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Abstract

The need to calibrate increasingly complex statistical models requires a per-
sistent effort for further advances on available, computationally intensive Monte-
Carlo methods. We study here an advanced version of familiar Markov-chain
Monte-Carlo (MCMC) algorithms that sample from target distributions defined
as change of measures from Gaussian laws on general Hilbert spaces. Such a
model structure arises in several contexts: we focus here at the important class
of statistical models driven by diffusion paths whence the Wiener process con-
stitutes the reference Gaussian law. Particular emphasis is given on advanced
Hybrid Monte-Carlo (HMC) which makes large, derivative-driven steps in the
state space (in contrast with local-move Random-walk-type algorithms) with an-
alytical and experimental results. We illustrate its computational advantages in
various diffusion processes and observation regimes; examples include stochastic
volatility and latent survival models. In contrast with their standard MCMC
counterparts, the advanced versions have mesh-free mixing times, as these will
not deteriorate upon refinement of the approximation of the inherently infinite-
dimensional diffusion paths by finite-dimensional ones used in practice when
applying the algorithms on a computer.
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1. Introduction

Markov chain Monte-Carlo (MCMC) methods provide an intuitive, pow-
erful mechanism for sampling from complex posterior distributions arising in
applications (see [21] for a review of algorithms and applications). The rapidly
increasing complexity of statistical models employed by practitioners requires
a parallel effort at advancing MCMC methodology to deliver algorithms that
can provide fast model exploration. Ideally, suggested algorithms should be of
enough flexibility to cover a wide range of model structures. This paper will
move along such directions by proposing and studying advanced versions of
standard MCMC algorithms to improve algorithmic performance on complex,
high-dimensional models.

The advanced algorithms are relevant for target distributions defined as
change of measures from Gaussian laws. Within such a structure, we will be
focusing here upon the important class of statistical models driven by Stochastic
Differential Equations (SDEs) posing concrete computational challenges; here,
Brownian motion constitutes the reference Gaussian measure. The paper will
develop and test advanced MCMC algorithms for the computationally demand-
ing task of reproducing sample paths of SDEs under various direct or indirect
observation regimes. The ability to sample the realized dynamics driving the
data mechanism is of high importance for understanding the model behavior.
Also, due to the typical intractability of the likelihood function in SDE contexts,
the underlying diffusion path is many times treated as a latent variable within
Gibbs samplers and its fast sampling is critical for the efficiency and feasibility
of parametric inference procedures.

The advanced MCMC methods follow closely recent developments [9, 6] over
algorithms that take advantage of the structure of target distributions Π being
determined as a change of measure from a Gaussian one Π0 ≡ N(0, C), that is:

dΠ

dΠ0
(x) = exp{−Φ(x)} , (1)

for some function Φ defined on a Hilbert space H. The method exploits the
relation with the Gaussian measure to evolve standard MCMC algorithms into
advanced ones with the critical computational advantage that their convergence
properties are mesh-free, i.e. their mixing times do not deteriorate as the di-
mension of the state space increases when refining relevant finite-dimensional
projections (used in practice on a computer) to better approximate inherently
infinite-dimensional elements of H. In the SDE context, finite-difference meth-
ods are commonly employed to approximate the infinite-dimensional diffusion
sample paths whence a discretization mesh will be specified. We will be looking
on advanced versions of Random-walk Metropolis (RWM), Metropolis-adjusted
Langevin algorithm (MALA) and Hybrid Monte-Carlo (HMC). MALA and
HMC both use information about the derivative of the log-target to drive the
algorithmic dynamics, whereas RWM uses blind proposals. Emphasis will be
given on HMC, employing Hamiltonian dynamics, as its nature to perform global
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designated steps on the SDE pathspace seems to provide significant computa-
tional advantages compared to the other two local-move algorithms; this will be
illustrated both analytically and experimentally.

A first methodological contribution of the paper will be to define HMC on a
Hilbert space, similar to Hilbert-space valued RWM and MALA derived in [9].
A similar attempt for HMC has taken place in [6]; the method there required
strict, analytical Lipschitz-continuity assumptions on the Φ-derivative δΦ 1. In
this paper, a much simpler derivation will be proven under minimal probabilistic
assumptions on Φ relevant for a much wider range of practical applications that,
for instance, could involve inherently stochastic terms (e.g. stochastic integrals)
at the specification of Φ. The concrete consequence of the mathematical verifi-
cation of a well-defined algorithm on the infinite-dimensional Hilbert space H is
an anticipated mesh-free mixing time for the practical algorithm that will run
on some N -dimensional projection (typically, finite-difference) of the pathspace.
Another methodological contribution of the paper will be that it will analyti-
cally illustrate, in the context of directly observed diffusions, that ‘clever’ use
of information on the derivative of the log-target (within HMC, compared to
MALA) can remove orders of complexity from the computational costs of the
MCMC algorithm. Albeit proven in a linear scenario, the result will be later on
empirically manifested in applications on realistic models. In addition to verify-
ing the theoretical results, the empirical contributions of the paper relate with
the implementation of the pathspace algorithms on several practical problems
including stochastic volatility and various diffusion driven models. As demon-
strated in relevant applications, HMC algorithms avoid the random-walk-type
behaviour of the other algorithms and greatly outperform them, thus constitut-
ing a powerful method for tackling high-dimensional path-sampling problems.

1.1. Diffusion-Driven Models

Stochastic Differential Equations (SDEs) provide a powerful and flexible
probabilistic structure for modeling phenomena in a multitude of disciplines:
finance, biology, molecular dynamics, chemistry, survival analysis, epidemiology,
just to name a few (see [30] for a review of applications). A large class of SDEs
can be specified as follows:

dVu = µ(Vu; θ)dt+ σ(Vu; θ)dBu , (2)

for drift and diffusion coefficient µ(·; θ) : Rd 7→ Rd and σ(·; θ) : Rd × Rd 7→
Rd×Rd respectively (of known functional form up to some unknown parameter
θ ∈ Rp), and Brownian motion Bu. Such a differential modeling structure is
sometimes implied by physical laws (e.g. Langevin equation in physics) or is

1the δ-notation refers in the most general setting to the Fréchet generalisation of differenti-
ation of real-valued functions defined on general Hilbert spaces; in our case we will work with
the associated (to the differential operator) element of the dual space, so δΦ will be treated
as an element of the pathspace.
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selected due to its adaptiveness by the practitioner to represent time-evolving
quantities.

The diffusion process defined by (2) may be observed in a number of ways.
The case where data form a discrete skeleton of the diffusion path has been
studied extensively (see for example [2, 7, 17, 10]), but different types of ob-
servation regimes often appear in applications. For example in PK/PD studies
[34], growth curve models [14] and bioinformatics [24], the stochastic dynamical
systems are observed with error. In financial applications, and in particular
stochastic volatility models [20], the observation model consists of partial data
or integrals of the underlying diffusion process [12]. Event time models as in
[1, 35], involve a latent diffusion process that is observed through random bar-
rier hitting times. In this paper we demonstrate how the above framework can
be unified through formulations that consist of a diffusion process defined by
(2) and are completed by an appropriate (typically Lebesgue) density p(y|v, θ)
for the observations Y conditionally on the diffusion path V and θ. We then
proceed and develop a general and efficient HMC algorithm to handle models
within this framework.

Inferential procedures about θ are perplexed by the typical unavailability of
the likelihood function p(y|θ) in closed form. MCMC methods could in principle
overcome such an issue via data augmentation, whereby Gibbs sampler steps
within the algorithm would switch from sampling the unobserved diffusion path
V conditionally on θ and Y to sampling θ conditionally on V and Y . Our
advanced MCMCmethods are relevant here for the challenging high-dimensional
path-update of V .

The construction of such data augmentation MCMC samplers has to address
two important issues arising from inherent characteristics of diffusion processes.
The first issue is the singularity between the parameters in the diffusion coeffi-
cient and the latent diffusion paths (i.e. conditionally on V , the parameters in
the diffusion coefficient have a Dirac distribution) caused by the quadratic vari-
ation process. The problem was identified in [36] noting that the convergence
of an MCMC Independence sampler deteriorates as O(N) unless appropriate
reparametrisation is applied (N being the number of discrete instances of the
path considered in practice when executing the method on a personal computer).
Various such reparametrizations are currently available and some of them will
be used in the sequel. The second issue is the construction of efficient proposals
for the update of the (high-dimensional) latent paths. The efficiency and tun-
ing of such updates are critical for the overall performance of the algorithms.
Most existing approaches adopt Independence sampler steps proposing paths
from easier-to-handle diffusion processes (typically, Brownian motion paths) as
candidates for paths of the target V |Y, θ. While these approaches may work
well in some cases, they can also perform unacceptably poorly in many other
ones when target paths are very different from Brownian ones.

The advanced MCMC samplers studied in this paper connect with both
above issues. First, methods used for decoupling the dependence between V
and θ, achieve this via the consideration of some 1-1 transform X = η(V ; θ)
so that the distribution of X has a density w.r.t. a probability measure that
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will not involve θ: this reference measure is precisely a Brownian motion (or
a Brownian bridge). Thus, the decoupling approaches conveniently deliver tar-
get distributions which are change of measures from Gaussian measures of the
structure (1). More analytically, using the reparametrization method of [24] our
advanced samplers will be, in principle, applicable under the condition:

v 7→ σ(v; θ) is invertible, for any v in the state space of V . (3)

For the second issue, the advanced HMC sampler provides a powerful mechanism
for delivering efficient updates for the high-dimensional latent paths as: (i) it
will propose non-blind path updates, driven by the log-derivative of the target
distribution; (ii) proposed updates will make large steps in the path space thus
offering the potential for efficient mixing; (iii) it’s mixing time will be mesh-free,
i.e. will not deteriorate with increasing N .

The paper is organised as follows: Section 2 contains some background ma-
terial regarding Gaussian distributions on separable Hilbert Spaces. The ad-
vanced HMC sampler is developed in Section 3 where other MCMC samplers
for diffusion pathspaces are also presented. In Section 4 we demonstrate the
advantages offered by the HMC algorithm through an analytical study on the
Ornstein-Uhlenbeck (OU) diffusion process. The theory of Section 3 is used in
Section 5 to extend the framework the HMC algorithm to a rich class family
of diffusion models with general diffusion coefficients and various observation
regimes. Section 6 verifies the theoretical results and illustrates the developed
algorithms in various simulation experiments. Further generalizations are pro-
vided in Section 7, while Section 8 concludes with some relevant discussion and
future directions.

2. Gaussian Measures on Hilbert Spaces

We collect here some background material (see e.g. [13]) on Gaussian dis-
tributions on a separable Hilbert space H that will assist at the presentation
of the later sections. The Cameron-Martin space, H0, of the Gaussian law
Π0 ≡ N(0, C) coincides with the image space of C1/2. Essentially, H0 includes
all elements of the Hilbert space which preserve the absolute continuity prop-
erties of Π0 upon translation. This is made mathematically explicit via the
following proposition.

Proposition 2.1. If T (v) = v + C1/2v0 for a constant v0 ∈ H then Π0 and
Π0 ◦ T−1 are absolutely continuous w.r.t. each other with density:

d {Π0 ◦ T−1 }
dΠ0

(v) = exp
{
〈v0, C−1/2v〉 − 1

2 |v0|
2
}
.

Proof. This is Theorem 2.21 of [13].

For the diffusion pathspace we focus upon in this paper, the target distri-
bution Π(dx) is defined on the Hilbert space of squared integrable paths H =
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L2([0, `],R) (with appropriate boundary conditions) for some length ` > 0. The
centered Gaussian reference measure Π0 will correspond to a Brownian motion
(thus, boundary condition x(0) = 0) or a Brownian Bridge (x(0) = x(`) = 0).
The covariance operator is connected with the covariance function c(u, v) of the
Gaussian process via:

(Cf)(u) =
∫ `

0

c(u, v)f(v)dv , f ∈ H .

With this in mind, the covariance operators Cbm, Cbb of the Brownian motion
and Brownian bridge respectively are as below:

(Cbmf)(u) =

∫ `

0

(u ∧ v) f(v)dv = u

∫ `

0

f(v)dv −
∫ u

0

∫ s

0

f(v)dv ds ; (4)

(Cbbf)(u) =

∫ `

0

(u ∧ v − uv
` ) f(v)dv

=
u

`

∫ `

0

∫ s

0

f(v)dv ds−
∫ u

0

∫ s

0

f(v)dv ds . (5)

The Cameron-Martin spaces Hbm
0 and Hbb

0 of a Brownian motion and Brownian
bridge respectively are analytically specified as follows (see e.g. Lemma 2.3.14
of [11] for the case of Brownian motion; Brownian bridge involves the extra
boundary condition x(`) = 0):

Hbm
0 =

{
x : [0, `] 7→ R : ∃ f ∈ L2([0, `],R) such that x(u) =

∫
[0,u]

f(s)ds
}
;

Hbb
0 =

{
x : [0, `] 7→ R : ∃ f ∈ L2([0, `],R) such that

x(u) =

∫
[0,u]

f(s)ds, x(`) = 0
}
.

The Karhunen-Loève representation of N(0, C) will be used later on. Analyt-
ically, considering the eigen-decomposition {λp, φp}∞p=1 of C so that C φp = λp φp,
we have that the (normalized) eigenfunctions {φp}∞p=1 constitute an orthonor-
mal basis for the Hilbert space H. In particular, for x ∼ N(0, C) we have the
expansion:

x =
∞∑
p=1

〈x, φp〉φp =
∞∑
p=1

xp φp =
∞∑
p=1

√
λp ξp φp , (6)

where {ξp}∞p=1 are iid variables from N(0, 1).

3. Advanced HMC on Hilbert Space

HMC uses the derivative of the log-target density, in the form of Hamil-
tonian dynamics, to generate moves on the state space. An appropriate ac-
cept/reject decision will then force reversibility w.r.t. the target distribution.
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Uniquely amongst alternative MCMC algorithms, HMC allows for the synthe-
sis of a number of derivative-guided steps before the accept/reject test, thus
permitting large, designated steps in the state space.

The standard version of HMC first appeared in [15]. An advanced version
for infinite-dimensional targets of the form (1) appeared in [6]. One of our ob-
jectives here is to extend the relevance of the method in [6] to a much wider
class of SDE-driven applications. In particular, [6] defines an HMC algorithm
on a Hilbert space under strong analytical Lipschitz-continuity assumptions on
Sobolev norms of δΦ which are difficult to verify and are, indeed, not relevant
for the common scenario when Φ will involve inherently stochastic terms (like
stochastic integrals). Here, we provide an alternative derivation of advanced
HMC which avoids such strong assumptions of earlier works, and is relevant
for many practical applications. Such a construction of the algorithm on the
Hilbert space will provide a justification for order O(1)-mixing times for the
related N -dimensional projected algorithm. This justification will not be ana-
lytically proven here as it would require a level of mathematical technicalities
far beyond the application-motivated scope of this paper; we note that all nu-
merical applications shown later will empirically verify the O(1)-mixing times
of the samplers.

We will only require the following condition (recall that C is the covariance
operator of the Gaussian measure at the definition of the target Π in (1)):

Assumption 3.1. C δΦ(x) is an element of the Cameron-Martin space of the
Gaussian measure Π0 (so C δΦ(x) ∈ Im C1/2) for all x in a set with probability
1 under Π0.

We will discuss Assumption 3.1 in the context of our applications in the
sequel. Note that the final algorithm suggested later in this section coincides
with the one presented in [6] when the strict analytical conditions of that paper
on Φ are satisfied; the new theoretical development here is to construct an
alternative proof for the well-definition of the algorithm on the Hilbert space
that requires only Assumption 3.1 and, as a consequence, greatly extends the
relevance of the developed method for applications.

Some of the calculations carried out in the development of the algorithm in
the sequel make explicit sense for H = RN and only formal sense when H is an
infinite-dimensional separable Hilbert space. We can write (formally in the case
of infinite-dimensional H):

Π(x) ∝ exp{−Φ(x)− 1
2 〈x, Lx〉} , (7)

where we have defined L = C−1.

3.1. Hamiltonian Dynamics

The state space is now extended via the introduction of an auxiliary ‘velocity’
v ∈ H; the original argument x ∈ H can be thought of as ‘location’. We consider
the ‘total energy’ function:

H(x, v;M) = Φ(x) + 1
2 〈x, Lx〉+

1
2 〈v,Mv〉 , x ∈ H , (8)
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for a user-specified ‘mass’ operatorM such thatM−1 is a well-defined covariance
operator on H. We define the distribution on H×H:

Π(x, v) ∝ exp{−H(x, v;M)} = exp{−Φ(x)− 1
2 〈x, Lx〉 −

1
2 〈v,Mv〉} .

Note that under Π(x, v) we have v ∼ N(0,M−1). The Hamiltonian dynamics
on H = RN are defined as follows:

dx

dt
=M−1 ∂H

∂v
, M

dv

dt
= −∂H

∂x
,

or, equivalently:
dx

dt
= v , M

dv

dt
= −Lx− δΦ(x) . (9)

Hamiltonian equations preserve the total energy, and in a probabilistic context
they have Π(x, v) as their invariant distribution. The proof (for the case H =
RN ) under regularity conditions (see e.g. [15]) is straightforward and based
on the fact that the solution operator of (9) is volume-preserving and energy-
preserving. One motivation for the selection of mass matrix M could be that
directions of higher variance under the target Π(dx) should give higher marginal
velocity variances and vice versa. In particular, selecting M = L seems optimal
in the case when Φ ≡ 0 and the target distribution is simply N(0, C), as we
effectively transform the target to N(0, I) and equalize all marginal variances.

Caution is needed whenH is an infinite-dimensional Hilbert space. Following
[6], one now is forced to choose the mass matrix M = L to end up with a well-
defined algorithm. In this case the energy function will be:

H(x, v) = Φ(x) + 1
2 〈x, Lx〉+

1
2 〈v, Lv〉 , x ∈ H , (10)

and the Hamiltonian equations will become:

dx

dt
= v ,

dv

dt
= −x− C δΦ(x) . (11)

Showing in infinite dimensions that a solution operator of (11) exists and pre-
serves Π(x, v) is harder: an analytical proof is given in [6], under carefully
formulated assumptions on C and Φ. As the differential equations in (11) can-
not be solved analytically, HMC solves them numerically and then uses an
accept/reject step to correct for violating preservation of total energy (and in-
variance of Π(x, v)).

3.2. Standard HMC on H = RN

The standard HMC algorithm developed in [15] discretises the Hamiltonian
equations (9) via a leapfrog scheme (we work under the selection M = L):

vh/2 = v0 − h
2 x0 −

h
2 C δΦ(x0) ,

xh = x0 + h vh/2 , (12)

vh = vh/2 − h
2 xh − h

2 C δΦ(xh) ,
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giving rise to an operator (x0, v0) 7→ (xh, vh) = ψh(x0, v0) which is volume-
preserving, and has the symmetricity property ψh(xh,−vh) = (x0,−v0). HMC
looks at Hamiltonian dynamics up to some time horizon T > 0, via the synthesis
of

I = bT
h c (13)

leapfrog steps, so we define ψI
h to be the synthesis of I mappings ψh. The stan-

dard HMC is given in Table 1 (Px denotes projection on the x-argument). Due
to the properties of the leapfrog operator mentioned above, it is easy to ver-
ify ([15]) that under regulatory conditions the employed acceptance probability
provides Markov dynamics with invariant distribution Π(x) in (1).

HMC on RN :

(i) Start with an initial value x(0) ∈ RN and set k = 0.

(ii) Given x(k) sample v(k) ∼ N(0, C) and propose

x? = Px ψ
I
h(x

(k), v(k)) .

(iii) Calculate the acceptance probability

a(x(k), v(k)) = 1 ∧ exp{−∆H(x(k), v(k))} (14)

for ∆H(x, v) = H(ψI
h(x, v))−H(x, v).

(iv) Set x(k+1) = x? with probability a; otherwise set x(k+1) = x(k).

(v) Set k → k + 1 and go to (ii).

Table 1: HMC on RN , with target Π(x) in (1).

3.3. Advanced HMC on H
Applying the standard algorithm in Table 1 on an N -dimensional projection

of the SDE pathspace would give an algorithm for which: the proposal x? would
become an increasingly inappropriate candidate for a sample from the target
with increasing N ([6]); thus, the acceptance probability would vanish with
increasing N , assuming parameters h, T were kept fixed. Indeed, employing
the mapping ψI

h for elements of the pathspace would project Brownian motion
paths to paths of the wrong quadratic variation which would then necessarily
have had acceptance probability 0 (see [9] for an analytical illustration in the
case of MALA); the results in [8] suggest that one must decrease the step-size
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h as O(N−1/4) to control the acceptance probability for increasing N . The
advanced HMC algorithm avoids this degeneracy by exploiting the definition of
the target as a change of measure from a Gaussian law. The development below
follows [6]; a similar splitting of the Hamiltonian equations as the one showed
below is also used in [5], but in a different context.

Hamiltonian equations (11) are split into the following two equations:

dx

dt
= 0 ,

dv

dt
= −C δΦ(x) ; (15)

dx

dt
= v ,

dv

dt
= −x . (16)

Notice that both equations can be solved analytically. We construct a numerical
integrator for (11) by synthesizing steps on (15) and (16). Analytically, we define
the solution operators of (15) and (16):

Ξt(x, v) = (x, v − t C δΦ(x)) ; (17)

Ξ̃t(x, v) =
(
cos(t)x+ sin(t) v, − sin(t)x+ cos(t) v

)
. (18)

The numerical integrator for (11) is defined as follows:

Ψh = Ξh/2 ◦ Ξ̃h∗ ◦ Ξh/2 , (19)

for small h > 0 and h∗ a function of h defined in (21) below. We can synthesize
steps up to some time horizon T . Defining I as in (13), ΨI

h will correspond to
the synthesis of I steps Ψh. Ψ

I
h will provide the proposals for the MCMC steps.

Remark 3.1. Critically, operators Ξt(x, v), Ξ̃t(x, v) have the property that they
preserve the absolute continuity properties of an input random pair (x, v) dis-
tributed according to the Gaussian law:

Q0(x, v) ∝ exp{−1
2 〈x, Lx〉 −

1
2 〈v, Lv〉} , (20)

(so, also of any other distribution absolutely continuous w.r.t. Q0). This is
obvious for Ξ̃t(x, v) as it defines a rotation, so this map is in fact invariant
for Q0. Then, as illustrated with Proposition 2.1, Assumption 3.1 guarantees
precisely that also Ξt(x, v) preserves absolute continuity of Q0. We re-emphasize
here, that the solver employed for the standard HMC algorithm would generate
proposals of a distribution singular to the target distribution.

We will use h∗ such that:

cos(h∗) = 1−h2/4
1+h2/4 , (21)

though any choice is allowed. For this choice, it can be easily checked that the
integrator (x0, v0) 7→ Ψh(x0, v0) =: (xh, vh) can be equivalently expressed as:

vh/2 = v0 − h
2

x0 + xh
2

− h
2 C δΦ(x0) ,

xh = x0 + h vh/2 , (22)

vh = vh/2 − h
2

x0 + xh
2

− h
2 C δΦ(xh) ,
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which can now be interpreted as a semi-implicit-type integrator of (11). Under
the interpretation (22), the justification for the choice (21) is that it delivers an
integrator Ψh that carries out steps of similar size, h, in the x and v directions,
in accordance with standard HMC.

The complete algorithm is determined in Table 2.

HMC on Hilbert space H:

(i) Start with an initial value x(0) ∼ Π0 ≡ N(0, C) and set k = 0.

(ii) Given x(k) sample v(k) ∼ N(0, C) and propose

x? = Px Ψ
I
h(x

(k), v(k)) .

(iii) Consider
a(x(k), v(k)) = 1 ∧ exp{−∆H(x(k), v(k))} (23)

for ∆H(x, v) = H(ΨI
h(x, v))−H(x, v).

(iv) Set x(k+1) = x? with probability a; otherwise set x(k+1) = x(k).

(v) Set k → k + 1 and go to (ii).

Table 2: HMC on H, with target Π(x) in (1).

Remark 3.2. The acceptance probability in the table is at the moment defined
only formally, as H(x, v) = ∞ a.s.. To see that, notice that using the Karhunen-
Loève expansion in (6) for x ∼ Π0 we have 〈x, Lx〉 ≡

∑∞
p=1 ξ

2
p, for ξp iid N(0, 1).

We re-express the acceptance probability in the following section in a way that
illustrates that the difference ∆H(x, v) = H(ΨI

h(x, v)) − H(x, v) is a.s. well-
defined; from a practical point of view, for the N -dimensional projection used
in practice one could still use directly the expression ∆H(x, v) = H(ΨI

h(x, v))−
H(x, v) as each of the two H-terms will grow as O(N).

Remark 3.3. We will not prove the existence of a solution for the Hamiltonian
equations on Hilbert space (15)-(16) or that the solution would preserve Π(x, v)
as such proofs would require a level and amount of technicalities out of the scope
of the paper. In Section 3.4 below we will prove the validity of the algorithm
in Table 2 which uses directly the numerical integrators of these equations in
(17)-(18). This seems to suffice from a practical point of view: our proof be-
low indicates that the algorithm will not collapse as N → ∞ but will converge
to a limit, with N being the dimension of the vector used instead of complete
infinite-dimensional diffusion paths when running the algorithms on a personal
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computer; then, for a fixed finite dimension N one can resort to properties of
finite-dimensional Hamiltonian equations to justify that, under standard regula-
tory conditions, they will indeed preserve the N -dimensional target distribution,
thus one can attain average acceptance probabilities arbitrarily close to 1 by
decreasing the step-size h.

3.4. Proof of Validity for Advanced HMC
We consider the Gaussian product measure Q0 = N(0, C)⊗N(0, C) on H×H

as in (20) and the bivariate distribution Q via the change of measure:

Q(dx, dv) = exp{−Φ(x)}Q0(dx, dv) .

We also consider the sequence of probability measures on H×H:

Q(i) = Q ◦Ψ−i
h , 1 ≤ i ≤ I

the sequence (xi, vi) = Ψ i
h(x0, v0), and set:

g(x) := −C1/2 δΦ(x) , x ∈ H .

Note that under Assumption 3.1, g(x) is a well-defined element of the Hilbert
space H a.s. under Π0. Using Proposition 2.1, we can now prove the following:

Proposition 3.1. We have that:

dQ(i)

dQ0
(xi, vi) =

dQ(i−1)

dQ0
(xi−1, vi−1) ·G(xi, vi) ·G(xi−1, vi−1 +

h
2 C1/2g(xi−1)) ,

where we have defined:

G(x, v) = exp
{
〈h2 g(x), C

−1/2v〉 − 1
2 |

h
2 g(x)|

2
}
.

Proof. We will use the chain rule and Proposition 2.1. Recall that for any two
measurable spaces (E, E), (E′, E ′), probability measures M , M0 on (E, E) and
1-1 mapping F : (E, E) 7→ (E′, E ′), we have the following identity rule for the
Radon-Nikodym derivative:

d{M1 ◦ F−1}
d{M0 ◦ F−1}

(x) =
dM1

dM0
(F−1(x)) . (24)

We now work as follows. Following the definition of Ψh from (19), we have the
equality of probability measures:

Q(i) = Q(i−1) ◦ Ξ−1
h/2 ◦ Ξ̃

−1
h∗ ◦ Ξ−1

h/2 .

Thus, we have that:

dQ(i)

dQ0
(xi, vi) =

d {Q(i−1) ◦ Ξ−1
h/2 ◦ Ξ̃

−1
h∗ ◦ Ξ−1

h/2}
dQ0

(xi, vi)

=
d {Q(i−1) ◦ Ξ−1

h/2 ◦ Ξ̃
−1
h∗ ◦ Ξ−1

h/2}
d {Q0 ◦ Ξ−1

h/2}
(xi, vi)×

d {Q0 ◦ Ξ−1
h/2}

dQ0
(xi, vi)

=
d {Q(i−1) ◦ Ξ−1

h/2 ◦ Ξ̃
−1
h∗ }

dQ0
(Ξ−1

h/2(xi, vi))×G(xi, vi) ; (25)

12



we have used the chain rule in the second line, then (24) and Proposition 2.1
(in this case v0 ≡ h

2 g(x)) in the third line. Using the fact that Q0 ◦ Ξ̃−1
h∗ ≡ Q0

and that also (Ξ̃−1
h∗ ◦ Ξ−1

h/2)(xi, vi) ≡ Ξh/2(xi−1, vi−1) we have that:

d {Q(i−1) ◦ Ξ−1
h/2 ◦ Ξ̃

−1
h∗ }

dQ0
(Ξ−1

h/2(xi, vi)) ≡
d {Q(i−1) ◦ Ξ−1

h/2}
dQ0

(Ξh/2(xi−1, vi−1)) .

Finally, working as in (25) we have that:

d {Q(i−1) ◦ Ξ−1
h/2}

dQ0
(Ξh/2(xi−1, vi−1)) =

=
dQ(i−1)

dQ0
(xi−1, vi−1)×

d {Q0 ◦ Ξ−1
h/2}

dQ0
(Ξh/2(xi−1, vi−1))

=
dQ(i−1)

dQ0
(xi−1, vi−1)×G(Ξh/2(xi−1, vi−1)) .

The definition of Ξh/2 givesG(Ξh/2(xi−1, vi−1)) ≡ G(xi−1, vi−1+
h
2 C1/2g(xi−1)).

Following the calculation from (25) we have now proven the requested result.

Thus, using Proposition 3.1 iteratively we have now obtained that:

dQ(I)

dQ0
(xI , vI) =

dQ

dQ0
(x0, v0)×

I∏
i=1

G(xi, vi)G(xi−1, vi−1+
h
2 C1/2g(xi−1)) . (26)

Now, following the definition of Ψh in (19), we set:

v−i−1 = Pv Ξh/2(xi−1, vi−1) ≡ vi−1 +
h
2 C1/2g(xi−1) ;

v+i = Pv Ξ̃h∗(xi−1, vi−1) ≡ vi − h
2 C1/2g(xi) .

Using these definitions, for any h, h∗ > 0 we have that:

log{G(xi, vi)G(xi−1, vi−1 +
h
2 C1/2g(xi−1)) } =

= 〈h2 g(xi), C
−1/2vi〉 − 1

2 |
h
2 g(xi)|

2 + 〈h2 g(xi−1), C−1/2vi−1〉+ 1
2 |

h
2 g(xi−1)|2

= 1
2 〈vi, Lvi〉 −

1
2 〈v

+
i , Lv

+
i 〉 − 1

2 〈vi−1, Lvi−1〉+ 1
2 〈v

−
i−1, Lv

−
i−1〉

= 1
2 〈xi, Lxi〉+

1
2 〈vi, Lvi〉 −

1
2 〈xi−1, Lxi−1〉 − 1

2 〈vi−1, Lvi−1〉 .

The last equation is due to the mapping (xi−1, v
−
i−1) 7→ (xi, v

+
i ) corresponding

to the modulus-preserving rotation Ξ̃h∗ . Thus, we can rewrite (26) as follows:

dQ(I)

dQ0
(xI , vI) = exp{∆H(x0, v0)− Φ(xI)} . (27)

The above expression will be used at proving the main result below.
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Remark 3.4. The operator Ψh (thus, also ΨI
h) has the following properties:

i) Ψh is symmetric, that is Ψh ◦ S ◦Ψh = S where S(x, v) = (x,−v).

ii) Ψh is (formally) volume-preserving, as it preserves volume when H ≡ Rd.

Theorem 3.1. The Markov chain with transition dynamics specified in Table 2
has invariant distribution Π(x) in (1).

Proof. Assuming stationarity, so (x0, v0) ∼ Q, we can write for the next posi-
tion, x′, of the Markov chain (recall that (xI , vI) = ΨI

h(x0, v0)):

x′ = I [U ≤ a(Ψ−I
h (xI , vI)) ]xI + I [U > a(x0, v0) ]x0 ,

for a uniform random variable U ∼ Un [0, 1]. Let f : H 7→ R be bounded and
continuous. We need to prove that:

E [ f(x′) ] = E [ f(x0) ] .

Integrating out U from above we get:

E [ f(x′) ] = E[ f(xI) a(x0, v0) ]− E[ f(x0) a(x0, v0) ] + E [ f(x0) ] . (28)

Note now that (here, we need to stress the integrators in expectations/integrals
and will show them explicitly as a subscript of E):

E[ f(xI) a(x0, v0) ] = EQ(I) [ f(xI) a(Ψ
−I
h (xI , vI)) ]

(27)
= EQ0 [ f(xI) a(Ψ

−I
h (xI , vI)) e

∆H(Ψ−I
h (xI ,vI))−Φ(xI) ]

= EQ0 [ f(xI) ( 1 ∧ e∆H(Ψ−I
h (xI ,vI)) ) e−Φ(xI) ]

= EQ[ f(xI) · 1 ∧ e∆H(Ψ−I
h (xI ,vI)) ]

= EQ[ f(xI) · 1 ∧ e∆H(Ψ−I
h (xI ,−vI)) ] . (29)

(For the last equation, notice that (xI , vI) and (xI ,−vI) have the same law Q.)
Now, that due to the symmetricity property ΨI

h ◦ S ◦ ΨI
h = S of the leapfrog

operator in Remark 3.4 we have that Ψ−I
h ◦ S = S ◦ΨI

h. Thus, we have:

∆H(Ψ−I
h (xI ,−vI))) = ∆H(S ◦ΨI

h(xI , vI)))

= H(S(xI , vI))−H(S ◦ΨI
h(xI , vI)) ≡ −∆H(xI , vI) ,

where is the last equation we used the fact that H ◦ S = H due to the energy
H being quadratic in the velocity v. Thus, using this in (29), we have that:

E[ f(xI) a(x0, v0) ] = EQ[ f(xI)a(xI , vI) ] ≡ E[ f(x0) a(x0, v0) ] . (30)

So, from (28), the proof is now complete.

Remark 3.5. The demonstration of validity of standard HMC [15] does not
require the recursive calculation of the forward density (27) as it exploits the
preservation of volume (unit Jacobian) for the mapping (x0, v0) 7→ ψI

h(x0, v0)
to directly prove the analogue to (30). So, finding (27) overcomes the difficulty
of making sense of a Jacobian for the transform ΨI

h on the infinite-dimensional
Hilbert space.
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3.5. Advanced MCMC Samplers on Pathspace

A number of MCMC algorithms corresponding to an upgrade of standard
RWM, MALA and HMC on the infinite-dimensional pathspace are now avail-
able. So far in Section 3 we have defined HMC on pathspace under Assumption
3.1. In [9] the definition of advanced MALA on the pathspace is provided; also
advanced RWM on pathspace was defined in that paper. We now briefly review
these two local-move algorithms.

The starting point for MALA is a Langevin SDE with drift 1
2 C δ log Π(x)

and coefficient C1/2, that is, after a calculation on the drift:

dx

dt
= −1

2 x− 1
2 C δΦ(x) + C1/2 dw

dt
. (31)

In an Euclidean setting {wt} denotes a standard Brownian motion, whereas
in the pathspace it denotes a cylindrical Brownian motion. In both cases,
the process can be easily understood via the distribution of it’s increments,

as C1/2 (wt+s−wt)√
s

∼ N(0, C). On pathspace, the SDE (31) is shown in [9] to have

invariant distribution Π under Lipschitz continuity and absolute boundedness
assumptions on δΦ. In the practically interesting case of nonlinearity, this SDE
cannot be solved analytically. So, a proposal can be derived via the following
Euler-type scheme on (31) for an finite increment ∆t > 0:

x∗ − x = −∆t (θ x∗

2 + (1− θ)x2 )−
∆t
2 C δΦ(x) +

√
∆tN(0, C) . (32)

Standard MALA is derived from an explicit Euler scheme with θ = 0 and ad-
vanced pathspace MALA from a semi-implicit scheme with θ = 1/2. Contrasting
(32) with the leapfrog steps in (12) and (22), one can easily check that standard
(resp. advanced) MALA is a particular case of standard (resp. advanced) HMC
when choosing h =

√
∆t and a single leapfrog step I = 1.

Finally, a RWM algorithm on pathspace is derived in [9] via proposal (32)
for θ = 1/2 but also with omitting the nonlinear term C δΦ(x). That is, the
proposal for advanced RWM is:

x∗ = ρ x+
√
1− ρ2N(0, C) ,

with parameter

ρ =
1− ∆t

4

1 + ∆t
4

.

The Metropolis-Hastings acceptance probability for this proposal (see [9]) is

reminiscent of the one for standard RWM, namely 1∧ Π(x∗)
Π(x) , which also explains

the interpretation of this algorithm as ‘advanced RWM’. Table 3 summarises the
three pathspace samplers looked at in this paper together with their standard
versions for finite-dimensional spaces.
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Algorithm Pathspace Proposal Standard Proposal

HMC x∗ = PxΨ
I
h(x, v) x∗ = Pxψ

I
h(x, v)

MALA x∗ = ρ x+
√
1− ρ2 v − ∆t

2 C δΦ(x) x∗ = (1− ∆t
2 )x− ∆t

2 C δΦ(x) +
√
∆t v

RWM x∗ = ρ x+
√
1− ρ2 v x∗ = x+

√
∆t v

Table 3: MCMC algorithms on pathspace together with their standard versions. In all cases
v ∼ N(0, C). HMC for I = 1 and h =

√
∆t coincides with MALA.

4. HMC Superiority in an Analytical Study

In the applications that we show in the next sections HMC appears to be
much more efficient than MALA, even if they both use the same information
about the target distribution in the form of the derivative δ log Π. So, the syn-
thesis of deterministic steps for HMC, by avoiding random-walk-type behaviour
for the Markov chain dynamics, seems to be providing significant computa-
tional advantages for HMC. We will illustrate this analytically in this section for
the case of a linear target distribution corresponding to an Ornstein-Uhlenbeck
(OU) diffusion process. In particular, we will show that HMC gains orders of
complexity compared to MALA and RWM when MALA itself does not gain a
complexity benefit over RWM. So, an important message derived here is that
designated use of information on the derivative can have significant effect on
the efficiency of such MCMC methods.

We will consider the OU bridge:

dXu = −κXu dt+ dBu ,

X0 = X` = 0 , (33)

for reversion parameter κ > 0 and path-length ` > 0. From Girsanov’s theorem
([33]) we get that the target distribution is defined on the Hilbert space H =
L2([0, `],R) and is expressed as in the general form (1), so that:

dΠ

dΠ0
(x) = exp{−Φ(x)} ; Π0 = N(0, Cbb) , Φ(x) = κ2

2

∫ `

0

x2(u)du+ c , (34)

for some constant c ∈ R, with N(0, Cbb) the distribution of a Brownian bridge
with x(0) = x(`) = 0. We will look at the complexity of pathspace samplers as
a function of the length ` of the bridge. Our main result summarises the mixing
times as follows:

RWM : O(`2) ;

MALA : O(`2) ; (35)

HMC : O(`) .

The notion of mixing time is used here in an informal, practical manner and
should not be confused with analytical definitions of various different versions of
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mixing times appearing in the Markov chain literature. In particular, the results
below provide appropriate scalings of the step-sizes for the relevant MCMC
samplers as a function of ` that deliver non-vanishing acceptance probabilities
as ` grows. Then, informal arguments will be used to connect mixing times with
the inverse of such step-sizes.

4.1. Acceptance Probability for RWM, MALA, HMC

The proof in Proposition 4.1 below follows closely the derivations in the
PhD thesis [39], where a similar scaling problem has been considered over the
reversion parameter κ. We have decided to include an analytical proof in the
Appendix for reasons of completeness, but also because we have made some
modifications that make it easier for the reader to follow the derivations.

Karhunen-Loève expansion for Brownian Bridge and OU Bridge

The Karhunen-Loéve expansion (see Section 2) of the Gaussian distributions
corresponding to the target OU bridge and the reference Brownian bridge will
be used in this section. In particular, we will use the orthonormal basis {φp}∞p=1

of H corresponding to the eigenfunctions of Cbb and make the standard corre-
spondence x 7→ {xp}∞p=1 between an element x ∈ H and it’s squared summable
co-ordinates xp = 〈x, φp〉 w.r.t. the basis {φp}. In particular, the eigen-structure
{λp, φp}∞p=1 of Cbb is specified as follows (see e.g. [39]):

λp =
`2

π2p2
; φp(u) =

√
2

`
sin(

πpu

`
) . (36)

Then, the Karhunen-Loève expansion of the two Gaussian distributions w.r.t.
the above basis of sinusoidals is as below (see e.g. [39]):

BB: x =
∞∑
p=1

`

πp
ξp φp ; OU Bridge: x =

∞∑
p=1

1√
π2p2

`2 + κ2
ξp φp , (37)

where {ξp}∞p=1 are iid variables from N(0, 1).

Proposition 4.1. Consider the advanced MALA and RWM algorithms de-
scribed in Table 3 with target distribution Π in (34). If a = a(x, v) is the
acceptance probability of the proposal for current position x and v ∼ N(0, Cbb),
then in stationarity (x ∼ Π) we have the following:

• If ∆t = c/`2 for some constant c > 0, then lim sup` E [ a ] > 0.

• If ∆t = c/`ε for ε ∈ (0, 2) and a constant c > 0, then lim`→∞ E [ a ] = 0.

Proof. See the Appendix.
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We will now derive a corresponding result for HMC. Recall that the step-size
for HMC is denoted by h instead of ∆t. We will show that the scaling h = c/`
for some constant c > 0 will control the average acceptance probability. We
work as follows (under the choice h = c/`). Each leapfrog step Ψh, defined via
(19), (21), can in this case be written as a linear operator:

Ψh =

 ρ− (1− ρ)κ2Cbb
√
1− ρ2

− 1−
(
ρ−(1−ρ)κ2Cbb

)2
√

1−ρ2
ρ− (1− ρ)κ2Cbb


where we have set here:

ρ =
1− h2

4

1 + h2

4

.

So, the mapping Ψh above, can be equivalently expressed in terms of it’s effect
to the pth co-ordinates xp, vp of x, v respectively w.r.t. the orthonormal basis
{φp} in (36) as follows:

Ψh,p =

 ρ− (1− ρ)κ2λp
√

1− ρ2

−1−
(
ρ−(1−ρ)κ2λp

)2
√

1−ρ2
ρ− (1− ρ)κ2λp

 .

Powers of the above matrix will be determined via it’s eigenstructure. We will
only consider the case when there will be complex eigenvalues, i.e. when:

|ρ− (1− ρ)κ2λp| < 1 ,

as in the alternative scenario there will be an eigenvalue of modulus greater
than one (since the Jacobian of the above matrix is unit) whose powers will
explode rendering the algorithm unstable. The above is equivalent to requiring

that (4 − c2

`2 − 2 c2 κ2

p2 π2 )/(4 + c2

`2 ) lies in (−1, 1), which can be easily seen to be
guaranteed, for any ` ≥ `0 > 0 and for all p ≥ 1, under the condition:

c κ < 2π . (38)

This condition specifies the region of stability (see e.g. [32]) for the discretisa-
tion scheme of the Hamiltonian dynamics in our context. Under (38), we can
conveniently write:

ΨI
h,p =

 cos(θp) ap sin(θp)

− 1
ap

sin(θp) cos(θp)

I

≡

 cos(Iθp) ap sin(Iθp)

− 1
ap

sin(Iθp) cos(Iθp)

 (39)

where we have set:

cos(θp) = ρ− (1− ρ)κ2λp ; sin(θp) =
√
1− cos2(θp) ; ap =

√
1−ρ2

sin(θp)
. (40)

We can now derive the following result.
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Proposition 4.2. Consider the advanced HMC algorithm in Table 2 with target
distribution Π in (34). If a = a(x, v) is the acceptance probability of the proposal
for current position x and v ∼ N(0, Cbb), then in stationarity (x ∼ Π) we have
the following:

• If h = c/` with c κ < 2π then lim inf` E [ a ] > 0.

Proof. See the Appendix.

So, under the selection h = c/`, the average acceptance probability is lower
bounded by a constant for arbitrarily long bridges.

Remark 4.1. We could now informally connect the above step-sizes that control
the average acceptance probability for the advanced RWM, MALA and HMC
algorithms with their mixing times, which will involve their inverses, as stated
in (35). One could think of the effect of the proposal of each algorithm for
increasing ` on a fixed time-window for a path, say on [0, `0] for some `0 > 0.
For HMC, the synthesis of I = bT

h c leapfrog steps will give a proposal moving
the whole sub-path on [0, `0] an O(1)-distance within it’s state space. To show
that, we ignore for a moment the effect of the nonlinear map Ξh/2 at the the

leapfrog update in (19) and focus on the synthesis of I linear maps Ξ̃h∗ . This
gives:

Ξ̃I
h∗ =

(
cos(Ih∗) sin(Ih∗)

− sin(Ih∗) cos(Ih∗)

)
−→

(
cos(T ) sin(T )

− sin(T ) cos(T )

)
, as `→ ∞ .

The effect of the nonlinear operator Ξh/2 does not have a similarly simple inter-
pretation, but should not offset the main effect of proposals making O(1)-steps
from a current position, for arbitrarily large `. Thus, as a function of `, the
mixing time for advanced HMC only corresponds to the order of the number of
leapfrog steps, O(`). For advanced RWM, shown in Table 3, for ∆t = c/`2 we
can express the proposal as:

x∗ = (1 +O(`−2))x+
√
c
` (1 +O(`−2)) ξ . (41)

Here, due to the random-walk nature of the proposal, the algorithm will have to
synthesize O(`2)-steps to move O(1)-distance from a current position for a fixed
point of the sub-path in (0, `0], thus the O(`2)-mixing time. Finally, for MALA,
one has to refer to the interpretation of the algorithm as a discretisation of an
SDE on the pathspace, expressed in (31): without being rigorous here, advanced
MALA essentially carries out steps of size ∆t = O(`−2) along the continuous-
time dynamics, thus will require 1/∆t = O(`2) steps to propagate a point of the
sub-path on [0, `0] an O(1)-distance from it’s current position.

Of course, a rigorous analysis of mixing times would involve characterising
the eigenvalues of the Markov chains, but this is beyond the scope of this paper.
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5. Advanced MCMC for Diffusion-Driven Models

In this section we return to the general framework of Section 1.1 that can
accommodate a wide range of applications. Recall that the statistical model here
is driven by the solution V of the SDE (2) involving some unknown parameter θ;
then, conditionally on V and θ there are some observations Y via the Lebesgue
density p(y|v, θ). We will now apply the previously defined advanced MCMC
samplers in the context of such diffusion-driven models to efficiently sample from
the path-valued distribution p(v|y, θ). Such models provide a generic framework
where target distributions defined as a change of measure from Gaussian laws
as in (1) will naturally rise due to the probabilistic dynamics being driven by
Brownian motion. We will first give a brief description of inferential issues
related with such models, before we show details over the applicability of the
advanced MCMC methods in such a context.

The method in [36] succeeds in breaking down the singularity between V
and the parameters in the diffusion coefficient σ(·; θ) through appropriate use
of the Lamperti transform; see [27] and [28] for extensions. This framework
covers the case of reducible diffusions, i.e. SDEs that can be transformed via an
1-1 map to ones of unit diffusion coefficient. Now, [29] offers some extensions
to irreducible diffusions utilizing time change transformations; nevertheless the
most general framework for irreducible diffusions is offered from [12, 24] requir-
ing only invertibility of the diffusion coefficient. For ease of exposition we will
first consider the case of univariate (d = 1) reducible diffusions and work with
the reparametrisation recipe of [36]. However, advanced HMC algorithms can
also be defined under (3) with the approach of [24, 12]; details are postponed
until Section 7.

For reducible diffusions we can apply the Lamperti transform on the original
SDE model (2), i.e. Vu → η(Vu; θ) =: Xu where

η(v; θ) =

∫ v

V0

1

σ(z, θ)
dz

is the antiderivative of σ−1(·; θ). Depending on the context, V0 can be treated
as fixed or as an additional unknown parameter. Assuming that σ(·; θ) is con-
tinuously differentiable, an application of Ito’s lemma provides the SDE of the
transformed diffusion X as:

dXu = ν(Xu; θ)du+ dBu , X0 = 0 , (42)

where

ν(x; θ) =
µ
(
η−1(x; θ); θ

)
σ
(
η−1(x; θ); θ

) − 1
2σ

′(η−1(x; θ); θ
)
.

Girsanov’s theorem gives that (for Π0 being the standard Brownian motion on
[0, `]):

dΠ

dΠ0
(x|θ) = exp

{∫ `

0

ν
(
x(u); θ

)
dx(u)− 1

2

∫ `

0

|ν
(
x(u); θ

)
|2 du

}
.
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Thus, for the distribution of X conditionally on the data Y we have that:

dΠ

dΠ0
(x|y, θ) ∝ p(y|η−1(x; θ), θ)

dΠ

dΠ0
(x|θ)

∝ exp{−Φ(x; y, θ)} , (43)

where we have defined:

Φ(x; y, θ) = −
∫ `

0

ν(x(u); θ)dx(u) + 1
2

∫ `

0

ν2(x(u); θ)du

− log p(y|η−1(x; θ), θ) . (44)

Next, assuming a generic structure for p(y|v, θ) relevant for practical ap-
plications, we will verify Assumption 3.1 and therefore demonstrate that our
advanced HMC method is well-defined for such models.

5.1. Calculation of C δΦ(x)
Motivated by the expression in (44) for Φ(x|y, θ) and the structure of the

data density p(Y |V, θ) arising in applications, we will carry out calculations
assuming the following general form:

Φ(x) = α(x(u1), x(u2), . . . , x(uM )) + β(I1, I2, . . . , IL) + γ(S1, S2, . . . , SJ) (45)

where we have set:

Il =

∫ `

0

zl(u, x(u))du , 1 ≤ l ≤ L ; Sj =

∫ `

0

rj(u, x(u))dx(u) , 1 ≤ j ≤ J ,

for positive integers M,L, J , times u1 < u2 < · · · < uM in [0, `] that could be
determined by the data Y and functions α, β, γ, zl, rj determined via the partic-
ular model. Explicit instances of this structure will be provided in the example
applications in the sequel. Here, the target posterior distribution Π(dx) is de-
fined on the Hilbert space of squared integrable paths H = L2([0, `],R) (with
appropriate boundary conditions). The centered Gaussian reference measure Π0

will correspond to a Brownian motion (thus, boundary condition x(0) = 0) or a
Brownian Bridge (x(0) = x(`) = 0). Recall here the specification of the covari-
ance operators Cbm, Cbb and Cameron-Martin spaces Hbm

0 , Hbb
0 of a Brownian

motion and Brownian bridge respectively in Section 2. We make the following
definitions, for the relevant range of subscripts:

αm =
∂α

∂x(um)
(x(u1), x(u2), . . . , x(uM )) ; βl =

∂β

∂Il
(I1, I2, . . . , IL) ;

γj =
∂γ

∂Sj
(S1, S2, . . . , SJ) ; z′l =

∂zl
∂x

; r′j =
∂rj
∂x

.

Remark 5.1. With a somewhat abuse of notation, path-elements {CbmδΦ(x)},
{CbbδΦ(x)} found in Proposition 5.1 below are obtained (at least for the terms
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in Φ(x) involving stochastic integrals) by recognising that the finite-difference
N -dimensional algorithm used in practice corresponds to applying the finite-
difference scheme on the Hilbert-space-valued algorithm employing precisely the
shown paths {CbmδΦ(x)}, {CbbδΦ(x)} within it’s specification. (So, here δΦ(x)
corresponds to a variational derivative only formally.) This remark applies also
to a similar result shown in Proposition 7.1 in a subsequent section.

Proposition 5.1. For the functional Φ(x) given in (45), for any x ∈ H:

(
CbmδΦ(x)

)
(u) =

M∑
m=1

αm ·
(
u I [u < um ] + um I [u ≥ um ]

)
+

L∑
l=1

βl ·
(
u

∫ `

0

z′l(v, x(v))dv −
∫ u

0

∫ s

0

z′l(v, x(v))dv ds
)

+
J∑

j=1

γj ·
(
u
(
rj(`, x(`)) +

∫ `

0

dqj(v)
)
−
∫ u

0

∫ s

0

dqj(v) ds
)
, u ∈ [0, `] ,

for the integrator

dqj(v) = r′j(v, x(v))dx(v)− drj(v, x(v)) .

Also:

(
CbbδΦ(x)

)
(u) =

M∑
m=1

αm ·
(
u I [u < um ] + um I [u ≥ um ]− uum/`

)
+

L∑
l=1

βl ·
(u
`

∫ `

0

∫ s

0

z′l(v, x(v))dv ds−
∫ u

0

∫ s

0

z′l(v, x(v))dv ds
)

+
J∑

j=1

γj ·
(u
`

∫ `

0

∫ s

0

dqj(v)−
∫ u

0

∫ s

0

dqj(v) ds
)
, u ∈ [0, `] .

Proof. See the Appendix.

Thus, in both cases the first terms appearing in the specification of {CbmδΦ(x)},
{CbbδΦ(x)} in the proposition, are continuous and piece-wise linear in u (there is
a turn at the time instances of the observations) so still lie within the Cameron-
Martin spaces Hbm

0 , Hbb
0 respectively (even if the variational derivative δα itself

will not necessarily lie within the Hilbert space, as shown in the proof). The
second terms are clearly a.s. elements of the corresponding spaces Hbm

0 , Hbb
0

under weak continuity conditions on z′l. Finally, for the third terms, again weak
regulatory conditions on rj and r′j guarantee that the corresponding paths in u
are elements of the appropriate Cameron-Martin spaces.
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5.2. Example Models

Diffusions Observed at a Discrete Skeleton

We first consider the case of discretely observed diffusions. In other words,
suppose that the diffusion V is observed at times {ui, i = 0, 1, . . . ,M}, with
u0 = 0 and uM = `, and the observations are denoted with:

Y = {Yi = Vui , i = 0, 1, . . . ,m} .

The observations on the transformed unit-volatility diffusion X, defined in (42),
are then:

Ẏ = {Ẏi = Xui = η(Yi; θ), i = 0, 1, . . . ,M} .
The reparametrisation of [36] involves another transformation that operates on
each of the m independent constituent bridges. Between observations ui and
ui+1 we define X̃u as

X̃u = Xu − (ui+1 − u)Ẏi + (u− ui)Ẏi+1

ui+1 − ui
, ui ≤ u ≤ ui+1 ,

so that Xu = b(X̃u; θ) with b(·; θ) defined as the inverse of the above linear map-
ping. For ease of exposition, we further assume that an antiderivative of ν(·; θ)
exists. Then, we can write the target log-density log((dΠ/dΠ0)(x̃|ẏi, ẏi+1, θ)) for
the path X̃ between ui and ui+1 as (up to an additive normalising constant):

− 1
2

∫ ui+1

ui

[
ν′
(
b(x̃(s); θ); θ

)
+ ν2

(
b(x̃(s); θ); θ

)]
ds , (46)

where ν′(x; θ) denotes the derivative of ν(x; θ) with respect to x and Π0 is the
distribution of a standard Brownian bridge (note we used Itô’s Lemma in (46)
to obtain an equavalent expression for the log-density that does not involve
stochastic integral, though this is not a requirement for our samplers).

Diffusions observed with error

In this observation regime the data form a discrete skeleton of the diffusion
path in the presence of measurement error. V is observed at the time instances
{ui, i = 1, . . . ,M}, with uM = `, with observations Y = {Yi, i = 1, . . . ,M}.
We consider the case of independent observations conditional on the diffusion
process and work with the unit volatility diffusionX, such that Vu = η−1(Xu; θ).
The probability density of the data given the latent path X is:

p
(
y|η−1(x; θ); θ

)
=

M∏
i=1

f
(
yi|η−1(x(ui); θ); θ

)
, (47)

where f denotes the likelihood of the data given V, θ. From, (47), (43) the target
log-density log((dΠ/dΠ0)(x|y, θ)) is (up to an additive normalising constant):

M∑
i=1

{
log f

(
yi|η−1(x(ui); θ); θ

)
+

∫ ui+1

ui

ν(x(s); θ)dx(s)− 1

2

∫ ui+1

ui

ν2(x(s); θ)ds
}

where now Π0 denotes the distribution of a standard Brownian motion.
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Stochastic volatility models

Stochastic volatility models are popular in modelling financial and econometric
time series and instruments such as asset prices, interest rates and financial
derivatives. In standard stochastic volatility models for asset prices, such as
those in [26] and [25], the log-price S is a diffusion whose volatility is driven by
another diffusion. The SDE of the bivariate diffusion model has the following
formdSu = µs(Vu; θ)du+ ρσs(Vu; θ)dWu +

√
1− ρ2 σs(Vu; θ)dBu ;

dVu = µv(Vu; θ)du+ σv(Vu; θ)dWu ,
(48)

where B and W are independent Brownian motions and ρ reflects the leverage
effect. For ease of exposition, we set ρ = 0. Stochastic volatility models with
leverage effect are still into the framework of this paper and can be handled
with the methodology described in Section 7. The Lamperti transform can be
applied on V to obtain the unit volatility diffusion X as in (42).Consider a pair
of observations (y0, y1) denoting the value of S at times 0, u1 respectively. The
distribution of the data conditional on the path of X from 0 to u1 has a known
closed form and we can write:

y1|y0, x ∼ N (My(x; θ), Vy(x; θ)) ;

My(x; θ) = y0 +
∫ u1

0
µs(v(u); θ)du ;

Vy(x; θ) =
∫ u1

0
σs(v(u); θ)

2du ;

x(u) = η−1(v(u); θ) ;

dXu = ν(Xu; θ)du+ dWu , 0 ≤ u ≤ u1 .

(49)

Cases with more observations are handled by splitting the data into pairs of con-
secutive points as above and then, using the Markov property for the bivariate
diffusion (S,X), multiplying the corresponding densities calculated according
to (49). The log-density log((dΠ/dΠ0)(x|y, θ)) for the latent diffusion X that
drives the volatility for 0 < u ≤ u1 is (up to an additive normalised constant):

− log Vy(x;θ)
2 − [y1−My(x;θ)]

2

2Vy(x;θ)
+

∫ u1

0

ν(x(s); θ)dx(s)− 1

2

∫ u1

0

ν2(x(s); θ)ds ,

where Π0 denotes here standard Brownian motion.

Latent Diffusion Survival models

Survival models target the probability of an individual i surviving up to time
u or else P (Y > u), where Y denotes the event time. The aim is to model the
hazard function h(u) that reflects the probability that an event will occur in the
infinitesimal period [u, u+du) retrieving information from available data in the
form of event times. Latent diffusion survival models [1, 35] provide parametric
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formulations for h(u), which is assumed to be a positive function h(·) of a
diffusion process. The motivation in such models is to consider an underlying
process that results in the occurrence of each event [1]. The distribution function
for a single observation yi is given by

F
(
yi|x, θ

)
= 1− exp

(
−
∫ yi

0

h(x(s); θ)ds
)
, 0 < yi ≤ ` ,

with density

f
(
yi|x, θ

)
= h(x(yi); θ) exp

(
−
∫ yi

0

h(x(s); θ)ds
)
, 0 < yi ≤ ` ,

where x(u) obeys a diffusion process. For ease of exposition we assign the unit
diffusion defined by (42) although other choices are possible. The likelihood for
the observed event times y = (y1, . . . , yn), with maxi yi ≤ `, can be written as:

f
(
y|x, θ

)
=
[ n∏
i=1

h(x(yi); θ)
]
exp

(
−

n∑
i=1

∫ yi

0

h(x(s); θ)ds
)
. (50)

Hence, the log-density log((dΠ/dΠ0)(x|y, θ)) for the latent diffusion X becomes
(up to an additive normalising constant):

n∑
i=1

{
log h (x(yi); θ)−

∫ yi

0

h(x(s); θ)ds
}

+

∫ `

0

ν(x(s); θ)dx(s)− 1

2

∫ `

0

ν2(x(s); θ)ds

with Π0 denoting the distribution of a standard Brownian motion as before.
For more information about such models, including cases of censored data, the
reader is referred to [35].

6. Numerical Applications

In this section, we employ the algorithms of Table 3 to perform various sim-
ulation experiments involving diffusion bridges, stochastic volatility and latent
diffusion survival models. In all these experiments, we treat the parameter vec-
tor θ as known and focus on the update of the latent diffusion path. The aim
is to assess and compare the performance of the algorithms on various aspects
including efficiency of the MCMC output and central processor unit (CPU)
time. In order to measure CPU time in two different computing environments,
the simulations for diffusion bridges and stochastic volatility models were car-
ried out in MATLAB, whereas for the latent diffusion survival models the C

programming language was used.
The draws of each algorithm are given by a Markov chain with the target

posterior as equilibrium marginal distribution. After a suitable burn-in period,
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inference is based on these sequences that exhibit an amount serial correlation
and are therefore not as efficient as a posterior sampler with i.i.d. draws. This
dependence can be measured by the so-called inefficiency factor, or else auto-
correlation time

INF (K) = 1 + 2
K∑

k=1

γ(k),

where γ(k), is the autocorrelation at lag k and K is a suitably chosen truncation
point. Loosely speaking the MCMC sampler must be run INF(K) times as many
iterations, after the burn-in period, to match the variance of the posterior esti-
mate obtained from a hypothetical independent posterior sampler. In this paper
we focus on the inverse of INF(K), known as the effective sample size (ESS),
to measure the relative efficiency of the proposed MCMC samplers. The use of
INF(K) or ESS(K) is frequent in the MCMC literature; see e.g. [19] and, more
specific to the context of this paper, [12] and [22] for applications on stochas-
tic volatility models and Hybrid Monte Carlo respectively. In [22], in order to
summarize the inefficiencies for all the model parameters, the minimum ESS(K)
was used that was taken over a number of the univariate MCMC trajectories.
In our context, the MCMC performance is assessed by monitoring the posterior
draws of the diffusion, recorded at a fine partition of its path, and reporting the
minimum ESS(K) over these points. By repeated applications of the algorithm,
we set both K and the number of iterations of the MCMC algorithm to high
enough values so that the minimum ESS(K) stabilizes for all algorithms. We
therefore suppress the notation to ESS for the remainder of the paper. The
value of ESS was multiplied by a factor of 100 to reflect the percentage of the
total MCMC iterations that can be considered as independent draws from the
posterior.

The employed MCMC algorithms consist of an independence sampler propos-
ing from the reference Brownian path Π0 and the advanced algorithms in Table
3. The algorithms were tuned to achieve certain acceptance probability levels
that, according to our experience and previous literature, are associated with
better performance. Specifically we aimed in attaining an acceptance probabil-
ity around (15% - 30%) for RWM, (50%-70%) for MALA and (65%-85%) for
HMC. To explore the performance of HMC we first fixed the number of leapfrog
steps (e.g. to 5 or 10) and then recorded the minimum ESS for various levels
of acceptance probability. We then considered cases with additional leapfrog
steps. For each of these algorithms, we monitor the values of the minimum
ESS, CPU times and their ratio in absolute and relative terms. The presented
results contain the best version of these algorithms.

6.1. Diffusions Observed at a Discrete Skeleton

Consider the diffusion discussed in Section 4, i.e. an OU process with SDE:

dXu = −κXudu+ dBu , 0 ≤ u ≤ ` ,

withX0 = 0 and an observation at time ` = 1. We setX1 = 0 and consider 3 dif-
ferent values for κ, i.e. 12, 20, 30 in our investigation of the MCMC performance.
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The algorithms were constructed using the Euler-Maruyama approximation of
the target density (46) from a time-discretised diffusion path. The MCMC
components comprise of the equidistant points from a discrete skeleton of the
diffusion. The discretisation step was set to δ = 0.02. Table 4 provides the
results, i.e. the values of the minimum ESS, CPU times and their absolute and
relative ratio. The HMC algorithm consisted of 5 leapfrog steps with the param-
eter h set to values (0.43, 0.26, 0.17) for values of κ (12, 20, 30) respectively. For
advanced MALA, that can be thought as HMC with a single leapfrog step, the
corresponding values of h =

√
∆t were very similar (0.45, 0.26, 0.18) indicating

much smaller total steps. Overall, advanced HMC consistently over-performs,
in terms of ESS, the remaining algorithms. In particular for κ = 30, HMC is
faster than the independence sampler by a factor of over 30. Its performance
remains at high levels as we increase κ and does not deteriorate as δ becomes
smaller, as indicated by the results obtained for δ = 0.01 and δ = 0.005. In line
with the results of [39] and Section 4, we note a substantial improvement over
advanced MALA suggesting a more efficient use of the gradient within HMC.
MALA offers some improvement over RWM and independence sampler, but at
a heavy additional computational cost. The independence sampler performs
reasonably well for κ = 12 (acceptance rate of 16%) but its performance drops
substantially as κ increases and the acceptance rate becomes smaller; 8% for
κ = 20 and 1.2% for κ = 30.

6.2. Stochastic Volatility Models

The following stochastic volatility model was used to simulate data:dSu = exp(Vu/2)dBu , 0 ≤ u ≤ ` ;

dVu = κ(µ− Vu)du+ σdWu .

The parameters were set according to previous analyses based on similar models
for the S&P 500 dataset [12]. Specifically, we set κ = 0.03, µ = 0.07, σ2 = 0.03
and V0 = 0. We consider about a year measured in days (` = 250) and recorded
observations at a daily frequency (250 data points). The transformation of Vu to
a unit volatility diffusion was used to write the target density and construct the
HMC algorithms. The model for a pair of consecutive observations, (yi−1, yi)
can be written as:

yi|yi−1 ∼ N
(
yi−1,

∫ ui

ui−1
exp(σx(s))ds

)
;

x(u) = v(u)/σ ;

dXu = κ
(
µ
σ −Xu

)
du+ dWu , ui−1 ≤ u ≤ ui .

The results are shown in Table 5. Independence sampler performs very poorly
in this case, with an acceptance rate below 10−4, and is omitted from the ta-
ble. MALA provides a small improvement over RWM which is nevertheless
not enough to cover the associated increase in the corresponding computations.
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κ = 12 min(ESS) time min(ESS)
time relative min(ESS)

time

IS 3.9173 4.8811 0.8025 2.1733

RWM 3.9584 5.8925 0.6718 1.8192

MALA 4.0112 10.8626 0.3693 1

HMC 35.7274 20.8695 1.7119 4.6361

HMC (δ = 0.01) 35.8903 32.5594 N/A N/A

HMC (δ = 0.005) 35.5875 51.6085 N/A N/A

κ = 20 min(ESS) time min(ESS)
time relative min(ESS)

time

IS 0.5013 4.4977 0.1115 1

RWM 1.0086 5.4445 0.1853 1.6621

MALA 1.6202 10.0588 0.1611 1.4452

HMC 26.6214 20.8841 1.2747 11.4369

κ = 30 min(ESS) time min(ESS)
time relative min(ESS)

time

IS 0.1012 4.7043 0.0215 1

RWM 0.4343 5.7229 0.0759 3.5277

MALA 0.5372 10.0438 0.0535 2.4863

HMC 13.3350 20.4831 0.6510 30.2631

Table 4: Relative efficiency via the minimum ESS (%) and CPU times (seconds), for the
advanced pathspace algorithms - Case of OU bridges. IS denotes the Independence Sampler.

However, this is not the case for HMC that reaches its optimal performance
roughly at 10 leapfrog steps. Advanced HMC offers considerable improvement,
being nearly 8 times faster than RWM and 11 times faster than MALA. Param-
eter h that corresponded to the desired acceptance probability levels was 0.085
for MALA algorithm and 0.075 for all the versions of HMC.

6.3. Latent Diffusion Survival models

This section provides a numerical illustration in simulated data from a latent
diffusion survival model appearing in [35]. Specifically, the likelihood for event
times y = {y1, . . . , yn} is given by:

p
(
y|η−1(x; θ); θ

)
=
[ n∏
i=1

x2(yi)
]
exp

(
−

n∑
i=1

∫ yi

0

x2(s)ds
)

where we have considered the model:

dXu = −(1.4 sin(Xu) + 1)du+ dBu , X0 = 2 . (51)

We simulated a trajectory driving the hazard function from (51) that can be
seen in Figure 1 (solid red line). Despite various fluctuations, the simulated
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Sampler min(ESS) time 100× min(ESS)
time relative min(ESS)

time

RWM 0.1400 161.8298 0.0865 1.3561

MALA 0.2181 341.8737 0.0638 1.0000

HMC (5 steps) 2.5695 689.6767 0.3726 5.8400

HMC (10 steps) 8.1655 1188.1201 0.6873 10.7729

HMC (20 steps) 8.3216 2200.1311 0.3782 5.9288

Table 5: Relative efficiency, via the minimum ESS (%) and CPU times (seconds) for the
diffusion pathspace algorithms - Case of stochastic volatility paths.

Sampler min(ESS) time 100× min(ESS)
time relative min(ESS)

time

RWM 0.1039 55.2342 0.1881 1

MALA 0.6466 87.5021 0.7389 3.9284

HMC 25.2985 248.0301 10.1997 54.2229

Table 6: Relative efficiency, via the minimum ESS (%) and CPU times (seconds) for the
advanced pathspace algorithms - Case of latent diffusion survival model.

hazard is decreasing and could be used, for example, in cases of lifetime data
from patients following a surgical operation. The trajectory of Figure 1 was
then used, through the distribution function it defines, to draw 200 i.i.d. event
times. In the simulation exercise of this section, we treat the parameters of
the diffusion as known and apply the various MCMC algorithms of Table 3 to
sample from the posterior of the latent diffusion process. The SDE in (51) can
also be thought as a prior for the hazard function trajectory. Our focus is the
behaviour and efficiency of the proposed MCMC algorithms, while keeping an
eye on the ability of the model to capture the shape of the unobserved hazard.

Table 6 provides the measures of performance of the algorithms in Table 3.
The calculations in this section were obtained using C programming language,
unlike the previous two applications where MATLAB was used. Similarly with
the stochastic volatility simulation experiment, the independence sampler is as-
sociated with extremely low acceptance rate rendering it infeasible in practice.
RWM also performs poorly. A very small step is required to achieve the de-
sired acceptance rate, thus resulting in very small moves around the diffusion
pathspace. MALA with h = 0.2 performs better in this case, but massively bet-
ter performance is offered by advanced HMC. Specifically, HMC with 10 leapfrog
steps and h = 0.15 is about 54 times faster than RWM. As already mentioned,
Figure 1 depicts the trajectory of the latent diffusion process that determines
the hazard function and was used to generate the data. It also displays 95%
pointwise credible intervals, obtained from the HMC algorithm, which indicate
that the shape of the hazard function is captured reasonably well.
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Figure 1: 95% Pointwise credible intervals (blue dashed lines) overlayed on the true path of
X (red solid line).

7. Robustness in Dimension in Further Scenarios

We will briefly illustrate the well-definition of advanced HMC algorithms for
cases when the target distribution of the SDE-driven models can have a different
structure from the ones considered so far. In what follows, we omit reference to
the parameter θ.

7.1. Beyond the Lamperti Transform

In the context of a non-scalar diffusion Vu, defined via the equation (2), it is
not guaranteed at all that V can be transformed into an SDE of unit diffusion
coefficient. Indeed, the Lamperti transform in such a context would require the
existence of a mapping Vu 7→ η(Xu) (with η = (η1, η2, . . . , ηd)

> : Rd 7→ Rd) such
that, for all v in the state space of Vt:

Dη(v) · σ(v) = Id (52)

where Dη = (∂ηi/∂vj). This follows directly by Itô’s formula, see e.g. [2]. The
work in [2] also shows that existence of a mapping η with the property (52) is
equivalent to the diffusion coefficient matrix satisfying ∂σ−1

ij /∂vk = ∂σik/∂vj
for all i, j, k with j < k. This restricts considerably the applicability of the
Lamperti transform for non-scalar diffusions. There are however other methods
suggested in the literature of a wider scope. Our advanced MCMC algorithms
require posterior distributions on pathspace which are absolutely continuous
w.r.t. Brownian motion-related distributions, so it is of interest to briefly verify
their well-definition on the pathspace when using such alternative transforms.
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The method in [12] maps Vu onto the driving Wiener noise Xu = Bu of the
SDE. Assuming some data Y with likelihood p(y|v), and since the prior on X
is simply the Wiener measure Π0 = N(0, Cbm), we can write the posterior on X
as:

dΠ

dΠ0
(x) ∝ p(y|v) .

(Note, that we use here the mapping x 7→ v between driving noise x and process
v implied by the expression of the SDE for the process V .) It remains to calculate
Cbm δΦ(x) is this context. Differentiation of Φ(x) will involve finding derivatives
of v w.r.t. the driving noise x. So it is not a surprise that the dynamics of the
Malliavin derivative DsVu (see e.g. [18]) will appear in the calculations; this is
defined as below:

dYu

Yu
= µ′(Vu)du+ σ′(Vu) dBu , Y0 = 1 ;

DsVu = Yu

Ys
σ(Vs) I [ s ≤ u ] .

We will assume here the general structure for Φ(x) = − log(p(y|v)) (compared
with the structure assumed earlier in (45) we do not include here stochastic
integral terms to avoid overly cumbersome expressions):

Φ(x) =α(v(u1), v(u2), . . . , v(uM ))

+ β
( ∫ `

0

z1(s, v(s))ds,

∫ `

0

z2(s, v(s))ds,

∫ `

0

zL(s, v(s))ds
)
. (53)

The terms αm, βl appearing below correspond to partial derivatives of the func-
tionals α, β as in the case of Proposition 5.1.

Proposition 7.1. For the functional Φ(x) given in (53), for any x ∈ H:

(
CbmδΦ(x)

)
(u) =

M∑
m=1

αm ·
(
(u ∧ um) (Fm,um + σ(v(um)))−

∫ u∧um

0

Fm,rdr
)

+
L∑

l=1

βl ·
(
u (Gl,` + Jl,`) +

∫ u

0

(Gl,r + Jl,r)dr
)
, u ∈ [0, `] ,

for the processes, for m = 1, 2, . . . ,M and l = 1, 2, . . . , L:

Fm,r =

∫ r

0

e
∫ um
s

(
µ′(v(u))du+σ′(v(u))dx(u)

)
dQs ;

Gl,r =

∫ r

0

∫ `

s

z′l(t, v(t)) e
∫ t
s

(
µ′(v(u))du+σ′(v(u))dx(u)

)
dt dQs ;

Jl,r =

∫ r

0

z′l(s, v(s))σ(v(s))ds ,

with integrator:

dQs = σ(v(s))(µ′(v(s))ds+ σ′(v(s))dx(s))− dσ(v(s)) .
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Focusing on the properties of the calculated path CbmδΦ(x) over its domain
u ∈ [0, `], it is easy to check the following: a.s. in x, the first terms are contin-
uous, piecewise linear with a turn at the data instances u1, u2, . . . , uM ; then,
under the weak assumption that the processes r 7→ Gl,r, r 7→ Jl,r are a.s. con-
tinuous, we have that the second terms in the calculation in Proposition 7.1 are
a.s. differentiable. Thus, under weak conditions Assumption 3.1 is satisfied and
advanced HMC is well-defined on the pathspace.

8. Discussion - Further Directions

In this paper we developed and applied a general class of derivative driven
algorithms, suitable for Hilbert spaces defined by diffusion driven models. The
validity of the algorithm was established using different theory than [6], which
allowed us to relax involved assumptions and generalize to widely used diffusion
models across various scientific fields as mentioned in Section 1.1. The mod-
elling framework contains diffusions observed with error, partial data, as well
as observation on functionals of the diffusion process such as hitting times and
integrals thereof. The extended framework also includes diffusions processes
with general diffusion coefficients that can be handled with reparametrisation
to the driving Wiener noise as in [12] and [24]. A number of research directions
related with the methods presented in this paper have remained open:

• The algorithm can be used in contexts where a Gibbs data augmentation
scheme is adopted to facilitate the step of updating the diffusion path
given the parameters. The entire diffusion path can either be updated
in a single step, but can also be integrated to updates based on overlap-
ping and potentially random-sized blocks. Note that while this approach
will boost the conditional step of the diffusion path updates, another im-
portant aspect for the overall performance of the MCMC sample is the
posterior correlations between diffusion paths and parameters. The role
of reparametrisation of diffusion paths is critical for this task. We are
currently investigating extensions of the advanced HMC algorithm on the
joint density of diffusion and parameters. In the numerical applications of
this paper the high dimensional diffusion path was successfully updated in
a single block, a fact that provides supporting evidence that the algorithm
could still be very efficient when also incorporating the low dimension pa-
rameter vector θ in it. Such an approach will provide an alternative to
pseudo marginal [4] or particle MCMC [3] formulations for diffusion driven
models; see e.g. [37] and [16] respectively.

• In this paper the choice of the mass matrix for the Hamiltonian dynamics
is guided by the prior, i.e. by the reference Gaussian law N(0, C). Re-
cent work in the literature ([23]) has looked at exploiting the geometric
structure of state-space to consider location-specific mass matrices. It is
therefore worth investigating the choice of location-specific mass matri-
ces in the context of infinite-dimensional pathspaces to further boost the
efficiency of MCMC methods.
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• An important direction of further research is related with the calibration
of long-memory diffusion models: an important class covers the case of
processes driven by fractional Brownian motion (see e.g. [38, 31]). Apply-
ing standard Independence samplers over smaller blocks of the complete
latent path will be overly expensive as calculations have to be done every
time over the whole path due to the lack of Markovianity. In this case
it could be very beneficial to update the whole path together using HMC
and control the acceptance probability by trying different leapfrog steps.
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Appendix A. Proofs

Proof of Proposition 4.1. We use the notation |·|L1 ≡ E |·|. For both algorithms
(RWM and MALA) the acceptance probability can be expressed as:

a(x, v) = 1 ∧ eR(x,v)

for the relevant variable R(x, v). Working as in [39], for the first result it suffices
to prove that sup` |R(x, v)|L1 <∞ since we have the inequality:

E [ 1 ∧ eR ] ≥ E [ e−|R| ] ≥ e−|R|L1 .

(We thank a referee for pointing at the above inequality, which replaced a slightly
more complex expression we originally had.) For the second result, we will be
identifying a term in R with the highest order L1-norm, which we will denote
by J . Crucially, this term will lie in (−∞, 0), thus will be growing to −∞ faster
than the growth of |R − J |L1 . This provides some intuition for the zero limit
of the average acceptance probability. Analytically, as in [39], we will be using
the following inequality, for any γ > 0:

E[ 1 ∧ eR ] ≤ P[R ≥ −γ ] + e−γ

= P [ {R ≥ −γ} ∩ {|R− J | ≤ γ} ] + P [ {R ≥ −γ} ∩ {|R− J | > γ} ] + e−γ

≤ P [ J ≥ −2γ ] + P [ |R− J | > γ ] + e−γ

≤ P [ J ≥ −2γ ] +
|R−J|L1

γ + e−γ , (A.1)

where we used the Markov inequality in the last line. So, the idea here will be
to choose some γ growing to ∞ faster that the rate of growth of |R− J |L1 and
slower than the rate of growth of |J |L1

.
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From [39], we retrieve the following collection of results:

E |x|2 = `
2κ tanh(κ`) −

1
2κ2 ; E |Cx|2 = `4

90κ2 − 1
2κ6 − `2

6κ4 + `
2κ5 tanh(κ`) ;

E [ 〈x, Cx〉 ] = 3+κ2`2

6κ4 − `
2κ3 tanh(κ`) ; (A.2)

E [ 〈x, C3x〉 ] = 945+315κ2`2−21κ4`4+2κ6`6

1890κ8 − `
2κ7 tanh(κ`) ;

E |v|2 = `2

6 ; E [ 〈v, Cv〉 ] = `4

90 ;

E [ 〈x, v〉2 ] = 3+κ2`2

6κ4 − `
2κ3 tanh(κ`) ; E [ 〈Cx, v〉2 ] = 945+315κ2`2−21κ4`4+2κ6`6

1890κ8 ;

E [ 〈C2x, v〉2 ] = 467775+155925κ2`2−10395κ4`4+990κ6`6−99κ8`8+10κ10`10

467775κ12 . (A.3)

For the case of RWM, analytical calculations will give:

R(x, v) = κ2

2(1+∆t
4 )2

∆t 〈x, x〉 − κ2

2(1+∆t
4 )2

∆t 〈v, v〉 − κ2(1−∆t
4 )

(1+∆t
4 )2

√
∆t 〈x, v〉 .

Now, when ∆t = c/`2, from the results in (A.3) we find that the L1-norm of
each of the three above summands is O(1), so supl |R(x, v)|L1 < ∞. When
∆t = c/`ε with ε ∈ (0, 2), a careful inspection of (A.3) gives that the term with
the highest order L1-norm is:

J = − κ2

2(1+∆t
4 )2

∆t 〈v, v〉 .

Indeed, we have that:

|J |L1 = Θ(∆t `2) ; |R− J |L1 = O(
√
∆t `) .

We will apply (A.1) for the selection γ = (∆t `2)2/3. Clearly, the last two terms
in the R.H.S. of (A.1) vanish as ` → ∞. For the first term we need to use the
analytical definition of J . Using the rescaling properties of the Brownian bridge,
we can write vu` =

√
` ṽu for a standard Brownian bridge ṽ on [0, 1]. Thus, we

can re-write:

〈v, v〉 =
∫ `

0

v2udu = `

∫ 1

0

v2u`du ≡ `2
∫ 1

0

ṽ2u du = `2 |ṽ|2 .

We now have that:

P [J ≥ −2γ ] = P [ |ṽ|2 ≤ 4(1+∆t
4 )2

κ2
γ

∆t `2 ] → P [ |ṽ|2 = 0 ] = 0 .

For the case of MALA, some tedious calculations detailed in [39] will give that:

R(x, v) = κ2

8(1+∆t
4 )2

∆t2 〈x, x〉 − κ6

32(1+∆t
4 )2

∆t3 〈Cx, Cx〉 − κ4(1−∆t
4 )

8(1+∆t
4 )2

∆t2 〈x, Cx〉

+ κ2

8(1+∆t
4 )2

∆t2〈x, Cx〉 − κ6

32(1+∆t
4 )2

∆t3 〈C2x, Cx〉+ κ4(1−∆t
4 )

8(1+∆t
4 )2

∆t2 〈Cx, Cx〉

− κ2

8(1+∆t
4 )2

∆t2 〈v, v〉 − κ2

8(1+∆t
4 )2

∆t2 〈v, Cv〉 − κ2(1−∆t
4 )

4(1+∆t
4 )2

∆t3/2 〈x, v〉

+ κ4

8(1+∆t
4 )2

∆t5/2 〈Cx, v〉 − κ2(1−∆t
4 )

4(1+∆t
4 )2

∆t3/2 〈Cx, v〉+ κ4

8(1+∆t
4 )2

∆t5/2 〈C2x, v〉 .
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Now, when ∆t = c/`2, from the results in (A.3) we find that the L1-norm of
each of the twelve above summands is indeed O(1), so supl |R(x, v)|L1 < ∞.
When ∆t = c/`ε with ε ∈ (0, 2), using again the results in (A.3), we identify,
among the twelve terms in the definition of R(x, v), the one with the highest
L1-norm:

J = − κ6

32(1+∆t
4 )2

∆t3 〈C2x, Cx〉 .

Indeed we have that:

|J |L1 = Θ(∆t3`6) ; |R− J |L1 = O(∆t5/2`5) .

We note that the second result above comes from the bound on the L1-norm
of the last summand in the definition of R(x, v). In this case we apply (A.1)
under the choice γ = (∆t `2)11/4. As before, under this choice the last two terms
on the R.H.S. of (A.1) vanish as ` → ∞. For, the first term we must use the
analytical definition of J from above. To handle J we can use the Karhunen-
Loève expansion of Gaussian measures. In particular, using the representation
for an OU-bridge from (37) we get that:

〈x, C3x〉 =
∞∑
p=1

1
π2p2

`2 + κ2
`6

π6 p6
ξ2p .

Thus, we can now obtain:

P [ J ≥− 2γ ] = P
[ ∞∑

p=1

1
π2p2

`2
+κ2

1
π6p6 ξ

2
p ≤ 32(1+∆t

4 )2

κ6
1

(∆t`2)1/4

]
≤ P

[
1

π2+κ2
1
π6 ξ

2
1 ≤ 32(1+∆t

4 )2

κ6
1

(∆t `2)1/4

]
→ P [ ξ21 ≤ 0 ] = 0 .

The proof is now complete.

Proof of Proposition 4.2. We exploit the representation of ΨI
h in (39). Recall

that we denote (xi, vi) = Ψi
h(x0, v0), for number of leapfrog steps 0 ≤ i ≤ I.

After tedious calculations, one can obtain:

∆H(x0, v0) = H(xI , vI)−H(x0, v0) ≡ 〈Ax0, x0〉+ 〈Bv0, v0〉+ 〈Gx0, v0〉 (A.4)

for the operators:

A = −1
2 sin2(Iθ)P ; B = 1

2 sin2(Iθ) a2 P ; G = 1
2 sin(2Iθ) aP ;

P = κ2 I + (1− 1
a2 ) (Cbb)−1 . (A.5)

We have used operator’s notation: sin(Iθ) is the operator such that we have
sin(Iθ)x = {sin(Iθp)xp}∞p=1 where {xp} are the co-ordinates of x ∈ H w.r.t.

to the orthonormal basis corresponding to the eigen-functions of Cbb; a similar
interpretation stands for the operator sin(2Iθ). Also a2x = {a2p xp}∞p=1. The
sequences {θp} and {ap} are defined in (40).
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We denote here by COU the covariance matrix of the target OU bridge; the
Karhunen-Loève expansion (37) implies the eigenstructure {λp,OU , φp}∞p=1 for

COU with eigen-values:

λp,OU =
1

π2 p2

`2 + κ2
.

Examining the eigenvalues {Pp}∞p=1 of P, after some calculations one can verify
that:

P ≡ C−1
OU C κ2 h2

(2+h2

2 )(1+ρ)
,

so that:

0 ≤ Pp ≤M λ−1
p,OU λp

1

`2
, (A.6)

for some constant M > 0. Again, after some tedious calculations we get that:

ap = λ−1/2
p λ

1/2
p,OU cp ; c2p :=

( 1

c2 κ2
− 1

4 p2π2

)−1
. (A.7)

Note that the term on the R.H.S. of this last definition of c2p is guaranteed to
be positive due to condition (38). In particular we have that:

c2p ≤M , (A.8)

for a constant M > 0. Now, starting from (A.4) we have that:

E [ (∆H)2 ] = E [ 〈Ax0, x0〉2 ] + E [ 〈Bv0,v0〉2 ] + E [ 〈Gx0, v0〉2 ]
+ 2E [ 〈Ax0, x0〉 ] E [ 〈Bv0, v0〉 ] (A.9)

as the rest of the expectations will be zero (this follows from the independency
of the zero-mean variables x0, v0). Henceforth, {Ap}∞p=1, {Bp}∞p=1, {Gp}∞p=1

denote the eigenvalues of the operators A, B, G respectively. Recalling that
〈Ax0, x0〉 =

∑∞
p=1Apx

2
0,p, we have:

E [ 〈Ax0,x0〉2 ] = Var [ 〈Ax0, x0〉 ] + E2 [ 〈Ax0, x0〉 ]

= 2

∞∑
p=1

A2
p λ

2
p,OU +

( ∞∑
p=1

Ap λp,OU

)2
.

Doing similar calculations also for the rest of the terms on the R.H.S. of (A.9),
we have:

E [ (∆H)2 ] = 2
∞∑
p=1

A2
p λ

2
p,OU + 2

∞∑
p=1

B2
p λ

2
p +

( ∞∑
p=1

(
Ap λp,OU +Bp λp

) )2
+

∞∑
p=1

G2
p λp,OU λp .
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Thus, using the representations and bounds in (A.5), (A.6), (A.7) and (A.8),
we have that:

∞∑
p=1

A2
p λ

2
p,OU ≤M

∞∑
p=1

λ−2
p,OU λ

2
p

1

`4
λ2p,OU =M

∞∑
p=1

1

p4 π4
<∞ .

Similar calculations will give:

∞∑
p=1

B2
p λ

2
p ≤M

∞∑
p=1

λ−2
p λ2p,OU c

4
p λ

−2
p,OU λ

2
p

1

`4
λ2p ≤M

∞∑
p=1

1

p4 π4
<∞ .

and:

∞∑
p=1

G2
p λp,OU λp ≤M

∞∑
p=1

λ−1
p λp,OU c

2
p λ

−2
p,OU λ

2
p

1

`4
λp,OU λp ≤M

∞∑
p=1

1

p4 π4
<∞ .

Finally, we have that:

∣∣ ∞∑
p=1

(
Ap λp,OU +Bp λp

) ∣∣ = 1
2

∣∣ ∞∑
p=1

sin2(Iθp)Pp (−λp,OU + a2p λp)
∣∣

= 1
2

∣∣ ∞∑
p=1

sin2(Iθp)Pp λp,OU (c2p − 1)
∣∣

≤M
∞∑
p=1

λp
1

`2
=M

∞∑
p=1

1

p2π2
<∞ .

Thus, we have proven that supl E [∆H2 ] <∞, which, as illustrated in the proof
of Proposition 4.1, is sufficient for our proof.

Proof of Proposition 5.1. We will do our calculations using the right-most ex-
pressions in (4), (5), where Cbm, Cbb are respectively specified. For the first
term in the expression for Φ, namely α = α(x(u1), x(u2), . . . , x(uM )), we can
formally write (with a slight abuse of notation, in the equation that follows α
denotes the mapping x 7→ α(x(u1), x(u2), . . . , x(uM )), as it is the derivative of
this path-mapping that we need to calculate):

(δα)(s) =

M∑
m=1

αm · δum(s) ,

where δui is the Dirac delta function centered at ui. Applying Cbm and Cbb

will give immediately the terms in the first lines of the expression for Cbm δΦ(x)
and Cbb δΦ(x) in the statement of the proposition. For the second term β =
β(I1, I2, . . . , IL):

(δβ)(s) =
L∑

l=1

βl · z′l(s, x(s)) .

37



Again, applying Cbm and Cbb will give the terms in the second lines of the
expression for Cbm δΦ(x) and Cbm δΦ(x) in the statement of the proposition.

We proceed to the term γ = γ(S1, S2, . . . , SJ) with the stochastic integrals.
The algorithm applied in practice will involve a finite-difference approximation
of the stochastic integrals {Sj}. Below we will sacrifice accuracy at the notation
to avoid taking too much space for what involves otherwise straightforward
derivative calculations. Consider the discretised time instances 0 = s0 < s1 <
· · · sN−1 < sN = `. Denoting three consecutive discrete time instances among
the above by s− < s < s+, the finite-difference approximation, say SN

j , of Sj

can be written as follows:

SN
j =

∑
s∈{s1,...,sN}

rj(s−, x(s−))(x(s)− x(s−)) .

We can now calculate the partial derivative of SN
j w.r.t. to the one of the N

variables, x(s), making up the discretised path. Notice that x(s) will appear in
two terms in the summation, unless it is the last point x(sN ) of the x-vector
when it will only appear once. This explains the following calculation of the
partial derivatives:

∂SN
j

∂x(s)
= ∆qj(s) , s ∈ {s1, . . . , sN−1} ;

∂SN
j

∂x(sN )
= rj(sN−1, x(sN−1)) , (A.10)

where we have defined:

∆qj(s) = r′j(s, x(s))(x(s+)− x(s))− (rj(s, x(s))− rj(s−, x(s−))) .

Overall, we have that:

∂γ

∂x(s)
=

J∑
j=1

γj ·
∂SN

j

∂x(s)
. (A.11)

Then, the N ×N discretised covariance operator Cbm = (min{si, sk})i,k, corre-
sponding to the covariance matrix of a standard Brownian motion at the time
instances s1, s2, . . . , sN (this is the discretised version of Cbm), can be easily
shown to apply as follows to a finite-dimensional vector f ∈ RN :

(Cbmf)u = su ·
( N∑
i=1

fi
)
−

u−1∑
k=1

( k∑
i=1

fi
)
∆sk+1 , u = 1, 2, . . . , N , (A.12)

where ∆sk+1 = sk+1 − sk. Combining (A.10), (A.11), (A.12) will give (with ∇
denoting the gradient):

(Cbm∇γ)u =

J∑
j=1

γj ·
(
su
(
rj(sN−1, x(sN−1)) +

N−1∑
i=1

∆qj(si)
)
−

u−1∑
k=1

( k∑
i=1

∆qj(si)
)
∆sk+1

)
.
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It is easy to see now that a finite-difference approximation of the term appear-
ing in the third line of the expression for CbmδΦ(x) in the statement of the
Proposition 5.1 would coincide precicely with the above expression. A simi-
lar approach for the Brownian bridge case, considering the discrete time in-
stances 0 = s0 < s1 < · · · sN−1 < sN < sN+1 = ` , and the corresponding
N -dimensional matrix Cbb represented as below:

(Cbbf)u = su
` ·

N∑
k=1

( k∑
i=1

fi
)
∆sk+1−

u−1∑
k=1

( k∑
i=1

fi
)
∆sk+1 , u = 1, . . . , N , (A.13)

where now:

SN
j =

∑
s∈{s1,...,sN+1}

rj(s−, x(s−))(x(s)− x(s−)) ;
∂SN

j

∂x(si)
= ∆qj(si) ,

for ∆qj(s) as defined earlier and 1 ≤ i ≤ N . This will give the calculation:

(Cbb ∇γ)u =

J∑
j=1

γj ·
( su
`

( N∑
k=1

( k∑
i=1

∆qj(si)
)
∆sk+1−

u−1∑
k=1

( k∑
i=1

∆qj(si)
)
∆sk+1

)
,

immediately recognised as the finite-difference discretisation of the term ap-
pearing in the third line of the expression for CbbδΦ(x) in the statement of the
proposition.

Proof of Proposition 7.1. Consider a collection of discrete time instances 0 <
s1 < s2 < · · · < sN with s0 = 0 and sN = ` that include the data instances:

{u1, u2, . . . , uM} ⊂ {s1, s2, . . . , sN} .

Let ∆si = si − si−1. We will consider the following finite-difference approxima-
tion Φ(x) = Φ(x1, x2, . . . , xN ) of the negative log-density:

Φ(x) = Φ1(x) + Φ2(x) = α(vi1 , vi2 , . . . , viM ) (A.14)

+ β
( N∑

i=1

z1(si−1, vi−1)∆si,

N∑
i=1

z2(si−1, vi−1)∆si, . . . ,

N∑
i=1

zL(si−1, vi−1)∆si

)
for indices i1, i2, . . . iM such that sim = um, for m = 1, 2, . . .M , and vector v
constructed via the finite-difference approximation:

vi = vi−1 + µ(vi−1)∆si + σ(vi−1)∆xi ,

for i = 1, 2, . . . , N with v0 equal to a specified fixed initial condition. We
will be using the obtained expression in (A.12) for the N ×N covariance matrix
C = Cbm = (min{si, sj})i,j of a standard brownian motion at the time instances
s1, s2, . . . , sN . The function Φ : Rd 7→ R in (A.14) and the matrix C fully specify
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a finite-difference approximation of the original target defined on the Hilbert
space.

Now, we have the following recursion for the derivatives

Yi,j =
∂vi
∂xj

,

for any j ≥ 1:

Yi,j = Yi−1,j + µ′(vi−1)Yi−1,j∆si + σ′(vi−1)Yi−1,j ∆xi ; i > j + 1

Yj+1,j = Yj,j + µ′(vj)Yj,j∆sj+1 + σ′(vi−1)Yj,j ∆xj+1 − σ(vj) ;

Yj,j = σ(vj−1)

Yi,j = 0 , i < j .

So, we can obtain that, for i > j + 1:

log(Yi,j) = log(Yi−1,j) + log
(
1 + µ′(vi−1)∆si + σ′(vi−1)∆xi

)
,

and using this recursion we get that:

Yi,j = ∆Qj × e
∑i

k=j+2 log
(
1+µ′(vk−1)∆sk+σ′(vk−1)∆xk

)
, i ≥ j + 1 , (A.15)

Yj,j = σ(vj−1) (A.16)

Yi,j = 0 , i < j , (A.17)

where we have set:

∆Qj ≡ Yj+1,j = σ(vj−1)(µ
′(vj)∆sj+1 + σ′(vj)∆xj+1)−∆σ(vj) ,

and ∆σ(vj) = σ(vj) − σ(vj−1). We will also define for 1 ≤ m ≤ M and
1 ≤ l ≤ L:

Fm,r =

r∑
j=1

Yim,j , r < im ;

Gl,r =
r∑

j=1

( ∑
i≥j+1

z′l(si, vi)∆si+1

)
Yi,j ;

Jl,r =
r∑

j=1

z′l(sj , vj)Yj,j ∆sj+1 .

The above sequences will appear at the calculation of partial derivatives of Φ(x).
It is important to notice here that these sequences indeed constitute a finite-
difference approximation of their continuous-time counterparts appearing at the
statement of the proposition: to see that one only need to look at the analytical
definition of Yi,j in equations (A.15)-(A.16), and realise that the sum

∑
k log

(
1+

µ′(vk−1)∆sk + σ′(vk−1)∆xk
)
is essentially a finite-difference approximation of∫

(µ′(v(u))du+ σ′(v(u))dx(u)) as for ε ≈ 0 we have that log(1 + ε) ≈ ε.
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We can now proceed to the calculation of the partial derivatives of Φ.
Clearly:

∂Φ

∂xj
=
∂Φ1

∂xj
+
∂Φ2

∂xj
=
∑
i≥j

(∂Φ1

∂vi
· Yi,j +

∂Φ2

∂vi
· Yi,j

)
.

We can easily get:

∑
i≥j

∂Φ1

∂vi
· Yi,j =

M∑
m=1

αmYim,j .

Using (A.12), tedious, but otherwise straightforward calculation will give that,
for vector index 1 ≤ u ≤ N :

(C∇Φ1(x))u =
M∑

m=1

αm

(
su∧im (Fm,im−1 + Yim,im) +

u∧im−1∑
k=1

Fm,k ∆sk+1

)
.

(A.18)
Proceeding to the second term, Φ2(x), we have that:

∑
i≥j

∂Φ1

∂vi
· Yi,j =

L∑
l=1

βl
∑
i≥j

zl(si, vi)∆si+1 Yi,j .

We now now multiply with the covariance matrix C to obtain, after some cal-
culations, for 1 ≤ u ≤ N :

(C∇Φ2(x))u =
L∑

l=1

βl

(
su (Gl,N + Jl,N )−

u−1∑
k=1

(Gl,k + Jl,k
)
∆sk+1

)
. (A.19)

Upon inspection, (A.18)-(A.19) provide the proof of the statement of the propo-
sition.
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