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Abstract 

The history of Latin America involved extensive genetic admixture, particularly 

between Native Americans, Europeans and Africans. Although these continental 

contributions to the genetic make-up of the region have been explored previously 

with genetic data, more precise information about sub-continental contributions 

has proven elusive. Applying new haplotype-based approaches to ~600,000 

SNPs in ~7,000 Latin Americans from Brazil, Chile, Colombia, Mexico and Peru, 

this PhD thesis provides a comprehensive analysis of the sub-continental ances-

try and demographic history of Latin America at a resolution not previously 

achieved. Furthermore, using measurements on sampled individuals' physical 

appearances, I explore the impact of this fine-scale genetic structure on pheno-

typic variation across Latin America. 

To achieve these aims, I use a novel haplotype-based statistical technique that I 

compare to previously published haplotype-based and allele-frequency-based 

methods, using real data and simulations mimicking Latin American admixture. I 

show that this new approach provides a substantial increase in accuracy, allowing 

more precise inference about ancestral components at both regional and individ-

ual levels. Strikingly, Native American ancestry across Latin America mirrors the 

geographic locations of present-day Native groups. Furthermore, non-Native an-

cestries match to precise areas within the Iberian Peninsula and elsewhere, con-

sistent with historical records detailing migrations and highlighting previously un-

seen ancestry sources. For the first time in single-sampled individuals, I date the 

timings of these non-Native Post-Columbian genetic contributions, including 

newly identified recent contributions related to East Asia. Finally, I show how this 

sub-continental ancestral reconstruction correlates with variation in pigmentation 

and facial features in Latin Americans, unearthing new associations that could 

not be found with available techniques. 

Overall, I demonstrate how increasing the robustness and accuracy of fine-scale 

genetic structure analysis allows a comprehensive picture of the historical and 

biological diversity of Latin America, highlighting the impact of regional genetic 

variation on human phenotypic diversity. 
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Impact Statement 

This thesis provides the most comprehensive study to-date on the genotypic and 

phenotypic variation in Latin America. Studies of this kind are essential in order 

to obtain a complete picture of human biological diversity as the research on the 

subject has been strongly biased towards European-derived populations.  

I apply a novel statistical approach that quantifies fine-scale, within country ge-

netic sub-structure related to each major ancestry component (i.e. Native Ameri-

can European, Sub-Saharan African, others) within these recently admixed indi-

viduals. This approach is improved upon a ground-breaking study that character-

ized the fine-scale genetic structure of British population (Leslie et al. 2015). Here 

I not only demonstrate the improved robustness with real and simulated data but 

also develop a strategy to apply this kind of method in recently admixed popula-

tions. 

I also use these ancestry sub-components to elucidate the impact of regional ge-

netic variation on physical appearance, providing a template for future studies of 

phenotypic variation and regional genetic diversity. Such a template is vital given 

the ubiquity of recent admixture in nearly all world-wide human populations. 

Last but not least, I hope that disseminating these results to a wider audience 

could potentially impact the way Latin Americans conceive of themselves, extol-
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1 Introduction 

 

1.1 Overview 

Human populations have likely been exchanging goods, ideas and genes since 

the birth of mankind around 200,000 years ago (Hunter 2014). However, the mar-

itime navigation during the age of exploration between the 15th and the 18th cen-

turies allowed this exchange to increase in frequency and scale (Bethell 1984; 

Crawford and Campbell 2012; Kamen 2002), facilitating the interaction of popu-

lations that had been diverging for tens of thousands of years (Koehl and Long 

2018). The gene flow arising from these contacts created a “natural experiment” 

that offers an unique opportunity to assess how history shaped the genetic 

makeup of these populations (Creanza and Feldman 2016; Ruiz-Linares 2014). 

In an increasingly globalized world, this genetic exchange has become the norm 

and understanding its consequences is essential (Crawford and Campbell 2012; 

Pickrell and Reich 2014). 

The mixed populations that arose from these transatlantic migrations in the last 

few hundred years have been usually referred to as recently admixed populations 

(Seldin et al. 2011; Thornton and Bermejo 2014), and provided the first oppor-

tunity for human population geneticists to characterize and quantify genetic ad-

mixture (Chakraborti 1986). Only in the last decade, with the availability of larger 

datasets and the improvement of genotyping technologies, new statistical ap-

proaches have provided a significant increase in resolution to differentiate less 

diverged populations (Lawson and Falush 2012; Novembre and Peter 2016) and 

to study subtler processes of genetic admixture in numerous populations 

(Hellenthal et al. 2014; Moreno-Estrada et al. 2013). In addition, the characteri-

zation of these differences has allowed us to explore the impact of the genetic 

ancestry on the phenotypic diversity in both disease and non-disease related 

traits (Goetz et al. 2014; Tishkoff and Verrelli 2003). For these reasons, the study 
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of genetic admixture provides a perfect setting in which to explore the demo-

graphic history and the evolution of different populations throughout the world. 

Latin America probably contains the largest recently admixed populations in the 

world (Adhikari et al. 2016c), encompassing massive migrations of European con-

querors and enslaved Africans and their subsequent admixture with the native 

peoples of the continent. At a smaller scale, but not less important, migrations 

from other populations not involved in the initial colonization process have also 

contributed to the genetic diversity and the population structure of Latin Ameri-

cans (Crawford and Campbell 2012; Salzano and Bortolini 2002). These demo-

graphic processes have generated an extensive genetic and phenotypic diversity 

throughout the region (Salzano and Sans 2014), and the characterization of such 

diversity has unearthed patterns of mating, population structure and genetic an-

cestry as well as new insights into the genetic architecture of complex human 

traits, as evidenced by admixture mapping and Genome-Wide Association Stud-

ies (GWASs) (Adhikari et al. 2016c; Bustamante et al. 2011a; Pasaniuc et al. 

2011; Price et al. 2007; Wang et al. 2008; Wilkins 2006). 

In this thesis, I have implemented new statistical approaches for the analysis of 

dense genotype data, in an attempt to increase the ability to find and quantify 

more precisely the populations involved in the admixture processes, and to un-

derstand the impact of this fine-scale genetic ancestry on the phenotypic variation 

in Latin American populations. This study constitutes the most comprehensive 

analysis on the genetic admixture in Latin America to date and the strategies of 

analysis developed here can potentially be extended to any recently admixed 

population. 

I start this chapter with a brief overview of the demographic history of Latin Amer-

ica. Then I put into perspective some major findings from genetic analysis and 

the bearing of this history on phenotypic diversity in the region. Finally, I describe 

how these findings are being exploited to dissect the genetic architecture of com-

plex human traits and explain the possible impact of these discoveries in other 

areas of knowledge. 
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1.2 Demographic history of Latin America 

The term “Latin America” commonly refers to the areas of the Americas and the 

Caribbean where Spanish or Portuguese is the main language. The origin of this 

term has been debated by historians, some arguing that geographers in the six-

teenth century gave this name to the lands colonized by the Spanish and Portu-

guese kingdoms, while others state it was coined in France in the 1860s to group 

all the Latin-language-derived (Spanish, Portuguese and French) countries and 

territories (Meade 2016). For instance, Sánchez-Albornoz, one of the most re-

nowned Latin American history experts, often includes former French colony Haiti 

in his works (Sánchez-Albornoz 1994). However, I adhere to the former definition 

as it is useful from the point of view of genetics to separate Iberian America from 

Non-Iberian America, given the fact that several geographical, demographical 

and social factors contributed to genetic admixture being a particularly prevalent 

process across the Iberian colonies during and after the colonization period 

(Adhikari et al. 2017). 

This extensive genetic admixture between the native inhabitants of the continent 

and the Iberian conquerors started soon after the arrival of the latter in 1492, and 

continued with the enslaved Sub-Saharan Africans they brought with them. His-

torical records allow the recognition of the main demographic events such as the 

collapse of the Native American population and massive migrations of Europeans 

and Africans (Burkholder and Johnson 2003; Curtin 1969; Sanchez-Albornoz 

1974). In addition, the countries and regions established after the independence 

have also had different histories, including successive settlements in the vast ter-

ritories of the continent and new massive migrations from other parts of the world 

(Sánchez-Albornoz 1994), what makes the admixture processes more heteroge-

neous and difficult to describe (Figure 1.1).  
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Figure 1.1. Timeline of the demographic history of Latin America. 
Information has been extracted from Bethel (1984), Sánchez-Albornoz (1994), Kamen 
(2002) and Crawford and Campbell (2012). 
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1.2.1 The initial settlers and their collapse 

It is widely accepted that Native Americans are descendants of ancestral North-

east Asian peoples who entered around 15,000 years ago through Beringia, the 

land bridge that connected Asia and North America during the end of the last 

glaciation (Cavalli-Sforza et al. 1996; Dillehay 2009; Goebel et al. 2008; Meltzer 

2009; Reich et al. 2012). The opening of an ice-free corridor that allowed the initial 

dispersion of people into North-western America has been widely proposed 

(Pedersen et al. 2016), with these migrants reaching Tierra del Fuego (the south-

ernmost part of the continent) in only 1,500 years (Brandini et al. 2017). However, 

a growing list of coastal archaeological sites suggest that people arrived by boat 

and sailed down the Pacific coast before 14,000 years ago, giving a likely expla-

nation for the rapid expansion into South America (Erlandson and Braje 2011; 

Wade 2017). Moreover, the inverse correlation of genetic diversity with distance 

from the Bering Strait confirms a north-to-south migration (Ruiz-Linares 2014; 

Wang et al. 2007). As the populations started settling throughout the continent, 

they also became genetically differentiated (Bolnick et al. 2016). 

According to genetic data from current-day Native American populations, at least 

three migratory waves from Beringia took place. Most of the populations in the 

continent are thought to descend from the first population that crossed the land 

bridge, while the other two gene flow streams are restricted to North America 

(Reich et al. 2012). An ancient human specimen found in North America (Anzick-

1, ~12,600 years ago) shows more resemblance to modern Central and South 

American populations (Rasmussen et al. 2014), likely explained by the fact that 

the two latest migratory waves took place later.  

Ancient DNA studies have also suggested a fourth migration (Skoglund and Reich 

2016). It is likely that central and South American Native populations have re-

ceived additional contributions from other populations, like later migrations from 

Siberia in Central America or Austro-Melanesia (Raghavan et al. 2015; Skoglund 

et al. 2015), but there is little evidence and it is highly likely that most of the indig-

enous peoples in this region are descendants of the “first Americans”. 

Initial site and date densities using archaeological data and radiocarbon esti-

mates evidence low population sizes followed by a rapid increase in sites from 

13,000 to 9,000 years ago reaching peaks and abrupt declines likely linked to the 
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South American mega-faunal extinction, and only starting a steady growth after 

the predominance of agricultural subsistence (Goldberg et al. 2016). As they ex-

panded through the continent, they found highly heterogeneous environments 

and faced geographical barriers that caused isolation of groups, developing in the 

process a range of ways of life. Genetic data have provided additional evidence 

of the strong serial bottlenecks faced by these populations, since the initial settle-

ments in Beringia (Fagundes et al. 2008) to the Spanish arrival (Lindo et al. 2016; 

Llamas et al. 2016; O'Fallon and Fehren-Schmitz 2011). 

At the time of the conquistadores’ arrival around 1492, the distribution and num-

ber of Native Americans throughout the continent were uneven probably due to 

the fact that geography and environmental changes conditioned their dispersal 

dynamics and social configuration, ranging from hunter-gatherers to complex hi-

erarchical civilizations (Salzano and Bortolini 2002). Several historians have tried 

to establish the total size of Native populations at the moment of the conquest,  

and even though the estimates are highly variable, the size was likely to be 

around tens of millions (Denevan 1992; Sanchez-Albornoz 1974; Thornton 1987).  

Figure 1.2 shows a map we elaborated for a literature review where we consider 

the most relevant estimates and the current political borders, to provide an over-

view of the magnitude and the variability of indigenous populations throughout 

the continent at the moment of the initial contact with the Europeans (Adhikari et 

al. 2017). This variation likely reflects different levels of societal structure, with 

higher population densities usually coinciding with areas with more social and 

technological organization (e.g. big populated centres in Mesoamerica and the 

Andes), and lower densities with simpler structures, like those of hunter gatherer 

peoples (Adhikari et al. 2017; Bellwood 2004). 

Native American populations are thought to have collapsed during the first cen-

tury of the colonial period, with a reduction of approximately 90% of the population 

size, meaning that in several colonized areas with relatively small populations the 

natives were essentially annihilated (Thornton 1987). This catastrophe was pri-

marily caused by violence, famines and infectious diseases. Furthermore, the 

profound damage to the social structures of the indigenous peoples prevented a 

rapid population recovery (Sánchez-Albornoz 1994). 
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Figure 1.2. Estimated size of the Native American population at the time of Columbus’s 
first landing on the continent, in 1492. 
To facilitate comparison with other figures in this article, population size estimates are 
shown by country, as defined by current borders. The actual population density varied 
geographically independent of these modern political borders. The population of most of 
the Antilles has been grouped, as has that of Haiti and the Dominican Republic, which 
share the island of Hispaniola. The country associated with each American dependency 
is indicated in parentheses (DK, Denmark; FR, France; US, United States). Exact values 
and sources are provided in Adhikari et al. (2017), from which this figure was adapted. 
Generated by J.C. Chacón-Duque and K. Adhikari. 

 

Genetic studies in present-day Native populations have demonstrated that they 

have lower genetic diversity and higher differentiation between them compared 

to other continental groups (Wang et al. 2007). Compared to admixed Latin Amer-

icans, they usually show high affinity with populations from the same areas, sug-

gesting that the admixture processes took place with the local native communities 

(Section 1.3.2). 
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1.2.2 The Conquistadores: The Iberian imprint 

In April 1492, in the middle of the maritime race between the Kingdoms of Spain 

and Portugal for overseas expansion towards the west, the Genoese navigator 

Cristóforo Colombo (known in the English-speaking world as Christopher Colum-

bus) reached an agreement with the Catholic Monarchs, Queen Isabella I of Cas-

tile and King Ferdinand II of Aragon, in order to support his expedition to “discover 

and acquire islands and mainlands in the Ocean Sea” (Elliott 1984). Columbus 

landed with his crew later that year on an island in (what is currently known as) 

the Bahamas and soon after this finding, immigrants mostly from the Spanish 

kingdom started arriving (Kamen 2002).  

During the sixteenth century, these settlers expanded throughout the Caribbean 

and reached some coastal mainland, including settlements in the Pacific coast 

(Adhikari et al. 2017). Both kingdoms found themselves fighting for the sover-

eignty of some of the territories until they agreed to divide the territory according 

to a decision imposed by the Catholic Church through the “Treaty of Tordesillas”, 

which conferred to Portugal the territories on the west side of an established me-

ridian, including all colonies in the Atlantic Ocean and West Africa, but only a part 

of the south-east of South America (Elliott 1984; Salzano and Bortolini 2002). This 

division is still reflected today, with the only Portuguese-speaking country in Latin 

America being Brazil. 

Perhaps the most determinant causes of the extensive genetic admixture in these 

early stages of the colonization period was the male-biased migration from Eu-

rope (i.e. the Iberian Peninsula), favouring the intermixing with Native -and some-

times Sub-Saharan African- women in a patriarchal fashion (Kamen 2002; Lavrin 

1992; Morner 1967). This pronounced bias and its widespread pattern amongst 

several populations in Latin America has been corroborated using genetic data, 

evidencing the impact of this phenomenon during the foundation of current Latin 

American populations (Section 1.3.3). Another element favouring higher rates of 

interethnic matting was the fact that the establishment of the colonies usually co-

incided with the presence of Native American settlements, precisely because of 

the nature of the colonization process, finding in these peoples sources of labour 

and taxation (Salzano and Bortolini 2002; Sánchez-Albornoz 1994). 
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Latin American populations grew at a rapid pace, and the admixed individuals 

quickly outnumbered the people of entirely European, Native American or African 

descent (Sánchez-Albornoz 1994). Even though the migration of Spanish and 

Portuguese people has never stopped, and other Europeans have also immi-

grated in different historical periods up to the present (Kent 2016), these contri-

butions have been more restricted geographically and have had a less prominent 

impact on the make-up of most of the populations (Sections 1.2.4 and 1.3.2). 

It has also been of especial interest for historical research (and particularly rele-

vant for the topic of this thesis) to further identify the precise origins of the immi-

grants. Vast amounts of information about the emigrations that took place out of 

Spain during the colonial period have been compiled and catalogued (Boyd-

Bowman 1964; Boyd-Bowman 1976; Boyd-Bowman 1985), pointing to a predom-

inant southern Spanish origin of the settlers, Seville and Huelva being the most 

common places of origin. It is estimated that ~37% of the immigrants during the 

colonial period were Andalusians, followed by people from Extremadura and Cas-

tilian provinces, which altogether account for another 46%. Only ~3% of the trav-

ellers were from outside Spain. In Section 1.3.2 I explain the main findings in this 

regard from genetic studies, and in Chapter 5 (Section 5.3.2.3) I describe how 

our results confirm these historical accounts for the first time. 

One controversial topic of research, considers the possibility that considerable 

numbers of non-Christians who were being persecuted by the Catholic Monarchs 

at the moment of the conquest arrived to the New World clandestinely, given the 

fact they were formally forbidden to migrate (Sachar 1994). The records are 

scant, but Y-chromosome genetic data have suggested a likely contribution of 

these populations to the colonization (Section 1.3.2). However, caution must be 

taken with these results, as the genetic structure of the Iberian populations is 

highly complex and this signal could also be related to earlier events (Botigue et 

al. 2013; Moorjani et al. 2011). 

 

1.2.3 The Slaves: The involuntary African legacy 

The trade of Sub-Saharan African enslaved people was initiated by the Spanish 

and the Portuguese early in the colonial period and was intensified to mitigate the 

loss of the labour force due to the collapse of the native population (Curtin 1969; 
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Thomas 1997). After the treaty of Tordesillas, the Portuguese gained control over 

the African settlements and around ~1,530 took control of the supply of slaves 

(Sánchez-Albornoz 1994). Most calculations suggest that more than 5 million Af-

ricans arrived in Latin America, with more than 4 million arriving specifically in 

Brazil (http://www.slavevoyages.org, Figure 1.3). 

 

 

Figure 1.3. Estimated number of Sub-Saharan African slaves transported to the Ameri-
can continent. 
To facilitate comparison with other figures, estimates are shown by country, as defined 
by current borders. Adapted from Adhikari et al. (2017). Generated by JC Chacon-Duque 
and K Adhikari. 

 

The main sources of the slave trade were located in territories nowadays com-

prising Senegal and The Gambia on the West Coast and the Gulf of Guinea, and 

from the 17th century from Angola and Mozambique as well (Sánchez-Albornoz 

1994). At the beginning of the colony the Spanish introduced significantly more 

slaves than the Portuguese, but this changed through time, with Brazil receiving 

http://www.slavevoyages.org/
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more Sub-Saharan Africans at the later stages of the colonial period (Curtin 

1969). This could explain the increased South / East African ancestry in Brazil 

observed with genetic data (Section 1.3.2 and Chapter 5, Section 5.3.2.5). 

 

1.2.4 Latin Americans: Up to the present 

In the final days of the colonial era and during and after independence in the 19th 

century, Latin American populations kept increasing due not only to continued 

immigrations and a recovery of Native American populations, but also to internal 

expansions of local (often admixed) populations looking for new economic activi-

ties (Crawford and Campbell 2012; Parsons 1968; Sánchez-Albornoz 1994). 

Although in some countries the independence processes caused a relaxation of 

the prohibitions regarding interethnic relations and promoted the equality of citi-

zens (Loveman 2014; Wade 2009), in some others further European immigration 

was encouraged in order to “whiten” the populations (Stepan 1991). The latter 

approach was quite successful in Southern South America, where some of the 

biggest European exoduses of the late 19th and the early 20th centuries found 

their destination (Sánchez-Albornoz 1994). These individuals were mostly of 

Spanish or Portuguese origin, but also considerable amounts of Germans and 

Italians made the journey. 

Furthermore, migrants from other parts of the world also moved to America during 

the 19th and the early 20th centuries. In the case of Latin America, considerable 

numbers of East Asians (mainly Chinese underpaid labourers) have settled along 

the Pacific coast (Crawford and Campbell 2012; Romero 2010), and their genetic 

contribution has been detected in several countries (Section 1.3.1). Other migra-

tions have been more restricted, like those from the former Ottoman empire 

(Fawcett and Posada‐Carbo 1997). 

The internal expansions have also played a huge role in the demographic dynam-

ics and the diversification of the populations in the region especially through the 

occurrence of deep and successive founder effects (Koehl and Long 2018). Tak-

ing Colombia as an example, its geographical features created the conditions for 

small groups to settle and grow in isolation for centuries (Carvajal-Carmona et al. 

2000). However, the steady growth of these populations and the desire to find 

better opportunities elsewhere, motivated individuals from these populations to 
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venture into new lands. These pockets of isolation became suddenly an important 

source for the settlement of a large portion of Western Colombia (Bedoya et al. 

2006). 

The following statement is a fragment of a memorial sent to the governor of the 

province of Antioquia dated on August 27th 1789, in which inhabitants of some 

villages, Rionegro (where I was born) and Marinilla (where I am from), explain 

their reasons to pursue the colonization of pristine and prosperous lands (Parsons 

1968):  

“We, the undersigned vecinos of the ciudad de Rionegro and the Valle de San 
Jose de Marinilla, come before you in all humility… and declare: We have been 
led to make this move by our extreme poverty in material goods and the scarcity 
of lands, either to till as our own or on which to build homes for ourselves and our 
families. These conditions have been caused by the rapid increase of our people. 
Thus we have come, penniless, to these mountains of Sonsón, where there is 
good soil, ample pasture for our stock, salines and rich gold mines, to make our 
homes and erect a new town. This will bring benefits both to ourselves and to the 
Royal Treasury… “ 
 

This is a reflection of the motivations followed by Latin Americans to expand 

through the continent without major resistance from the authorities, adding an-

other level of complexity to the study of their genetic backgrounds and their pop-

ulation structure, as genetic drift may have played a major role. 

 

1.3 Genetic history of Latin America 

The history of the region has been complicated and in many cases the records 

are scarce. Population genetics is providing a unique opportunity to contrast, de-

bate and reconstruct past demographic events from a different and (hopefully) 

less biased perspective. Even though molecular and statistical approaches are 

constantly improving the way we gather and analyse the data, it is important to 

consider that most of the samplings to date have not covered the region homog-

enously and as such the inferences about the genetic history of Latin America 

may be highly population specific. Bearing this in mind, I describe the most im-

portant findings on the genetic history of the region, paying special attention to 

sub-continental ancestry, which is the central topic of this thesis. 
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1.3.1 Continental ancestry 

A considerable number of surveys of genetic diversity have demonstrated that 

present-day Latin Americans display a large variation in Sub-Saharan African, 

European and Native American ancestry proportions both within and between 

populations. Several reviews have summarized the information available in this 

respect (Adhikari et al. 2017; Salzano and Bortolini 2002; Salzano and Sans 

2014). In Adhikari et al. (2017), we made a careful collection of ancestry estima-

tions all across the American continent, including Latin American countries. We 

only used information from studies reporting at least 30 Ancestry Informative 

Markers (AIMs, defined as genetic markers showing high differences in allele fre-

quencies between parental populations (Parra et al. 2004; Pfaff et al. 2001)) and 

more than 25 samples, in order to filter the most reliable estimates. Figure 1.4 

visualizes a summary of these data with averages for each country weighted by 

the size of every population within a country. 

 

 

Figure 1.4. Average genetically estimated Native American, European and Sub-Saharan 
African ancestry for samples from countries in Latin America. 
Information for the figure taken from Adhikari et al. (2017). When multiple studies were 
available for a territory, an average across studies was obtained by weighting based on 
the size of each population sampled (All this information is displayed and described in 
detail in the Supplementary material of the review paper). Data collected and figure elab-
orated by JC Chacon-Duque. 

 

We also compared these averaged genetic ancestry proportions with the fre-

quency of equivalent categories based on self-perceived ancestry as reported in 
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population censuses (and other surveys) data. We found a strong and significant 

correlation, suggesting a relationship of this perception with the variation in phys-

ical appearance caused by genetics, although other factors may influence it con-

siderably (Adhikari et al. 2017). 

The increasing availability of genetic data has allowed us to describe the genetic 

ancestry of several populations and contrast it with different aspects of the demo-

graphic history of their geographic locations. Furthermore, the increase in density 

of autosomal markers has also allowed the execution of more precise individual 

ancestry analyses, revealing a striking population structure in Latin America, 

where these individual estimations usually extend across the whole range of var-

iation of the three main continental ancestries (Adhikari et al. 2016c; Browning et 

al. 2016; Bryc et al. 2015; Conomos et al. 2016; Eyheramendy et al. 2015; Han 

et al. 2017; Homburger et al. 2015; Johnson et al. 2011; Kehdy et al. 2015; 

Moreno-Estrada et al. 2013; Pena et al. 2011; Ruiz-Linares et al. 2014; Silva-

Zolezzi et al. 2009; Wang et al. 2008). Figure 1.5 displays individual ancestry 

estimations calculated using genome-wide data for ~6,300 Latin American indi-

viduals from the CANDELA consortium (this is the same dataset used in this the-

sis, described in Section 1.6), revealing the extent of variation in ancestry at the 

individual level. 

This individual variation has been shown to be correlated with population census 

size, suggesting that recent events, like population expansion and urbanization, 

have impacted the genetic make-up of Latin American populations (Ruiz-Linares 

et al. 2014; Wang et al. 2008). As described in Section 1.2.4, admixture was ex-

tensive at the beginning of the colonial settlement but this dynamic changed over 

time, as populations started splitting and becoming isolated, and in many cases 

not receiving considerable amounts of immigration up to the present (Bedoya et 

al. 2006). 

East Asian continental ancestry have also been detected, but so far it is restricted 

to countries which are known to have received considerable immigration of East 

Asian (mainly Chinese) workers starting in the 19th century, like Costa Rica 

(Campos-Sanchez et al. 2013) and Peru (Homburger et al. 2015; Sandoval et al. 

2013). 
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Figure 1.5. Proportion of individual Sub-Saharan African, European and Native Ameri-
can ancestry estimated from 93,328 SNPs typed in 6,357 Latin Americans from five coun-
tries (Mexico, Colombia, Brazil, Peru and Chile). 
The mean admixture estimates are given in the edges of the triangle plots. Figure modi-
fied from Adhikari et al. (2016a and 2016c).  

 

1.3.2 Sub-continental ancestry 

Genetic studies have also made it possible to explore patterns of ancestry at sub-

continental level, allowing us to narrow down the search for the origins of the 

ancestors of current Latin Americans. Perhaps one of the most significant findings 

has been the confirmation that the variation in Native American sub-components 

of ancestry in admixed Latin Americans matches the regional variation in ancestry 

detected in present-day Native groups, interpreted as an evidence of “genetic 

continuity” since pre-Columbian times (Adhikari et al. 2016c). It suggests a sce-

nario where local indigenous populations were somehow assimilated into the pop-

ulations being created as a product of admixture. This continuity was first demon-

strated using mtDNA, showing how the haplotypes of admixed Latin Americans 

are highly similar to those carried by Native American populations inhabiting the 

same areas (Carvajal-Carmona et al. 2000; Marrero et al. 2007). The former 



CHAPTER 1. INTRODUCTION 

38 

study, in which mtDNA was predominantly Native American (see section 1.2.2 for 

an explanation of the sex bias), showed that the genetic distance between the 

admixed people from the region of Antioquia (Colombia) and the neighbouring 

Native American Embera population is not statistically significant, suggesting a 

genetic continuity of these populations, with the founder women likely coming 

from the same area (Carvajal-Carmona et al. 2000). 

This trend has also been corroborated using genome-wide data, from microsat-

ellites to dense SNPs (Conley et al. 2017; Homburger et al. 2015; Johnson et al. 

2011; Moreno-Estrada et al. 2014; Moreno-Estrada et al. 2013; Price et al. 2007; 

Romero-Hidalgo et al. 2017; Via et al. 2011; Wang et al. 2008). The first attempt 

to describe this variation in Native American sub-components at the autosomal 

level was done using microsatellites and revealed increased similarity between 

the Native American component in different admixed populations and Native 

groups located in geographic proximity (Wang et al. 2008). 

A method called Ancestry-Specific Principal Component Analysis (AS-PCA), has 

been applied in several Latin American populations and has provided an increase 

in resolution, allowing the use of Principal Component Analysis (PCA) to investi-

gate differences at the sub-continental level (Browning et al. 2016; Conley et al. 

2017; Homburger et al. 2015; Moreno-Estrada et al. 2014; Moreno-Estrada et al. 

2013). This approach can be considered partially haplotype-based as it uses 

phased data for inferring local continental ancestry in order to mask specific an-

cestries (more details about the differences between allele-frequency-based and 

haplotype-based approaches are given in Chapter 2). It performs a variant of PCA 

that allows for missing data, taking as input a masked dataset only containing 

information for a given continental ancestry. However, PCA does not explicitly 

quantify proportions of sub-continental ancestry, and the patterns of variation can 

also be influenced by other factors different to admixture, especially genetic drift 

or statistical artefacts due to the local ancestry estimation prior to the AS-PC anal-

ysis (Browning et al. 2016). 

When AS-PCA is performed in the Native American component in populations 

from Central and South America, it consistently shows that the ancestry of these 

populations is most closely related to natives sampled in the same areas (Conley 

et al. 2017; Homburger et al. 2015; Moreno-Estrada et al. 2013). This structure 
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has been detectable even within a country, Mexico, suggesting that the degree 

of population structure present in Native American populations is greater than 

was initially thought (Moreno-Estrada et al. 2014). 

Unlike the predominant differentiation of Native American sub-components 

throughout the region, most of the European ancestry in Latin Americans can be 

traced to the Iberian Peninsula (Browning et al. 2016; Bryc et al. 2015; Conley et 

al. 2017; Montinaro et al. 2015), with some Italian and North-western European 

ancestry detected in Argentina and Brazil (Homburger et al. 2015; Kehdy et al. 

2015). Until now, only analyses based on Y-chromosome haplogroups have al-

lowed detection of ancestry from specific regions in the Iberian Peninsula. A study 

carried on a population sample from Antioquia (North-western Colombia) found 

that Y-chromosome haplogroups point to a predominant southern Spanish origin, 

with significant contributions from haplotypes more commonly found in northern 

Iberian (i.e. Basque Country) and Jewish (including Sephardic) populations 

(Carvajal-Carmona et al. 2000). However, given the heterogeneous background 

of Iberian populations (see Section 1.2.2 for historical details), it is not possible to 

know whether this Semitic heritage was carried by admixed Spanish or by mem-

bers of these populations (Botigue et al. 2013; Moorjani et al. 2011). Similar to 

the study conducted in Colombia, a Y-chromosome characterization in Brazil 

showed that the most frequent Y-chromosome haplogroup has its highest fre-

quencies in Portuguese and Italian populations (Abe-Sandes et al. 2004). 

Sub-Saharan African ancestry has also shown some variation at the sub-conti-

nental level. Most of the studies carried out to date have found a predominant 

contribution of non-Bantu populations in North-west and West-central Africa as 

major sources of ancestry, with smaller contributions from East and South African 

areas (Bryc et al. 2010; Conley et al. 2017; Fortes-Lima et al. 2017; Kehdy et al. 

2015; Mathias et al. 2016; Moreno-Estrada et al. 2013; Tishkoff et al. 2009). Fur-

thermore, some regional variation has been reported, with a higher amount of 

South and East African ancestry in Brazil (De Mello Auricchio et al. 2007), and 

more exactly in the southern part of the country (Kehdy et al. 2015), consistent 

with historical records (Section 1.2.3). 

Overall, these findings highlight the high level of population structure of Latin 

American populations. More specific details about several studies mentioned in 
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this section can be found in Chapter 5 (Section 5.3.2), where I describe the major 

findings of this thesis in terms of sub-continental ancestry, demonstrating how our 

techniques increase the level of resolution and unveil new details about the de-

mographic history of Latin America.  

 

1.3.3 Sex-biased mating 

The strong male bias in migration at the beginning of the colonial settlements 

made the mating between European men and Native women a common feature 

(Section 1.2.2). This sex-biased mating has been uncovered by studies involving 

uniparental (mtDNA and Y-chromosome) markers, with several Latin American 

populations tracing most of their paternal ancestry to Europeans and their mater-

nal ancestry to Native Americans (Alves-Silva et al. 2000; Bedoya et al. 2006; 

Carvajal-Carmona et al. 2003; Carvajal-Carmona et al. 2000; Green et al. 2000; 

Grugni et al. 2015; Ruiz-Linares 2014). The common observation across many 

populations is that the proportion of European ancestry using Y-chromosome 

markers is consistently larger than the proportion estimated with mtDNA. Con-

versely Native American and African ancestries are larger when estimated with 

mtDNA markers (Figure 1.6, (Adhikari et al. 2016c)). 

Autosomal data have allowed comparative analysis between X-chromosome and 

autosomal markers, displaying lower estimates of European ancestry in the X-

chromosome compared to the autosomal estimates (Figure 1.6), since women 

contribute two X-chromosomes to the offspring while men only contribute one 

(Bryc et al. 2015; Conomos et al. 2016; Homburger et al. 2015; Kehdy et al. 2015; 

Moreno-Estrada et al. 2013; Wang et al. 2008). 

The sex bias in admixture has been reported in several recently admixed popu-

lations (Goldberg and Rosenberg 2015; Goldberg et al. 2014; Webster and 

Wilson Sayres 2016; Wilkins 2006), suggesting that this is a common scenario 

during colonization. 
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Figure 1.6. Proportion of European, Native American and Sub-Saharan African ancestry 
estimated with mtDNA, Y-chromosome, X-chromosome and autosomal markers in 13 
Latin American population samples. 
This figure is modified from Wang et al. (2008) and Ruiz-Linares (2014), and published 
in Adhikari (2016c). Abbreviations: CVCR (Central Valley of Costa Rica), RGS (Rio 
Grande do Sul). 

 

1.3.4 Dating the admixture 

Statistical modelling of linkage disequilibrium using genetic data (details in Chap-

ter 2), can be used to estimate the time since admixture events (Gravel 2012; 

Hellenthal et al. 2014; Loh et al. 2013; Patterson et al. 2012; Price et al. 2009). 

These estimates have been found to be consistent with dates for major demo-

graphic events taking place in the areas studied (Adhikari et al. 2017).  

Estimates for the Caribbean (~16 generations ago) are older than those calcu-

lated in mainland Latin America (~9 to 14 generations), which, according to his-

torical accounts, was populated later (Homburger et al. 2015; Moreno-Estrada et 

al. 2013; Wang et al. 2008). Moreover, genetic data have also evidenced the 

complexity of these demographic events, suggesting significant influx of immi-

grants for long periods (Bedoya et al. 2006) or multiple admixture events involving 

subsequent flow of European or Africans, depending on the country examined, 

usually matching with their historical records (Homburger et al. 2015; Kehdy et al. 

2015; Moreno-Estrada et al. 2013). Overall, these results are further evidence for 
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the complex demographic history of the region and its striking population structure 

(Adhikari et al. 2016c). 

 

1.4 Genetic and phenotypic variation in Latin America 

Genetic variation has long been recognized as an important factor underlying 

phenotypic diversity between human populations (Haldane 1940). The extent of 

this phenotypic variation has been considerably influenced by key aspects of the 

evolutionary history of the species, like the dispersal of modern humans through-

out the world into varied environmental conditions (sometimes followed by rapid 

population growth, especially after the rise of agriculture) and the recent mixing 

of populations from different continental origins (Jobling et al. 2014). The latter 

aspect has not only created a striking genetic heterogeneity (as described in Sec-

tion 1.3), but also a high phenotypic diversity as it has already been evidenced in 

Latin American and other admixed populations (Beleza et al. 2013; Ruiz-Linares 

2014; Shriver et al. 2003). Implicitly, this increased phenotypic diversity also ex-

tends to disease-related traits (Martin et al. 2017; Rosenberg et al. 2010).  

Given the fact that Non-European populations are severely underrepresented in 

genetic studies (Popejoy and Fullerton 2016; Rosenberg et al. 2010), Latin Amer-

ica becomes an invaluable source to explore new avenues in the genetic archi-

tecture of common traits (Wojcik et al. 2017). One of these avenues consists in 

the characterization of fine-scale genetic structure and its correlation with differ-

ent traits, as a way to understand more about the impact of human genetic diver-

sity on the genetic architecture of complex phenotypes (Bomba et al. 2017). 

However, it is also essential to acknowledge that Latin American populations dis-

play a high level of social stratification, and this is often correlated with genetic 

ancestry (McEvoy and Visscher 2009; Ruiz-Linares et al. 2014; Salvatore et al. 

2010). This interaction needs to be considered as it can constitute a confounding 

factor in association studies linking genetic diversity and disease susceptibility 

(Burchard  et al. 2003; Gonzalez et al. 2005; Risch 2006; Risch et al. 2002; Tang 

et al. 2005). Some examples are provided in Section 1.4.2. 
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1.4.1 Non-disease related traits 

Several non-pathogenic phenotypes, particularly physical appearance traits, 

have been widely used in physical anthropology for racial classification, as they 

show high heritability and consistent differentiation between continental popula-

tions (Griffiths 2012; Relethford 2002; Relethford 2009). Furthermore, variation in 

continental ancestry proportions in Latin Americans (and other admixed popula-

tions) is significantly associated with physical appearance traits, being pigmenta-

tion the most studied one (Beleza et al. 2013; Hernandez-Pacheco et al. 2017; 

Parra et al. 2003; Ruiz-Linares et al. 2014; Shriver et al. 2003; Wilson et al. 2011). 

Ruiz-Linares et al. (2014), using 30 AIMs typed in 7,342 samples from the 

CANDELA Consortium, extended this association to a wide range of physical ap-

pearance traits, finding significant association between genetic ancestry and 

height, waist circumference, melanin index (as a quantitative measurement of 

skin pigmentation), eye colour, hair colour and shape, balding, eye fold, face size 

and facial features (based on PCA using three-dimensional landmarks). Figure 

1.7 shows nose protrusion as an example. This trait has ~84% heritability and 

displays considerable differentiation between Europeans and Native Americans 

(Figure 1.7A), with a significant correlation between European ancestry and 

greater protrusion (Figure 1.7B) (Adhikari et al. 2016b). 

Although the amount of phenotypic variance explained by genetic ancestry is usu-

ally low, the differences between populations are of great use for identifying spe-

cific loci (Ruiz-Linares et al. 2014). GWASs studies carried out in Latin Americans 

have not only replicated associations previously reported for continental (mainly 

European) populations but also have identified several novel loci that usually dis-

play large differences in frequency between Native Americans, Sub-Saharan Af-

ricans and Europeans (Adhikari et al. 2016a; Adhikari et al. 2016b; Adhikari et al. 

Submitted; Adhikari et al. 2015; Hernandez-Pacheco et al. 2017). Below, I de-

scribe the most significant findings for pigmentation and facial features, given the 

fact these traits are with the ones significant associated with sub-continental an-

cestry (Chapter 6). 
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Figure 1.7. Variation of a physical appearance trait in Latin Americans. 
A) Density plots for nose protrusion for individuals included in Figure 1.5. To illustrate the 
phenotypic differentiation between populations contributing to Latin American admixture 
separate plots are shown for individuals with >95% Native American ancestry (red) or 
>95% European ancestry (blue). Variation in the rest of the sample is shown on the yel-
low plot. Nose protrusion was measured as a Procrustes Distance (P.D.) (calculated as 
detailed in Adhikari et al. (2016b)). B) Scatterplot comparing individual nose protrusion 
with European ancestry and evidencing a significant correlation (r = 0.36; P-value = 2 x 
10-16). Adapted from Adhikari (2016c). 

 

Pigmentation is a highly heritable trait that has been extensively studied. Genetic 

ancestry in Latin Americans explains 19% of the variation in skin pigmentation, 

displaying a significant correlation between Sub-Saharan African ancestry and 

higher (darker) skin pigmentation (Ruiz-Linares et al. 2014). In two GWASs we 
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recently performed in the CANDELA dataset (Adhikari et al. 2016a; Adhikari et al. 

Submitted), we have replicated associations between skin, hair and/or eye pig-

mentation and different loci in the genes SLC24A5, SLC45A2, OCA2, HERC2, 

TYR, MC1R and IRF4, which have all been reported previously in populations 

from Europe (Lamason et al. 2005; Liu et al. 2015), South Asia (Stokowski et al. 

2007) and/or East Asia (Soejima and Koda 2007). Additionally, we found a signif-

icant association between skin pigmentation and the SNP rs2240751, which en-

codes a missense variant in the gene MFSD12, common in East Asians and Na-

tive Americans and almost absent in other populations (Adhikari et al. Submitted). 

Interestingly, MFSD12 has been recently reported to carry another SNP associ-

ated with skin pigmentation (Crawford et al. 2017b), which can indicate an event 

of convergent evolution, similar to that described for the genes OCA2 and MC1R 

in Western and Eastern Eurasia (Norton et al. 2007). Another GWAS performed 

in Puerto Ricans and replicated in African Americans, reported a new variant in 

the intergenic region between BEND7 y PRPF18, which seems to be mostly pre-

sent in African-related populations (Hernandez-Pacheco et al. 2017). 

Facial features have been far less studied than pigmentation phenotypes and 

show modest associations with genetic ancestry (only explains 2-5% of the vari-

ation for these traits (Ruiz-Linares et al. 2014)), but a considerable amount of 

associated loci have been found in the last few years. The first loci associated to 

normal variation in craniofacial morphology, FGFR1, was reported in 2005, in a 

study carried in several populations around the world (Coussens and Daal 2005). 

In 2012, two GWASs in European populations were published simultaneously, 

finding the same association between the position of the nasion (the deepest 

point on the nasal bridge and PAX3, a gene previously associated with Waarden-

burg syndrome, a disease that involves several abnormalities including a broad 

nasal bridge (Liu et al. 2012; Paternoster et al. 2012). In 2016, we carried out a 

GWAS for facial features in the CANDELA sample (Adhikari et al. 2016b), not 

only replicating this finding but also reporting five other gene regions impacting 

on (mostly) nose shape in the genes EDAR, DCHS2, RUNX2, GLI3 and PAX1. 

The association with the latter gene has been recently replicated in European 

populations together with more novel variants (Shaffer et al. 2016). Interestingly, 

all the significantly associated SNPs in our GWAS display large differences in 
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allele frequencies between European and East Asian / Native American popula-

tions and intermediate values in CANDELA, indicating the increase in statistical 

power conferred by the admixed populations. In Chapter 6, I show how this dif-

ferences in allele frequencies can be even detected at the sub-continental level. 

The first attempt to compare phenotypic variation with fine-scale population struc-

ture (measured by AS-PCA) found a significant association between Native 

American sub-continental variation and a measurement of lung function in a Mex-

ican cohort (Moreno-Estrada et al. 2014). However, PCA is not an explicit esti-

mator of ancestry (Chapter 2, Section 2.3.1) and its interpretation can be com-

plex. In this thesis I use sub-continental ancestry estimations to look for associa-

tions for all the traits that we have previously reported in the published GWASs, 

aiming to deepen our understanding of the effect of genetic ancestry on physical 

appearance. 

 

1.4.2 Disease related traits 

Associations between continental genetic ancestry and disease-related pheno-

types have also been widely found (Goetz et al. 2014; Mountain and Risch 2004; 

Tishkoff and Verrelli 2003). Perhaps the most studied case is Type 2 Diabetes, 

which correlates with Native American ancestry (Gardner et al. 1984; Williams et 

al. 2000). This disease is also a good example because it has been associated 

to socio-economic status, and even after considering this, a great proportion of 

its prevalence keeps being explained by ancestry (Campbell et al. 2012; Florez 

et al. 2009). Other associations with ancestry include cardiovascular disease 

(Tang et al. 2006), pulmonary disease (Vergara et al. 2013), cancer (Amirikia et 

al. 2011) and infectious diseases (Chacon-Duque et al. 2014; Ettinger et al. 

2009), among others. These findings have suggested that the relationship be-

tween prevalence of certain traits and genetic ancestry can be linked to the vari-

ation of susceptibility alleles, this being the basic idea underlying admixture map-

ping (Seldin et al. 2011; Winkler et al. 2010). 

GWASs conducted in Latin Americans have also reported novel loci related to 

Native American ancestry correlated with different disease phenotypes like Type 

2 diabetes (DIAGRAM-Consortium et al. 2014; SIGMA-T2D-Consortium 2013), 
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breast cancer (Fejerman et al. 2014), asthma (Galanter et al. 2014), and autoim-

munity (Alarcon-Riquelme et al. 2016; Paternoster et al. 2015). 

 

1.5 Implications of the study of genetic diversity in Latin Ameri-

can populations 

The characterization of genetic variation in Latin American populations, and in 

admixed populations in general, goes far beyond the study of demographic his-

tory and its impact on phenotypic variation. The study of these populations can 

also provide a useful framework to address long-standing questions in different 

fields of study, including human evolution (Tang et al. 2007), genetic epidemiol-

ogy (Rosenberg et al. 2010) and forensic genetics (Phillips 2015).  

Furthermore, the study of population genetics in admixed populations has been 

widely explored by social scientists and has a potential impact in society as a 

whole. Concepts like race, ethnicity and nation have been a subject for discus-

sion, gaining importance in recent times with the developments in genomics 

(Wade et al. 2014). Race is key concept in this discussions, which is constantly 

reformulated being both deconstructed (utopian perspective) and reinforced (dys-

topian perspective) (Tyler 2008). Additionally race (and genetic admixture) are 

essential factors to consider for public health purposes (Royal et al. 2010). 

 

1.5.1 Human Evolution 

The study of genetic variation in Latin America is crucial for understanding the 

genetic basis of biological attributes differentiated between the ancestral popula-

tions, many of those being probably the subject of natural selection (Salzano 

2016). It has been proposed that the colonization imposed strong environmental 

challenges to both Natives and newcomers, especially related to infectious dis-

eases (Cook 1998). By exploring the distribution of local ancestry along the ge-

nome, increments of a given ancestry in specific segments probably indicate nat-

ural selection, in a similar fashion to admixture mapping (Meyer et al. 2017; Tang 

et al. 2007). 
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The impact of natural selection on specific Native American populations has been 

detected (Crawford et al. 2017a). In this scenario, the characterization of sub-

continental ancestry could aid the performance of analysis to understand envi-

ronmental adaptation in admixed individuals carrying specific regional Native an-

cestries. Additionally, a better understanding of the impact of fine-grained genetic 

structure on phenotypic variation in physical traits could help to disentangle long 

debates on the patterns of dispersal of modern humans as genetic data have 

sometimes provided contradictory results compared to cranial morphometric data 

(Manica et al. 2007; Reyes-Centeno et al. 2014). 

 

1.5.2 Genetic epidemiology 

As mentioned previously, recently admixed populations are advantageous for ge-

netic association studies given their increased genotypic and phenotypic diversity 

(Burchard  et al. 2003; Rosenberg et al. 2010; Thornton and Bermejo 2014). At 

the end of the 1990s, the estimation of local continental ancestry (ancestry at the 

loci level) emerged as a possibility to map disease-related loci showing differ-

ences between continental populations by testing for association between traits 

and the ancestry at loci, allowing the development of the approach known as Ad-

mixture Mapping (McKeigue 1998). The LD generated by recent admixture makes 

it possible to map the entire genome with a small subset of AIMs, making it a cost-

effective process for disease-related loci discovery. Modelling studies have sug-

gested that between 2,000 and 5,000 AIMs are sufficient for admixture mapping 

when analysing a population product of an admixture event taking place 15 gen-

erations back (Seldin et al. 2011). This approach has been applied successfully  

and more recently the availability of dense SNP datasets has made it possible to 

exploit the advantages of SNP association testing and admixture mapping simul-

taneously (Qin and Zhu 2012). For instance, an admixture mapping study in 

women of Latin American origin in the United States found a loci significantly as-

sociated with breast cancer that was later replicated by the same researchers 

through GWAS (Fejerman et al. 2014; Fejerman et al. 2012). 

In Section 1.4 I describe how GWAS in Latin Americans have allowed the identi-

fication of novel loci associated with several disease and non-disease related loci 

(Rosenberg et al. 2010). However, there is also challenges to association studies 
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in admixed populations, mostly related to an imprecise characterization of popu-

lation structure, which can create both false-positives and false-negatives in the 

analyses (Wang et al. 2011). The characterization of fine-grained genetic struc-

ture could help to overcome these challenges by accounting for additional popu-

lation structure in association studies focused on Latin American populations 

(Adhikari et al. 2016c; Conomos et al. 2016). Moreover, it can also potentially 

provide more precision to pinpoint associated loci and to account more effectively 

for the effects of genetic structure in the genetic architecture of complex traits, 

towards a reduction of the missing heritability (Zaitlen et al. 2014). 

 

1.5.3 Forensic genetics 

The identification and clustering of individuals into bio-geographical categories, 

and the prediction of physical features based on DNA information are some of the 

central goals of forensic genetics (Kayser 2015; Phillips et al. 2014). These goals 

could be benefited by the increase in resolution displayed by sub-continental an-

cestry estimations, and could eventually aid the selection of Ancestry Informative 

Markers (AIMs) that maximize the informativeness (Phillips 2015). As discussed 

in section 1.5.1, sub-continental ancestry can potentially serve to understand sub-

tler levels of genetic differentiation with considerable effects on physical appear-

ance traits. 

However, social, ethical and legal concerns have been raised about the creation 

of databases with genetic profiles and the prediction of phenotypes using genetic 

data, as there is a lack of systematic studies measuring the “forensic utility” of 

these approaches (Williams and Wienroth 2017). It becomes imperative to ensure 

the scientific validity and reproducibility of the methodologies applied, given the 

fact that forensic genetics is playing a fundamental role in (i) the detection and 

conviction of criminal suspects, (ii) the quality of expert evidence in criminal trials 

and (iii) the development of new forms of biological surveillance. 
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1.5.4 Other implications 

The use of race-related concepts in human genetics has been described as “prob-

lematic at best and harmful at worst” (Yudell et al. 2016). Latin America is not the 

exception as the conception of Latin American populations as the product of ge-

netic admixture between Europeans, Sub-Saharan Africans and Native Ameri-

cans has been interpreted in a social context in two opposite ways (Wade et al. 

2014). It has been seen as a problem in the sense that has supposedly created 

a “racial degeneration” and as an opportunity because many countries after the 

independence have sought to build national identities around the “mestizaje” (ge-

netic admixture). 

Another implication arises from the relationship between genetic ancestry and 

population health (which needs to be addressed carefully considering other fac-

tors such as social disparities) as it might have important consequences in deci-

sion-making processes regarding public policy (Royal et al. 2010). 

 

1.6 Consortium for the Analysis of the Diversity and Evolution 

of Latin America - CANDELA 

This thesis has been conceived as part of the Consortium for the Analysis of the 

Diversity and Evolution of Latin America (www.ucl.ac.uk/candela), henceforth De-

noted CANDELA. This consortium, led by A Ruiz-Linares, is an international ini-

tiative studying the biological diversity of Latin Americans and its social context. 

The CANDELA dataset consists of 730,525 SNPs (Illumina Omni Express bead 

chip, see Chapter 3, Section 3.2 for details) from 6,852 individuals ascertained in 

five Latin American countries (Brazil N=676, Chile N=1,891, Colombia N=1,713, 

Mexico N=1,288 and Peru N=1,284; Figure 1.8). This sample has been described 

in detail in Ruiz-Linares et al. (2014). Briefly, adult individuals of both sexes were 

ascertained at one main recruitment site per country (Porto Alegre in Brazil, Arica 

in Chile, Medellín in Colombia, Mexico City in Mexico and Lima in Peru). A struc-

tured interview recorded the birthplace of volunteers and their ancestors (up to 

grandparents), as well as information on the language(s) spoken by them. 

Additionally, a wide range of physical appearance traits were also collected, by 

physical observation of the volunteers and/or by examining facial photographs. 

http://www.ucl.ac.uk/candela
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Most of these traits have already been included in a series of GWASs we pub-

lished in the last few years (Adhikari et al. 2016a; Adhikari et al. 2016b; Adhikari 

et al. Submitted; Adhikari et al. 2015). From these publications we selected 28 

traits for the analyses in this thesis, which are described in detail in Chapter 6. 

 

Figure 1.8. Birthplace location of CANDELA volunteers. 
The circle size is proportional to the amount of people sampled on the same geographic 
location. Elaborated by K Adhikari based on script produced by Nicolas Ray. 

 

As shown in Figure 1.8, although the sampling has a wide coverage, some re-

gions within the countries are severely underrepresented. Also, given the experi-

mental design of the Consortium, the sampling favoured the inclusion of individ-

uals with considerable levels of European and Native American ancestry (over 

those with Sub-Saharan African ancestry) because the methods developed for 
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the characterization of the morphological traits were better suited for hybrid pop-

ulations (Ruiz-Linares and Adhikari, personal communication). These biases 

need to be considered when interpreting the inferences about the demographic 

events and I mention this in the text when relevant. 

 

1.7 Thesis aims and structure 

This thesis aims to perform a comprehensive analysis of the sub-continental an-

cestry and demographic history of Latin America and to explore the impact of this 

fine-scale genetic structure on the phenotypic variation in the region. 

For estimating the sub-continental ancestry and characterizing the fine-scale pop-

ulation structure I used a set of haplotype-based methods (see Chapter 2 for de-

tails), including a new method developed by G. Hellenthal (Chacón-Duque et al. 

2018), with increased resolution over previous approaches. 

In Chapter 3 I infer clusters of reference populations and characterize their fine-

scale population structure using the haplotype-based software fineSTRUCTURE 

and supplement this with accessory analyses, aiming to find a reasonable classi-

fication for the reference groups/clusters to be used in the sub-continental ances-

try inference. 

In Chapter 4 I perform a series of simulations to mimic the admixture in Latin 

America in order to assess the robustness and accuracy of the methods we use 

to estimate sub-continental ancestry (NNLS and SOURCEFIND) and the dates 

of admixture events (GLOBETROTTER). 

In Chapter 5 I explore patterns of sub-continental ancestry in more than 6,500 

Latin American individuals across five countries (Mexico, Colombia, Peru, Chile 

and Brazil), and interpret these results according to the history of the region. Ad-

ditionally, I estimate the timings and sources involved in the main genetic admix-

ture events. 

Finally, in Chapter 6 I evaluate the impact of sub-continental ancestry on a range 

of physical features measured in the CANDELA sample. 
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2 Methods: Approaches to understand the history 

of recently admixed populations 

 

2.1 Overview 

In this chapter I give an overview of different statistical approaches that have been 

designed and/or can be used to infer genetic distance and relatedness, popula-

tion structure (focusing in admixed populations) and genetic ancestry using 

SNPs, providing detailed information on those relevant for the development of 

this thesis. I use several of these approaches to characterize the fine-grained 

population structure in a panel of reference populations representing the ances-

tors of Latin Americans (Chapter 3), to demonstrate the robustness of these ap-

proaches for estimating sub-continental ancestry sources and times since admix-

ture (Chapter 4) and to measure the sub-continental ancestry in the CANDELA 

sample, including the times since and sources involved in the admixture events 

(Chapter 5). Specific details about the implementation of these methods in the 

performed analyses are explained in every chapter. Additionally, I look for asso-

ciations between sub-continental ancestry proportions and physical appearance 

traits (Chapter 6) and all the analyses performed for this purpose are described 

in this chapter.  

I start by describing measurements of genetic distance and relatedness between 

populations and individuals, then move on to methods for estimating population 

structure and, finally, I explain the approaches for estimating both ancestry pro-

portions (at continental and sub-continental scales) and the sources, and times 

since admixture. All the sections of this chapter are divided according to two main 

approximations that throughout the manuscript I refer to as (i) allele-frequency-

based and (ii) haplotype-based methods. The difference between these two lies 

in the way the information contained in dense SNP datasets is utilized. 
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The former approaches rely on differences in allele frequencies. However, these 

models do not use all the information contained in dense SNP datasets as they 

are not designed to deal with linkage disequilibrium (LD), making it necessary to 

thin the data by removing linked markers. In contrast, haplotype-based ap-

proaches take advantage of LD by modelling recombination, making a more com-

prehensive use of the data and providing additional information about relatedness 

beyond allele frequency patterns. These approaches have allowed a considera-

ble increase in the resolution to cluster and differentiate individuals and popula-

tions as I describe below. 

 

2.2 Genetic distance and relatedness 

One of the main goals of population genetics is to understand the amount of dif-

ferentiation between populations and between individuals. 𝐹𝑆𝑇 has been the most 

used approach to quantify the genetic distance between populations (Bhatia et 

al. 2013; Holsinger and Weir 2009; Jakobsson et al. 2013). At the individual level, 

approaches to quantify genetic relatedness have been developed based on Iden-

tity-by-descent (IBD) measurements, which have been substantially improved by 

the availability of dense SNP datasets (Thompson 2013; Weir et al. 2006). 

Most of these methods do not explicitly account for other evolutionary forces. 

Even though some of them (including most haplotype-based models) have al-

lowed the incorporation of several parameters like mutation, effective population 

size and recombination, they still do not account for genetic admixture, an essen-

tial process to consider when studying genetic differentiation in recently admixed 

populations. Given the limitation of genetic distance measurements in these pop-

ulations, efforts have been made to understand the mathematical properties of 

𝐹𝑆𝑇 when comparing the estimates in admixed populations to those in their pa-

rental source populations (Boca and Rosenberg 2011). 
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2.2.1 Allele-frequency-based methods 

2.2.1.1 Genetic distance between populations 

A member of the family of measurements known as fixation indices or F-statistics 

(Malécot 1948; Wright 1951), 𝐹𝑆𝑇 was originally designed for measuring the ge-

netic variation between sub-populations (S) compared to the genetic variation of 

the total population (T) (Wright 1951), and has been formulated in different ways 

that measure some aspect of population differentiation (Jakobsson et al. 2013). 

For instance, 𝐹𝑆𝑇 can be used to compare two populations and establish their 

genetic distance: 

𝐹𝑆𝑇 =  
𝑉𝑎𝑟(𝑝)

𝑝(1 − 𝑝)
 

Where p is the mean allele frequency in two populations and Var(p)  the variance 

of the allele frequency between two populations (Jobling et al. 2014). 

In general, 𝐹𝑆𝑇 is equivalent to the proportion of genetic diversity that can be ex-

plained by the differences in allele frequencies among populations (Edge and 

Rosenberg 2015; Holsinger and Weir 2009). Following this interpretation, numer-

ous studies have presented results of population differentiation among human 

groups using 𝐹𝑆𝑇 estimates,  usually ranging from ~0.05 (Rosenberg et al. 2002) 

to ~0.15 (Barbujani et al. 1997), depending on the kind of genetic markers 

(Holsinger and Weir 2009; Jakobsson et al. 2013) and the estimator used (Bhatia 

et al. 2013), while populations within the same continent normally display 𝐹𝑆𝑇 val-

ues below 1% (Novembre and Peter 2016).  

The increase of molecular data has provided the possibility to propose new met-

rics based on the same concept (known as f-statistics (Reich et al. 2009)) and to 

understand better the basic properties and the limitations of the different 𝐹𝑆𝑇 esti-

mators using different types of data (e.g. chip genotyping vs. sequence data; 

Bhatia et al. 2013) and low sample sizes (Willing et al. 2012). 

The analyses performed by Willing et al. (2012) corroborated that the most com-

monly used 𝐹𝑆𝑇 estimator (Weir and Cockerham 1984) is considerably affected 

by small sample sizes (Excoffier 2008). Considering that most of the reference 

populations included in this thesis have extremely low sample sizes (90 out of 

117 reference populations contain <15 individuals; Chapter 3, Table 3.1), I found 
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problematic to interpret 𝐹𝑆𝑇 results and decided not to report them, as they are 

not directly associated with the aims of this thesis. 

 

2.2.1.2 Genetic relatedness between individuals 

Allelic identity approaches can be used as estimators of relatedness between in-

dividuals. The increasing availability of dense SNP datasets allowed the estima-

tion of genome-wide marker-based estimates of relatedness, with several uses in 

population genetics and genetic epidemiology (Thompson 2013). These meas-

urements are particularly useful for quality controls, by allowing the detection of 

pedigree errors, cryptic relatedness and experimental errors (Purcell et al. 2007).  

PLINK v1.9 implements a Hidden Markov Model (HMM) to detect IBD sharing 

between pairs of individuals in genome-wide data, an approach first described by 

(Milligan 2003). By a method-of-moments approach, the probabilities of sharing 

0, 1 or 2 alleles identical by descent for any two individuals in the matrix are esti-

mated. It is assumed that these individuals come from the same homogenous 

and panmictic population (Purcell et al. 2007).  

In this model, the number of alleles shared IBS is denoted as I and the number 

of alleles shared IBD as Z (in both cases the possible states are 0, 1 or 2), and 

the prior probability of IBS sharing is: 

𝑃(𝐼 = 𝑖) = ∑ 𝑃(𝐼 = 𝑖|𝑍 = 𝑧)𝑃(𝑍 = 𝑧).

𝑧=𝑖

𝑧=0

 

For each SNP, 𝑃(𝐼|𝑍) is specified and obtained according to the allele frequency 

for P(Z=0), P(Z=1) and P(Z=2), and the proportion of alleles shared by IBD be-

tween every pair of individuals is calculated using the formula: 

𝜋̂ = 𝑃(𝑍 = 1)2 + 𝑃(𝑍 = 2) 

More details about additional steps that the model requires to account for biases 

due to finite samples, are explained in detail in Purcell et al. (2007). 

One of the main goals when implementing IBD estimates in population genetic 

studies is to account for relatedness. The thresholds applied in most studies vary 

from 0.1 to 0.125, intending to account for close relatives (IBD for first cousins is 
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about 12.5%), though choosing an appropriate threshold can be influenced by 

issues such as SNP ascertainment. In Chapter 3 (Section 3.3) I discuss how I 

applied this as part of the quality controls of our merged CANDELA + Reference 

populations’ dataset. 

 

2.2.2 Haplotype-based methods 

Statistical approaches modelling LD patterns between closely located markers in 

dense SNP datasets not only take advantage of higher amounts of data (i.e. by 

not needing to prune to decrease LD between SNPs), but also provide additional 

molecular information (Lawson and Falush 2012). LD patterns reveal traces left 

across the genome by past demographic and evolutionary events, including geo-

graphic subdivision and subsequent population differentiation (Slatkin 2008). 

Most of the approaches relating genetic variation to LD are based on the Coales-

cent theory (Kingman 1982), and more precisely, on a generalization developed 

for including recombination (Hudson 1990). However, although this framework 

has been useful for simulated scenarios, it is still too complex at the computational 

level for statistical inference. An alternative approximation that captures the es-

sential properties of the coalescent process has gained popularity, given that it 

models patterns of LD effectively by relating these patterns to the recombination 

process and reduces the computational burden considerably (Li and Stephens 

2003). In this section I explain the basics of SHAPEIT2 (Delaneau et al. 2013) 

and CHROMOPAINTER (Lawson et al. 2012), two programs based on this ap-

proximation made by Li and Stephens (2003). I used SHAPEIT2 to infer the hap-

lotype “phase” in the dataset and CHROMOPAINTER to infer haplotype similarity 

patterns, which can be also seen as estimators of genetic differentiation. Other 

tools developed based on this approximation include MULTIMIX (Churchhouse 

and Marchini 2013)  and IMPUTE2 (Howie et al. 2011), amongst others. 

One advantage of applying these approaches to our dataset is that low sample 

sizes do not have a major effect as the comparisons can be done at the individual 

level. However, there are also some challenges for these approaches that need 

to be considered, mainly associated with the accuracy of recombination infor-
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mation introduced in the model and the ascertainment bias introduced by select-

ing SNPs based on physical distance or LD patterns and in specific populations 

(Novembre and Ramachandran 2011). 

 

2.2.2.1 Li and Stephens model 

In their seminal work, Li and Stephens (2003) developed a Hidden Markov Model 

(HMM) for interpreting and analysing patterns of LD across multiple loci, with sev-

eral properties that allow us to make inferences from the data considering all 

markers simultaneously, capturing major features of the coalescent (e.g. that 

some individuals are more related than others, and relatedness patterns vary 

along the genome). This model provided an unprecedented framework for the 

development of more efficient and sophisticated haplotype-based methods (Li 

and Stephens 2003). Briefly, every haplotype of a single individual is represented 

as a mosaic of the haplotypes that are present in the reference panel. This “cop-

ying” along the genome indicates the ancestral relationships shared by every two 

samples (the one in the reference set, and the one being assessed). 

 

2.2.2.2 Phasing: SHAPEIT2 

Parsimony approaches were the first approximations to statistically phase geno-

typic data but only models implementing coalescent approximations allowed ac-

curacy and computational tractability in large datasets (Jobling et al. 2014). 

SHAPEIT2 implements a version of the HMM developed by Li and Stephens 

(2003), modelling local haplotype sharing between individuals taking into account 

mutation and recombination. 

To reduce the computational burden every individual is compared with each other 

by segments (windows) and their haplotypes are modelled choosing a subset of 

K haplotypes in local overlapping windows of length W Mb in every step of a 

Markov chain Monte Carlo (MCMC) process. In order to define this subset 

SHAPEIT2 applies the IMPUTE2 “surrogate family” phasing approach (Howie et 

al. 2011), where K haplotypes with the smallest distance to the current sampled 

haplotype are chosen as “surrogate family members” because they (ideally) share 
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recent ancestry with the study individual. These “informative” haplotypes are ex-

pected to capture the majority of the likelihood of the distribution as the model is 

built under coalescent theory assumptions (Pompanon et al. 2012). 

SHAPEIT2 has been shown to be robust to diverse ancestries and can take ad-

vantage of haplotype sharing between populations to improve performance 

(Delaneau et al. 2013). What is more, it has been demonstrated that SHAPEIT2 

phasing ignoring pedigree information is also very accurate, showing how the 

sharing of long-range haplotypes between related samples can help the phasing 

and that the approach works properly with a wide spectrum of relatedness 

(O'Connell et al. 2014). 

In this thesis all samples were phased together without reference haplotypes, 

taking advantage of both haplotype diversity and sharing patterns between the 

specific populations here included, some of which might be under-represented in 

phasing reference panels. The details of the procedure are given in Chapter 3 

(Section 3.5). 

 

2.2.2.3 Inferring haplotype similarity patterns: CHROMOPAINTER 

Taking into consideration that recombination breaks up chromosomes progres-

sively in each transmission of genetic material from parents to offspring, haplo-

type segments shared among individuals become shorter over time since they 

shared a common ancestor. Therefore, the sharing of longer haplotype fragments 

typically reflects more recent common ancestry between any two haplotypes. 

The integration of this layer of information allows the inference of “haplotype sim-

ilarity patterns”, which are obtained from a “co-ancestry matrix” that contains es-

timates of the proportion of the genome of each individual in the matrix that is 

most closely related to every other individual in the same matrix. The usage of 

these profiles substantially increases the resolution to differentiate populations 

and individuals, according to simulated and real datasets (Lawson et al. 2012). 

Additionally, these profiles can also be summarised at the population level. 

CHROMOPAINTER, the software I implement in this thesis for inferring the hap-

lotype similarity (informally, “chromosome painting”) across individuals, estimates 

the proportion of DNA in a given set of individuals (denoted recipients) that is 
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most closely related to a set of other individuals (denoted donors). Donors and 

recipients can be the same set of individuals, or completely different. These do-

nor-recipient relationships switch along the genome reflecting ancestral recombi-

nation events, and the software represents such changes as a block-by-block 

mosaic of the genomes sampled. Like SHAPEIT2, it uses a version of the HMM 

of Li and Stephens (2003), and the way the transition probabilities are inferred is 

schematized below, following the explanations in (Lawson et al. 2012): 

Every phased haplotype contains 𝐿 total SNPs ordered according to position 

within each chromosome. A haplotype ℎ∗ =  {ℎ∗1, … , ℎ∗𝐿} is constituted by the ob-

served allele at each site 𝑙, and is reconstructed based on 𝐽 donor haplo-

types ℎ1, … , ℎ𝐽. Linkage Disequilibrium is introduced in the model as a population-

scaled vector of genetic distances  𝜌⃗ = {𝜌1, … , 𝜌𝐿−1}  (where 𝜌𝑙 = 𝑁𝑒𝑔𝑙, with 𝑁𝑒 

analogous to effective population size and 𝑔𝑙  the genetic distance in Morgans be-

tween 𝑙 and 𝑙 + 1), as well as a mutation parameter 𝜃, accounting for mismatches 

between recipients and donors, what has been defined by the program develop-

ers as “imperfect” copying. 

Finally, a vector of copying probabilities 𝑓 =  {𝑓1, … , 𝑓𝐽} is created, where 

each 𝑓𝑗  corresponds to the probability of copying from every donor haplotype ℎ𝑗  at 

any SNP. The conditional probability Pr (ℎ∗|ℎ1, … , ℎ𝑗; 𝜌⃗, 𝑓, 𝜃) is structured as a 

HMM and thus, the hidden state sequence vector is defined as 𝑌⃗⃗ = {𝑌1, … , 𝑌𝐿} with 

𝑌𝑙 as the donor haplotype that ℎ∗ copies from at site 𝑙. The switches between 𝑌𝑙 

and 𝑌𝑙+1 occur as a Poisson process with rate 𝜌𝑙, with the following transition prob-

abilities: 

Pr(𝑌𝑙+1 = 𝑦𝑙+1|𝑌𝑙 = 𝑦𝑙) = {
exp(−𝜌𝑙) + (1 − exp(−𝜌𝑙))𝑓𝑦𝑙+1

       𝑖𝑓 𝑦𝑙+1 = 𝑦𝑙;

(1 − exp(−𝜌𝑙))𝑓𝑦𝑙+1
                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

And at the same time it allows “imperfect” copying: 

Pr(ℎ∗𝑙 = 𝑎|𝑌𝑙 = 𝑦) = {
1.0 −  𝜃     ℎ𝑦𝑙 = 𝑎;

𝜃                 ℎ𝑦𝑙 ≠ 𝑎.
 

The final output is defined as the “co-ancestry matrix” with donors listed in col-

umns and recipients in rows, containing either the number of haplotype chunks 

(chunkcounts.out) or the total genome length (chunklengths.out) in cM that each 

recipient copies from every donor. The way these values are estimated from the 
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transition probabilities is fully explained in Lawson et al. (2012). Figure 2.1 shows 

a graphical example of the coancestry matrix generated using the chunk lengths 

generated using data from 1,000 Genomes Project (1KGP) and some Native 

American reference samples (see Chapter 3 for details). 

In this thesis, I use only reference population individuals as donors, as the aim is 

to characterize the fine-grained genetic make-up and to quantify ancestry at the 

sub-continental level on the admixed populations that are used as recipients. 

 

 

Figure 2.1. Heatmap from coancestry matrix obtained with CHROMOPAINTER. 
Using 1KGP (Phase 1) samples + some Native American population references. All sam-
ples were used as donors and recipients. 

 

2.3 Methods for estimating population structure 

The detection and apportionment of genetic structure in human populations is an 

essential step to reconstruct history (Rosenberg et al. 2002). Although genetic 

distance measurements have been useful to characterize population structure, 
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assumptions have to be made about the genetic homogeneity of the members of 

a population (Foster and Sharp 2002). However, the availability of genome-wide 

data has allowed us to explore population structure at the individual level and to 

develop clustering methods (Jobling et al. 2014). 

 

2.3.1 Allele-frequency based methods 

Although technically considered another measurement of genetic distance and 

lacking an explicit clustering model, Principal Component Analysis (PCA) has 

been used to explore and summarize population structure since just a handful of 

molecular markers were available (Menozzi et al. 1978; Reich et al. 2008). Briefly, 

PCA is a multivariate technique that reduces high-dimensional related variables 

into a smaller set of linear uncorrelated variables that seek to explain most of the 

variation in the data (Jackson 2003). These uncorrelated variables can be plotted 

(bi-dimensionally or even tri-dimensionally) and the variation reflected in the sam-

ples will be projected in gradients, with the most differentiated individuals for that 

specific variable lying on the extremes of the axis of variation.  

All kinds of matrices can be used for PCA, including “synthetic maps” (Menozzi 

et al. 1978), genetic distance measurements (Li et al. 2008), and allelic profiles 

of individuals (Patterson et al. 2006). The latter approach has been developed for 

genome-wide unlinked data and additionally provides a framework for assessing 

the statistical significance of the components, and was initially presented as a 

less computationally expensive option when handling genome-wide datasets 

compared to model-based approaches like STRUCTURE (Pritchard et al. 2000).  

The main issue with PCA relies on the fact that there are no objective criteria for 

clustering, but some solutions have been proposed, such as Discriminant Analy-

sis of Principal Components (DAPC) (Jombart et al. 2010). This approach per-

forms a Discriminant Analysis (DA) in the PCA results, trying simultaneously to 

maximize differences between populations and to minimize differences within. 

Additionally, it performs a K-means clustering analysis (Lee et al. 2009). 

Furthermore, results from PCAs can be difficult to relate to geographic patterns 

and specific migration events. Although it has been proposed that PCs can be 

used to understand underlying demographic processes (McVean 2009), it has 
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also been demonstrated that mathematical artifacts can arise from spatial data, 

suggesting that the historical inferences made from these results need to be taken 

with caution (Novembre and Stephens 2008). The number of markers included is 

extremely correlated with the ability of PCA to detect structure at more subtle 

levels (i.e. fine-structure) (Novembre and Peter 2016). 

Model-based methods for clustering have also been developed for allele fre-

quency data, with STRUCTURE (Pritchard et al. 2000) being the most prominent. 

It is a Bayesian clustering approach based on allele frequencies designed for 

assigning individuals into populations and inferring admixture proportions based 

on the K populations inferred. In its initial release the model assumed the popu-

lations to be in Hardy Weinberg and Linkage Equilibrium, and later it also allowed 

for linkage between loci in admixed populations, taking advantage of LD gener-

ated by admixture (Falush et al. 2003). 

Due to the lack of computational tractability of STRUCTURE when handling mas-

sive numbers of SNPs and samples, more efficient models have been proposed. 

ADMIXTURE (Alexander et al. 2009) uses the same likelihood model of 

STRUCTURE but maximizes this likelihood using sequential quadratic program-

ming (SQP) rather than inferring parameters using Markov Chain Monte Carlo 

(MCMC) as in STRUCTURE, which in theory is more efficient and can handle 

more SNPs with less computational burden. 

For these model based approaches, inferring the most accurate K can be prob-

lematic. The most popular solution to this problem is a cross-validation procedure 

that measures the consistency between different runs at a particular K (Alexander 

and Lange 2011). 

I have implemented ADMIXTURE analyses in this thesis. The results can be 

found in Chapter 3 (Section 3.8). 

 

2.3.2 Haplotype-based methods 

As described in section 2.2, haplotype-based methods can have a considerably 

increased the level of resolution for detecting genetic differentiation. The authors 

of CHROMOPAINTER developed fineSTRUCTURE (Lawson et al. 2012), a 

MCMC clustering model based on haplotype similarity patterns. Using the co-
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ancestry matrix (chunkcounts.out) generated by CHROMOPAINTER, the model 

aims to partition the dataset into K groups with indistinguishable haplotype simi-

larity profiles. 

The main caveat of this model is that it does not directly incorporate admixture, 

hence it is not suitable for characterizing recently admixed populations. This is 

the reason why I only apply fineSTRUCTURE to the reference populations’ data, 

as the detection of pre-Columbian admixture should not bias the interpretation of 

these results. Specific details about this analysis are in Chapter 3. 

 

2.4 Methods for estimating ancestry proportions 

As discussed in Chapter 1, recently admixed populations descending from groups 

that have high levels of genetic differentiation provide a unique scenario to quan-

tify the genetic contributions from these “parental” populations. Although some of 

the approaches for inferring population structure (previous section) have been 

widely used to suggest admixture (e.g. PCA), they are not designed for estimating 

ancestry proportions explicitly. In this section I explain some approximations to 

this problem, and provide a quick overview on their limitations/advantages. 

 

2.4.1 Allele-frequency-based methods 

Early approximations using allele frequencies in the parental populations to esti-

mate ancestry proportions are based on the assumptions that (i) there is no error 

in the choice of parental groups or in their allele frequencies (implicitly, it assumes 

that the sampled frequencies represent the true frequencies of the population) 

and (ii) no changes in allele frequencies have occurred independently of the gene 

flow (Cavalli-Sforza and Bodmer 1971; Chakraborti 1986; Salzano and Bortolini 

2002). Some of these approaches are included in programs like ADMIX.PAS 

(Parra et al. 1998), ADMIXMAP (Hoggart et al. 2004) and STRUCTURE 

(Pritchard et al. 2000).  

The improvement of allele-frequency based approaches was undoubtedly pow-

ered by the advances in molecular biology, particularly the development of tools 

to characterize various types of molecular markers experimentally (such as 
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SNPs, microsatellites and Indels) which provided the possibility of establishing 

panels of markers with alleles displaying large frequency differences between 

populations, defined as Ancestry Informative Markers (AIMs) (Shriver et al. 2003). 

Later, the availability of genome-wide data has allowed the refinement of these 

methods. 

The most widely-used software for ancestry estimation in dense SNP data is 

ADMIXTURE. In addition to the unsupervised analysis where the software clus-

ters subsets of individuals’ genomes into K partitions, it is also possible to fix the 

potential sources of admixture and obtain the percentages of ancestry associated 

to these specific sources. 

Often, results from unsupervised ADMIXTURE analyses are interpreted as an-

cestry proportions that each individual carries from K ancestral populations pre-

sumed to have existed. However, results need to be taken with caution as some 

other forces, especially genetic drift, can generate clusters that do not resemble 

admixture events between putative ancestral populations. For instance, admixed 

populations with high levels of genetic drift can be incorrectly assigned to their 

own (presumably unadmixed) cluster (Chapters 3 and 5 discuss this issue in more 

detail). For supervised ADMIXTURE analyses, on the other hand, surrogates for 

ancestral source populations are fixed and ADMIXTURE infers the proportion of 

DNA carried by each individual that is most closely related to these sources. This 

inferred proportion is often interpreted as the proportion of DNA inherited from 

these ancestral sources. In addition to the limitations mentioned above, it is also 

necessary to consider that, in cases where the sources provided have low 

amounts of genetic differentiation, the software may not have enough resolution 

to assign the ancestry proportions correctly (see Chapter 5 for details and further 

discussion). 

 

2.4.2 Haplotype-based methods 

The increase in resolution conferred by haplotype-based approaches can also be 

exploited for ancestry estimation. These approaches have allowed the quantifica-

tion of ancestry proportions at the sub-continental level. In this thesis I present a 

new model-based approach for sub-continental ancestry estimation developed by 

G. Hellenthal, SOURCEFIND (Chacon-Duque et al. 2018). It shows increased 
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resolution over the Non-Negative Least Square (NNLS) approach proposed by 

Hellenthal et al. (2014), used to infer ancestry proportions in different populations, 

including the United Kingdom (Leslie et al. 2015) and Latin America (Montinaro 

et al. 2015). 

As a starting point, individual haplotype similarity profiles are summarized in 

terms of the reference population individuals (used as donors in the 

CHROMOPAINTER analysis), preferably grouped according to the clustering 

provided by fineSTRUCTURE (see Chapter 3 for details). The individual donor 

values are summed according to these groups and the new value is defined as a 

“copying vector”. To cope with differences in reference clusters’ sample sizes and 

to account for incomplete lineage sorting, each CANDELA individual's copying 

vector (used as recipients in the CHROMOPAINTER analyses) is modelled as a 

weighted mixture of the surrogates' copying vectors (Hellenthal et al. 2014; Leslie 

et al. 2015).  

Let 𝑙𝑟 ≡  {𝑙1
𝑟 , … , 𝑙𝐷

𝑟 } be the copying vector describing the total genome length (in 

cM) that individual (or group) 𝑟 copies from each of the 𝑑 ∈ [1, … , 𝐷] donor refer-

ence groups as inferred by CHROMOPAINTER (note that copying vectors can 

also be averaged across recipients to perform the analysis in groups). Here for 

any 𝑟,  ∑ 𝑙𝑑
𝑟 = 𝐶𝐷

𝑑=1 , where 𝐶 is equal to the total genome length of DNA (in cM), 

and we further define 𝑓𝑑
𝑟 ≡  

𝑙𝑑
𝑟

𝐶
. Henceforth we let r denote an admixed individual, 

and s denote a surrogate group. In the latter case, 𝑙𝑑
𝑠  represents an average 

across all individuals from surrogate group s. 

We assume that: 

𝑃𝑟(𝑙𝑟|𝑙1, … , 𝑙𝑆, 𝐶, 𝛽𝑟) = 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝐶; ∑[𝛽𝑠
𝑟𝑓1

𝑠]

𝑆

𝑠=1

, … , ∑[𝛽𝑠
𝑟𝑓𝐷

𝑠]

𝑆

𝑠=1

) 

Where 𝛽𝑟 ≡  {𝛽1
𝑟 , … , 𝛽𝑆

𝑟} are the mixture coefficients we aim to infer and every 𝑠 ∈

[1, … , 𝑆] represents a “surrogate” group used to describe the ancestry of group r. 

In practice, often all the donor reference groups are used as surrogates, so that 

𝑆 = 𝐷. However, in our case the surrogates are a subset of the donors so that 

𝑆 < 𝐷. 

We take a Bayesian approach to inferring 𝛽𝑟, further assuming the following: 
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𝑃𝑟(𝛽𝑟|𝜆) =  Dirichlet (𝜆1, … , 𝜆𝑆), 

𝑃𝑟(𝜆) = Uniform(0,10). 

For each recipient r, we wish to sample the mixing coefficients {𝛽1
𝑟 , … , 𝛽𝑆

𝑟} based 

on their posterior probabilities conditional on 𝑙 ≡  {𝑙𝑟 , 𝑙1, … 𝑙𝑆}. We do so using the 

following Markov Chain Monte Carlo (MCMC) technique. We start with an initial 

value of λ(0) = 0.5 and sample our initial values of 𝛽𝑟(0) ≡  {𝛽1
𝑟(0), … , 𝛽𝑆

𝑟(0)} from 

the prior distribution Dirichlet (𝜆(0), … , 𝜆(0)). Then for 𝑚 ∈ [1, … , 𝑀]: 

Update 𝛽𝑟(𝑚) ≡  {𝛽1
𝑟(𝑚), … , 𝛽𝑆

𝑟(𝑚)} using a Metropolis-Hastings (M-H) step: 

i. Randomly sample 𝑌~𝑈𝑛𝑖𝑓(0,0.1). 

ii. Randomly sample a surrogate 𝑠𝑥 and set 𝛽𝑠𝑥
𝑟 (𝑚) = 𝛽𝑠𝑥

𝑟 (𝑚 − 1) + 𝑌 5⁄ . 

For numerical stability, if 𝛽𝑠𝑥
𝑟 (𝑚) > 1 − 1𝑒−7, set 𝛽𝑠𝑥

𝑟 (𝑚) = 1 − 1𝑒−7.  

Repeat this for 4 additional randomly sampled (with replacement) surrogates 𝑠𝑥. 

iii. Randomly sample a surrogate 𝑠𝑥 and set 𝛽𝑠𝑥
𝑟 (𝑚) = 𝛽𝑠𝑥

𝑟 (𝑚 − 1) − 𝑌 5⁄ . 

For numerical stability, if 𝛽𝑠𝑥
𝑟 (𝑚) < 1 − 1𝑒−7, set 𝛽𝑠𝑥

𝑟 (𝑚) = 1𝑒−7.  

Repeat this for 4 additional randomly sampled (with replacement) surrogates 𝑠𝑥 

iv. For all other surrogates 𝑠 ∈ [1, … , 𝑆], excluding the randomly sampled 

set above, set 𝛽𝑠
𝑟(𝑚) = 𝛽𝑠

𝑟(𝑚 − 1). 

v. Re-scale ∑ 𝛽𝑠
𝑟𝑆

𝑠=1 (𝑚) = 1.0. 

vi. Accept 𝛽𝑟(𝑚) with probability min (∝ ,1.0), where: 

𝛼 =
𝑃𝑟(𝑙𝑟

|𝑙1, … , 𝑙𝑆, 𝐶, 𝛽𝑟(𝑚))𝑃𝑟(𝛽𝑟(𝑚)|𝜆(𝑚 − 1))

𝑃𝑟(𝑙𝑟
|𝑙1, … , 𝑙𝑆, 𝐶, 𝛽𝑟(𝑚 − 1))𝑃𝑟(𝛽𝑟(𝑚 − 1)|𝜆(𝑚 − 1))

. 

Update each 𝜆𝑠(𝑚) for 𝑠 = 1, … , 𝑆 using a M-H step: 

i. Propose a new 𝜆𝑠(𝑚) from a Normal (𝜆𝑠(𝑚 − 1), 𝑠𝑑 = 0.2). 

ii. Automatically reject if 𝜆𝑠(𝑚) ∉ [0,10]. 

iii. Otherwise accept 𝜆𝑠(𝑚) with probability min (∝ ,1.0)), where: 

𝛼 =
𝑃𝑟(𝛽𝑟(𝑚)|𝜆(𝑚))

𝑃𝑟(𝛽𝑟(𝑚)|𝜆(𝑚 − 1))
. 
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For large M, this algorithm will converge to the true posterior distribution of the 

𝛽𝑟’s (Gamerman 1997). We refer to the final estimates of 𝛽1
𝑟 , … , 𝛽𝑆

𝑟, weighted-

averaged across posterior samples using the log-posterior as weights, as our in-

ferred proportions of ancestry for group r conditional on this set of S surrogates. 

This approach differs from the mixture model procedure  previously described 

(Hellenthal et al. 2014; Hofmanova et al. 2016; Leslie et al. 2015; Montinaro et al. 

2015; van Dorp et al. 2015) in that it assumes that 𝑙𝑟 is multinomial distributed 

and solves for 𝛽𝑟 using a Bayesian approach rather than a non-negative least 

squares optimization. This model is similar to one developed by G. Hellenthal and 

applied to ancient DNA data (Broushaki et al. 2016), but alters the way that λ is 

estimated and uses a more efficient (in practice) MCMC proposal procedure. The 

accuracy and robustness of the ancestry estimations obtained by SOURCEFIND 

and NNLS were evaluated using real data and simulations mimicking Latin Amer-

ican admixture (Chapter 4, Section 4.2). 

Currently G. Hellenthal is also developing an alternative, more computationally 

efficient version of SOURCEFIND that uses the same likelihood function, but 

which removes Lambda and replaces the prior on the 𝛽𝑟 values with a truncated 

Poisson (mean=3) prior on the number of contributing surrogates S'. At each 

MCMC iteration, this alternative SOURCEFIND allows only a maximum of S' sur-

rogates to have 𝛽𝑠
𝑟 > 0 and for the 𝛽𝑠

𝑟 values of each of these S' surrogates to be 

0.01,…,1 in increments of 0.01. The proposed move at each MCMC iteration is 

as follows. The 𝛽𝑠
𝑟 value of a randomly chosen surrogate group is either com-

pletely (with probability 0.1) or partially (with probability 0.9) distributed across the 

other currently included surrogates. (This set of other included surrogates con-

tains up to S' members, with new randomly chosen surrogates added if the total 

number of surrogates is less than S'.) With probability 0.5, the 𝛽𝑠
𝑟 value is added 

to that of a single other surrogate; otherwise it is distributed randomly across the 

other surrogates. This proposal is then accepted or rejected using a Metropolis-

Hastings step. Results under this approach ran much more quickly and gave qual-

itatively similar conclusions in applications to simulated and non-simulated data, 

as described in Chapter 4 (Section 4.3) and Chapter 5 (Section 5.3.2.7). The R 

code has been made publicly available with the publication of the bioRxiv preprint 

(Chacón-Duque et al. 2018). 
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2.5 Estimation of number of generations since admixture 

Recombination can be seen as a time-related process, as it tends to “break” hap-

lotype segments into smaller pieces as generations pass, reducing LD. This in-

formation can be used for dating admixture, as these LD patterns will reflect hap-

lotype segments tracing their ancestry back to the populations involved in the 

admixture process. Theoretically the decay of LD with time follows a negative 

exponential distribution, and this property has been used to generate models aim-

ing to fit decay curves to an exponential distribution in order to infer approximate 

times since admixture (Hellenthal et al. 2014). 

Models such as ROLLOFF (Patterson et al. 2012) and ALDER (Loh et al. 2013) 

quantify the exponential decay of LD generated by admixture as a function of 

genetic distance, and propose statistical tests to fit the data within specific sce-

narios. MALDER (Pickrell et al. 2014) additionally allows the inference of complex 

admixture process involving multiple dates of genetic exchange. The main limita-

tion of these approaches is the definition of the populations (i.e. sources) that 

originally contributed to the admixture process (or processes), as the reference 

populations may have diverged considerably with respect to the sources, or they 

could not descend from exactly the same population.  

GLOBETROTTER (Hellenthal et al. 2014) tries to overcome this limitation by 

modelling the source populations as mixtures of the reference donor populations 

used in the analyses. Haplotype similarity patterns (as obtained with 

CHROMOPAINTER) can be modelled as weighted mixtures of the sampled donor 

populations, using the NNLS approach (Leslie et al. 2015). This modelling allows 

us to represent the original source populations as mixtures of the sampled refer-

ence groups, inferring the source rather than fixing it. The target population or 

individual (e.g. CANDELA) is then represented as a mixture of the profiles of the 

surrogate sources estimated by the software. 

The size and the distribution of the segments matching to every source are esti-

mated using another CHROMOPAINTER output (samples.out) that contains the 

haplotype matching of every SNP for 10 different samples of the hidden state (i.e. 

which donor is copied at each SNP) taken from the HMM. This information is then 

used to produce coancestry curves for each pair of donor populations, plotting 

genetic distance on the X axis against a relative probability that measures how 
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often a pair of haplotype segments separated by a given amount of genetic dis-

tance correspond to different donors. These probabilities are calculated using in-

formation for every pair of SNPs located from 1cM to 50cM from each other. In 

the case of a single admixture event over a narrow time period, the decay is ex-

pected to be exponential. In the case of multiple admixture events, the decay is 

expected to be equal to a sum of exponential distributions, one curve per admix-

ture event. GLOBETROTTER determines whether the LD decay curves among 

all pairings of surrogates can be fitted using a single exponential distribution or 

whether they are significantly better fitted using the sum of two exponential distri-

butions. Detailed information on the method can be found in Hellenthal et al. 

(2014). 

I show that using GLOBETROTTER in the analysis of recently admixed popula-

tions is advantageous because inferences can be performed at the individual 

level (Chapter 4). This is particularly useful in our sample as the ancestry propor-

tions at the continental level vary enormously, reflecting the difficulty in defining a 

homogeneous a population made up of recent admixed individuals. 
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3 Establishing reference panels to represent an-
cestral sources 

 

3.1 Overview 

A major issue on the reconstruction of demographic history and estimation of an-

cestry using genetic data is the scarce availability of samples that accurately rep-

resent the sources of ancestors of current-day individuals/populations. Only re-

cently have dense DNA data from ancient human remains (ancient DNA) become 

available, and there are still plenty of technical constraints that do not allow iso-

lation of high quality ancient DNA from several regions across the world, espe-

cially in tropical and sub-tropical areas where the environmental conditions do not 

favour the preservation of these remains. Given this scenario, it is often neces-

sary to use contemporary samples as “surrogates” for the original parental popu-

lations. This immediately poses a challenge on the interpretation of the results, 

as these surrogate populations may have changed substantially compared to 

their ancestors, and further the populations derived from admixture among the 

original ancestral groups may have undergone drastic changes. 

It is thus essential to establish systematic and objective protocols for the cluster-

ing of reference populations based on their genetic profiles, as the accuracy and 

reproducibility of this clustering is essential to make the analyses robust and re-

producible and to provide a clearer interpretation of the results. This is especially 

important in the case of recently admixed populations, where it is necessary to 

distinguish such recent mixing from patterns of admixture already present in their 

parental populations. 

In this chapter, I implement clustering using the haplotype-based software fine-

STRUCTURE and supplement this with accessory analyses, aiming to find a rea-

sonable classification for the reference groups/clusters we will be using in the 

sub-continental ancestry inference. As described in Chapter 2 (Section 2.3.2) 
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haplotype-based methods not only provide a model-based framework for cluster-

ing, but also show an increase in power detecting subtle differences that cannot 

be achieved with allele-frequency-based approaches (Lawson et al. 2012). This 

is the first important step towards providing an accurate characterization of the 

sub-continental ancestry patterns in CANDELA and to achieve an objective inter-

pretation of the results. 

 

3.2 Reference dataset 

To characterize the sub-continental ancestry in the CANDELA individuals I col-

lated a reference population dataset from different regions across the world hav-

ing potentially contributed to admixture in Latin America. I combined publicly 

available data with data from newly genotyped samples obtained for this thesis. 

As described in Table 3.1, altogether I collated data for 2,359 individuals from 117 

reference populations (38 Native American, 42 European, 15 East/South Medi-

terranean, 15 Sub-Saharan African and 7 East Asian) distributed geographically 

as indicated in Figure 3.1. The preparation of the dataset was done with the sup-

port of K. Adhikari. 

Of these, 430 individuals from 42 population samples (comprising 27 Native 

American, 7 European and 8 East/South Mediterranean), were newly genotyped 

on the Illumina HumanOmniExpress chip which contains 730,525 SNPs, includ-

ing markers in all autosomal chromosomes, X and Y chromosomes, and the 

Pseudoautosomal region (PAR) (Table 3.2). An additional group of 1,230 SNPs 

was not assigned to any of the chromosomes. 

Only SNPs from autosomal chromosomes were used for the analyses presented 

on this thesis for several reasons. Firstly, the Y chromosome does not recombine 

and cannot be used for inferring haplotype similarity patterns (Chapter 2, Section 

2.2.2.3). Secondly, the estimation of haplotype similarity requires equivalent in-

formation in all samples regardless of sex, which invalidates the inclusion of the 

X chromosome. This chromosome could be analysed separately for comparison 

purposes, but its total number of SNPs is too low compared to the number of 

SNPs in all autosomes, likely producing noisy estimations. 
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Table 3.1. 117 reference population samples 

code Sample label Group* N 
(Pre-
QC) 

N 
(Post-
QC) 

Country of origin 
(.sample) 

Data 
source** 

1 Pima NAM 2 2 Mexico.1 1 

2 Nahua NAM 25 25 Mexico.2 This study 

3 Mixe NAM 2 2 Mexico.3 1 

4 Mixe.B NAM 16 16 Mexico.4 This study 

5 Mixtec NAM 2 2 Mexico.5 1 

6 Mixtec.B NAM 10 10 Mexico.6 This study 

7 Zapotec NAM 2 2 Mexico.7 1 

8 Zapotec.B NAM 12 12 Mexico.8 This study 

9 Mayan NAM 2 2 Mexico.9 1 

10 Kaqchikel NAM 8 8 Guatemala This study 

11 Cabecar NAM 5 5 Costa.Rica.1 This study 

12 Guaymi NAM 4 4 Costa.Rica.2 This study 

13 Embera NAM 21 21 Colombia.1 This study 

14 Waunana NAM 5 5 Colombia.2 This study 

15 Wayuu NAM 3 3 Colombia.3 This study 

16 Kogi NAM 6 6 Colombia.4 This study 

17 Zenu NAM 7 7 Colombia.5 This study 

18 Piapoco NAM 2 2 Colombia.6 1 

19 Ticuna NAM 4 4 Colombia.7 This study 

20 Inga NAM 3 3 Colombia.8 This study 

21 Karitiana NAM 3 3 Brazil.1 1 

22 Surui NAM 2 2 Brazil.2 1 

23 Xavante NAM 4 4 Brazil.3 This study 

24 Andoa NAM 20 20 Peru.1 This study 

25 Aymara.A NAM 13 13 Bolivia.1 This study 

26 Aymara.B NAM 4 4 Chile.1 This study 

27 Quechua NAM 3 3 Peru.2 1 

28 Quechua.B NAM 14 14 Bolivia.2 This study 

29 Uros NAM 8 8 Peru.3 This study 

30 Colla NAM 25 23 Argentina.1 2 

31 Wichi NAM 25 19 Argentina.3 2 

32 Wichi.B NAM 4 4 Argentina.4 This study 

33 Toba NAM 4 4 Argentina.5 This study 

34 Ache NAM 5 5 Paraguay This study 

35 Guarani NAM 5 5 Argentina.6 This study 

36 Chane NAM 2 2 Argentina.7 This study 

37 Mapuche NAM 9 9 Argentina.2 This study 

38 Huilliche NAM 10 10 Chile.2 This study 

39 PRT.A EUR 18 18 Portugal.1 This study 

40 PRT.B EUR 31 31 Portugal.2 This study 

41 IBS-Galicia EUR 12 8 Spain.1 3 

42 SP-CAN EUR 14 14 Spain.2 This study 
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43 IBS-Canarias EUR 3 2 Spain.3 3 

44 SP-AND EUR 15 15 Spain.4 This study 

45 IBS-Andalucia EUR 4 4 Spain.5 3 

46 IBS-Extremadura EUR 12 8 Spain.6 3 

47 IBS EUR 7 7 Spain.7 3 

48 SP-CSP EUR 15 15 Spain.8 This study 

49 IBS-Cast.Leon EUR 18 12 Spain.9 3 

50 IBS-Cast.Mancha EUR 9 6 Spain.10 3 

51 IBS-Murcia EUR 12 8 Spain.11 3 

52 IBS-Valencia EUR 21 14 Spain.12 3 

53 IBS-Aragon EUR 6 6 Spain.13 3 

54 SP-CTL EUR 7 7 Spain.14 This study 

55 IBS-Cataluna EUR 15 10 Spain.15 3 

56 IBS-Baleares EUR 12 8 Spain.16 3 

57 IBS-Cantabria EUR 9 6 Spain.17 3 

58 SP-BAS EUR 14 14 Spain.18 This study 

59 IBS-Pais.Vasco EUR 12 8 Spain.19 3 

60 Basque EUR 2 2 France.1 1 

61 French EUR 3 3 France.2 1 

62 Bergamo EUR 2 2 Italy.1 1 

63 Sardinian EUR 3 3 Italy.2 1 

64 TSI EUR 107 106 Italy.3 3 

65 Tuscan EUR 2 2 Italy.4 1 

66 CEU EUR 99 91 NW.Europe 3 

67 GBR-Kent EUR 38 31 UK.1 3 

68 GBR-Cornwall EUR 32 29 UK.2 3 

69 GBR-Corn-Devon EUR 1 1 UK.3 3 

70 GBR-Scotland EUR 4 3 UK.4 3 

71 Orcadian EUR 2 2 UK.5 1 

72 GBR-Orkney EUR 26 21 UK.6 3 

73 Bulgarian EUR 2 2 Bulgaria 1 

74 Hungarian EUR 2 2 Hungary 1 

75 Greek EUR 2 2 Greece.1 1 

76 Crete EUR 2 2 Greece.2 1 

77 Georgian EUR 2 2 Georgia 1 

78 FIN EUR 99 99 Finland 3 

79 Estonian EUR 2 2 Estonia 1 

80 Russian EUR 2 2 Russia 1 

81 MRC ESM 14 11 Morocco.1 This study 

82 Moroccan_Jew# ESM 7 7 Morocco.2 This study 

83 TUN ESM 14 14 Tunisia.1 This study 

84 Tunisian_Jew# ESM 6 6 Tunisia.2 This study 

85 LIB ESM 15 14 Libya.1 This study 

86 Libyan_Jew# ESM 7 7 Libya.2 This study 

87 JRD ESM 15 15 Jordan.1 This study 

88 Sephardi_Jew# ESM 7 7 Turkey.1 This study 
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89 Turkish ESM 2 2 Turkey.2 1 

90 BedouinB ESM 2 2 Israel.1 1 

91 Druze ESM 2 2 Israel.2 1 

92 Iraqi_Jew ESM 2 2 Iraq 1 

93 Jordanian ESM 3 3 Jordan.2 1 

94 Palestinian ESM 3 3 Palestine 1 

95 Yemenite_Jew ESM 2 2 Yemen 1 

96 YRI SSA 108 101 Nigeria.1 3 

97 ESN SSA 99 95 Nigeria.2 3 

98 GWD SSA 113 111 Gambia 3 

99 MSL SSA 85 69 Sierra.Leone 3 

100 LWK SSA 99 73 Kenya 3 

101 Anuak SSA 21 3 Ethiopia 4 

102 South_Sudanese SSA 21 8 South.Sudan 4 

103 GuiGhanaKgal SSA 15 14 Botswana 5 

104 Juhoansi SSA 18 15 Namibia.1 5 

105 Karretjie SSA 20 3 South.Africa.1 5 

106 Khomani SSA 39 4 South.Africa.2 5 

107 Khwe SSA 17 14 Namibia.2 5 

108 SEBantu SSA 20 19 South.Africa.3 5 

109 SWBantu SSA 12 9 Namibia.3 5 

110 Xun SSA 19 19 Angola 5 

111 KHV EAS 99 95 Vietnam 3 

112 CDX EAS 93 82 China.1 3 

113 CHS-Hu_Nan EAS 102 66 China.2 3 

114 CHS-Fu_Jian EAS 48 31 China.3 3 

115 CHB EAS 103 101 China.4 3 

116 Korean EAS 2 2 Korea 1 

117 JPT EAS 104 104 Japan 3 
 

TOTAL 
 

2359 2058 
  

(N=Sample Size) 

*NAM: Native American, EUR: European, ESM: East/South Mediterranean, SSA: Sub-

Saharan African and EAS: East Asian. # Samples obtained from The National Laboratory 

for the Genetics of Israeli Populations (http://yoran.tau.ac.il/nlgip/). 

**References: 1: (Mallick et al. 2016), 2: (Eichstaedt et al. 2014), 3: (1000 Genomes 

Project et al. 2015), 4: (Pagani et al. 2012), 5: (Schlebusch et al. 2012). Genotypes at 

SNPs shared between published datasets were reported to have been obtained by full 

genome sequencing (1) or genotyping on the following platforms: Illumina OmniExpress 

(2), Illumina Omni2.5M (3,5) and Illumina Omni1M (4). Table adapted from Chacón-Du-

que et al. (2018). 



 
 

76 
 

 

Figure 3.1. Approximate geographic location of the 117 reference populations. 
Numbers correspond to those in Table 3.1. Adapted from Chacón-Duque et al. (2018). Generated by JC Chacón-Duque and K Adhikari.
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Table 3.2. Number of markers per chromosome contained in the Illumina Human Om-
niExpress chip 

Chr N Chr N Chr N Chr N Chr N 

1 59,487 6 48,510 11 36,831 16 22,893 21 10,292 

2 57,949 7 38,317 12 35,722 17 20,372 22 10,531 

3 47,430 8 37,202 13 27,963 18 21,800 X 18,055 

4 40,606 9 32,974 14 23,436 19 15,211 Y 1,409 

5 42,272 10 39,258 15 21,776 20 18,526 PAR 473 

N = Number of SNPs 

 

I supported the logistics for the samples’ reception and prepared the DNA sam-

ples (dilutions, quantifications and experimental quality controls) for chip geno-

typing. The genotyping was done together with the CANDELA samples in UCL 

Genomics, a collaborative research facility at UCL. 

As described in detail in Adhikari et al. (2016b), we followed the suggested pro-

tocol on the Illumina GenomeStudio genotype calls (Guo et al. 2014). All the met-

rics generated from the GenCall algorithm were analysed and SNPs with low 

GenTrain score (<0.7), low cluster separation score (<0.3) or high heterozygosity 

values (>0.5) were excluded. In order to account for batch and plate effects during 

the genotyping, we included repeated samples in a large number of plates (at 

random positions) to check for consistency across plates (Pompanon et al. 2005). 

We used several of these “control” samples and in all cases the genotypes were 

consistent across all plates (consistency rate ≥0.9999). Furthermore, we looked 

at SNP call rates and allele frequencies across batches to check for any incon-

sistencies and did PCA of samples annotated by batches to see if any pattern 

was detected. Finally, to check a possible effect of the DNA quality, a set of con-

trol samples was re-genotyped on different plates after 2x and 4x dilutions and 

the genotype consistency was ≥0.9996. 

 

3.3 Exploratory analyses and quality controls in the combined 

reference populations + CANDELA dataset 

Prior to merging the datasets (including CANDELA), quality controls were applied, 

primarily using PLINK v1.9. Since many analyses were done jointly with 

CANDELA, I describe QC done on these samples where appropriate. First, SNPs 
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and individuals with >5% missing data, and SNPs with minor allele frequency 

(MAF) <1% were excluded, following standard protocols for Genome-Wide data 

(Anderson et al. 2010). A considerable amount of missing data in an individual 

can evidence low quality DNA, while markers with missing data can be indicative 

of low quality for genotyping and problems with the genotype-calling algorithms. 

Similarly, in the case of MAF-based exclusions, it is suggested that small amounts 

of heterozygote and rare-homozygote clusters for a given marker can affect the 

performance of genotype-calling algorithms (Anderson et al. 2010).  

An X chromosome concordance check was done by comparing sex assignments 

in the dataset with X chromosome inbreeding coefficients with PLINK v1.9 (option 

--check-sex). The following quality controls were also applied to all the datasets, 

but the Native American samples excluded were kept in the merged data and 

were used for the phasing as to keep the highest possible number of Native Amer-

ican segments, but were not used in any of the subsequent analyses. 

Offspring were removed from the trios collected in 1KGP. Cryptic relatedness was 

assessed by estimating PI_HAT (the IBD test implemented in PLINK v1.9; see 

Chapter 2, Section 2.2.1.2) in each dataset after doing LD-based pruning to ac-

count for the fact that this test is not LD-sensitive. Case-control association stud-

ies usually consider that two samples are unrelated when the maximum related-

ness is less than that of a second-degree relative (equivalent to a PI_HAT <0.25). 

Anderson et al. (2010) proposed a threshold of 0.1875, which is half-way between 

second and third-degree relatives, considering that other factors like LD, popula-

tion structure and genotyping errors can affect the estimation. 

Moreover, it also is essential to take into consideration the ascertainment bias 

introduced while designing the chips. In this dataset, this is especially important 

for Native American populations, which are underrepresented in most chip de-

signs including Illumina Omni platforms, and whose high levels of genetic drift 

can also inflate PI_HAT estimates. While in European populations we observe 

that the median PI_HAT is close to zero, In Native Americans we observe median 

values close to the values for second and third-degree relatives (data not shown). 

Assuming that the median PI_HAT can be seen as a baseline value, we propose 

to establish a different PI_HAT threshold for every population, removing individu-

als with PI_HAT>0.1 above the median PI_HAT for that group. The 10% addition 
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to the baseline allows us to be conservative after accounting for some variability 

in the estimates. For instance, for the population Kogi the median PI_HAT is 0.21 

(Table 3.3), which means that only individuals with PI_HAT values >0.31 were 

excluded for this population (in this case, Kogi1 and Kogi4). 

 

Table 3.3. PI_HAT estimates for the reference population Kogi 

ID* Kogi1 Kogi2 Kogi3 Kogi4 Kogi5 Kogi6 

Kogi1 0 0.5624 0.3224 0.223 0.2165 0.2143 

Kogi2 0.5624 0 0.2958 0.2412 0.2095 0.2132 

Kogi3 0.3224 0.2958 0 0.1987 0.2011 0.2075 

Kogi4 0.223 0.2412 0.1987 0 0.3333 0.2269 

Kogi5 0.2165 0.2095 0.2011 0.3333 0 0.2222 

Kogi6 0.2143 0.2132 0.2075 0.2269 0.2222 0 

*These are not the real sample IDs. 

 

In addition, to control for possible recent admixture that could potentially confound 

the clustering, an unsupervised ADMIXTURE analysis was performed (using the 

LD-pruned data described above) to identify and exclude Native Americans, Sub-

Saharan Africans, East Asians and Europeans with less than 95% of their own 

continental ancestry. In the case of East/South Mediterranean individuals, 

ADMIXTURE consistently inferred a mixture of European and Sub-Saharan Afri-

can ancestry. The estimated proportions of both components were found to be 

homogeneous across individuals within populations, probably indicating the de-

tection of an old admixture event (Jobling et al. 2014) which might not affect the 

detection of fine-scale genetic structure. Based on this assumption, I excluded 

four individuals with admixture proportions deviating markedly from those ob-

served in the population sample, suggestive of recent admixture (three Moroc-

cans with Sub-Saharan African ancestry >40% and one Libyan with Sub-Saharan 

African ancestry of 79%; both of these populations have an estimated average 

Sub-Saharan African ancestry of ~20±3%). Additionally, for the CANDELA da-

taset, individuals sampled in a given country but born outside it were relocated 

when coming from one of the five countries included in this study or otherwise 

removed. 

Finally, prior to the merging, I evaluated and corrected flipped strands using the 

reference build hg19/b37 and removed palindromic SNPs (SNPs were their al-
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leles are both purines or pyrimidines), because the strand flipping issues are un-

detectable for such SNPs, as their alleles are complimentary and potentially cre-

ate merging and alignment problems when compared to other datasets. 

After Quality Control, the merged CANDELA + reference population dataset com-

prised genotypes for 546,780 autosomal SNPs in 8,647 individuals (including 

6,589 Latin Americans and 2,058 individuals from the reference population sam-

ples). 

 

3.4 Selection of reference samples from CANDELA 

Given the lack of representation of some Italian and German populations (im-

portant sources of migration to Latin America, see Chapter 1, Section 1.2.4) in 

our reference samples, and the low overall numbers of Native Americans, we 

decided to include as reference samples individuals from CANDELA with consid-

erably high levels of European or Native American ancestry. 

Following the same ADMIXTURE analyses described in the previous section, we 

found 52 individuals with >99% European ancestry in the Brazilian sample, 37 

reporting full German and 15 full Italian ancestry through records of native lan-

guage spoken by their grandparents. Clustering analyses (Sections 3.7 and 3.8) 

corroborated their resemblance to the respective countries or regions. 

In addition, there were 1 Colombian, 22 Mexicans, 65 Chileans and 17 Peruvians 

with >95% Native American ancestry. There is additional information for 30 of 

these individuals on the specific Native American populations they or their ances-

tors belong to (especially in Mexico), and for the others detailed information on 

their geographic places of origin is provided. PCA and haplotype-based clustering 

analyses are generally consistent with this information (Sections 3.7 and 3.8). In 

Chapter 5 (Section 5.3.2.7), I illustrate how our inferred ancestry results change 

(though largely remain consistent) if I instead remove these CANDELA individuals 

from the reference set. 
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3.5 Phasing 

Phasing of the whole merged dataset was performed with SHAPEIT2 using de-

fault parameters. Genetic distances used were obtained from the HapMap Phase 

II genetic map build GRCh37 (International HapMap et al. 2007). Missing SNPs 

(following QC, only individuals with <5% missingness remained) were imputed 

during the phasing process. 

 

3.6 Inference of haplotype similarity profiles between individu-

als 

I set up CHROMOPAINTER to provide estimates of the proportion of DNA in 

every reference population individual (recipients) that is most closely related to 

each other reference population individual (donors). The software automatically 

excludes the recipient individual being painted from the donors, hence recon-

structing haplotype similarity profiles for every individual in terms of the others. 

This procedure creates a squared coancestry matrix, required as input for fine-

STRUCTURE, containing the number of haplotype segments for which each in-

dividual is inferred to share most recent ancestry with each other individual (for 

details, see Chapter 2). This set of reference populations included the CANDELA 

individuals selected in the previous section to be included in the reference. 

The recombination scaling constant 𝑁𝑒 and mutation parameter θ used by 

CHROMOPAINTER were jointly estimated for every individual in a subset of chro-

mosomes (1, 6, 13 and 22) with ten Expectation-Maximization steps, starting from 

default values defined by the software. The weight-averaged  𝑁𝑒 and θ values 

across chromosomes (weighted by each chromosome’s SNP count) were then 

used for subsequent CHROMOPAINTER runs on all autosomes (𝑁𝑒 = 290.83 and 

θ = 0.00038).  𝑁𝑒 is an analogous parameter to effective population size, and θ  

is an estimator of population mutation rate, similar to the Watterson estimator 

(Watterson 1975). The genetic distances were interpolated for every SNP based 

on the HapMap Phase II genetic map build GRCh37. 
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3.7 Definition of clusters of reference population individuals 

I have implemented a set of analyses based on previous methodologies devel-

oped by Leslie et al. (2015), Hellenthal et al. (2014), and Lawson et al. (2012), 

which aim to generate a clustering of genetically homogeneous groups to be used 

as surrogates for the ancestral populations involved in the genetic make-up of 

Latin America. These analyses take advantage of the increased resolution pro-

vided by haplotype-based ancestry inference and also facilitate the interpretation 

of the sub-continental ancestry estimation on the admixed individuals.  

I first used the software fineSTRUCTURE to explore the fine-grained genetic 

structure of the reference populations. Further analyses selected a subset of fine-

STRUCTURE clusters to be used as surrogates for the ancestral populations 

when analysing admixed CANDELA individuals. Essentially, this selection pro-

cess excludes individuals that are inconsistently assigned to different clusters 

through the iterations of the MCMC procedure, clusters that do not contribute 

significantly to the admixed Latin American populations, and clusters with com-

plex demographic histories whose contributions to the admixture can be difficult 

to interpret. A general picture of the procedure is described below, and the Ap-

pendix has a description of this selection process broken down by cluster. 

 

3.7.1 fineSTRUCTURE analysis 

I used fineSTRUCTURE to evaluate genetic structure in the reference data, inde-

pendent of population sampling labels and using haplotype similarity patterns. 

Using the procedure described in the fineSTRUCTURE instructions, I estimated 

an adjustment factor c of 0.236, which accounts for (incorrect) assumption that 

the amount of DNA matching among individuals is independent. Two MCMC runs 

were performed, each using 2,000,000 iterations (sampling every 10,000). Fol-

lowing Leslie et al. (2015), for each run the sample with maximum posterior prob-

ability was selected and an additional 100,000 hill-climbing moves were then per-

formed to search for merges or splits that further improve the overall model like-

lihood (Lawson et al. 2012). After this procedure, fineSTRUCTURE classified in-

dividuals into 129 clusters. 
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In general, the clusters closely match geographic, linguistic and/or historical re-

ported relationships between populations (Appendix), and the resolution is higher 

to that provided by PCA (Section 3.8). Some populations, especially Native Amer-

ican and African groups, are usually divided into several clusters. This is stratifi-

cation within populations can be caused by the detection of different levels of 

genetic drift in the same population. Genetic drift causes an increase on the 

amount of haplotype similarity among individuals within the same group as the 

likelihood of finding a common recent ancestor in other population; the more 

drifted an individual is, the higher their self-copying. 

We also tried a procedure that builds a “tree” by merging pairs of genetically sim-

ilar clusters (one pair at a time until only two remain) under a greedy algorithm 

described in Lawson et al. (2012), that was successfully applied to study the fine 

structure of the populations in Great Britain (Leslie et al. 2015). However, for this 

specific analysis cutting the tree at different levels does not seem to be the best 

choice, as the distances on the tree branches relate to changes in the posterior 

probability of the fineSTRUCTURE model and are not directly related to time or 

measurements of genetic distance (Leslie et al. 2015), and several factors, like 

big differences in samples size between populations can also complicate the in-

terpretation (Lawson et al. 2012). Perhaps for these reasons, even though most 

of the 129 clusters are considerably close in the hierarchy of the tree to popula-

tions that are also close geographically, some of them are positioned within the 

tree with other clusters when there is no evidence of clear relationships (Figure 

3.2, e.g. Mayan clustering next to Mapuche). 

In order to reduce the number of clusters potentially representing sources of an-

cestry in Latin America, to avoid problems related to colinearity between different 

surrogate sources when estimating ancestry (as reference populations with close 

haplotype similarity profiles are often indistinguishable in the regression models, 

hence increasing the uncertainty of the estimations), and to support the interpre-

tation of results, I performed the further refinements described in the next section. 

 

3.7.2  Additional steps to refine the clustering 

I carried out additional analyses in order to evaluate the robustness of the clus-

ters, in a series of steps that culminated in a re-classification of these 129 clusters 
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into 117 “donor clusters”, a subset of which were used as 56 “surrogate clusters” 

for inferring sub-continental ancestry in CANDELA individuals as described in 

Chapter 2 (Section 2.4.2). In general, I made an effort to maintain a wide range 

of European and Native American groups, these being the two highest contrib-

uting continental groups to the genetic make-up of our sample. This re-classifica-

tion process was as follows: 

First, I checked the consistency of the assignments of every individual into a given 

cluster. Contrasting the results of the two fineSTRUCTURE runs, I removed indi-

viduals that were assigned to a different cluster more than 10% of the time across 

samples in the last 1,000,000 iterations of the two runs, and five clusters where 

all individuals were inconsistent across these samples. I also extracted twelve 

individuals assigned to their own unique clusters, and ten small clusters made of 

either a small number of individuals from distant populations or from populations 

present in other clusters with greater numbers. 

Next, I used the remaining clusters (i.e. those not set aside above) to perform an 

initial estimation of sub-continental ancestry in the CANDELA samples using a 

modification of the Non-Negative Least Squares (NNLS) regression approach de-

scribed in Leslie et al. (2015) and Hellenthal et al. (2014). Based on these analy-

sis, I excluded additional individuals from 17 clusters that contributed to no 

CANDELA samples. Furthermore, based on the tree inferred by fineSTRUC-

TURE and on Total Variation Distance (TVD) (e.g. as used in Leslie et al. (2015)), 

I merged 29 remaining clusters that were difficult to distinguish from one another 

into 13 groups. After these steps, there were 69 clusters remaining intact from the 

original 129.  

I next took all individuals that had been excluded as described above and reclas-

sified them into 48 clusters based on population label information. This gave me 

the 117 “donor clusters” that we use throughout. The Appendix lists how individ-

uals from the 129 fineSTRUCTURE clusters were classified into the 117 donor 

clusters used. 

I then performed a few additional steps to define the final 56 “surrogate clusters”, 

starting from the 69 “intact” clusters described above, using the modified NNLS 

regression approach. In particular I checked if closely related clusters could po-

tentially contribute to colinearity issues in subsequent analyses or if they had 
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complex ancestry profiles that could eventually complicate the interpretation of 

the results. To perform this regression analysis, the proportions of DNA that each 

individual from the 69 clusters matches to each donor as estimated by 

CHROMOPAINTER were summed across donors within each of the 117 donor 

groups defined above. 

For each individual from the 69 clusters, this produces a vector of 117 variables 

that we call a “copying vector” (see Chapter 2), with each variable the proportion 

of DNA that this individual copies from (i.e. matches to) all individuals contained 

in that donor group. For each of the 69 clusters, I averaged these copying vectors 

across all individuals assigned to that cluster, creating a unique copying vector 

for each of the 69 clusters. Then for each of these 69 clusters, I performed a 

NNLS regression with the copying vector of that cluster as the response and the 

copying vectors for all 68 other clusters as predictors. 

From these analyses, seven clusters (whose individuals belong to the Native 

American populations Uros, Kogi, Karitiana, Surui, Ticuna and Mixe) with consid-

erable levels of genetic drift and no contributions to the CANDELA samples were 

excluded from the surrogate clusters and were also removed from the donors for 

subsequent analyses. Given their considerable amounts of genetic drift (as indi-

cated by high values of self-copying), we initially tried to use them only as recipi-

ents (painted against all the other populations except their own, in the same way 

the admixed individuals are painted) and surrogates, considering the possibility 

that by removing their self-copying from their haplotype similarity profiles, their 

contributions to the Latin American populations could be inferred successfully. 

However, this approach did not work (data not shown) and I decided to keep them 

out of the ancestry inference. 

Also, six clusters showing complex signals in NNLS analyses were excluded 

based on the following criteria: (i) the cluster contributed to the ancestry profiles 

of several surrogate groups of interest and (ii) the cluster showed ancestry from 

more than two continental groups. For instance, in the case of (i) we excluded 

Sardinia as it was contributing high amounts (~15%) to the ancestry of Portu-

gal/WestSpain, Catalonia and Italy. The Sardinian population, a well-known ge-

netic isolate, could be acting as a surrogate for the ancestors of different popula-

tions, possibly through a preserved Neolithic farmers-like ancestry (Chiang et al. 
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2016; Haak et al. 2015; Olivieri et al. 2017). The best example for (ii) is Turkey, 

which was inferred to have more than 5% ancestry from an East Asian source, 

as well as 5% from a European one. Turkey is strategically located between Eu-

rope, the Middle East and Asia, and previous studies on the genetic structure of 

Turkey have demonstrated an overlap between Turks and Middle Eastern with 

considerable affinity with European and South / Central Asian populations 

(Hodoğlugil and Mahley 2012). 

These additional analyses resulted in these 69 clusters being reduced to a final 

list of 56 “surrogate clusters” that are made of 1,444 individuals from the reference 

panel (Table 3.1). Table 3.4 details the individual makeup of the 56 surrogate 

clusters, in terms of the original population sample labels, and Figure 3.2 shows 

a tree relating them based on the distances calculated by fineSTRUCTURE. 

 

Table 3.4. Individual makeup of the 56 clusters defined by fineSTRUCTURE and used 
for ancestry analysis in CANDELA 

Cluster Size Includes 

1 10 Ethiopia(3/3), South.Sudan(7/8) 

2 73 Kenya(73/73) 

3 6 Namibia.3(6/9) 

4 18 South.Africa.3(18/19) 

5 51 Gambia(51/111) 

6 68 Sierra.Leone(68/69) 

7 99 Nigeria.1(99/101) 

8 9 Jordan.1(7/15), Yemen(2/2) 

9 7 Jordan.1(1/15), Jordan.2(3/3), Palestine(3/3) 

10 7 Morocco.2(7/7) 

11 8 Libya.2(1/7), Turkey.1(7/7) 

12 12 Tunisia.2(6/6), Libya.2(6/7) 

13 28 Tunisia.1(14/14), Libya.1(14/14) 

14 11 Morocco.1(11/11) 

15 48 Spain.2(1/14), Spain.4(13/15), Spain.5(3/4), Spain.6(4/8), 
Spain.7(4/7), Spain.9(9/12), Spain.10(3/6), Spain.11(5/8), 
Spain.12(5/14), Spain.14(1/7) 

16 18 Spain.8(1/15), Spain.10(2/6), Spain.12(5/14), Spain.13(5/6), 
Spain.17(5/6) 

17 29 Spain.7(3/7), Spain.12(2/14), Spain.13(1/6), Spain.14(6/7), 
Spain.15(10/10), Spain.16(7/8) 

18 18 Spain.2(13/14), Spain.3(2/2), Spain.6(1/8), Spain.11(2/8) 

19 53 Portugal.1(18/18),Portugal.2(31/31), Spain.1(4/8) 

20 24 Spain.18(14/14), Spain.19(8/8), France.1(2/2) 

21 19 Italy.5*(15/15), Italy.1(2/2), Bulgaria(2/2) 

22 31 Italy.3(31/106) 
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23 101 NW.Europe(68/91), UK.1(31/31), UK.2(1/29), UK.3(1/1) 

24 31 Germany*(31/37) 

25 2 Russia(2/2) 

26 9 Finland(7/99), Estonia(2/2) 

27 92 Finland (92/99) 

28 72 China.1(72/82) 

29 91 Vietnam(91/95) 

30 64 China.4(64/101) 

31 103 Japan(103/104) 

32 56 Chile.1(1/3), Bolivia.2(8/12), Chile.3*(47/65) 

33 16 Bolivia.1(8/12), Peru.4*(6/17), Peru.2(2/3) 

34 10 Argentina.1(10/19) 

35 9 Peru.4*(8/17), Peru.2(1/3) 

36 3 Colombia.1(2/16), Colombia.2(1/3) 

37 3 Costa.Rica.2(3/3) 

38 4 Costa.Rica.1(4/4) 

39 4 Colombia.5(4/4) 

40 2 Colombia.3(2/2) 

41 14 Colombia.1(12/16), Colombia.2(2/3) 

42 3 Peru.1(1/13), Peru.4*(2/17) 

43 5 Chile.3*(1/65), Argentina.2(2/2), Chile.2(2/2) 

44 7 Mexico.9(2/2), Guatemala(5/5) 

45 4 Paraguay(4/4) 

46 2 Colombia.6(2/2) 

47 6 Peru.1(6/13) 

48 5 Argentina.6(3/5), Argentina.7(2/2) 

49 2 Mexico.1(2/2) 

50 9 Mexico.2(2/20), Mexico.10*(7/22) 

51 7 Mexico.6(7/8) 

52 6 Mexico.8(6/8) 

53 16 Mexico.10*(13/22), Mexico.6(1/8), Mexico.8(2/8) 

54 19 Mexico.2(18/20), Mexico.10*(1/22) 

55 2 Mexico.3(2/2) 

56 18 Argentina.3(13/13), Argentina.4(2/2), Argentina.5(3/3) 

A tree relating these clusters is shown in Figure 3.2. 
*Additional populations were extracted from CANDELA data. Italy.5: Brazilians of Italian 
descent, Germany: Brazilians of German descent, Chile.3: Native Americans in Chile, 
Mexico.10: Native Americans in Mexico, Peru.4: Native Americans in Peru. Details of the 
selection process can be found in Methods. Table adapted from Chacón-Duque et al. 
(2018). 
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Figure 3.2. Tree topology relating the final 56 clusters which were retained for ancestry 
analysis of the CANDELA individuals. 
Brackets on the right highlight the 35 groups of clusters that were defined for the graph-
ical representations. Table 3.4 provides detailed information of every cluster. Adapted 
from Chacón-Duque et al. (2018). Generated by JC Chacón-Duque and K Adhikari. The 
scale on the tree corresponds to the posterior probabilities of the MCMC clustering 
model. They do not directly reflect scales of time or genetic distance.
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Figure 3.3. Geographic location of the 35 groups of clusters as defined in Figure 3.2.  
Reference populations obtained from CANDELA are not included in this map. Grey dots represent reference populations not included in the surrogate 
groups. Figure adapted from Chacón-Duque et al. (2018). Generated by JC Chacón-Duque and K Adhikari.
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All the haplotype-based sub-continental ancestry analyses reported in the re-

maining chapters of this thesis have been performed using these 56 surrogate 

clusters. However, for data visualization purposes, an alternative classification 

encompassing 35 groups of surrogate clusters has been defined by merging sub-

sets of these 56 clusters as shown in Figures 3.2. The map in figure 3.3 shows 

the geographic location of every of the 35 groups excluding the CANDELA sam-

ples used as references. 

 

3.8 Frequency-allele-based approaches for clustering 

Standard approaches were also implemented in order to check the consistency 

of our results and to establish the extent of resolution increase achieved. Unsu-

pervised ADMIXTURE analysis (Section 3.8.1) and PCA (Section 3.8.2) are thor-

oughly described below. 

FST was also estimated using Weir and Cockerham estimation as implemented in 

PLINK v1.9. The results were clearly affected by the fact that some samples have 

very small sample sizes making the results hard to explain (data not shown). 

 

3.8.1 ADMIXTURE analysis 

Unsupervised ADMIXTURE analyses were performed on the whole dataset after 

pruning for LD as described above, retaining a total of 150,858 SNPs. Results for 

the reference populations organized by the groups of clusters described in figure 

3.2 from K = 2 to 10 are displayed in Figure 3.4. 

Major continental groups are clearly defined at K=3, with East Asia arising at K=4. 

At this point a few patterns arise, as some populations are not entirely described 

by the four continental groups. The northern most Native American groups in the 

sample (located in Mexico) show a consistent yet marginal amount of the East 

Asian-like component, likely related to the fact that these populations are closer 

to Asia according to the migration routes used by the initial settlers. We did not 

include Siberian or Eskimo groups, but I suspect that this small contribution is 

likely to represent an ancestral component related to these groups. 



CHAPTER 3. REFERENCE PANELS 

91 

 

Figure 3.4. Unsupervised ADMIXTURE analysis. 
Generated by JC Chacón-Duque and K Adhikari. 
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North Eastern Europeans seem to have a considerable amount of East Asian / 

Native American ancestry, plausibly related to a North Asian ancestral component 

e.g. contributed via ancient admixture. East/South Mediterranean individuals 

show variable degrees of European / Sub-Saharan African ancestry between 

groups but homogeneous amounts within groups, as described in Section 3.3. 

 

Table 3.5. Unsupervised ADMIXTURE results at different Ks for the Native American 
groups of clusters which will be presented in the haplotype-based ancestry analyses 

 Unsupervised ADMIXTURE* 

 
K=3  K=5  K=7 

Cluster group 

Native 
 

Native 

North 

Native 

South 

 Native 

North 

Native 

Central 

Andes 

Native 

SouthChile 

Pima 99.8  95.8 2.3  94.4 3.9 0.0 

Nahua1 98.7  94.4 4.4  93.5 5.2 0.2 

Nahua2 97.3  95.7 1.9  94.8 2.8 0.2 

SouthMexico 97.7  95.9 2.4  95.3 2.9 0.3 

Mixe 99.0  99.9 0.1  99.2 0.8 0.0 

Mayan 99.2  74.1 25.3  72.1 24.1 3.4 

ChibchaPaez 99.1  71.9 27.4  62.2 35.2 1.6 

Amazon 99.9  46.5 53.5  46.0 52.6 1.3 

AndesPiedmont 98.2  21.1 76.8  20.1 72.8 5.2 

Quechua1 96.3  4.7 91.3  3.6 92.2 0.0 

Aymara 99.5  2.4 97.3  2.5 97.0 0.1 

Quechua2 99.2  0.3 99.1  0.2 99.0 0.1 

Colla 96.3  10.2 86.0  10.0 82.0 4.5 

Mapuche 96.7  2.5 93.7  1.1 2.2 96.7 

Chaco1 99.9  49.6 50.3  50.6 47.1 2.2 

Chaco2 98.9  52.9 46.0  53.3 40.8 5.2 

*Values correspond to the mean ancestry percentages of ADMIXTURE components at 
those K’s and only the components that are related to that specific continental ancestry 
are displayed. 

 

At K=5 the first sub-continental split emerges, with a gradient in Native American 

populations visible from Mesoamerica to the Andres, reaching its maximum levels 
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at Mixe and Quechua2 respectively (Table 3.5). Mayan and ChibchaPaez groups 

have similar amounts of both ancestries, probably suggesting a more recent com-

mon ancestral origin between these two populations; the same happens with Am-

azon, Chaco1 and Chaco2. An additional split between Native American popula-

tions also appears, this time separating Mapuche from everything else. 

Table 3.6. Unsupervised ADMIXTURE results at different Ks for the European and Med-
iterranean groups of clusters which will be presented in the haplotype-based ancestry 
analyses 

 Unsupervised ADMIXTURE* 

 
K=3  K=9  K=10 

Cluster group 

Europe 
 

Europe 

North 

Medite-

rranean 

 
Europe 

North 

Europe 

Basque 

Medite-

rranean 

CanaryIslands 95.2  35.1 57.4  21.4 43.0 29.8 

Portugal/ 

WestSpain 
97.3  39.9 55.0  24.5 46.9 24.7 

CentralSouth 

Spain 
98.2  39.7 55.5  23.4 49.5 23.6 

CentralNorth 

Spain 
99.3  43.3 53.5  24.9 54.8 17.9 

Basque 100.0  44.9 51.9  21.1 69.2 6.6 

Catalonia 99.3  45.4 52.4  28.2 51.3 19.1 

Italy 99.5  40.4 58.3  26.7 43.1 29.7 

NorthWestEurope 99.4  65.4 34.2  49.0 45.6 5.1 

NorthEastEurope 92.6  91.9 2.4  90.2 5.6 0.3 

Sephardic 94.3  14.1 78.2  7.4 27.4 60.2 

East Mediterra-

nean 
89.4  5.8 81.7  3.8 14.8 72.2 

South Mediterra-

nean 
79.6  2.5 76.2  0.7 16.0 65.2 

*Values correspond to the mean ancestry percentages of ADMIXTURE components at 
those K’s and only the components that are related to that specific continental ancestry 
are displayed. 

 

A new Latin American component appears at K=6, almost exclusive to Colombia 

and reaching its highest levels in a population that has long been defined as a 

genetic isolate, as described extensively in Chapter 5. However, from this point it 

becomes clear that the ADMIXTURE analysis may not have enough power to 
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distinguish between recent admixture and genetic drift (van Dorp et al. 2015). 

African populations become differentiated at K=8. An ancestry gradient can also 

be seen in European / Mediterranean populations (Table 3.6) at K=9 with a further 

split at K=10, largely related to the Basque population. 

One interesting observation is the high affinity of CanaryIslands (conquered by 

the Kingdom of Castile in 1402) with southern and western Iberian populations. 

Although some studies have suggested a considerable amount of Guanche (the 

initial settlers of the island, Berber-like) ancestry in this population (Fregel et al. 

2009; Maca-Meyer et al. 2003; Rodríguez-Varela et al. 2017), distinguishing be-

tween different Mediterranean contributions is difficult. Given that in the analysis 

with fineSTRUCTURE they also look similar to other populations, I use them in 

the rest of this thesis as an Iberian-like source. 

 

3.8.2 Principal Component Analysis 

PCs also show similar patterns of differentiation to those found with ADMIXTURE. 

From PC1 to PC3 continental patterns are defined (Figure 3.5), while PC4 sepa-

rates the different Sub-Saharan African populations (not shown). 

 

Figure 3.5. Principal component analyses coloured by regions (PC1 vs PC2) 
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Figure 3.6. Principal component analyses coloured by regions. (PC5 vs. PC6) 
 

 

Figure 3.7. Principal component analyses coloured by Native American clusters. (PC5 
vs. PC6) 
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PC5 and PC6 mainly discriminate Native American groups (Figures 3.6 and 3.7). 

The patterns of differentiation of Native American ancestry seem to be consistent 

with geography in a similar way as detected by ADMIXTURE. PC5 goes from 

Mesoamerica to the Andes, while PC6 seem to separate Mapuche from all the 

other populations. PC6 also seems to partially differentiate some European pop-

ulations. 

PC7 and PC8 separates gradients between both Native American and European 

populations (Figures 3.8 to 3.10) making it complex to interpret from this point. 

 

Figure 3.8. Principal component analyses coloured by region. (PC7 vs PC8) 

 

Mapuche seems to be the Native American group that is being separated again 

from the rest. In the case of European / Mediterranean populations, the gradient 

again roughly coincides with the one found with ADMIXTURE. However the res-

olution does not seem to go beyond broad groupings, i.e. North East Europe, 

North West Europe, Southern Europe (Iberian Peninsula + Italy) and East/South 

Mediterranean.  
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Figure 3.9. Principal component analyses coloured by Native American clusters (PC7 vs 
PC8) 
 

 

Figure 3.10. Principal component analyses coloured by Native American clusters (PC7 
vs PC8) 
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3.9 Discussion and limitations 

The collected dataset aims to represent the sources of admixture of Latin Ameri-

can populations, but there are several limitations that need to be considered. First 

of all, the selection of the populations is limited by the availability of public data 

with genotypes for the same Illumina platform or data source that allows a large 

overlap of SNPs. A large number of SNPs is necessary to take advantage of the 

power conferred by linkage disequilibrium patterns in the implemented models.  

We tried to overcome this by genotyping different reference samples we thought 

would act as good proxies for ancestral populations in Latin America, and that we 

could obtain via our research collaborations within funding and time constrains. 

We further tried to mitigate this by including some CANDELA samples as refer-

ences, which allowed us to have representatives of populations otherwise absent, 

such as Germany and Italy (that are main sources of ancestry for the current-day 

Brazilian populations). Secondly, the samples sizes per population are highly var-

iable (ranging from 1 to 111), which can impact analyses in various ways as de-

scribed in this section.  

Finally, as mentioned before, even if we have sampled individuals from the same 

geographic locations as the original source populations, it cannot be guaranteed 

that they will be accurate surrogates. For instance, in the case of the Native Amer-

icans, a lot of the original ancestral populations may not exist anymore, as a con-

sequence of the dramatic population collapse occurred during colonial times 

(Chapter 1, Section 1.2.1). Moreover, the admixed and the source populations 

could have changed substantially through time after their contact, given the strong 

bottlenecks and - consequently - the genetic drift the former faced (Koehl and 

Long 2018), and the additional gene flow they could have all received. All of these 

limitations need to be considered when interpreting the results generated using 

these datasets. 

The results of this chapter show the increased resolution for detecting population 

structure provided by haplotype-based methods, confirming what has been sug-

gested in several studies (Busby et al. 2016; Hellenthal et al. 2014; Kerminen et 

al. 2017; Lawson et al. 2012; Leslie et al. 2015; Markus et al. 2014; Montinaro et 

al. 2015; van Dorp et al. 2015). In particular the allele-frequency-based clustering 

from ADMIXTURE can only distinguish broad patterns of population structure 
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compared to the haplotype-based model fineSTRUCTURE. Additionally, 

ADMIXTURE analysis can be hard to interpret, as different factors such as ad-

mixture, genetic drift and sample size can affect the way the components are 

segregated at every K (Lawson et al. 2017). Similarly, a problem with PCA is that 

the same PC can explain variation for several continental ancestries simultane-

ously. This makes it challenging to relate such variation to specific demographic 

processes and thus complicates interpretation of results for admixed individuals 

that contain different continental ancestries differentiated along the same PC. 

Some of the findings using allele-frequency-based approaches can be redefined 

using haplotype-based methods (van Dorp et al. 2015). For instance, the marginal 

East Asian-like ancestry detected with ADMIXTURE at K=4 in the Mexican Native 

Americans – likely to be ancient – can be confounded with recent East Asian 

ancestry in admixed Mexicans, while, in contrast, it is not detected when using 

haplotype-based approaches (see Chapter 5). 

The clustering presented here generally matches historical, geographical and lin-

guistic sources as well as previous genetic studies (Botigue et al. 2013; Reich et 

al. 2012). By exploring different metrics of population differentiation (Tree dis-

tance, TVD) and different iterations of the model, we can be more certain about 

the consistency of the clustering and the relative differences between the clusters. 

However, although results are highly consistent within clusters, it is necessary to 

keep in mind that the fineSTRUCTURE tree distances are not directly related to 

time and genetic distance measurements, and should be treated with caution 

when interpreting relationships between clusters (Leslie et al. 2015). Big differ-

ences on the sample sizes can also have an effect on the order of the clustering 

(Leslie et al. 2012). 

Due to this issues, after some exploratory analysis I decided not to use the ap-

proach that cuts down the levels of the tree until just two remain. The most high-

profile study to date using this approach (Leslie et al. 2015) aimed to deconstruct 

the structure of the British at different levels to show levels of relatedness and the 

interconnectivity between regions of the country. By contrast, in this thesis I aim 

to reconstruct a high-resolution sub-continental ancestry, and for that purpose I 

needed to keep the clusters at the maximum possible level of separation. Indeed 
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additional work using merged clusters showed less precision in simulations 

(Chapter 4, Section 4.2).  

With the steps I performed after the initial fineSTRUCTURE analysis, I have been 

able to establish a consistent set of surrogates based on their haplotype similarity 

patterns, which I will use to infer the contribution of specific population groups to 

the genetic make-up of Latin Americans. 

 

3.10  Summary 

Applying fineSTRUCTURE – a clustering model based on haplotype similarity 

patterns – to a wide set of reference populations, I have been able to establish a 

consistent set of genetically homogeneous clusters to be used as surrogates for 

the original ancestors of Latin American populations. Comparisons with widely 

used allele-frequency-based approaches provide evidences of an increase in the 

resolution of fine-scale population structure using haplotype profiles, and provide 

further support for the interpretation of the results in the remaining chapters. 

In the next chapter I assess the accuracy and robustness of the sub-continental 

ancestry estimations using the clustering established here, and demonstrate that 

these analyses are allowing the detection of sub-continental ancestry at a level 

never achieved previously. 

 



 

 

101 
 

 

 

4 Assessment of NNLS, SOURCEFIND and 
GLOBETROTTER performance through simula-
tions 

 

4.1 Overview 

In the previous chapter I have established a consistent set of reference popula-

tions to use as surrogates for the ancestral populations that contributed to the 

make-up of current-day admixed Latin American populations. In this chapter I 

perform a series of simulations modelling the admixture in Latin America in order 

to assess the robustness and accuracy of the methods we use to estimate sub-

continental ancestry (NNLS and SOURCEFIND) as well as the estimated dates 

of admixture (GLOBETROTTER) in this setting. While previous work has demon-

strated the increase in resolution of some of these haplotype-based approaches 

over traditional frequency-allele-based methods (Lawson et al. 2012, Hellenthal 

et al. 2014, Leslie et al. 2015), these simulations provide the first formal assess-

ments of the accuracy of (i) SOURCEFIND relative to NNLS, (ii) SOURCEFIND 

and NNLS in capturing sub-continental admixture in single individuals and (iii) 

GLOBETROTTER for dating admixture in single individuals. 

Furthermore, since the precision of sub-continental ancestry estimates is affected 

by the relatedness of surrogate clusters, and their level of genetic drift, these sim-

ulations also allowed the exploration of which sub-continental ancestries cannot 

be reliably distinguished. Subsets of some of the 56 surrogate clusters were used 

to generate simulated admixed individuals following the procedures described in 

Leslie et al. (2015), Hellenthal et al. (2014), Moorjani et al. (2011) and Price et al. 

(2009). 
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4.2 Simulations to assess accuracy of sub-continental ancestry 

estimates 

For each of the four sets of simulations described in Sections 4.2.1 to 4.2.4, I 

generated 100 simulated individuals as mixtures of three surrogate clusters (as 

defined in Chapter 3) intermixing 15 generations ago. Simulations were per-

formed as described in Price et al. (2009) and assume a model of instantaneous 

admixture followed by random mating. Briefly, each simulated haploid genome 

consists of a mosaic of blocks, each block of size M (in Morgans) sampled from 

an exponential distribution (with a rate parameter of 15 in this case, to simulate 

an admixture event 15 generations ago). For each block, the SNP data exactly 

matched that of a randomly sampled haplotype from one of the surrogate clusters, 

with the probabilities for selecting a haplotype from each of the three surrogate 

clusters specified by the admixture proportions being simulated as indicated in 

Sections 4.2.1 to 4.2.4. This random selection process was repeated inde-

pendently for each block. Two haploid genomes were randomly combined to gen-

erate each simulated diploid individual. 

From the clusters selected for the simulations, I used less than half the individuals 

in each cluster (usually ~30%) to simulate admixed individuals, in order to keep 

the remaining as surrogates for the sub-continental ancestry estimation. Addition-

ally, for every set of simulations an independent CHROMOPAINTER analysis 

was performed, excluding for the donors the individuals used as templates for the 

simulations. 

All SOURCEFIND analyses were performed with 20 independent runs using 

200,000 iterations for each run, as described in Chapter 2. As with the real data 

analysis (Chapter 5), for each run I extracted results for the sampled iteration with 

the highest posterior probability, and I then took a weighted average of these 

maximum a posteriori results across the 20 runs, using this probability as a 

weight. Non-negative-least-squares (NNLS) was run using GLOBETROTTER as 

described in Chapter 2. I note that accuracy of both NNLS and SOURCEFIND 

depends in part on the number of individuals used in each surrogate cluster, so 

that removing ~30% of the individuals from each simulating group when perform-

ing inference may decrease accuracy. 
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The precision of the sub-continental ancestry assignments varies depending on 

which clusters were used to simulate, with contributions from drifted clusters, like 

Native Americans, typically easier to differentiate. Distinguishing among contribu-

tions from less genetically differentiated clusters, such as among European and 

East/South Mediterranean groups, generally is more challenging, so that these 

simulations also allowed exploration of which groups cannot be reliably distin-

guished. 

Additionally, for NNLS, I also performed analyses using different numbers of sur-

rogate clusters to explore its effect on the estimation (data not shown). I used the 

classification of 35 groups of clusters defined in Chapter 3 (Section 3.7, Figure 

3.2) and a broad classification covering the five main continental regions included 

in the reference dataset (Native American, African, European, East Asian, 

East/South Mediterranean). I found that the best estimates in the simulated and 

real data were obtained with the 56 surrogate clusters and decided to consistently 

use them in all the inferences and only summarize the results based on groups 

of clusters when needed for display or comparison purposes.  

Next I describe the details and results for each of the four simulation scenarios. 

Each set was simulated with different admixture percentages and sources, as 

described at the beginning of every Section (in parenthesis is indicated the total 

sample size of each cluster included). 

 

4.2.1 European sub-continental ancestries can be estimated accu-

rately 

Here I simulated individuals as mixtures of 16 individuals from CentralSouthSpain 

(N=48), 32 from NorthWestEurope2 (N=101) and 5 from SouthMexico1 (N=16), 

each contributing (on average) 40%, 30% and 30% respectively (Figure 4.1). 

When using NNLS as described in e.g. Leslie et al. (2015), ancestry from South-

Mexico1 is inferred with high accuracy, showing little marginal uncertainty and 

little misassignment even to Nahua1 (Figure 4.2), a striking result considering that 

these two surrogate clusters are closely related as shown in the fineSTRUCTURE 

tree (Chapter 3, Figure 3.2). The accuracy obtained with SOURCEFIND is even 
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higher, having a nearly perfect match to the true simulated proportions and 

sources (Figure 4.3). 

 
 
Figure 4.1. Pyramid chart showing the distribution of simulated ancestry proportions from 
each surrogate cluster across the 100 simulated individuals. 
Colours correspond to major geographic regions: NAM (blue), EUR (red), ESM (dark 
orange), SSA (green), and EAS (purple). Black horizontal lines show the mean propor-
tions of ancestry from each source group. Taken from Chacón-Duque et al. (2018). Gen-
erated by JC Chacón-Duque and K Adhikari. 

 

In the case of CentralSouthSpain, NNLS shows high levels of misassignment to 

other Iberian surrogates. The highest misassigned values are to 

CentralNorthSpain, which is the group most genetically similar to 

CentralSouthSpain, with additional misassignments to Portugal/WestSpain, 

Basque and others. There are additional inferred contributions from East/South 

Mediterranean populations, up to a maximum of approximately 5%. In contrast, 

SOURCEFIND estimations are highly accurate, with only very minor inferred 

incorrect contributions related to Italy1, which may relate to genuine simulated 

ancestry from CentralSouthSpain or NorthWestEurope2 given their intermediate 

location between these two simulated source groups. Importantly, there are no 

mis-inferred contributions from East/South Mediterranean populations when 

using SOURCEFIND. 

The estimation of NorthWestEurope2 ancestry is typically more accurate, with 

some noise associated to NorthWestEurope1 (max ~10%), considerably more in 
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NNLS relative to SOURCEFIND, causing the overall ancestry of the real source 

(NorthWestEurope2) to decrease slightly. 

 
 
Figure 4.2. Pyramid chart showing the distribution of ancestry proportions assigned to 
each surrogate cluster across the 100 simulated individuals, as inferred by NNLS. 
Other details in Figure 4.1 legend. Taken from Chacón-Duque et al. (2018). Generated 
by JC Chacón-Duque and K Adhikari. 
 

 

 

Figure 4.3. Pyramid chart showing the distribution of ancestry proportions assigned to 
each surrogate cluster across the 100 simulated individuals, as inferred by 
SOURCEFIND. 
Other details in Figure 4.1 legend. Taken from Chacón-Duque et al. (2018). Generated 
by JC Chacón-Duque and K Adhikari. 

 



CHAPTER 4. SIMULATIONS 

106 

Overall, this simulation demonstrates the increased resolution of SOURCEFIND 

compared to NNLS for resolving ancestral origins among Iberian populations, and 

in particular greatly decreases the noise of mis-specified contributions related to 

East/South Mediterranean groups. 

 

4.2.2 Southern European clusters can be distinguished  

For the simulations I used 16 individuals from Portugal/WestSpain (N=53), 7 from 

Italy1 (N=19) and 6 from Aymara (N=16), and set up the percentages to be 40%, 

30% and 30% respectively (Figure 4.4). 

 
 
Figure 4.4. Pyramid chart showing the distribution of simulated ancestry proportions from 
each surrogate cluster across the 100 simulated individuals. 
Other details in Figure 4.1 legend. Taken from Chacón-Duque et al. (2018). Generated 
by JC Chacón-Duque and K Adhikari. 
 

NNLS shows clear difficulty in discriminating Aymara from Quechua2, consistent 

with their close genetic relatedness and the small sample size of the former, which 

makes the inference more challenging (Figure 4.5). When Quechua2 is simulated 

(Section 4.2.3), it seems that the resolution to distinguish between the two popu-

lations is higher. In the case of SOURCEFIND there seems to be no difficulty 

resolving these ancestries in either simulation scenario (Figure 4.6). 
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Figure 4.5. Pyramid chart showing the distribution of ancestry proportions assigned to 
each surrogate cluster across the 100 simulated individuals, as inferred by NNLS. 
Other details in Figure 4.1 legend. Taken from Chacón-Duque et al. (2018). Generated 
by JC Chacón-Duque and K Adhikari. 

 

 

Figure 4.6. Pyramid chart showing the distribution of ancestry proportions assigned to 
each surrogate cluster across the 100 simulated individuals, as inferred by 
SOURCEFIND. 
Other details in Figure 4.1 legend. Taken from Chacón-Duque et al. (2018). Generated 
by JC Chacón-Duque and K Adhikari. 

 

Portugal/WestSpain correctly dominates the inferred ancestry from Europe, 

though shows a tendency to be overestimated while ancestry from Italy1 is un-

derestimated. Although again SOURCEFIND inferences are better than those of 
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NNLS, this same tendency is still observed. Again there are marginal East/South 

Mediterranean contributions incorrectly inferred by NNLS, as well as several ad-

ditional contributions throughout Europe, though these mis-specifications are 

avoided by SOURCEFIND, suggesting that these signals are associated to noise 

related to the NNLS method. 

 

4.2.3 Iberian ancestries can be estimated accurately 

For this simulation I used 15 individuals from Quechua2 (N=56), 16 from Cen-

tralSouthSpain (N=48) and 22 from WestAfrica3 (N=99), and set up the percent-

ages to be 40%, 40% and 20% respectively (Figure 4.7). 

 

Figure 4.7. Pyramid chart showing the distribution of simulated ancestry proportions from 
each surrogate cluster across the 100 simulated individuals. 
Other details in Figure 4.1 legend. Taken from Chacón-Duque et al. (2018). Generated 
by JC Chacón-Duque and K Adhikari. 

 

Estimation for WestAfrica3 is highly accurate in both NNLS and SOURCEFIND, 

likely due to the large sample size of this reference group and the fact that African 

haplotypes are easier to classify given their relative amount of genetic differenti-

ation from other reference groups. Quechua2 is also well differentiated compared 

to the previous simulation, suggesting that small sample sizes, or perhaps differ-

ences in true sources of ancestry, could be a limiting factor for sub-continental 

ancestry estimation. As before, SOURCEFIND results demonstrate more accu-

racy than NNLS (Figures 4.8 and 4.9). 
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Figure 4.8. Pyramid chart showing the distribution of ancestry proportions assigned to 
each surrogate cluster across the 100 simulated individuals, as inferred by NNLS. 
Other details in Figure 4.1 legend. Taken from Chacón-Duque et al. (2018). Generated 
by JC Chacón-Duque and K Adhikari. 

 

 

Figure 4.9. Pyramid chart showing the distribution of ancestry proportions assigned to 
each surrogate cluster across the 100 simulated individuals, as inferred by 
SOURCEFIND. 
Other details in Figure 4.1 legend. Taken from Chacón-Duque et al. (2018). Generated 
by JC Chacón-Duque and K Adhikari. 

 

I also note that NNLS infers a notable spurious contribution from Basque, which 

suggests that inferred Basque-like contributions in the Americas using this ap-

proach should be treated with caution (Montinaro et al. 2015). 
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4.2.4 Closely related Native American ancestries can be quantified 

and separated accurately 

For this simulation I used 6 individuals from SouthMexico1 (N=16), 3 from Mayan 

(N=7) and 16 from CentralSouthSpain (N=48). The percentages of ancestry were 

set up to be 40%, 40% and 20% respectively (Figure 4.10). 

These results suggest that, for NNLS, the presence of different mis-specified sig-

nals of ancestry across the Iberian groups is somehow proportional to the amount 

of true ancestry from these sources (Figure 4.11). This information could allow 

the establishment of noise thresholds in NNLS inference. For example, if the high-

est values of Basque ancestry in an individual with 20% CentralSouthSpain is 

around 2%, and around 4% for an individual with 40% CentralSouthSpain, we 

could in theory predict that an individual in the real dataset with 80% Cen-

tralSouthSpain-like ancestry may have ~8% Basque ancestry attributable to 

noise. SOURCEFIND does not show this problem, instead showing only a slight 

mis-assignment of this Iberian component to the closest group, Central-

NorthSpain (Figure 4.12). 

 

Figure 4.10. Pyramid chart showing the distribution of simulated ancestry proportions 
from each surrogate cluster across the 100 simulated individuals. 
Other details in Figure 4.1 legend. Taken from Chacón-Duque et al. (2018). Generated 
by JC Chacón-Duque and K Adhikari. 

 

The Native American components, even though from two genetically similar 

sources, are correctly assigned by both approaches, though with SOURCEFIND 
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again showing increased precision. As stated above, this could be related to the 

fact that the relatively higher drift of Native groups allows better differentiation of 

the haplotype-based copying profiles. 

 

Figure 4.11. Pyramid chart showing the distribution of ancestry proportions assigned to 
each surrogate cluster across the 100 simulated individuals, as inferred by NNLS. 
Other details in Fig. 4.1 legend. Taken from Chacón-Duque et al. (2018). Generated by 
JC Chacón-Duque and K Adhikari. 

 

 

 

Figure 4.12. Pyramid chart showing the distribution of ancestry proportions assigned to 
each surrogate cluster across the 100 simulated individuals, as inferred by 
SOURCEFIND. 
Other details in Figure 4.1 legend. Taken from Chacón-Duque et al. (2018). Generated 
by JC Chacón-Duque and K Adhikari. 
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4.3 Simulations to assess the accuracy of individual estima-

tions of dates since admixture events 

The two sets of simulations below aim to assess the accuracy per individual esti-

mation of time since admixture and the effect of time since admixture on ancestry 

estimation. 

 

4.3.1 Simulations with a single admixture event 

We simulated an additional 1,430 individuals with different proportions of admix-

ture from two sources (CentralSouthSpain and Quechua2) and different times 

since admixture. Using the procedure described in Section 4.2, each individual 

was simulated as descending from an instantaneous admixture event that oc-

curred g generations ago, with a proportion p of ancestry inherited from Cen-

tralSouthSpain, and 1-p ancestry inherited from Quechua2. We simulated with 9 

different values of p = 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 95% and 13 differ-

ent values of g = 5, 6,..., 17, with 10 simulated individuals for each combination 

of p and g, giving 11x13x10=1,430 simulated individuals in total. 

We used 16 CentralSouthSpain and 20 Quechua2 individuals to generate the 

admixed individuals (same number of individuals from Section 4.2), using our re-

maining 32 CentralSouthSpain and 36 Quechua2 individuals to define their re-

spective surrogate groups under inference using SOURCEFIND and 

GLOBETROTTER. Both programs were run separately on each simulated indi-

vidual, with the slight exception that GLOBETROTTER was allowed to use all 

surrogates to describe the admixture (i.e. rather than only including surrogates 

inferred by SOURCEFIND to contribute >1%, which is the procedure I use in 

Chapter 5 for the CANDELA data). 

In contrast to the simulations above, for these simulations I used the alternative, 

more computationally efficient version of SOURCEFIND (Chapter 2, Section 

2.4.2). Here I used S'=6 and performed 100,000 total MCMC iterations, sampling 

posterior values of 𝛽1
𝑟,…, 𝛽𝑆

𝑟 every 5,000 iterations after discarding the initial 

50,000 iterations as “burn-in". The results are highly consistent with those pro-

duced by the other version of SOURCEFIND (data not shown). 
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Figure 4.13. GLOBETROTTER’s inferred dates (y-axis) across individuals, for simula-
tions mixing CentralSouthSpain and Quechua2 at the given proportions (legend) and 
times (x-axis). 
Coloured dots and lines show mean results across all 10 individuals simulated with the 
given proportions and dates, with the grey shaded bar highlighting the true simulated 
dates. Taken from Chacón-Duque et al. (2018). Generated by JC Chacón-Duque and G 
Hellenthal. 
 
 
 

 

Figure 4.14. SOURCEFIND's inferred proportion of ancestry related to Iberian (IBR) and 
Native American (NAM) sources (y-axis) across individuals (circles), for simulations mix-
ing CentralSouthSpain and Quechua2 at the given proportions (x-axis) and times (leg-
end). 
Coloured lines show mean results across all 10 individuals simulated with the given pro-
portions and dates, with the grey shaded bar highlighting the true simulated proportions. 
Taken from Chacón-Duque et al. (2018). Generated by JC Chacón-Duque and G Hel-
lenthal. 
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Figure 4.13 shows that on average, GLOBETROTTER’s estimated dates across 

individuals accurately reflect the simulated dates (grey bar), and that this accu-

racy is not affected by the true proportion of admixture from each group. Similarly, 

SOURCEFIND’s accuracy in inferring the proportion of DNA contributed from Ibe-

rian (IBR) and Native American (NAM) source groups did not depend on the true 

date of admixture (Figure 4.14). In the case of NAM, the inferred proportion of 

ancestry almost always matches Quechua2 (data not shown). 

Finally, we tried to replicate the same pattern described in Chapter 5 (Figure 5.20 

and Table 5.3), where the amount of Native American ancestry tends to increase 

as the admixture events become more recent, noting that no such trend should 

exist in these simulations. To do this, we extracted our 1,297 simulated individuals 

that were inferred to have a single date of admixture between Native and Euro-

pean source groups. We then binned these simulated individuals based on their 

inferred date, and calculated the average inferred proportion of DNA matching to 

European (EUR) versus Native American (NAM) groups across individuals in 

each date bin. In the figure below, it is clear that the pattern observed in the real 

data does not exist in this simulated data (Figure 4.15), suggesting that this de-

tected pattern is not an artefact of the GLOBETROTTER estimation. This issue 

is further explained in Chapter 5. 

 

Figure 4.15. Mean ancestry percentages in the simulated individuals estimated by 
SOURCEFIND grouped by the number of generations since admixture. 
Taken from Chacón-Duque et al. (2018). Generated by JC Chacón and G Hellenthal. 
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4.3.2 Simulations with two sequential admixture events 

To further evaluate the trend of increasing Native ancestry at more recent dates 

of admixture seen in the CANDELA data, 1,050 additional individuals with two 

sequential admixture events were simulated (this analysis was performed jointly 

with G. Hellenthal). As before, we simulated different proportions of admixture 

from two sources (CentralSouthSpain and Quechua2), and varied the times for 

the two admixture events. 

Using the exponential sampling procedure described in Section 4.2, we first sim-

ulated individuals stemming from an instantaneous admixture event occurring 2 

generations previously, with 55% CentralSouthSpain ancestry and 45% 

Quechua2 ancestry. We then simulated a second instantaneous admixture event 

with p ancestry from the population generated in the first admixture event, and 1-

p ancestry from Quechua2 occurring g generations ago. We simulated p = 0.86-

0.98 (at 0.02 intervals) and g = 5-14 generations, with 15 simulated individuals 

for each combination of p and g (1,050 simulated individuals in total). Note that, 

under this simulation procedure, the first admixture event occurred g+2 genera-

tions ago, the more recent event occurred g generations ago, and the final ex-

pected proportion of ancestry from CentralSouthSpain is 0.55*p. 

SOURCEFIND and GLOBETROTTER were run separately on each simulated 

individual as before.  As with the previous section, for these simulations we used 

the more computationally efficient version of SOURCEFIND (Chapter 2, Section 

2.4.2) to infer proportions. 

In 923 (~88%) of the 1,050 individuals, GLOBETROTTER concluded only a single 

date of admixture, which is not surprising given the inherent difficulty in distin-

guishing between two pulses of admixture separated by only 2 generations that 

involve the same source groups. Figure 4.16 shows results when assuming a 

single date of admixture, which infers dates that typically are 2 generations above 

g (simulated date given with the grey bar). Therefore, GLOBETROTTER most 

often concludes a single date of admixture, with the inferred date reflecting mainly 

the older event. 

Figure 4.17 illustrates that SOURCEFIND accurately estimates the admixture 

proportions in the simulated individuals (grey bar gives simulated proportion). 
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Figure 4.16. GLOBETROTTER’s inferred dates (y-axis) across individuals, for simula-
tions with two sequential admixture events, at the given proportions (legend) and times 
(x-axis). 
Coloured dots and lines show mean results across all 15 individuals simulated with the 
given proportions and dates, with the grey shaded bar highlighting the true simulated 
dates. Taken from Chacón-Duque et al. (2018). Generated by G Hellenthal. 

 

 

 

Figure 4.17. SOURCEFIND's inferred proportion of ancestry related to Iberian (IBR) and 
Native American (NAM) sources (y-axis) across individuals (circles), for simulations with 
two sequential admixture events, at the given proportions (x-axis) and times (legend). 
Coloured lines show mean results across all 15 individuals simulated with the given pro-
portions and dates, with the grey shaded bar highlighting the true simulated proportions. 
Taken from Chacón-Duque et al. (2018). Generated by G Hellenthal. 

 

In addition, as above, we extracted the 923 simulated individuals that 

GLOBETROTTER inferred to have a single admixture event between source 
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groups that best-matched Native and European surrogate groups. We binned 

these individuals based on their inferred admixture date, and calculated the aver-

age ancestry inferred proportions in each bin. While not as striking as that ob-

served in our real data (Chapter 5, Figure 5.20), this set of simulations shows an 

analogous trend for decreasing Native American ancestry at increasing g that is 

significant (p<0.001) under the same simple linear regression model used for an-

alysing this trend in the real data (Chapter 5, Table 5.3). While we did not simulate 

increasing Native ancestry over time, individuals here are simulated with different 

proportions of admixture from the earlier admixture event occurring g+2 genera-

tions ago. Individuals with more simulated ancestry from this earlier admixed 

group have (i) more European ancestry and (ii) inferred dates that may be biased 

to be slightly older by retaining more signal from this older admixture event. In-

deed, a simple linear regression of the bias in date estimates for these 923 indi-

viduals on their expected proportion of Spanish ancestry shows a significantly 

positive association (p<0.007). In contrast, for the 1,297 simulated individuals de-

scribed in the previous section with only a single simulated admixture date, there 

is no such significant trend (p=0.33). Overall these simulation results suggest that 

mixture between unadmixed and admixed Natives over time, such as that we 

simulated in this section, could lead to the trend we observe in Chapter 5 (Figure 

5.20).  

 

4.4 Discussion and limitations 

The analyses performed in this chapter confirm the accuracy of haplotype-based 

sub-continental ancestry, and admixture time and sources estimations, in an ap-

propriate setting for Latin America, corroborating that the approaches I have uti-

lized possess enough resolution to distinguish different sub-continental ances-

tries and to characterize admixture events in single individuals. This can have 

useful applications for the analysis of recently admixed populations, as this is the 

first time that a fully haplotype-based analysis has been performed on each indi-

vidual separately.  

However, it is important to consider all the limitations of these simulated scenar-

ios. Firstly, we are using the surrogate clusters and not the real ancestral popu-

lations as templates for the simulations. This makes the ancestry inference more 
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straightforward in the simulations compared to the real data, as we do not know 

how close the surrogate clusters are to the original source populations. Even if 

we have sampled the most genetically similar groups, it is difficult to establish 

how different they are compared to the groups that actually contributed the DNA 

in the past (Chapter 3, Section 3.9). 

Secondly, these simulations are a simplified representation of the demographic 

and evolutionary processes behind the current genetic make-up of Latin Ameri-

can populations, also making easier the ancestry inference in the simulations in 

comparison to the real data. Even though simulations using coalescent ap-

proaches could help to reconstruct these complex demographic scenarios in 

greater detail (Hoban et al. 2012; Hudson 2002), it is not an simple problem to 

overcome considering that the populations within Latin America can have very 

different demographic histories. These admixed populations dispersed through 

the vast region since the beginning of colonial times have experienced varied 

demographic events at different magnitudes, mainly including deep bottlenecks 

and differential gene flow from the ancestral populations (Koehl and Long 2018).  

 

4.5 Summary 

This chapter assessed the performance of the different methods used in this the-

sis, in particular suggesting our methods accuracy to (i) identify sources and pro-

portions of sub-continental ancestry and (ii) infer dates of admixture when ana-

lysing single individuals simulated to mimic genetic features of Latin Americans. 

Overall, these results provide strong support for my conclusions about the genetic 

history of Latin American populations in the remaining chapters of this thesis. 
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5 Genetic history of Latin America: increasing 

resolution with haplotype-based approaches 

 

5.1 Overview 

In the previous chapter I have tested through simulations the accuracy of the 

methods applied in this thesis to identify sources and proportions of sub-conti-

nental ancestry and to infer dates of admixture when analysing single individuals 

using the reference panel established in Chapter 3. In this chapter I explore pat-

terns of sub-continental genetic ancestry in more than 6,500 Latin American indi-

viduals across five countries (Mexico, Colombia, Peru, Chile and Brazil). I inter-

pret results according to the history of the region, and estimate the timings and 

sources involved in the main genetic admixture events that have taken place in 

the region. 

The increase in resolution due to these methods and our large sample size pro-

vide a unique opportunity to further reconstruct details of the demographic history 

of the populations sampled. New findings include fine-grained contributions re-

lated to individuals sampled from specific geographic areas within the Iberian 

Peninsula and local Native American groups, a widespread signal of East / South 

Mediterranean-like ancestry that is likely to be related to the migration of “Con-

verso” Jews into the American continent during the colonization, and additional 

small but significant signals from North-western European and East Asian popu-

lations. The times and sources of admixture also match historical records of out-

side migrations related to these regions, from the beginning of the colonial period 

to the more frequent migrations in the last century. 

Overall, these results provide the most comprehensive description to date of the 

genetic ancestry of Latin America. 
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5.2 Methods 

The CANDELA dataset (Chapter 1, Section 1.6) has been used for all the anal-

yses in this chapter. After quality controls and exploratory analyses, 6,589 indi-

viduals and 546,780 autosomal SNPs were retained as described in Chapter 3 

(Section 3.3). 

Chapter 2 gives theoretical background and technical details on the methods ap-

plied here. Comparisons with the analyses performed in reference population in-

dividuals (Chapter 3) and simulated individuals (Chapter 4) are described where 

appropriate. 

 

5.2.1 Estimation of ancestry using allele-frequency-based ap-

proaches 

As described in Chapter 3 (Section 3.8), after pruning the chip dataset for linkage 

disequilibrium (LD), 150,858 SNPs were retained for an unsupervised analysis 

on the same individuals used as surrogates in the haplotype-based analyses 

(which also covers most of the populations used as references). Additionally, a 

supervised analysis was implemented, using the same reference population indi-

viduals used in the haplotype-based analysis, grouped into the main continental 

groups in the following scenarios: 

(i) Five groups (i.e. using K=5 clusters) – Native American, East Asian, 

Sub-Saharan African, European and East/South Mediterranean 

(ii) Four groups – Native American, East Asian, Sub-Sharan African and 

European + East/South Mediterranean 

(iii) Four groups – Native American, East Asian, Sub-Saharan African and 

European. 

PCA was also performed along with the reference samples as described in Chap-

ter 3. 
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5.2.2 Inference of haplotype similarity profiles 

In order to estimate the haplotype similarity profiles used for sub-continental an-

cestry estimation, I set up CHROMOPAINTER to provide estimates of the pro-

portion of DNA in every CANDELA individual (recipients) that is most closely re-

lated to each reference population individual (donors), allowing us to reconstruct 

haplotype similarity profiles for all individuals in terms of the surrogate reference 

clusters’ samples. I used exactly the same parameters and donors described in 

Chapter 3. 

 

5.2.3 Estimation of sub-continental ancestry 

The 56 surrogate clusters defined by fineSTRUCTURE from the reference da-

taset were used as representatives for the ancestral populations contributing to 

ancestry in Latin America (Chapter 3). I ran SOURCEFIND for 200,000 iterations, 

sampling every 1,000th iteration. Also, for each recipient individual, I combined 

results across 50 independent runs, extracting the estimates with the highest pos-

terior probability in each run and then taking a weighted (by posterior probability) 

average of these 50 estimates. This weighted average (where the more likely 

values are given higher weight) is equivalent to the posterior mean, which is an 

estimator of the true value of the mean parameter under Bayesian theory. Infor-

mally, this procedure accounts for the uncertainty of the individual ancestry esti-

mations. 

To compare continental ancestry assignments with those obtained using 

ADMIXTURE, SOURCEFIND results were collapsed into continental groups 

(Section 5.2.1) by adding the inferred ancestry values of the sub-components in-

cluded within each continental group. 

 

5.2.4 Estimation of number of generations since admixture 

The times and sources of major admixture events were estimated with 

GLOBETROTTER (Chapters 2 and 4). Each CANDELA individual was tested 

separately for admixture, restricting to the 6,352 individuals inferred by 

SOURCEFIND to match DNA to more than one surrogate cluster in order to in-

clude only admixed individuals. 
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For each individual, I ran GLOBETROTTER using default settings (see Chapter 

2, Section 2.5 for details) and allowing only the subset of ≤ 56 reference groups 

that contributed >1% to that individual, as inferred by SOURCEFIND, to act as 

ancestry surrogates when identifying and describing the admixture event. For 

each CANDELA individual, GLOBETROTTER categorized admixture inference 

into one of three types: (i) one date of admixture involving two sources, (ii) one 

date of involving more than two sources, suggestive of admixture among multiple 

genetically different groups within a short time span, and (iii) multiple dates of 

admixture between two or more sources (not necessarily the same two), suggest-

ing a more complicated history but which GLOBETROTTER attempts to describe 

as two major pulses of admixture (Chapter 2, Section 2.5). 

For simplicity, the admixture history of the individuals included in type iii was de-

scribed as two distinct events, with each event characterized as having two in-

ferred admixing groups and a single inferred date of mixing. I represent the two 

admixing sources using GLOBETROTTER's “best-guess” results, which de-

scribes each admixing source by the single (included) surrogate group (out of the 

subset of 56 included in that individual’s GLOBETROTTER analysis) that is in-

ferred to be most genetically similar to that (unknown) admixing source group. 

To convert time to years, I used the formula proposed in Hellenthal et al. (2014): 

𝑦 = 1990 − 28 × (𝑔 + 1) 

Where y is the year of admixture, 1990 the average birth year across CANDELA 

individuals, 28 years the average human generation length according to a cross-

cultural estimation using demographic data (Fenner 2005), and g is GLOBE-

TROTTER's inferred date (in generations). One generation is added (g+1) to ac-

count for the fact that recombination inference start from the genetic information 

on the grandparents. 

 

5.2.5 Testing for patterns in the distributions of inferred admixture 

dates related to different source groups 

In Figure 5.18, I plot histograms for the dates of inferred events involving each of 

the major geographic labels “Iberia”, “NorthWestEurope & Italy”, “East Mediterra-

nean & Sephardic”, “Sub-Saharan African (SSA)” and “East Asia”. These plots 
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contain the inferred dates for all admixture events that involved a reference group 

categorized under that major geographic label, with: 

 “Iberia”: CanaryIslands, Portugal/WestSpain, CentralSouthSpain, Central-

NorthSpain, Basque and Catalonia. 

“NorthWestEurope & Italy”: Italy1 and NorthWestEurope1. 

“East Mediterranean & Sephardic”: Sephardic1, EastMediterranean1 and 

EastMediterranean2. 

“Sub Saharan Africa”: WestAfrica1, WestAfrica2, WestAfrica3, EastAfrica1, 

EastAfrica2, Namibia and SouthAfrica. 

“East Asia”: Japan, ChinaHan, China/Vietnam1 and China/Vietnam2.  

The following analysis was conducted jointly with G. Hellenthal. We used “wil-

cox.test” in R (R-Core-Team 2013) to perform a Wilcoxon rank-sum test (also 

known as a Mann-Whitney U test) to test the alternative hypothesis that the dis-

tribution of admixture dates for each geographic label X= (“East Asia”, “North-

WestEurope & Italy”, “East Mediterranean & Sephardic”, “SSA”) is skewed to-

wards more recent dates relative to the “Iberia” geographic label, versus the null 

hypothesis that distributions are the same. Though they may represent genuine 

admixture events, for these tests and the histograms I removed events with an 

inferred date of one generation. This was done both to avoid such dates dominat-

ing inference due to their high frequency (8% of all events in Iberia have inferred 

dates of one generation, with East Asia = 21%, NorthWestEurope & Italy = 6%, 

East Mediterranean & Sephardic = 10%, SSA = 13%) and because such events 

have been interpreted as evidence of “no admixture” in past applications of 

GLOBETROTTER (e.g. Hellenthal et al. 2014). 

For the Wilcoxon rank-sum test, we further excluded dates ≥ 30 generations to 

avoid admixture events that occurred prior to colonial-era migrations. In addition, 

this analysis assumes each inferred event is an independent observation, even 

though some individuals have two inferred events. However, we note that conclu-

sions and trends do not change if we restrict to one inferred event per individual 

(results omitted), e.g. by excluding individuals who infer multiple dates of admix-

ture (e.g. case (iii) described in Section 5.2.4) and only including the more strongly 
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signalled event in individuals who infer more than two sources of admixture at the 

same time (e.g. case (ii) described in Section 5.2.4).  

To assess the significance of the observed trend of decreasing Native ancestry 

versus time since admixture (Figure 5.20) and test for the presence of such a 

trend in the simulations of Chapter 4 (Section 4.3), we performed a linear regres-

sion of proportion Native ancestry versus inferred date since admixture, including 

only individuals inferred to have a single date of admixture between two sources 

(e.g. case (i) described in Section 5.2.4) that are best represented by Native and 

European reference groups. 

 

5.3 Results 

In this section, I first describe ancestry estimations using conventional allele-fre-

quency-based approaches and some of their limitations to estimate ancestry at 

subtler levels. Then I show how SOURCEFIND estimates presented at a conti-

nental scale highly correlate with the ancestry estimates from allele-frequency-

based methods. Finally, I present the results for sub-continental ancestry estima-

tions as well as the estimation of the times since admixture and the sources in-

volved in these admixture processes, thoroughly discussing how haplotype-

based methods outperform previous approaches and which historical processes 

are likely to explain the observed results. 

 

5.3.1 Allele-frequency-based approaches cannot infer sub-continen-

tal ancestry accurately  

In the first CANDELA report (Ruiz-Linares et al. 2014), Sub-Saharan African, Eu-

ropean and Native American ancestry proportions were reported using 30 AIMs, 

carefully chosen to capture genetic differences between these continental 

groups. Additionally, in Adhikari et al. 2016 we reported the same information for 

a supervised analysis at K=3 using 93,328 SNPs, showing the consistency of 

these reports and confirming the prevalent intra and inter-population variation in 

ancestry in these five Latin American population. 
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Figure 5.1. Unsupervised ADMIXTURE analysis in the CANDELA dataset.  
Detailed description of the reference clusters in Chapter 3 (Section 3.8.1 and Figure 3.4). 
Adapted from Chacón-Duque et al. (2018). Script provided by K. Adhikari. 
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For the unsupervised admixture analysis (Figure 5.1), main continental groups 

present in the sample are clearly defined at K=3 (European, Native American and 

Sub-Saharan African) and K=4 (East Asia). All CANDELA countries have consid-

erable amounts of the first three components. The highest Native American and 

the lowest European mean ancestry are present in the Peruvian sample (64.2% 

and 30.6% respectively), while the Brazilian sample shows the lowest Native 

American and the highest European mean ancestry (8.4% and 83%, respec-

tively). As described in Chapter 1 (Section 1.6), the Brazilian sample was col-

lected in a region with recent European migration, hence the high European-like 

contribution. African mean ancestry is the lowest out of these three continental 

components, ranging from 2.7% in Chile to 9.4% in Colombia. PC1 and PC2 show 

equivalent information with all Latin Americans falling between the axes defining 

this three major groups (Figure 5.2). 

 

 

Figure 5.2. Principal component analysis of the merged CANDELA + reference popula-
tions’ dataset. 
(Part 1 of 3). Dots are shown for all CANDELA individual (coloured by country). For the 
reference population individuals a label has been placed at the median PC scores for 
that cluster. Detailed description of the reference clusters in Chapter 3 (Section 3.8.2 and 
Figures 3.5 - 3.10). Adapted from Chacón-Duque et al. (2018). Generated by K. Adhikari. 
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Figure 5.2 (Part 2 of 3). Principal component analysis of the merged CANDELA + refer-
ence populations’ dataset. 
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Figure 5.2 (Part 3 of 3). Principal component analysis of the merged CANDELA + refer-
ence populations’ dataset. 
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Admixture may be overestimating East Asian Ancestry at lower levels (K=4), as 

Native Americans and CANDELA samples from Mexico show a consistent but 

marginal amount of East Asian Ancestry (2.9%, Interquartile Range (IQR) = 2.1 - 

3.2 %). However, it is well known that – relative to South American populations – 

North American Native populations are genetically most similar to Asian popula-

tions relative to other world-wide groups (Wang et al. 2007). Thus, as we did not 

include Siberian samples in this analysis, the East Asian signal in Native Ameri-

cans may represent an ancestral North-east Asian population, which is suggested 

by the fact that this marginal amount of ancestry is homogenous across individu-

als (Chapter 3, Section 3.8.1). However, some individuals show considerably 

higher values of East Asian ancestry (especially in Peru), more likely indicating a 

direct and more recent ancestry in these individuals, which is  supported by hap-

lotype-based estimates as described in sections 5.3.2.1 and 5.3.2.6. East Asian 

ancestry is also differentiated in PC3 (Figure 5.2). 

The first level of sub-structure in Native American ancestry is inferred at K=5 and 

PC5, displaying the Mesoamerica-to-Andes cline described in Chapter 3 (Sec-

tions 3.8.1 and 3.8.2). Although the proportions from each of the two clusters 

composing this cline vary across CANDELA samples considerably, clear patterns 

are present within each country, providing the first line of evidence of a likely Na-

tive American genetic sub-structure reflected in the current-day admixed Latin 

Americans (section 5.3.6.1). This variation across populations has been ad-

dressed by previous studies, including one from the Ruiz-Linares Lab (Conley et 

al. 2017; Homburger et al. 2015; Moreno-Estrada et al. 2013; Wang et al. 2008). 

The Mexican sample predominantly shows ancestry matching Mesoamerican 

samples in the reference dataset (mean 55.7%), Peru and Chile display affinity 

with Andean groups, and Colombia and Brazil have a mixture of both components 

(with more Mesoamerican in Colombia). The Mapuche component detected at 

K=7 and PC6 is present primarily in Chile. Interestingly, at PC5 (and to a lesser 

extent in PC7) the Colombian samples skew away from the axis that points at the 

sampled Native American groups that are most likely to be related to the indige-

nous ancestors of current Colombians (ChibchaPaez). This skewing could be re-

lated to the lack of sampling of more Native American groups related to the orig-

inal Native admixing source, e.g. due to the extinction of the ancestral population 
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or a strong effect of genetic drift between that original population and their pre-

sent-day descendants (as discussed in the next paragraph, a large proportion of 

the Colombian sample is thought to be part of a genetic isolate). 

The component detected at K=6 is especially predominant in Eastern Antioquia 

in Colombia (ranging between 70 and 100%), and its presence is associated with 

a reduction of both European and Native American ancestries inferred for smaller 

Ks. This population has been widely reported as a genetic isolate (Bedoya et al. 

2006; Carvajal-Carmona et al. 2000), and the appearance of this ancestral com-

ponent at a low K is probably due to a strong founder event. Only 111 of 1713 

(6.5%) Colombians showed less than 20% from this component, while all individ-

uals outside Colombia had <15%. This component could also be related to the 

skew seen in Colombians in PC5 and PC7 that shifts these individuals outside 

the axis of Native American variation. Considering that this component does not 

represent a single ancestral population, I assume ADMIXTURE results after this 

point need to be interpreted with caution, as the population structure and the pro-

portions inferred for every K beyond this point cannot be interpreted simply as the 

product of admixture. 

The additional Southeast Sub-Saharan African component arising at K=8 (Chap-

ter 3, Section 3.8.1) is virtually absent in Admixed Latin Americans, as only 11 

individuals in the total sample show between 2% and 4% of this component, cor-

roborated by results in PC9 where only a few individuals tend to cluster close to 

SouthAfrica and Namibia groups. The Mediterranean-like component at K=9 and 

the Basque-like component at K=10 (chapter 3, section 3.8.1) are also present in 

all CANDELA populations, but it is not clear whether these components could 

represent three different ancestral sources or just different patterns of population 

structure in Europe and the Mediterranean region. Interestingly, PC8 seems to 

be more informative about the Mediterranean-to-North East Europe cline as it 

clearly shows some individuals lying close to Mediterranean populations, while a 

considerable number of Brazilians cluster with North-western European popula-

tions. Overall, unsupervised ADMIXTURE and PCA results are highly correlated 

and in general seem to show less resolution than haplotype-based methods as I 

demonstrate later (section 5.3.6, Lawson et al. 2012). 
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I also performed a series of supervised ADMIXTURE analyses (Figure 5.3), aim-

ing to evaluate the resolution of the software between East / South Mediterranean 

and European populations, as though the unsupervised analysis is not able to 

detect a single individual entirely assigned to the homogeneous Mediterranean 

or sub-continental European component. When inferring ancestry from these two 

sources separately (Figure 5.3.A), the estimations are totally different compared 

to unsupervised results and the assignments are clearly inaccurate. For instance, 

in Colombia almost all of the European component is replaced by the Mediterra-

nean one, which is inconsistent with unsupervised ADMIXTURE, PCA and hap-

lotype-based methods (Section 5.3.6) and known history (Boyd-Bowman 1976; 

Sánchez-Albornoz 1994). When combining East / South Mediterranean and Eu-

ropean sources into a single group (Figure 5.3.B) and when excluding completely 

the former (Figure 5.3.C) the results seem unaffected; this can be due to the small 

sample size of our Mediterranean sources compared to the European ones. 

Given these results, I did not try any sub-continental ancestry estimation based 

on supervised analyses. 

 

Figure 5.3. Supervised ADMIXTURE analysis in the CANDELA dataset. 
(A) 5 continental groups, (B) 4 groups combining European and East / South Mediterra-
nean sources, (C) 4 groups (excluding Mediterranean sources). More details in Section 
5.2.3. Script provided by K. Adhikari. 
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5.3.2 Increasing resolution with haplotype-based approaches 

The simulations described in Chapter 4 suggest that, using haplotype-based ap-

proaches, I can reliably identify sources and proportions of sub-continental an-

cestry in single individuals with admixture analogous to the CANDELA individuals. 

In this section I describe the ancestry estimation results obtained with haplotype-

based methods and compare them to those obtained using allele-frequency-

based approaches. 

 

5.3.2.1 Continental ancestry estimations with SOURCEFIND and 

ADMIXTURE are highly correlated 

Continental ancestry estimates obtained with ADMIXTURE and SOURCEFIND 

are highly correlated (Figure 5.4). This correlation is high even in the case of East 

Asian ancestry (r > 0.96), which is clearly overestimated by ADMIXTURE at lower 

levels (section 5.3.1). The mean East Asian ancestry estimated for Mexico using 

SOURCEFIND is only 0.2%, suggesting that the ancestry seen with ADMIXTURE 

could be related to ancestral relationships and lack of resolution between North-

ern Native Americans and East Asians not related to recent admixture processes. 

One further difference between methods is that European and East / South Med-

iterranean ancestries as estimated by SOURCEFIND are equivalent to the unsu-

pervised European component detected using ADMIXTURE. Given that 

ADMIXTURE is not able to distinguish ESM as a separate component and de-

scribes it as a mixture of European and Sub-Saharan African sources (Chapter 

3, Section 3.8.1), it is likely that some of the ancestry related to ESM populations 

in Latin America could potentially be identified as Sub-Saharan African ancestry 

by ADMIXTURE. This could explain the decrease of mean SSA ancestry esti-

mated by SOURCEFIND (3.7% (IQR= 0-4.5)) compared to the one estimated by 

ADMIXTURE at K=4 (5.1% (IQR= 1.7-6)), with a similar trend observed when 

performing supervised ADMIXTURE analyses defining a Caucasian-like cluster 

with and without ESM sources (mean SSA ancestry: 3.8% and 4.9% respec-

tively). 
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Figure 5.4. Comparison of continental ancestry estimates for the CANDELA sample 
obtained using SOURCEFIND or ADMIXTURE 
 

 

5.3.2.2 Pre-Columbian Native American genetic sub-structure is mirrored 

in Latin Americans 

There is a clear correspondence between the location of current Native American 

populations and the Native ancestry sub-components in the admixed individuals, 

suggesting a scenario in which local Native populations interbred extensively with 

immigrants at the onset of the colonization and where the Native American pop-

ulations have continued inhabiting the same areas. As Native Americans show 

high levels of genetic structure, relative to other continental populations, previous 

genetic analyses have demonstrated that pre-Columbian Native American popu-
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lation structure is detectable in admixed Latin Americans, even with allele-fre-

quency-based approaches, as discussed at the end of this section. The results 

presented here add to this by showing a sharp regional differentiation between 

the five countries examined (Figure 5.5), and are supported by the realization that 

the individual variation in Native American sub-components’ proportions (using 

geographic location of participants’ birthplaces) matches to the genetic profiles of 

the Native Americans used as surrogates sampled in the surrounding areas (Fig-

ure 5.6). 

 

Figure 5.5. Proportion of Native American ancestry sub-components inferred with 
SOURCEFIND, across all individuals with >5% total Native American ancestry. 
In each sampled CANDELA country (using the same colour scheme of the 35 groups 
shown in Figures 3.3 and 5.6.Total sample sizes for each country are: Mexico (N=1,288), 
Colombia (N=1,713), Peru (N=1,284), Chile (N=1,891), and Brazil (N=676). Adapted 
from Chacón-Duque et al. (2018). Generated by J.C. Chacón-Duque and K. Adhikari. 

 

The Mexican sample shows a strong differentiation in Native American ancestry 

compared to South America. The Native American component is subdivided into 

three regional sub-components: a predominant Nahua-like sub-component 

mainly present in northern and central Mexico (Nahua1; 44.2%, IQR=29.3-

61.8%), one related to Natives of South Mexico widely matching people from the 

same area (SouthMexico; 12.4%, IQR=0-14.1%), and a Maya-like component 

mostly present in Mexicans from the Yucatan Peninsula (Mayan; 2.2%, IQR=0-

0%). This result is consistent with previous reports (Moreno-Estrada et al. 2014; 

Romero-Hidalgo et al. 2017). Moreno-Estrada et al. (2014) characterized the fine-

structure of Mexican Native American and admixed populations and reported a 
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similar trend. Even though they had a broader coverage of the country, the meth-

ods applied did not allow the quantification of sub-continental ancestry. From the 

six clusters they detected, three are related to those here described (Northern, 

Southern and Mayan) and the other three (Seri, Tojolabal and Lacandon), which 

are restricted to small geographical areas, resemble likely drifted Native Ameri-

cans and/or admixed individuals from geographic locations not covered by the 

CANDELA sampling effort, performed primarily in Mexico City. This finding has 

been replicated by Romero-Hidalgo et al. (2017). 

In Colombians, Native ancestry is subdivided into three sub-components. The 

principal one is represented by Chibchan-Paezan Natives from Colombia and 

lower Central America and is more prominent in North-western Colombians 

(ChibchaPaez; 14%, IQR=9.8-16.8%). According to a recent study using the pop-

ulation CLM (Colombians in Medellin) from 1KGP has found that the closest Na-

tive American populations to this sample (which is located in the same city where 

the CANDELA sample was conducted, see Chapter 1) are Embera and 

Waunana, two of the populations included in our Chibchan-Paezan reference 

group (Chapter 3, Table 3.1). 

The other two components are not related to Native American surrogates from 

the country, probably reflecting distantly related ancestral groups that are either 

not represented in the Colombian Native American surrogates included or ances-

tors from different geographic areas outside of present-day Colombia. The sec-

ond most prevalent component is represented by the Central American Maya and 

is widespread through the country (Mayan; 8.9%, IQR=0-16.3%). Different an-

thropological studies have suggested the cultural diversity of Native American 

populations in Colombia being likely influenced by continued migrations from 

Central America (Gómez 1970; Reichel-Dolmatoff et al. 1998; Rivet 1943). Finally 

a Peruvian Andean-Piedmont component (represented by samples from northern 

Peru) is present and especially predominant in Southern Colombians, coinciding 

with the northernmost expansion achieved by the Inca Empire in pre-Columbian 

times (AndesPiedmont; 6.7%, IQR=0-11.5%). 
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Figure 5.6. Geographic distribution of Native American ancestry sub-components in 
CANDELA individuals. 
Each pie in the main map corresponds to an individual placed according to their birth-
place, and shows the proportion of ancestry that individual matches to each regional 
source group (colours) in the inset map. Pie sizes are proportional to the total ancestry 
these individuals match to all regional source groups in the legend, with individuals only 
depicted if their total Native American ancestry is >5%. Since many individuals share the 
same birthplace, jittering (addition of random noise to the coordinates to avoid overlap of 
data points) has been performed based on pie size and how crowded the area around a 
pie is. Pies in the inset map indicate the approximate geographic location of the Native 
American reference populations (Fig 3.1) that were included in the set of 35 surrogate 
groups and the colouring represents the proportion of individuals from that population in 
one of the 35 groups (excluding Chaco2 as it does not contribute >5% to any individual). 
More details on the inset map in Figure 3.3. Adapted from Chacón-Duque et al. (2018). 
Generated by JC Chacón-Duque and K Adhikari. 
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Native American ancestry in Peru is subdivided into four sub-components, all of 

them related to Central Andean Natives. The predominant sub-component is 

Quechua-related showing the highest values in central Peru (Quechua1; 33.3%, 

IQR=0.1-54.7%), followed by a Peruvian Andes-Piedmont sub-component con-

centrated in Northern Peruvians (AndesPiedmont; 26.8%, IQR=0-46.1%), a small 

Aymara sub-component mostly seen in Southern Peruvians (Aymara; 5.4%, 

IQR=0-0.4%) and a marginal sub-component showing its higher proportion in the 

border with Chile (Quechua2; 0.6%, IQR=0-0%). 

These four sub-components are also present in Northern Chile but in different 

proportions (the Quechua sub-component shared with Southern Peruvians being 

the most prevalent (Quechua2; 6.1%, IQR=0-0%)), and when added together rep-

resent the second highest Native American ancestry in Chile (16.6%, IQR=0-

24%). The overlap in Andean Native ancestry in Southern Colombia, Peru and 

Northern Chile, match the areas that according to historical records were under 

Inca control in the period of greatest expansion of the empire and coincide with 

the brief political subdivisions created by the Inca administration (Torero 2005).  

The Chilean sample is likely to be the most homogenous sample in terms of Na-

tive American genetic ancestry. Except for Northern Chileans, all samples show 

mostly Mapuche-like Native American ancestry (Mapuche; 32%, IQR=21.4-43%). 

The fact that this surrogate accurately represents the Native American ancestors 

without the need for other contributions from more diverse populations in the ref-

erence panel (i.e. Maya or Andes-Piedmont), even though it is a small (N=5) and 

highly drifted sample is evidence that most of the admixed Chileans can poten-

tially trace their Native American ancestry to direct ancestors of the modern Ma-

puches. From historical records, it is widely suggested that these populations 

were mostly absorbed or exterminated by the admixed populations during colo-

nial times (Crow 2013). 

The characterization of Native American sub-components in the Brazilian sample 

is challenging not only because the average Native ancestry is the lowest across 

the sampled countries, but also because of the lack of better proxies for the Native 

American ancestors of modern Brazilians. Therefore, these results need to be 

taken with caution. Some of the individuals with high levels of Native American 

ancestry are recent immigrants from other Latin American countries, and for the 
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rest of the Brazilian samples, Andean-Piedmont ancestry from North-eastern 

Peru is by far the group that best represents their Native ancestors, which could 

eventually suggest a common ancestral origin in the Amazon basin. Figure 5.7 

provides a more detailed depiction of the Native American sub-components in the 

Brazilians with >5% Native American ancestry. 

Compared to other studies, overall these results not only corroborate previous 

findings but also increase the resolution substantially. A study led by A. Ruiz-

Linares demonstrated for the first time - through the use of microsatellites in di-

verse Native and admixed samples collected through Latin America - that Native 

American sub-structure can be detected and that such structure is reflected 

amongst admixed individuals (Wang et al. 2008). However, they were cautious 

with their limited ability to estimate ancestry proportions at the sub-continental 

level and cautioned against interpreting their results as ancestry proportions re-

flecting underlying admixture processes between Native American populations, 

but rather as a genetic profile heavily influenced by genetic relatedness.  

 

Figure 5.7. Proportion of Native American ancestry sub-components for the 367 Brazili-
ans with >5% Native American ancestry. 
 

The same haplotype similarity estimation approach that I apply here has been 

previously used in Latin American populations by Montinaro et al. (2015). They 

calculated sub-continental ancestry with NNLS, which has good resolution for Na-

tive American sub-components (Chapter 4, Section 4.2) but used an East Asian 
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population as a surrogate for Native American ancestry. It has been demon-

strated that these populations are not good proxies and can considerably distort 

the results (de Moura et al. 2016), which is the case with NNLS, which can clearly 

separate Native American from East Asian populations. Other investigations have 

made use of Ancestry Specific PCA (AS-PCA, details in Chapter 1, Section 1.3.2) 

and detect some of the sub-structure here mentioned, but do not allow the esti-

mation of sub-continental ancestry proportions (Browning et al. 2016; Conley et 

al. 2017; Homburger et al. 2015; Moreno-Estrada et al. 2014; Moreno-Estrada et 

al. 2013). 

Altogether these results provide a high-resolution picture of how Native American 

population structure is widely reflected in admixed Latin Americans, confirming 

that pre-colonial genetic sub-structure can be analysed in individuals with high 

levels of admixture and reporting for the first time estimates of sub-continental 

ancestry proportions. In Chapter 6, these patterns of population structure are ex-

ploited for evaluating association of regional Native American ancestry with vari-

ation in physical features. 

 

5.3.2.3 European sub-components trace major migrations back to docu-

mented places of origin in the Iberian Peninsula 

As described in Chapter 1 (Section 1.2.2), Latin American countries are the con-

sequence of the invasion perpetrated by the two main Iberian Kingdoms, which 

divided the territory between them early in the colonization process, and the cur-

rent political borders reflect this history. While the Portuguese territories remained 

as a single political entity, the former Spanish colonies were fragmented into sev-

eral countries encompassing southern North America, Central America, and 

western South America. Various studies have found that the European genetic 

ancestry of Latin Americans resembles modern Iberian populations (Conley et al. 

2017; Homburger et al. 2015; Montinaro et al. 2015; Moreno-Estrada et al. 2013). 

My analysis provides, for the first time, a breakdown and quantification of specific 

ancestry sub-components in Latin Americans that are related to  the Iberian Pen-

insula (Figures 5.8 and 5.9), with accuracy demonstrated by the simulations per-

formed in Chapter 4 (Section 4.3.1). 
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Figure 5.8. Proportion of European ancestry sub-components inferred with 
SOURCEFIND, across all individuals with >5% total Native American ancestry. 
Other details in Figure 5.5. Adapted from Chacón-Duque et al. (2018). Generated by JC 
Chacón-Duque and K Adhikari. 

 

Consistent with historical records (Chapter 1), my analysis of the CANDELA sam-

ples shows for the first time a strong regional differentiation in European sub-

continental ancestry between Brazil and Spanish America. The most prevalent 

sub-component in Brazil is represented by the Portugal/WestSpain cluster 

(42.8%, IQR=18.5-65.6%). By contrast in Mexico, Colombia, Peru and Chile, 

each former Spanish colonies, are predominantly represented by reference pop-

ulations from South and Central Spain (CentralSouthSpain; Mexico: 24.8%, 

IQR=4-38.5%; Colombia: 36%, IQR=22.8-50.8%; Peru: 19%, IQR=1.5-31%; 

Chile: 36.4%, IQR=28.6-48.8%). 

In the latter, the homogeneity of genetic profiles across countries and the rela-

tively small contribution from other Spanish populations, such as the Basque or 

the Catalans, could evidence the strong founder effect established at the early 

stages of the colonial era. AS-PCA analyses also have suggested, based on clus-

tering patterns, that the European component of some Latin American popula-

tions could be substantially differentiated from modern Iberian populations, likely 

attributable to the genetic drift generated by strong founder effects (Moreno-

Estrada et al. 2013).  
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Figure 5.9. Geographic distribution of European ancestry sub-components in CANDELA 
individuals. 
More details in Figure 5.6. Adapted from Chacón-Duque et al. (2018). Generated by JC 
Chacón-Duque and K Adhikari. 

 

There also is some evidence that partially contradicts these findings. The study 

that implemented haplotype similarity patterns for inferring sub-continental ances-

try in Latin American populations (previous section) claimed significant contribu-

tions of Basque and Italian ancestors in a Colombian sample (Montinaro et al. 

2015). However, the simulations in Chapter 4 (Section 4.2) show that NNLS is 

unable to discriminate European sub-components entirely, suggesting that it 

could be noise related to older ancestral relationships between the populations.  
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In addition to their Iberian ancestry, the Brazilian sample - particularly the individ-

uals located in the South of the country - (Figure 5.9) have considerable amounts 

of ancestry matching to the Italian (18.4%, IQR=0-31.7%) and North-western Eu-

ropean (16%, IQR=0-23.9%) surrogate clusters. This is consistent with the well 

documented state-fostered migration of large numbers of immigrants in the 19th 

century (preferentially to the south of Brazil), with migrants from Germany, Italy, 

Portugal and Spain, the most common sources of these immigrants (Sánchez-

Albornoz 1994). 

Overall, these results provide a detailed picture of the European sub-continental 

ancestry on Latin America, differentiating among contributions from several pop-

ulations within the Iberian Peninsula accurately. The relative homogeneity ob-

served across Spanish America contrasts with the high genetic structure evi-

denced in Native American ancestry. 

 

5.3.2.4 Widespread South/East Mediterranean ancestry is detected 

The eventual involvement of people of East and South Mediterranean - particu-

larly of Sephardic - origin in the colonization process has been extensively dis-

cussed and difficult to probe, given the scarcity of historical records (Sachar 

1994). These migrations have been suggested to be somewhat clandestine, as 

the colonization of the American continent coincided with the upsurge of religion-

based discriminatory policies propitiated by the increasing power of the Christian 

rulers, including prohibiting emigration to the newly established colonies (Chapter 

1). Previous evidence based on genetic data, mostly from rare mutations causing 

Mendelian disorders (Berg et al. 1994; Ellis et al. 1998; Mullineaux et al. 2003) 

and Y-chromosome haplogroups (Carvajal-Carmona et al. 2000; Velez et al. 

2012) detected in Latin American populations’ samples, support the possibility of 

a contribution of these populations to the genetic background of Latin Americans 

(Chapter 1). However, the analyses presented here constitute the first robust as-

sessment of the overall genetic contribution from Mediterranean populations to 

Latin Americans. 

For this purpose, we genotyped reference population samples from the East and 

South Mediterranean, including individuals self-identified as Sephardic Jews 

(Chapter 3; Figures 3.1, 5.10 and 5.11). The analyses described in Chapter 3 
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demonstrate that these three groups are distinguishable according to fineSTRUC-

TURE, with the simulations performed in Chapter 4 (Section 4.2) indicating that 

they can also be distinguished from European sources. 

 

Figure 5.10. Inferred ancestry sub-components in individuals with more >5% Sephar-
dic/East/South Mediterranean ancestry in each of the five CANDELA countries. Adapted 
from Chacón-Duque et al. (2018). Generated by JC Chacón-Duque and K Adhikari. 

 

According to SOURCEFIND analyses, this Sephardic / East / South Mediterra-

nean contribution is detectable at low-levels in all the countries (Figure 5.10) and 

is widespread throughout the region (Figure 5.11), with ~23% of CANDELA show-

ing >5%. In these individuals, the most noticeable sub-component is represented 

by people of Sephardic origin, with an average of 7.3%, while non-Sephardic con-

tributions are significantly lower (East Mediterranean 3.9% and South Mediterra-

nean 1%). 

It is likely that some of the individuals with considerable amounts of these sub-

components are descendants of recent migrants as confirmed in many cases by 

the genealogical information available, something common in different Latin 

American countries but restricted to specific areas (Chapter 1). In fact, for 16 of 

the 42 individuals with >25% Sephardic or East Mediterranean ancestry, genea-

logical information confirmed recent ancestry in the Eastern Mediterranean re-

gion. In contrast, even though Colombia displays the highest mean Sephardic 
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component in the sample (Figure 5.10), no recent immigration from this region 

was documented. 

 

Figure 5.11. Geographic distribution of East/South Mediterranean ancestry sub-compo-
nents in CANDELA individuals. 
More details in Figure 5.6. Adapted from Chacón-Duque et al. (2018). Generated by JC 
Chacón-Duque and K Adhikari. 

 

These analyses provide evidence that individuals from Sephardic/East/South 

Mediterranean origin or individuals with high amounts of these ancestries (beyond 

that found in the sampled present-day Iberian groups) accompanied colonial-era 

migrants, perhaps at higher levels than suggested by historical records, resulting 

in a contribution that is widespread across Latin America. 
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5.3.2.5 Sub-Saharan African ancestry comes mainly from West Africa 

As described in Section 5.3.2.1, the average Sub-Saharan ancestry in the full 

CANDELA sample is relatively low, with only 1,472 (~22%) individuals showing 

>5% of this ancestry. This is due in part to the biased sampling, as most of the 

populations of (mainly) African descent are located in the periphery of the coun-

tries and also because the CANDELA sampling favoured people of Native Amer-

ican and/or European descent (Chapter 1, Section 1.6). 

 

Figure 5.12. Inferred ancestry sub-components in individuals with more >5% Sub-Sa-
haran African ancestry in each of the five CANDELA countries. 
Adapted from Chacón-Duque et al. (2018). Generated by JC Chacón-Duque and K Ad-
hikari. 

 

These individuals with >5% Sub-Saharan African ancestry show a higher propor-

tion of the West African sub-component (Figures 5.12 and 5.13), particularly in 

the Spanish American countries: while the West African sub-component accounts 

for ~82% of the Sub-Saharan African (SSA) ancestry in these individuals, it only 

represents ~66% of SSA ancestry in the Brazilians (Figure 5.14). This trend is 

consistent with historical information indicating that the slave trade to Brazil in-

volved East / South Africa to a greater extent than the Spanish colonies (Kehdy 

et al. 2015). At the individual level (Figure 5.13), the higher amounts of East / 
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South African ancestry in Brazil are detected in the south, also consistent with 

historical evidence (Chapter 1). 

 

Figure 5.13. Geographic distribution of Sub-Saharan African ancestry sub-components 
in CANDELA individuals. 
More details in Figure 5.6. Adapted from Chacón-Duque et al. (2018). Generated by JC 
Chacón-Duque and K Adhikari. 

 

Previous analyses of Latin American populations in the Caribbean and Colombia 

with higher levels of Sub-Saharan African ancestry, have found evidence of two 

pulses of Sub-Saharan African migration, with the oldest pulse related to coastal 

West African populations and the newest to Central-West African populations 

(represented by Nigerian Yoruba populations, widely covered in genetic studies) 
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(Conley et al. 2017; Moreno-Estrada et al. 2013). I also explored different sub-

components within West Africa, as established by the fineSTRUCTURE analyses 

(Chapter 3, Figure 3.2 and Table 3.4). In the 1,472 individuals with >5% Sub-

Saharan African Ancestry (average 12%), the averages of the three West African 

sub-components are: WestAfrica1 (Gambia) 2.5%, WestAfrica2 (Sierra Leone) 

0.2% and WestAfrica3 (Nigeria) 7.1%. It is possible that the higher average of the 

Nigeria-related sub-component reflects a higher contribution of the most recent 

(involuntary) migrants from Sub-Saharan Africa in the genetic make-up of the 

CANDELA sample. However, it could also be that the African ancestors of these 

Latin Americans can be represented as a mixture of these two putative ancestral 

components. However, given the low African ancestry in CANDELA, these results 

need to be taken with caution. 

 

 

Figure 5.14. Average sub-continental ancestry proportion for the 1,472 individuals with 
>5% Sub-Saharan ancestry and the Spanish American countries sampled. 
Generated by JC Chacón-Duque and A Ruiz-Linares. 

 

5.3.2.6 East Asian Ancestry is closely related to Chinese sources 

Historical information indicates that some considerable migrations from East Asia 

took place in Latin America after the abolition of slavery and the independence, 

with Peru the most popular destination (Crawford and Campbell 2012) and having 

East Asian genetic ancestry detected previously (Homburger et al. 2015; 

Sandoval et al. 2013). In this analysis I expand this finding to four other countries 
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(Mexico, Colombia, Chile and Brazil) and match East Asian ancestry to specific 

regional sub-components. 

 

Figure 5.15. Inferred ancestry sub-components in individuals with more >5% East Asian 
ancestry in each of the five CANDELA countries. 
Adapted from Chacón-Duque et al. (2018). Generated by JC Chacón-Duque and K Ad-
hikari. 

 

SOURCEFIND analyses indicate that East Asian ancestry is almost negligible in 

Mexico (0.24%), Colombia (0.02%), Chile (0.21%) and Brazil (0.82%) and low in 

Peru (1.4%). However, there are 169 individuals with >5% East Asian ancestry 

(average of 16.5%): 15 in Mexico, one in Colombia, 27 in Chile, eight in Brazil 

and 118 in Peru (Figure 5.15). The most common ancestry sub-component re-

lates to the Chinese surrogate clusters (10.7%) and to a lesser extent the Japa-

nese (5.8%). These results match historical records regarding East Asian migra-

tions to Latin America. Although East Asian migrations have been reported since 

colonial times, associated with the Trans-Pacific routes of the Kingdom of Spain, 

only in the 19th century was an important influx of immigrants is reported, partic-

ularly to Peru. Primarily, these migrations were from Southern China (Guangdong 

Province), and SOURCEFIND results may be pointing in this direction, as the 

East Asian ancestors of this group of Latin American are represented, on aver-

age, as a mixture of ChinaHan (7.2%) and China/Vietnam (3.5%) clusters. 
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Figure 5.16. Geographic distribution of East Asian ancestry sub-components in 
CANDELA individuals. 
More details in Figure 5.6. Adapted from Chacón-Duque et al. (2018). Generated by JC 
Chacón-Duque and K Adhikari. 

 

The exception to this trend is Brazil, where seven out of eight individuals show 

exclusively Japanese ancestry (Figure 5.16), including three individuals with 

100% Japanese ancestry. The occurrence of a Japanese migration to Brazil in 

the 20th century is well documented. 
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5.3.2.7 Sub-continental ancestry estimations are not affected by changes 

in the reference panel 

To evaluate the robustness of ancestry inference when excluding CANDELA ref-

erence individuals, G. Hellenthal also ran SOURCEFIND as described in section 

5.2.3 on each CANDELA individual after excluding all CANDELA individuals from 

both the donor and surrogate groups. He furthermore removed any individuals 

that were excluded from the surrogate groups for other reasons (as described in 

Chapter 3), so that this analysis contained only 55 donor and surrogate groups. 

This is one less surrogate group than for the main analysis because the “Ger-

many” surrogate group consisted entirely of CANDELA individuals. As noted in 

Chapter 2 (Section 2.4.2), for this analysis he used an alternative, more efficient 

version of SOURCEFIND that used a truncated Poisson prior on the number of 

contributing surrogates and allowed a maximum of eight surrogates to contribute 

at each MCMC iteration. 

Inferred proportions of ancestry are shown in Figure 5.17. Ancestry matching to 

European, East/South Mediterranean and Sub-Saharan African groups are 

largely consistent with results depicted in Figures 5.6, 5.9, 5.11 and 5.13. For 

Native American ancestry, results are similar across most of the CANDELA sam-

ple, but there is a marked decrease in inferred ancestry related to the AndesPied-

mont and Quechua1 surrogate groups. This makes sense given that these clus-

ters each contain only one individual after removing CANDELA samples, which 

is expected to decrease power. The ancestry contributions of these groups are, 

for the most part, replaced by inferred ancestry matching to other geographically 

nearby Native surrogate groups. 
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Figure 5.17. Individual pie-maps showing SOURCEFIND analyses when not including 
any CANDELA reference samples as surrogates or donors. 
More details in Figure 5.6. Adapted from Chacón-Duque et al. (2018). Generated by JC 
Chacón-Duque, K Adhikari and G Hellenthal. 

 

5.3.2.8 Sub-continental ancestry matches genealogical information 

As described in Chapter 1 (Section 1.6), CANDELA volunteers provided infor-

mation about their parents and grandparents origins when possible. Even though 

these kind of records can be inaccurate, there is a big overlap of self-reported 

genealogical ancestry and sub-continental ancestry components as can be seen 

in Table 5.1, supporting the accuracy of these estimations at the individual level 

in real data. 
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Table 5.1. Number of individuals reporting a grandparent and/or parent from each re-
gion* (columns) and with SOURCEFIND inferred proportion of ancestry (A) 10% and (B) 
>25% from each reference group** (rows) 

(A) 

 EEur NWEur SEur Ibe-

ria 

SMed EMed WAfr EAsia Other 

total 37 62 43 136 5 21 6 28 60 

NE.Eur>10% 25 2 2 3 0 0 0 0 0 

NW.Eur>10% 15 24 3 5 1 0 0 0 16 

Italy >10% 10 19 23 5 1 9 0 0 9 

Iberia >10% 32 61 41 136 5 12 6 18 57 

S.Med >10% 0 0 0 2 0 0 0 0 0 

E.Med/Seph 

>10% 

2 13 18 20 1 16 6 6 19 

SSA > 10% 0 6 4 20 0 2 6 0 6 

EAS > 10% 0 0 2 0 0 0 0 28 2 

 

(B) 

 EEur NWEur SEuro Iberia SMed EMed WAfr EAsia Other 

NE.Eur>25% 16 0 0 0 0 0 0 0 0 

NW.Eur>25% 8 21 1 3 1 0 0 0 9 

Italy >25% 3 11 20 4 1 9 0 0 6 

Iberia >25% 23 53 33 131 5 10 6 12 48 

S.Med >25% 0 0 0 0 0 0 0 0 0 

E.Med/Seph 

>25% 

1 0 5 2 0 16 0 2 11 

SSA >25% 0 0 0 6 0 0 6 0 0 

EAS >25% 0 0 2 0 0 0 0 20 2 

*“EEur”: Ukraine, Czech Republic, Czechoslovakia, Finland, Latvia, Poland, Romania, 
Russia, Yugoslavia, Croatia. “NWEur”: Germany, Austria, Belgium, UK, France, Ireland, 
Sweden, Switzerland, the Netherlands. “SEur”: Italy, Greece. “Iberia”: Spain, Portugal. 
“SMed”: Algeria, Morocco. “EMed”: Lebanon, Turkey, Libya. “WAfr”: Senegal. “EAsia”: 
Japan, South Korea, China. “Other”: Argentina, Bolivia, Cuba, Guatemala, Paraguay, 
Uruguay, Venezuela, Canada, USA, India. **NE.Eur (NorthEastEurope), NW.Eur (North-
WestEurope), Italy, Iberia, S.Med (SouthMediterranean). E.Med/Seph (EastMediterra-
nean + Sephardic).  

 

5.3.3 Timings and sources of admixture with non-Native ancestors 

match documented migratory flows 

Considering the large variation in individual continental ancestry proportions, 

times and sources of admixture were inferred for each individual separately. The 
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simulations described in Chapter 4 (Section 4.3.1, Figures 4.13 and 4.14) corrob-

orate the accuracy of GLOBETROTTER for this inference. Such single individual 

estimates provide a huge amount of data, allowing us to describe trends in the 

dates and the inferred sources compared to relying on single estimates per pop-

ulation (Homburger et al. 2015; Moreno-Estrada et al. 2013). Figure 5.18 shows 

the differences in the distribution of admixture dates for events according to the 

sources involved, which usually correspond to various historical records docu-

menting migration processes in Latin America. 

A total of 8,167 inferred admixture events involved an Iberian source and had a 

median of 10 (IQR=7-13) generations, corresponding to ~1680CE (1600-

1760CE), or about the middle of the colonial period. It is interesting to note that 

historical information indicates that European migration to Latin America appears 

to have declined from about the middle of the 17th century onwards (Sánchez-

Albornoz 1994). These estimates are also consistent with previous estimations 

based on genetic data (Homburger et al. 2015). As expected from the historical 

records documenting recent arrival of other European populations to Brazil 

(Chapter 1, Section 1.2.4), admixture events involving German or Italian-like 

sources had a significant skew towards more recent dates (Figure 5.18A; Wil-

coxon rank-sum test one-sided p-value=3.3x10-8). 

Dates for events involving an East Asian source were also significantly more re-

cent (median = 3; IQR 2-5 generations ago) than those involving European 

sources (Figure 5.18B; Wilcoxon rank-sum test one-sided p-value<10-15), and 

consistent with the documented migration of labourers from China during the 19th 

century and from Japan in the 20th century, primarily to Peru and Brazil, respec-

tively (Chapter 1, Section 1.2.4). 

Admixture events involving a Sub-Saharan African source occurred mostly (80%) 

in individuals with an inferred complex admixture, involving multiple dates and/or 

more than two groups admixing at approximately the same time (Table 5.2). This 

suggests that Sub-Saharan Africans started admixing simultaneously with Native 

Americans and with Europeans in narrow time spans, and contributed to the ad-

mixture process later on. It can be seen as evidence for a less extensive admix-

ture than that taking place between Native Americans and Europeans, although 

it is worth considering that the low representation of African ancestry due to the 
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sampling protocol may eventually bias the results in this way. These individuals 

show a 7-fold increase in Sub-Saharan African ancestry, compared to those in 

which a single admixture event was inferred (Figure 5.19). The distribution of 

dates involving Sub-Saharan African admixture mostly overlaps with that for Ibe-

rian admixture, although a high proportion of recent dates were also inferred (Fig-

ure 5.18C), likely reflecting continued episodes of intermixing between Africans 

and Americans in the regions sampled here. 

 

 

Figure 5.18. Frequency distributions of admixture events in the total CANDELA sample 
involving an Iberian-like source (red), contrasted with events involving sources related to 
(A) NorthWestEurope & Italy (B) East Asia, (C) Sub-Saharan African and (D) East Med-
iterranean & Sephardic. 
The p-values were obtained using a Mann-Whitney U test (Section 5.2.5). 
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Table 5.2. Proportion of inferred admixture events with given GLOBETROTTER conclu-
sion, for all events inferred to have at least one admixing source group best-matched by 
the given reference group 

Source* n One-date One-date, 
multiway 

Multiple-
dates, recent 

Multiple-
dates, older 

Iberia 8167 0.4 0.09 0.24 0.26 
NorthWest Europe & 
Italy 

296 0.57 0.15 0.15 0.12 

E.Mediterranean & 
Sephardic 

99 0.41 0.04 0.25 0.29 

Sub Saharan Africa 1704 0.02 0.28 0.52 0.18 
East Asia 87 0.07 0.02 0.89 0.02 
ALL SOURCES  3519 455+455** 2378 2378 

*The sources have been defined as explained in section 5.2.5 to represent different his-

torical/demographic processes. **The two events inferred in this scenario are simultane-
ous. 

 

 

Figure 5.19. Percentage of SOURCEFIND inferred continental ancestry, per type of ad-
mixture event as inferred by GLOBETROTTER. 
Colours: Yellow: NorthWestEurope & Italy, orange: East Mediterranean & Sephardic, 
green: Sub Saharan Africa, purple: East Asian, red: Iberian, and blue: Native American. 

 

Interestingly, dates for admixture involving a Sephardic/East Mediterranean 

source were not significantly different from those involving Iberian sources (Figure 

5.18D; Wilcoxon rank-sum test one-sided p-value>0.1), consistent with the sce-

nario that a substantial fraction of the Sephardic/East Mediterranean ancestry de-

tected in Latin Americans was introduced during the colonial period. In this re-

spect, it is noteworthy that admixture dates estimated for seven individuals with 

only Native American and Sephardic/East Mediterranean ancestry, had a median 

of 9 generations ago (range 4 to 13), consistent with the view that a proportion of 
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the Iberian colonial immigrants were of mostly non-European ancestry, possibly 

recent Christian converts. These results must be interpreted cautiously, as the 

number of people with a considerably high Sephardic / East Mediterranean-like 

contributions is very low. 

 

Table 5.3. Results for linear regression of total % Native American ancestry on inferred 
admixture date, for individuals inferred to have a single date of admixture between two 
sources best represented by a European and Native American surrogates. 
To test robustness, we restricted the regression to individuals whose inferred proportions 
p of Native and European ancestry each met the given criterion. (A) All individuals. (B) 
Individuals inferred to have a single date of admixture between 5-17 generations ago. 
Analyses performed jointly with G. Hellenthal. 

(A) 

Analysis Nind Beta se(Beta) t-stat p-value 

all 3,340 -1.41 0.14 -10.4 < 1e-15 

0.05 < p < 0.95 3,244 -1.56 0.13 -11.7 < 1e-15 

0.1 < p < 0.9 3,049 -1.52 0.13 -12.1 < 1e-15 

0.2 < p < 0.8 2,534 -1.21 0.11 -11.2 < 1e-15 

Simulations (all) 1,297 -0.11 0.17 -1.04 0.30 

Simulations, multiple events (all) 923 -0.11 0.03 -3.73 0.0002 

 

(B) 

Analysis Nind Beta se(Beta) t-stat p-value 

all 3,274 -1.45 0.15 -9.7 < 1e-15 

0.05 < p < 0.95 3,189 -1.62 0.14 -11.2 < 1e-15 

0.1 < p < 0.9 3,000 -1.60 0.14 -11.8 < 1e-15 

0.2 < p < 0.8 2,495 -1.29 0.12 -11.2 < 1e-15 

Simulations (all) 1,083 -0.27 0.25 -1.1 0.28 

Simulations, multiple events (all) 832 -0.10 0.04 -2.63 0.009 

 

Among instances in which GLOBETROTTER inferred a single date of admixture 

involving Native Americans and Europeans, we observe a significant increase (p-

value<10-15) in average Native American ancestry as time since admixture de-

creases (with an average increase of ~1.2-1.6% per generation. Figure 5.20, Ta-

ble 5.3). The process underlying this pattern is unclear, but simulated scenarios 

suggest that this trend is real (Chapter 4, Sections 4.3.1 and 4.3.2). It is consistent 
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with continuing admixture between admixed Latin Americans and unadmixed Na-

tives until as recently as ~200 years ago, possibly as a result of the decline in 

Iberian immigration after the mid-17th century (Sánchez-Albornoz 1994), con-

comitant with the demographic recovery of neighbouring Native American popu-

lations. 

 

 

Figure 5.20. Times since admixture estimated with GLOBETROTTER for individuals in 
which a single time of Native American – European admixture was inferred. 
Top: Frequency distribution of admixture times. The dashed line indicates the mean. Bot-
tom: mean continental ancestry (%) as a function of time since admixture. Only time bins 
including >20 individuals are shown (NAM= Native American, EUR = European, ESM = 
East/South Mediterranean, SSA= Sub-Saharan African, EAS = East Asian). 

 

5.4 Discussion and limitations 

This chapter describes the fine-scale genetic structure of several Latin American 

populations by means of the inference of individual sub-continental ancestry pro-

portions, achieving a high level of resolution, compared both to allele-frequency-
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based approaches and to previous reports exploring fine-grained genetic struc-

ture in the region (Browning et al. 2016; Conley et al. 2017; Homburger et al. 

2015; Montinaro et al. 2015; Moreno-Estrada et al. 2013; Wang et al. 2008). 

I did a detailed description of the limitations of allele-frequency approaches in 

CANDELA (Section 5.2.1). Even though PCA and ADMIXTURE differentiate 

among major continental groups, they have difficulty distinguish more subtle pop-

ulation structure in the surrogate clusters (Chapter 3), limiting the inference and 

interpretation of population relationships in admixed individuals at lower PCs and 

the estimation of ancestry at the sub-continental level. The most common factors 

causing this limitation are genetic drift and low sample sizes in the groups in-

cluded in a given analysis (Lawson et al. 2017; McVean 2009). The case of ge-

netic drift is clearly exemplified in this dataset in the component arising at K=6 

with unsupervised ADMIXTURE (Figure 5.1; Chapter 3, Section 3.8), where a 

considerable number of admixed samples from a well-known genetic isolate in 

North-west Colombia form into their own cluster, despite the fact they are recently 

admixed. Additionally, although continental ancestry estimates are consistent be-

tween allele-frequency and haplotype-based approaches, the ancestry estima-

tions at low amounts need to be analysed and described carefully as described 

in Section 5.3.2.1.  

While interpreting the haplotype-based inference, it is important to consider that 

contemporary samples may not be the best surrogates for ancestral source pop-

ulations, as discussed in Chapters 3 and 4, possibly leading to uncertainty in the 

ancestry assignments and complicating both the inference and the interpretation 

of results. For instance, for Mexico, Peru and Chile there are likely good proxies 

for Native American ancestors in the dataset, and their results match demo-

graphic/historical scenarios (like the Inca expansion). In contrast, other popula-

tions with small Native American contributions (i.e. the Brazilian sample), and/or 

with limitations to find good surrogates due to their demographic history involving 

isolation of both admixed and indigenous populations (i.e. Colombia) are harder 

to characterize. 

Native American ancestry represents perhaps the best scenario to apply our ap-

proach for several reasons. First of all, the high levels of genetic drift between 

Native American populations make them easier to distinguish (although this could 
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eventually interfere with the inference of haplotype similarity patterns due to high 

amount of haplotype-sharing within the same population). Secondly, because the 

admixture is recent, there is perhaps a better chance that good surrogates exist 

today, which can be potentially sampled. The results presented in this chapter 

highlight the high structure of Native American ancestry in Latin Americans both 

between and within countries.  

European and East / South Mediterranean contributions are harder to disentangle 

due to the complex demographic dynamics of the populations located in these 

regions. From allele-based approaches it is well known that European popula-

tions show low differentiation (Novembre et al. 2008). Supported by the analysis 

on simulated data, I demonstrated that in several scenarios I have enough power 

to distinguish less differentiated groups, such as different Iberian populations. In-

dependent of the accuracy of the surrogates or the post-Columbian divergence 

of the populations involved in the analyses (as suggested by AS-PCA in Moreno-

Estrada et al. (2013)), the results match the main contributions suggested by his-

torical records. Furthermore, new contributions from Sephardic populations are 

an invaluable asset on the resolution of contradictory historical records. The tim-

ings and sources since admixture clearly show that all these populations have 

been involved in the admixture processes since colonial times. 

In this chapter, I also describe the first estimation of the timings and sources of 

admixture using single individuals. I consider it an important improvement, given 

the fact that genetic ancestry proportions in Latin America are highly variable 

among individuals. The estimations described in this chapter generally match with 

historical accounts and are of great value to corroborate histories of migration and 

admixture. For instance, in the “one-date admixture event” scenario, I detect a 

pattern where Native American ancestry tends to increase as the events are more 

recent, probably reflecting several demographic events like urbanization and 

changes on the amount of European migrants to these countries (Sánchez-

Albornoz 1994). Furthermore, an increase of Native American ancestry across 

generations could indicate a steady recovery of population sizes in Native Amer-

ican groups, as well as the increased migration of “mestizos” (admixed individu-

als) carrying higher amounts of these ancestry into the more European-like urban 

centres. 
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Other ancestries not related to the colonization process also contribute to the new 

novel insights of this thesis. For instance, East Asian flow has been reported since 

colonial times as a fundamental part of the transpacific Spanish routes (Sánchez-

Albornoz 1994). However, from historical records it seems more likely that these 

signals are due to the massive migration of East Asian workers during the 19th 

century (Chapter 1) and our results support this conclusion. The time of admixture 

involving East Asian sources on average is less than 200 years, consistent with 

the beginning of the Republican Period and the abolition of the slave trade. 

It is also essential to consider that ours is a convenient sample with recruitment 

limited to specific areas (Chapter 1, Section 1.6), and as such the results pre-

sented here cannot be taken as an exact and comprehensive representation of 

an entire country, especially in the case of recently admixed populations, where 

the individual variation in ancestry proportions is highly variable and where every 

region within the country may have had a totally different colonial history. 

 

5.5 Summary 

In this chapter I provide a detailed picture of ancestry in over 6,500 individuals 

from five Latin American countries. I observe that Native American population 

structure is extensively reflected in the ancestry of Latin Americans at a within-

country level, with times and sources of Non-Native ancestry matching docu-

mented regional migratory flows to the New World. I also detect significant and 

widespread East/South Mediterranean (particularly Sephardic) ancestry across 

the region, possibly in connection with the persecution of non-Christians in Spain 

during the colonial period.  

Overall, this chapter enriches historical analyses of the Americas and contributes 

to a deeper understanding of the heterogeneity of the sources involved in the 

complex and continuous admixture processes in Latin America. In the next chap-

ter I make use of this information to assess its impact on physical appearance, 

with a range of phenotypes measured in the CANDELA sample.
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6 Impact of sub-continental ancestry on physical 

appearance in Latin Americans 

 

6.1 Overview 

In the previous chapter I provided a comprehensive description of sub-continental 

ancestry in Latin American populations spanning five countries. For that purpose, 

I characterized and quantified the diversity of the sources involved in the make-

up of current-day Latin American populations, showing how these patterns match 

the demographic history of the region. 

The genetic heterogeneity generated by these extensive admixture processes 

also impacts the phenotypic diversity, evidenced by the great variation in physical 

appearance traits observed in Latin American populations and their association 

with continental ancestry variation (Adhikari et al. 2016c; Ruiz-Linares et al. 

2014). Understanding the extent of this impact at finer levels of regional genetic 

variation could be of great usefulness for exploring the genetic architecture of 

complex traits and for improving current ways of accounting for genetic variation 

in GWASs. 

In this chapter I evaluate the impact of sub-continental ancestry, as an approxi-

mation to fine-scale regional genetic variation, on a range of physical appearance 

features measured on the CANDELA sample, including aspects of anthropome-

try, face and ear morphology, facial and scalp hair and pigmentation. I find signif-

icant correlations between variation in European ancestry sub-components and 

pigmentation traits, as well as between variation in Native American sub-compo-

nents and facial features. It evidences the impact of regional genetic variation on 

human phenotypic diversity and highlights the importance of taking fine-grained 

genetic variation into account in human genetic studies. 
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6.2 Methods 

In this section I describe the physical appearance traits included in the analyses 

and all the considerations for evaluating the association between these traits and 

sub-continental ancestry estimates using linear regression. 

 

6.2.1 Phenotypes description 

I used data for 28 physical appearance traits that were collected, gathered and 

processed by several researchers/students involved in the CANDELA consor-

tium, which have been previously published in different studies (Adhikari et al. 

2016a; Adhikari et al. 2016b; Adhikari et al. 2015; Cerqueira et al. 2014; Quinto-

Sanchez et al. 2015; Ruiz-Linares et al. 2014), some of which I actively collabo-

rated on my PhD. These traits were recorded by physical examination of the vol-

unteers and/or by examining facial photographs. In the case of most of the traits 

recorded from facial photographs, >10% of the images were scored twice by two 

observers, independently, two weeks apart, in order to evaluate the observer re-

liability by calculating intra-class correlation coefficients (ICC) (Adhikari et al. 

2016b). These traits have been described in detail previously in the above papers. 

Here I briefly describe how the phenotypes were measured/scored: 

 (1) Height. Quantitative measurement (in cm). 

Head and hair: 

 (2) Monobrow. 1: low, 2: medium or 3: high (thinner to thicker). 

 (3) Eyebrow density. 1: low, 2: medium or 3: high (thinner to thicker). 

 (4) Beard density. Divided in shaven and unshaven men. 1: low, 2: medium 

or 3: high.  

 (5) Scalp hair shape. 1: straight, 2: wavy, 3: curly or 4: frizzy. 

 (6) Scalp hair greying. 1: no greying, 2: predominant no greying, 3: 50% 

greying, 4: predominant greying or 5: totally white hair. 

 (7) Balding. 1: low, 2: medium or 3: high. Measured in men and women. 

Pigmentation traits: 

 (8) Natural hair colour. 1: blond, 2: dark blond/light brown or 3: 

brown/black. 
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 (9) Skin colour (Melanin index). Quantitative measurement using Der-

maSpectrometer DSMEII reflectometer (Cortex Technology, Hadsund, 

Denmark). The value used for each individual corresponds to the mean 

index for both inner arms. 

 (10) Eye colour. 1: blue/grey, 2: Honey, 3: Green, 4: light brown, 5: dark 

brown/black. 

Categorical face traits: 

 (11) Brow ridge protrusion. The presence and degree of a ridge in lateral 

view. 0: none, 1: slightly pronounced or 2: strongly pronounced. 

 (12) Eye fold. Skin fold of the upper eyelid, covering the inner corner (me-

dial canthus) of the eye. 0: no fold, 1: partial, 2: completely. 

 (13) Chin shape. Chin contour in frontal view. 0: pointed, 1: rounded or 2: 

square. 

Quantitative face traits: 

These were defined based on landmarks placed on facial photographs (taken at 

three different angles) as detailed in figure 6.1: 

 (14) Forehead profile. Slope of line joining 35-1. 

 (15) Nasion position. Distance from landmark 18 to the mid-point of a line 

joining landmarks 8 and 16. 

 (16) Nose bridge breadth. Distance between landmarks 37 and 38. 

 (17) Nose wing breadth. Distance between landmarks 20 and 22.  

 (18) Columella Inclination. Angle between landmarks 19-21-23. 

 (19) Nose protrusion. Distance of landmark 19 to a line joining landmarks 

18 and 21. 

 (20) Nose tip angle. Angle between landmarks 18-19-21. 

 (21) Chin protrusion. Distance of point 30 from line joining 35-36.   

 (22) Facial flatness. Distance 30-32/ distance 32-18.  
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Figure 6.1. Landmarks placed on facial photographs obtained for CANDELA. 
Adapted from Quinto-Sanchez et al. (2015). Generated by M. Fuentes-Guajardo. 

 

Ear traits: 

Location of these features is provided in figure 6.2. All traits were scored on a 3-

point scale (low, medium, high). 
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Figure 6.2. Location of ear traits characterized in the CANDELA dataset. 
Modified from Adhikari et al. (2015). Generated by M. Fuentes-Guajardo. 

 

 (23) Ear protrusion. Degree of protrusion of the ear in relation to the frontal 

face view (less to more protruded). 

 (24) Lobe attachment. Degree of attachment of the inferior part of the pinna 

to the anteroinferior part of the face (no attachment to complete attach-

ment). 

 (25) Lobe size. Small to bigger size. 

 (26) Helix rolling. The outer rim of the ear that extends from the superior 

insertion of the ear on the scalp (root) to the termination of the cartilage at 

the earlobe (less to more pronounced helix rolling). 

 (27) Fold of antihelix. Less to more pronounced fold of antihelix. 

 (28) Antitragus size. Small to bigger size. The anterosuperior cartilaginous 

protrusion lying between the incisura and the origin of the antihelix. The 

anterosuperior margin of the antitragus forms the posterior wall of the inci-

sura. 

 

6.2.2 Analyses 

I assessed the impact of sub-continental ancestry on the traits described in the 

previous section using linear regression. I paid special attention to the sub-conti-

nental ancestry estimations obtained with SOURCEFIND (Chapter 5) as I demon-

strated that they are robust estimators, in terms of how interpretations vary when 
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considering results at increasingly finer scales, compared to allele-frequency-

based approaches (Chapter 4). However, I also used the results from the latter 

approaches and performed additional regressions to compare the results when 

the sub-continental estimations between methods were somehow equivalent. In 

the regression models I propose, a series of covariates were included in order to 

account for any confounding factors. All the analyses were made with the super-

vision and advice of K. Adhikari. 

 

6.2.2.1 Contrasts of sub-continental ancestry estimates 

Considering that ancestry sub-components are (negatively) correlated with other 

major continental ancestries (e.g. the proportion of the most prevalent Native 

American sub-component in Peru inversely correlates with broad European an-

cestry), they should not be used jointly in the linear model in order to avoid con-

founding. For this reason, I constructed contrasts of sub-continental ancestry 

components by taking the difference of a given pair of sub-continental compo-

nents and only retained for the analysis the contrasts that matched the following 

criteria: 

(i) Each sub-continental ancestry component tested should have >10% fre-

quency in at least one country. 

(ii) Each pair of contrasted sub-continental ancestry components should add 

up to at least half of the total continental ancestry for the respective com-

ponent in a country. 

(iii) The contrasted sub-continental ancestry components should show a rela-

tively high genetic differentiation according to the clustering analyses per-

formed in Chapter 3. 

In order to reduce colinearity effects and to maximize statistical power, the anal-

yses are focused on contrasts between the most common, highly differentiated 

sub-continental ancestry sub-components. In the case of European ancestry, only 

Brazil shows high frequency of more than one European sub-component (Chap-

ter 5, Section 5.3.2.3), which is the contrast of NorthWestEurope1 against Portu-

gal/WestSpain. 
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For Native American ancestry, to enable a contrast, some closely related sub-

components estimated by SOURCEFIND (Quechua1, Quechua2, Colla and Ay-

mara) were merged into a group called CentralAndes. This group was used to 

create the contrast against Mapuche, which is relatively differentiated both genet-

ically and geographically from the former. The merge was necessary as the non-

Mapuche ancestry in Chile (the country with the highest amount of Mapuche and 

a decent amount of CentralAndes) only add to >10% if all Quechua and Aymara 

related contributions were merged. Similar components were defined by Principal 

Component (PC) 7 and by ADMIXTURE at K=7, allowing us to test for con-

sistency between estimates from different methods.  

 

6.2.2.2 Regression models and additional covariates 

The basic regression models tested were:  

Phenotype ~ Age + Sex (+BMI)* + SES (+Country)* + Total Sub-Saharan Afri-

can ancestry + Total European ancestry + Native component contrast, 

Or, 

Phenotype ~ Age + Sex (+BMI)* + SES + Total Sub-Saharan African ancestry + 

Total Native American ancestry + European component contrast. 

*These variables are not always used in the regression, as I explain below. 
 

Age, sex and socioeconomic status (SES) were included as covariates for all 

analyses. 

SES is represented as a wealth index that measures living standards (Filmer and 

Pritchett 2001; Gwatkin et al. 2007), estimated from a list of material items pro-

vided by the participants (including ownership of property and household items 

as well as the availability of domestic service) using the first PC of a polychoric 

PCA (Kolenikov and Angeles 2009) as described in Ruiz-Linares et al. (2014). 

Briefly, a standard PCA is performed using polychoric correlation (Olsson 1979), 

which is designed for comparing ordinal variables (in this case the list of material 

items). This wealth index was converted to deciles within each country in order to 

allow comparisons between them. 
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SES was included for two main reasons. First, it is known that SES is correlated 

with continental ancestry (low SES correlates with Native American ancestry) and 

it also affects physical traits such as height, providing clear evidences on the im-

pact of wealth in physical development (Ruiz-Linares et al. 2014). This covariate 

will test whether ancestry has an effect on phenotype beyond what can be ex-

plained by SES. Second, because it adjusts for the convenience sampling of 

CANDELA within every country (see Chapter 1 for details). 

When undertaking a multi-country analysis, to adjust for the combined conven-

ience sampling (which was different in each country), SES was used as a dummy 

variable, and additionally, country was set as a dummy variable too. Additional to 

the biases on the sampling within every country, adding country as a covariate 

allows us to adjust for the fact that not only the sampling, but also the collection 

of the information were done independently in every country, and some of the 

variables, like SES, may not be entirely equivalent between countries. 

Body Mass Index (BMI) was included for all the face morphology traits.  

Continental ancestries not related to the contrast being analysed were included 

as covariates to account for any effect related to the total amounts of ancestry. 

To reduce additional variability from other continental ancestries, we exclude peo-

ple with more than 10% Sub-Saharan African or East / South Mediterranean an-

cestry, and/or with >1% East Asian ancestry. This is because, the two main an-

cestries in our sample are European and Native American, and the contrasts pro-

posed were only encompassing these two. 

Bonferroni correction of the significance threshold, for all traits (28) an all con-

trasts (3), gives a final significance cut-off of –logP = 3.22 equivalent to and alpha 

of 0.05 and 84 observations (0.05/84). Finally, In order to make the Betas com-

parable for display items, the Beta value for each trait was standardized to report 

results as a factor of the standard deviation (SD), i.e. by dividing them by the SD 

of the respective trait. 
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6.2.2.3 Differences in allele frequencies of GWAS hits between Mapuche 

and CentralAndes  

In the GWAS we reported in Adhikari et al. (2016b), several loci were identified 

as being associated with facial features (Chapter 1, Section 1.4.1). We wanted to 

test whether allele frequencies in these loci differ between individuals with Ma-

puche and Central Andean ancestries, but given the fact that there are only five 

individuals in the Mapuche surrogate cluster, it was not possible to obtain reliable 

allele frequencies for this group. To overcome this limitation, we performed a local 

continental ancestry analysis in two subsets of phased CANDELA individuals with 

considerable amounts of CentralAndes or Mapuche ancestry, in order to extract 

the information for the Native American segments containing these loci in every 

individual and combine this information with the respective surrogate samples 

from each cluster. 

This analysis was performed by K. Adhikari and J. Mendoza using RFMix (Maples 

et al. 2013), with three continental reference groups (107 IBS, 101 YRI and 125 

Native American samples). RFMix assigns local continental ancestry to each al-

lele of each CANDELA haplotype, providing both the continental ancestry and the 

inferred allele at that site. The software accounts for errors in genotyping, mar-

ginal amounts of admixture in the reference groups and phasing switch errors 

(Maples et al. 2013). 

Using SOURCEFIND results, we selected the two subsets according to their sub-

continental ancestry proportions. For each set, all individuals had >10% inferred 

ancestry from the Native group of interest, with <1% combined inferred ancestry 

from all other Native groups and <1% inferred East Asian ancestry. For all indi-

viduals in a group, for the index SNPs of all the six genomic regions identified in 

Adhikari et al. (2016c), all alleles that had local Native American ancestry were 

used to estimate the allele frequency. 

As a sanity check, the allele frequencies obtained for CentralAndes with this anal-

ysis were compared to the frequencies obtained directly from 49 surrogate indi-

viduals in the CentralAndes cluster that have more than >99% Native American 

ancestry (r2 > 0.99). Finally, a t-test was used to assess whether the allele fre-

quencies were significantly different in CentralAndes vs. Mapuche individuals. 
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The FDR (false discovery rate) procedure was used to control the Type-I error 

rate at 0.05 level.  

 

6.2.2.4 Comparisons  

Several of the phenotypes recorded in the CANDELA sample and used in these 

analyses were taken from the Anthropological Atlas of male facial features 

(Ohlrogge 2008). A subsequent paper published by the same authors (Ritz-

Timme et al. 2011) evaluated 300 people from each Germany and Italy to assess 

the frequencies for some of the categorical traits initially published in the Atlas. 

For the traits that overlap with our traits, we calculated chi-square p-values to 

assess the differentiation of the trait between NorthWestEurope1 (Germany) and 

Portugal/WestSpain. 

In our Brazilian dataset, samples with Portugal/WestSpain ancestry have pre-

dominantly Portuguese ancestry. Though Ritz-Timme et al. (2011) did not study 

Iberian samples, we take the Italian samples as a proxy for Iberian ancestry. 

 

6.3 Results 

Figure 6.3 summarizes the results of the linear regressions of sub-continental 

ancestry contrasts (obtained from SOURCEFIND results) against the 28 pheno-

types described in Section 6.2.1. As explained in Section 6.2.2, only two strong 

contrasts based on SOURCEFIND results accomplished all the criteria we estab-

lished. 

 

6.3.1 A contrast of CentralAndes versus Mapuche ancestry is asso-

ciated with facial morphology traits 

The contrast CentralAndes versus Mapuche in the full CANDELA sample is sig-

nificantly associated with variation in several facial features (Figure 6.3). To take 

one example, Figure 6.4 shows a scatterplot with the regression line for one of 

the associated traits, Nose Bridge Breadth. 
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Figure 6.3. Sub-continental ancestry and physical appearance. 
(A) -log P-values for a linear regression of variation in the 28 traits described in section 
6.2.1 (with categorical traits listed in grey and quantitative traits in black) against the 
contrasts between two sub-continental ancestry components estimated by 
SOURCEFIND. The left column details results for the Portugal/WestSpain and North-
WestEurope1 contrast in the Brazilian sample (Br). The two right columns present the 
contrast between CentralAndes and Mapuche in the full CANDELA sample (all) or re-
stricted to Chile (Ch). Bonferroni-corrected P-value significance threshold (alpha=0.05) 
is shown on the –log P-value scale as 3.22. (B) Regression coefficients (Betas), divided 
by the standard deviation (SD) for that trait, for the contrasts in (A) (hence in units of SD). 
In panels (A) and (B) colour intensity reflects variation in –log P-values or beta coeffi-
cients, as indicated on the scale. Bonferroni-corrected significant values are highlighted 
with a dot. Adapted from Chacón-Duque et al. (2018). Generated by J.C. Chacón-Duque 
and K. Adhikari. 
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Validation analyses using the same contrast but limited to Peru and Chile or only 

to Chile, an equivalent contrast generated from unsupervised ADMIXTURE re-

sults (K=7) and PC7 produced similar results, showing consistency for several 

phenotypes, with four traits significantly associated in all analyses: Eye Fold, Chin 

Protrusion, Nose Protrusion and Nose tip angle (Figure 6.5 and Table 6.1). 

 

 

Figure 6.4. Scatterplot and regression line (with 95% confidence interval) for nose bridge 
breadth and the SOURCEFIND contrast between CentralAndes and Mapuche in Peru 
and Chile. 
Adapted from Chacón-Duque et al. (2018). Generated by J.C. Chacón-Duque and K. 
Adhikari. 

 

The associations with nose-related traits are perhaps the most interesting given 

previous evidence. In the analysis I present here, the Mapuche sub-component 

is associated with a less protruded nose (-log P-value=4.61) and equivalently with 

a broader nose tip angle (-log P-value=6.83), consistent with physical anthropol-

ogy studies indicating that the Mapuche have a flatter, wider nose compared to 

Aymaras and Quechuas, the two main Central Andean groups (Bustamante et al. 

2011b; Comas 1960; Davies 1932). Furthermore, this variation has also been 

documented in world-wide human populations (including some Andean and 

Southern Chilean populations) and an association between nose protrusion and 

dry and cold conditions has been found, interpreted as an evidence for climatic 

adaptation (Davies 1932; Hubbe et al. 2009; Leong and Eccles 2009). 

A research that compared the divergence of quantitative nose shape traits and 

neutral molecular markers (using 𝑄𝑆𝑇 − 𝐹𝑆𝑇 comparisons, (Leinonen et al. 2013; 
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Wright 1951)) has also suggested that features related to nose width have been 

influenced by adaptation to cold/dry versus hot/humid environments, as they 

seem to have differentiated more than it would be expected under genetic drift 

compared to other nose shape traits (Zaidi et al. 2017). 

 

 

Figure 6.5. Scatterplot of –log P-values from additional phenotypic regression analyses 
involving CentralAndes versus Mapuche contrast. 
The values used are presented in Table 6.1. The X-axis refers to P-values from the pri-
mary analysis using SOURCEFIND estimates (SF) and all the CANDELA data, as shown 
in the second column of Figure 6.3. The Y-axis refers to –log P-values from four other 
regression analyses using related ancestry components defined by ADMIXTURE (Adm) 
at K=7 in all the CANDELA data or using SOURCEFIND or PCA (PC7) ancestry compo-
nents limited to the Peruvian and/or Chilean data (chapter 3, section 3.8). Sample sizes: 
all data N=5.794, Peruvian and Chileans N=2.594, Chileans N=1.542. Adapted from 
Chacón-Duque et al. (2018). Generated by J.C. Chacón-Duque and K. Adhikari. 

 

The nasal cavity is an important regulator of inhaled air, temperature and humidity 

(Naftali et al. 2005). The nasal airways warm inspired air and saturate it with water 

vapour, in order to reach the right optimal temperature and moisture required in 

the respiratory tract (Negus 1954). Regarding the possible effect of environmental 

adaptation, it has been proposed that narrow respiratory cavities maximize the 

mucosal contact area in relation to the inhaled air volume, enhancing the airflow 

and facilitating the exchange of heat and moisture in cold or dry climates 

(Churchill et al. 2004). For instance, according to simulated data, narrower nasal 
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airways could be helpful in colder climates as the airflow increases and helps to 

warm the air quickly (Zhu et al. 2011), suggesting that populations with these 

characteristics, like the Central Andeans, may have been adapting to altitude. 

 

Table 6.1. –log P-values from additional phenotypic regression analyses involving Cen-
tralAndes versus Mapuche contrast 

Trait 

ADM.K=7 

(all) 

SF 

(all) 

SF  

(Pe-Ch) 

SF 

(Ch) PC7 (Ch) 

Height 0.91 0.95 0.47 0.51 1 

Monobrow 2.77 2.63 3.58 2.26 1.96 

Eyebrow density 4 3.15 3.67 3.83 3.18 

Beard density 0.97 0.74 0.07 0.29 0.65 

Hair shape 0 0.23 0.7 0.04 0.02 

Hair graying 0.97 0.82 0.42 0.28 0.09 

Balding 1.29 1.79 0.5 0.79 0.6 

Hair color 0.91 0.64 0 0.06 0.39 

Skin Melanin index 4.63 2.54 2.36 2.56 1.11 

Brow ridge protrusion 4.83 5.1 2.39 2.33 2.36 

Eye fold 5.53 4.42 6.97 10.21 11.6 

Chin Shape 2.29 2.4 1 0.75 1.46 

Forehead profile 3.15 3.17 2.86 2.86 3.36 

Nasion position 0.9 1.19 0.43 0.71 0.3 

Nose bridge breadth 3.22 3.75 2.2 2.33 2.14 

Nose wing breadth 0.03 0.31 0.38 0.22 0.1 

Columella inclination 0.97 1 0.69 0.59 0.28 

Nose protrusion 5.06 4.61 5.07 5.07 6.33 

Nose tip angle 7.84 6.83 6.01 6.06 6.96 

Chin protrusion 4.97 5.37 4.43 4.43 4.22 

Facial flatness 3.6 4.63 2.29 2.12 1.41 

Ear protrusion 0.74 0.82 1.3 1.33 1.38 

Lobe attachment 0.11 0.05 0.01 0.01 0.25 

Lobe size 0 0.31 0.16 0.23 0.27 

Helix rolling 2.66 2.99 1.68 1.66 1.52 

Fold of antihelix 0.15 0.37 0.16 0.4 0.2 

Antitragus size 0.02 0.23 0.46 0.08 0.03 

*ADM.: ADMIXTURE, SF: SOURCEFIND, Pe: Peru, Ch: Chile. 
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It is important to consider that the correlation between nose shape and climate is 

not always present (Leong and Eccles 2009) and that other causes for this varia-

tion must be taken into consideration. Another plausible explanation could be the 

effect of sexual selection (Darwin 1871), as proposed for other physical appear-

ance traits like skin pigmentation (Aoki 2002) and height (Stulp et al. 2015). How-

ever the evidences for sexual selection of facial traits in humans are scarce, so 

far being mainly supported by studies on the effect of facial attractiveness in mate 

choice (Little et al. 2011). 

 

6.3.2 Allele frequencies in loci associated with variation in facial traits 

are significantly differentiated between CentralAndes and Ma-

puche 

In a recent GWAS we published using CANDELA data (Adhikari et al. 2016b), 

five of the six genes with alleles significantly associated impacted on nose shape 

(Chapter 1, Section 1.4.1). Here we compared the allele frequencies of the index 

SNPs at these loci for the two groups included in the contrast, finding that all the 

SNPs show significantly differentiated allele frequencies between CentralAndes 

and Mapuche (Table 6.2), consistent with the phenotypic effect of the sub-conti-

nental ancestry contrasts analysis. 

 

Table 6.2. Allele frequencies in the Central Andes and the Mapuche at index SNPs as-
sociated with facial features in the CANDELA sample. 
Adapted from Chacón-Duque et al. (2018), elaborated by K. Adhikari. 

 Allele frequency 
(Allele count) 

 

Chr. 
Region 

SNP Gene Derived 
allele 

Central- 
Andes 

Mapuche P-value 

2q12 rs3827760 EDAR G 0.961 
(879) 

0.995 
(595) 

2.18x10-4 

2q35 rs2395845 PAX3 A 0.388 
(896) 

0.683 
(635) 

6.09x10-29 

4q31 rs12644248 DCHS2 G 0.512 
(903) 

0.725 
(699) 

3.59x10-17 

6p21 rs1285029 SUPT3H/ 
RUNX2 

C 0.585 
(880) 

0.638 
(566) 

4.51x10-2 

7p13 rs17640804 GLI3 T 0.417 
(892) 

0.498 
(614) 

6.19x10-3 

20p11 rs927833 PAX1 C 0.700 
(888) 

0.503 
(616) 

7.41x10-14 
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Furthermore, for each SNP, the allele with a higher frequency in CentralAndes 

compared to Mapuche had the same direction of effect (same signs of regression 

coefficient beta) for that allele in the GWAS as compared to the regression coef-

ficient (beta, Figure 6.3B) between the CentralAndes-Mapuche contrast and the 

trait, for all traits that are associated at a genome-wide significant or suggestive 

significant level with the SNP. 

 

6.3.3 A contrast of NorthWestEurope1 versus Portugual/WestSpain 

components is associated with pigmentation in Brazil 

Regression analysis evidenced a highly significant effect of this contrast on pig-

mentation traits (skin pigmentation (-log P-value=3.39); hair colour (-log P-

value=7.48); and eye colour (-log P-Value=7.5); Figure 6.3). As an example, Fig-

ure 6.6 shows a scatterplot with the regression line for one of the associated traits, 

skin pigmentation. 

 

Figure 6.6. Scatterplot and regression line (with 95% confidence interval) for Skin Mela-
nin index and the contrast between NorthWestEurope and Portugal/WestSpain in the 
Brazilian sample. 
Adapted from Chacón-Duque et al. (2018). Generated by J.C. Chacón-Duque and K. 
Adhikari. 

 

These results are consistent with the latitudinal gradient that has been reported 

in Europe, where Northern Europeans show lower pigmentation levels than 

Southern Europeans, with a striking difference in hair and eye colour (Frost 2014). 

A subset of anthropological facial features were compared between Northern and 
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Southern Europeans (Ritz-Timme et al. 2011) showed similar trends to this anal-

ysis (Figure 6.7, Table 6.3). 

 

Figure 6.7. –log P-value comparison for North versus South Europe facial phenotypic 
differences. 
Elaborated by K. Adhikari. 

 

-log P-values from the comparison of trait frequencies from the anthropological 

atlas dataset were compared to the P-values for our NorthWestEurope1 – Portu-

gal/WestSpain ancestry contrast in Brazil. While these are not equivalent, the rel-

ative ordering between the –log P-values can be compared, and we see consid-

erable agreement between the two, with Spearman’s rank correlation = 0.41. This 

illustrates how phenotype associations with European ancestry can be inferred in 

admixed individuals that carry additional sources of non-European (e.g. Native 

American, African) ancestry. 
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Table 6.3. –log P-values from the two studies, the Anthropological Atlas of male facial 
features and CANDELA 

Trait Atlas CANDELA 

Monobrow 1.00 0.67 

Eyebrow density 5.12 2.34 

Eye fold 0.24 0.29 

Chin Shape 3.04 0.43 

Forehead profile 1.87 NA 

Nose bridge breadth 0.13 0.50 

Nose wing breadth 0.58 0.39 

Columella inclination 9.34 0.95 

Nose protrusion 7.80 1.54 

Nose tip angle 7.25 2.40 

Chin protrusion 1.76 1.52 

Ear protrusion 4.92 0.41 

Lobe attachment 0.23 2.37 

Lobe size 1.79 1.09 

 

6.4 Discussion and limitations 

The novelty of the analyses presented in this chapter lies on demonstrating that 

fine-grained regional genetic variation impacts traits of adaptive significance. Lo-

cal genetic adaptation plays a major role in evolution and physical appearance 

has been the model of choice of anthropologists to characterize human origins, 

migration processes and evolution. 

This crucial breakthrough comes, to a certain extent, because of the robustness 

achieved by SOURCEFIND to quantify sub-continental ancestry accurately, 

providing an opportunity to assess and interpret the effect of this subtle variation 

on different phenotypes. I hope this opens new opportunities to try and under-

stand the impact of regional genetic variation on other complex phenotypes, in-

cluding disease, and encourages the inclusion of fine-scale genetic structure into 

other research questions, such as studies of genetic association or natural selec-

tion. 
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The biggest limitations of this investigation were the limited availability of surro-

gates representing the original sources of admixture and the lack of a more geo-

graphically widespread sampling. The first limitation has been a recurrent obsta-

cle during this project, as finding the best surrogate for a population is difficult, 

not only due to the temporal factor but also to the huge effort required for a ran-

dom and even sampling. With more and better reference populations, it will be 

possible to obtain more precise estimations of the subcontinental ancestry com-

ponents. Practical solutions to this limitation could be provided by approaches 

that do not require reference populations and also increase the resolution of pop-

ulation structure, such as AS-PCA or DAPC. The former has been successfully 

applied for associations with a phenotype, pulmonary capacity, in Mexican popu-

lations (see Chapter 1 - Section 1.4.1 for details). 

The other limitation can only be surpassed by continuing the intensive sampling 

efforts of initiatives like CANDELA, which has taken years to collect a sample that 

- though one of the biggest representing Latin America - still lacks comprehensive 

geographical coverage. For instance, CANDELA’s Chilean sample, which is prob-

ably the best currently available in terms of coverage, as it covers vast territories 

from the south cone to the central Andes, showed the strongest associations be-

tween Native American sub-continental ancestry variation and physical appear-

ance diversity, probably indicating the power conferred by a geographically ex-

tensive sampling.  

 

6.5 Summary 

In this chapter I explore, for the first time, the relationship between sub-continental 

ancestry and physical appearance in Latin America. I show that variation in Native 

sub-continental ancestry in the Andean region significantly impacts on facial fea-

tures, particularly nose morphology, setting the stage for further analyses on how 

variation in facial features could reflect environmental adaptation. Secondly, I also 

show that variation in Northern versus Southern European ancestry significantly 

impacts on pigmentation phenotypes in Brazilians, demonstrating how sub-conti-

nental European genetic information can be extracted in admixed individuals and 

tested for phenotype associations. Overall, these results highlight the impact of 

regional genetic variation on human phenotypic diversity. 
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7 Conclusions and perspectives 

 

7.1 Conclusions 

In this thesis I have provided a comprehensive reconstruction of the demographic 

history of Latin American populations using state-of-the-art approaches in popu-

lation genetics. I paid a lot of attention to the process of constructing the reference 

panels and to the assessment of the performance of the methods implemented, 

aiming to set a strong base for the inference and the accurate interpretation of 

fine-scale genetic structure and sub-continental ancestry. 

In Chapter 3 I demonstrated how haplotype-based methods provide a higher level 

of resolution for detecting fine-scale population structure compared to frequency-

allele-based ones and I established a robust set of surrogates to infer the contri-

bution of specific population groups to the genetic make-up of Latin Americans. 

The results of these analyses are supported by historical, geographic, linguistic, 

and genetic evidences. 

The analyses presented in Chapter 4 confirm the accuracy of the new haplotype-

based approaches we are using to estimate the sub-continental ancestry, and 

admixture time and sources, in a setting appropriate for Latin American analyses. 

By providing the first formal assessments of accuracy of these methods, I show 

that our methods accurately (i) identify sources and proportions of sub-continental 

ancestry and (ii) infer dates of admixture when analysing single individuals simu-

lated to mimic genetic features of Latin Americans. 

After the work from Chapters 3 and 4, I was able to reconstruct the demographic 

history of Latin American populations (Chapter 5) with a higher level of resolution 

than previous studies, highlighting new findings that corroborate historical ac-

counts. This results enrich historical analyses of the Americas and contributes to 
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a deeper understanding of the heterogeneity of the sources involved in the com-

plex and continuous admixture processes in Latin America. 

Finally, I confirm the importance of understanding the fine-grained regional ge-

netic variation in Latin America by establishing clear associations between sub-

continental variation in ancestry and phenotypic diversity. More broadly, I demon-

strate that physical appearance serves as a model system in which to examine 

the effect of local genetic variation on complex traits. 

All these results demonstrate the importance of studying deeply the central role 

that sub-continental genetic variation has on the genetic architecture of human 

phenotypes. This is essential to consider, given the fact that up to this date, most 

of the surveys of genetic variation have been strongly biased towards European-

derived populations. 

 

7.2 Future directions 

In the future, I would like to further understand how the complex demographic 

histories of Latin Americans have shaped their genomes and how the genetic 

architecture - shaped by endless migrations and deep bottlenecks - has influ-

enced complex traits. With all this knowledge I would like to develop analytical 

strategies to better understand the evolution of these populations, seeking for 

biomedical and forensic applications. 

It is clear that we need to do more to study populations under-represented in the 

current surveys of genetic diversity. I think we need to make bigger efforts to col-

lect and analyse more samples. We also need to collect more ancient DNA sam-

ples, which could potentially represent better the ancestors of Latin Americans. 

One field to explore is the possibility to corroborate poorly documented events 

further. That is the case of the Converso migration to Latin America. A better and 

bigger sampling of European and East/South Mediterranean populations will be 

necessary to confirm whether high numbers of Conversos migrated to America, 

or if the Spanish that migrated were highly admixed with Semitic peoples. 
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Given the magnitude of the population collapse suffered by Native populations in 

the last 500 years, the exploration of the Native American sub-continental ances-

try in Latin America will allow the reconstruction of genetic profiles of the Native 

American peoples that contributed to the make-up of current mestizo populations. 

Finally, I consider that considerable effort must go into public engagement and, 

more importantly, this interaction needs to be contextualized given the amount of 

cultural diversity of Latin America. This will require collaborative work with social 

scientists, policy makers and other people participating and impacting on decision 

making. 
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Appendix. Description of the 129 clusters generated by fineSTRUCTURE and associated analyses. 

See explanatory notes at the bottom of the table. 

fS 
Clust 

Contains N Decision Explanation of decision Donor/Surrogate Surrog Additional notes 

1 South.Sudan(1/8) 1 Donor Single sample cluster Out.SouthSudan 
  

2 Ethiopia(3/3)+South.Sudan(7/8) 10 Surrogate EastAfrica1 1 
 

3 Kenya(35/73) 35 Surrogate 
(Merged) 

Similar according to TVD 
and tree distance 

EastAfrica2 2 No clear assign-
ment 4 Kenya(38/73) 38 

5 Namibia.3(1/9) 1 Donor Single sample cluster Out.Namibia.3 
  

6 Namibia.3(1/9)* 1 Donor Single sample cluster Out.Namibia.3 
  

7 Namibia.3(6/9) 6 Surrogate Namibia 3 
 

8 Namibia.2(1/14)+Namibia.3(1/9) 2 Donor Similar to 7, no contribu-
tion 

Out.Namibia.2 
Out.Namibia.3 

  

9 South.Africa.3(1/19) 1 Donor Single sample cluster Out.South.Africa.3 
  

10 Namibia.2(1/14) 1 Donor Single sample cluster Out.Namibia.2 
  

11 Namibia.2(6/14) 6 Donor No contribution Out.Namibia.2 
  

12 Namibia.2(5/14) 5 Donor No contribution Out.Namibia.2 
  

13 South.Africa.3(10/19) 10 Surrogate 
(Merged) 

Similar according to TVD 
and tree distance 

SouthAfrica 4 
 

14 South.Africa.3(8/19) 8 

15 Gambia(3/111)+Sierra.Leone(1/69) 4 Donor Similar to 18, small Out.Gambia 
Out.SierraLeone 

  

16 Gambia(10/111) 10 Donor Similar to 18, small Out.Gambia 
  

17 Gambia(18/111) 18 Donor Similar to 18, small Out.Gambia 
  

18 Gambia(29/111) 29 Surrogate 
(Merged) 

Similar according to TVD 
and tree distance 

WestAfrica1 5 
 

19 Gambia(22/111) 22 

20 Gambia(29/111)* 29 Donor Similar to 18, small Out.Gambia 
  

21 Sierra.Leone(68/69) 68 Surrogate WestAfrica2 6 
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22 Nigeria.1(31/101)+Nigeria.2(1/95) 32 Surrogate 
(Merged) 

Similar according to TVD 
and tree distance 

WestAfrica3 
Out.Nigeria.1 
Out.Nigeria.2 

7 2 Nigeria.2 and 1 
inconsistent ind 
excluded 

23 Nigeria.1(69/101)+Nigeria.2(1/95) 70 

24 Nigeria.1(1/101)+Nigeria.2(93/95) 94 Donor Similar to 23 Out.Nigeria.1 
Out.Nigeria.2 

  

25 Botswana(1/14) 1 Donor Single sample cluster Out.Botswana 
  

26 Botswana(1/14)* 1 Donor Single sample cluster Out.Botswana 
  

27 Botswana(1/14)** 1 Donor Single sample cluster Out.Botswana 
  

28 Botswana(3/14) 3 Donor No contribution Out.Botswana 
  

29 South.Africa.1(1/3) 1 Donor Single sample cluster Out.South.Africa.1 
  

30 South.Africa.2(1/4) 1 Donor Single sample cluster Out.South.Africa.2 
  

31 Botswana(3/14)* 3 Donor No contribution Out.Botswana 
  

32 Botswana(5/14) 5 Donor No contribution Out.Botswana 
  

33 South.Africa.1(2/3)+South.Africa.2 
(3/4) 

5 Donor No contribution Out.South.Africa.1 
Out.South.Africa.2 

  

34 Angola(1/19)+Namibia.1(1/15) 2 Donor No contribution Out.Angola 
Out.Namibia.1 

  

35 Angola(8/19) 8 Donor No contribution Out.Angola 
  

36 Angola(10/19)+Namibia.2(1/14) 11 Donor No contribution Out.Angola 
Out.Namibia.2 

  

37 Namibia.1(14/15) 14 Donor No contribution Out.Namibia.1 
  

38 Jordan.1(1/15) 1 Donor Single sample cluster Out.Jordan.1 
  

39 Israel.1(2/2)+Jordan.1(2/15) 4 Donor Similar to 41 Out.Israel.1 
Out.Jordan.1 

  

40 Jordan.1(2/15) 2 Donor Small cluster, similar 41 Out.Jordan.1 
  

41 Jordan.1(7/15)+Yemen(2/2) 9 Surrogate EastMediterranean1 8 
 

42 Jordan.1(1/15)+Jordan.2(3/3)+Pales-
tine(3/3) 

7 Surrogate EastMediterranean2 9 
 

43 Turkey.2(2/2) 2 Donor Complex genetic profile Out.Turkey.2 
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44 Geor-
gia(2/2)+Greece.1(1/2)+Greece.2(2/2) 

5 Donor Complex genetic profile Out.Georgia 
Out.Greece.1 
Out.Greece.2 

  

45 Iraq(2/2)+Israel.2(2/2)+Jordan.1(2/15) 6 Donor Complex genetic profile Out.Iraq, Out.Israel.2 
Out.Jordan.1 

  

46 Morocco.2(7/7) 7 Surrogate Sephardic3 10 
 

47 Libya.2(1/7)+Turkey.1(7/7) 8 Surrogate Sephardic1 11 
 

48 Tunisia.2(4/6) 4 Surrogate 
(Merged) 

Similar according to TVD 
and tree distance 

Sephardic2 12 
 

49 Libya.2(6/7)+Tunisia.2(2/6) 8 

50 Libya.1(1/14)+Tunisia.1(2/14) 3 Surrogate 
(Merged) 
 

Similar according to TVD 
and tree distance 

SouthMediterranean1 13 
 

51 Libya.1(11/14)+Tunisia.1(3/14) 14 

52 Libya.1(2/14)+Tunisia.1(9/14) 11 

53 Morocco.1(3/11) 3 Surrogate 
(Merged) 

Similar according to TVD 
and tree distance 

SouthMediterranean2 14 
 

54 Morocco.1(8/11) 8 

55 Spain.4(2/15) 2 Donor Similar to 56, small Out.Spain.4 
  

56 Spain.10(4/6)+Spain.11(5/8)+Spain.12
(3/14)+Spain.14(1/7)+Spain.2(1/14)+S
pain.4(13/15)+Spain.5(4/4)+Spain.6(4/
8)+Spain.7(4/7)+Spain.9(5/12) 

44 Surrogate CentralSouthSpain 
Out.Spain.5 
Out.Spain.10 

15 2 inds excluded -  
inconsistent as-
signment 

57 Spain.10(2/6)+Spain.12(6/14)+Spain.1
3(5/6)+Spain.17(6/6)+Spain.8(3/15) 

22 Surrogate CentralNorthSpain 
Out.Spain.8 
Out.Spain.12 
Out.Spain.17 

16 4 inds excluded -  
inconsistent as-
signment 

58 Spain.8(12/15) 12 Donor Drifted, no contribution Out.Spain.8 
  

59 Italy.2(3/3) 3 Donor Complex genetic profile Out.Italy.2 
  

60 Spain.1(2/8)+Spain.11(1/8)+Spain.12(
5/14)+Spain.13(1/6)+Spain.14(6/7)+Sp
ain.15(10/10)+Spain.16(7/8)+Spain.7(3
/7)+Spain.9(1/12) 

36 Surrogate Catalonia 
Out.Spain.1 
Out.Spain.11 
Out.Spain.12 

17 3 inds relocated 
to 56, 4 inds ex-
cluded -  incon-
sistent 
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61 Portu-
gal.2(1/31)+Spain.11(2/8)+Spain.2(13/
14)+Spain.3(2/2)+Spain.6(1/8) 

19 Surrogate CanaryIslands 18 1 ind relocated to 
62 

62 Portugal.1(18/18)+Portu-
gal.2(30/31)+Spain.1(6/8)+Spain.16(1/
8)+Spain.6(3/8)+Spain.9(6/12) 

64 Surrogate 
 

Portugal/WestSpain 
Out.Spain.1 
Out.Spain.9 
Out.Spain.6 
Out.Spain.16 

19 3 inds relocated 
to 56, 9 inds ex-
cluded -  incon-
sistent assign-
ment 

63 France.1(1/2)+Spain.18(1/14)+Spain.1
9(8/8) 

10 Surrogate 
(Merged) 

Similar according to TVD 
and tree distance 

Basque 20 
 

64 France.1(1/2)+Spain.18(13/14) 14 

65 Bulgaria(2/2)+Greece.1(1/2)+It-
aly.1(2/2)+Italy.5(15/15) 

20 Surrogate Italy1 
Out.Greece.1 

21 1 Greece.1 ind 
removed 

66 Italy.3(31/106) 31 Surrogate Italy2 22 
 

67 Italy.3(75/106)+Italy.4(2/2) 77 Donor No contribution Out.Italy.3,Out.Italy.4 
  

68 UK.2(28/29) 28 Donor Similar to 69, no contrib. Out.UK.2 
  

69 France.2(1/3)+NW.Europe(74/91)+UK.
1(31/31)+UK.2(1/29)+UK.3(1/1)+UK.4(
3/3) 

111 Surrogate NorthWestEurope2 
Out.UK.4 
Out.NW.Europe 
Out.France.2 

23 10 inds excluded 
-  inconsistent as-
signment 

70 Germany(6/37)+Hun-
gary(1/2)+NW.Europe(10/91) 

17 Donor Similar to 69, small con-
tribution to CANDELA 

Out.Germany 
Out.Hungary 
Out.NW.Europe 

  

71 UK.5(2/2)+UK.6(21/21) 23 Donor No contribution Out.UK.5, Out.UK.6 
  

72 France.2(2/3)+Germany(31/37)+Hun-
gary(1/2)+NW.Europe(7/91) 

41 Surrogate NorthWestEurope1 
Out.Hungary 
Out.France.2 
Out.NW.Europe 

24 Non-Germany in-
divudals removed 

73 Russia(2/2) 2 Surrogate NorthEastEurope1 25 
 

74 Estonia(2/2)+Finland(7/99) 9 Surrogate NorthEastEurope2 26 
 

75 Finland(29/99) 29 Surrogate NorthEastEurope3 27 
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76 Finland(41/99) 41 (Merged) Similar according to TVD 
and tree distance 77 Finland(22/99) 22 

78 China.1(2/82) 2 Donor Similar to 79, small Out.China.1 
  

79 China.1(72/82) 72 Surrogate China/Vietnam1 28 
 

80 China.1(7/82) 7 Donor Similar to 79, small Out.China.1 
  

81 Vietnam(91/95) 91 Surrogate China/Vietnam2 29 
 

82 Japan(1/104)+Korea(1/2) 2 Donor Samples represented by 
different clusters 

Out.Japan 
Out.Korea 

  

83 China.3(1/31)+China.4(64/101)+Ko-
rea(1/2) 

66 Surrogate 
 

ChinaHan 
Out.China.3 
Out.Korea 

30 2 non China.4 
inds removed 

84 China.2(26/66)+China.3(2/31)+China.4
(3/101)+Vietnam(4/95) 

35 Donor Similar to 84, complex 
genetic background 

Out.China.2 
Out.China.3 
Out.China.4 
Out.Vietnam 

  

85 China.1(1/82)+China.2(40/66)+China.3
(2/31)+China.4(29/101) 

72 Donor Contains several popula-
tions present in other 
clusters 

Out.China.1 
Out.China.2 
Out.China.3, 
Out.China.4 

  

86 China.3(26/31)+China.4(5/101) 31 Donor No contribution to 
CANDELA 

Out.CHB 
Out.CHS.Fu.Jian 

  

87 Japan(72/104) 72 Surrogate 
(Merged) 

 Japan 31 
 

88 Japan(31/104) 31 

89 Chile.3(2/65) 2 Donor Similar to 90, small Out.Chile.3 
  

90 Bo-
livia.2(6/12)+Chile.1(1/3)+Chile.3(27/6
5) 

34 Surrogate 
(Merged) 

 
Quechua2 
Out.Chile.3 

32 3 inds excluded -  
inconsistent as-
signment 

91 Bolivia.2(2/12)+Chile.3(23/65) 25 

92 Peru.3(5/5) 5 Removed Removed as donor and recipient, because high drift 
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93 Boli-
via.1(10/12)+Chile.1(1/3)+Chile.3(1/65)
+Peru.2(2/3)+Peru.4(6/17) 

20 Surrogate  Aymara, Out.Chile.1, 
Out.Chile.3, Out.Bo-
livia.1 

33 4 inds excluded -  
inconsistent as-
signment 

94 Bolivia.1(2/12)+Boli-
via.2(4/12)+Chile.1(1/3)+Chile.3(10/66)
+Peru.4(1/17) 

18 Donor Whole cluster has incon-
sistent assignment  

Out.Bolivia.1 
Out.Bolivia.2 
Out.Chile.1 
Out.Chile.3 
Out.Peru.4 

  

95 Argentina.1(10/19)+Chile.3(1/67) 11 Surrogate 
 

Colla, Out.Chile.3 34 Chile.3 removed 

96 Argentina.1(9/19) 9 Donor Similar to 95, no contrib. Out.Argentina.1 
  

97 Peru.2(1/3)+Peru.4(8/17) 9 Surrogate Quechua1 35 
 

98 Colombia.1(2/16)+Colombia.2(1/3) 3 Surrogate ChibchaPaez3 36 
 

99 Costa.Rica.2(3/3) 3 Surrogate ChibchaPaez2 37 
 

100 Costa.Rica.1(4/4) 4 Surrogate ChibchaPaez1 38 
 

101 Colombia.5(4/4) 4 Surrogate ChibchaPaez5 39 
 

102 Colombia.3(2/2) 2 Surrogate ChibchaPaez6 40 
 

103 Colombia.4(4/4) 4 Removed Removed as donor and recipient, because high drift 

104 Colombia.1(2/16) 2 Donor Similar to 105, drifted Out.Colombia.1 
  

105 Colombia.1(11/16) 11 Surrogate, Merged with 106 ChibchaPaez4 41 
 

106 Colombia.1(1/16)+Colombia.2(2/3) 3 Surrogate, Merged with 105 ChibchaPaez4 41 
 

107 Peru.1(1/13)+Peru.4(2/16) 3 Surrogate AndesPiedmont 42 
 

108 Argen-
tina.2(2/2)+Chile.2(2/2)+Chile.3(1/65) 

5 Surrogate Mapuche 43 
 

109 Guatemala(5/5)+Mexico.9(2/2) 7 Surrogate Mayan 44 
 

110 Brazil.1(1/3) 1 Removed Single sample cluster, removed as donor and recipient, because high drift 

111 Brazil.1(2/3) 2 Removed Removed as donor and recipient, because high drift 

112 Brazil.2(2/2) 2 Removed Removed as donor and recipient, because high drift 

113 Paraguay(4/4) 4 Surrogate Amazon3 45 
 

114 Colombia.7(3/3) 3 Removed Removed as donor and recipient, because high drift 
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115 Colombia.6(2/2) 2 Surrogate Amazon1 46 
 

116 Peru.1(6/13) 6 Donor Similar to 117, no contrib Out.Peru1 NA 
 

117 Peru.1(6/13)* 6 Surrogate Amazon2 47 
 

118 Argentina.6(3/5)+Argentina.7(2/2) 5 Surrogate Chaco1 48 
 

119 Argentina.6(2/5) 2 Donor Similar to 118, no contrib Out.Argentina.6 NA 
 

120 Mexico.1(2/2) 2 Surrogate Pima 49 
 

121 Mexico.10(8/22)+Mexico.2(2/20) 10 Surrogate 
 

Nahua1 
Out.Mexico.10 

50 1 ind excluded -  
inconsistent 

122 Mexico.6(7/8) 7 Surrogate SouthMexico3 51 
 

123 Mexico.8(6/8) 6 Surrogate SouthMexico2 52 
 

124 Mexico.10(13/22)+Mexico.6(1/8)+Mex-
ico.8(2/8) 

16 Surrogate SouthMexico1 53 
 

125 Mexico.10(1/22)+Mexico.2(18/20) 19 Surrogate Nahua2 54 
 

126 Mexico.3(2/2)+Mexico.4(16/16) 18 Surrogate 
+ Remove 

Highly drifted population 
excluded (Mexico.4) 

Mixe (Only Mexico.3) 55 
 

127 Argentina.3(1/13)+Argentina.5(3/3) 4 Surrogate 
(Merged) 

Similar according to TVD 
and tree distance 

Chaco2 56 
 

128 Argentina.3(5/13) 5 

129 Argentina.3(7/13)+Argentina.4(2/2) 9 

 
fS Clust: Cluster assigned by fineSTRUCTURE 
Decision: Some references samples were used only as “Donors” for the subsequent sub-continental ancestry inference. Some are also 
used as “Surrogates” for the ancestral populations in SOURCEFIND and NNLS analyses.  Some were “Removed” from the reference 
set. 
Donor/Surrogate: This is the final grouping used for generating the “copying vectors” used for the sub-continental ancestry analysis. 
Groups in Italics are the ones that were selected as surrogates and are further described in Chapter 3 (Table 3.4). 
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