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ABSTRACT

In this work we investigate the regime of amplitude bistability in the driven dissipative Jaynes-Cummings (JC)
model. We study the semiclassical equation dynamics in contrast to entangled cavity-photon and qubit quantum
trajectories, discussing our results in the context of an out-of-equilibrium first order quantum dissipative phase
transition for a single JC resonator. Finally, we compare the switching process between metastable states for the
two system degrees of freedom by examining a single realization of the random qubit vector in the Bloch sphere
next to the intracavity amplitude quasi distributions at given time instants.
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1. INTRODUCTION

The Jaynes-Cummings (JC) model provides a simple basis for describing the interactions between two coupled
quantum degrees of freedom: a quantized electromagnetic field and a two-level atom.1 In spite of its simplicity,
the atom-cavity coupling and the coupling to the driving field induce a strong nonlinearity which is revealed
progressively for increasing drive powers. The

√
n energy dependence is a unique feature of the model and

manifests itself both at and off resonance between the two coupled oscillators.2–4 A detuning between the
qubit transition frequency and the resonator frequency that is much larger than the coupling strength defines
the dispersive regime, which is extensively accessed when realizing circuit quantum electrodynamics (circuit
QED) experiments with the help of superconducting circuits.5 The Hamiltonian describing the interaction of
a damped two-level atom (with lowering operator σ−, raising operator σ+ and inversion operator σz such that
σz = 2σ+σ− − 1) with bare resonant frequency ωq and a driven damped cavity mode (with photon annihilation
and creation operators a and a† respectively) at bare frequency ωc reads6, 7

HJC = h̄ωca
†a+

1

2
h̄ωqσz + ih̄g(a†σ− − aσ+) + ih̄εd(a

†e−iωdt − aeiωdt), (1)

where ωd is the driving frequency, g is the atom-cavity coupling strength and εd is the driving strength of the
external coherent electromagnetic field. The photon loss rate from the cavity is 2κ (due to coupling of the
system to a zero-temperature reservoir), while the qubit is damped via spontaneous emission at a rate γ. The
dispersive regime is designated by a strong qubit-cavity detuning such that δ ≡ |ωc − ωq| ≫ g and consequently
λ ≡ g/δ ≪ 1. After adding dissipation, the reduced system density matrix obeys the Master Equation (ME)6, 7

ρ̇ = (1/ih̄)[HJC, ρ] + κ(2aρa† − a†aρ− ρa†a) + (γ/2)(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) (2)

There is a large body of work on the resonant and strong-coupling regime of the driven dissipative JC oscillator,
where driving induces a dynamical Rabi splitting due to the photon blockade effect.2 Spontaneous dressed-
state polarization is related to a second-order quantum phase transition, as it was demonstrated in.8 The
high excitation strong-dispersive regime features predominantly in the context of quantum nonlinear amplifiers,
squeezing associated with the parametric oscillator and the implementation of various non-demolition qubit
readout schemes. In our current work we perform a mean-field analysis and compare our results to fluctuation-
induced switching between metastable states in the driven-dissipative JC oscillator, which involves two quantum
degrees of freedom.
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2. MEAN-FIELD DYNAMICS

We will now investigate the semiclassical equations of motion in the dispersive regime. Using the ME 2 in a
frame rotating with the drive, and factorizing the expectation values of all operator products we arrive at the
following set of coupled differential equations:

dα

dt
= −(κ+ i∆ωc)α− igm− iεd, (3)

dm

dt
= −

(

γ

2
+ i∆ωq

)

m+ igαζ, (4)

dζ

dt
= −γ(ζ + 1) + 2ig(α∗m−m∗α), (5)

where α = 〈a〉, m = 〈σ−〉 and ζ = 〈σz〉. In the above semiclassical equations we have defined ∆ωc,q = ωc,q − ωd
are the cavity and qubit detuning parameters from the drive frequency. The mean-field dynamics are dominated
by limit cycles and are strongly dependent on the initial conditions. In Fig. 1 we are plotting a trajectory in
the phase space for the intracavity field for varying initial conditions of the Bloch vector. As we can observe,

Figure 1. Mean-field equation solutions for different initial conditions. (a) α(0) = 0, m(0) = 0 and ζ(0) = −1, (b)
α(0) = 0, m(0) = i/2 and ζ(0) = 0. Parameters: ωd/2π = 10.6100 GHz, ωc/2π = 10.5665 GHz, ωq/2π = 8.1831 GHz,
γ/(2κ) = 1/12, g/γ = 3347, εd/γ = 100.

the steady-state mean-field states, one with low mean photon number called ‘dim’ and one with a higher photon
occupation called ‘bright’, are not globally attracting points but are approached through a limit cycle fashion.
In the left panel the initial state is closer to the ‘dim’ steady state, which is approached in a spiral-like fashion
developing progressively a helical pattern. This behaviour is to be compared with the resonant case, where the
system stability exhibits a threshold behaviour (2|εd| = g).6 Above threshold the steady states are foci of limit
cycles with frequency ωcycl = (4g|εd|/κ)

√

1 − [g/(2|εd|)]2. In our case, with an a priori detuning between the
drive, cavity and qubit we do not expect a threshold behaviour for weak system excitations, close to the critical
point C1 from where amplitude bistability emerges.3

3. FORMULATION OF STOCHASTIC SCHRÖDINGER EQUATIONS

The effect of quantum fluctuation switching can be illustrated by invoking the concept of a Markov piecewise
deterministic process (PDP) unravelling the Lindblad ME we have defined in the previous section. The dynamical
evolution of the open system is formulated in terms of a stochastic process ψ(t) in the underlying Hilbert space.
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The Liouville ME describing the evolution of the density functional P [ψ, t] (with the formal correspondence
ρs(x, x

′, t) =
∫

P [ψ, t]ψ(x)ψ∗(x′)dψ, dψ∗) reads9

∂

∂t
P [ψ, t] = i

∫ [

δ

δψ(x)
G(ψ)(x) − δ

δψ∗(x)
G(ψ)∗(x)

]

P [ψ, t] dx (6)

+

∫

{

W [ψ|ψ]P [ψ, t] −W [ψ|ψ]P [ψ, t]
}

dψ dψ
∗
. (7)

The first term in the above equation describes the deterministic evolution and the second one reflects the

stochastic nature of the process (quantum jumps). The generator of the deterministic evolution time intervals
reads

G(ψ) = H̃ψ + iκ‖aψ‖2
+ i

γ

2
‖σ−ψ‖2

, (8)

where
H̃ = HJC − iκa†a− i

γ

2
σ+σ− (9)

is a non-Hermitian operator giving rise to non-unitary time evolution as a consequence of the quantum jumps
initiated by the Lindblad operators a and σ− featuring in the Markovian ME. With increasing time during the
coherent evolution of the wavefunction, its norm decays and a jump to a new state becomes increasingly likely.
Given that a jump occurred at time t and resulted in the wavefunction ψ, the probability for the next jump to

take place somewhere in the interval (t, t+ τ) is pJ[ψ, t] = 1 −
∥

∥

∥
exp(−iH̃τ)ψ

∥

∥

∥

2

.

The transition functional (stochastic evolution), corresponding to a jump from the anterior state ψ to the
final state ψ, assumes the form

W [ψ|ψ] = 2κ
∥

∥

∥
aψ

∥

∥

∥

2

δ







aψ
∥

∥

∥aψ
∥

∥

∥

− ψ






+ γ

∥

∥

∥
σ−ψ

∥

∥

∥

2

δ







σ−ψ
∥

∥

∥σ−ψ
∥

∥

∥

− ψ






. (10)

Assuming now many infinitesimal jumps, in contrast to discontinuous jumps generating derivatives of all orders,
leads to the so-called diffusion approximation which can be described by a Fokker-Planck equation. The process
concludes with the numerical solution of a stochastic Scrödinger equation of the following Itô form with a real
Wiener increment dW (t)

dψ(t) = D1[ψ(t)] dt +D2[ψ(t)] dW (t), (11)

with the deterministic (drift) term

D1[ψ] = −iHJC + κ

(

〈

a+ a†
〉

ψ
a− a†a− 1

4

〈

a+ a†
〉2

ψ

)

ψ +
γ

2

(

〈σ− + σ+〉ψ σ− − σ+σ− − 1

4
〈σ− + σ+〉2ψ

)

ψ

(12)
and the stochastic (diffusion) term

D2[ψ] =
√

2κ

(

a− 1

2

〈

a+ a†
〉

ψ

)

ψ +
√
γ

(

σ− − 1

2
〈σ− + σ+〉ψ

)

ψ. (13)

In the above expressions we have used the notation 〈C〉ψ ≡ 〈ψ|C|ψ〉. Under this formalism we estimate the

expectation value Mt ≡ E(〈ψ(t)|C|ψ(t)〉) =
∫

〈ψ|C|ψ〉P [ψ, t] dψ dψ∗ of a system operator C by the quantity

M̂t =
1

K

K
∑

k=1

〈

ψk(t)
∣

∣

∣C
∣

∣

∣ψk(t)
〉

, (14)

where k denotes the different realizations. In our work we use the explicit second order weak scheme approxi-
mating ψ(tn) by ψn (n = 1, 2...T/∆t) such that E[||ψn − ψ(tn)||] ≤ ∆t2 (weak convergence), where ∆t = T/N
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is the time step. This method avoids the determination and evaluation of derivatives of various orders of the
drift and the diffusion coefficients (unlike the Taylor schemes). According to the scheme proposed by Platen for
scalar noise:10

ψn+1 = ψn+
1

2
(D1[yn]+D1[ψn])∆t+

1

4
(D2[y

+
n ]+D2[y

−
n ]+2D2[ψn])∆W+

1

4
(D2[y

+
n ]−D2[y

−
n ])[∆W 2−∆t]∆t−1/2,

(15)
where yn = ψn+D1[ψn]∆t+D2[ψn]∆W and y±n = ψn+D1[ψn]∆t±D2[ψn]

√
∆t. Here, ∆W is a random variable

with a Gaussian distribution of zero mean and variance ∆t. The above formulation allows us to track the time
evolution of a pure state and calculate the average value of the system observables using the time varying density
matrix ρ(t) = |ψ(t)〉 〈ψ(t)| in the steady state.

4. THE DUFFING OSCILLATOR NONLINEARITY

We will now visit the Kerr effect, which is the starting point of the nonlinearity exhibited by the driven dispersive
JC oscillator.3, 11 After applying the dispersive unitary transformation for diagonalizing the system Hamiltonian,
the operator 1 following normal ordering assumes the form (up to quartic order in the small parameter λ = g/δ)

HD ≃ h̄(ωc + χ′)a†a+ h̄

[

ωq + 2χ

(

a†a+
1

2

)

]

σz
2

+ h̄χ′(a†a)2σz , (16)

where χ = g2(1 − λ2)/δ and χ′ = −g4/δ3. The above Duffing oscillator approximation is valid if 4λ2N ≪ 1,
where N stands for the total number of the system excitations. The corresponding Wigner distribution function
takes the form of the following series expansion, which explicitly demonstrates the build-up of nonlinearity for
increasing drive strength:

W (α, α∗) = 2
e−2|α|2

π 0F2(c, c∗, 2|ε̃d|2)

∣

∣

∣

∣

∣

1 +
z

D1

+
z2

2D2

+ ...

∣

∣

∣

∣

∣

2

, (17)

where z =
√
−8ε̃dα∗, 0F2 is a generalized hypergeometric function and Dn = c·(c+1)·. . .·(c+n−1). In the above

expressions ε̃d = εd/(iχ
′σz) and c = {κ+ i[ωc−ωd− (g2/δ)σz +O(g4/δ3)]}/(iχ′σz) with a fixed σz = 〈σz〉 = −1.

Based on Eq. 17 we can calculate the (modulus of) the first moment | 〈a〉 | for varying frequency and drive
strength, in a similar fashion to,11 which exhibits the characteristic coherent cancellation dip as opposed to the
square root of the photon number

√

〈a†a〉.
In Fig. 2 we are comparing the development of intracavity nonlinearity between the Duffing approximation

and the results obtained by solving numerically the quantum ME for increasing driving strength in the region
of weak bistability (in the phase space with α = x+ iy). The Wigner functions show a clear departure from the
Gaussian form that describes a coherent state. In this regime, the qubit does not participate significantly in the
system nonlinearity after having dressed the cavity with the corresponding quartic order terms that feature in
Eq. 16. The excitation path evidences the formation of a spiral that we will encounter later on in the regime of
the full JC oscillator bistability. The approximation of Eq. 16 breaks down as the qubit becomes more entangled
to the cavity and renormalizes the drive in the ME following the dispersive transformation.

5. CAVITY FIELD NEXT TO THE BLOCH SPHERE

We will now proceed to the region of the full JC nonlinearity where the Duffing approximation is not applicable
and the qubit degrees of freedom cannot be treated effectively as constants of motion. In Fig. 3 we are juxtaposing
the Q-function for the cavity field in the steady state, Q(x + iy) = 〈x+ iy|ρc,ss|x+ iy〉 extracted from the ME,
to the qubit vector projected onto the equatorial plane of the Bloch sphere for a single quantum trajectory in
the steady state. Each point corresponds to a single time instant along the trajectory. As we can observe, both
distributions capture the two squeezed semi-coherent metastable states. The scatter we observe in Fig. 3 (b)
is due to quantum fluctuations responsible for the switching between the two metastable states and the decay
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Figure 2. The Kerr nonlinearity. Wigner distributions in the region of C1 extracted from the Duffing approximation (DA)
and the full JC Master Equation (ME). Parameters: ωd/2π = 10.6100 GHz, ωc/2π = 10.5665 GHz, ωq/2π = 8.1831 GHz,
γ/(2κ) = 1/12, g/γ = 3347.
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Figure 3. Cavity and qubit distributions. (a) Intracavity joint quasi-probability Q-function Q(x+ iy) for ωd/2π = 10.5720
GHz showing two peaks corresponding to two semi-coherent states, indicating the presence of bimodality (b) Equatorial
plane projection of the Bloch sphere for a single quantum trajectory. Parameters: ωc/2π = 10.5665 GHz, ωq/2π =
10.1831 GHz, γ/(2κ) = 1/12, g/γ = 600, εd/(2κ) = 43/12.

of the unstable mean-field state. Fig. 3 indicates an excitation path where the qubit participates now very
actively in the switching for the selected driving parameters. Squeezing of the qubit distribution is an evidence
of nonlinearity and corresponds to the squeezing along the mean-field quadrature we observe for the intracavity
field. The qubit inversion and the intracavity field exhibit simultaneous bistability in the steady state, following
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the mean-field equations

αss = − iεd
κ+ i∆ωc









1 +
2C(1 + i∆ωc/κ)

−1(1 + 2i∆ωq/γ)
−1

1 +
n

n0(1 + 4∆ω2
q/γ

2)









−1

(18)

and

ζss = −
[

1 +
n

n0(1 + 4∆ω2
q/γ

2)

]−1

. (19)

In the above expressions, n is the intracavity photon number, C = g2/(κγ) is the co-operativity parameter and
n0 = γ2/(8g2) is the saturation photon number, the scale parameter of a saturable absorber at resonance. In
this case we can use the expression to which Eq. 18 reduces for ∆ωc = ∆ωq = 0, in order to appreciate the onset
of bistability (for C > 4)12

Y = X

[

1 +
2C

1 +X2

]

(20)

with the scaled variables X = n
−1/2
0 〈a〉 and Y = n

−1/2
0 (εd/κ). The photon number n0X

2 in the semiclassical
states tends to infinity for n0 → ∞ (good-cavity limit) and to zero for n0 → 0 (bad-cavity limit). In the strongly
dispersive regime, under the hierarchy of scales γ ≪ 2κ ≪ g2/δ ≪ δ ≪ ωc, a similar rôle is played by the
parameter nd = 4λ2: as λ → 0 semiclassical bistability involves very large photon numbers, while for ∆ωc = 0
the photon number is set by the ratio |εd/κ|2.3

The smallness of the parameter nd allows the expansion of the square root in the dispersive transformation
to yield Eq. 16 in the region of relatively weak nonlinearity. The corresponding limit is one of a weak coupling
in the sense that the appearance of nonlinearity requires a large photon number as g → 0.2
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Figure 4. Single quantum trajectory: dynamics and statistics. (a) Entanglement entropy for ωd/2π = 10.6005 GHz
calculated for the reduced qubit matrix via the relation Sq = −tr(ρss,q ln ρss,q). (b) Histogram for the average qubit
inversion 〈σz〉. The inset shows the equatorial plane projection in the Bloch sphere with the bright state distribution on
the right being approached via a limit cycle. Parameters: ωc/2π = 10.5665 GHz, ωq/2π = 8.1831 GHz, γ/(2κ) = 1/12,
g/γ = 3347, εd/(2κ) = 100/12.

As we can deduce from Fig. 4 the entanglement of the two degrees of freedom is different in the two metastable
states and increases with increasing system excitation N = a†a + σ+σ−. It is also interesting to note that the
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von Neumann entropy is significantly larger during the occupation period of the non-mean-field transient state.
The inset of Fig. 4 depicts the equatorial projection of the Bloch sphere with the bright state distribution being
clearly separated. Fig. 5 details the switching process through a change in the mixture of coherent states that

Figure 5. Decay of the unstable state during a switch to the bright state. Joint quasi-probability Q-function Q(x + iy)
for ωd/2π = 10.6005 GHz in a single quantum trajectory leading to an ‘up’ switch for two given time instants. The
process shows the decay of the unstable semiclassical state due to quantum fluctuations. The distribution on the left
corresponds to an earlier time. Parameters: ωc/2π = 10.5665 GHz, ωq/2π = 8.1831 GHz, γ/(2κ) = 1/12, g/γ = 3347,
εd/(2κ) = 100/12.

comprise the intracavity field distribution. The unstable mean-field state, which does not appear in the averaged
Q-function distributions in the steady state, decays and gives its place to a switch to the bright metastable
state. Switching events take place along an excitation spiral, owning to the detuning between the qubit and the
resonant cavity mode.

6. CONCLUSIONS

In this paper we have examined the effect of quantum fluctuations when studying the switching between
metastable states in the strongly driven dispersive Jaynes-Cummings model. This is an example of a quan-
tum dissipative oscillator where coupling to the environment plays a major rôle in the formation of macroscopic
states. We have used both the exact numerical solution of the Markovian Master Equation and single quantum
trajectories to which the former is unravelled. We have presented distributions in the Bloch sphere in equal
footing to quasiprobability functions for the intracavity amplitude and showed two metastable mean-field states
between which quantum fluctuation switching takes place. As the two quantum degrees of freedom are coupled,
the (bipartite) entanglement entropy varies significantly during the switching process.
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