources and technologies and expand the analysis to also include other 

renewable feedstocks. Hence, the following options are considered (see Table 2): a 

combined cycle natural gas plant; a coal plant; the current UK electricity grid mix and 

the projected 2030 grid mix; and incineration of MSW. 

 

 

 

Figure 1. System boundaries. FWWC: forest waste wood chips.  

Table 2. Scenario description.  

Scenario Description Wood density 

S.0 
Baseline scenario for the Heathrow energy centre: 

thinned and chopped hardwood (i.e. Poplar) from 

239 kg/m3 dried 

matter 
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the forest is transported to the Heathrow 

combustion and ORC plant to produce electricity 

and thermal energy.  

S.1 Softwood (i.e. Sitka spruce) is used rather than 

hardwood in the Heathrow plant.  

169 kg/m3 dried 

matter. 

S.2 Hardwood forest residues are used to produce 

energy in a biomass boiler followed by a steam 

turbine  

239 kg/m3 dried 

matter 

S.3 Electricity is produced by incineration of municipal 

solid waste. The LCA model is based on the North 

Hykeham incineration plant in the UK (Evangelisti 

et al., 2015) with landfilling as the reference 

system replaced1.   

 

S.4 Electricity is produced using hard coal, based on 

published data (Thinkstep, 2015). 

 

S.5 Electricity is produced using natural gas according 

to Thinkstep (2015) 

 

S.6 The UK electricity mix is considered according to 

Thinkstep (2015). 

 

S.7 The 2030 UK electricity mix is considered, 

according to the National grid scenarios (National 

grid, 2014) 

 

Note: 1In the reference scenario MSW is considered to be sent to an engineered landfill, 

where biogas produced by the landfill is partially used to produce electricity (Thinkstep, 2015).  

 

The functional unit chosen for this study is 1 MWh of electrical output. The thermal energy 

also produced is treated as a co-product and included in the assessment through the avoided 

burdens corresponding to a conventional production system: a condensing boiler fired with 

natural gas.  

The forest growth is not included in this analysis as also reported in Sections 2.1 & 2.2. The 

life cycle of energy production from forest residues includes the following steps: harvesting, 

chipping, transportation of the forest waste wood chips (FWWC) to the CHP facility, electricity 

production in the combustion and ORC plant, reprocessing of the bottom ash to be used for 
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land-farming activities and disposal of the fly-ash through incineration (see Figure 1). No 

avoided burdens for bottom ash land-farming are considered, given that there are still 

uncertainties about the real amount of bottom ash which can be used as fertilizer. This is a 

limitation of this study. 

3. Life cycle inventory 

In this paragraph, the different steps analysed in Figure 1 are described.  

3.1. Harvesting and wood chips production 

Harvesting operations include the thinning and final cut of wood, which is accounted for in the 

model according to the Ecoinvent 2.1 database (Swiss Centre for Life Cycle inventories, 2011). 

All energy and materials requirements for harvesting, including the power for sawing and 

materials for machines building are also considered in the LCA model according to the 

Ecoinvent 2.1 database (Swiss Centre for Life Cycle inventories, 2011). These depend on the 

bulk density of the forest residue, which is different for S.0 and S.1 scenarios as shown in Table 

2. Chipping is assumed to be done at the forest using a mobile chopper, with a diesel 

consumption of 33.7 MJ and 23.8 MJ of diesel for 1 m3 of dry wood, for hardwood and 

softwood respectively (Swiss Centre for Life Cycle inventories, 2011). 

3.2. Wood chips transportation 

The wood chips are assumed to be transported 100 miles before reaching the processing 

plants. This is because the wood supplier of the Heathrow energy centre (i.e. LE Energy) 

ensures a maximum 100 miles distance from the sourcing point to the plant (LC Energy, 2015). 

A medium size truck Euro 5 with 12-14 t gross weight and 9.3 t payload with the associated 

diesel consumption have been considered according to Thinkstep dataset (2015).  

 
3.3. Biomass boiler 

The wood chip ultimate analysis is reported in Table 3 according to the Ecoinvent 2.1 database 

(Swiss Centre for Life Cycle inventories, 2011). The emissions due to the storage of FWWC at 

the Heathrow energy centre plant are not included in the assessment because the loading of 

wood at the plant is done continuously during the day to avoid long storage period (4-5 lorry 

per day) (Heathrow Energy centre, 2014). According to the data collected at the Heathrow 

energy centre (Heathrow Energy centre, 2014) a system of moving floors conveys the fresh 

wood chips in the combustion chamber operating at 950 ˚C; the biomass is converted in flue 

gas through a moving grate combustor rating 11.4 MWth.  

Table 3. Ultimate analysis of the wood chip used at the Heathrow energy centre biomass plant 
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(Heathrow energy centre, 2014). 

Ultimate analysis Values 

Wood chip moisture content 40-60 % 

Wood chip net calorific value [on total mass value] 10.3 MJ/kg 

C 47.9 % dry basis 

H 5.18 % dry basis 

O 44.6 % dry basis 

S 0.02 % dry basis 

N <0.3 % dry basis 

Ash 2.0 % dry basis 

The plant has a wood chip throughput of 100t/d (Heathrow Energy centre, 2014) and it is 

assumed that the plant operates for 7000 h/y (Swiss Centre for Life Cycle inventories, 2011). 

The parasitic loads of the biomass boilers are included in the inventory according to the 

Ecoinvent 2.1 database (Swiss Centre for Life Cycle inventories, 2011), which reports an 

electricity consumption equivalent to 1.5% of the fuel energy content. 

According to the data collected at the Heathrow energy centre (Heathrow Energy centre, 

2014) the thermal energy of the flue gas which is produced in the combustion chamber is then 

recovered in a heat exchanger by an organic thermal oil-Therminol 66 (6.2*10-5 kg per kg of 

wood chip). This is a clear, pale, yellow liquid consisting of modified terphenyl with a density of 

1005 kg/m3 and a molecular weight of 252 g/mol (Eastman, 2015b).  

The organic oil life time is assumed to be 10 years (Heathrow energy centre, 2015); hence, one 

change of the organic thermal oil is considered during the entire plant life of 20 years. A 

limitation is that no dataset was available for Theminol 66 oil production. However, benzene 

production from pyrolysis gasoline is based on a similar process (Eastman, 2015a), hence in 

this study it is considered as a proxy for the organic Therminol oil 66 production. To account 

for the difference in molecular weight between the organic oil and benzene, the production of 

5.8*10-5 kg of benzene per kg of wood chip treated is included in the LCA inventory (Thinkstep, 

2015). Bottom ash is assumed to be produced in the boiler. The mass of the bottom ash is 

estimated to be 0.4% of the total input fuel mass (Heathrow Energy centre, 2014). Bottom ash 

from boilers is disposed as wood incineration ash in land farming according to Ecoinvent , 2.1 

(Swiss Centre for Life Cycle inventories, 2011). 
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Figure 2. High level process diagram of the Heathrow energy centre biomass plant 

 

3.4. ORC and energy recovery 

According to the information collected at the Heathrow energy centre (Heathrow Energy 

centre, 2014), the energy content received by the thermal oil is then transferred to the silicon 

oil of the ORC cycle to produce energy; the oil and the ORC are both supplied by Turboden 

(Obernberger, Thonhofer, & Reisenhofer, 2002). The ORC model TURBODEN 18 CHP Split 

(Turboden, 2015) is installed in the Heathrow energy centre biomass plant and its parasitic 

loads are 87 kWe (Turboden, 2104). 

The silicon oil is a (organic) high molecular mass fluid with a lower boiling point temperature 

compared with water, which allows a Rankine cycle to recover heat from lower temperature 

sources, such as biomass combustion. The silicon oil in the liquid form is fed into the ORC 

system through a pump and it undergoes initial heating in the regenerator coil. Then, it is 

conveyed to the pre-heater and into the evaporator; here the organic oil coming from the 

combustion chamber increases the Silicon oil temperature until its evaporation point. The 

vapour generated expands into the turbine to produce electricity. Downstream of the turbine 

the vapour contributes to pre-heat the fluid in the regenerator. 

The plant produces both heat and power to be delivered to the buildings of Terminal 2 and 5 

of Heathrow airport. In particular, when working at full capacity, the net electricity output is 2 

MWe and the net thermal output, including also additional heat recovered from the cleaning 

section of the flue gas is 8 MWth (Heathrow Energy centre, 2014). The calculated net electrical 

and thermal efficiencies based on a biomass net calorific value of 10.3 MJ/kg are 16% and 64%, 

respectively. The heat is delivered as hot water to the terminal buildings at 95 ˚C (Heathrow 

Energy centre, 2014). 
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No data were available on the amount of the Silicon oil used in the ORC cycle. However, it is 

assumed that the life time of the oil is at least 10 years; hence, given a plant life time of 20 

years, the use of oil allocated to 1 MWh of electricity produced is considered negligible. 

 

3.5. Steam turbine  

Scenario S.2 assumes that the ORC system is substituted by a steam turbine. In this scenario, 

the thermal energy content of the thermal oil is used to produce steam which is then used to 

run the steam turbine according to literature data (Evangelisti et al., 2015). 

3.6. Gas cleaning and emissions to environment 

Once the energy content of the flue gas produced in the biomass boiler is removed in the heat 

exchanger by the thermal oil, the exhausted gas undergoes several cleaning stages. It then 

goes through an economiser for further recovery of heat; and a condenser. The parasitic loads 

for the gas cleaning (i.e. electrostatic precipitator for particle removal) is considered according 

to the value reported in Saiyasitpanich et al. (2007). The gases are than emitted to the 

atmosphere from the stack. The mass of the fly ash produced from the cleaning section is 

estimated to be 0.4% of the total input fuel mass (Heathrow Energy centre, 2014). Fly ash is 

treated in an incineration plant according to the Ecoinvent database.  

For the emissions at the stack, the emissions limits for boilers with nominal heat output less 

than 20MWth are here considered as reported in the literature (Amec, 2013). 

3.7. Incineration of municipal solid waste 

The municipal solid waste considered for the waste-to-energy plant (S.3 scenario) has a 

typical UK composition, as also reported in Evangelisti et al. (2015). The waste is considered to 

be transported from the transfer station to the incineration plant for 100 miles (Evangelisti et 

al., 2014). The incineration model is based on a designed plant in UK, located in North 

Heykenham. The inventory for this scenario is based on Evangelist et al. (2015).  

4. Impact Assessment results 

In the Impact Assessment phase, the emissions and inputs quantified in the Inventory phase 

are translated into a smaller number of impacts. The study focusses on six impact categories 

which are found to be most significant for the analysis of the Heathrow energy centre biomass 

plant, as shown in the normalized results presented in the Supplementary Information.  
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4.1. Heathrow energy centre biomass plant: Hot spot analysis 

Table 4 shows the results for the attributional LCA of the Heathrow energy centre biomass 

plant, for the hardwood forest residue (scenario S.0) and for the softwood forest residue 

(scenario S.1), per MWhe of electricity produced. Credits for the avoided burdens due to heat 

production from the plant are accounted considering an average technology (i.e. natural gas 

boiler). No credits are accounted for electricity production because a comparison with other 

electricity production scenarios is presented in Section 4.3 (in any case the avoided burdens 

for electricity production allocated to all scenarios would have been the same as the results 

are calculated for 1 MWh of production). 

In general, the impact categories of the fossil resource depletion (Abiotic Depletion 

Potential) and global warming potential are negative for the Heathrow energy centre biomass 

plant, compared with the current UK mix of technologies for heat production, bringing savings 

in terms of GHG emissions and fossil fuels. However other categories show a positive 

environmental impact.   

 

Table 4. Results of the LCA of the Heathrow energy centre biomass plant. Scenario S.0 and S.1. 

Functional unit: 1 MWhe produced by the plant.  

Impact Indicator S.0 (Baseline) 

Harwood - ORC 

S.1  

Softwood - ORC 

Abiotic Depletion (MJ) -1.19E+04 -1.11E+04 

Acidification Potential (kg SO2eq) 1.53E+00 1.91E+00 

Eutrophication Potential (kg Phosphate eq) 5.05E-01 6.25E-01 

Freshwater Aquatic Ecotoxicity Pot. (kg DCB eq) 1.04E+01 1.85E+01 

Global Warming Potential (kg CO2eq.) -6.85E+02 -6.30E+02 

Human Toxicity Potential (kg DCB eq) 6.28E+01 1.11E+02 

Ozone Layer Depletion Potential (kg R11 eq) 4.68E-06 1.17E-05 

Photochem. Ozone Creation Potential (kg Ethene eq) 4.25E-01 8.18E-01 

Terrestric Ecotoxicity Potential (kg DCB eq) 1.05E+01 1.09E+01 

 
For all the impact categories analysed, the use of hardwood forest residue, such as 

Sitka spruce, as a feedstock for the plant, shows a reduced environmental impact compared 

with a softwood forest residue, such as Poplar. This is because the bulk density of softwood 

residue (169 kg/m3 dry matter) is about 30% smaller than the hardwood residue density (239 

kg/m3 dry matter), hence affecting the amount of soft or hardwood needed to produce the 
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same amount of energy. The production of 1 MWh of electricity requires 1840 kg of 

woodchips, corresponding to 7.9 m3 (1.335 ODT1) of softwood, compared to 3.8m3 (0.908 ODT) 

of hardwood required. This in turn determines higher energy requirements in terms of diesel 

for the thinning and final cutting operations. As shown in Figure 3, the chopping of the forest 

wood determines a lower impact compared to thinning and final cutting operations for all 

impact categories and it is similar for the two forest species analysed. 

 

Figure 3. Hot spot analysis of the environmental impacts of the Heathrow energy centre 

biomass plant for Scenario S.0 (baseline). 

In terms of fossil resource depletion, the parasitic consumption of the boiler produces the 

highest impact (more than 30% of the total), followed by the harvesting and chipping 

operations (wood chopping, thinning and final cutting) which accounts for another 30%, due to 

the diesel consumed by the equipment used. This is also confirmed in the study by Whittaker 

et al. (2011) which reported harvesting and chipping as being the most significant process 

steps in terms of energy use and GHG emissions. Transportation results in a 18% impact for the 

abiotic depletion indicator: this is expected to become more relevant if the 100 miles distance 

between the plant and the forest increases.  

The acidification category is dominated by the direct emissions from the biomass plant (more 

                                                           

1 ODT: Oven dry tonne.  
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than 75% of the total AP) and this due to the assumption that the SOx emissions equal the 

emission limits for boilers.  

The reprocessing and spreading on the land of the bottom ash produced by the biomass boiler 

has a relevant impact in the eutrophication (40%) and ecotoxicity category referred to fresh 

water (35%), human (30%) and terrestrial ecotoxicity. For the latter, the reprocessing of the 

bottom ash is responsible for more than 90% of the total impact. In this study, no avoided 

burdens have been accounted for in the use of wood ash as a substitution for chemical 

fertilisers. 

The GHG emissions associated with the biomass plant are mainly due to the parasitic load of 

the plant (50%); transportation of the wood chips (20%); and harvesting and wood chips 

preparation (30%).  

For the human toxicity category, the highest impact is determined by the harvesting and 

chipping operations, which accounts for more than 60% of the total. This is mainly due to the 

direct emissions associated with the use of diesel in harvesting machines and mobile choppers, 

which do not usually have catalytic converters to reduce the emissions.  

 
4.2. Steam turbine as prime mover for the biomass plant 

In scenario S.2, a steam turbine is assumed to substitute the ORC system. Figure 4 presents the 

results obtained for the steam turbine, normalised to the impacts of Scenario S.0. For all the 

impact categories analysed, the steam turbine scenario shows a higher impact compared with 

the baseline. The lower electric efficiency of the steam turbine, determines a higher 

consumption of fresh hardwood for the production of 1 MWh of electricity- in this case, up to 

2280 kg of wood are required instead of 1840 kg supplied to the ORC baseline scenario. 

 

 
 

Figure 4. Environmental impact of Scenario S.2 (Steam turbine) compared to the baseline (S.0).  
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4.3. Alternative scenarios for electricity production 

4.3.1. Comparison with fossil alternatives 

In this paragraph, the biomass plant for power production (S.0) is compared to fossil 

alternatives to identify the greenhouse gas gain of renewable sources over conventional fossil 

processes for power production. 

The two fossil fuels scenarios included are a coal power plant and a natural gas power plant; 

these represent the marginal electricity production technologies for the UK electrical market 

(Evangelisti et al., 2014) and together, they supply the 70% of the current electricity demand in 

the UK (Thinkstep, 2015). Furthermore, two scenarios for the UK average electricity mix are 

considered: one representing the current mix (2015) and the other being a 2030 scenario 

developed by National Grid for the UK electricity market in the future (National grid, 2014). 

Figure 5 shows the results of the comparison of the baseline scenario, representing the 

Heathrow energy centre biomass plant, against the fossil alternatives, when 1 MWh of 

electricity is produced. The scenario referred to the baseline shows a lower GWP and AD 

impact compared with fossil power plants and with the current and future UK energy mix. The 

lower GWP of the renewable energy source is due to its biogenic carbon content that is 

accounted as zero CO2 emissions from combustion as previously explained. 

This is opposite in the human toxicity, ozone depletion and photochemical formation impact 

categories because of the higher emissions associated with wood chipping, ash disposal and 

chemical use of electricity production from biomass. 

For AP, the natural gas plant is the best option, because of the low nitrogen content in the gas; 

conversely the coal plant is shown to be the worst option as widely reported in literature. 

Finally, Figure 5 shows how the predicted energy mix of 2030 determines a lower 

environmental burdens than the 2015 electricity mix thanks to an increased share of 

renewables and nuclear in the next future. 
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Figure 5. Environmental impacts comparison amongst alternative scenarios for electricity 

production. A) GWP, b) AD, c) HTP, d) AP, e)POCP, and f) ODP.  
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not have to be considered as a competing alternative to wood biomass use as both feedstocks 

contribute to meet the renewable targets. However, this type of comparison identifies which 

are the preferred renewable feedstocks and associated technologies to be financially sustained 

as a first option in case of availability of public investment.  

Scenario S.3 is referred to a MSW incineration plant for electricity – only production, which is 

assumed to avoid the landfilling of the same amount of MSW (reference scenario).   
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Figure 6. Environmental impacts comparison amongst alternative scenario for electricity 

production. A) GWP, b) AD, c) HTP, d) AP, e)POCP, and f) ODP.  

 

Figure 6 shows the results of the comparison of the baseline scenario against the other 
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for the incineration and the wood left in the forest for the wood biomass used in a boiler. 

The results are opposite for the abiotic depletion, human toxicity and acidification potential 

indicators, where the waste-to-energy scenario shows a higher impact compared to the 

baseline. For the photochemical ozone creation potential and for the ozone layer depletion 

potential indicators, instead, the incineration of MSW is the best option for power production, 

compared with the biomass plant. The avoiding of MSW landfilling results in a negative effect 

of scenario S.3 in the former indicators, while the baseline scenario performed worse. This is 

mainly due to the direct emissions to the atmosphere in the harvesting and chipping phases.  

4.4. Discussion 

The hot spot analysis of the Heathrow energy centre biomass plant helps determining the 

process steps, which show the highest impact in the categories analysed. The parasitic loads 

for the boiler account for half of the GHG impact, while the other 50% is due to fuel production 

for harvesting and chipping operations. Transport distance considered in this study does not 

appear to be a key factor in the LCA analysis of the biomass plant. A 100 miles distance 

between the forests and the plant shows a contribution of 20% to the total GWP. However, 

when the biomass plant is compared with the incineration of MSW for electricity production 

(and then diverting waste to landfill), it is possible to notice that halving the fuel transport 

distance will reduce the impact by 10%, resulting in a GWP which is still far from the almost 

zero impact of the MSW incineration plant.  

The use of bottom ash as substituted fertiliser in landfarming activities would further reduce 

the environmental impact of the biomass plant. Bottom ash are produced in the biomass 

reactor and collected through the grate. They undergo a reprocessing stage which is mainly an 

inertization process, before being used as a potential source of potassium and phosphorous 

for landfarming. Pitman (2006) reported that ‘for most forest sites, a single wood ash 

application per rotation could replace all the nutrients lost after whole-tree harvesting’. If used 

as fertilisers, bottom ash could represent a valuable by-product of biomass plant which could 

be sold to the market. For an environmental perspective, this could represent a reduction of 

the environmental impact of the bottom ash reprocessing, because avoided burdens could be 

accounted for the substitution of chemical fertiliser with wood ash. However, scant data is 

available, as very few studies have been published on the effect of wood ash use on land 

farming.  

In this study, the GWP accounts for the uptake of the CO2 during forest regrowth crediting the 

CO2 emissions due to the burning of the biomass and therefore the emission factor for the 

biogenic CO2 is zero. This approach is valid for forest residue but it may not be applicable for 

other types of biomass. The type of residue assumed in this study is specific for the Heathrow 

energy centre biomass plant. As shown by Cherubini et al. (2011), bioenergy system with 
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longer rotational periods can have a significant impact on the GWP. Moreover, land-use 

change can become relevant if the assumption on a sustainable growth of the biomass is no 

longer valid (Cherubini et al., 2014).  

The forest residue left to decompose in the forest can contribute meaningfully to the GWP 

depending on the type of soil and weather conditions. On the other hand, the level of 

extraction of these residues can also alter the forest regrowth profile, because of the role of 

fertilizer compensation of the residues when left in the forest and lead to soil carbon 

permanently lost to the atmosphere (Cherubini et al., 2014). For the aim of this study, the 

decomposition of the forest residue left in the forest is considered negligible because of the 

different time frame of the baseline and reference scenarios. However, a further analysis 

should properly evaluate it for a full understanding of the environmental consequences of 

diverting forest residue from the forest for energy production.  

 
5. Conclusions 

This paper presents an attributional life cycle assessment of the Heathrow energy centre 

biomass plant. This is one of the largest biomass plants in the UK, producing 8 MWth of heat 

and 2 MWe of electricity for Heathrow Terminal 2 and 5. All the operations, from harvesting of 

the forest residue to boiler ash disposal, have been taken into account. The overall account of 

the GHG emissions of the biomass plant shows a negative balance (thus a positive effect for 

the environment) when avoided burdens due to electricity and thermal energy production 

from more conventional technologies are considered. Different results are obtained for the 

other impact categories considered. The organic Rankin cycle installed at Heathrow results in a 

lower environmental impact compared to an alternative steam turbine scenario, because of 

the higher efficiency of the ORC system. A comparison with other renewables (i.e. municipal 

solid waste) and non-renewable sources (i.e. natural gas and coal) for power production is 

carried out. While the biomass source results the best option for GHG emission savings, its 

impact can be higher for the categories related to ozone layer depletion due to ash disposal. 

Finally, further environmental impact reduction can be obtained if bottom ash is used for land-

farming activities, although further research needs to be done to assess its feasibility.  
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