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Abstract 

 

The possibility of revealing the presence and identifying the nature of electrically conductive 

targets is of central interest in many fields, including security, medicine, industry, archaeology 

and geophysics. In many applications, these targets are electromagnetically shielded by other 

external materials and thus cannot be directly accessed and detected. Hence, material 

interrogation techniques are required that allow penetration through the shielding materials, 

in order for the targets to be identified. 

Electromagnetic interrogation techniques represent a powerful solution to this 

challenge, as they enable penetration through conductive shields. Two resonant 

electromagnetic induction imaging (EII) methods, based on the use of LCR circuits, were 

developed in this research work. These proof-of-principle EII methods were based, 

respectively, on position-resolved-measurements of resonant frequency and Q-factor shifts, 

which occurred as a consequence of eddy current induction inside the conductive targets to 

be detected. The proposed techniques were applied to 2D imaging of conductive targets 

(having conductivities σ ranging from 0.54 to 59.77 MSm-1), both unshielded and shielded by 

an aluminium shield (1.5-mm-thick). 

The experimental results achieved in the first part of this work highlighted a limitation 

in the LCR resonant circuits used for EII investigations, linked to the Q-factor low absolute 
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values (between 7 and 23). Therefore, investigations were conducted, leading to the 

implementation of an improved version of the EII system, based on active bandpass filters. 

The sensitivity of the novel EII system was found to be larger by a factor of 3.5 

compared to the previously used LCR-based system, when both systems were used for 

imaging copper. Additionally, the new system allowed achieving images with higher contrast. 

The research work reported in this thesis led to establishing a proof-of-principle 

method for EII of conductive samples, also in the interesting scenario where the samples were 

shielded by conductive shields preventing them from being directly accessed. 

 

 

  



 

6 

Acknowledgments 

This research was funded by AWE and UCL Impact Studentship scheme. I would like to express 

my gratitude to my supervisor, Prof. Ferruccio Renzoni, who provided insight and expertise 

for this research. I am extremely grateful to Dr. Paul Bartlett for proofreading this thesis and 

providing helpful suggestions and contributions. Many thanks to Dr. Joseph Watson and Dr. 

Neil Gaspar (AWE) for taking part in discussions related to this research work. I would also 

like to thank my colleagues and friends Dr. Brendan Darrer and Dr. Luca Marmugi for their 

useful contributions and for sharing with me important moments of my PhD. I would like to 

thank also Dr. Stan Zochowski, Dr. Giorgio Savini, Cameron Deans, Soliman Edris, Derek 

Thomas, Jawad Rafid, Bernard Bristoll and Kelvin Vine, who all contributed to the progress of 

this research. 

Last but not least, a huge ‘GRAZIE’ to my parents Dr. Marina Manca and Dr. Piero Guilizzoni, 

without whom the completion of this work most likely would not have been possible.  



 

7 

Contents 
Abstract……………………………………………………………………………………………………………………….4 

Acknowledgements………………………………………………………………………………………………….….6 

Contents……………………………………………………………………………………………………………………...7 

List of Figures………………………………………………………………………………………………………….....10 

List of Tables……………………………………………………………………………………………………………...24 

List of Symbols……………………………………………………………………………………………….…………..28 

Nomenclature…………………………………………………………………………………………………………….29 

1 Introduction…………………………………………………………………………………………………….30 

2 Theoretical principles………………………………………………………………………………………42 

 2.1 Eddy current induction……………………………………………………..………………..…..42 

 2.2 Maxwell’s equations and electromagnetic waves in conductors…….……….49 

2.3 2D imaging of shielded conductive samples……………………………..…………….51 

2.4 Eddy current detection in non-ferrous metals………………………………………...53 

3 An LC resonant system for 2D imaging of conductive materials.………………….….58 

 3.1 Description of the early stage experimental system…………………………….….58 

 3.2 Resonant frequency changes due to eddy currents…………………………………62 

 3.3 Position-resolved measurements of the resonant frequency…………………..65 

 3.4 Imaging copper, aluminium and steel samples…………………………………….…70 

 3.5 Towards optimisation of the imaging system ………………………………………..75 

 3.6 Comparison between Q-factor and resonant frequency 

  measurements…………………..…..……………………………………………………………...79 

 3.7 Discussion and conclusions………………………………………………………………..……83 

4 An automated Electromagnetic Induction interrogation system……………………..84 

 4.1 Description of the initial experimental apparatus…………………………………..84 

 4.2 Experimental procedure for 2D imaging of metallic samples………………….86 

 4.3 Improvements to the initial LC system……………………………………………………89 



 

8 

 4.4 Description of the LabVIEW program………………………………………………………92 

5 2D imaging of unshielded conductive samples………………………………………………..96 

5.1 Study of the influence of lift-off on resonant frequency and Q-factor 

measurements……………………………………………………………………………………….96 

5.1.1 Description of the experimental procedure……………………………..….97 

5.1.2 Results and discussion………………………………………………………………..98 

 5.2 Imaging of high-conductivity samples made of copper and aluminium….100 

 5.2.1 Description of the experimental procedure………………………………..100 

5.2.2 Results and discussion……………………………………………………………….100 

5.3 Material characterisation: comparison between resonant frequency and 

Q-factor techniques……………………………………………………………………………….103 

5.3.1 Description of the experimental procedure………………………………..103 

5.3.2 Results and discussion……………………………………………………………….106 

 5.3.2.1 High-conductivity metals……………………………………………….109 

 5.3.2.2 Low-conductivity metals………………………………………………..110 

 5.4 Edge estimation with resonant frequency and Q-factor techniques………118 

5.4.1 Description of the experimental procedure…………………………….….119 

5.4.2 Results and discussion……………………………………………………………….121 

5.5 LCR circuit optimisation…………………………………………………………………….….127 

5.5.1 Description of the experimental procedure……………………………....128 

5.5.2 Results and discussion………………………………………………………….…..130 

5.6 Resolution study…………………………………………………………………………………..133 

5.6.1 Description of the experimental procedure…………………………….…134 

5.6.2 Results and discussion……………………………………………………………...135 

6 Penetrating power of the LCR system…………………………………………………………..138 

6.1 Summary about 2D imaging of unshielded conductive targets……….……138 

6.2 Investigations on 2D imaging of shielded conductive targets………….……144 



 

9 

6.2.1 Experimental method………………………………………………………………146 

6.2.2 Results and discussion……………………………………………………………..148 

6.2.3 Mathematical model for the problem………………………………………156 

6.2.4 Conclusions……………………………………………………………………………..161 

7 An improved EII system based on active filters…………………………………………….162 

7.1 Active bandpass filters…………………………………………………………………………164 

7.2 IGMF active filters……………………………………………………………………………….165 

7.3 State-variable active filters………………………………………………………………….171 

7.4 Modified state-variable filter with inductor for EII of conductive 

samples……………………………………………………………………………………………….180 

7.5 Discussion………………………………………………………………………………………….…186 

7.6 Measurements of Q-factor shifts to detect the presence of metals…….…187 

7.7 Discussion………………………………………………………………………………………….…194 

7.8 Initial investigations to determine the sources of spurious peaks…….…..196 

7.9 Towards the optimisation of a novel EII system for detection of conductive 

objects…………………………………………………………………………………………….…..200 

7.9.1 Active-filter-based circuit connected to the impedance 

analyser……………………………………………………………………………………202 

7.9.2 LCR system used in conjunction with the impedance 

analyser…………………………………………………………………………………...203 

7.10 Removal of spurious peaks and 2D imaging of conductive samples……..205 

7.11 Results and discussion………………………………………………………………………...207 

8 Conclusions………………………………………………………………………………………………….211 

9 Future work…………………………………………………………………………………………………215 

10 List of Author’s Publications and Presentations……………………………………………217 

11 References…………………………………………………………………………………………………..218 



 

10 

List of Figures 

Fig. 2.1. Primary and secondary magnetic field generated by eddy currents induced inside an 

electrically conductive material [38]…………………………………………………………………………………44 

Fig. 2.2. Left: Resonating system “in air”, i.e. with no metallic sample coupled to it. The system 

is a parallel LCR circuit with resistance R0, capacitance C and inductance L0. Right: Modified 

resonating system including a metallic sample in the shape of a disk, inductively coupled to it. 

The inductance and resistance of the modified system are labelled L1 and R1, to distinguish 

them from the components of the resonating system with no metallic sample coupled to it 

(left)…………………………………………………………………………………………………………………………………46 

Fig. 2.3. Qualitative behaviour of a resonating system in air (left) and with a conductive non-

magnetic sample inductively coupled to it (right). The graphs show the two systems’ 

impedance, plotted against the frequency. They show the decrease in the Q-factor and 

increase in resonant frequency occurring due to the presence of the conductive 

sample………………………………………………………………………………………………………………………………48 

Fig. 3.1. Left: Picture of the experimental system used at the initial stage of the project, to test 

whether the presence of a metallic sample could be detected by using a LCR-based system. 

The sample in this picture is a copper disk (6-cm-diameter, 2-mm-thickness), and the coil is a 

pancake coil (No. turns=400±1, outer diameter 43.0±0.5 mm, inner diameter 22.0±0.5 mm, 

height 20.0±0.5 mm). Two Perspex layers were used as a non-magnetic structure to support 

the coil and maintain it in a fixed position w.r.t. the sample. The coil was part of a LCR circuit 

whose capacitance could be varied to make the system resonate at different values of 

resonant frequencies. This was achieved by selecting appropriate capacitance values from the 

“Jay-Jay instruments - Type no. VC5” capacitor bank (Educational Measurements Limited), 

shown in the picture on the right……………………………………………………………………………………..59 

Fig. 3.2. Left: Front view of the Precision Impedance Analyzer 6500B (Wayne Kerr) used to 

measure the resonant frequency and Q-factor of the system, in air and in the presence of 

conductive samples. The display shows the resonance peak on a Z vs frequency plot. The 

instrument was connected to a parallel LC circuit, with electronic schematic shown on the 

right of the figure, which consisted in a coil (e.g. pancake coil with inductance L=970 μH ± 



 

11 

10%) and a capacitor selected from a capacitor bank (“Jay-Jay instruments - Type no. VC5” – 

Educational Measurements Limited)……………………………………………………………………………......60 

Fig. 3.3. Experimental set-up. The impedance analyser acted as an AC current generator. A 

copper disk was used as a test sample and moved by means of a Perspex support. The 

instrument was connected to a pancake coil inside which eddy currents were induced. These 

currents altered the measured impedance. A capacitor bank was used in order to move the 

resonance peak to lower frequency values, to investigate the possibility of achieving eddy 

current penetration through materials shielding the sample…………………………………………….60 

Fig. 3.4. Representation of aluminium and copper disks used as test samples. The values of 

electrical conductivity (σ) and magnetic susceptibility (χ) reported here were tabulated in [66]. 

Uncertainties in the disk diameters were equal to 0.5 mm……………………………………………….61 

Fig. 3.5. Images of all coils tested in this work, having characteristics as follows: (a) air-cored 

coil (No. turns=100±1, inner diameter 8.0±0.5 mm, outer diameter 9.0±0.5 mm, height 

8.5±0.5 mm); (b) ferrite cored coil (No. turns=145±1, Ø=7.8±0.5 mm, height=9.5±0.5mm); (c) 

pancake coil (No. turns=400±1, outer diameter 43.0±0.5 mm, inner diameter 22.0±0.5 mm, 

height 20.0±0.5 mm)…………………………………………….………………………………………………………....62 

Fig. 3.6. Simplified sketch showing the experimental configuration in which a flat metallic 

sample was inductively coupled to an inductor (“ferrite-cored coil”) at a fixed value of lift-off, 

i.e. vertical distance between the sample and the ferrite-cored coil. The inductor shown here 

(made by “multicomp”, part no. MCSCH895-681 KU) was connected to a capacitor as shown 

in Figs. 3.2-3.3. This figure represents one of the two configurations used in the experiments, 

the second one being characterised by the LC system “in air”, i.e. with no metallic sample 

present……………………………………………..…………………………………………………..............................62 

Fig. 3.7. Resonant frequency (Hz) vs external capacitance (μF) measured with 1) coil in air, 2) 

coil above 2-pence magnetic coin and 3) coil above 3-mm-thick steel sample. Frequency 

values were measured at fixed capacitance values, set up using a capacitor bank (“Jay-Jay 

instruments - Type no. VC5”), by means of the Impedance Analyzer 6500 B (Wayne Kerr). 

Quantities uncertainties were smaller than the dimensions of data points in this graph and 

are therefore not visible……………………………………………………………………………………………………63 



 

12 

Fig. 3.8. Sketch representing the scanning area, made up of n x n total positions, or nodes, at 

each of which the measurements were acquired, by using the impedance analyser. The coil, 

represented by the yellow circles, was maintained at a fixed position wr.t. the metallic sample 

(light blue), which was initially placed at starting position labelled “1”, and was then moved 

by hand to the right (position “2”) and so on, until the first row of the scan was completed. 

The sample was then moved to the next row of the scan below the first one, and then to third 

one etc., until n x n measurements were acquired, corresponding to all the positions of the 

sample along the scanning area…………………………….…………………………………………………………66 

Fig. 3.9. Pancake coil (left) and ferrite-cored coil (right) used to image a copper disk (left) and 

an aluminium disk (right) with the aid of Perspex layers. Graph paper was used to keep track 

of the motion of the disk samples……………………………………………………………………………………66 

Fig. 3.10. Resonant frequency measured with a copper disk at different positions along the x 

axis (different colours in figure) and y axis (abscissa of the graph). The key reported on the 

right of the graph indicates the rows at which the measurements were taken by moving the 

disk along a 4x4 cm2 area, as specified in the following. ‘Central row’ means that the disk was 

positioned on 16 equally-spaced-places along the horizontal line at the centre of the scanning 

area; ‘up’ and ‘down’ respectively refer to rows above and below the central row of the 

scan………………………………………………………………………………………………………………………………….67 

Fig. 3.11. Resonant frequency (kHz) measured with unshielded (square) and shielded 

(diamond) copper disk at different positions along the x axis of the scanning 

area………………………………………………………………………………………………………………………………….67 

Fig. 3.12. 2D Surface plot obtained with Matlab and representing a 6-cm-diameter copper 

disk, imaged by means of a resonant frequency scan. The shape of the disk seen from the 

above is clearly reproduced in the image, and the diameter in the figure, measured with a 

ruler, is in agreement with the actual diameter of the real sample……………………………….....68 

Fig. 3.13. 2D surface plot of a 6-cm-diameter copper disk shielded with an aluminium foil, and 

imaged by means of a resonant frequency scan. The shape of the disk is clearly reproduced in 

the image and the diameter in the figure corresponds to the real 

one……………………………………………………………………………………………………………………………………69 



 

13 

Fig. 3.14. Resonant frequency measured values (kHz) vs coil position along x axis (cm). The 

data sets obtained with aluminium (diamond), copper (square) and steel (triangle) were fitted 

with second order polynomials…………………………………………………………….…………………………..71 

Fig. 3.15. 2D image of a 6-cm-diameter copper disk. The image was obtained by plotting the 

resonant frequency values (kHz) against coil positions along x and y axis (cm) and interpolating 

the values with a piecewise cubic fit within Matlab……………...............………………………………73 

Fig. 3.16. 2D image of a 6-cm-diameter aluminium disk. Resonant frequency values (kHz) were 

plotted against coil positions along x and y axis (cm)…………………………….........…….…………….73 

Fig. 3.17. 2D image of a 1x1 cm2, 3-mm-thick specimen of mild steel. Resonant frequency 

values (kHz) were plotted against coil positions along x and y axis (cm)………………….………..74 

Fig. 3.18. Resonant frequency (kHz) vs number of points acquired during each scan, obtained 

with the LC system in air…………………………………………………………….................…………………….75 

Fig. 3.19. Resonance frequency measured with a copper disk (6-cm-diameter, 2-mm-

thickness) at different positions along the y axis (values are included in the key of the graph, 

and different colours represent profiles obtained with the same y value) and x axis (abscissa 

of the graph)…………………………………………………………………………………………………………………….76 

Fig. 3.20. Plot of impedance (Ω) vs frequency (Hz) showing resonant frequency and Q factor 

Q=ω0/Δω obtained for a 6-cm-diameter, 2-mm-thick aluminium sample (a) and a 6-cm-

diameter, 2-mm-thick copper sample (b)………………………………………………………………………...80 

Fig. 3.21. Change in Q-factor and resonant frequency between copper and aluminium, 

calculated using Eq. 3.7, with different capacitance values. Measurements were performed 

using a ferrite-cored coil (Fig. 3.5b). The different axes scales used here for Δf and ΔQ should 

be noted……………………………………………………………………………………………………………………………81 

Fig. 3.22. Image reproducing a 6-cm-diameter copper disk obtained by measuring the Q-

factor. The ferrite-cored coil (Fig. 3.5b) was used to perform the scan in this 

experiment……………………………………………………………………………………………………………………….82 



 

14 

Fig. 3.23. Image reproducing a 6-cm-diameter aluminium disk obtained by measuring the Q-

factor. The ferrite cored coil (Fig. 3.5b) was used to perform the scan in this 

experiment……………………………………………………………………………………………………………………….82 

Fig. 4.1. Electronic schematic of the initial EII system, which consisted in a parallel LC circuit 

made up of a ferrite-cored coil (No. turns=145 ± 1, Ø=7.8 ± 0.5 mm, height=9.5 ± 0.5mm, 

inductance=680 ± 10% μH), and a capacitor selected from the capacitor 

bank………………………………………………………………………………………………………………………………….84 

Fig. 4.2. Sketch showing the front view of the wooden structure containing the experimental 

system. This included a ferrite-cored coil, being part of a LC system (with schematic as in Fig. 

4.1), a xy stepper motor and a sample made of metal, which was moved along the x and y 

direction during a scan. A non-magnetic support was used to adjust the lift-off of the sample 

w.r.t. the coil………………………………………………………..………………………………………………………….85 

Fig. 4.3. Picture of the XY stage used to position the metallic samples used in this work onto 

different positions along the scanning area..……………………………………………………………………85 

Fig. 4.4. Picture showing the wooden structure containing the experimental setup. This was 

based on the xy stage with which the metallic sample was moved, the coil (not visible here, 

as it is fixed to the wooden upper layer) and the computer used for data acquisition and 

analysis……………………………………………………………………………………………..……………………………..86 

Fig. 4.5. Electronic schematic of the resonant electromagnetic induction system used in this 

study. The system capacitance can be adjusted (selecting the desired value from the capacitor 

bank), thus enabling penetration through a metallic shield covering the metallic target, and 

therefore facilitating the target identification. The resistor value in most experiments was 

equal to R = 1 kΩ ± 1%, and the inductor used was a ferrite-cored coil (7.8 mm x 9.5 mm, L= 

680 μH±10% at 1 kHz)…………………………………………………...………………………………………………….91 

Fig. 4.6. Sketch of the experimental apparatus, made up of a ferrite-cored coil connected to a 

capacitor and a resistor, as in Fig. 4.6. A xy stage was used to move a metallic sample (such as 

the disk made of Cu shown in red), thus allowing to perform a scan for imaging purposes. The 

apparatus was enclosed in a non-magnetic structure (made of wood), in order for the 

experiment to be electromagnetically isolated……………………...............................................91 



 

15 

Fig. 4.7. Picture showing the experimental apparatus, including the two decade boxes 

allowing selection of resistance and capacitance (bottom right)……………………………………….91 

Fig. 4.8. Picture showing the impedance analyser during a Z vs frequency sweep (in the 

background) and the two decade boxes used for resistance and capacitance selection, 

connected to the coil mentioned above, which is not shown in this 

picture……………………………………………………………………………………………………………………………..92 

Fig. 5.1. Normalised Q-factor (diamond) and resonant frequency (square), plotted against lift-

off (cm), to study the influence of lift-off on the measured quantities. Data was acquired using 

a 25x25x1 mm3 aluminium sample…………………………………………………………………………………..98 

Fig. 5.2. 2-cm-diameter, 2-mm-thick aluminium disk imaged via position-resolved 

measurements of the resonant frequency (top) and of the Q-factor (bottom). The resonant 

frequency and Q-factor values- measured at the centre of the object and normalised to the 

value in air- were equal to fr=1.01±0.03 and Q=0.93±0.04……………………………………………….101 

Fig. 5.3. Image of a 25x25x1 mm3 copper sample obtained via position-resolved 

measurements of the resonant frequency (top) and the Q-factor (bottom). The normalised 

resonant frequency and Q-factor at the centre of the sample were equal to fr=1.01±0.03 and 

Q=0.94±0.04……………………………………………………………………………………………………………………102 

Fig. 5.4. Change in Q-factor and resonant frequency plotted against conductivity for each of 

the 14 metals listed in Tab. 5.1 [66]. The physical quantities were measured at C = 1 μF. The 

two data points that are detached from the main trends of ΔQ and Δf (labelled “Fe”) 

correspond to measurements acquired with iron (99.5% purity)……………………………………..106 

Fig. 5.5. Change in resonant frequency plotted against conductivity of each of the 14 metals 

listed in Tab. 5.1 [66]. The physical quantities were measured at C=1 μF (diamond data set) 

and C=0.5 μF (square data set). Dots that are detached from the main trends (producing Δf 

equal to -0.25 % and -0.3 %) correspond to measurements taken with iron (99.5% 

purity)…………………………………………………………………..…………………………………………………………108 

Fig. 5.6. Images of a 25x25x1 mm3 manganese sample obtained via position-resolved 

measurements of the resonant frequency, for a capacitance C=1 μF………………………………111 



 

16 

Fig. 5.7. Images of a 25x25x1 mm3 bismuth sample obtained via position-resolved 

measurements of the resonant frequency, for a capacitance C=1 μF. Values on the z axis are 

resonant frequency measured in presence of the sample, normalised w.r.t. values in 

air…………………………………………………………………………………………………………………………………..111 

Fig. 5.8. Images of a 25x25x1 mm3 manganese sample obtained via position-resolved 

measurements of the Q-factor, for a capacitance C=1 μF. Values on the z axis are resonant 

frequency measured in presence of the sample, normalised w.r.t. values in air. The shape of 

the sample resembles the shape of the actual sample in this case…………………………………112 

Fig. 5.9. Images of 25x25x1 mm3 manganese (top) and bismuth (bottom) samples obtained 

via position-resolved measurements of the Q-factor, for a capacitance C=1 μF. The shape of 

the sample resembles the shape of the actual sample in this case, unlike what appeared in 

Fig. 5.6…………………………………………………………………………………………………………………………...112 

Fig. 5.10. Image of a 25x25x1 mm3 manganese sample obtained via position-resolved 

measurements of the resonant frequency, for a capacitance C=0.5 μF. The imaged sample is 

now visible due to the increase of resonant frequency produced by selection of a lower 

capacitance value than the previously used value of C=1 μF…………………………………………..114 

Fig. 5.11. Image of a 25x25x1 mm3 bismuth sample obtained via position-resolved 

measurements of the resonant frequency, for a capacitance C=0.5 μF. The imaged sample is 

now visible due to the increase of resonant frequency produced by selection of a lower 

capacitance value than the previously used value of C=1 μF…………………………………………...114 

Fig. 5.12. Normalised Q-factor plotted against metal’s conductivity [66], at lift-off=1 cm and 

lift-off=0. The minima values of the two curves differ of a factor 1.7………………………………116 

Fig. 5.13. Canny edge detection algorithm applied to grey scale image of aluminium metallic 

sample (25x25x1 mm3), obtained with resonant frequency imaging technique, for a 

capacitance C=1 μF. Values on the z axis refer to resonant frequency measured in the presence 

of the sample, normalised w.r.t. air………………………………………………………………………………..121 

Fig. 5.14. Canny edge detection algorithm applied to grey scale image of aluminium metallic 

sample (25x25x1 mm3), obtained with Q-factor imaging technique, for a capacitance C=1 μF. 



 

17 

Values on the z axis refer to Q-factor measured in the presence of the sample, normalised 

w.r.t. air……………………………………………………………………………………………………………………………122 

Fig. 5.15. Ratio between Canny-detected edge and ‘actual’ edge of each sample of conductivity 

σ (Tab. 4.1), plotted against σ. Edge values were estimated from the images obtained with a 

capacitance C=0.5 μF. The diamond-shaped data set includes values obtained using the 

resonant frequency imaging technique, whereas the squared-shaped data set represent 

values obtained using the Q-factor imaging technique…………………………………………………….123 

Fig. 5.16. Estimated diameter vs measured diameter of 1.5, 1.7, 2 and 3 cm diameter copper 

disks. The two dots corresponding to x=3 cm refer to copper samples of thicknesses equal to 

2 mm (higher y-axis-value) and 0.7 mm (lower y-axis-value). The trends obtained with the Q-

factor technique (diamond) and the trend obtained with the resonant frequency technique 

(square) are both linear……………………………………………………………………………………………………124 

Fig. 5.17. Estimated diameter vs measured diameter of 1.5, 1.7, 2 and 3 cm diameter 

aluminium disks. The trends obtained with the Q-factor technique (diamond) and the resonant 

frequency technique (square) are both linear………………………………………………………………….124 

Fig. 5.18. Diameter of copper disks calculated by means of relations derived from the linear 

fits shown in Fig. 5.15, plotted against the diameter estimated by using the Canny edge 

detection algorithm. Note that the x-axis-values of these graphs are the y-axis-values in Figs. 

5.16-5.17…………………………………………………………………………………………………………………………125 

Fig. 5.19. Diameter of aluminium disks calculated by means of relations derived from the 

linear fits shown in Fig. 5.15, plotted against the diameter estimated by using the Canny edge 

detection algorithm. Note that the x-axis-values of these graphs are the y-axis-values in Figs. 

5.16-5.17………………………………………………………………………………………………………………………..126 

Fig. 5.20. Relative change of resonant frequency (Eq. 5.1), produced by a 25х25х1 mm3 Al 

sample for the 8 LCR circuits listed in Tab. 5.3, having values of Q-factor ranging from 7.6 to 

22.3…………………………………………………………………………………………………………………………………130 



 

18 

Fig. 5.21. Relative change of Q-factor (absolute value of ΔQ in Eq. 5.2), produced by a 25х25х1 

mm3 Al sample for the 8 LCR circuits listed in Tab. 5.3, having values of Q-factor going from 

7.6 to 22.3……………………………………………………………………………………………............................131 

Fig. 5.22. Estimated diameter (obtained by applying the Canny edge detection algorithm) 

plotted against measured diameter of actual samples, obtained for a set of aluminium disks 

of different diameter (from 1.5 cm to 7.6 cm)…………………………………………………………..…….135 

Fig. 5.23. Ratio between measured and estimated diameter (measured for the actual samples 

and estimated using the Canny edge detection algorithm, respectively) plotted against 

measured diameter of aluminium disks…………………………………………………………………………..136 

Fig. 6.1. Left: sketch representing the LCR parallel circuit used to image a conductive sample 

(labelled “target”) having rectangular cross section and volume equal to 25x25x1 mm3. The x 

axis is included to show the distance between the coil and the target (lift-off). Right: Sketch 

representing the lift-off used in the configuration shown on the left of the figure. The ferrite-

cored coil (made by “multicomp”, part no. MCSCH895-681 KU) is part of the LCR circuit shown 

on the left side of the figure (the labels “metallic sample” and “target” both refer to the 

sample object)…………………………………………………………………………………………………………………139 

Fig. 6.2. Image of a copper sample (25х25х1 mm3) obtained by means of position-resolved-

measurements of the Q-factor. The system’s capacitance was set to the value C=11 μF; the 

corresponding skin depth in copper was equal to δ=2.6 mm. The data points in Figs. 6.2-6.7 

represent the positions along the scanning area where the measurements were 

taken……………………………………………………………………………………………………………………………….140 

Fig. 6.3. Image of a copper sample (25х25х1 mm3) obtained by means of position-resolved-

measurements of the resonant frequency. The system’s capacitance was set to the value C=11 

μF; the corresponding skin depth in copper was equal to δ=2.6 mm……………………………….140 

Fig. 6.4. Image of a manganese sample (25х25х1 mm3), obtained by means of position-

resolved-measurements of the Q-factor, with the system’s capacitance set to the following 

value: C1=0.5 μF; the corresponding skin depth was equal to δ1=12.7 

mm.......................................................................................................................................141 



 

19 

Fig. 6.5. Image of a manganese sample (25х25х1 mm3), obtained by means of position-

resolved-measurements of the resonant frequency, with the system’s capacitance set to the 

following value: C1=0.5 μF; the corresponding skin depth was equal to δ1=12.7 

mm………………………………………………………………………………………………………………………………….141 

Fig. 6.6. Image of a manganese sample (25х25х1 mm3), obtained by means of position-

resolved-measurements of the Q-factor, with the system’s capacitance set to the following 

value: C2=11 μF; the corresponding skin depth was equal to δ2=27.7 mm……………………...142 

Fig. 6.7. Images of a manganese sample (25х25х1 mm3), obtained by means of position-

resolved-measurements of the resonant frequency, with the system’s capacitance set to the 

following value: C2=11 μF; the corresponding skin depth was equal to δ2=27.7 

mm…………………………………………………………………………………………………………………………………142 

Fig. 6.8. Sketch representing the LCR parallel circuit used to image a conductive target, with 

rectangular cross section (25x25x1 mm3), hidden behind a conductive shield in the shape of 

a 110.0x80.0x1.5 mm3 piece of Al. The x axis is included to show that the concept of lift-off 

changed from the scenario represented in Fig. 6.1, due to the presence of the Al 

shield………………………………………………………………………………………………………………………………145 

Fig. 6.9. Sketch representing the scanning area (“n x n” total positions, or nodes), where the 

coil (yellow circle) is maintained at a fixed position, and the metallic sample (light blue) is 

moved onto different positions, starting from “1”, going to “2”, tracing a horizontal path 

forming the first row of the scan, and then proceeding onto the next rows 

below………………………………………………………………………………………………………………………………147 

Fig. 6.10. Image of a copper target (25х25х1 mm3) obtained by means of position-resolved-

measurements of the Q-factor, at the following value of skin depth: δ1=0.4 mm. During these 

measurements, the target was shielded by a 1.5-mm-thick aluminium sheet…………………149 

Fig. 6.11. Image of a copper target (25х25х1 mm3) obtained by means of position-resolved-

measurements of the Q-factor, at the following value of skin depth: δ2=0.6 mm. During these 

measurements, the target was shielded by a 1.5-mm-thick aluminium sheet………………..149 



 

20 

Fig. 6.12. Image of a copper target (25х25х1 mm3) obtained by means of position-resolved-

measurements of the Q-factor, at the following value of skin depth: δ3= 1.8 mm. During these 

measurements, the target was shielded by a 1.5-mm-thick aluminium sheet…………………150 

Fig. 6.13. Image of a copper target (25х25х1 mm3) obtained by means of position-resolved-

measurements of the Q-factor, at the following value of skin depth: δ4= 2.9 mm. During these 

measurements, the target was shielded by a 1.5-mm-thick aluminium 

sheet……………………………………………………………………………………………………………………………….150 

Fig. 6.14. Image of a copper target (25х25х1 mm3) obtained by means of position-resolved-

measurements of the resonant-frequency, at the following value of skin depth: δ1=0.4 mm. 

During these measurements, the target was shielded by a 1.5-mm-thick aluminium 

sheet……………………………………………………………………………………………………............................151 

Fig. 6.15. Image of a copper target (25х25х1 mm3) obtained by means of position-resolved-

measurements of the resonant-frequency, at the following value of skin depth: δ2=0.6 mm. 

During these measurements, the target was shielded by a 1.5-mm-thick aluminium 

sheet………………………………………………………………………………………………………………………………152 

Fig. 6.16. Image of a copper target (25х25х1 mm3) obtained by means of position-resolved-

measurements of the resonant-frequency, at the following value of skin depth: δ3= 1.8 mm. 

During these measurements, the target was shielded by a 1.5-mm-thick aluminium 

sheet………………………………………………………………………………………………………………………………153 

Fig. 6.17. Image of a copper target (25х25х1 mm3) obtained by means of position-resolved-

measurements of the resonant-frequency, at the following value of skin depth: δ4= 2.9 mm. 

During these measurements, the target was shielded by a 1.5-mm-thick aluminium 

sheet………………………………………………………………………………………………………………………………153 

Fig. 6.18. Image reproducing a manganese target (25х25х1 mm3), shielded by a 1.5-mm-thick 

aluminium sheet, obtained by means of position-resolved-measurements of the Q-factor, 

with a skin depth through aluminium equal to 3.3 mm…………………………………………………..154 



 

21 

Fig. 6.19. Image reproducing a manganese target (25х25х1 mm3), shielded by a 1.5-mm-thick 

aluminium sheet, obtained by means of position-resolved-measurements of the resonant-

frequency, with a skin depth through aluminium equal to 3.3 mm…………………………………155 

Fig. 6.20. Plot equivalent to the one shown in Fig. 5.23, obtained for aluminium disks of 

different diameter, shielded by a 1.5-mm-thick aluminium shield. Estimated diameter stands 

for the diameter derived by applying a Canny edge detection algorithm to the images of the 

disks; measured diameter indicates the actual sample diameter……………………………………156 

Fig. 7.1. Circuit schematic of a RC highpass filter…………………………………………………………....165 

Fig. 7.2. Circuit schematic of a RC low-pass filter…………………………………………………………….165 

Fig. 7.3. Schematic of IGMF circuit (in a 2-pole lowpass configuration) used to investigate the 

possibility of using this configuration to build a new version of the EII system used in this 

research. This sketch was created with LTSpiceXVII…………………………………………………………166 

Fig. 7.4. Sketch of the pinouts constituting the op-amp OP27GPZ [77]……………………..........166 

Fig. 7.5. Experimental set-up assembly. The IGMF filter (Fig. 7.3) is contained inside the black 

box at the centre of the picture. The signal generator Hameg Instruments 25 MHz HMF 2525 

is shown on the left. The oscilloscope ISO-TECH IDS-6052-U is shown on the right 

side………………………………………………………………………………………………………………………………….168 

Fig. 7.6. Curve obtained by measuring the IGMF active filter gain and plotting it against the 

frequency of the signal generator……………………………………………………………………………………169 

Fig. 7.7. Schematic of the 2-pole filter “state-variable filter” built for this investigation 

[76]……………………………………………………………………………………………………………………………......169 

Fig. 7.8. Resonance curve of the filter shown in Fig. 7.7, obtained with a resistor value RF=1 

MΩ, corresponding to the last position on the rotary switch (Tab. 7.4)…………………………...176 

Fig. 7.9. Picture of the experimental setup, including the active filter, the Network Analyser 

E5061B (Keysight) and the power supply “elc” ALF 1502D……………………………………………….179 

Fig. 7.10. Resonance curve obtained from data acquired using the Network Analyser, when 

the circuit’s resistance RF was equal to 23.6 kHz……………………………………………………………..179 



 

22 

Fig. 7.11. Resonance curve obtained from data acquired using the Network Analyser, when 

the circuit’s resistance RF was equal to 19.9 kHz……………………………………………………………..180 

Fig. 7.12. Resonance curve obtained from data acquired using the Network Analyser, when 

the circuit’s resistance RF was equal to 16.1 kHz……………………………………………………………..180 

Fig. 7.13. Electronic schematic produced with LTSpiceXVII, representing the electronic circuit 

on which the improved version of the EII system, object of this work, was 

based………………………………………………………………………………………………………………………………182 

Fig. 7.14. Screenshot from the Network Analyser, obtained after inducing a stimulus (start 

frequency 10 kHz – stop frequency 30 kHz) in the circuit, having set the circuit’s resistance to 

RF =6.8 KΩ………………………………………………………………………………………………………………………..183 

Fig. 7.15. Simulation (from LTSpiceXVII) of the electronic circuit’s response, when its 

components had values as in Fig. 7.13, and its resistance RF was equal to RF =6.8 KΩ………183 

Fig. 7.16. Screenshot from the Network Analyser, obtained after inducing a stimulus (start 

frequency 10 kHz – stop frequency 30 kHz) in the circuit, having set the circuit’s resistance to 

RF =8.2 KΩ………………………………………………………………………………………………………………………..184 

Fig. 7.17. Simulation (from LTSpiceXVII) of the electronic circuit’s response, when its 

components had values as in Fig. 7.13, and its resistance RF was equal to RF =8.2 

KΩ……………………………………………………………………………………………………………………………………184 

Fig. 7.18. Screenshot from the Network Analyser, obtained after inducing a stimulus (start 

frequency 10 kHz – stop frequency 30 kHz) in the circuit, having set the circuit’s resistance to 

RF =9.9 KΩ………………………………………………………………………………………………………………………..185 

Fig. 7.19. Simulation (from LTSpiceXVII) of the electronic circuit’s response, when its 

components had values as in Fig. 7.13, and its resistance RF was equal to RF =9.9 KΩ........185 

Fig. 7.20. Picture of the coil used in this study (L=79.4±10% μH, height 1.8±0.1 cm, inner 

diameter 2.0±0.1 cm, outer diameter 2.3±0.1 cm). The coil was connected to the other 

circuits’ components as in Fig. 7.13………………………………………………………………………….........186 



 

23 

Fig. 7.21. Resonance curve obtained with the Network Analyser when the coil of the EII system 

was in air, i.e., no metallic sample was present…………………………………………….....................189 

Fig. 7.22. Resonance curve obtained with the Network Analyser, when the coil part of the EII 

system with schematic as in Fig. 7.13 was in contact with the Al disk sample…………………..189 

Fig. 7.23. Comparison between the average Q measured with the Network Analyser, when 

the system was resonating at 23.6 kHz and it was coupled to the following materials: material 

“1”: air, material “2”: Cu, material “3”: Mn, material “4”: Fe. Error bars were added, by 

calculating the standard deviation of the measured quantities………………………………………..192 

Fig. 7.24. Comparison between the average Q measured with the Network Analyser, when 

the system was resonating at 19.5 kHz and it was coupled to the following materials: material 

“1”: air, material “2”: Cu, material “3”: Mn, material “4”: Fe. Error bars were added, by 

calculating the standard deviation of the measured quantities………………………………………..193 

Fig. 7.25. Comparison between the average Q measured with the Network Analyser, when 

the system was resonating at 16.2 kHz and it was coupled to the following materials: material 

“1”: air, material “2”: Cu, material “3”: Mn, material “4”: Fe. Error bars were added, by 

calculating the standard deviation of the measured quantities………………………………………..193 

Fig. 7.26. Plot of DeltaQ=Q(air)-Q(metal) vs resonant frequency values fri (as in Tab. 7.12), 

obtained from results of 20 consecutive Q-factor shift measurements (Tab. 7.12), compared 

to the shifts measured with the “old” LCR-based system, in the following scenarios: system in 

air and coupled to copper (blue, diamond data-set); system in air and couple to manganese 

(red, square data-set); system in air and coupled to iron (green, triangle data-

set)………………………………………………………………………………………………………………………………….194 

Fig. 7.27. Image representing a 3-cm-diameter Cu disk, obtained with the EII active filter-

based system developed in this study……………………………………………………………………………..209 

Fig. 7.28. Image representing a 3-cm-diameter Cu disk, shielded with a 1 mm-thick Al shield. 

The image was obtained with the EII active filter-based system developed in this study, 

resonating at a frequency fr = 23.6 kHz……………………………………………………………………………210 

 



 

24 

List of Tables 

Tab. 3.1. Maximum, minimum and average value of Δf% at growing values of the y coordinate, 

from -3.5 to +3.5 cm. The samples used were 6-cm-diameter, 2-mm-thick copper and 

aluminium disks. The interesting column is the third one, which shows that the average Δf% 

is lower than 0.3% at all positions along the y axis. This value was smaller than 0.5%, which 

was the standard deviation obtained from 10 consecutive measurements of the resonant 

frequency, meaning that the resonant frequency variation is not significant to discriminate 

between a copper and an aluminium sample……………..…………………………………………………….77 

Tab. 5.1. List of conductivity values of 14 metallic samples (25х25х1mm3) used in the 

“Material characterisation” study [66]. The metals are numbered in the third column, based 

on the order in which they appear on the x axis of the graph in Fig. 5.4, from the right side 

(higher σ) to the left side (lower σ)……….………………………………………………………………………..104 

Tab. 5.2. List of copper and aluminium disks of different diameters and thicknesses included 

in the investigation aimed at imaging high-conductivity samples…………………………………….119 

Tab. 5.3. Values of resistance (second column) and capacitance (third column) that were 

chosen to build eight different LCR circuits (labelled with numbers I-VIII reported in the first 

column of this table)………………………………………………………………………………………………………..129 

Tab. 5.4. Diameter values (cm) of the eight different Al disks which were used for the 

resolution study aiming at identifying the minimum-diameter-disk that could be 

imaged…………………………………………………………………………………………………………………….……….134 

Tab. 6.1. Capacitance values (C), resonant frequency values (fr)- measured at the centre of the 

shielded copper target- and corresponding skin depths in aluminium and copper, for each of 

the images shown in Figs. 6.10-6.17 (see next section)…………………………………………………….148 

Tab. 7.1. Values of resonant frequency at which the electronic system was made to resonate 

(first column), and corresponding values of skin depth (second column), obtained by using 

Eqs. 2.13-2.16, and assuming that the EII system’s operational frequency was equal to the 

active filter’s resonant frequency fr (first column)……………………………………………………………172 



 

25 

Tab. 7.2. Values of components used to build the circuit represented in Fig. 7.6, measured 

with Keysight U1731C handheld LCR meter. Tolerance ranges for resistance and capacitance 

values were equal to 1%.......................................................................................................173 

Tab. 7.3. Column 1: positions on rotary switch, numbered 1 to 7; column 2: ‘theoretical’ values 

of resistors RF, each corresponding to a position on the rotary switch; column 3: theoretical 

values of fr (predicted by using Eq. 7.13); column 4: values of fr expressed in 

kHz……………………………………………………………………………………………………………………………………174 

Tab. 7.4. Expected values of resonant frequency fr, derived by inserting the measured values 

for RF  into Eq. 7.13. Resistance values were measured with a tolerance range of 

1%..........................................................................................................................................174 

Tab. 7.5. Expected and measured values of resonant frequency, plus ratio between 

them…………………………………………………………………………………………………………………….………….176 

Tab. 7.6. Expected and measured values of G and Q, plus ratio between each pair of 

them………………………………………………………………………………………………………………………………..177 

Tab. 7.7. Measured values of the circuit’s components. Their tolerance value was equal to 

1%.........................................................................................................................................178 

Tab. 7.8. Measured values of resistors making up the rotary switch; corresponding resonant 

frequency values that were expected; corresponding skin depth in Al at those frequencies. 

Resistor tolerance was equal to 1%......................................................................................178 

Tab. 7.9. First column: resonant frequency of the three state variable filters that were built; 

second column: Q-factor, measured with the Network Analyser as average values of 10 

consecutive measurements; third column: uncertainties of Q, as standard deviation; fourth 

column: measured values of maximum gain (average of 10 consecutive measurements); fifth 

column: standard deviation of gain………………………………………………………………………………….181 

Tab. 7.10. Values of Q measured with Network Analyser when the EII system was in air, when 

an Al sample was placed under the coil, for both the air-cored and the ferrite-cored coil. The 

percentage difference between the Q factors in air and Al was calculated (last 

column)……………………………………………………………………………………………………………………………188 



 

26 

Tab. 7.11. Comparison between the Q-factor values obtained when the new EII system with 

air-cored coil and ferrite-cored coil was in air (second column) and when a Cu sample was 

introduced (third column). These Q-factor differences (DeltaQ) were compared to the ones 

obtained with the previously used LCR-based system (“Old system”, described in Chapter 

5)……………………………………………………………………………………………………………………………………..191 

Tab. 7.12. Values of average and standard deviation of DeltaQ (first column), at the following 

resonant frequency values: fr1=24 kHz (second column), fr2=20 kHz (third column) and fr3=16 

kHz (fourth column). DeltaQ/Q(air) are ratios of DeltaQ divided by the Q-factor values 

measured in air………………………………………………………………………………………………………………..192 

Tab. 7.13. Results of the study of the influence of the automatic averaging of the NA. In the 

table, “meas” stands for “measurements”; av(Q) stands for average of Q, calculated by taking 

30 and 100 consecutive measurements without using the NA averaging function (3rd and 4th 

rows of the first column) and performed using the NA averaging function of the same number 

of measurements (third column); corresponding standard deviation values are reported in the 

second and fourth columns (σQ)………………………………………………………………………………………197 

Tab. 7.14. Results showing the influence of the power supply being left on, or switched on 

and off in between consecutive measurements……………………………………………………………….198 

Tab. 7.15. Results of 10 consecutive measurements of Q-factor, resonant frequency, 

inductance, capacitance and resistance, measured when the active filter-based system was in 

air and when a piece of Cu was placed under the coil………………………………………………………202 

Tab. 7.16. Results of 10 consecutive measurements of Q-factor, inductance, capacitance and 

resistance, measured when the LCR system was in air and when a piece of Cu was placed 

under the coil…………………………………………………………………………………………………………………..203 

Tab. 7.17. Q-factor average values in air and with Cu (2nd and 4th columns), differences 

between these two values, DeltaQ=Q(air)-Q(metal) (6th column), standard deviations (3rd, 5th 

and 7th columns); measurements were obtained with the IA=impedance analyser (first two 

rows) and the NA (last three rows)…………………………………………………………………………………..204 



 

27 

Tab. 7.18. Average values of Q-factor Q and inductance L obtained after the Matlab fitting 

routine was run to the modified curve of S21 vs frequency obtained with the NA, after 

applying the peak removal algorithm. Uncertainties were calculated as standard deviation of 

the measurements and relative variations between values obtained in air and after a Cu 

sample was coupled to the system were calculated using Eqs. 7.21-7.22 (4th and 6th columns). 

These results were obtained when the resonant frequency of the active-filter-based system 

was set to the value fr = 23.6 kHz……………………………………………………………………………………..207 



 

28 

List of Symbols 

B — Magnetic flux density (T or Wb·m−2) 

E — Electric field (V·m−1) 

H — Magnetic field strength (A·m−1) 

M — Magnetization (A·m−1) 

J — Current density (A·m−2) 

V — Electric potential / Voltage (V) / Potential difference (p.d.) in volts (V) 

𝜙𝐵,𝑆 — Magnetic flux through closed surface area S (Wb) 

δ — Skin depth (mm) 

ε — Electrical permittivity (F·m−1) 

μ — Magnetic permeability (H·m−1) 

𝜒𝑣 — Volumetric magnetic susceptibility (dimensionless) 

σ — Electrical conductivity (S·m−1) 

ω — Angular frequency (rad/s)



 

29 

Nomenclature 

MIT — Magnetic Induction Tomography 

EII — Electromagnetic Induction Imaging 

ECT — Electrical Capacitance Tomography 

EIT — Electrical Impedance Tomography 

ERT — Electrical resistance tomography 

NDE — Non-Destructive Evaluation 

OAM — Optical Atomic Magnetometer 

e.m.f – Electromotive Force 

p.d. – Potential Difference 

 

  



 

30 

1 Introduction 

Electromagnetic induction imaging (EII) [1]–[23] has wide application in diverse fields such as 

medicine [1]–[11], industry [12]–[21], archaeology [22] and geophysics [23]. For instance, it 

has been largely exploited in Non-Destructive Evaluation (NDE) for crack detection during 

industrial inspections and characterisation of the materials’ level of corrosion [14]-[16]. 

Electromagnetic induction imaging presents some advantages in comparison to other existing 

imaging techniques, being non-invasive and contactless. Furthermore, it is sensitive to all the 

electromagnetic properties of materials: conductivity, permittivity and permeability. Its 

working principle is based on the induction of eddy currents in a conductive sample placed in 

the alternating (AC) magnetic field generated by a coil. Eddy current induction [24]-[25] leads 

to a change in the magnetic field detected by an array of sensor coils, which can be exploited 

to produce conductivity maps of the sample under investigation [3] [11]. In particular, the 

presence of the sample inside the magnetic field generated by the coil (primary field) is the 

cause of eddy currents being induced in the sample itself. A secondary magnetic field is 

generated by the eddy currents (Biot-Savart’s law), which opposes the primary one, due to 

Lenz’s law [26]. The total field is therefore different from the primary field, and induces an 

e.m.f. across a sensor coil that can be measured and provide information about the sample 

which caused the eddy current induction process to take place (Faraday’s law) [26]. 

One of the application fields of electromagnetic imaging techniques is medicine. In 

particular, these imaging techniques can be used to determine the human-body composition, 

due to their ability to differentiate between fat and fat-free tissues, as well as outline the 

internal and external geometry of simple conductive objects. These techniques have the 

advantage of being suitable for in vivo images of the body while being non-invasive [1]. 

In vivo body imaging techniques include x-ray based computed tomography (CT)[27]-

[28], magnetic resonance imaging (MRI) and electrical impedance tomography (EIT)[29]-[30]. 

Other tomographic techniques, used between the 1980s and the beginning of the 1990s, are 

electrical capacitance tomography (ECT)[31]-[33] and electrical resistance tomography (ERT) 

[34]-[35]. These techniques were later replaced by electromagnetic induction imaging, which 

some authors also called both magnetic induction tomography (MIT)[3], and electromagnetic 
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inductance tomography (EMT)[2]. First publications about MIT systems appeared in the 

second half of the 1990s [2]-[4]. The common factor to all of these electromagnetic 

techniques is that they became attractive, from the 1980s, for a number of reasons. Among 

these are their potentially high imaging-speeds and low cost, as well as their non-invasive and 

non-hazardous nature [2]. 

Electrical impedance tomography (EIT) works by applying small alternating electric 

currents by means of electrodes that are attached to the surface of a human subject. 

Measurements of the electric potentials, on an array of electrodes attached around the body 

[9], provide a data-set from which conductivity or permittivity distributions can be inferred 

via ‘inverse problem’ methods [19] [36]. 

Electrical resistance tomography (ERT) is a geophysical technique that measures the 

electrical resistivity and images sub-surface structures. This is done by means of 

measurements either at the surface or by electrodes suspended in boreholes. Image 

reconstruction processes are used to produce conductivity or resistivity maps of sub-surface 

layers. ERT is applied to both geophysical prospecting and imaging of the interior of process 

vessels and pipelines [35]. 

Electrical capacitance tomography (ECT) exploits capacitive measurements taken on 

the outside of an object to calculate the spatial distribution of dielectric permittivity inside 

the object. This calculation is normally achieved by solving an inverse problem. The idea of an 

inverse problem is that a set of observations are used to calculate the properties that caused 

these observations. In MIT, the conductivity spatial-distribution is calculated from a set of p.d. 

measurements taken with coils arranged around a sample. This is accomplished by firstly 

modelling the forward problem, which consists of inferring the results from the cause, by 

applying Maxwell’s equations. Once this is done, the solution to the forward problem is 

inverted to provide solution to the inverse problem. The way in which this is achieved includes 

an iterative process where an initial guess for the conductivity of the sample is determined 

[19] [36]. 

In ECT, electrodes that are sufficiently physically large to detect significant changes 

(i.e., measurable with small relative uncertainties) of capacitance are used. ECT has 

applications in the oil industry, where it employs image analysis to distinguish between oil 

and gas, and between oil and water mixtures. Despite its lower resolution, compared to other 



 

32 

electrical imaging techniques, it provides estimations of oil/water/gas mixtures that are 

sufficiently accurate for industrial investigations involving initial geophysical surveys. The 

poor resolution of ECT is compensated by the speed of this real time-imaging technique, 

which can reach values of 10 ms per image [6] [31] [32]. 

MIT allows the obtaining of permeability and conductivity distributions from 

inductance measurements. It provides some advantages when compared to EIT, ERT and ECT, 

being contactless. It has another advantage which makes it suitable for imaging of poorly 

conducting tissues: its working principle relies upon the application of a magnetic field to 

cause eddy current induction to take place inside the sample; such a magnetic field is not 

shielded by human body tissues such as bone [4]. Furthermore, in principle, it is sensitive to 

all the electromagnetic properties of materials: conductivity, permittivity and permeability 

[5]. 

The electromagnetic system described by Al-Zeibak and Saunders [1] is made up of a 

drive coil, i.e., a coil inducing the primary magnetic field (elsewhere named ‘excitation coil’ 

[4]), placed in the vicinity of the body and inducing a high frequency electromagnetic field, 

and a pickup coil (also named ‘sensing’ or ‘sensor’ coil [3] [4]), coaxial to the drive coil. The 

magnetic field detected by the pickup coil is modified by the presence of a body tissue, to an 

extent dependent on its electrical and magnetic properties. 

Another MIT system based on an excitation coil and a sensing coil was developed by 

Griffiths [4]. The system was capable of imaging saline solutions of conductivities ranging from 

0.001 to 6 Sm-1. The operating frequency was equal to 10 MHz and allowed improvement on 

previously developed MIT systems which were not capable of imaging biological tissues, due 

to their lower operating frequencies (2 and 5.5 MHz) [3]. 

Progress in the development of biomedical MIT systems has been made in the past 

few years. In particular, Zolgharni was able to detect cerebral haemorrhage by using a method 

based on a hemispherical coil array [9]. 

Medicine is only one of the fields of application of tomography techniques. Application 

of MIT in industry, such as metal processing and mining, is well attested in literature, for 

separation and mineral processing, crack and fault detection, characterisation of the level of 

corrosion of industrial materials, inspection of equipment, and monitor of processes in vessels 
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and pipelines (e.g., detection of the extent of solidification of molten metal flowing in a 

pipeline) [11] [14] [15]. 

Other two documented applications of electromagnetic imaging are: 

1) archaeology for imaging submerged remains [17]; 

2) environmental monitoring for tracking the migration of pollutants underground [18]. 

Electromagnetic induction systems have similar characteristics to eddy current 

detection systems and MIT is closely related to Non-Destructive Evaluation (NDE). The latter 

is widely employed in technological inspections, such as thickness measurements, coating and 

surface treatment, residual stress assessment, materials’ quality control and inspection, crack 

detection and the characterisation of aluminium foam structures [37]-[42]. 

In typical MIT and eddy current detection systems, sensing coils measure the magnetic 

field values in presence of the object that is to be imaged. This is completed for a number of 

projections, which are taken in sequence. The measured signals are processed by means of a 

computer, by using inverse problem techniques, and image reconstruction algorithms are 

operated, the result of which is an image of the object [2] [36]. 

The procedure of image reconstruction algorithms is complicated and time-

consuming, because of the computational load on computers. For this reason, our research 

group developed a new EII technique which does not require image reconstruction algorithms 

and has proven suitable for 2D imaging of conductive targets. The system developed for this 

purpose differs from classical MIT systems because it does not involve the measurement of 

the difference between the primary and secondary magnetic fields produced when a 

conductive sample is introduced into the system. A second aspect that is worth mentioning is 

that our research group has introduced a novel field of application for electromagnetic 

induction systems: National Security. The main goal of the PhD project has been developing 

a technique which enables imaging and characterisation of potentially hazardous materials, 

such as explosives, by distinguishing between a piece of ordinary copper and another 

‘suspicious’ material. To a larger extent, the goal of this work has been to develop a technique 

that could be useful for combating illicit trafficking in nuclear and radioactive materials.  
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Penetrating imaging, i.e. imaging of targets hidden behind a shielding material, is 

essential in the field of security. A detection system enabling electromagnetic imaging 

through metallic enclosures for national security purposes has been developed by Darrer et 

al. [43]-[46]. Penetrating imaging is also a fundamental requirement in biomedicine, where 

diagnosis maps of the organs of interest cannot be produced without penetrating through the 

layers of biological tissues surrounding them. In this context, an MIT-based optical method 

based on the use of optical atomic magnetometers (OAM) for diagnostic mapping of the 

heart’s conductivity has been recently proposed by Marmugi et al. [47] [48] and Deans et al. 

[49]. This research work has been based on a different method and has some advantages with 

respect to OAM-based research. For instance, it involves the use of less expensive technology 

and the implementation of the measurement method is simple and highly practical. 

In the past few years, research work on EII systems has been directed towards the 

development of high-sensitivity detection and imaging methods for industrial applications. 

Among the different realizations, Q-detection sensors have been used for condition 

monitoring of steel reinforcing bars embedded in concrete [50] to provide information about 

the health of its structure. Q-detection sensors, incorporating digital signal processing, have 

been exploited since the introduction of metal detectors. These sensors’ working principle is 

based on the increase of the impedance of a coil, which occurs whenever a conductive object 

is inductively coupled to it. This increase is due to eddy current production inside the sample, 

occurring as a consequence of Faraday’s law of induction (refer to Section 2.1). The Q-factor 

of a coil, within a tuned system, drops when high-conductivity targets of low permeability are 

exposed to the changing magnetic field generated by the coil. However, purely permeable 

targets cause an increase of Q-factor [50]. 

Q-detection sensors are part of a wider family of inductive sensors. High-sensitivity 

detection methods based on the use of inductive sensors are object of intense research. For 

instance, these sensors have been recently used for detection of metallic wear debris aimed 

at condition monitoring of rotating and reciprocating machinery [51]. A high-sensitivity 

method based on an inductance-capacitance resonance system was developed to this 

purpose by Du et al. [51]. The authors exploited the amplified impedance change at 

resonance, due to the presence of wear debris particles, to detect metallic specimens ranging 

from 32 to 172 μm [51]. 
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The use of resonating LCR circuits was the initial inspiration for this research work. It 

is documented in some bibliographic sources which were published in the past few years [50]-

[53]. One of them is about the use of RLC resonators as biodegradable sensors for in vivo 

operations and wireless implant applications [52]. Bartlett et al. proposed a method based on 

a series LCR electrical circuit which was tuned to resonate at a particular frequency to achieve 

maximum power transfer [53]. The circuit was based on a dental-scaler drive coil, with various 

magnetostrictive materials acting as the core, connected in series to a capacitor bank. The 

authors showed that the impedance of the system could be significantly reduced by 

introducing a capacitor to create a resonant LCR electrical circuit at the required excitation 

frequency, i.e., the frequency of the drive signal. The proposed capacitance compensation 

method was able to reduce the losses associated with a resonant magnetostrictive dental-

scaler transducer, thus allowing it to resonate with lower input power requirements [53]. 

In Chapters 3-6 of this thesis, the progress made with an EII measurement system 

initially designed and tested as a prototype, and later improved, is documented [54]-[56]. 

Such system was initially based on a resonant LC circuit and was then turned into a parallel 

LCR circuit, made up of a cylindrical ferrite-cored coil (with diameter D=7.80±0.03 mm, height 

H=9.50±0.03 mm, and inductance L=680±10% μH at 1 kHz), connected to a capacitor bank 

(capacitance ranging from 100 pF to 1 μF ± 1%, with sensitivity of 0.1 nF) [54]. An AC current 

was applied to the coil, thus generating an AC primary magnetic field. The working principle 

of the system was based on eddy current induction inside a metallic sample, occurring when 

this was introduced into the AC magnetic field generated by the coil (due to Lenz’s law). As a 

consequence of eddy current induction, the primary field was modified, according to Biot-

Savart’s law. The key point explaining the working principle of the LCR system developed in 

this work is that the inductance of the circuit was also modified, due to the presence of the 

sample, to an extent that depended on the sample’s electrical conductivity and magnetic 

permeability. Such modification is known to increase when the detection system is operated 

at its resonant frequency [51]. The main assumption based on which the technique here 

illustrated was developed is that position-resolved measurements of either the inductance 

change or resonant frequency change could be exploited for identifying the presence of 

conductive objects and imaging them [54]. The initial hypothesis on which this technique has 

been developed is that, provided that the measurement system was sensitive enough to 
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detect changes in the measured quantity (resonant frequency), the system should allow to 

distinguish the object to be imaged from the background (i.e., free space/air). This was 

possible due to the inductive coupling established between the coil and the object, causing a 

change in the system’s resonant frequency to take place. 

Producing a 2D image representing conductive objects was the initial challenge of this 

research project. Looking further into the working principles of the system, a hypothesis was 

made based on which measurements of the resonant frequency changes could lead to 

accomplish materials’ characterisation, i.e., distinguishing between objects having different 

values of electrical conductivity and magnetic permeability. This was shown to be possible by 

utilising a suitable system operated at resonance [54]. The impedance change occurring in 

such system, due to the presence of conductive samples (both of non-magnetic and 

ferromagnetic nature), changed the resonant frequency and Q-factor of the system, since 

these quantities were both dependent on the system’s inductance, which was changed due 

to the presence of conductive samples that were introduced into the system. The importance 

of this result is that developing resonant systems such as the one described here may open a 

route to conductive materials’ imaging and characterisation. Specifically, the detection of 

sample objects that produced a visible change in the measured quantities was found not only 

to allow distinguishing between different shapes and geometries, but also to provide 

information about the electrical conductivity and magnetic permeability of such objects. 

The goals of this research project could be envisaged by developing a robust technique 

that allowed being in control of the circuit’s components, in particular its capacitance and 

resistance, since assigning certain values to these parameters could enable the adjustment of 

the measured quantities (resonant frequency and Q-factor), such that changes in these 

quantities could be maximised and exploited for improving the imaging system’s sensitivity. 

As mentioned earlier, the initial experimental system developed in this context was 

based on a single coil connected to a capacitor bank, allowing selection of values of 

capacitance within the range 100 pF to 1 μF. More details about this experimental setup will 

be given in Chapter 3. The circuit’s components were chosen as to produce a visible resonance 

peak that could be detected with the instrument used to perform the measurements 

(impedance analyser, as indicated in Chapter 3). The change in the resonant frequency 

produced by conductive materials introduced into the LC system was measured and exploited 
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to image them. Limitations were found, due to these changes being smaller than needed to 

distinguish between materials having similar values of conductivity. The system was therefore 

modified, by using a parallel LCR circuit comprising the same ferrite-cored coil previously 

used, plus a variable resistor and capacitor [56]. The possibility of varying the system’s 

resistance and capacitance implied that the system’s resonant frequency and Q-factor could 

be adjusted accordingly (see Section 2.1). This could enable penetration through conductive 

shields to image hidden targets (see Section 2.3), thus enabling more sensitive detection, 

leading to improvements to the imaging and detection performance of the system. The EII 

technique based on the use of the developed LCR system is illustrated in Section 4.2. 

Experimental results reported in Chapters 5-6 prove that the proposed EII technique enabled 

both imaging and material characterisation (related to distinguishing between different 

materials) [54]. An essential feature of the EII method here developed is that the choice of 

using a system with an adjustable resonant frequency made it possible to select resonances 

that allowed magnetic-field penetration through conductive screens [55]. Chapter 6 

elaborates on this central topic by addressing the problem of how to image and detect 

conductive samples with the LCR system, even when these were shielded behind a conductive 

material that was placed in between the coil and the sample of interest. 

Detecting objects that are concealed behind metallic screens is a central problem in 

many fields. These include security, where the threat represented by illicit trafficking of 

materials, and in particular special nuclear materials (SNM), requires reliable techniques to 

be developed for hazard prevention [44]. In many scenarios, and typically in the case of 

maritime cargos, a hidden target is shielded by some other metallic material, often of 

unknown nature, and therefore cannot be directly identified. In principle, the possibility of 

identifying conductive hidden targets can be achieved by using an electromagnetic-based 

system operating at a frequency that causes the penetration depth (skin depth) to be at least 

equal to the thickness of the conductive material shielding these targets. Generally, standard 

electromagnetic imaging systems do not allow imaging through conductive barriers, due to 

limitations in the system’s resonant-field penetration depth; their inherent resonant 

frequency is typically too high and the subsequent skin depth smaller than the thickness of 

the barrier [57]. Techniques are thus required that allow penetration through materials, in 

order for the hidden target to be detected [58] [59]. A novel approach was undertaken by our 

research group, which was based on a resonant electromagnetic induction interrogation 



 

38 

technique. This technique was used to carry out investigations on the possibility of imaging 

concealed metals shielded by conductive materials [55]-[56]. The theoretical principles lying 

behind this part of the research work are reported in Section 2.3 and experimental results 

obtained with the proposed interrogation technique are reported in Chapter 6. 

The ultimate objective of the investigations carried out in this work was to satisfy the 

requirement for an EII system to be sensitive enough to allow characterisation of metallic 

materials having similar values of electrical conductivity, as well as to enable the identification 

of hidden materials. Chapter 7 describes a different, improved version of the EII system 

introduced in the previous chapters. This system was based on an active bandpass filter to 

which a coil was added, to allow eddy current induction and detection of the system’s Q-

factor changes, occurring when a conductive sample was introduced. The sharpened 

resonance peak of such system, compared with the previously used passive one, should allow 

more sensitive measurements to be performed. This is because larger Q-factor absolute 

values would imply larger Q-factor changes, thus allowing resonant peaks, produced by two 

conductive objects having similar values of electrical conductivities, to be resolved. The 

proposed method would also make identification of low-conductivity materials possible, due 

to the larger sensitivity of a higher-Q system, for detection of shifts in resonant frequency. 

The main goals of the preliminary experiments described in Chapter 3 were: 1) to 

understand whether it could be possible or not to succeed at imaging metallic objects by using 

resonant frequency measurements, and 2) to develop a proof-of-principle method for 2D 

imaging of these objects. For these purposes, the following initial objectives were set up: 

 To investigate changes in the resonant frequency when metals of different nature 

were placed under the inductor and w.r.t. when no object was used (coil “in air”). 

 To develop a proof-of-principle method to image a 6-cm-diameter copper disk (high-

conductivity and simple geometry). This represented the first attempt to image an 

object by using the resonant frequency technique which is detailed in Chapter 3. 

Secondly, the developed proof-of-principle method was tested to achieve imaging of 

the same disk, after having placed an aluminium foil in contact with it, for shielding 

purposes. 
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 To image various metals by means of resonant frequency measurements, and verify 

whether the different magnetic properties of such metals were reflected by the 

different images which were obtained with the developed method. 

 To perform measurements at different values of lift-off, to identify the impact of these 

variations on the resulting images, to improve them qualitatively and investigate 

whether it could be possible to distinguish between different samples by looking at 

their images (Section 5.1). 

 To verify whether a method based on Q-factor position-resolved measurements 

rather than resonant frequency measurements would be able to distinguish between 

materials having different values of electrical conductivity. Part of this optimisation 

process included amendments that were made to the experimental system, as 

detailed Section 3.6. 

 To develop a proof-of-principle method for 2D imaging of conductive metallic samples 

having simple geometries (e.g., disks or samples of rectangular cross section) based 

on measurements of the shifts of the system’s resonant frequency and Q-factor. 

 To apply the LCR-based system developed and tested for imaging of ‘unshielded’ 

metallic materials to accomplish imaging of ‘shielded materials’, i.e. conductive 

objects hidden behind a conductive screen, used to prevent recognition of the object. 

 To improve the prototype EII system described in Chapter 3, based on the initial results 

that were obtained with a limited number of conductive samples (Chapter 4). 

Particularly, to change the measurement method by switching to an automated 

measurement system. 

 To establish a new experimental method to successfully produce 2D images of 14 

metallic objects, both magnetic and non-magnetic, with few different planar 

geometries, and values of conductivity ranging from 0.54х106 to 59.77х106 S/m. 

 To conduct a quantitative analysis of the images by using a Canny-edge detection 

algorithm that enabled the contour of the imaged samples to be determined, with the 

goal of assessing the ‘faithfulness’ of the images produced by adopting the developed 

EII method. 

 To optimise the values of components that were used to build the LCR-based system 

with a capacitor bank, used to adjust its resonant frequency to achieve penetration 
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through shielding materials. This was done to identify the best choice of resistance 

and capacitance, for achieving the highest Q-factor shift that could be obtained, when 

a conductive sample was placed in the vicinity of the coil. 

 To improve the work done so far by increasing the low Q-factor absolute values that 

could prevent resolving resonance features and distinguishing between materials 

having different electromagnetic properties, thus representing a constraint for 

imaging of shielded metals. This issue was addressed in the second part of this work, 

which aimed at the implementation of a novel version of the EII system, which was 

based on an active bandpass filter, allowing high Q-factor values to be achieved. 

 

The EII method here proposed was demonstrated to be suitable for non-invasive and 

contactless measurements, capable of revealing the presence of conductive materials, both 

when these were introduced into the system in air (‘unshielded configuration’) and when they 

were hidden by conductive shields (‘shielded configuration’). 

This research work paves the path for more advanced research investigations, aimed 

at material characterisation for security applications. 

A few final remarks about this research project should be given to highlight its novelty 

and relevance with respect to the scenario of security investigations. The originality of this 

work is linked to the experimental system being substantially different from conventional MIT 

systems. As mentioned earlier, such system is based on the use of a single coil, both inducing 

eddy currents in a sample and detecting changes in the system’s resonance characteristics. 

An automated XY stage is employed, thus eliminating the need for an array of coils. The 

technique based on the use of a XY stage allows positioning the sample to be imaged at 

equally spaced places (‘nodes’) on a square scanning area (Chapter 4). The developed imaging 

method provides spatially distributed measurements of the system’s changes due to the 

presence of the sample [54]. The acquisition of position-resolved-measurements at each of 

the nodes of the scanning area represents an efficient, low cost and low-computational-load 

alternative to the use of image reconstruction algorithms, as the reciprocal position between 

the coil and the sample is known a priori. Furthermore, the method here proposed is 

characterised by easy implementation, which makes it suitable for practical use. 
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Overall, the most important advantages of the EII system developed in this work are 

related to its being a low cost, simple technology, making no use of the conceptually and 

technically challenging inverse problem techniques adopted in traditional MIT systems.  
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2 Theoretical principles 

2.1 Eddy current induction 

 

In the early stages of this study, a basic EII system was designed and constructed. The 

system was tested for imaging of electrically conductive metallic samples, in both ‘unshielded’ 

and ‘shielded’ configurations. The physical principles on which the experiment was founded 

are related to eddy current theory and LCR circuit theory and are discussed in the following 

paragraphs. 

An alternating current (AC) flows inside a coil, thus producing an AC magnetic field, which 

is called the primary magnetic field. This effect is shown by Ampère’s circuital law [50]: 

∮ 𝐵 ∙ 𝑑𝑙 =  𝜇𝐼     (2.1) 

In Eq. 2.1, 𝐵 is the magnetic flux density (T), 𝐼 is the current, 𝑙 is a closed path and μ is 

the magnetic permeability of the medium, which is linked to the relative permeability, μr, and 

the permeability of free space, μ0, by: μ = μr μ0 (where μ0 = 4π•10-7 Hm-1 and μ ≈ μ0 for a non-

magnetic conductive specimen). 

The magnetic field is modified when the metallic sample is placed in the vicinity of the 

coil, according to Faraday’s law of induction [38]: 

𝜀 =  − 
𝑑𝛷𝐵

𝑑𝑡
     (2.2) 

Faraday’s law explains how a time-varying magnetic induction flux density induces 

currents in an electrical conductor. It states that an electromotive force ε (having the same 

dimensions as a potential difference, p.d.) is induced, which is proportional to the time rate 

of change of the magnetic flux 𝛷𝐵. For a coil situated normally in a field of intensity 𝐵, the 

flux is given by 𝛷𝐵= NA𝐵, where N is the number of turns in the coil and A is the coil area. In 

Eq. 2.2, 
𝑑𝛷𝐵

𝑑𝑡
 is the rate of change of magnetic flux (Wb s-1) [38]. 

The system is perturbed by adding a metallic sample. Specifically, the inductive part 

of the impedance of the system is modified, as a consequence of eddy-current induction 
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inside the sample. In particular, the resonant frequency of the system constituted by the coil 

in air is changed when the metallic sample is inserted into the circuit. The reason why this 

occurs can be explained as follows. 

Let us consider a coil in which an alternating current is flowing. Let 𝑍0 be the coil 

impedance. When the coil approaches an electrically conductive non-ferromagnetic material, 

the primary alternating magnetic field penetrates the material and generates eddy currents. 

The induced currents flowing within the test piece generate a secondary magnetic field that 

tends to oppose the primary field, as shown in Fig. 2.1. This opposing magnetic field coming 

from the conductive material modifies the primary magnetic field and contributes to creating 

a total field, which is the field detected by MIT systems. A variation in the reluctance is 

experienced, and losses arise due to eddy-current induction. In other words, the imaginary 

part of the modified coil impedance decreases when the eddy current intensity in the test 

piece increases [50]. This is accounted for by the impedance definition: 

𝑍0 = 𝑅0 + 𝑗𝑋0    (2.3) 

This expression refers to the coil impedance in air, which is a complex quantity, whose 

real part (R0) is the coil’s resistance in air and whose imaginary part (X0) is the coil’s reactance 

in air [38]. 

In the system to which this work refers, the coil is part of an LCR circuit. Therefore, the 

inductive reactance of the coil in air is defined by Eq. 2.4 [60]: 

𝑋0 =  𝜔𝐿0 −
1

𝜔𝐶
    (2.4) 

In this equation, L0 is the coil’s self-inductance and C is the circuit’s capacitance. 

Eddy currents also contribute to the increasing of the power dissipation of energy that 

is responsible for changing the real part of the coil impedance. Section 2.4 will describe a 

mathematical model that explains the effect of eddy currents on the coil impedance. Let Z1 

be the circuit impedance when the conductive material is placed into the magnetic field 

generated by the coil. This quantity is given by: 

𝑍1 = 𝑅1 + 𝑗𝑋1     (2.5) 
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Here, R1 and X1 are the resistance and reactance of the circuit, changed from Eq. 2.4 

due to the presence of the conductive material. 

 

Fig. 2.1. Primary and secondary magnetic field generated by eddy currents induced inside an 
electrically conductive material [38]. 

 

In classical eddy current testing, measurement of the coil impedance variation from 

Z0 to Z1 can be obtained by either measuring the potential difference (p.d.) across a sensor 

coil, or the current signal detected with it [63]. The measured quantities can provide 

information about the nature of the material, because the eddy current amount depends on 

the electrical conductivity and magnetic permeability of the material in which they are 

induced [63]. 

In this work, a different approach was undertaken. A resonating LCR circuit was used 

in order to obtain the largest impedance change when a conductive target approached the 

system. The measured quantities were: 1) the system’s resonant frequency and 2) the quality 

factor (Q-factor) of the resonance peak. This approach is supported by the considerations 

reported in the papers written by Gaydecki et al. and Du et al. [50]-[51]. The first paper 

describes the development of an inductive sensor based on a real-time digital processing 

system used for detection and imaging of steel reinforcing bars embedded in concrete and 

utilising the variation of the sensor’s Q-factor due to the change of the real part of the 

impedance of the sensor coil [50]. Du et al. present a system based on an inductance-

capacitance method for detection of small metallic wear debris particles and condition 

monitoring of rotating and reciprocating industrial machinery [51].   
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Let fr0 be the LCR circuit resonant frequency when the system is in air. This quantity is 

defined as [60]: 

𝑓𝑟0 =  
1

2𝜋√𝐿0𝐶
 .     (2.6) 

The system’s resonant frequency is changed when a conductive material approaches 

it, as a consequence of the inductance change. In Eq. 2.6, 𝐿0 is the inductance of the system 

in air. 

The quantity 𝑋1 in Eq. 2.5 is the reactance of the system to which the material is 

coupled, which includes the inductance of the system comprising the conductive material (𝐿1 

in Eq. 2.7). This can be seen by substituting the ‘0’ subscripts in Eq. 2.4 with ‘1’ subscripts, to 

account for the ‘new’ system, modified from the original one due to the presence of the 

material. The ‘new’ resonant frequency of such system can be expressed by: 

𝑓𝑟1 =  
1

2𝜋√𝐿1𝐶
 .    (2.7) 

Whenever a non-ferromagnetic conductive material is inductively coupled to the 

system, the total detected field decreases, due to the secondary magnetic field generated 

from eddy currents. The amount of field reduction depends on the frequency of the applied 

field. This effect has an important consequence on the circuit: the system’s inductive 

reactance decreases. Therefore, the inductance decreases too, due to the definition of 

inductive reactance (𝑋𝐿 =  𝜔𝐿) [38]. The resultant effect on the resonant frequency is an 

increase in this quantity: 

𝑓𝑟1 >  𝑓𝑟0.     (2.8) 

Schematics of the system in air and when a copper (Cu) disk sample is inductively 

coupled to it are shown in Fig. 2.2, where the resistance and inductance have different 

subscripts, to indicate their change occurring due to the presence of the Cu sample. 
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Fig. 2.2. Left: Resonating system “in air”, i.e. with no metallic sample coupled to it. The system is a 
parallel LCR circuit with resistance R0, capacitance C and inductance L0. Right: Modified resonating 
system including a metallic sample in the shape of a disk, inductively coupled to it. The inductance 

and resistance of the modified system are labelled L1 and R1, to distinguish them from the 
components of the resonating system with no metallic sample coupled to it (left). 

 

When the sample is ferromagnetic (μr >> 1), the eddy current effect lowering the 

detected field is offset by the increase in the magnetic field due to magnetisation, as 

explained in the following. The amount of magnetisation occurring when an object of 

permeability μ is placed into an applied magnetic field H can be expressed by the following 

equation [61]: 

𝐵 =  𝜇𝐻      (2.9) 

In this formula, B is the magnetic flux density and H is the magnetic field strength [61]. 

The sample is magnetised and the B-field is increased proportionally to its permeability. The 

permeability μ is a complicated function of the form μ=μ(T, f, p, MH, etc.), where T = 

temperature, f = frequency, p = pressure and MH corresponds to the AC magnetic history of 

the sample. The larger the material’s permeability is, the stronger the detected field becomes, 

because of the primary magnetic field being proportional to μ. This effect is opposed to the 

one due to eddy current induction inside the sample. 

The consequence of the enhancement in the magnetic field produced by a 

ferromagnetic material is an increase in the reactance of the system, due to the inductance 

being proportional to the B-field [61]. 
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The inductive reactance of the system in air is defined as 𝑋𝐿0 =  𝜔𝐿0, and the 

inductive reactance of the modified system including the ferromagnetic material of 

permeability μ is defined as 𝑋𝐿1 =  𝜔𝐿1. The two reactances are linked by the following 

relation: 𝑋𝐿1 > 𝑋𝐿0. Due to the definitions of reactance, the inductance of the system 

increases when a ferromagnetic non-conductive material is exposed to the magnetic field 

generated by the coil. Mathematically: 𝐿1 >  𝐿0. As a result, the resonant frequency of the 

system decreases [38]: 

𝑓𝑟1
𝑓𝑒𝑟𝑟𝑜𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐

<  𝑓𝑟0 .    (2.10) 

Resonant frequency measurements with the system in air and after introducing 

conductive samples (of both non-magnetic and ferromagnetic nature) constituted the first 

investigations of this research project. 

The second quantity that was measured in the experiments is the quality factor of the 

circuit. A parallel LC circuit was initially built, whose inductance value was maintained fixed at 

680±10% μH and whose capacitance was varied (see Chapter 3). A reminder about the 

physical meaning of the quality factor is summed up by the following relations [60]: 

   𝑄 = 2𝜋
𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑

𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑒𝑑 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒
= 2𝜋𝑓𝑟

𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑

𝑝𝑜𝑤𝑒𝑟 𝑙𝑜𝑠𝑠
=  

𝜔0

∆𝜔
  (2.11) 

In the last equation shown in 2.11, ω0 is the angular frequency at resonance and Δω 

the frequency bandwidth of the resonator. According to the first two identities of Eq. 2.11, 

the quality factor (Q-factor) is the ratio of the energy stored in the oscillating resonator to the 

energy dissipated per cycle by damping processes. 

For a parallel LCR circuit, Q is given by [57]: 

        Q = 𝑅√
𝐶

𝐿
                    (2.12) 

The presence of a conductive material in the magnetic field generated by a coil caused a 

quality factor shift which could be measured using an impedance analyser (see Chapter 3) 

that was sensitive enough (i.e., the shift was larger than the measurement uncertainty). Eq. 

2.12 explains that the Q shift occurred as a consequence of the inductance change which was 
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experienced by the measurement system when a conductive material was put in the vicinity 

of the coil. 

Let Q0 be the Q-factor of the system in air, and Q’ be that of the system ‘modified’ by the 

presence of the conductive material. Due to the value of the inductance shifts occurring when 

materials of different nature are used, the Q-factor shift Q’ – Q0 has negative value when a 

non-ferromagnetic conductive material is inductively coupled to the system, whereas it takes 

on positive values when a ferromagnetic material is present [50]. In the case of mainly 

conductive materials having low values of permeability, the new current flowing in the coil 

after eddy currents are induced leads (is in opposition to) the primary current and it is smaller 

than this original current, which means that the ohmic resistance of the coil increases [50]. 

The Q-factor of the coil drops, because it is proportional to the ratio of inductance and ohmic 

resistance, where the former decreases and the latter increases. This makes sense from a 

physical point of view because Q is the ratio between the input energy necessary to maintain 

oscillation and the energy lost (due to resistance) [50]. According to Eq. 2.12, in order for Q 

to drop the capacitance C of the system must decrease, by a greater amount than the 

amounts of decrease of L and increase of R. This is the case for a parallel LCR circuit like the 

one used in this experimental work. 

The changes occurring to the resonance peaks, obtained when a resonating system is “in 

air” (no sample is present) and when a conductive, non-magnetic sample is placed in the 

vicinity of the coil, are represented qualitatively in Fig. 2.3. 

 

 

Fig. 2.3. Qualitative behaviour of a resonating system in air (left) and with a conductive non-
magnetic sample inductively coupled to it (right). The graphs show the two systems’ impedance, 
plotted against the frequency. They show the decrease in the Q-factor and increase in resonant 

frequency occurring due to the presence of the conductive sample [50]. 
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2.2 Maxwell’s equations and electromagnetic waves in conductors 

 

The working principles of the EII system object of this work are based on the theory 

related to Electricity and Magnetism. This is governed by Maxwell’s equations, which can be 

written in their generic, differential forms as follows [60]: 

∇ × 𝑬 = −𝜇
𝜕𝑯

𝜕𝑡
     (2.13) 

∇ × 𝑯 = 𝑱 + 𝜀
𝜕𝑬

𝜕𝑡
     (2.14) 

∇ ∙ 𝑬 =
𝜌

𝜀
     (2.15) 

∇ ∙ 𝑯 = 0     (2.16) 

In Eqs. 2.13-2.16, 𝑬, 𝑱 and 𝑯 are vectors representing the electric field, the conduction 

current density and the magnetic field strength, measured in Vm-1, Am-2 and T, respectively. 

The quantities 𝜇 and 𝜀 are, respectively, the magnetic permeability and permittivity of the 

medium (expressed in NA-2 and Fm-1), and ρ is the charge density (Cm-3). 

Maxwell’s equations can be used to derive the wave equation representing an 

electromagnetic (e.m.) wave travelling along the 𝑧 direction, inside a conducting medium. The 

e.m. wave equation can be expressed as follows [64]: 

∇2𝑯 − 𝜎𝜇
𝜕𝑯

𝜕𝑡
− 𝜇𝜀

𝜕2𝑯

𝜕𝑡2 = 0    (2.17) 

Eq. 2.17 assumes an e.m. wave characterised by a sinusoidal variation of its angular 

frequency 𝜔. In this case, the following relations stand for the first and second derivative of 

𝑯 w.r.t. the variable 𝑧 [64]: 

𝜕𝑯

𝜕𝑧
= 𝑗𝜔𝑯     (2.18) 

𝜕2𝑯

𝜕𝑧2
= −𝜔2𝑯     (2.19) 

If the e.m. wave travelling in the 𝑧 direction is approaching the flat surface of a solid 

conductor, whose normal is in the 𝑧 direction, then Eq. 2.17 can be written as follows [64]: 
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𝜕2𝑯

𝜕𝑧2
− 𝑗𝜔𝜎𝜇𝑯 + 𝜔2𝜇𝜀𝑯 = 0   (2.20) 

The solution to the e.m. wave equation expressed by Eq. 2.20 can be proven to be 

given by [64]: 

𝑯 = 𝒚𝐻0exp (𝑗(𝜔𝑡 − 𝑘𝑧)),    (2.21) 

which was obtained by considering that no variations occur in the x and y directions, and by 

making use of the identity: ∇2𝑯 =
𝜕2𝑯

𝜕𝑧2
  [64]. 

In Eq. 2.21, the quantity 𝑘 is called the wave number and is defined by the following 

relation: 𝑘2 = 𝜇𝜀𝜔2 (1 −
𝑗𝜎

𝜔𝜀
), where the complex quantity 

𝑗𝜎

𝜔𝜀
 is the ratio of the conduction 

current density 𝑱 = 𝜎𝑬 to the displacement current density 𝜀
𝜕𝑬

𝜕𝑡
= 𝑗𝜔𝑬 [64]. 

Let us now study the behaviour of the e.m. wave in two scenarios: 1) above the 

conducting medium; 2) within the conductor. 

Above the conductor, the electrical conductivity σ equals zero. Hence, the equation 

for the wave number reduces to: 𝑘 = 𝜔√𝜇𝜀 and 𝑘 becomes a real quantity. This implies that 

the e.m. wave is not attenuated in the 𝑧 direction [64]. 

Within the conductor, the quantity 
𝑗𝜎

𝜔𝜀
 is much larger than unity, therefore the 

displacement current can be neglected, and the electrical permittivity ε can be assumed to 

be zero. Mathematically, this leads to the following equation for the wave number 𝑘: 

𝑘 = √−𝑗𝜔𝜎𝜇 =  √
𝜔𝜎𝜇

2
 (1 − 𝑗)   (2.22) 

Substituting Eq. 2.22 into Eq. 2.20, the wave equation becomes [64]: 

𝜕2𝑯

𝜕𝑧2
= 𝑗𝜔𝜎𝜇𝑯     (2.23) 

The solution to Eq. 2.23 can be found to be as follows: 

𝑯 = 𝒚𝐻0 exp (𝑗 (𝜔𝑡 −
𝑧

𝛿
) −

𝑧

𝛿
) = 𝒚𝐻0 exp (−

𝑧

𝛿
) cos (𝜔𝑡 −

𝑧

𝛿
),  (2.24) 
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Eq. 2.24 describes an e.m. wave travelling through a material of conductivity σ and 

permeability μ in the 𝑧 direction. The magnitude of the wave is maximum at the conducting 

material’s surface (where it is given by 𝐻0) and decreases exponentially with increasing 

distance 𝑧 from the material’s surface. The term −
𝑧

𝛿
 inside the cosine in Eq. 2.24 represents 

the phase lag occurring between the surface wave and the wave at a depth 𝑧 within the 

conductor [64]. 

In Eq. 2.24, the quantity δ is called the standard penetration depth, or skin depth, of 

eddy currents, and is defined as: 

𝛿 = √
2𝜌

𝜔𝜇
 ,     (2.25) 

where ρ is the resistivity of the conductor, μ its magnetic permeability and ω is the angular 

frequency of the e.m. wave [64]. 

The flow of current within the conductor can be calculated by using second Maxwell’s 

equation (Eq. 2.14) and setting ε = 0, which leads to the following expression, representing 

the current density circulating in a conductor: 

𝑱 = ∇ × 𝑯 = −𝒙
𝜕𝐻𝑦

𝜕𝑧
= 𝒙𝐽0 exp (−

𝑧

𝛿
) cos (𝜔𝑡 −

𝑧

𝛿
), (2.26) 

In this equation, 𝐽0 = (1 + 𝑗)
1

𝛿
𝐻0 is the current density at the conductor’s surface. 

Eq. 2.26 shows that the eddy current density within conductors is parallel to the 

magnetic field strength and obeys the same decaying relation with depth in the conductor 

[64]. 

 

2.3 2D imaging of shielded conductive samples 

 

The first objective of this research work was to develop a method for identifying 

conductive samples of both non-magnetic and ferromagnetic nature, and image them. An EII 

system was developed for this purpose, as described in Chapters 3 and 4. The second 

objective of the investigations documented in this thesis was to test the ability of the 

developed EII system to penetrate through conductive barriers, and allow 2D imaging of 
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metallic objects concealed behind them. The theoretical principles behind this investigation 

are presented in the following paragraphs. 

Eddy current flow is not uniformly distributed throughout the volume of a conductive 

sample. In particular, current flow is stronger at the surface of the sample, and it decreases 

exponentially with the distance from the surface. The skin depth, δ, introduced in the previous 

section (Eq. 2.25), is defined as the depth within a conductor at which the eddy-current 

density decreases to a level equal to 37% of its surface value [64]. The skin depth can be 

expressed by Eq. 2.25, where ω is the angular frequency at which the system is operated. The 

relation between the system’s angular frequency and its frequency of operation, which in this 

particular experiment corresponds to the resonant frequency, is the following [34]: 

   𝜔 = 2𝜋𝑓𝑟        (2.27) 

where fr is the frequency at which the system is resonated [50]: 

𝑓𝑟 =  
1

2𝜋√𝐿𝐶
 .     (2.28) 

The skin depth will have to be sufficiently high in order for penetration through 

conductive barriers (shields) to occur. This statement raises an important requirement for the 

system: the latter should be operated at a suitable frequency, as shown by the definition of 

skin depth (Eq. 2.7) [49]. According to Eq. 2.16, penetrating through these shields can be 

achieved by decreasing the system’s resonant frequency to an extent depending on the 

material’s electromagnetic properties (identified by σ and μ). One way of decreasing fr is to 

increase the capacitance, as is shown by the definition of resonant frequency expressed by 

Eq. 2.16. 

The use of the electromagnetic induction interrogation technique here described, 

based on a resonant system where the inductor is the sensor, proved beneficial for attaining 

penetration through conductive shields. This is the case because coupling the inductor with a 

conductive object leads to changes in the resonant circuit’s parameters, such as its resonant 

frequency or quality factor, which can be detected. The equation that governs the behaviour 

of the resonant system can be approximated by Eq. 2.16. In this equation, L and C are the 

inductance and capacitance of the system. The crucial point is that operating the system at 

its resonant frequency is known to enhance the sensitivity of detection [49]. In the present 
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work, the ability to adjust the system’s resonant frequency has been exploited with the 

purpose of imaging through conductive shields. 

The penetrating power of electromagnetic imaging through a shield of a given material 

is limited by the skin depth 𝛿 [50] through which the oscillating magnetic field can penetrate 

through the material. In order to achieve a penetration through the shield, sufficient for the 

oscillating magnetic field to reach the target to be imaged, the value of the capacitance was 

chosen so that the skin depth was either larger or of the same order of magnitude of the 

thickness of the shield. Therefore, by selecting an appropriate value of capacitance, the 

system should allow penetration through a conductive target, even when this was hidden 

behind shielding conductive materials. 

 

2.4 Eddy current detection in non-ferrous metals 

 

The impedance of a coil having N turns, with axis perpendicular to a semi-infinite flat 

metal surface and operated at a frequency 𝑓 = 𝜔/2𝜋, is given by [65]: 

𝑍𝑐𝑜𝑖𝑙 =
𝑖𝜔𝜋𝑁2�̅�𝜇

(𝑙2−𝑙1)2(𝑟2−𝑟1)2 ∫
1

𝛼0
3𝛼3 𝐽2(𝑟1, 𝑟2) {2𝛼0(𝑙2 − 𝑙1) + 2𝑒−𝛼0(𝑙2−𝑙1) − 2 + (𝑒−2𝛼0𝑙2 +

∞

0

𝑒−2𝛼0𝑙1 − 2𝑒−𝛼0(𝑙1+𝑙2))
𝛼0−𝛽1

𝛼0+𝛽1
} 𝑑𝛼         (2.29) 

Where: 

𝛼0 = [𝛼2 − �̅�2𝜔2𝜇0𝜖0]1/2        (2.30) 

�̅� =
𝑟1+𝑟2

2
           (2.31) 

𝛽1 = [𝛼2 − �̅�2𝜔2𝜇0𝜖0 + 𝑖�̅�2𝜔𝜇1𝜎1]1/2       (2.32) 

𝐽(𝑟1, 𝑟2) = 𝛼2 ∫ 𝑟0𝐽1(𝛼𝑟0)𝑑𝑟0
𝑟2

𝑟1
        (2.33) 

Where 

𝛼 = variable of the integration, 

𝜇0 = permeability of free space, 
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𝜖0 = permittivity of free space,  

𝜇1 = permeability of metal slab, 

𝜎1 = conductivity of metal slab, and 

𝐽1 = Bessel function of the first kind. 

 

The probe variables in Eqs. 2.29-2.33 and following equations of the next page are defined as 

follows: 

𝑟1 = coil inner diameter, 

𝑟2 = coil outer diameter, 

𝑙1 = vertical distance from coil lower base to metal surface (lift-off distance), 

𝑙2 = vertical distance from coil upper base to metal surface, and 

𝑑𝑐 = 𝑙2 - 𝑙1 = coil longitudinal length (height). 

 

For nonferrous metals, 𝜇1 may be considered equal to 𝜇0. The approximation 𝛼 ≈ 𝛼0 will 

be applied in the following [65], assuming coil geometry characterised by radius r = 0.01 m 

and frequency 𝑓 = 100 kHz. 

The equation for the coil impedance (2.29) can be separated into parts that relate to the 

coil, the metal, and the coil to metal interaction. If all geometrical variables are constant as a 

specific coil is chosen, the equation can be separated into 5 parts that are functions related 

to the electromagnetic interaction. The 5 parts are as follows: 

1) Coil property independent of the variable of integration: 

𝐴 =
𝜋𝑁2�̅�𝜇

(𝑙2−𝑙1)2(𝑟2−𝑟1)2        (2.34) 

2) Coil property, a Bessel function and a function only of the variable of integration: 
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𝐵(𝛼) = 𝐽2(𝑟1, 𝑟2)         (2.35) 

3) Coil property, which is a function only of the variable of integration: 

𝐶(𝛼) = 2𝛼𝑑𝑐 + 2𝑒−𝛼𝑑𝑐 − 2       (2.36) 

4) Function of the coil-metal separation distance 𝑙1: 

𝐷(𝛼, 𝑙1) = 𝑒−2𝑙1(𝑒−𝛼𝑑𝑐 − 1)2       (2.37) 

5) Metal property, which is a function of conductivity and frequency: 

𝑅(𝜔, 𝜎, 𝛼) + 𝑖𝐼(𝜔, 𝜎, 𝛼) =
𝛼0−𝛽1

𝛼0+𝛽1
       (2.38) 

The original equation for the coil impedance can thus be rewritten as: 

𝑍 = 𝑖𝜔𝐴 ∫
1

𝛼6

∞

0
𝐵(𝛼) 𝐶(𝛼)𝑑𝛼 + 𝑖𝜔𝐴 ∫

1

𝛼6

∞

0
𝐵(𝛼) 𝐷(𝛼, 𝑙1)(𝑅 + 𝑖𝐼)𝑑𝛼 (2.39) 

All variables of Eq. 2.39 are now real. With other held constant, the impedance of the 

coil is a function of lift-off (𝑙1), frequency (ω), and conductivity (σ). Assuming that both lift-off 

and the product 𝜔𝜎 are held constant, it can be proven that the inductance does not vary 

when two different frequencies are used to operate the coil and the latter is placed onto two 

different metals (with 𝜎1 ≠ 𝜎2) [65]. Under these assumptions, the inductance is given by: 

𝐿 = 𝐴 ∫
1

𝛼6 𝐵𝐶𝑑𝛼 + 𝐴 ∫
1

𝛼6 𝐵𝐷𝑅𝑑𝛼
∞

0

∞

0
   (2.40) 

If the product 𝜔𝜎 is constant, then the resistance of a coil operated at a frequency 

𝑓1 = 𝜔1/2𝜋 and placed over a metal of conductivity 𝜎1 is equal to: 

𝑅1 = 𝑖2𝜔1𝐴 ∫
1

𝛼6 𝐵𝐷𝐼𝑑𝛼
∞

0
≠ 𝑅2 = 𝑖2𝜔2𝐴 ∫

1

𝛼6 𝐵𝐷𝐼𝑑𝛼
∞

0
  (2.41) 

Where 𝑅2 is the resistance of the coil when this is operated at a frequency 𝑓2 = 𝜔2/2𝜋 and 

it is placed over a metal of conductivity 𝜎2. 

In Eq. 2.41, the integral remains constant but the effective coil resistance changes 

linearly with frequency. 

In the experimental work that is detailed in this thesis, the quantities of interest are 

the resonant frequency and Q-factor expressed by equations 2.6, 2.7, 2.11 and 2.12. By 
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definition, these depend upon the coil inductance, as in Eq. 2.40. Specifically, the resonant 

frequency is given by: 

𝑓𝑟 =
1

2𝜋√𝐿𝐶
=

1

2𝜋√𝐶√𝐴 ∫
1

𝛼6𝐵𝐶𝑑𝛼+𝐴 ∫
1

𝛼6𝐵𝐷𝑅𝑑𝛼
∞

0
∞

0

  (2.42) 

The Q-factor for a generic LCR circuit with complex impedance 𝑍𝑡 = 𝑍𝑟 + 𝑖𝑍𝑖  (𝑍𝑡 is effectively 

𝑍 in Eq. 2.39) is defined by the following equation [50]: 

𝑄 =
𝜔𝐿

𝑍𝑟
      (2.43) 

Where 𝑍𝑟 is the real part of the impedance (as in Eq. 2.41), 𝜔 is the operating frequency of 

the circuit and 𝐿 the coil inductance. Using Eqs. 2.40 and 2.41,  2.42 can be rewritten as: 

𝑄 = −
∫

1

𝛼6𝐵𝐶𝑑𝛼+∫
1

𝛼6𝐵𝐷𝑅𝑑𝛼
∞

0
∞

0

∫
1

𝛼6𝐵𝐷𝐼𝑑𝛼
∞

0

    (2.44) 

Functions R and I establish the Q dependence upon the conductivity of the material, 

function D links Q to the lift-off. 

On the other hand, the resonant frequency depends on the same parameters 

(conductivity and lift-off), in a different way from the way in which Q is linked to those, 

through functions D and R contained in Eq. 2.40. 

In cases where either the lift-off, the product 𝜔𝜎 or both are non-constant, relations 

2.40-2.44 cease to be valid and the resonant frequency and Q-factor depend on the lift-off 

and on the conductivity in a more complicated way. The former is dependent by definition on 

the inductance (Eq. 2.28), which is contained in the imaginary part of 𝑍, as in Eq. 2.39. The 

latter depends on both the real and the imaginary part of 𝑍 = 𝑍𝑡 = 𝑍𝑟 + 𝑖𝑍𝑖. As underlined 

previously for the case in which 𝜔𝜎=constant, the lift-off dependence is given by function 𝐷, 

and the relation between the coil impedance and the conductivity of the sample is extant due 

to the functions 𝑅 and 𝐼 (Eqs 2.37-2.39). 

What described in the previous paragraph shows that the dependency of the resonant 

frequency and the Q-factor on the lift-off and the conductivity of the sample is different. 

Therefore, the behaviour of these quantities can be understood only by treating them 

separately and analysing the limits of the function in Eq. 2.39 for low and high values of the 
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variables lift-off and conductivity, respectively. Chapter 5 contains experimental work aimed 

at deriving curves showing the lift-off dependence of measured resonant frequency and Q-

factor, and later focuses on the behaviour of these measured quantities on the conductivity 

of the samples included in this experimental work. 

  



 

58 

3 An LC resonant system for 2D imaging of conductive materials 

This chapter documents the early stages of the set-up of a 2D imaging system for the 

identification of conductive samples. Section 3.1 describes the initial LC resonant system and 

proof-of-principle method with which the initial measurements were carried out. The 

following sections are about a battery of experiments that were performed at the beginning 

of this PhD project. The strategy was identifying a proper method to achieve identification of 

conductive samples and 2D imaging by means of eddy current induction. Details about how 

each experiment was performed are given in the individual sections. Early results and 

discussion are reported in Sections 3.2-3.7. 

 

3.1 Description of the early stage experimental system 

 

This section describes a prototype experimental system developed in the early stages 

of this research activity, which was based on a resonating system that included a metallic 

sample, an inductor (L=970 μH ± 10%) and a capacitor bank, allowing selection of capacitance 

C values going from 10-4 up to 1.111 μF, with sensitivity equal to 0.1 nF (Fig. 3.1). The first 

inductor that was used for these experiments was a pancake coil (outer diameter 43.0±0.5 

mm, inner diameter 22.0±0.5 mm, height 20.0±0.5 mm) (Fig. 3.1). The coil was placed in a 

lodge positioned on the upper layer of a Perspex support structure (non-magnetic). A second 

Perspex layer was used to position the sample (e.g., a 6-cm-diameter, 2-mm-thick copper 

disk) along a plane parallel to the disk’s surface and perpendicular to the coil’s axis (Fig. 3.1). 

This configuration allowed the sample to be ‘seen’ by the coil, and the two to be placed at a 

vertical distance from each other (lift-off) which was constant. The values assigned to the lift-

off were varied throughout this work and are specified for each experiment described in the 

following. The inductor was connected in parallel to a capacitor bank, and the two together 

were connected to the Precision Impedance Analyzer 6500B (Wayne Kerr) (Figs. 3.2-3.3). The 

impedance analyser supplied the excitation signal, and the inductor initially established an AC 

magnetic field, which was then modified due to the presence of the conductive sample in 
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which the eddy currents were induced. The inductor was also used as a sensor, to detect 

changes linked to the presence of the sample. These changes were measured with the 

impedance analyser, which allowed performing frequency sweeps of various quantities, 

including the impedance and inductance of the system. The resonant frequency and Q-factor 

related to resonance could also be measured with the instrument. 

                                                        

Fig. 3.1. Left: Picture of the experimental system used at the initial stage of this research work, to 
test whether the presence of a metallic sample could be detected by using a LCR-based system. The 

sample in this picture is a copper disk (6-cm-diameter, 2-mm-thickness), and the coil is a pancake 
coil (No. turns=400±1, outer diameter 43.0±0.5 mm, inner diameter 22.0±0.5 mm, height 20.0±0.5 
mm). Two Perspex layers were used as a non-magnetic structure to support the coil and maintain it 

in a fixed position w.r.t. the sample. The coil was part of a LC circuit whose capacitance could be 
varied to make the system resonate at different values of resonant frequencies. This was achieved 

by selecting appropriate capacitance values from the “Jay-Jay instruments - Type no. VC5” capacitor 
bank (Educational Measurements Limited), shown in the picture on the right. 

 

The prototype system described above was tested for 2D imaging of sample objects 

having different electrical conductivities, both ferromagnetic and non-magnetic, by means of 

resonant frequency measurements. These measurements were performed when the system 

was “in air” (no sample present) and when the samples were coupled to the LC system, thus 

modifying the system’s resonant frequency. The copper disk shown in Figs. 3.1 and 3.3 is one 

example among the samples used, which were characterised by different geometries and 

different electromagnetic properties. Two further examples of the samples are shown in Fig. 

3.4, representing two aluminium disks of different values of diameter, both having 2-mm-

thickness. The presence of the capacitor bank made it possible to tune the capacitance and 

investigate the effect of using different values of C to vary the resonance frequency of the 

system. This feature of the system was beneficial for investigating its capability to detect the 

presence of conductive materials shielded by conductive screens (Section 2.3). Moreover, the 

possibility of tuning C was advantageous for improving the system’s sensitivity of detection, 

which could allow the identification of poorly conductive materials (that produced eddy 
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currents of low magnitude), as well as enable distinguishing between different materials 

having similar values of conductivity, which therefore produced similar shifts in the system’s 

resonant frequency. 

    

Fig. 3.2. Left: Front view of the Precision Impedance Analyzer 6500B (Wayne Kerr) used to 
measure the resonant frequency and Q-factor of the system, in air and in the presence of 
conductive samples. The display shows the resonance peak on a Z vs frequency plot. The 

instrument was connected to a parallel LC circuit, with electronic schematic shown on the right 
of the figure, which consisted in a coil (e.g. pancake coil with inductance L=970 μH ± 10%) and a 

capacitor selected from the capacitor bank. 

 

 

Fig. 3.3. Experimental set-up. The impedance analyser acted as an AC current generator. A copper 
disk was used as a test sample and moved by means of a Perspex support. The instrument was 

connected to a pancake coil inside which eddy currents were induced. These currents altered the 
measured impedance. A capacitor bank was used in order to move the resonance peak to lower 

frequency values, to investigate the possibility of achieving eddy current penetration through 
materials shielding the sample. 
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Initial investigations with the basic resonating system presented above (Figs. 3.2-3.3) 

included some test samples made of copper and aluminium disks (2.0±0.5 mm thickness) of 

different diameters (Fig. 3.4). The behaviour of different types of coils (Fig. 3.5) coupled to 

the test samples specified above was investigated. 

The main goals of the preliminary experiments described in the following sections 

were: 1) to understand whether it could be possible or not to succeed at imaging metallic 

objects by using resonant frequency measurements, and 2) to develop a proof-of-principle 

method for 2D imaging of these objects. 

At the initial stage, the samples were placed under the coil constituting the LC system 

and the impedance analyser was used to measure the resonant frequency of the system, both 

in the presence of the metals and in their absence (“in air”), for comparison purposes. The 

hypothesis here was that the change in the system’s resonant frequency could be measured. 

A measurable change of resonant frequency was found when conductive samples of different 

nature and geometries were inductively coupled into the system (Section 3.2). This result set 

the basis for investigations around the possibility of producing 2D images revealing the 

presence and reproducing the shapes of the samples, by means of resonant frequency 

measurements, which were achieved by building a set-up consisting of a support based on 

two parallel Perspex layers, illustrated in Fig. 3.3. Q-factor measurements were performed 

after testing the method based on resonant frequency measurements, by adopting a similar 

method, as reported in Section 3.6. 

 

Fig. 3.4. Representation of aluminium and copper disks used as test samples. The values of electrical 
conductivity (σ) and magnetic susceptibility (χ) reported here were tabulated in [66]. Uncertainties in 

the disk diameters were equal to 0.5 mm. 
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(a)                                                 (b)                                         (c) 

Fig. 3.5. Images of all coils tested in this work, having characteristics as follows: (a) air-cored coil (No. 
turns=100±1, inner diameter 8.0±0.5 mm, outer diameter 9.0±0.5 mm, height 8.5±0.5 mm); (b) 
ferrite-cored coil (No. turns=145±1, Ø=7.8±0.5 mm, height=9.5±0.5mm); (c) pancake coil (No. 

turns=400±1, outer diameter 43.0±0.5 mm, inner diameter 22.0±0.5 mm, height 20.0±0.5 mm).  

 

3.2 Resonant frequency changes due to eddy currents 

 

The primary purpose of the experiment reported in this section was to investigate 

changes in the resonant frequency when metals of different nature were placed under the 

inductor and w.r.t. when no object was used (coil “in air”) (Fig. 3.6). 

 

 

Fig. 3.6. Simplified sketch showing the experimental configuration in which a flat metallic 
sample was inductively coupled to an inductor (“ferrite-cored coil”) at a fixed value of lift-off, i.e., 

vertical distance between the sample and the ferrite-cored coil. The inductor shown here (made by 
“multicomp”, part no. MCSCH895-681 KU) was connected to a capacitor as shown in Figs. 3.2-3.3. 

This figure represents one of the two configurations used in the experiments, the second one being 
characterised by the LC system “in air”, i.e., with no metallic sample present. 

 

The method adopted in this experiment consisted in setting a series of capacitance 

values, using which the difference in resonant frequency values, measured in air and after 

adding different types of steel, was calculated. The resonant frequency values were measured 



 

63 

by means of the impedance analyser, after setting the external capacitor bank to a series of 

increasing values going from 0.1 μF to 1 μF, with steps of 0.1 μF. Eqs. 2.6. and 2.7 showed the 

dependence of the resonant frequency on the capacitance in the two scenarios when the 

system was in air and after each metallic sample was introduced. Trends predicted by these 

equations were found after plotting measured values of resonant frequency against the 

selected values of capacitance. The plots shown in Fig. 3.7 were obtained by inductively 

coupling the following samples to the LC system: 

 2-pence ferromagnetic coin (copper-plated steel, 25.0±0.5 mm-diameter, 1.0±0.5 

mm-thickness); 

 (40.0±0.5)x(30.0±0.5)x(3.0±0.5) mm3 steel sample; 

 (40.0±0.5)x(30.0±0.5)x(1.0±0.5) mm3 steel sample. 

 

 

 

Fig. 3.7. Resonant frequency (Hz) vs external capacitance (μF) measured with 1) coil in air, 2) coil 
above 2-pence magnetic coin and 3) coil above 3-mm-thick steel sample. Frequency values were 

measured at fixed capacitance values, set up using a capacitor bank (“Jay-Jay instruments - Type no. 
VC5”), by means of the impedance analyser. Quantities uncertainties were smaller than the 

dimensions of data points in this graph and are therefore not visible. 

 

Since all the materials used in this experiment were ferromagnetic, the resulting 

resonant frequency values were lower than the corresponding ones obtained when the 

system was in air (Fig. 3.7). This behaviour was explained theoretically by Eqs. 2.6, 2.7 and 
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2.10 in Chapter 2, and is resembled by experimental observations. The trends shown in Fig. 

3.7 indicated that the resonant frequency dependence on the capacitance expressed in Eq. 

2.6 was valid in the range of capacitance used in this work, and thus justified the approach 

adopted in this work. Results similar to the ones shown in Fig. 3.7 were found by using non-

magnetic samples, for which the resonant frequency was higher than the frequency 

measured in air. This confirmed the validity of the theoretical assumptions expressed in Eqs. 

2.6-2.8. Quantitative information about the sample’s magnetic properties was not available 

at this stage and this prevented further conclusions to be drawn with respect to the response 

of the system to samples having different characteristics of permeability. Section 5.7 is about 

investigations of this kind, conducted with the purpose of characterising materials, i.e., test 

samples having the same geometries and different electromagnetic properties. Iron with a 

known value of purity was chosen as a sample representative for the category of 

“ferromagnetic materials”. 

Values of resonant frequency obtained with the system in air, and after adding a coin, 

a 1-mm-thick steel sample and a 3-mm-thick steel sample were considered (Fig. 3.7). Changes 

between the resonant frequency of a coil in air and that of a coil above each of the three 

metals were calculated by using: 

∆𝑓 (%) =
𝑓(𝑎𝑖𝑟)− 𝑓(𝑠𝑎𝑚𝑝𝑙𝑒)

𝑓(𝑠𝑎𝑚𝑝𝑙𝑒)
 (%) .   (3.1) 

Percentage changes up to 12% were found (this value was attested to be significant 

after taking into account the measurement errors). This promising result was the input 

leading to carry out further investigations, which are detailed in the following sections. 
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3.3 Position-resolved measurements of the resonant frequency 

 

The first objective of this experiment was to develop a proof-of-principle method to 

image a 6-cm-diameter copper disk. This represented the first attempt to image an object by 

using the resonant frequency technique which is detailed in the next paragraphs. Secondly, 

the developed proof-of-principle method was tested to achieve imaging of the same disk, 

after having placed an aluminium foil in contact with it, for shielding purposes. In such a way, 

two scenarios were studied, in which a visible object and a hidden one were to be identified. 

Measurements were performed by adopting the following procedure, which set the basis for 

the experimental method that was used in most of the investigations described in the next 

chapters (see Section 4.2). 

1) Initially, a metallic sample was placed under the inductor, on the lower Perspex layer, 

while the coil was secured in a lodge extracted on the upper layer (Figs. 3.1a and 3.3). The 

coil was connected to the capacitor bank, in turn connected to the impedance analyser 

introduced in Section 3.1 (Fig. 3.2). 

2) A scan of the sample to be imaged was achieved, as follows. The sample was moved by 

hand along a plane parallel to the plane defined by the lower base of the coil. The coil lift-

off, measured with a ruler, was made equal to 2±1 mm. Such a large uncertainty was 

compensated for in the next phase of the experimental work, where an automated 

scanning system was set up and software was run to control the measurement acquisition 

(Chapter 4). The new experimental system allowed more accurate positioning of the 

sample and thus improved reliability of the results. Frequency sweeps were set with the 

impedance analyser, in order to identify the resonant frequency of the system at each 

position along the object plane, to produce a n x n scanning area, as shown in Fig. 3.8. The 

scanning area was set to be larger than the area occupied by the samples to be imaged, 

to allow the samples’ dimensions to fit the plot. 

3) The frequency at which the LC circuit resonated was measured at each position of the 

sample along the x and y axis (Fig.3.8). The change in frequency occurred because of the 

different distances of the sample from the coil, at the various positions along the scanning 

area. The frequency, in turn, varied as a consequence of the change in the inductance of 

the system, as explained in Chapter 2. 
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4) 2D surface plots were generated with Matlab by means of interpolation with a piecewise 

cubic fit, by plotting position-resolved resonant frequency values (measured as detailed 

at point 3) against the x and y positions on the scanning area. 

This measurement strategy provided a resonant frequency 2D scan and paved the way 

for the implementation of a novel imaging technique for metals identification. Pictures of two 

different coils used to test the proposed scanning method with copper and aluminium disks 

are shown in Fig. 3.9. 

 

Fig. 3.8. Sketch representing the scanning area, made up of n x n total positions, or nodes, at each of 
which the measurements were acquired, by using the impedance analyser. The coil, represented by 

the yellow circles, was maintained at a fixed position w.r.t. the metallic sample (light blue), which 
was initially placed at starting position labelled “1”, and was then moved by hand to the right 

(position “2”) and so on, until the first row of the scan was competed. The sample was then moved 
to the next row of the scan below the first one, and then to third one etc., until n x n measurements 

were acquired, corresponding to all the positions of the sample along the scanning area. 

 

 

Fig. 3.9. Pancake coil (left) and ferrite-cored coil (right) used to image a copper disk (left) and an 
aluminium disk (right) with the aid of Perspex layers. Graph paper was used to keep track of the 

motion of the disk samples. 
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The experiments reported in this section involved the use of a 6-cm-diameter copper 

disk as a sample. Profiles obtained by moving the sample by hand along the y axis indicated 

in Fig. 3.8 are reported in Figs. 3.10 and 3.11. 2D surface plots generated with Matlab by 

plotting the resonant frequency against the xy positions are shown in Figs. 3.16 and 3.17. The 

data points shown in these figures and in similar ones reported in this thesis represent the 

positions where the measurements were taken. 

 

Fig. 3.10. Resonant frequency measured with a copper disk at different positions along the x axis 
(different colours in figure) and y axis (abscissa of the graph). The key reported on the right of the 

graph indicates the rows at which the measurements were taken by moving the disk along a 4x4 cm2 
area, as specified in the following. ‘Central row’ means that the disk was positioned on 16 equally-

spaced-places along the horizontal line at the centre of the scanning area; ‘up’ and ‘down’ 
respectively refer to rows above and below the central row of the scan. 

 

Fig. 3.11. Resonant frequency (kHz) measured with unshielded (square) and shielded (diamond) 
copper disk at different positions along the x axis of the scanning area. 
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Fig. 3.12. 2D Surface plot obtained with Matlab and representing a 6-cm-diameter copper disk, 
imaged by means of a resonant frequency scan. The shape of the disk seen from the above is clearly 
reproduced in the image, and the diameter in the figure, measured with a ruler, is in agreement with 

the diameter of the actual sample. The data points in the plot represent the positions along the 
scanning area where the measurements were taken. 

 

The developed method successfully imaged the disk by means of resonant frequency 

measurements, as shown by Figs. 3.10-3.14. Both curves reported in Figs. 3.10 and 3.11 

revealed an asymmetry which was due to either the Perspex layer or the coil (or both) being 

tilted. This fault was intrinsic to the measurement method used in the early stage of this 

research, which was based on taking measurements by hand and therefore was not 

optimised. The importance of improving the system and measurement method led to 

modifying them, as described in the next chapter. The orientation of the sample object w.r.t. 

the coil plane was an essential parameter in these measurements, because resonant 

frequency values changed with the object-to-coil distance. Extra care needed to be paid when 

placing the object and the coil, in order to have their planes as parallel as possible. Otherwise, 

the curve of resonant frequency vs position coordinate would be asymmetric and, as a 

consequence, the resulting object image would be distorted. 
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The Al disk was then shielded by a piece of aluminium foil (thickness equal to 

0.016±0.001 mm) which was put in between the disk and the Perspex layer onto which the 

coil was placed. The image of the disk in the “shielded” configuration is reported in Fig. 3.15. 

 

Fig. 3.13. 2D surface plot of a 6-cm-diameter copper disk shielded with an aluminium foil, and 
imaged by means of a resonant frequency scan. The shape of the disk is clearly reproduced in the 

image and the diameter in the figure corresponds to the one of the actual sample. 

 

Images of copper disks unshielded and shielded with aluminium foil successfully 

revealed the presence of the metallic object, thus demonstrating the usefulness of the 

investigations being carried out (Figs. 3.12 and 3.13). This result showed that the proposed 

imaging technique was not only working with unshielded metallic samples, but also with 

samples hidden beneath a piece of aluminium foil shielding it. 

The last part of this experiment was a test carried out to reinforce the choice made 

about using the value of capacitance C=0.03 μF. For this purpose, resonant frequency 

measurements obtained with a 6-cm-diameter, 2-mm-thick aluminium disk were measured 

with two different external capacitance values: C=0.03 μF and C=1.111 μF. Data 

corresponding to position y=0 (i.e., the row of the scan passing through the centre of the disk, 
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as in Fig. 3.8) was taken into account. Differences (%) between values measured at 

subsequent positions along the horizontal x axis were calculated for data at C=0.03 μF and 

C=1.111 μF. Such differences were found to lie between -3% and 4% for data obtained at the 

lower capacitance value, whereas the frequency values were all equal, within the 

experimental uncertainty (between 0.04 and 0.06 for both fr and Q), at 1.111 μF. The latter 

value of capacitance would have prevented the system from working effectively to image 

conductive samples. This is because the change in resonant frequency due to the presence of 

these samples was not larger than the experimental uncertainty of resonant frequency 

measurements obtained in the absence of the samples. This conclusion justified the choice of 

a capacitance C=0.03 μF, which was made in the experiments described in this section. 

 

3.4 Imaging copper, aluminium and steel samples 

 

More objects, having different geometries and different values of electrical 

conductivity and magnetic susceptibility, were included in the research investigation about 

2D imaging of conductive samples. In particular, specimens made of copper, aluminium and 

mild steel (i.e., general purpose steel commonly used for machining, suitable for lightly 

stressed components including gears and shafts, which is also called “low carbon steel”, due 

to carbon content from 0.04% to 0.30%, and also containing the following: silicon 0.40% max, 

manganese 0.70-0.90%, sulphur 0.040% max and phosphorous 0.040% max) were used. The 

aim of this experiment was to understand whether imaging by means of resonant frequency 

measurements was possible for various metals, and whether the different magnetic 

properties of such metals were reflected by the different images which were obtained with 

the developed method. 

Aluminium and copper disks (6-cm-diameter, 2-mm-thickness) and a rectangular 

specimen made of mild steel (area 4x3 cm2, 1-mm-thickness) were imaged (Figs. 3.14-3.17). 

The graph reported in Fig. 3.14 shows profiles obtained by plotting the resonant frequency 

measured for the three metals vs the positions of the samples along the x axis (i.e., the 

horizontal axis passing across the centre of the scanning area, as shown in Fig. 3.8). 
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Fig. 3.14. Resonant frequency measured values (kHz) vs coil position along x axis (cm). The data sets 
obtained with aluminium (diamond), copper (square) and steel (triangle) were fitted with second 

order polynomials. 

 

It is interesting to note that the curve obtained for steel was found to have different 

concavity than the two resulting from measurements performed by using aluminium and 

copper samples (Fig. 3.14). This was due to the different magnetic properties of these 

materials, which were respectively ferromagnetic and non-ferromagnetic. For non-magnetic 

copper and aluminium, the resonant frequency was maximum at the centre of the sample, 

i.e., when the inductor’s centre and the disk’s centre were aligned w.r.t. the plane of the 

scanning area. The positions of the sample at either side of this central position caused the 

sample to be ‘seen’ by the coil from angles different from the 0ᵒ angle corresponding to the 

central position. In other words, the distance between the centre of the sample and the coil 

centre became larger when the position along the x axis shown in Fig. 3.14 took on values 

larger than zero. Therefore, smaller changes in resonant frequency (w.r.t. the configuration 

of the system when it was “in air”) occurred for increasing values on the x axis, corresponding 

to increasing distances between the coil and the sample. 

The steel sample produced a trend showing a minimum resonant frequency 

corresponding to the position where the sample’s centre was aligned with the coil’s centre 
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(Fig. 3.14). The theoretical principles illustrated in Chapter 2 suggested that the resonant 

frequency values decreased when a sample made of ferromagnetic material was placed in the 

vicinity of the coil forming an LC system. This was the case for the data point corresponding 

to x=0 in Fig. 3.14. The data points corresponding to symmetrical positions on both sides of 

the central one had increasing values of resonant frequency, getting closer to the one 

measured in the absence of the sample. These represented the sample occupying places 

along the x axis having increasing distances from the centre of the coil. 

The asymmetry in the curves obtained for the three metals (Fig. 3.14) was due to the 

non-uniform lift-off, caused by the Perspex layer being tilted, which produced uneven 

inductive coupling between the coil and the metallic sample [24]. This was fixed as detailed 

in Chapter 4, as the weaknesses found in the experimental system and measurement method 

illustrated in this chapter gave the input for amending them and improving the experimental 

procedure. This included the use of a motorised stepper motor that prevented measurements 

from being taken by hand, and a structure made of wood to aid the experimental scans and 

produce uniform lift-off for the whole scanning area. 

Representations of the copper and aluminium disks from the top (i.e., from the coil’s 

view) are given in Figs. 3.15-3.16. Similarly, an image representing a 10x10x3 mm3 mild steel 

specimen is shown in Fig. 3.17. 

The two vertical yellow halos visible on the left and right sides of the disks represented 

in Figs. 3.15 and 3.16 were due to the Perspex layer being uneven and making the disk closer 

to the inductor. This was proved by the recurrence of these halos in both the images of copper 

and aluminium, suggesting that these were not a characteristic of one of the two conductive 

samples, but highlighted a “geometrical” systematic issue. The presence of five regions of 

different colours going from the external of the disk’s area, towards its central core was linked 

to the scale used to create the plots. Differences can be noted between the two figures, in 

the contours of the ring-shaped regions and of the central zone, due to this imaging technique 

having been implemented by moving the object by hand. 
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Fig. 3.15. 2D image of a 6-cm-diameter copper disk. The image was obtained by plotting the 
resonant frequency values (kHz) against coil positions along x and y axis (cm) and interpolating the 

values with a piecewise cubic fit within Matlab. 

 

Fig. 3.16. 2D image of a 6-cm-diameter aluminium disk. Resonant frequency values (kHz) were 
plotted against coil positions along x and y axis (cm). 
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Fig. 3.17. 2D image of a 1x1 cm2, 3-mm-thick specimen of mild steel. Resonant frequency values 
(kHz) were plotted against coil positions along x and y axis (cm). 

 

The results shown in Figs. 3.13-3.16 proved that the difference in the resonant 

frequency produced by the presence of highly conductive samples could lead to imaging 

them. The result obtained with the mild steel specimen stood out from the results achieved 

with non-ferromagnetic samples made of copper and aluminium (Fig. 3.17). The edges were 

less clearly defined in the former example, due to the ferromagnetic nature of the material, 

causing eddy currents to be less contained and more spread out (Fig. 3.17) [61]. 

At this stage, it was not possible to state the difference between the copper and the 

aluminium disks with this technique, as the two images representing the two samples were 

identical (and the same scale was used in Figs. 3.15 and 3.16). In the following work, focus 

was directed to identify the causes for this. In particular, the coil inductance, the lift-off and 

the measurement method were taken into consideration, in order to improve the robustness 

of the technique and, particularly, the system’s resolution power. This was intended as the 

capability of the system to resolve two objects having different conductivity values, by 

measuring the resonant frequency at each position along a scanning area where the samples 
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were moved w.r.t. the coil. A more robust technique would allow different images to be 

produced by using different samples, with the same imaging technique. To improve the 

system and technique tested, different coils were considered, as the quantity of eddy currents 

was dependent on the coil’s self-inductance, which in turns was dependent on the coil’s 

geometrical and manufacturing characteristics. Measurements at different values of lift-off 

were also performed, to identify the impact of these variations on the resulting images, to 

improve them qualitatively and investigate whether it could be possible to distinguish 

between different samples by looking at their images (Section 5.1). 

 

3.5 Towards optimisation of the imaging system 

 

The impedance analyser used in this work can perform frequency sweeps of a circuit’s 

impedance by using a certain number of data points to build a Z vs frequency plot [67]. This 

number can be set by the user. The higher the number, the slower the time required to 

complete the data acquisition during a frequency sweep and, due to the larger number of 

data points, the more precise the measurement acquisition process. Resonant frequency 

values were measured for the LC system in air, by setting the number of points of a frequency 

sweep to the following values: 50, 100, 200, 400, 800, 1200, 1600 (Fig. 3.18). This was done 

in order to identify the most precise measurement method. 

 

Fig. 3.18. Resonant frequency (kHz) vs number of points acquired during each scan, obtained with 
the LC system in air. 
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The graph reported in Fig. 3.18 showed that from # 400 points on, the change in the 

measured resonant frequency was negligible, as the values converged to the number 3.07 

kHz. Therefore, choosing 400 or 1600 points introduced an error smaller than 0.1% (which is 

smaller than the experimental uncertainty, estimated to 0.5%) in the resonance frequency 

measurement (Fig. 3.18). 

2D imaging of a 6-cm-diameter, 2-mm-thick copper disk was achieved by means of a 

400-points scan. This number was the preferred point number, chosen as it would reduce 

scan time whilst not introducing an unacceptable uncertainty in the measurements. Profiles 

of the resonant frequency plotted against the position along the x axis of the scanning area 

(Fig. 3.8) were obtained using copper and are reported in Fig. 3.19. 

  

Fig. 3.19. Resonance frequency measured with a copper disk (6-cm-diameter, 2-mm-thickness) at 
different positions along the y axis (values are included in the key of the graph, and different colours 

represent profiles obtained with the same y value) and x axis (abscissa of the graph). 

 

Resonant frequency values were measured with the impedance analyser and the 

change in resonant frequency between the two materials was calculated by using: 

∆𝑓 (%) =
𝑓(𝐴𝑙)− 𝑓(𝐶𝑢)

𝑓(𝐶𝑢)
 (%)     (3.2) 
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Maximum, minimum and average values of Δf% at growing values of the y coordinate, 

from -3.5 to +3.5 cm, are listed in Tab. 3.1. 

The difference in resonant frequency measured with copper and aluminium was found 

to be too low (i.e., smaller than the standard deviation of repeated measurements of the 

resonant frequency) to produce a visible change in the images of the two objects (Tab. 3.1). 

This prevented the two different materials to be identified and therefore constituted a 

limitation attributed to either the specific experimental system used or the measurement 

method adopted (or both). The presence of targets of unknown nature that may be hidden 

by protective shields raised the requirement for a system to be able to distinguish between 

metals having different electromagnetic properties. The issue highlighted by the 

experimental results described in this section will be addressed in the following chapters 

(particularly, Chapter 7). 

 

Tab. 3.1. Maximum, minimum and average value of Δf% at growing values of the y coordinate, from   
-3.5 to +3.5 cm. The samples used were 6-cm-diameter, 2-mm-thick copper and aluminium disks. The 
interesting column is the forth one, which shows that the average Δf% is lower than 0.3% at all 
positions along the y axis. This value was smaller than 0.5%, which was the standard deviation 
obtained from 10 consecutive measurements of the resonant frequency, meaning that the resonant 
frequency variation is not significant to discriminate between a copper and an aluminium sample. 

Y (cm) Max Δf% Min Δf% Average Δf% 

-3.5 0.49 -0.44 0.16 

-3 0.7 -0.02 0.26 

-2.5 0.85 -0.12 0.23 

-2 0.79 -0.25 0.27 

-1.5 0.99 -0.37 0.30 

-1 1.06 -0.44 0.28 

-0.5 0.57 -0.63 0.09 

0 0.49 -1.23 0.06 

0.5 0.45 -0.94 -0.03 

1 0.49 -0.5 -0.01 

1.5 0.49 -0.93 -0.15 

2 0.49 -0.92 -0.06 

2.5 0.33 -0.76 0.03 

3 0.29 -0.19 -0.02 

3.5 0.49 -0.44 0.16 
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The attempt made to determine whether resolving the two materials was achievable 

directed the attention towards a different measurement method that could be successful at 

this. Gaydecki’s paper [50] showed how Q-factor measurements may prove beneficial for the 

identification of materials when high sensitivity was required. Starting from this, further 

investigations were carried out and a more sensitive technique than the one involving 

resonant frequency measurements was developed, based on Q-factor measurements. The 

identification of the Q-factor as a candidate for measurements performed with the purpose 

of imaging and detecting unknown conductive materials was based on the following 

consideration. A resonating system may have larger absolute values of resonant frequency 

than Q-factor, but the aim of this research was to identify shielded conductive samples, as 

well as unshielded ones (used to demonstrate a proof-of-principle technique to start with). 

The requirement for the EII system to operate at sufficiently low frequencies to allow 

sufficiently large penetration depths to image the samples, meant that some values of 

resonant frequency were not ideal for this purpose. In particular, these values were larger 

than a few hundreds of kHz, when penetration through shields having thicknesses of the order 

of magnitude of a few mm was required. Simply looking at absolute values, for a given 

percentage difference Δf (Eq. 3.2) between resonant frequencies produced by two different 

conductive samples, the absolute difference Δf between the individual samples’ frequencies 

(Δf = fsample1 - fsample2) is proportional to each of them (fsample1 and fsample2). The cut-off in the 

preferred resonant frequency values to achieve material penetration constituted a limitation 

towards obtaining large resonant frequency variations, as a consequence of a conductive 

sample being brought in the vicinity of the measurement system. For this reason, Q-factor 

measurements were likely to represent a better solution than resonant frequency 

measurements, which should prove suitable for EII of shielded targets, as well as unshielded 

ones. 
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3.6 Comparison between Q-factor and resonant frequency measurements 

 

Further investigations about the development of an EII system for imaging of 

conductive samples were carried out, with the aim of verifying whether a method based on 

Q-factor position-resolved measurements rather than resonant frequency measurements 

would be able to distinguish between materials having different values of electrical 

conductivity. Part of this optimisation process included amendments that were made to the 

experimental system, as detailed in the following paragraphs. 

Two changes were made in the choice of the coil, by substituting the pancake coil with 

an air-cored coil and eventually changing this for a ferrite-cored coil (see Section 3.1). The 

first substitution was applied for spatial resolution purposes, since reducing the size of the 

coil’s diameter would imply improving the images’ spatial resolution, thus allowing objects of 

smaller sizes to be imaged [40]. The following substitution was done because using a ferrite-

cored coil would cause the magnetic field lines to be concentrated around the core, due to its 

high permeability, thus leading to a larger amount of eddy currents being induced inside the 

sample to be imaged. Another change was done with regards to the measurement method. 

The quality of the image (judged by considering defined contours and shapes, plus absence 

of halos and artefacts) and the possibility of visually distinguishing between metals having 

different values of electrical conductivity could be improved by adopting a measurement 

technique based on measuring some parameter whose change was larger than the one 

measured with the resonant frequency data. The Q-factor was chosen as a candidate for this 

purpose, since it was dependent on the coil inductance (Eq. 2.12), and therefore had to 

change as a direct consequence of the inductance change caused by the presence of a metallic 

object. 

The same procedure described in Section 3.5 was repeated by measuring the Q-factor 

related to the resonance, instead of the frequency measured before. The Q-factor is visually 

represented in Fig. 3.20 that shows plots of impedance Z vs frequency, obtained using the 

impedance analyser and the LC system described in Section 3.1. The Q-factor could be 

determined from such plots by calculating the ratio between the resonant frequency 
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corresponding to the maximum Z and the frequency bandwidth (Q = 
 𝜔0

Δω
). Section 2.1 contains 

the Physics principles on which the proposed method was based, and references of research 

involving Q-factor estimations for material identification purposes are Gaydecki et al. and 

Bartlett et al. [50][53]. 

The impedance analyser introduced in Section 3.5 was used to produce resonance 

curves in the presence of two samples, made of aluminium and copper (6-cm-diameter, 2-

mm-thickness). Resonance curves similar to the ones reported in Fig. 3.20 were used to 

acquire measurements of the resonant frequency and the Q-factor in the experimental work 

reported in Chapters 3 to 6. 

 

Fig. 3.20. Plot of impedance (Ω) vs frequency (Hz) showing resonant frequency and Q factor  

Q = 
𝜔0

Δω
 obtained for a 6-cm-diameter, 2-mm-thick aluminium sample (a) and a 6-cm-diameter,  

2-mm-thick copper sample (b). 

 

The change in the Q-factor values between copper and aluminium was compared to the 

change obtained with the resonant frequency measured in the same conditions. This was 

done by using Eq. 3.2 to compute the change in resonant frequency, and a similar equation, 

obtained by substituting f with Q, to derive the Q-factor change (Fig. 3.21). These changes 

were calculated after measuring resonant frequency and Q-factor, respectively, with the 

impedance analyser, by selecting increasing values of C from the LC system, from C=0.1 μF to 

C=1 μF, with steps equal to 0.1 μF. The two different scales used for ΔQ (diamond) and Δf 

(square) in the graphs should be noted. The change in Q was found to lie between 0.3% and 

(a) (b) 
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0.6% when measurements were acquired using an air-cored coil. Such range was between 2.4 

and 3.6 % when the ferrite-cored coil was used (Fig. 3.21). The larger change obtained with 

the ferrite-cored coil was due to the larger amount of eddy currents resulting from the larger 

magnetic field concentration around the ferrite core. This justified the choice of using this 

coil. For comparison, changes of resonant frequency were found to be much smaller than 

changes of Q, and were lying between 0.1 and 0.3% for values measured with the ferrite-

cored coil (Fig. 3.21). 

 

Fig. 3.21. Change in Q-factor (diamond) and resonant frequency (square) between copper and 
aluminium, calculated using Eq. 3.7, with different capacitance values. Measurements were 

performed using a ferrite-cored coil (Fig. 3.5b). The different axes scales used here for Δf and ΔQ 
should be noted. 

 

The larger change obtained with the Q-factor data underlined that measuring this 

parameter could improve quantitatively the results and improve the potential of the system 

to produce different images of metals having similar conductivity values. 

Following the experimental observations, the use of the ferrite-cored coil in place of the 

previously used coils was established. Additionally, Q-factor measurements were investigated 

further, to test the feasibility of an imaging technique based on this parameter for 2D imaging 

of conductive samples. 
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2D surface plots were obtained by using 6-cm-diameter, 2-mm-thick copper and 

aluminium samples and the ferrite-cored coil, since this produced larger shifts in the 

measured quantities when the samples were introduced into the system (Figs. 3.22-3.23). 

 

Fig. 3.22. Image reproducing a 6-cm-diameter copper disk obtained by measuring the Q-factor. The 
ferrite-cored coil (Fig. 3.5b) was used to perform the scan in this experiment. 

 

Fig. 3.23. Image reproducing a 6-cm-diameter aluminium disk obtained by measuring the Q-factor. 
The ferrite cored coil (Fig. 3.5b) was used to perform the scan in this experiment. 
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The shape of the disks was well reproduced in the images, which means that they 

appeared circular, as they were in reality when seen from the top. The technique based on 

measurements of the Q-factor produced an image of copper which looked different from the 

one obtained with the aluminium sample (Figs. 3.22-3.23). This result showed that such 

technique worked better than the resonant frequency technique, for distinguishing between 

different metallic samples, due to the larger Q-factor shifts obtained by switching from the 

configuration “in air” to the one with the sample inductively coupled to the coil. However, 

the variability in the values measured, showing up as different colours in the images 

reproducing the samples, could be reduced by using a more accurate method that would 

decrease the following sources of uncertainties: 1) measurements being done by hand; 2) 

uneven surface of the experimental set-up; 3) lack of an automated measurement acquisition 

process. 

 

3.7  Discussion and conclusions 

 

The results presented in this chapter made it possible to establish a proof-of-principle 

method for 2D imaging of conductive metallic samples having simple geometries (e.g., disks 

or samples of rectangular cross section). The experimental apparatus here introduced was a 

prototype EII system that was later improved (see Chapter 4), and the measurements during 

the scanning procedure were done by hand, highlighting the need for an automated system 

to allow higher precision in the positioning of the samples. This represented one of the 

solutions to the problems encountered with the prototype system, which are described in the 

first two sections of Chapter 4. Materials and methods will be presented in Chapter 4. In 

Chapter 5, focus will be given to experimental methods, results and discussion related to 2D 

imaging of unshielded conductive samples, whereas Chapter 6 will be about 2D imaging of 

shielded conductive samples. The final chapter involving the measurements (including 

experimental procedures, results and discussion) is Chapter 7, which is about a new EII 

imaging system, constituting an improved version of the one presented before. 
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4 An automated Electromagnetic Induction interrogation system 

 

4.1 Description of the initial experimental apparatus 

 

The experimental system on which this research work was based was similar to the 

one described in Chapter 3, with some amendments, as detailed in the following paragraphs. 

The EII system was initially based on a cylindrical ferrite-cored coil (made by 

“multicomp”, part no. MCSCH895-681 KU), in which an AC primary magnetic field was 

induced. The coil was connected in parallel to a capacitor selected from a capacitor bank (Fig. 

4.1). Together with the internal components’ internal resistance, this formed an LCR 

resonating system, which was modelled as a parallel LCR circuit in the following. Both the coil 

and capacitor bank were connected to the impedance analyser (Fig. 3.2). A metallic specimen 

was secured on a two-axis stepper motor system (XY stage) inserted into a wooden support 

structure having non-metallic fixtures (Figs. 4.2-4.4). The support structure was created in 

such a way as to allow positioning of the specimen at different lift-offs (i.e., vertical distances, 

measured along the sample’s axis, between the coil’s lower base and the sample). 

    

Fig. 4.1. Electronic schematic of the initial EII system, which consisted in a parallel LC circuit 
made up of a ferrite-cored coil (No. turns=145 ± 1, Ø=7.8 ± 0.5 mm, height=9.5 ± 0.5mm, 

inductance=680 ± 10% μH), and a capacitor selected from the capacitor bank. 
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Fig. 4.2. Sketch showing the front view of the wooden structure containing the experimental system. 
This included a ferrite-cored coil, being part of a LC system (with schematic as in Fig. 4.1), a xy 

stepper motor and a sample made of metal, which was moved along the x and y direction during a 
scan. A non-magnetic support was used to adjust the lift-off of the sample w.r.t. the coil. 

 

 

 

Fig. 4.3. Picture of the XY stage used to position the metallic samples used in this work onto different 
positions along the scanning area. 
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Fig. 4.4. Picture showing the wooden structure containing the experimental setup. This was based on 
the xy stage with which the metallic sample was moved, the coil (not visible here, as it is fixed to the 

wooden upper layer) and the computer used for data acquisition and analysis. 

 

4.2 Description of the procedure used for 2D imaging of metallic objects 

 

A proof-of-principle method was developed to achieve 2D imaging of metallic objects 

by means of the resonating circuit described in Section 4.1. The process was similar to the 

scanning technique detailed in Section 3.5, with the difference that Q-factor measurements 

were performed, in addition to resonant frequency measurements. Since the experimental 

apparatus consisted of a different structure (made of wood instead of Perspex), and the 

scanning process and measurement acquisition was automated with the aid of a stepper 

motor and by means of LabVIEW, a complete description of the whole procedure is detailed 

in this section. 

The method was based on position-resolved measurements of the resonant frequency 

and Q-factor shifts, occurring due to the presence of the metallic samples, w.r.t. the scenario 

in which no sample was present (“in air” or “background” measurements) (Figs. 2.2-2.3). A 
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procedure was developed that is based on scanning a given area by moving the conductive 

sample with the aid of an xy stage (Fig. 4.3), and plotting the measured values- obtained at 

each position along the scanning area vs the corresponding x and y coordinates. The scanning 

area was obtained by adopting the procedure described in Section 3.5. Resonant frequency 

and Q-factor measurements were performed by means of the impedance analyser introduced 

in Chapter 3 (Fig. 3.2). Ten independent values of each of these physical quantities were 

acquired for each of the nodes of the scanning grid represented in Fig. 3.8. 

The experimental method utilised a computer automated system which linked, via 

Ethernet connections, a PC, the impedance analyser and a two-axis stepper motor system 

(Fig. 4.4). A LabVIEW Virtual Instrument (VI) was created to control the stepper motor 

movements as well as the data acquisition undertaken by the impedance analyser. A timed-

sequence structure was created to perform the following operations: 

1) move the metallic sample along the first row of the scanning area in 2.5-mm-steps; 

2) stop the sample at each position and activate the impedance analyser; 

3) perform a frequency sweep of the impedance amplitude in a frequency interval centred 

around the system’s resonant frequency; 

4) deactivate the impedance analyser and move the sample one step ahead; 

5) repeat operations 1) to 4) for all rows of the scanning area. 

The following mathematical operations were undertaken in order to determine the 

values of resonant frequency and Q-factor to be used to generate images. Impedance values 

(𝑍) were plotted against the corresponding angular frequency values (ω) at each positional 

point along the scanning area. Measured 𝑍 vs ω curves, showing the resonant peak at each 

position, were thus obtained for all positional data. Each of these curves was fitted by using 

the function for the impedance of a parallel LCR circuit (adapted from [57]): 

𝑍(𝜔) =  
1

√(
1

𝑅
)

2
+(

1

𝜔𝐿
 − 𝜔𝐶)

2
                (4.1) 

In Eq. 4.1, R, L and C are the fit parameters determined by the LabVIEW fitting routine. 
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The parameters obtained from the fit were used to calculate the Q-factor by means of Eq. 4.2 

[56]: 

     Q = 𝑅√
𝐶

𝐿
     (4.2) 

A value of Q-factor was, thus, obtained at each position of the specimen. In a similar 

way, resonant frequency values at each position of the specimen were determined by using 

Eq. 4.3 [56]: 

      𝑓𝑟 =  
1

2𝜋√𝐿𝐶
 ,     (4.3) 

where L and C were derived from the fit of the 𝑍 vs ω curve. 

‘Background measurements’ of resonant frequency and Q-factor were first taken at 

each position of the scanned area with the coil in air (no sample present). These were 

acquired to verify that the “background” obtained in the absence of the sample was uniform. 

‘Sample data’ was then taken after placing a metal object under the coil. 

Normalised data was obtained by dividing sample data by the corresponding 

background data. This was achieved by means of a “for” loop implemented with LabVIEW. 

Such a normalisation procedure allowed to visualise the change between the quantities 

measured without the sample and the corresponding ones obtained after the sample was 

introduced into the system. 2D surface plots were generated by means of interpolation with 

a piecewise cubic fit, by plotting normalised data against the x and y coordinates of the 

imaged sample. 

The described procedure was applied to two sets of data, based on resonant 

frequency data and Q-factor measurements, respectively. Two images were thus produced 

for each object. Experimental results obtained with the two techniques are reported and 

discussed in Sections 5.2.2, 5.3.2, 5.4.2. 
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4.3 Improvements to the initial LC system 

 

The resonant system used for electromagnetic induction interrogation and described 

in the Sections 4.1 and 4.2 was improved, in order to achieve the following objectives; 

1) accomplishing 2D imaging of metallic materials when these were not shielded; 

2) being able to distinguish between materials of different electromagnetic nature, even 

when these had similar values of electrical conductivity; 

3) exploring the possibility of imaging materials that were shielded, i.e., hidden behind some 

metallic material acting as a shield, for security purposes. 

The experimental results obtained with the LC system based on a capacitor bank 

(introduced in Chapter 3) underlined that one of the limitations of the system was its 

sensitivity. This meant that the shift produced by a low-conductivity metal, as well as the 

difference of shifts caused by metals having similar values of electrical conductivity, could not 

be detected, as none of them was significant, compared to the measurement uncertainties. 

Specifically, the largest frequency difference between coil in air and coil over a 9-cm-

diameter, 2-mm-thick copper disk - obtained with C=0.03±1% μF – was equal to ∆f=0.29 (Eq. 

3.1). However, the measurement uncertainties were equal to 0.04 (4%) (Chapter 3). 

Therefore, the resonance method at that stage allowed distinguishing only between the 

system in air and the system with samples coupled to it, and between scenarios 

corresponding to two different samples made of magnetic and non-magnetic materials 

sequentially coupled to the system. Given the importance of varying the capacitance for the 

purpose of this research investigation (especially, penetration through conductive shields to 

image hidden objects), the previously used capacitor bank (Section 3.1) was substituted by a 

new one (Cosinus Messtechnik GmbH C1-250). This one allowed selection of capacitance over 

a broader range. Specifically, the minimum C was the same as before, equal to 0.1 nF, but the 

maximum C was 11.111 μF vs 1.111 μF of the previous capacitor bank. Being able to select 

larger values of capacitance w.r.t. the previous system was useful in order to carry out the 

investigations regarding the penetration behind metallic shields for object identification. The 
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larger the capacitance, the smaller the resonant frequency, and therefore the bigger the skin 

depth, as explained by Eq. 2.25. 

Furthermore, the dependence of the measured parameters fr and Q (i.e., resonant 

frequency and Q-factor) on the circuit’s inductance and resistance, in addition to its 

capacitance, led to the need to carry out investigations based on the use of a resonant LCR 

system where the resistance values could be controlled, as well as the capacitance values. In 

the experimental work carried out prior to this (Chapter 3), the system was physically based 

on an inductor connected to a capacitor bank through cables. The components’ parasitic 

capacitance (existing between the turns of the inductor, plus the smaller contribution 

originating in BNC cables), in addition to the resistance deriving from both the components 

and the cables used to connect them, contributed to forming an LCR system, with values of L, 

C and R represented by the circuit’s effective inductance, capacitance and resistance. In this 

configuration, the values of resistance and capacitance were fixed and determined by the 

components’ and cables’ physical characteristics, thus resulting ‘intrinsic’ to the system used 

and not controllable externally. 

The possibility to carry out experimental investigations based on the use of variable 

capacitor and resistor banks was explored. This guaranteed more freedom in selecting 

different values of C and R, and was done with the goal of determining the optimal conditions 

in which the system may be operated. Section 5.5 will detail the experimental investigations 

carried out with the purpose of testing the LCR system varying the C and R values. Previous 

sections of this chapter include results of electromagnetic induction investigations, 

performed by varying the capacitance of the circuit. 

Two decade boxes (Cosinus Messtechnik GmbH RT1-1000, C1-250), allowing selection 

of different values of capacitance and resistance, were connected to the coil (Figs. 4.5-4.8). 

This allowed capacitance and resistance values to be selected in the following ranges: C 

between 100 pF and 11.111 μF (±1%; 100 pF steps); R between 1 Ω and 11.111 MΩ (±1%; 1 Ω 

steps). These amendments resulted in a new experimental setup, representing an 

improvement from the one described in the previous section (Figs. 4.6-4.8). 
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Fig. 4.5. Electronic schematic of the resonant electromagnetic induction system used in this study. 
The system capacitance can be adjusted (selecting the desired value from the capacitor bank), thus 

enabling penetration through a metallic shield covering the metallic target, and therefore facilitating 

the target identification. The resistor value in most experiments was equal to R = 1 K  1%, and the 
inductor used was a ferrite-cored coil (7.8 mm x 9.5 mm, L= 680 μH±10% at 1 kHz). 

 

 

 

Fig. 4.6. Sketch of the experimental apparatus, made up of a ferrite-cored coil connected to a 
capacitor and a resistor, as in Fig. 4.6. A xy stage was used to move a metallic sample (such as 
the disk made of Cu shown in red), thus allowing to perform a scan for imaging purposes. The 

apparatus was enclosed in a non-magnetic structure (made of wood), in order for the 
experiment to be electromagnetically isolated. 

 

 

 

Fig. 4.7. Picture showing the experimental apparatus, including the two decade boxes allowing 
selection of resistance and capacitance (bottom right). 
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Fig. 4.8. Picture showing the impedance analyser during a Z vs frequency sweep (in the background) 
and the two decade boxes used for resistance and capacitance selection, connected to the coil 

mentioned above, which is not shown in this picture. 

 

4.4 Description of the LabVIEW program 

  

The creation of electromagnetic images was automated by creating a LabVIEW 

program including a Matlab script, as will be detailed in this section. 

LabVIEW (National Instruments, NI) was connected to the hardware described above 

to perform measurements. A LabVIEW VI was created for this purpose. The VI uses NI DAQ 

systems and instrument control to acquire measurements, including instrument 

configuration with NI MAX, instrument drivers and automation of the DAQ process. The final 

part of the LAbVIEW VI embeds a Matlab program to process data and create an image out 

of interpolation, as will be detailed in the following. 

NI Measurement & Automation Explorer (MAX) was set up to allow communication 

between the computer and the impedance analyser, as well as the XY stage. Physical 

connections were achieved by means of Ethernet and USB cables, respectively. The two 

connections were established by using NI-VISA (Virtual Instrument Software Architecture 

Application Programming Interface, API) as it uses the same communication method for 
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instruments connected using different interface types (GPIB, USB etc.), and allows the user to 

adopt the same (easy) language to perform various operations. The first step that was taken 

when writing LabVIEW code was the instrument configuration. A VISA Session was opened 

and a VISA Alias used as a nickname to the VISA Resource, with which the instrument was 

called throughout the application to perform DAQ operations. The VISA Session was closed at 

the end of the program and error handling performed for the VISA Session, as well as for all 

other parts of the VI, which helped debugging throughout the software development phase 

and VI testing. 

The operations that needed to be performed by means of the impedance analyser 

involved measurement of the resonant frequency and Q-factor. Since the instrument drivers 

for these were unavailable, a considerable portion of the LabVIEW VI was written to 

accomplish this. The rationale behind this is explained in the following. The development of 

this part of the code required software development skills and was the most time consuming 

part of the programming phase involved in the PhD work described in this thesis. 

A digital trigger was set up within LabVIEW, to control the moment at which the DAQ 

process started and was stopped by the user, from the LabVIEW VI Front Panel. The Trigger 

function configured a trigger to perform a specific action, with the Start trigger initiating it. 

Synchronisation was implemented in order to perform operations detailed in the previous 

section, which involved activating both the XY stage and the impedance analyser. Suitable 

waiting functions were implemented for this purpose. This included pausing the execution for 

the time required for the operations performed by the impedance analyser to be completed, 

as well as the time taken to move the XY stage to the next position along the scanning area. 

Instrument drivers were used, when available, to select the impedance analyser 

measurement mode and control the frequency sweep settings, as well as the sampling rate 

and data logging and saving. The use of drivers allowed the VI to perform multiple 

instructions, as a sequence of events, as follows: 1) Initialize (establishing communication 

with the instrument); 2) Configure (configuring the instrument to perform specific 

operations); 3) Action/Status (commanding the instrument to carry out an action, or obtaining 

the current status of an instrument); 4) Data (e.g. reading data or transferring it to an array 

or matrix); 5) Utility (e.g. reset and self-test); 6) Close (last instrument driver to be called). The 
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downside to using instrument drivers in this work is that intervention was required in the case 

of one driver that contained a bug and therefore needed to be edited and tested. This was 

one of the drivers for the Network Analyser which will be introduced in Chapter 7. For 

instance, choice of resolution and range, selection of enable and disable auto range and use 

of a ‘subVI’ to read measurements were accomplished. 

 

A structure made up of nested ‘For Loops’ was created and configured with a 

conditional terminal for the loop to stop when the entire scanning area had been completed. 

Similarly, ‘for’ loops were adopted for resonant frequency and Q-factor acquisitions in which 

the frequency sweep determined when the data acquisition had to stop, provided that the 

end frequency matched the value input by the user from the VI Front Panel. Wait functions 

were inserted into the loops because, without them, when a loop iteration is completed, the 

next iteration takes place immediately. Time to complete the tasks was needed because the 

whole execution relied on resonant frequency and Q-factor measurement, which required 

time to be completed, as well as motions of the XY stage, which needed to be accounted for 

too. Shift registers applied to predict the correct value at different loop iterations by storing 

data values from previous iterations of the ‘for’ loop. ‘While’ loops were also created to 

perform iterative operations until a certain condition was met. Tunnels were inserted into 

these loops to transfer data into and out of structures, and store them after the loop 

terminated. Error checking and error handling was implemented to stop the iteration of the 

loop in case an error occurred. 

To acquire resonant frequency data from the impedance analyser, the phase of the 

complex impedance was measured within a frequency range selected from the Front Panel. 

A loop was used to iteratively acquire phase data for smaller frequency ranges centred around 

the resonant frequency, which was guessed each time the operation was repeated to improve 

accuracy. The frequency at which the phase was equal to zero was thus determined and 

logged as the resonant frequency for a certain position along the scanning area. Additionally, 

the impedance amplitude was recorded and plotted against the frequency for the initial 

frequency range centred around the resonant frequency, selected from the Front Panel. The 

measured data for the impedance amplitude was fitted using the analytical function (4.1) and 
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the plot of measured and theoretical data was plotted, together with the measurement error. 

The parameters R, L and C were then determined from the fit. These were used to calculate 

the Q-factor, as shown in Section 4.2. 

The File I/O Palette for file operation functions was adopted to input variables in the 

form of 2D arrays into the Matlab script. Additionally, these arrays were written to .csv files 

which were named using string commands and saved in a defined location on the computer. 

Each of these 2D arrays contained data for resonant frequency and Q-factor as well as 

positional data calculated from the number of rows and columns in the scan, and the spacing 

between consecutive positions where data were acquired (all set from the VI Front Panel). 

The second part of the LabVIEW routine executes a Matlab script, which calls the 

output 2D arrays. The resonant frequency data and the positional data arrays are 

concatenated. The concatenation is then repeated for Q-factor data and positional data. A 

single array containing three columns for (position x, position y, measurement data) is 

produced. The number of rows of the arrays depends on the number of positions of the scan, 

selected from the Front Panel, used to create a figure (samples of different dimensions 

required larger or smaller values of the scanning areas). Lastly, a 2D surface plot is generated 

by Matlab by interpolation of the measured data w.r.t. positions, by means of a piecewise 

cubic fit. 

 

 The next chapter reports experimental procedures and results and discussion, for a 

battery of experiments which were performed by using the experimental method described 

in this Chapter. 
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5 2D imaging of unshielded conductive samples 

 

This chapter includes the experimental progress made by using the LCR circuit 

described in Chapter 4.3 and metallic samples having various values of conductivity, mostly 

non-magnetic, with the exception of iron (99.5% purity). The physical quantities of interest 

were the resonant frequency and Q-factor of the LCR system shown in Fig. 4.6, and specifically 

the change of these occurring after a conductive sample was placed in the vicinity of the coil, 

which was previously “in air” (Fig. 2.2). These quantities were measured by using the 

impedance analyser mentioned in Chapter 4, which was connected to the LCR circuit shown 

in Fig. 4.5. In some experiments, the metallic sample was placed in contact with the coil, such 

that the centre of the sample’s surface in contact with the coil’s lower base (Fig. 3.6) was in 

the same position as the centre of the coil’s lower base. In some other experiments, the coil 

and the sample were placed at a certain value of lift-off, which will be stated in the individual 

sections, and the measurement method adopted was the one explained in Section 4.2. Unless 

otherwise stated, the external capacitance and resistance of the LCR circuit were equal to the 

values: C=1 μF ±1% and R=1 kΩ ±1%. 

 

5.1 Study of the influence of lift-off on resonant frequency and  

Q-factor measurements 

 

The LCR-based experimental system presented at the end of Chapter 4 was initially 

tested to see whether it could detect the presence of metallic samples placed at different 

values of lift-off L (i.e., vertical distance between sample and coil), between L=0 and L=(6.0 ± 

0.1) cm. The lift-off is an important parameter in NDE measurements, as it influences the 

inductive coupling between conductive samples and the coil of the LCR circuit [24]. 

Metallic samples were used having conductivity values ranging from lower 

conductivity of 0.54 MSm-1 (manganese, Mn) to higher conductivity of 59.77 MSm-1 (copper, 

Cu) [66]. The procedure described in the next section was undertaken with the purpose of 

producing 2D images for each of these conductive samples. 
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5.1.1 Description of the experimental procedure 

A preliminary study was carried out in order to investigate the possibility of generating 

high-quality images of metallic samples by means of two contactless imaging techniques, 

based on resonant frequency and Q-factor measurements, respectively. The measured 

quantities obtained in the presence of each metallic sample were related to corresponding 

measurements with no sample present (“in air”). The hypothesis here was that identifying 

changes in the measured parameters (resonant frequency and Q-factor) could lead to image 

the sample (as documented in Chapter 3). “High-quality” is intended as the ability of the 

images to reproduce the shape and dimensions of the samples, with the colours 

corresponding to the sample ‘footprint’ being visibly different from the background, 

corresponding to peripheral sample’s positions along the scanning area, i.e., at larger 

distances between the sample’s upper surface and the coil’s lower base. The dependence of 

the image quality on the lift-off (L) was studied by means of two experiments. The first 

experiment consisted in measuring the system’s resonant frequency and Q-factor when a 

square aluminium sample, having edges equal to (25 ± 1) mm and thickness equal to (1.0 ± 

0.1) mm, was placed under a ferrite-cored coil. The following values of lift-off were chosen: 

L1=(6.0 ± 0.1) cm; L2=(2.0 ± 0.1) cm; L3=(1.5 ± 0.1) cm; L4=(1.0 ± 0.1) cm and L5=0. Ten 

consecutive measurements of resonant frequency and Q-factor were acquired and the 

average (named fr and Q from now on) and standard deviation (σfr and σQ) were calculated. 

The second experiment applied the procedures described in Chapter 4 to the imaging 

process of the aluminium sample, at each lift-off value. The lift-off was measured from the 

coil’s lower base to the sample’s top surface (Fig. 3.6). The purpose of this part of the work 

aimed at qualitatively showing that the image quality was dependent on the choice of lift-off. 

This should be the case because the amount of eddy currents induced in a sample increases 

with the lift-off [24]. 
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5.1.2 Results and discussion 

 

The results of the study about the dependence of the measured quantities (resonant 

frequency and Q-factor) on the lift-off are reported in Fig. 5.1, where the values of resonant 

frequency and Q-factor, normalised to background values, are plotted against lift-offs. 

 

Fig. 5.1. Normalised Q-factor (diamond) and resonant frequency (square), plotted against lift-off 
(cm), to study the influence of lift-off on the measured quantities. Data was acquired using a 25x25x1 

mm3 aluminium sample. 

 

The trend shown in Fig. 5.1 can be understood theoretically by utilising the 

mathematical model reported in Section 2.4. This includes a physical formulation showing the 

dependence of the coil impedance on the coil-to-sample lift-off, which must be treated as a 

variable in this specific case. The different trend of the resonant frequency and the Q-factor 

is due to their different dependence on the real and imaginary parts of the complex 

impedance. Specifically, in the model reported in Chapter 2, the resonant frequency of the 

system depends on the inductance of the coil, whereas the Q-factor depends on both the 

inductance and resistance, therefore the change in the coil complex impedance due to eddy 

current induction inside the metallic sample has different impacts on the quantities that are 
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measured in this work. In particular, these vary in a different way with the lift-off, as verified 

by the trend shown in Fig. 5.1. 

The Q-factor curve had an increasing trend for lift-off values between 0 and 1.5; the 

Q-factor stopped changing with lift-off from the value L=2 cm. On the other hand, the 

resonant frequency decreased with lift-off until L=1.5 cm. From this value on, the resonant 

frequency change appeared to be zero. A comment about the values of lift-off chosen for this 

plot should be made. The “jump” between 0 and 1 on the x axis could not seem appropriate 

given the shape of the curves for both data sets, which have high gradient in this region. 

Nevertheless, it was established for practical reasons that values in between 0 and 1 cm 

should not be included, due to the larger uncertainty in positioning the sample at those 

distances from the coil. This was caused by the nature of the experimental setup and the 

measurement method, which was based on inserting the sample within the wooden structure 

enclosing the experimental system. In addition to the constraint in achieving this when using 

the laboratory experiment, the choice of lift-off values between 0 and 1 cm would not have 

made a meaningful difference when exporting this technique into an on-site system and 

conducting measurements in real-life applications. The images of the aluminium sample 

obtained for each value of lift-off showed good-quality reproduction of the sample’s shape 

and size at L<6 cm for both resonant frequency and Q-factor measurements. Examples of the 

images obtained after setting the lift-off to the value L=L4=(1.0 ± 0.1) cm are shown in the 

next section (Figs. 5.2 and 5.3). The reason why a decrease in sensitivity and resolution was 

observed at lift-offs higher than 1.5-2 cm was attributed to the magnetic field spreading out 

around the system sensitive area [37]. It was established that an optimal lift-off would be the 

result of a trade-off between reproduction of the shape and size of the imaged object and the 

need for a contactless imaging technique. The latter was beneficial as the possibility to detect 

objects and image them when the coil used in this work (acting as a probe in NDE systems) 

was not touching the sample was more interesting and useful than the opposite scenario, 

since accessing the sample is not always possible in real life applications. Based on this 

consideration, the lift-off chosen for the future experiments was L=L4=(1.0 ± 0.1) cm.  
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5.2 Imaging of high-conductivity samples made of copper and aluminium 

5.2.1 Description of the experimental procedure 

 

The imaging method described in Chapter 4 was initially tested with high-conductivity 

metallic samples. The goal of this experimental investigation was to verify the possibility of 

obtaining 2D images representing the samples, by adopting the proof-of-principle method 

based on position-resolved-measurements of the resonant frequency and Q-factor shifts, 

which was described in Chapter 4. Disk samples having diameter D=(2.00±0.05) cm and 

thickness t = (2.0 ± 0.5) mm (Tab. 5.2), made of copper and aluminium, were used for this 

purpose. An area A=4.25х4.25 cm2 was scanned by moving each sample along a plane parallel 

to the coil’s lower base. The lift-off was equal to (1.0 ± 0.1) cm, the resistance was set to 

R=1±1% KΩ and the capacitance C=(1.0000 ± 0.0001) μF. Ten consecutive measurements of 

resonant frequency and Q-factor were acquired and the average (fr and Q) and standard 

deviation (σfr and σQ) values were calculated. 

Copper and aluminium samples having dimensions 25х25х1 mm3 (Tab. 5.1) were also 

imaged, in order to investigate the ability of the system to resolve shapes. 

 

5.2.2 Results and discussion 

Results of the imaging study about high-conductivity samples are reported in this 

section. Images of a 2-mm-thick, 2-cm-diameter aluminium disk were obtained via position-

resolved measurements of the resonant frequency and of the Q-factor, respectively, and are 

reported in Fig. 5.2. The imaged samples were found to be distinguishable from the 

background image (Fig. 5.2). Qualitatively, both their shape and size compared very well with 

the actual ones. A quantitative analysis was carried out to support the qualitative 

observations, as reported in Section 5.4, with the purpose of comparing the dimensions of 

the samples reproduced in the images with the samples’ actual dimensions. Similar results 

were obtained with a 25x25x1 mm3 square copper sample after setting the capacitance to 

C=0.5±1% μF (Fig. 5.3). 
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Fig. 5.2. 2-cm-diameter, 2-mm-thick aluminium disk imaged via position-resolved measurements of 
the resonant frequency (top) and of the Q-factor (bottom). The resonant frequency and Q-factor 

values- measured at the centre of the object and normalised to the value in air- were equal to 
fr=1.01±0.03 and Q=0.93±0.04. 
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Fig. 5.3. Image of a 25x25x1 mm3 copper sample obtained via position-resolved measurements of the 
resonant frequency (top) and the Q-factor (bottom). The normalised resonant frequency and Q-

factor at the centre of the sample were equal to fr=1.01±0.03 and Q=0.94±0.04. 
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The normalised resonant frequency and Q-factor values measured at the centre of the 

object reported in Fig. 5.3 were found equal to fr=1.01 ± 0.02 and Q=0.94 ± 0.03, respectively. 

Images similar to the ones representing a copper sample were obtained with an aluminium 

sample having the same geometry as the copper one. 

The results shown in Figs. 5.2-5.3 demonstrated the suitability of both resonant 

frequency and Q-factor methods for 2D imaging of high-conductivity samples of different 

shapes. At this stage, neither images of disks nor images of square samples were able to 

distinguish between the two metals. This was the case because the normalised resonant 

frequency and Q-factor at the centre of the aluminium sample were equal to the ones 

obtained for copper. This means that the different nature of the two samples could not be 

visually assessed by looking at the images reproducing them. More information of the images 

was obtained at a later stage by comparing the diameters/edges of the samples from the 

image to the ones of the actual samples, measured with a ruler. Section 5.4 details the 

experimental procedure used and includes results and discussion at the end. 

Results reported in this section proved that the proof-of-principle methods based on 

position-resolved-measurements of the resonant frequency and Q-factor, respectively, made 

it possible to produce 2D images representing copper and aluminium samples having 

dimensions equal to 25x25x1 mm3. 

 

5.3 Material characterisation: comparison between resonant frequency and 
Q-factor techniques 

 

5.3.1 Description of the experimental procedure 

 

The results of the previous experiments highlighted the need for a new method 

enabling material characterisation. The eddy current amount depended on a number of 

factors, both geometrical (including lift-off and coil’s geometry) and related to the sample’s 

electromagnetic properties. Lower-conductivity samples were expected to produce a smaller 

change in the inductance of the measurement system, reflecting on smaller resonant 



 

104 

frequency and Q-factor changes, than the ones obtained with higher-conductivity samples 

[24]. Other metals, in addition to copper and aluminium, were thus included into the 

experimental work, in order to investigate whether the proposed proof-of-principle method 

(based on position-resolved measurements of the resonant frequency and Q-factor) could be 

extended to metals spanning a wide range of conductivities. A quantitative analysis was 

performed by measuring the resonant frequency and Q-factor changes occurring in the 

presence of 14 representative metallic samples, having values of conductivity ranging from 

0.54 MSm-1 (Mn) to 59.77 MSm-1 (Cu), as reported in Tab. 5.1 [66]. 

 

Tab. 5.1. List of the 25х25х1 mm3 metallic samples imaged in this work. Their tabulated conductivity 
values [66] are reported in the second column. In the third column, the metals are ordered from 

the most conductive (Cu) to the least conductive one (Mn). 

Metal σ (106 Sm-1) Number (x axis from right to left in Fig. 5.4) 

Copper (Cu) 59.77 1 (maximum conductivity σ) 

Gold (Au) 42.55 2 

Aluminium (Al) 37.67 3 

Zinc (Zn) 16.90 4 

Iron (Fe) 10.30 5 

Tin (Sn) 9.09 6 

Niobium (Nb) 8.00 7 

Tantalum (Ta) 8.03 8 

Lead (Pb) 4.84 9 

Vanadium (V) 4.03 10 

Hafnium (Hf) 2.85 11 

Titanium (Ti) 2.38 12 

Bismuth (Bi) 0.94 13 

Manganese (Mn) 0.54 14 (minimum conductivity σ) 

 



 

105 

During the measurements, the samples were in contact with the ferrite-cored coil 

(L=680±10% μH), which was part of the LCR circuit showed in Fig. 4.6. The resistance was 

equal to R=1 K  1% and the capacitance was assigned the following values for comparison 

purposes: C=1 μF and C=0.5 μF. Ten consecutive measurements of resonant frequency and 

Q-factor were acquired and the average (fr and Q) and standard deviation (σfr and σQ) values 

were calculated. 

The changes in resonant frequency and Q-factor values, due to the presence of a 

metallic object, were calculated by using the following equations: 

∆𝑓𝑟 =
𝑓𝑟(𝑚𝑒𝑡𝑎𝑙)−𝑓𝑟(𝑎𝑖𝑟)

𝑓𝑟(𝑎𝑖𝑟)
 (%)      (5.1) 

∆𝑄 =
𝑄(𝑚𝑒𝑡𝑎𝑙)−𝑄(𝑎𝑖𝑟)

𝑄(𝑎𝑖𝑟)
 (%)      (5.2) 

In the equations above, 𝑓𝑟(𝑚𝑒𝑡𝑎𝑙) and 𝑄(𝑚𝑒𝑡𝑎𝑙) represent the resonant frequency 

and Q-factor values measured when the metallic sample was placed under the coil (1 cm lift-

off); 𝑓𝑟(𝑎𝑖𝑟) and 𝑄(𝑎𝑖𝑟) refer to values measured in air, i.e., when no metallic sample was 

present in the vicinity of the coil.  

The procedure was repeated with a value of lift-off L=0 (i.e., sample in contact with the 

coil). The changes in Q-factor plotted against the samples’ conductivity were compared for 

data obtained at L=(1.0±0.1) cm and L=0. This experiment aimed at identifying a procedure 

which allowed to distinguish between different high-conductivity samples. 

Both techniques based on resonant frequency and Q-factor measurements were adopted 

to see how changes produced by the presence of a sample at different values of lift-off varied. 

This aimed at establishing which technique was better at identifying conductive materials. 
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5.3.2 Results and discussion 

This section reports on results of the study described in the previous section, in which 

materials of different conductivities were used and the resonant frequency and Q-factor 

values were measured in order to quantify the shift of these quantities from the case where 

the measurement system was in air (Fig. 2.2). Resulting changes of resonant frequency and 

Q-factor, estimated by using Eqs. 5.1 and 5.2, were plotted against the metal’s conductivity 

values, taken from [66]. Results obtained after setting the capacitance to the value C=1 μF are 

reported in Fig. 5.4. The capacitance value was later changed to C=0.5 μF and the results were 

compared. These specific values were chosen because they produced the highest changes of 

fr and Q, as detailed below. This implied that less distorted images of all metals could be 

obtained, in which the reproduction of the samples’ shapes had higher quality. 

 

Fig. 5.4. Change in Q-factor and resonant frequency plotted against conductivity for each of the 14 
metals listed in Tab. 5.1 [66]. The physical quantities were measured at C = 1 μF. The two data points 

that are detached from the main trends of ΔQ and Δf (labelled “Fe”) correspond to measurements 
acquired with iron (99.5% purity). 

 

Fig. 5.4 showed that the Q-factor varied in a much wider interval than the resonant 

frequency: ∆Q=[-11, -2]%, ∆fr=[-0.3, 0.7]%. These values can be seen by looking at the two 

curves reported in Fig. 5.4, and represent the minimum and maximum Q-factor and resonant 

frequency change, respectively on the left and right side of the intervals defined by the 
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brackets. These intervals were found by considering changes of Q and fr obtained for the 14 

metals included in this study. Both the red and blue curves had a well-defined trend. This 

trend can be understood from a mathematical perspective by adopting the model illustrated 

in Section 2.4. The model introduces the analytical function for the coil impedance, when a 

flat metallic sample is placed at a constant lift-off from the coil. Assumptions about the 

geometry of the problem are made and the impedance is expressed as a mathematical 

function of the metal’s properties and other variables (assuming non-ferrous metals). In 

particular, the impedance dependence on the conductivity is shown and this can be used by 

deriving the dependence of resonant frequency and Q-factor on 𝜎. Derivation of the analytical 

function for the Q-factor, with respect to 𝜎 would show a minimum as can be seen in Fig. 5.4. 

This is not a straightforward calculation as it requires expressing the Q-factor with Bessel 

functions, in a way similar to the one in which impedance was derived by Dodd & Deeds in 

[65], utilising the Q-factor definition (𝑄 =
𝜔𝐿

𝑍𝑟
, Eq. 2.43). In a similar fashion, the resonant 

frequency would need to be expressed as a function of the complex part of the coil impedance 

and its behaviour close at limits of low and high conductivity should be studied in an analytical 

way, in addition to the behaviour of its prime derivative with respect to 𝜎. 

The resonant frequency changes were found to increase with conductivity, by an 

amount lower than 0.8% over the whole conductivity range considered, as shown in Fig. 5.5. 

The Q-factor change, on the other hand, decreased for lower conductive metals, including tin, 

for which the absolute value of ΔQ was maximum; after reaching the maximum, ∆Q started 

to increase with conductivity, until the curve behaviour began to ‘saturate’, i.e., smaller 

change of ∆Q occurred for high-conductivity metals from gold to copper, and such change 

was as low as 1.2% between aluminium and copper. 

Plots similar to the ones shown in Fig. 5.4 were obtained by setting the capacitance to 

C=0.5 μF, showing that capacitance changes did not prevent the system from producing 

resonant frequency and Q-factor shifts that were linked to the conductivity of the material as 

in plots shown in Fig. 5.4. In this case, Q-factor and resonant frequency varied with 

conductivity within a range equal to ∆Q=[-15, -3.8]%, ∆fr=[-0.25, 0.67]%. The same notation 

used above was adopted here, with the brackets representing intervals of Q-factor and 

resonant frequency shifts, measured in the presence of the 14 samples listed in Tab. 5.1. The 
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values on the left of the brackets correspond to the lower values of ΔQ and Δfr within the 

given intervals, those on the right correspond to the higher values. Such values corresponded 

to tin in the case of ΔQ, and to copper for Δfr. The values reported on the right inside the 

brackets corresponded to the minimum absolute changes among the 14 samples. These 

values were found when manganese was used, with both measurements of ΔQ and Δfr. The 

other metals produced changes of resonant frequency and Q-factor which were inside the 

intervals defined by the brackets. 

Comparison between the results obtained after setting the capacitance to the values 

C=1 μF and C=0.5 μF implied that the system’s behaviour was similar, when the external 

capacitance value was changed, and generalised conclusions could thus be drawn. The data 

sets obtained by measuring the resonant frequency with C=0.5 μF and C=1 μF are shown in 

Fig. 5.5. The two trends are similar, showing an increase of ∆fr with σ. 

 

Fig. 5.5. Change in resonant frequency plotted against conductivity of each of the 14 metals listed in 
Tab. 5.1 [66]. The physical quantities were measured at C=1 μF (diamond data set) and C=0.5 μF 

(square data set). Dots that are detached from the main trends (producing Δf equal to -0.25 % and     
-0.3 %) correspond to measurements taken with iron (99.5% purity). 

 

Due to the behaviour of the ΔQ data set, each value of Q-factor was not univocally 

related to a metal of certain conductivity (Figs. 5.4 and 5.5). Therefore, different metals could 

not be distinguished from each other by simply measuring the Q-factor. On the other hand, 

the resonant frequency trend (square data series) was represented by a monotonic function, 
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if the data point corresponding to iron is excluded (Fig. 5.5). This clearly showed the potential 

of this technique to achieve the goal of material characterisation. However, a higher change 

of resonant frequency than the one obtained was required, since the measured changes had 

the same order of magnitude as the experimental uncertainties (σfr=0.02). 

The following sections report observations made about the system’s behaviour in the 

regions corresponding to the limits of low and high conductivity (σ). 

 

 

5.3.2.1 High-conductivity metals 

 

Fig. 5.4 showed that the Q-factor variation with σ was nearly null for values of 

conductivity corresponding to Cu and Al (σ=42.55 х 106 Sm-1 and σ=59.77 х 106 Sm-1, 

respectively). This explained the difficulty of producing different images of copper and 

aluminium samples encountered earlier (Section 5.2). Another observation can be made 

about the reproduction of high-conductivity samples in the images. Figs. 5.2 and 5.3 

represented images of copper and aluminium samples obtained with resonant frequency and 

Q-factor measurements. The Matlab images reported in these figures showed that the 

diameters of the imaged samples were in good agreement with the dimensions of the actual 

samples. A quantitative analysis was carried out to estimate the diameter of the imaged disks 

by adopting an edge-detection algorithm, as reported in Section 5.4. 
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5.3.2.2 Low-conductivity metals 

 

The Q-factor change showed a large variation with conductivity for low-conductivity 

metals (σ ranging from 0.54 to 4.03 х 106 Sm-1). On the other hand, samples with low-

conductivity (particularly, bismuth and manganese) produced a negligible change of the 

resonant frequency of the circuit. This result was confirmed by images of manganese and 

bismuth shown in Figs. 5.6-5.7, in which the imaged samples could not be clearly distinguished 

from the background. Due to the small change of resonant frequency from the background 

value, it was not possible to visualise the manganese object, whereas the bismuth sample 

produced a visible ‘signature’, showing its presence, due to its larger conductivity. Although 

the change of resonant frequency from the background value for bismuth was bigger than 

the one obtained with lower-conductivity manganese, the object could not be clearly 

distinguished from the background. On the other hand, images of manganese and bismuth 

that were obtained via position-resolved-measurements of the Q-factor showed that the 

samples were very clearly distinguished from the background by means of the Q-factor 

technique (Figs. 5.8-5.9). This result is important because manganese has similar 

electromagnetic properties than uranium (they are both paramagnetic materials with similar 

values of magnetic susceptibility, equal to χ(Mn)=529 x 10-6 cgs and χ(U)=409 x 10-6 cgs, 

measured respectively at 293 and 298 K); therefore, being able to image it is relevant for the 

security applications on which this research is founded [66]. The findings resulting from these 

experimental observations led to establishing that the Q-factor measurement method was 

more successful than the resonant frequency method in order to achieve EII of poorly 

conductive samples. 
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Fig. 5.6. Images of a 25x25x1 mm3 manganese sample obtained via position-resolved measurements 
of the resonant frequency, for a capacitance C=1 μF. 

 

Fig. 5.7. Images of a 25x25x1 mm3 bismuth sample obtained via position-resolved measurements of 
the resonant frequency, for a capacitance C=1 μF. Values on the z axis are resonant frequency 

measured in presence of the sample, normalised w.r.t. values in air. 



 

112 

 

Fig. 5.8. Images of a 25x25x1 mm3 manganese sample obtained via position-resolved measurements 
of the Q-factor, for a capacitance C=1 μF. Values on the z axis are resonant frequency measured in 

presence of the sample, normalised w.r.t. values in air. The shape of the sample resembles the shape 
of the actual sample in this case. 

        

Fig. 5.9. Images of 25x25x1 mm3 bismuth samples obtained via position-resolved measurements of 
the Q-factor, for a capacitance C=1 μF. The shape of the sample resembles the shape of the actual 

sample in this case, unlike what appeared in Fig. 5.6. 
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The results shown in Figs. 5.8-5.9 implied that the Q-factor imaging technique 

provided higher sensitivity than the resonant frequency imaging technique, as the Q-factor 

shifts produced by low-conductivity samples were larger than the resonant frequency shifts 

produced by the same samples, thus making it possible to distinguish the sample from the 

background in a Q-factor image. The Q-factor imaging technique allowed characterising 

materials having similar values of conductivity and allowed imaging over a broad range of 

conductivity. Consequently, experimental procedures illustrated in Chapter 7 were focused 

on Q-factor measurements. These could be more useful than resonant frequency 

measurements, especially for low-conductivity samples, as appeared by comparing Figs. 5.6 

and 5.7 with Figs. 5.8 and 5.9. 

The system’s behaviour corresponding to the limits of low and high conductivity was 

investigated further. 

Firstly, the capacitance value of the LCR system was reduced from C=1 μF to C=0.5 μF, 

in order to verify whether it could be possible to visualise low-conductivity samples by 

modifying the circuit’s capacitance and, therefore, its resonant frequency. Secondly, an 

experiment was conducted to try to overcome the issue linked to Q-factor saturation (i.e., 

decrease of the ΔQ change with σ observed at high values of σ) at high conductivities. 

With regards to the first experimental investigation, the following considerations are 

noted. The advantage of decreasing the system’s capacitance was that the skin depth could 

then be increased, due to the skin depth’s dependence on the frequency of the system, which 

in turn is dependent on the capacitance (Eqs. 2.13-2.16). Obtaining larger skin depth could 

thus be achieved by decreasing C, which could be useful for imaging hidden metals by 

penetrating through the conductive screens shielding them. This topic was covered in Section 

2.2 and experimental investigations related to it are reported in Chapter 6. At this stage, the 

capacitance was reduced from C=1 μF to C=0.5 μF, and images of manganese and bismuth 

samples were obtained by means of resonant frequency measurements, after normalising the 

values w.r.t. air (Figs. 5.10 and 5.11). 
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Fig. 5.10. Image of a 25x25x1 mm3 manganese sample obtained via position-resolved measurements 
of the resonant frequency, for a capacitance C=0.5 μF. The imaged sample is now visible due to the 

increase of resonant frequency produced by selection of a lower capacitance value than the 
previously used value of C=1 μF. 

 

Fig. 5.11. Image of a 25x25x1 mm3 bismuth sample obtained via position-resolved measurements of 
the resonant frequency, for a capacitance C=0.5 μF. The imaged sample is now visible due to the 

increase of resonant frequency produced by selection of a lower capacitance value than the 
previously used value of C=1 μF. 
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It was observed that, in the case of C=0.5 μF, the objects could be distinguished from 

the background, unlike what occurred at C=1 μF (Figs. 5.10 and 5.11). This was due to the 

increase of the resonant frequency occurring when the capacitance is decreased (Eq. 4.3). The 

absolute values obtained for fr at C=0.5 μF were larger than the ones obtained with the same 

sample at C=1 μF. This was also the case for the scenario when no sample was present. This 

behaviour is reflected in a larger difference between fr0 measured with the system in air, and 

fr1 obtained when the conductive samples were inductively coupled to it, than the 

corresponding difference obtained at larger C. The images shown in Figs. 5.10 and 5.11 

reproduced the shapes of both manganese and bismuth samples because in each of them the 

difference between the values of resonant frequency of the image background 

(corresponding to sample’s positions located at the outer parts of the scanning area) differed 

from those corresponding to central positions of the scan, i.e., where the samples were 

moving closer to the coil until they were centrally aligned to it (the latter scenario 

corresponded to values at the centre of the disks in Figs. 5.10 and 5.11). 

These results demonstrated that resonant frequency imaging of low-conductivity 

objects was possible by selecting an appropriate value of capacitance. However, this implied 

that the functionality of the resonant-frequency imaging method was restricted to only 

certain values of capacitance. On the other hand, the observed change of Q-factor at the two 

capacitance values used (larger, in both cases, than the measurement uncertainties by a 

factor greater than 4) made imaging of all conductivity samples possible, irrespective of the 

capacitance used, for the two values of C considered in these experiments (C=0.5 μF and C=1 

μF). A second weakness of the technique based on resonant frequency measurements was 

related to the shape reproduction of samples in the images. The shape of the 25x25x1 mm3 

manganese and bismuth samples imaged in Figs. 5.10 and 5.11 was close to circular, although 

the actual samples were square. For comparison, the shapes reproduced in Figs. 5.8 and 5.9 

with Q-factor measurements were closer to the shapes of the actual samples, although this 

imaging technique is not accurate enough to produce 90 degrees edges as the ones in a 

square should be. A representation of the samples’ shapes closer to the real one was found 

with higher-conductivity copper sample, as shown in Fig. 5.3. Comparing this image with Fig. 

5.2, obtained with aluminium, reveals that the ability to reproduce the shapes of the samples 
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is dependent on the sample’s conductivity, for both the Q-factor and the resonant frequency 

imaging techniques. 

To conclude this section about “Material characterisation”, an experiment was 

conducted to try to overcome the issue linked to Q-factor saturation at high conductivities, 

i.e., the observed decrease of the ΔQ change with σ observed at high values of σ (Fig. 5.4). As 

suggested by the trend of the diamond-shaped data set illustrated in Fig. 5.1, showing the 

variation with lift-off of the Q-factor (measured with a 25x25x1 mm3 aluminium sample), the 

Q-factor change increased at values of lift-off lower than 1 cm. In order to extend this result 

to all the metals having different values of conductivity, the Q-factor change was measured 

for each sample at 1-cm-lift-off and 0-cm-lift-off (Fig. 5.12). This experiment compared a 

contactless method for imaging conductive samples, to an equivalent method where the 

procedure was the same except that a zero-lift-off was used, meaning that the coil and the 

sample were in proximity. This may not always be interesting from a practical point of view, 

but it quantifies the loss in the system’s performance (in terms of Q-factor values normalised 

w.r.t. values in air) resulting from the transition between contact and contactless systems. 

 

Fig. 5.12. Normalised Q-factor plotted against metal’s conductivity [66], at lift-off=1 cm and lift-off=0. 
Error bars were estimated by propagating the measurement uncertainties, which were standard 

deviations of the Q-factor measurements. The minima values of the two curves differ of a factor 1.7. 

 

Fig. 5.12 explained why it was not possible to distinguish between a copper and an 

aluminium sample by using the Q-factor technique at 1-cm-lift-off. These two metals 
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produced a Q-factor change of 1% in this case; such change doubled when the lift-off was 

lowered to zero. Changes between Q-factor values obtained for one metal and the ones 

having conductivities closer to the first metal were found to be larger when the 

measurements were taken “in contact” (at zero lift-off). The results obtained in this case differ 

from the measurements taken “in air” by 13% for low-conductivity metals and by 25% for 

high-conductivity metals (left and right hand sides of the square data set, respectively). The 

metal which produced the larger change in Q was tin, as found from earlier results, which led 

to a change of 48% from the configuration “in air”. For comparison, when a lift-off equal to 1 

was used, changes of Q were found equal to 3% and 5% for manganese and copper, 

respectively, and to 13% for tin (diamond data set). 

The requirement for an imaging system to allow distinguishing between conductive 

materials having similar values of electrical conductivities meant that it was important to 

quantify the difference between the Q-factor obtained with a metal, e.g. copper, and the 

corresponding value measured with the one closer to the first one in terms of electrical 

conductivity, e.g., aluminium. A difference larger than the measurement uncertainties would 

imply that the system was able to distinguish the two metals from each other with the Q-

factor measurement technique. The change of Q between the two metals was calculated as: 

∆𝑄 =  
𝑄(𝐶𝑢)−𝑄(𝐴𝑙)

𝑄(𝐴𝑙)
 (%)                (5.3) 

where 𝑄(𝐶𝑢) and 𝑄(𝐴𝑙) were Q-factor values measured at the centre of the images 

representing the copper and aluminium samples, respectively. This experiment was done by 

acquiring ten measurements of Q for each position along a 16x16 scanning area, and 

calculating the average, standard deviation and maximum value. The resulting maximum 

average was taken as the one corresponding to the centre of the imaged sample. 

The Q-factor change was found equal to ∆Q = (1.93±0.06) % when the lift-off was 

L=(1.0±0.1) cm (diamond set, Fig. 5.12). In comparison, the change of resonant frequency, 

calculated in a similar fashion with the formula: 

∆𝑓 =  
𝑓(𝐶𝑢)−𝑓(𝐴𝑙)

𝑓(𝐴𝑙)
 (%)                    (5.4) 

was found equal to ∆f = (0.38±0.04)%. 
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 The Q-factor change was found to be bigger than the corresponding resonant 

frequency change by a factor of 5, which allows drawing the conclusion about the better fit 

of the Q-factor techniques to imaging of high-conductivity samples and material 

characterisation aimed at distinguishing between two metals of different electrical nature. 

Calculations of the Q-factor and resonance frequency changes were repeated for data 

obtained at a lift-off of L=0 cm (square set, Fig. 5.12), by using Eqs. 5.3 and 5.4. The values for 

ΔQ and Δf were found to be equal to ∆Q = (14.82±0.07) % and ∆f = (0.40±0.05)%. 

It should be noted that the ΔQ and Δf measurements gave information about the 

relative change, but what should be calculated to assess the capability of the system to 

distinguish between two metals is the absolute difference between the measured values 

obtained with one sample and the corresponding values obtained with the other sample. 

These differences were found to be equal to the following: dQ(lift-off = 1)=0.33 and 

dQ’(lift-off=0)=1.76. These results established that samples made of copper and aluminium 

could be differentiated using the Q-factor imaging technique, when the metals were in 

contact with the coil (L=0). This result is relevant, in relation to one of the goals of the entire 

research project, which is material characterisation. Indeed, being able to distinguish 

between samples having the same geometry and different values of conductivity is a key 

feature for imaging applied to both security inspection and medical diagnosis. Further work 

will be focused at increasing the differences dQ to be able to use a contactless Q-factor 

imaging technique to distinguish between two metals having different values of electrical 

conductivity, such as copper and aluminium. Chapter 7 will report on this. 

 

5.4  Edge estimation with resonant frequency and Q-factor techniques 

 

Experimental results shown in Section 5.3 revealed that different conductivities have 

different weights on the shift of the measured quantities occurring due to the inductive 

coupling of samples to the LCR system. Specifically, changes of resonant frequency and Q-

factor, Δfr and ΔQ, were found to vary with the conductivity of the samples (Figs. 5.4-5.5). This 

observation raised the interest in quantifying the impact on the imaging process that 
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inductive coupling of samples to the resonating system had, when samples having different 

conductivities were used. It was assumed that, due to the lower amount of eddy currents 

induced in poorly conductive samples, w.r.t. higher-conductivity ones, the images of low-

conductivity samples were more blurred than images of higher-conductivity samples. 

 

5.4.1 Description of the experimental procedure 

 

A study was conducted in order to detect the edge and diameter of the samples imaged 

in the previous experiments (Sections 5.2-5.3). This was accomplished by means of a Canny 

edge-detection algorithm [68]-[72] that enabled the edge of the images reproducing the 

samples (obtained as detailed in Sections 4.1-4.2) to be detected. A Matlab program was 

adopted to apply the detected edge to the images obtained by means of resonant frequency 

and Q-factor position-resolved measurements (reported in Sections 4.2, 5.2 and 5.3), 

representing both square samples (Tab. 5.1) and circular metallic samples (Tab. 5.2). The 

Matlab code was adapted to the measurement set-up, following the method developed by 

Brendan et al. [73]-[74]. 

 

Tab. 5.2. List of copper and aluminium disks of different diameters and thicknesses included in the 
investigation aimed at imaging high-conductivity samples. 

Metal Diameter 
(mm, uncertainty ± 0.5) 

thickness  
(mm, uncertainty ± 0.5) 

Copper 15.0 2.0 

“ 17.0 2.0 

“ 20.0 2.0 

“ 30.0 2.0 

“ 30.0 0.7 

Aluminium 15.0 2.0 

“ 17.0 2.0 

“ 20.0 2.0 

“ 30.0 2.0 
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The method developed by Canny assumes that the image is made up of “step-edges” 

corrupted by white Gaussian noise [68]. The Canny edge-detector is given by a convolution 

filter that smooths the noise in the image and detects the edges. Such edge-detector meets 

the following three criteria [74]: 

1) Detection. Detecting real edges is maximised, whereas detecting false edges is 

minimised. This translates in mathematical terms into maximisation of the signal-to-

noise ratio (SNR). 

2) Localisation. The distance between the detected edge and the real edge is minimised. 

3) Number of responses. One real edge must not produce more than one detected edge. 

A Gaussian function is used as a filter, since it is a close approximation to the optimised 

product between SNR and localisation [74]. 

Due to the Canny edge-detector being susceptible to noise present in the raw image 

data, this image is filtered or smoothed by convolution with a 2D circularly symmetric 

Gaussian, distributed as a “point-spread” function [74]. This prevents the raw image to be 

affected by noisy pixels and therefore these pixels cannot be mistaken for edges. The 

convolution manifests as a blurring of the raw image. The amount of filtering/smoothing is 

governed by the standard deviation of the Gaussian. Regions of the smoothed image with 

high first-derivatives are detected by a 2D first-derivative operator. Differentiation in two 

directions x and y enables to find the direction of the slope’s surface to determine the 

direction in which the edge is pointing [74]. The image representing the sample is turned into 

a greyscale image, as required by the Canny-edge detection method. The detected edge 

(coloured in yellow) is overlaid onto the grey scale image to trace the detected edge onto the 

imaged sample (Figs. 5.13-5.14), by means of a Matlab algorithm [74]. 

The Canny edge detection method was applied to the present work in order to quantify 

the suitability of the two techniques here proposed for imaging. Specifically, a new technique, 

including the Canny edge detection as an additional feature, was applied to the previously 

tested LCR-based system (Section 5.1), to assess its performance as imaging and dimensions’ 

identification capability. The results achieved by using the resonant frequency and Q-factor 

techniques, with the external capacitance set to the two values used in previous 

investigations (C=1 μF and C=0.5 μF, ± 1%, as in Sections 5.1-5.3) were considered. The Canny-
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edge quantitative analysis aimed at comparing the ability to resolve shapes of the resonant 

frequency imaging technique with the one of the Q-factor technique. Determination of the 

imaged samples’ dimensions (edges or diameters) was undertaken to see which of the two 

techniques was closer to representing the samples as they were in reality. 

 

5.4.2 Results and discussion 

 

This section contains the results obtained from the quantitative study that aimed at 

estimating the edge of the square imaged samples and the diameter of the imaged disks. 

Results of the study conducted with an aluminium sample by using the Canny-edge detection 

algorithm are shown in Figs. 5.13-5.14. The images are grey-scaled because grey-scale images 

were required for the Canny edge detector to be applied to them. The circular contour of the 

imaged samples is displayed in yellow. This contour has edges closer to 90 degrees square 

edges in the case of the image obtained with Q-factor position-resolved measurements (Fig. 

5.14), than with resonant frequency measurements (Fig. 5.13). 

 

Fig. 5.13. Canny edge detection algorithm applied to the grey scale image of an aluminium square 
metallic sample (25x25x1 mm3), obtained with resonant frequency imaging technique, for a 

capacitance C=1 μF. Values on the z axis refer to resonant frequency measured in the presence of the 
sample, normalised w.r.t. air. 
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Fig. 5.14. Canny edge detection algorithm applied to grey scale image of aluminium metallic sample 
(25x25x1 mm3), obtained with Q-factor imaging technique, for a capacitance C=1 μF. Values on the z 

axis refer to Q-factor measured in the presence of the sample, normalised w.r.t. air. 

 

Similar images were obtained with the other 13 square metallic samples used in the 

previous experiments (Tab. 4.1). Copper and aluminium disks were also included in this study 

(Tab. 5.2). Due to the limited number of different-diameter-disks available when this study 

was conducted, a similar study was repeated for a larger number of disks having different 

diameters and made of aluminium (Tab. 5.4). Experimental results obtained with them are 

shown in Section 5.6.2. 

Results showed that the shape of the sample was best reproduced with the Q-factor 

technique (Fig. 5.14). This was confirmed by Fig. 5.15, in which the ratio between Canny-

detected edge (Lmeas) and ‘actual’ one (Lreal) is plotted against the metal’s conductivity. This 

figure shows that the edge estimation improves for metals with higher conductivities, where 

Lmeas/Lreal values of both data sets are closer to 1. This is due to the increase of inductance 

change with conductivity, causing the measured physical quantities to differ from the 
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background quantities by a greater amount. For this reason, the Q-factor technique provided 

a very good estimate of the edge of high-conductivity metals like copper, gold and aluminium 

(Lmeas/Lreal = 1). 

 

Fig. 5.15. Ratio between Canny-detected edge and ‘actual’ edge of each sample of conductivity σ 
(Tab. 4.1), plotted against σ. Edge values were estimated from the images obtained with a 

capacitance C=0.5 μF. The diamond-shaped data set includes values obtained using the Q-factor 
imaging technique, whereas the squared-shaped data set represent values obtained using the 

resonant frequency imaging technique. 

 

The results obtained with copper and aluminium disks were used to produce plots of 

the diameter estimated by means of the Canny-edge detection technique, against the 

tabulated ‘actual’ diameter (Figs. 5.16-5.17). 

The linear fits of Figs. 5.16-5.17 show that it is possible to determine the ‘actual’ 

diameter (Dt) from the one estimated with the Canny-edge detection algorithm (De). In 

particular, the following formulae can be used for copper and aluminium samples being 

imaged by means of the Q-factor technique: 

𝐷𝑡(𝐶𝑢) =  
𝐷𝑒(𝐶𝑢)+0.09

0.98
    (5.5) 

𝐷𝑡(𝐴𝑙) =  
𝐷𝑒(𝐴𝑙)+0.21

1.04
     (5.6) 
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Eqs. 5.5-5.6 were derived by writing the x variable (“measured diameter”) of linear fits 

of the diamond data sets reported in Figs. 5.16-5.17, in terms of the y variable (“estimated 

diameter”). 

 

Fig. 5.16. Estimated diameter vs measured diameter of 1.5, 1.7, 2 and 3 cm diameter copper disks. 
The trends obtained with the Q-factor technique (diamond) and the trend obtained with the 

resonant frequency technique (square) are both linear. 

 

 

Fig. 5.17. Estimated diameter vs measured diameter of 1.5, 1.7, 2 and 3 cm diameter aluminium 
disks. The trends obtained with the Q-factor technique (diamond) and the resonant frequency 

technique (square) are both linear. 
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Equations similar to (5.5) and (5.6) were derived for copper and aluminium samples 

being imaged by means of the resonant-frequency technique, from linear-fit equations shown 

in Figs. 5.16-5.17: 

𝐷𝑡(𝐶𝑢) =  
𝐷𝑒(𝐶𝑢)+0.16

0.83
    (5.7) 

𝐷𝑡(𝐴𝑙) =  
𝐷𝑒(𝐴𝑙)+0.20

0.84
     (5.8) 

Graphs similar to those shown in Figs. 5.16-5.17 were obtained with a capacitance 

C=0.5 μF. Therefore, also in this case the sample’s diameter may be estimated by using Eqs. 

similar to 5.5-5.8 that could be derived from linear fits of data. 

Figs. 5.18-5.19 contain plots of Dt (“calculated diameter”) vs De (“Canny detected 

diameter”), obtained by using Eqs. 5.5-5.8. 

 

 

Fig. 5.18. Diameter of copper disks calculated by means of relations derived from the linear fits 
shown in Fig. 5.15, plotted against the diameter estimated by using the Canny edge detection 
algorithm. Note that the x-axis-values of these graphs are the y-axis-values in Figs. 5.16-5.17. 
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Fig. 5.19. Diameter of aluminium disks calculated by means of relations derived from the linear fits 
shown in Fig. 5.15, plotted against the diameter estimated by using the Canny edge detection 
algorithm. Note that the x-axis-values of these graphs are the y-axis-values in Figs. 5.16-5.17. 

 

Results shown in Figs. 5.18-5.19 showed the goodness of fits obtained when the 

diameter of imaged disks was calculated by using Eqs. 5.5 and 5.6 (“calculated diameter” was 

named 𝐷𝑡 in the equations) vs the diameter produced by applying the Canny edge detection 

algorithm (“Canny edge detected diameter”, named “𝐷𝑒” in the equations). 

To summarise and conclude, the edge detection process was applied to the data 

acquired with both resonant-frequency and Q-factor imaging techniques, in order to evaluate 

and compare the whole system’s imaging capability. In particular, the capability of estimating 

the samples’ shape and size by using these two imaging techniques was assessed. The goal of 

this experiment was to determine the contours of the samples imaged as described in 

Sections 5.2-5.3. These “estimated” contours were related to the tabulated contours to the 

‘actual’ samples. 

Results demonstrated that formulae derived by using linear fits of data sets where the 

estimated Canny edge diameter was plotted vs the one of the actual sample, represented a 

valid tool for estimating the sample’s diameter by means of the Canny-edge detected 

diameter. 
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5.5 LCR circuit optimization 

 

The imaging method, based on position-resolved measurements of the resonant 

frequency and the Q-factor and proposed in Sections 4.1-4.2, was proved to be suitable for 

imaging of samples having different values of conductivities. The next step of the process was 

optimising it. For this purpose, the EII system was firstly modified by adding variable resistor 

and capacitor decade boxes, as detailed in Section 4.3. This was done due to the dependence 

of the measured quantities, i.e., resonant frequency and Q-factor, from the circuit’s 

components and the dependence of the skin depth on the circuit’s capacitance (Eqs. 2.12, 

2.13, 2.16). The purpose of this investigation was to increase the measurement sensitivity of 

the EII imaging system. In particular, the aim was to increase the Q-factor of the LCR circuit 

constituting the system, in order for it to acquire higher selectivity. As mentioned earlier, 

higher values of Q meant sharper resonance peaks and thus implied the possibility to 

differentiate between similar resonances. The dependence of Q on the circuit’s inductance, 

resistance and capacitance (Eq. 2.12) led to assuming that higher Q-factor values could be 

obtained by changing two of these quantities (C and R), as will be detailed in the following 

paragraphs. 

The purpose of this experiment was relevant for the research goal of distinguishing 

between materials of different nature that had similar values of conductivity and thus 

produced similar changes in the measured quantities (fr and Q). Increasing the system 

resonant frequency selectivity was also important to enable imaging of low-conductivity 

samples, in which small amounts of eddy currents were induced, thus producing small 

changes in the measured quantities with respect to the background values. 
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5.5.1 Description of the experimental procedure 

 

An experiment was carried out with the purpose of varying the resistance and 

capacitance of the LCR circuit, in order to adjust the Q-factor and resonant frequency, 

according to Eqs. 4.2 and 4.3. The aim was to increase the Q-factor in order for the circuit to 

acquire higher selectivity, and make it possible to differentiate between similar values of 

resonant frequency. The question of why only the capacitance and resistance values were set 

as variables in this experiment might arise when one considers the dependence of the Q-

factor on inductance as well as on capacitance and resistance. The reason for this decision 

was that the promising results obtained with the ferrite-cored coil (Sections 5.1-5.4) 

suggested that this inductor should be kept for the future measurements. Therefore, L was 

kept constant and the only quantities which were varied, in order to vary Q, were C and R. 

The experiment was based on building eight parallel LCR circuits, like the one shown 

in Fig. 4.6, by selecting different combinations of resistance and capacitance, in order to vary 

the values of fr and Q of the system, as predicted by Eqs. 4.2 and 4.3. The LCR circuits that 

were built are labelled with numbers I-VIII in column 1 of Tab. 5.3, and the corresponding 

combinations of resistors and capacitors are reported in columns 2 and 3 of the table. For 

each of them, measurements of resonant frequency and Q-factor were undertaken with a 

25х25х1 mm3 Al sample, which was placed under the ferrite-cored coil at a lift-off L=(1.0±0.1) 

cm. 

 

  



 

129 

Tab. 5.3. Values of resistance (second column) and capacitance (third column) that were 
chosen to build eight different LCR circuits (labelled with numbers I-VIII reported in the first 
column of this table). 

LCR circuit number Resistor value 
(uncertainties= ±1%) 

C (μF, uncertainties= ±1%) RC (s) 

I (3.000 ± 0.001) KΩ 2.0 0.006 

II (3.000 ± 0.001) KΩ 3.0 0.009 

III (3.000 ± 0.001) KΩ 5.0 0.015 

IV (1.000 ± 0.001) MΩ 2.0 2 

V (1.000 ± 0.001) MΩ 3.0 3 

VI (1.000 ± 0.001) MΩ 5.0 5 

VII (2.000 ± 0.001) MΩ 0.5 1 

VIII (4.000 ± 0.001) MΩ 1.0 4 

 

Aluminium was chosen as it is a highly conductive material which produced optimal 

results when the procedure adopted before and shown in Sections 4.2 and 4.3 was used to 

image it. This experiment involved setting up an experimental EII system where each time the 

LCR circuit was one of the 8 LCR circuits with components values as reported in Tab. 5.3, wired 

as in Fig. 4.6. The choice for the specified value of lift-off was justified by it having produced 

a change in the resonant frequency and Q-factor that was higher than the one obtained with 

larger lift-off values (Section 5.1.2). 

Eqs. 5.9 and 5.10 were used to calculate the resonant frequency and Q-factor change 

obtained with each of the LCR circuits listed in Tab. 5.3. In this way, the “optimal” circuit was 

found, as the one which caused the greatest change in the measured quantities to occur: 

∆𝑓𝑟 =
𝑓(𝑠𝑎𝑚𝑝𝑙𝑒)−𝑓(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)

𝑓(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)
(%)    (5.9) 

∆𝑄 =
𝑄(𝑠𝑎𝑚𝑝𝑙𝑒)−𝑄(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)

𝑄(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)
(%) .    (5.10) 

In these equations, 𝑓(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) and 𝑄(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) represent values measured for 

each LCR circuit when this was in air (i.e., in the absence of the sample), and 𝑓(𝑠𝑎𝑚𝑝𝑙𝑒) and 

𝑄(𝑠𝑎𝑚𝑝𝑙𝑒) resulted from measurements taken with the same circuit after placing a 25х25х1 

mm3 Al sample under the coil, at a lift-off L=(1.0±0.1) cm. 
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5.5.2 Results and discussion 

 

This investigation aimed at finding the optimal LCR circuit, defined as the circuit which 

caused the greatest change in the measured quantities Δfr and ΔQ, occurring when a 25х25х1 

mm3 aluminium sample was inductively coupled to the system. 

Results of the LCR circuit optimisation study are summarised here. Figs. 5.20-5.21 

show the relative change in resonant frequency and Q-factor obtained by means of Eqs. 5.9 

and 5.10, plotted against the measured Q-factor of each of the 8 LCR circuits listed in Tab. 5.3. 

 

 

Fig. 5.20. Relative change of resonant frequency (Eq. 5.1), produced by a 25х25х1 mm3 Al sample for 
the 8 LCR circuits listed in Tab. 5.3, having values of Q-factor ranging from 7.6 to 22.3. 
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Fig. 5.21. Relative change of Q-factor (absolute value of ΔQ in Eq. 5.2), produced by a 25х25х1 mm3 
Al sample for the 8 LCR circuits listed in Tab. 5.3, which had values of Q-factor ranging between 7.6 

and 22.3. 

 

Figs. 5.20 and 5.21 show that both the change in resonant frequency and the change 

in Q-factor increased with the Q-factor of the circuit. Choice of an appropriate combination 

of L, C and R, as detailed in rows of Tab. 5.3 corresponding to circuits “IV, VII, VIII” (R=1 MΩ, 

2 MΩ, 4 MΩ), provided a maximum change in the measured quantities, which was nearly 

equal to 6.7% for the Q-factor and was about 0.73% for the resonant frequency. This 

consideration justified the study which was undertaken, proving that there was a dependence 

of the changes in the measured quantities on the Q-factor of the system. 

Results shown in Fig. 5.20 highlighted that values of C > 2 μF led to smaller changes of 

resonant frequency, and the optimal situation occurred when C=0.5 μF (circuit “VII”), 

although measurement uncertainties made the values of C=2 μF equivalent to C=0.5 μF 

(circuits “IV, VIII”), as the three data points found on the right of the graph (higher values of 

Q on the axis) did not differ significantly from each other, considering their error bars. This 

result was in agreement with the results shown in Sections 5.1-5.3, where C was assigned 

values lower than 2 μF, i.e., C=0.5 μF and C=1 μF. Findings shown in Figs. 5.20 and 5.21 

demonstrated that results reported in previous sections were obtained in the optimal range 

of Q-factor, as given by the values on the x axis of Figs. 5.20-5.21. Modifying the resistance 
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values, as was done for the circuits on the left hand side of the graph of Fig. 5.20 (labelled “III, 

VI, II, V, I” and having Q-factor values Q < 11), was not effective in improving the resonant 

frequency change, which was smaller than the one obtained for circuits “IV, VII, VIII”, in which 

the larger R values (1 MΩ, 2 MΩ, 4 MΩ) made Q larger too (Q is proportional to R, as shown 

by Eq. 4.2). Trends shown in both Figs. 5.20 and 5.21 revealed an increase in the change of 

the resonant frequency and Q-factor with the circuit’s Q-factor, with a decreased rate of 

change with increasing Q. 

An interesting observation could be made by looking at Fig. 5.21: the Q-factor change 

became small for Q-factor circuits having values of Q > 16 (the curve’s gradient approached 

zero). This behaviour was less pronounced when resonant frequency change was taken into 

account (Fig. 5.20). The Q-factor trend could be a useful tool for the imaging experiments 

carried out in this research work, because it meant that increasing Q up to values higher than 

16 was not necessary to accomplish a larger change in the measured quantities, i.e., resonant 

frequency and Q-factor. 

The explanation for these findings is backed up by the following theoretical 

considerations about LCR circuits’ behaviour. 

Firstly, the circuit impedance R’ (R’≠R), given by Eq. (5.11) (derived by taking the 

modulus of the impedance expression as in Eq. 4.1), decreases when the capacitance C is 

increased: 

𝑅′ =  
𝑅

1−𝑗𝑅(
1

𝑋𝐶
+

1

𝑋𝐿
)

=
𝑅

1+𝑗𝑅(𝜔𝐶−
1

𝜔𝐿
)
                (5.11) 

Secondly, the way in which Q increases with C is given by 𝑄 ~ √𝐶 (Eq. 4.2). On the 

other hand, the dependence of Q on R’ is given by 𝑄 ~ 𝑅′ (Eq. 4.2, where R is substituted by 

𝑅′, since it is the impedance, and not just the resistance, which needs to be taken into 

account). As the change of Q per unit change of R’ is larger than the change of Q per unit 

change of C (𝑄 ~ 𝑅′vs 𝑄 ~ √𝐶), the net effect is an increase of Q with R’. Moreover, when C 

is increased, the resulting decrease of R’ (Eq. 5.11) leads to the decrease of Q. 

The considerations above mean that the only solution to the initial goal of increasing 

the selectivity of the EII system by increasing its Q-factor, had to be a trade-off between 

increasing Q and increasing C, to achieve both higher selectivity for the system and capability 
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to penetrate through shielding materials. The latter objective led to the requirement for a 

higher C when increasing the skin depth was necessary, which was the case when imaging of 

shielded conductive samples was required. Optimising the Q-factor change by making it as 

large as possible to allow low-conductivity samples to be imaged and samples of different 

conductivity values to be distinguished was a goal already mentioned in Section 5.3. 

According to the aim of optimising the Q-factor change on the one hand, and the 

experimental results shown in Fig. 5.21 on the other hand, the following conclusion can be 

drawn: increasing Q to a value larger than 16 was not necessary, and satisfactory change in 

the measured quantity could be obtained for 9.5 < Q < 16, as can be seen by looking at the 

graph in Fig. 5.21. Due to this conclusion, values of R equal to 1, 2 and 4 MΩ and values of C 

between 0.5 and 2 μF were established to be optimal choices of components for creating LCR 

parallel circuits suitable to accomplish EII of conductive samples. 

 

5.6 Resolution study 

 

A resolution study was undertaken by imaging 8 Al disks (2-mm-thickness) having 

values of diameter listed in Tab. 5.4. The procedure described in Chapter 4 was used and the 

LCR circuit assigned the following values: L=680±10% μH, R=1±1% MΩ, C=1 μF. The aim of this 

experiment was to determine the system resolution for imaging of aluminium disks, defined 

as the minimum-diameter disk which gave a Canny edge detected diameter distinguishable 

from the nearest diameter disk of the same type. 
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5.6.1 Description of the experimental procedure 

 

2D images were produced for the samples listed in Tab. 5.4 and their diameter were 

estimated by using the Canny edge detection method detailed in Section 5.4. 

 

Tab. 5.4. Diameter values (cm) of the eight different Al disks which were used for the resolution study 
aiming at identifying the minimum-diameter-disk that could be imaged. 

Disk number 
Disk diameter 

(mm, uncertainty ± 0.5) 

1 15.0 

2 17.0 

3 20.0 

4 30.0 

5 40.0 

6 50.0 

7 60.0 

8 76.0 

 

Position-resolved measurements of both the resonant frequency and the Q-factor 

were performed to create the images. Canny edge detected diameters obtained for both 

series of images were compared with diameters of the actual sample, to establish the limits 

for imaging in terms of the EII system’s resolution. Aluminium was chosen as it is a highly 

conductive sample which produced optimal results when the Canny edge detection algorithm 

was used to find the image contours and establish the dimensions of the samples (Section 

5.4). 
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5.6.2 Results and discussion 

Values of the “estimated diameter”, obtained by applying the Canny edge detection 

method to the images obtained by means of position-resolved measurements of resonant 

frequency and the Q-factor, were plotted against the “measured diameter” of actual samples. 

The trend was found to be linear, as found in previous data (Section 5.4), and showed very 

good agreement between values estimated with the Canny-edge detection technique and 

values measured with a ruler (R2 nearly equal to 1, in Fig. 5.22). This confirmed the conclusions 

of the study reported in Section 5.4 and reinforced them, thanks to the higher number of 

data. 

 

Fig. 5.22. Estimated diameter (obtained by applying the Canny edge detection algorithm) plotted 
against measured diameter of actual samples, obtained for a set of aluminium disks of different 

diameter (from 1.5 cm to 7.6 cm). 

 

 

The ratio r between “measured” and “estimated” diameter was also plotted against the 

measured diameter in Fig. 5.23. The trend showed that the Q-factor imaging technique 

allowed an accurate estimate of the sample dimensions (ratio r ≈ 1) for disks having diameter 

d > 4 cm. Diameters of disks within this range were underestimated when the resonant-

frequency imaging technique was used (ratio r between 1.2 and 1.1). 



 

136 

 

Fig. 5.23. Ratio between measured and estimated diameter (measured for the actual samples and 
estimated using the Canny edge detection algorithm, respectively) plotted against measured 

diameter of aluminium disks. 

 

Moreover, uncertainties of the estimated diameter (calculated by means of standard 

deviation of Canny-edge-detected values, as explained in Section 5.4) were found to be 

decreasing with increasing diameters for Q-factor data, for disks having diameters d < 4 cm 

(st. dev.~0.1-0.4), whereas uncertainties in resonant-frequency data were steady at all 

diameter values (st. dev.~0.1) (see error bars in plots of Fig. 5.22). This highlighted a larger 

spread of Q-factor measurement values with respect to the one obtained with resonant-

frequency measurement values, for disks having smaller diameters. 

Results of the resolution study clearly showed that the resolution of the system was 

lower than 1.5 cm (Fig. 5.22). Further work will be needed in order to assign a value to such 

resolution limit. A hypothesis was made about this limit, which would be equal to the coil 

diameter, also according to results reported in [74]. This is because the sample edges produce 

discontinuities in the electromagnetic filed induced inside and around the sample, which 

behave in a similar way w.r.t. eddy current propagation, to cracks present in samples that are 

detected with eddy current testing techniques. Probes used for this purpose are generally 

designed such that their sensitive area has dimensions comparable to the dimensions of the 

cracks, which is required to identify and detect cracks, in a similar way to what has been done 
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in this work, where identifying edges allowed imaging samples by means of the discontinuity 

between regions within the metal bulk and surrounding regions acting as a dielectric (air) [24]. 

Results reported in this section validated the reliability of the imaging system for 

unscreened conductive target objects. 
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6 Penetrating power of the LCR system 

 

This chapter focuses on experimental investigations aimed at testing whether the LCR-

based EII system and method proposed in Sections 4.2-4.3 could be used to image conductive 

targets hidden behind a conductive shield. Theoretical considerations about the way in which 

such system could be successful for this purpose were given in Section 2.2. To summarize 

them, the external capacitance of the LCR circuit could be adjusted such that the eddy 

currents were allowed to penetrate through the conductive screen and reach the target to be 

imaged. 

The chapter is divided into two parts. Section 6.1 reports on experimental method and 

relevant results about 2D imaging of unshielded conductive targets, and acts as a bridge 

between Chapters 5 and 6. Section 6.2 includes description, results and discussion of 

experimental investigations involving 2D imaging of shielded conductive targets. 

 

6.1 Summary about 2D imaging of unshielded conductive targets 

 

The imaging capabilities of the EII system based on a parallel LCR circuit (Section 4.3) 

were first investigated for unshielded samples, i.e. without any conductive material in the 

shape of a sheet covering it. A simplified sketch of the experimental configuration used for 

this purpose was shown in Fig. 3.6 and a representation including the LCR system is reported 

in Fig. 6.1 below. Chapter 5 described several experimental investigations carried out with 

unshielded samples and included results and discussion. This section is a summary of the work 

done and includes some observations that will be used to highlight differences between the 

behaviour of the same LCR-based EII system, when this was used to image unshielded metals, 

compared to when a conductive shield, covering the conductive target, was introduced into 

the system (see Section 6.2). 

The magnetic coupling of a conductive target object with the inductor, which was part 

of the LCR circuit, led to a change of the circuit characteristics (L and R), and in particular of 

the system’s resonant frequency and Q-factor (Section 2.1). These were the physical 
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properties being monitored during the experiments. Sections 5.2-5.3 demonstrated that an 

image representing the target could be generated by performing position-resolved-

measurements of the resonant frequency and the Q-factor, obtained by displacing the object 

with respect to the inductor, by using a computer-controlled XY stage. For each position, the 

system resonant frequency and the Q-factor were measured with the Precision Impedance 

Analyzer 6500B (Wayne Kerr) (Section 4.2). The description of the experimental apparatus 

was detailed in Section 4.3. 

 

Fig. 6.1. Left: sketch representing the LCR parallel circuit used to image a conductive sample 
(labelled “target”) having rectangular cross section and volume equal to 25x25x1 mm3. The x axis is 
included to show the distance between the coil and the target (lift-off). Right: Sketch representing 
the lift-off used in the configuration shown on the left of the figure. The ferrite-cored coil (made by 

“multicomp”, part no. MCSCH895-681 KU) is part of the LCR circuit shown on the left side of the 
figure (the labels “metallic sample” and “target” both refer to the sample object). 

 

Typical results of resonant frequency and Q-factor position-resolved-measurements, 

in the form of 2D plots, are shown in Figs. 6.2-6.3 for a conductive, non-magnetic sample of 

large conductivity (copper, σ=59.77 MSm-1 [66]), and in Figs. 6.4-6.7 for a low-conductivity 

sample, made of manganese (σ=0.54 MSm-1[66]). The LCR circuit used was the one 

represented in Fig. 6.1 with component values as follows: L=680±10% μH, R=1±1% MΩ. The 

capacitance values used in this experiment were assigned the following values: C1=11 μF (Figs. 

6.2, 6.3, 6.6 and 6.7) and C2=0.5 μF (Figs. 6.4 and 6.5), in order to investigate if the imaging 

capability of the system showed any dependence on the capacitance and, therefore, skin 

depth (Eq. 2.13). 

Values of skin depth through copper and manganese, corresponding to each of the 

selected capacitance, were as follows: 
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1) C=11 μF → δ(Cu) = 2.6 mm (Figs. 6.2 and 6.3); δ(Mn) = 27.7 mm (Figs. 6.6 and 6.7); 

2) C=0.5 μF → δ(Mn) = 12.7 mm (Figs. 6.4 and 6.5). 

 

Fig. 6.2. Image of a copper sample (25х25х1 mm3) obtained by means of position-resolved-
measurements of the Q-factor. The system’s capacitance was set to the value C=11 μF; the 
corresponding skin depth in copper was equal to δ=2.6 mm. The data points in Figs. 6.2-6.7 

represent the positions along the scanning area where the measurements were taken. 

 

Fig. 6.3. Image of a copper sample (25х25х1 mm3) obtained by means of position-resolved-
measurements of the resonant frequency. The system’s capacitance was set to the value C=11 μF; 

the corresponding skin depth in copper was equal to δ=2.6 mm. 
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Fig. 6.4. Image of a manganese sample (25х25х1 mm3), obtained by means of position-resolved-
measurements of the Q-factor, with the system’s capacitance set to the following value: C1=0.5 μF; 

the corresponding skin depth was equal to δ1=12.7 mm. 

 

Fig. 6.5. Image of a manganese sample (25х25х1 mm3), obtained by means of position-resolved-
measurements of the resonant frequency, with the system’s capacitance set to the following value: 

C1=0.5 μF; the corresponding skin depth was equal to δ1=12.7 mm. 
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Fig. 6.6. Image of a manganese sample (25х25х1 mm3), obtained by means of position-resolved-
measurements of the Q-factor, with the system’s capacitance set to the following value: C2=11 μF; 

the corresponding skin depth was equal to δ2=27.7 mm. 

 

Fig. 6.7. Images of a manganese sample (25х25х1 mm3), obtained by means of position-resolved-
measurements of the resonant frequency, with the system’s capacitance set to the following value: 

C2=11 μF; the corresponding skin depth was equal to δ2=27.7 mm. 
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Qualitatively, the images obtained showed the system’s ability to reproduce samples’ 

shapes by means of both resonant-frequency and Q-factor measurements (Figs. 6.2-6.7). This 

was the case when the capacitance of the system was assigned the specified values, and the 

skin depth was modified accordingly. The skin depth values were calculated by using Eqs. 

2.13-2.16. 

 The resonant frequency of the system comprising the LCR circuit and the metallic 

sample was measured by placing the sample under the coil (vertically aligned to it, with lift-

off equal to 1 cm), and was dependent on the capacitance set through the decade box (Eq. 

2.16). The choice of lift-off is justified in Section 5.1. It was empirically determined as a 

compromise between the need to develop a contactless detection technique and the 

observed decrease, with lift-off, of the measured resonance frequency and Q-factor shifts, 

due to the presence of a highly conductive metal (aluminium). 

Given the images reported above and the ones obtained by selecting other values of 

capacitance, with “unshielded” copper and manganese (Fig. 5.3 and Figs. 5.6-5.9, 

respectively), a conclusion could be drawn about the system’s imaging capability. This was 

found to not be influenced by the chosen capacitance values, in the case of “unshielded 

metals”, in the sense that the images showed the presence of the metals and allowed their 

identification, at all values of capacitance (and skin depth) used in the experiments. No 

dependence of the measured parameters (i.e., resonant frequency and Q-factor shifts) on 

eddy current penetration depth was observed with unshielded samples, since the shift of the 

measured quantities caused by the presence of the metal enabled to distinguish it from the 

‘background’ corresponding to the situation when no metal was present. This is in contrast 

with what was occurred with samples shielded by conductive layers, as shown in the next 

section which highlights the dependence of the obtained images on the system’s capacitance. 

The images reported here were included to show that a ‘signature’ showing the 

presence of an unshielded conductive sample and reproducing its shape was resulting from 

the 2D imaging technique developed in this work. A more quantitative analysis of the images 

of unshielded samples was done by adopting a Canny edge detection method, as reported in 

Sections 5.4 and 5.6. 
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It is observed that images of higher-conductivity metals showed in Figs. 6.2-6.3 

revealed more accurate reproduction of the samples’ shapes and sizes, compared to the 

images of manganese reported in Figs. 6.4-6.7. This demonstrated the higher suitability of the 

proposed method for imaging of high-conductivity metals, due to the copper sample’s edges 

being more well-defined (closer to 90 degrees) and its dimensions being more similar to the 

ones of the actual sample (between 22 mm and 25 mm ± 2 mm), compared to the more 

distorted manganese images (edge of the images varying between 20 and 28 ± 2 mm). This 

behaviour was attributed to the larger change in the measured quantities (i.e., resonant 

frequency and Q-factor) that was produced by highly conductive metals, due to the larger 

magnitude of eddy currents induced inside them [46]. 

The images reported in this section and in Section 5.3 proved the suitability of the 

proposed method for imaging of high- and low-conductivity metals. On the other hand, the 

manganese images obtained with resonant frequency measurements at different values of 

skin depths (δ=12.7 mm and δ=27.7 mm) looked different (see Figs. 6.5 and 6.7). In particular, 

the sample’s size was smaller in the image obtained with the lower skin depth (δ=12.7 mm, 

Fig. 6.5). This showed a dependence of the resonant frequency shift, due to the presence of 

this metal, on the penetration depth. Such dependence was justified by the smaller amount 

of eddy currents produced inside this metallic target, which made it more difficult to reveal 

its shape and size, despite the larger values of skin depth compared to the target’s thickness 

(1 mm) [75]. 

 

6.2 Investigations on 2D imaging of shielded conductive targets 

 

Once the system capability of imaging unshielded metallic samples was assessed, the 

penetrating power of the imaging system was investigated. The goal was to see whether 

imaging of conductive targets in the “shielded configuration” (as shown in Fig. 6.8) was 

possible, by varying the value of skin depth to allow penetration through the shield [75]. In 

this experimental investigation, a sheet of highly-conductive material, i.e. an aluminium shield 

having an area of A=(110.0±0.5)x(80.0±0.5)x(1.5±0.5) mm3, was introduced between the 

target and the sensor (Fig. 6.8). The LCR circuit used was the one represented in Fig. 6.8 with 
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component values as follows: L=680±10% μH, R=1±1% MΩ and C=11 μF. This capacitance 

value was chosen in order for the skin depth through Al to be larger than the shield’s thickness 

(δ=3.3 mm). Experimental results obtained in this part were compared to corresponding ones 

obtained without the shield, with the same values of circuit’s components, as reported in 

Section 6.1. An imaging procedure like the one adopted for 2D imaging of unshielded 

conductive targets (described in Section 4.2) was applied to 2D imaging of conductive samples 

hidden behind 1.5-mm-thick Al shields. The experimental procedure is summarised in the 

following section. The main difference between this method and the one adopted before is 

that no normalisation was performed with the measured data, since normalising the values 

produced artifacts in the 2D surface plots obtained with shielded samples, whereas no issues 

were found when no normalisation was performed. 

 

 

Fig. 6.8. Sketch representing the LCR parallel circuit used to image a conductive target, with 
rectangular cross section (25x25x1 mm3), hidden behind a conductive shield in the shape of a 

110.0x80.0x1.5 mm3 piece of Al. The x axis is included to show that the concept of lift-off changed 
from the scenario represented in Fig. 6.1, due to the presence of the Al shield. 
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6.2.1 Experimental method 

 

Position-resolved-measurements of the resonant frequency were performed in the 

absence of the sample to be imaged, by moving the XY stage along an “n x n” scanning area 

(“background readings”). These acted as “control readings” and were acquired to verify that 

the “background data” obtained in the absence of the sample was uniform. The scanning area 

was shown in Fig. 3.8, which has been reproduced on the next page (Fig. 6.9). It was set to be 

larger than the area occupied by the samples to be imaged, to allow the samples’ dimensions 

to fit the plot area. Ten independent values of resonant frequency were acquired for each of 

the nodes of the grid represented in Fig. 6.9. Resonant frequency values were then acquired 

when the conductive sample was present, as described in the following. The sample was 

placed onto the xy stage, by using non-conductive materials of different thicknesses to lift it 

up and avoid contact between the sample and the sensor coil. The first ten independent 

readings were taken when the sample was in the position labelled as 1 in Fig. 6.9. After these 

readings were acquired, the sample was moved onto the next position (position 2 in Fig. 6.9) 

and the next ten independent readings were taken, using the impedance analyser. This 

procedure was repeated for all positions along the first row of the scan, and then for the next 

rows, until the entire scanning area was completed. A LabVIEW control program was written 

and the first part of it was run to initiate the instruments to be used and acquire 

measurements. Q-factor readings were also acquired in a similar fashion, by taking 

measurements first in the absence of the sample and then when the sample was present. 

Two matrices were thus obtained for each conductive sample, which contained values of the 

resonant frequency and the Q-factor, respectively. A third matrix was obtained containing the 

positional values covering the scanned area. After the first part of the LabVIEW structure was 

run, a second one executed a Matlab script which called the measurement matrices and 

concatenated them to create a 2D surface plot, by means of interpolation using a cubic 

piecewise fit. Specifically, the values in the resonant frequency matrix were plotted against 

the corresponding x and y coordinates and interpolated with a piecewise cubic function 

generated by Matlab. This was done to obtain 2D surface plots representing the imaged 

samples, as the ones shown in Section 6.1. Similarly, the values in the Q-factor matrix were 

plotted against the corresponding x and y coordinates and interpolated with a piecewise cubic 
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function generated by Matlab. This resulted in two images being produced for each 

conductive sample, resulting from the resonant frequency and Q-factor acquisitions 

respectively. 

 

Fig. 6.9. Sketch representing the scanning area (“n x n” total positions, or nodes), where the 
coil (yellow circle) is maintained at a fixed position, and the metallic sample (light blue) is moved 

onto different positions, starting from “1”, going to “2”, tracing a horizontal path forming the first 
row of the scan, and then proceeding onto the next rows below. 

 

Four sets of position-resolved-measurements of the resonant frequency and the Q-

factor were performed, by adjusting the system capacitance to four different values, thus 

varying the skin depth δ between 0.4 mm and 2.9 mm, as detailed in Tab. 6.1. Values of δ 

were calculated by using Eqs. 2.13-2.16, with fr values as in Tab. 6.1 and tabulated σ and μr 

from [66]. The selected capacitance values caused the system to resonate at the values 

reported in Tab. 6.1, which were measured after placing a 25х25х1 mm3 copper target, 

covered with the aluminium shield, under the coil, with lift-off equal to 0.5 cm. 
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Tab. 6.1. Capacitance values (C), resonant frequency values (fr)- measured at the centre of the shielded 
copper target- and corresponding skin depths in aluminium and copper, for each of the images shown 
in Figs. 6.10-6.17 (see next section). 

Figure number C fr / kHz δ(Al) / mm δ(Cu) / mm 

6.10, 6.14 20 nF 144.2 0.4 0.3 

6.11, 6.15 10 nF 66.7 0.6 0.4 

6.12, 6.16 1 μF 6.6 1.8 2.1 

6.13, 6.17 7 μF 2.5 2.9 2.3 

 

6.2.2 Results and discussion 

 

The images obtained with the copper target mentioned above for each capacitance 

value listed in Tab. 6.1 are shown in Figs. 6.10-6.17. Figs. 6.10- 6.13 show 2D surface plots 

obtained by means of Q-factor position-resolved-measurements, whereas Figs. 6.14-6.17 

were obtained with resonant frequency measurements. It is worth noticing that Figs. 6.10 and 

6.14 do not reveal the presence of the target, due to the skin depth being too low for the 

eddy currents to penetrate through the aluminium shield, thus preventing them to reach the 

target. In this case, the skin depth was much smaller than the thickness of the shield, being 

equal to δ1=0.4 mm << 1.5 mm. The target could be revealed, using both resonant frequency 

and Q-factor position-resolved-measurements, for a slightly larger skin depth, equal to δ2=0.6 

mm (Figs. 6.11 and 6.15), and smaller than the thickness of the shield. However, a greater 

skin depth, equal to δ3=1.8 mm, was required to achieve more accurate reproduction of the 

target shape, when resonant frequency measurements were performed (Figs. 6.15 and 6.16), 

due to the lower sensitivity of the imaging technique based on resonant frequency 

measurements, compared to the one based on Q-factor measurements (p. 98). 
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Fig. 6.10. Image of a copper target (25х25х1 mm3) obtained by means of position-resolved-
measurements of the Q-factor, at the following value of skin depth: δ1=0.4 mm. During these 

measurements, the target was shielded by a 1.5-mm-thick aluminium sheet. 

 

 

Fig. 6.11. Image of a copper target (25х25х1 mm3) obtained by means of position-resolved-
measurements of the Q-factor, at the following value of skin depth: δ2=0.6 mm. During these 

measurements, the target was shielded by a 1.5-mm-thick aluminium sheet. 

(g) 

 

(g) 

 



 

150 

 

Fig. 6.12. Image of a copper target (25х25х1 mm3) obtained by means of position-resolved-
measurements of the Q-factor, at the following value of skin depth: δ3= 1.8 mm. During these 

measurements, the target was shielded by a 1.5-mm-thick aluminium sheet. 

 

Fig. 6.13. Image of a copper target (25х25х1 mm3) obtained by means of position-resolved-
measurements of the Q-factor, at the following value of skin depth: δ4= 2.9 mm. During these 

measurements, the target was shielded by a 1.5-mm-thick aluminium sheet. 

(g) 

 

(g) 
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Fig. 6.14. Image of a copper target (25х25х1 mm3) obtained by means of position-resolved-
measurements of the resonant-frequency, at the following value of skin depth: δ1=0.4 mm. During 

these measurements, the target was shielded by a 1.5-mm-thick aluminium sheet. 

 

Fig. 6.15. Image of a copper target (25х25х1 mm3) obtained by means of position-resolved-
measurements of the resonant-frequency, at the following value of skin depth: δ2=0.6 mm. During 

these measurements, the target was shielded by a 1.5-mm-thick aluminium sheet. 
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Fig. 6.16. Image of a copper target (25х25х1 mm3) obtained by means of position-resolved-
measurements of the resonant-frequency, at the following value of skin depth: δ3= 1.8 mm. During 

these measurements, the target was shielded by a 1.5-mm-thick aluminium sheet. 

 

Fig. 6.17. Image of a copper target (25х25х1 mm3) obtained by means of position-resolved-
measurements of the resonant-frequency, at the following value of skin depth: δ4= 2.9 mm. During 

these measurements, the target was shielded by a 1.5-mm-thick aluminium sheet. 
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Results shown in Figs. 6.10-6.17 demonstrated imaging of high-conductivity metals 

hidden behind a 1.5-mm-thick aluminium shield. These breakthrough results proved the 

capability for our system to penetrate through conductive shields. Penetration would occur 

when shields made of materials having lower conductivity than Al were to be used [75]. This 

is because aluminium is a highly conductive material and therefore the skin depth through it 

is smaller than the skin depth through non-magnetic materials having lower σ, thus making 

imaging of metals shielded behind Al “less easy”, thus validating the method used here. 

Investigations around the possibility of revealing the presence of low-conductivity 

shielded targets were also conducted. Figs. 6.18-6.19 show 2D plots representing a 

manganese target, obtained by adjusting the capacitance of the system to the value 

C=(11±1%) μF, corresponding to a skin depth through aluminium equal to δ=3.3 mm. This skin 

depth value was calculated by inserting the value of resonant frequency fr =(1.90±0.05) kHz, 

measured at the centre of the target, into Eq. 2.13. It is observed that the skin depth required 

to image this low-conductivity sample was higher than the one required for imaging the 

copper target, due to the lower magnitude of eddy currents produced by this low-conductivity 

metal. 

 

Fig. 6.18. Image reproducing a manganese target (25х25х1 mm3), shielded by a 1.5-mm-thick 
aluminium sheet, obtained by means of position-resolved-measurements of the Q-factor, with a skin 

depth through aluminium equal to 3.3 mm. 
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Fig. 6.19. Image reproducing a manganese target (25х25х1 mm3), shielded by a 1.5-mm-thick 
aluminium sheet, obtained by means of position-resolved-measurements of the resonant-frequency, 

with a skin depth through aluminium equal to 3.3 mm. 

 

To complete the investigations about 2D imaging of metals concealed behind 

conductive shields, a quantitative analysis of the faithfulness of the images reproducing the 

samples was conducted. This was achieved in a similar fashion to what was previously done 

using unshielded targets, as described in Section 5.6 (see Figs. 5.23-5.24). In this case, a set of 

aluminium disks of different diameter, shielded by a 1.5-mm-thick aluminium shield, were 

imaged both via Q-factor and resonant frequency measurements, and the contours of the 

disks were derived using the same Canny edge technique (“estimated diameter” in Fig. 6.20). 

This was compared with the actual disk diameters (“measured diameter” in Fig. 6.20). 
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Fig. 6.20. Plot equivalent to the one shown in Fig. 5.23, obtained for aluminium disks of different 
diameter, shielded by a 1.5-mm-thick aluminium shield. Estimated diameter stands for the diameter 
derived by applying a Canny edge detection algorithm to the images of the disks; measured diameter 

indicates the actual sample diameter. 

 

The diameter estimated from the images displayed a linear relationship with the 

samples’ measured diameters, for both Q-factor and resonant frequency images, with a 

coefficient of determination equal to unity within a few percent. This demonstrated the 

reliability of the imaging system for screened conductive target objects. A comparison 

between the plots reported in Figs. 5.23 and 6.20 revealed a difference in the capability of 

reproducing the targets’ dimensions of the imaging techniques based on Q-factor and 

resonant frequency measurements. In the case of unshielded targets, the Q-factor technique 

allowed more accurate reproduction of the targets’ dimensions than the resonant frequency 

technique, with an agreement within 2% between the estimated diameters and the measured 

ones (for disk diameters larger than 4 cm). These results were very satisfactory and showed 

the potential of the proposed imaging technique to reproduce samples’ dimensions. An 

opposite scenario occurred with ‘shielded’ targets, as images obtained with resonant 

frequency measurements reproduced the targets’ dimensions more accurately than the Q-

factor ones. Nevertheless, in both cases the diameter of the imaged 6-cm diameter disk was 

underestimated (by 10% and 23%, with fr and Q measurements, respectively), as can be seen 

in Fig. 6.20. This behaviour was attributed to the presence of the aluminium shield covering 

the targets and ‘masking’ them. The consistency of the results above, which were obtained 
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for all samples in the entire diameter range considered in this experiment, is attested by the 

coefficient of determination R2 close to 1 in both fits of the data points obtained with fr and 

Q measurements, as reported in Fig. 6.20. This R2 value represents a very good agreement 

between measured and estimated diameters. Relations similar to those reported in Section 

5.6 could be derived from the fitting equations reported in Fig. 6.20, which would allow to 

determine the samples’ diameters by using the images obtained with the procedure 

developed in this work, after applying the Canny edge detection algorithm to them. The 

usefulness of the proposed method for the estimation of imaged samples’ dimensions was 

thus established in the case of “shielded” samples, as well as in the scenario based of 

unshielded samples (Sections 5.4 and 5.6). 

 

6.2.3 Mathematical model for the problem 

 

The discussion of results reported in Section 6.2.2 can be complemented by adding a 

theory section relative to shielded conductive samples, which aims at stating the problem and 

describing the forward solution, by adopting the simplified scenario introduced by Moulder 

et al. [76]. The geometry of the problem is simplified in Fig. 6.8, with the coil differing from 

the one used in the experiments described in this section because it has an air core rather 

than a ferrite core. The coil cross section is rectangular and its geometrical characteristics (in 

analogy with Section 2.4) are as follows: 

𝑟1 = inner radius, 

𝑟2 = outer radius, 

ℎ1 = lift-off (vertical distance between coil lower base and first layer, as specified in 

the next paragraph), 

ℎ2 = vertical distance between top of coil and first layer, 

𝐿 = ℎ2 − ℎ1 = coil length. 
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The coil is placed over two layered half spaces of conductivity σ1 and σ2 (first layer 

being the one located closer to the coil, second layer being the one farther from the coil), and 

its axis is perpendicular to them. Assuming these materials to be nonferrous, their magnetic 

permeability is equal to the permeability of free space, µ0. The thickness of the layer closer to 

the coil, having conductivity σ1, is denoted by 𝑑. 

The conductivity and thickness of the first layer can be determined by solving the 

inverse problem, in which the conductivity of the second layer, σ2, is known. The problem is 

solved by experimentally determining the frequency-dependent impedance of the coil, 

specified analytically in Section 2.4. The forward problem consists in determining the 

impedance, upon knowledge of the frequency, the layer thicknesses and the conductivity and 

permeability of the materials. In the experiments reported in Section 6.2.2, the resonant 

frequency and Q-factor are measured, after setting the frequency to different values, thus 

varying the skin depth. The other quantities are fixed and known, since the nature of the 

materials making up the sample and the shield is known from tabulated data, and the 

thicknesses were experimentally measured. For a given frequency ω, the coil impedance in 

the presence of two layers of conductivities σ1 and σ2 can be written as [76]: 

𝑍 = 𝐾𝑗𝜔 ∫
𝐼2(𝛼,𝑟1,𝑟2)

𝛼5

∞

0
(2𝐿 +

1

𝛼
[2𝑒−𝛼𝐿 − 2 + 𝐴(𝛼)𝜑(𝛼)]) 𝑑𝛼 , (6.1) 

where the prefactor 𝐾 is given by: 

𝐾 =
𝜋𝜇0𝑛2

𝐿2(𝑟2−𝑟1)2
       (6.2) 

The function 𝐼 = 𝐼(𝛼, 𝑟1, 𝑟2) includes the coil dimensions: 

𝐼(𝛼, 𝑟1, 𝑟2) = ∫ 𝑥𝐽1(𝑥)𝑑𝑥
𝛼𝑟2

𝛼𝑟1
    (6.3) 

The function 𝐴 = 𝐴(𝛼) incorporates lift-off and the length of the coil: 

𝐴(𝛼) = 𝑒−2𝛼ℎ1 + 𝑒−2𝛼ℎ2 − 2𝑒−𝛼(ℎ1+ℎ2)  (6.4) 

Most relevant for this section, the effects of frequency and skin effect are embedded within 

α1 and α2 which are inside function 𝜑 = 𝜑(𝛼), as detailed below: 

𝜑(𝛼) =
(𝛼+𝛼1)(𝛼1−𝛼2)+(𝛼−𝛼1)(𝛼1+𝛼2)𝑒2𝑑𝛼1

(𝛼−𝛼1)(𝛼1−𝛼2)+(𝛼+𝛼1)(𝛼1+𝛼2)𝑒2𝑑𝛼1
  (6.5) 
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𝛼1,2 = √𝛼2 + 𝑗𝜔𝜇0𝜎1,2    (6.6) 

The quantities that were measured in the experiment reported in Section 6.2 are the 

resonant frequency and Q-factor, which are dependent on the impedance having analytical 

function as in Eq. 6.1. The dependence on the frequency is not linear, due to the presence of 

function 𝜑 = 𝜑(𝛼). The resonant frequency and Q-factor images shown in Figs. 6.2-6.7 and 

Figs. 6.10-6.19 show that the dimension of the imaged samples does not change 

monotonically by decreasing the frequency of operation, i.e. increasing the skin depth. This 

behaviour is reflected by results shown in Fig. 3.21, where the change in resonant frequency 

and Q-factor was measured for increasing values of capacitance. Since the experiments 

reported in this Chapter relies on varying the frequency by changing the capacitance of the 

LCR circuit, the behaviour observed in the images of metals cannot be explained by using eddy 

current theory only. Whereas the increase in the coil frequency implies larger amount of eddy 

currents induced and is therefore equivalent to increasing the sample’s conductivity, the 

capacitance variation must be taken into account too. The dependence of the resonant 

frequency and Q-factor on the capacitance is detailed in Eqs. 2.6 and 2.12. These equations 

would suggest an increase of Q with increasing capacitance and a decrease of resonant 

frequency with increasing capacitance. The observed dimensions of the imaged samples do 

not follow a defined trend when the capacitance is increased, when the two scenarios of 

unshielded and shielded metals are taken into account. This is accounted for by the resistance 

variation which occurs as a consequence of eddy current induction (Section 2.4). This 

sentence will be justified for by the theoretical considerations exposed in the following 

paragraph. Nevertheless, a note should be made about the choice of skin depths in the 

experimental work detailed in the present Chapter. The resistance variation is not picked up 

by the coil in the same way because of the different penetration depths, which in some cases 

exceed by a large amount the sum of the thickness of the sample plus the thickness of the 

shielding material. 

To study the frequency dependence of the real and imaginary part of the impedance 

with the assumptions detailed at the beginning of this Section, the difference in impedance 

∆𝑍 can be taken into account. This approach allows for simplifications in the calculations, due 

to the cancellation of the term related to the electrical resistance of the circuit wires. The 

impedance difference is defined as: 
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∆𝑍 = 𝑍 − 𝑍2     (6.7) 

where 𝑍 denotes the impedance of the coil over two layers having conductivities σ1 and σ2, 

as in Eq. 6.1, and 𝑍2 represents the impedance of the coil over the second layer only. The 

assumption here is that the thickness of the second layer (the deeper one) is much larger than 

the skin depth [76]. This assumption is not met everywhere, in the experimental approach 

adopted in this chapter, which explains the divergence between the model and the results 

obtained and shown in the previous sections. When the above assumption is true, the 

impedance difference ∆𝑍 can be expressed as: 

∆𝑍 = 𝐾𝑗𝜔 ∫
𝐼2(𝛼,𝑟1,𝑟2)

𝛼6 𝐴(𝛼) (
𝛼−𝛼2

𝛼+𝛼2
− 𝜑(𝛼)) 𝑑𝛼

∞

0
  (6.8) 

Analysis of the impedance function ∆𝑍 = ∆𝑍(𝜔) shows the following behaviour for the 

resistive and reactive components of the complex impedance change. The reactive 

component ∆𝑋 (imaginary part of ∆𝑍) increases monotonically as a function of frequency, 

whereas the resistive component ∆𝑅 (real part of ∆𝑍) starts from zero, has a minimum, 

crosses zero and then rises monotonically with the opposite sign as the frequency increases. 

This specific behaviour occurring when changing the operational frequency can explain the 

observed variation of the dimensions of the imaged samples obtained with resonant 

frequency and Q-factor measurements. The physical interpretation of the zero occurring in 

the resistive component of the complex impedance can be given as follows. The power 

dissipation in the first layer is the same as in the second layer at the frequency ω0 at which 

∆𝑅 = ∆𝑅(𝜔0) is minimum. The frequencies of the minimum and the zero in ∆𝑅 are strongly 

dependent upon the layer’s thickness and their electromagnetic properties. 

An argument can be made to explain the presence of a zero in the resistive component 

of the impedance change, based on showing that the low- and high- frequency asymptotics 

of ∆𝑅 have opposite signs, which implies that a zero must occur, under the assumption of a 

continuous function ∆𝑍 = ∆𝑍(𝜔) [76]. The following formula for the power dissipated by the 

system stands [76]: 

𝑅 = ∫ 𝑑3
2

𝒓 𝑅𝑒[𝑱]  ∙ 𝑅𝑒[𝑬]    (6.9) 
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where 𝑱 represents the current, 𝑬 denotes the electric field, and the integration takes place 

over the half space occupied by the second layer (having conductivity σ2). The current is 

related to the electric field through Eq. 6.10 [76]: 

𝑱 = 𝜎 𝑬     (6.10) 

The sign of ∆𝑅 can be demonstrated to be dependent on the conductivity difference 

only, as shown by Eq. 6.11, in which the electric field produced by the coil in free space is 

indicated by 𝑬𝟎 (the integral must be positive as it is over the square of 𝑅𝑒[𝑬𝟎]). The low 

frequency limit of ∆𝑅 is exemplified by Eq. 6.11, which was obtained by using the fact that 

the electric field in layered solids is equal to 𝑬𝟎 at lowest order in the frequency expansion 

[76]. This means that at sufficiently low frequencies a metallic solid is transparent to the 

applied magnetic field and that, in the absence of induced charges, the resulting electric field 

is the same as the field that would occur in free space due to Faraday’s law. These 

considerations lead to: 

∆𝑅 = (𝜎1−𝜎2) ∫ 𝑑3𝒓 𝑅𝑒 [𝑬𝟎] ∙ 𝑅𝑒[𝑬𝟎]  (6.11) 

 The high frequency limit is then considered to determine the sign of ∆𝑅. For simplicity, 

let us consider a coil with a single turn that is placed at the surface of the half space, i.e., with 

lift-off equal to zero. At a sufficiently high frequency 𝑓ℎ𝑖𝑔ℎ, the drive current will be equal and 

opposite to the induced counter-current (perfect screening). By denoting the drive current 𝐼0 

and the induced current density 𝑱, the way in which the latter quantity scales with the 

screening depth in the material δ can be given by [76]: 

𝐽 ≈
𝐼0

𝛿
      (6.12) 

When a sufficiently high frequency is obtained, the current in the layered metal is entirely 

concentrated in the layer half space. In this case, Eqs. 6.9 and 6.10 can be used to obtain a 

rough estimate for the power dissipated by the layered metal: 

𝑅𝐿 ≈
𝐼0

2

𝛿𝐿
2 𝛿𝐿

1

𝜎𝐿
     (6.13) 
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The dissipation in the second layer can be shown to be similar to Eq. 6.13. Subtraction of these 

two expressions, as well as the dependence of the skin depth on the conductivity (𝛿~√𝜎) lead 

to the following expression for the reactive component of the impedance change: 

∆𝑅 ≈ 𝐼0
2 (

1

√𝜎1
−

1

√𝜎2
) 𝐹(𝑓)   (6.14) 

Comparison between Eq. 6.11 for the low frequency limit and Eq. 6.14 for the high frequency 

limit is now done to complete this theoretical demonstration. Since the function 𝐹(𝑓) is a 

positive-valued function of frequency and does not depend on conductivity, for any choice of 

σ1 and σ2 the low- and high- frequency limits have opposite signs. Therefore, ∆𝑅 must be 

equal to zero at some intermediate frequency 𝜔0. 

 

6.2.4 Conclusions 

 

In conclusion, the images reported in Figs. 6.10-6.20 show the suitability of the 

proposed EII system for imaging both high and low conductivity metals shielded by a 

conductive shield and therefore not visible from the outside. This represented a breakthrough 

result that validated the PhD work reported in this thesis. 

There is an important advantage related to using a single coil acting both as a magnetic 

field inductor and as a sensor. Such coil faces the hidden side of the object to be imaged, in 

the technique here developed. This specific detection configuration is of particular interest 

because the object may not be accessible from other sides. This opens up the possibility of 

turning the proposed EII detection system into a portable device for identifying materials of 

suspicious nature. 
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7 An improved EII system based on active filters 

 

The research work described up to this point was established on resonating systems 

based on LC and LCR circuits. This choice was made upon considerations reported in Horowitz, 

which highlight that combining inductors with capacitors can produce very sharp frequency 

characteristics compared to RC filters, even when RC sections are cascaded [77]. An 

alternative way of achieving sharp resonance responses is using active filters [77, p. 52]. 

The results obtained with LCR parallel circuits (Chapters 5 and 6) highlighted some 

limitations in the EII technique based on the use of this type of resonant system. The most 

important one, which is addressed in this chapter, is related to the Q-factor low absolute 

values obtained with the LCR systems introduced in Chapter 4 (Q between 7 and 23, as shown 

in Figs. 5.20 and 5.21). The requirement for an imaging system to allow distinguishing 

between conductive materials having similar values of electrical conductivities translated into 

looking for a method to enhance the system’s Q-factor. The difference between the Q-factor 

measured with a Cu and an Al sample having the same geometry was equal to ΔQ=0.33±0.06, 

when the LCR-based system described in Section 4.3 was used (with lift-off L=1 cm). The 

difference between the Q-factor values obtained with Cu and Al samples by means of the LCR 

system was not large enough to allow visually discriminating between the two samples by 

looking at their images. Therefore, focus was directed towards implementing a system and 

an imaging technique based on the attainment of larger values of Q-factor. This feature would 

prove beneficial to satisfy the requirement for an EII detection system to distinguish between 

different values of resonant frequencies, which could not be resolved with the previously 

adopted LCR system. Specifically, achieving larger Q-factor values should contribute to 

improve the system’s performance for imaging of 2D conductive samples, for two reasons. 

Firstly, larger Q-factor absolute values would lead to larger Q-factor differences, produced by 

two different samples, which would increase the system’s resolution power, i.e., its ability to 

resolve two resonance peaks produced by samples having different values of electrical 

conductivity. This would improve the capability of the system to distinguish between samples 

of different electrical nature. Secondly, a detection system characterised by intrinsically larger 

Q-factor values would lead to achieving larger Q-factor shifts between air and poorly 
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conductive materials, compared to the shifts obtained with the previously developed EII 

system (refer to Section 5.3). This would improve the suitability of the detection system for 

imaging of low-conductivity samples, as well as higher-conductive ones. Therefore, 

investigations were conducted, aimed at finding and implementing a novel resonating 

imaging system having higher Q-factor values than the previously used one. These 

investigations involved the following: 

1) Studying the behaviour of different types of active bandpass filters (see Section 7.1); 

2) Finding the most suitable active filter for our purposes, i.e., a filter that could be 

turned into an EII system for detection and imaging of conductive materials - as explained at 

point 3) below - characterised by Q-factor values larger than those obtained with the 

previously implemented EII system; 

3) Modifying the filter by including an inductor of appropriate value, connected to the 

circuit components such that the resonance characteristics of the original filter remained 

unvaried. The inductor had to be included to the system in order to allow the implementation 

of an imaging method similar to the one previously adopted (Chapter 4), to image conductive 

samples by measuring the changes in the Q-factor of the system, by means of a coil, playing 

the role of the sensor. This strategy should allow using the modified active filter as an EII 

system for detection and imaging purposes. 

Active bandpass filters were considered in this work as an alternative to LCR parallel 

circuits used in the previous part of these investigations, because they resonate at a defined 

frequency depending on the circuit design, thus allowing the use of the EII technique that was 

developed for LCR parallel circuits (Chapter 4), in order to detect and image conductive 

materials. Active bandpass filters of appropriate design can be advantageous because of their 

larger Q-factor values, compared to LCR parallel circuits. The procedure described above was 

followed in order to improve the previously developed EII system based on LCR circuits, 

without having to change the EII method based on position-resolved-measurements of Q-

factor shifts due to the presence of conductive samples. Chapters 5-6 proved that this method 

was successful for EII imaging of both “unshielded” and “shielded” metals, consequently this 
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method was adopted for the measurement acquisition implemented with the new EII system, 

based on active bandpass filters (Section 7.4). 

A brief introduction about active bandpass filters is given in Section 7.1. Experimental 

investigations carried out to determine a suitable type of active filter that could be used for 

the scope of this research are reported in Sections 7.2-7.3. The following sections involve the 

development of a circuit based on an active filter and report on the initial experiments that 

were carried out to test this circuit as a potential EII system. This includes description of the 

experimental method and results obtained by means of measurements of the Q-factor shifts 

obtained with the novel EII system, in the presence of metallic samples (Section 7.6). Sections 

7.8-7.10 detail investigations that were conducted with the goal of improving the proposed 

system and establishing a measurement method for detection and imaging of conductive 

samples, including samples that were shielded by metallic shields. This includes a comparison 

between the new EII system with the previously developed LCR-based system (Section 7.9). 

The chapter ends with “Results and discussion” (Section 7.11). 

 

7.1 Active bandpass filters 

 

Active bandpass filters are typically built by cascading a high-pass and a low-pass filter 

(Figs. 7.1-7.2), with the insertion of an operational amplifier (op-amp) in between the two 

[77]. The amplifier works as an active element and therefore gives this type of filters the name 

of active filters. By using op-amps as part of the filter design, it is possible to synthesize any 

RLC filter characteristic without using inductors, which depart from the ideal by being lossy 

(as they have significant series resistance), as well as by causing problems such as 

nonlinearity, distributed winding capacitance, and susceptibility to magnetic pickup of 

interference [77]. 
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Fig. 7.1. Circuit schematic of a RC highpass filter. 

 

Fig. 7.2. Circuit schematic of a RC low-pass filter. 

Several filter designs are available to optimise each of the filter’s characteristics, for 

example the sharpness of the transition to the stopband and, therefore, the Q-factor. One 

type of active filter is represented by the infinite gain multiple feedback (IGMF) active filter, 

which is described in the next section. 

 

7.2 IGMF active filters 

 

The active bandpass filter that was initially chosen as a potential candidate to build 

the new version of the EII system developed in this work was the IGMF active filter 

represented in Fig. 7.3 [76, p. 413]. This type of active filter has one op-amp configured as an 

integrator, implying that the output voltage is proportional to the time integral of the input 

voltage. The op-amp chosen for this work was a OP27 (Fig. 7.4), because of its low-noise (80 

nV p-p in the frequency range 0.1 Hz to 10 Hz [77]). 
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Fig. 7.3. Schematic of IGMF circuit (in a 2-pole lowpass configuration) used to investigate the 
possibility of using this configuration to build a new version of the EII system used in this research. 

This sketch was created with LTSpiceXVII. 

 

Fig. 7.4. Sketch of the pinouts constituting the op-amp OP27GPZ [78]. 

 

Initial investigations were conducted to familiarise with the IGMF active filter and 

verify whether it could become a useful tool for EII investigations, representing an 

improvement from previously used LCR circuits. These included determining the components’ 

values in order to have the active filter resonate at values of resonant frequency that could 

be useful for penetrating through metallic shields and imaging samples, in a similar fashion to 

what was described in Chapter 6. The rationale behind the choice for the components’ values 

(shown in the electronic schematic in Fig. 7.3) is described in the following. The circuit’s 

components were chosen such that two requirements were satisfied. The first requirement 

was for the circuit’s Q-factor to be larger than the largest Q-factor attained with the previously 

used LCR-based EII system (Q≈20). The second requirement was for the resonant frequency 

to be sufficiently low to allow penetration through shielding materials (Chapter 6). 
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Once the component values were determined, the circuit was built and then tested to 

check its performance. 

The following relations stand for IGMF filters [77]: 

𝑓𝑟 =
1

2𝜋√𝑅1𝑅2𝐶1𝐶2
      (7.1) 

𝑄 =
1

2
√

𝑅2

𝑅1
       (7.2) 

After choosing C1=C2, as suggested by Horowitz [77], the component values indicated 

in Fig. 7.3 were determined by using Eqs. 7.1 and 7.2 and imposing the following conditions: 

1) 𝑄=10 and 2) 𝑓𝑟 = 1 kHz. This choice of values was established with the purpose of 

reproducing resonance characteristics similar to the ones of the LCR-based systems used in 

Chapters 4 to 6. 

The maximum gain (i.e. gain at resonance) of an IGMF filter is given by [77]: 

𝐺 =  
𝑅2

2𝑅1
= 2𝑄2     (7.3) 

The expected values of resonant frequency (fr), Q-factor (Q) and maximum gain (𝐺), 

calculated using Eqs. 7.1-7.3 with values of components R1, R2, C1 and C2 as in Fig. 7.3, were 

the following: 

𝑓𝑟 = 918.9 𝐻𝑧      (7.4) 

𝑄 = 8.7      (7.5) 

𝐺 = 150      (7.6) 

The circuit’s performance was tested to verify that its characteristics were in line with 

those expressed by Eqs. 7.4-7.6. This involved measuring the filter’s resonance curve by using 

the following instruments: 

- ISO-TECH IDS-6052-U digital oscilloscope (Fig. 7.5); 
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- Hameg Instruments 25 MHz HMF 2525 signal generator (Fig. 7.5); 

- ± 12 V 100 mA power supply (made in-house) to supply voltage to the op-amp. 

 

Fig. 7.5. Experimental set-up assembly. The IGMF filter (Fig. 7.3) is contained inside the black plastic 
enclosure at the centre of the picture. The signal generator Hameg Instruments 25 MHz HMF 2525 is 

shown on the left. The oscilloscope ISO-TECH IDS-6052-U is shown on the right side. 

 

The experimental procedure described below was followed to study the filter’s 

frequency response. 

1) Sinusoidal input signals of different frequencies - covering a range centred around the 

predicted resonant frequency, given by Eq. 7.4 - were generated with the signal 

generator (Fig. 7.5). The amplitude of these signals was maintained equal to 10 mV. 

This value was chosen in order for the output voltage to not exceed the maximum 

supply voltage, equal to 12 V. The output of the circuit (of gain equal to 150), was 

calculated as follows: Vout = 10 mV x 150 = 1500 mV = 1.5 V < 12 V. 

2) Amplitudes of input and output signals (Vin and Vout, labelled V1 and V2 in Fig. 7.3) 

were measured with the oscilloscope (Fig. 7.5), for each selected frequency. 

3) The gain was calculated by dividing the output voltage by the input voltage, using:          

𝐺 = Vout/Vin . 
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4) The resonance curve was drawn by plotting the gain calculated as specified above vs 

the frequency (Fig. 7.6). 

5) The Q-factor was estimated from the curve by applying Eq. 7.7: 

𝑄 =
𝜔0

𝐹𝑊𝐻𝑀
 ,     (7.7) 

where 𝜔0 was the resonant frequency (rad s-1) (estimated as the frequency at which the gain 

measured as in point 3) was maximum); 𝐹𝑊𝐻𝑀 was the frequency difference ∆𝜔 = 𝜔2 −

𝜔1, where the two frequencies are such that the following relation holds: 

𝐺(𝜔2) = 𝐺(𝜔1) =  𝐺𝑚𝑎𝑥/√2     (7.8) 

 

Fig. 7.6. Curve obtained by measuring the IGMF active filter gain and plotting it against the 
frequency of the signal generator. 

 

The following values for Q-factor, resonant frequency and maximum gain of the filter 

were obtained, by adopting the measurement procedure described above: Q=7.5±0.6, 

fr=920±2 Hz, G=123.9±0.8. 

Due to the interdependence between the maximum gain and the Q-factor, expressed 

by Eq. 7.3, the Q-factor increase that could be achieved with this circuit was intrinsically 
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limited by the necessity to keep the gain sufficiently low to prevent signal saturation. As a 

consequence, the maximum input p.d. that could be applied was also limited. For this reason, 

a different type of filter, and in particular a state-variable active filter (Section 7.3) was 

considered as a potential candidate to build an improved version of the EII system based on 

LCR parallel circuits. This choice was justified by three characteristics of state-variable filters, 

which were established to be beneficial for the scope of this research. Firstly, despite its large 

number of components, the design of this type of filters allows obtaining high Q-factor values 

that can be maintained constant [77], as required to allow differentiation between similar 

values of resonance frequency, produced by metals having similar electromagnetic 

properties. Secondly, the filter design would easily allow tuning the resonant frequency fr, by 

adjusting one of the resistor values by means of a rotary switch potentiometer [77]. 

Therefore, the filter’s resonant frequency could be tuned to several values, while maintaining 

Q constant and high enough to allow penetration through materials. This implied the 

possibility of achieving larger values of skin depth, allowing penetration through materials 

thicker than the 1.5-mm-thick shield used in previous investigations (Chapter 6). A third 

advantage of using a state-variable filter was that its gain did not depend on Q, unlike what 

occurred with IGMF filters (Eq. 7.3). This allowed building a high-Q filter with lower gain than 

the corresponding gain that would be obtained with an IGMF having the same Q value (due 

to Eq. 7.3), thus giving more freedom in the selection of input voltages without the risk of 

incurring in signal saturation. 
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7.3 State-variable active filters 

 

A 2-pole “state-variable filter”, with schematic shown in Fig. 7.7, was selected as a 

better candidate than the IGMF filter described in Section 7.2, for the reasons explained at 

the end of the previous section. In this filter, the two resistors labelled “Rf” in Fig. 7.7 set the 

centre frequency, and RQ and Rg together determine the Q and band-centre gain [77]. The 

filter’s resonant frequency was made adjustable by using a 2-section variable resistor with a 

double rotatory switch for the “Rf” pair (Fig. 7.7). 

 

Fig. 7.7. Schematic of the 2-pole filter “state-variable filter” built for this investigation [77]. 

 

Firstly, Eqs. 7.9-7.10 below [77, p. 411] were used to determine resistor values that 

would make the Q-factor equal to Q=50 and the maximum gain equal to 𝐺=10 (to prevent 

signal saturation). These two values were inserted into Eq. 7.9 to determine the values of 

resistors RQ and RG (labelled “Rq” and “Rg” in Fig. 7.7), to be used to build the circuit: 

𝑅𝑄 =
105

3.48𝑄+𝐺−1
= 546 𝛺    (7.9) 

𝑅𝐺 =
3.16∙104𝑄

𝐺
= 158 𝐾𝛺    (7.10) 
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Secondly, the circuit was made to resonate at 7 different values between 50 Hz to 50 

kHz, as reported in the first column of Tab. 7.1. This was done by using two rotary switches 

(𝑅𝐹 in Fig. 7.7), each having 7 positions, allowing selection of resistance values ranging from 

1 kΩ to 1 MΩ. These values were determined such that the filter’s resonant frequencies would 

cause obtaining values of skin depth in Al between 0.38 mm and 12 mm (determined by using 

Eqs. 2.13-2.16 and listed in the second column of Tab. 7.1). This range of penetration depths 

was chosen in order to be able to adopt the method based on active filters for imaging of 

metals covered by shields having different values of thicknesses, potentially larger than the 

1.5-mm value of the shield used in previous investigations (Section 6.2). This characteristic 

would make the new EII system more interesting for practical use than the previously adopted 

solution.  

 

Tab. 7.1. Values of resonant frequency at which the electronic system was made to resonate (first 
column), and corresponding values of skin depth (second column), obtained by using Eqs. 2.25-2.28, 
and assuming that the EII system’s operational frequency was equal to the active filter’s resonant 
frequency fr (first column). 

Frequency fr (Hz) Skin depth in Al (mm) 

50329±4 0.38±0.02 

10066±4 0.85±0.03 

5033±3 1.20±0.03 

1007±2 2.68±0.04 

503±2 3.79±0.04 

101±1 8.48±0.05 

50±1 11.99±0.06 

 

The circuit’s resonant frequency is dependent on the component values R2, R3, RF and 

CF  = C1 = C2 (Fig. 7.7), as expressed by Eq. 7.11 [46]: 

𝑓𝑟 =
1

2𝜋
(

𝑅2

𝑅3
)

1/2 1

𝑅𝐹𝐶𝐹
    (7.11) 

Eq. 7.11 shows that, once the other quantities were fixed, the resonant frequency of 

the circuit was only dependent on the values of the resistor RF . Therefore, for convenience 

purposes, R2, R3 and CF were maintained fixed and assigned values recommended in 

Horowitz and showed in Fig. 7.7. With this choice of components, Eq. 7.11 could be written 

as: 
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𝑓𝑟 =
1

2𝜋

1017/2

𝑅𝐹
      (7.12) 

The component values, measured with a Keysight U1731C handheld LCR meter, are 

listed in Tab. 7.2. 

 

 

Tab. 7.2. Values of components used to build the circuit represented in Fig. 7.6, measured with 
Keysight U1731C handheld LCR meter. Tolerance ranges for resistance and capacitance values were 
equal to 1%. 

Resistor name Measured resistance (Ω) 

RG 157800 

RQ 568 

R2 9990 

R3 91500 

R6 99200 

Capacitor name Measured capacitance (pF) 

C1 1275.7 

C2 1194.3 

 

By inverting Eq. 7.12 to express RF  in terms of 𝑓𝑟, the resistor values for the rotary 

switch were determined  by means of Eq. 7.13: 

𝑅𝐹 =
5.03•107

𝑓𝑟
 Ω     (7.13) 

Values of resistors corresponding to the 7 positions of the rotary switches are reported 

in Tab. 7.3. Values on the last two columns (“Theoretical 𝑓𝑟“) were obtained by inserting 

‘theoretical’ values of RF (second column) into Eq. 7.12. The frequency values at which the 

circuit was expected to resonate, for each of the measured resistor values, are listed in Tab. 

7.4. 

 

 

 



 

174 

Tab. 7.3. Column 1: positions on rotary switch, numbered 1 to 7; column 2: ‘theoretical’ values of 
resistors RF, each corresponding to a position on the rotary switch; column 3: theoretical values of fr 

(predicted by using Eq. 7.13); column 4: values of fr expressed in kHz. 

Switch position RF (Ω) Theoretical fr (Hz) Theoretical fr (kHz) 

1 1000 50329.21 50.33 

2 5000 10065.84 10.07 

3 10000 5032.92 5.03 

4 50000 1006.58 1.01 

5 100000 503.29 0.50 

6 500000 100.66 0.10 

7 1000000 50.33 0.05 

 

 

Tab. 7.4. Expected values of resonant frequency fr, derived by inserting the measured values for RF 

into Eq. 7.13. Resistance values were measured with a tolerance range of 1%. 

RF measured (Ω) Expected fr (Hz) 

1010 49830.90 

5610 8971.34 

10000 5032.92 

56100 897.13 

98800 509.41 

559000 90.03 

1006000 50.03 

 

The gain and Q-factor of the circuit were derived by manipulating Eqs. 7.9 and 7.10 in 

order to write 𝐺 and 𝑄 in terms of 𝑅𝐺 and 𝑅𝑄, resulting in the equations below: 

𝐺 = 3.16 ∙ 104 𝑅𝑄+105

𝑅𝑄

1

3.48∙𝑅𝐺+3.16∙104
  (7.14) 

𝑄 =
𝐺 𝑅𝐺

3.16∙104
     (7.15) 

 

Once the filter was built, it was tested to verify that its characteristics were in 

agreement with the theoretically predicted ones. Specifically, Q was measured by following 

the procedure detailed below. 
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1) The filter was supplied with a ±15 V voltage obtained by using a RS 591-124 power 

supply (±15 V, 200 mA); 

2) An input voltage of 100 mV was produced by the signal generator “Hameg Instruments 

25 MHz HMF 2525”; 

3) The gain curve of Vout/Vin vs frequency was measured, by means of the digital 

oscilloscope ISO-TECH IDS-6052-U (Fig. 7.5); 

4) The resonant frequency fr (labelled “measured fr” in Tab. 7.5), defined as the 

frequency for which the gain was maximum (𝑚𝑎𝑥𝐺), was estimated from the gain vs 

frequency plot; 

5) The frequencies f1, f2 at which the gain was equal to: 𝐺′ =  𝑚𝑎𝑥𝐺/√2 were 

determined; 

6) The maximum gain was determined with Eq. 7.8, inserting the frequency values 

determined as in 5), by using the following identity: 𝜔𝑖 = 2𝜋𝑓𝑖; 

7) The Q-factor was estimated from the curve by applying Eq. 7.7: 

𝑄 =
𝜔0

𝐹𝑊𝐻𝑀
 ,     (7.7) 

where 𝜔0 was the resonant frequency (rad s-1) (estimated as the frequency at which the gain 

measured as in point 3) was maximum); 𝐹𝑊𝐻𝑀 was the frequency difference ∆𝜔 = 𝜔2 −

𝜔1, where the two frequencies are such that the following relation holds: 

𝐺(𝜔2) = 𝐺(𝜔1) =  𝐺𝑚𝑎𝑥/√2    (7.8). 

 

The response curve obtained by plotting the filter’s gain against the frequency, for the 

lowest value of resonance frequency selectable with the rotary switch (fr =50 Hz, as in the 

second column of Tab. 7.4), is reported in Fig. 7.8. Similar curves were obtained for the other 

values of resonance frequency. 
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Fig. 7.8. Resonance curve of the filter shown in Fig. 7.7, obtained with a resistor value RF = 1 MΩ, 
corresponding to the last position on the rotary switch (Tab. 7.4). 

 

Unexpectedly, values for fr that were determined as in 4) from curves of gain vs 

frequency were different from the expected values reported in Tab. 7.4. These values are 

reported in the third and second column of Tab. 7.5, respectively. 

 

Tab. 7.5. Expected and measured values of resonant frequency, plus ratio between them. 

Switch position Expected fr (Hz) Measured fr (Hz) Ratio 

1 49830.9 42400±4 1.2 

2 8971.3 7500±3 1.2 

3 5032.9 4200±3 1.2 

4 897.1 730±2 1.2 

5 509.4 410±1 1.2 

6 90.0 72±1 1.3 

7 50.0 40±1 1.3 

 

‘Expected’ values of gain and Q were found by inserting the measured values of 

𝑅𝐺  and 𝑅𝑄 (listed in Tab. 7.2) into Eqs. 7.14-7.15 above. A mismatch was found between 

these values (labelled “Exp. G” and “Exp. Q” in Tab. 7.6) and the ‘measured’ ones obtained as 

detailed in bullet points 6) and 7) on page 162 (“Meas. G” and “Meas. Q” in Tab. 7.6). Ratios 
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between expected and measured resonant frequency (fr), maximum gain (𝑚𝑎𝑥𝐺) and Q-

factor (𝑄) are reported in Tabs. 7.5 and 7.6. 

Tab. 7.6. Expected and measured values of G and Q, plus ratio between each pair of them. 

Switch position Exp. G Exp. Q Meas. G Meas. Q Ratio G Ratio Q 

1 9.6 48.1 5.0 25.4 1.9 1.9 

2 9.6 48.1 5.0 42.0 1.9 1.1 

3 9.6 48.1 3.9 20.1 2.5 2.4 

4 9.6 48.1 4.0 20.5 2.4 2.3 

5 9.6 48.1 4.0 21.3 2.4 2.3 

6 9.6 48.1 4.1 20.8 2.3 2.3 

7 9.6 48.1 4.0 19.0 2.4 2.5 

 

The mismatch between expected and measured values reported in Tabs. 7.5-7.6 was 

attributed to the output signal’s instability around resonance, which constituted a significant 

issue for measurements of the Q-factor that were done by determining the gain vs frequency 

response, based on the procedure described on page 161. Because of the adopted procedure, 

the Q-factor and gain values were strongly dependent on the quality of the signal in the 

resonance frequency region, which was poor due to the signal instability. The latter was 

attributed to the choice to assign resistor RQ = 546 Ω a lower value than those of other 

resistors in the circuit (≈kΩ). This choice was made with the purpose of achieving Q=50 and 

G=10, but did not take into account the risk of variations in the current circulating through 

the filter’s different components. The circuit instability was corrected for by modifying the 

circuit shown in Fig. 7.7 such that all resistors had similar values. Specifically, the following 

components were used: 

𝑅6 = 150 KΩ     (7.16) 

𝑅𝑄 = 1 KΩ     (7.17) 

These specific values were chosen to satisfy the condition Q=50. The Q-factor of the 

state-variable active filter depended on the two resistors above, as given by Eq. 7.18. 

𝑄 =
𝑅6+𝑅𝑄

3𝑅𝑄
     (7.18) 
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The resonant frequency of the state-variable active filter was linked to the circuit’s Q–

factor and electronic components through Eq. 7.19: 

𝑓𝑟 =
1

2𝜋
𝑄

3𝑅𝑄

𝐶𝑅𝐹(𝑅6+𝑅𝑄)
    (7.19) 

The components’ actual values, measured using the Keysight U1731C handheld LCR 

meter, are reported in Tab. 7.7. The values of resistors RF, selected through the rotary 

switches, are listed in the first column of Tab. 7.8; resonant frequency values, derived by using 

Eq. 7.19, are reported in the second column of Tab. 7.8, and the corresponding skin depth 

values through Al (predicted by Eqs. 2.25-2.28) are listed in the third column of the table. 

 

Tab. 7.7. Measured values of the circuit’s components. Their tolerance value was equal to 1%. 

RG (kΩ) R2 (kΩ) R3 (kΩ) R6 (kΩ) RQ (Ω) 

9.9 10.0 9.9 150.8 998 

 

Tab. 7.8. Measured values of resistors making up the rotary switch; corresponding resonant frequency 
values that were expected; corresponding skin depth in Al at those frequencies. Resistor tolerance 
was equal to 1%. 

𝐑𝐅 (kΩ) fr (kHz) Skin depth in Al (mm) 

6.8 23.28±0.04 0.56±0.02 

8.2 19.30±0.05 0.61±0.03 

9.9 16.12±0.06 0.67±0.03 

 

The filter’s response in a range of frequencies centred around the resonant frequency 

was determined by using the ENA series E5061B Network Analyser (Keysight), to improve the 

measurements’ precision [79]-[80]. The Network Analyser (NA) can measure the response in 

frequency of a DUT by measuring the S-parameters “S21”, defined as the ratio of the output 

signal of port 2 on the DUT with the input signal of port 1 on the DUT. This can be achieved 

by applying a stimulus in a defined frequency range to the DUT. The power supply “elc” ALF 

1502D was used in the following investigations to supply ± 12 V to the op-amp included in the 

filter. A picture of the experimental apparatus, including the Network Analyser, is shown in 

Fig. 7.9. The response curves obtained with the state-variable active filter resonating at values 

indicated in Tab. 7.8 are shown in Figs. 7.10-7.12. These figures show plots of the S-parameter 
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S21 vs frequency, obtained after applying a stimulus characterised by a starting frequency 

equal to 10 kHz and a final frequency 30 kHz. The three plots were obtained by selecting 

resistor values as in the first column of Tab. 7.8, causing the filter to resonate at the values 

listed in the second column of the table. 

  

Fig. 7.9. Picture of the experimental setup, including the active filter, the Network Analyser E5061B 
(Keysight) and the power supply “elc” ALF 1502D. 

 

 

Fig. 7.10. Resonance curve obtained from data acquired using the Network Analyser, when the 
circuit’s resonant frequency was equal to 23.6 kHz. 
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Fig. 7.11. Resonance curve obtained from data acquired using the Network Analyser, when the 

circuit’s resonant frequency was equal to 19.9 kHz. 

 

 

Fig. 7.12. Resonance curve obtained from data acquired using the Network Analyser, when the 

circuit’s resonant frequency was equal to 16.1 kHz. 
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The values of Q-factor and maximum gain were measured with the Network Analyser 

for each of the state-variable filters with resonant frequency values as in Tab. 7.8. These 

values were obtained by calculating the average and standard deviation of ten consecutive 

measurements obtained with the NA (Tab. 7.9). 

Tab. 7.9. First column: resonant frequency of the three state variable filters that were built; 
second column: Q-factor, measured with the Network Analyser as average values of 10 consecutive 
measurements; third column: uncertainties of Q, as standard deviation; fourth column: measured 
values of maximum gain (average of 10 consecutive measurements); fifth column: standard deviation 
of gain. 

fr (kHz) Q err(Q) G err(G) 

23.6 318.6 0.3 196.7 0.3 

19.9 258.8 0.2 150.8 0.2 

16.1 192.3 0.2 125.2 0.2 

 

Results reported in Figs. 7.10-7.12 and Q-factor values shown in Tab. 7.9 demonstrated that 

the state-variable active filter was a better solution compared to the IGMF filter previously 

tested, due to its response in terms of Q-factor, which was larger than the Q-factor measured 

with the LCR-parallel circuit by a factor between 8 and 46. This represented a substantial 

improvement from the scenario resulting from the use of the LCR parallel circuits that were 

object of the first part of this research work. The next step of the investigations was directed 

towards modifying the active filter by adding an inductor to it, in order to use the circuit for 

EII of conductive materials, as detailed in the next section. 
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7.4 Modified state-variable filter with inductor for EII of conductive samples 

An inductor was added to the state-variable active filter having schematic as in Fig. 7.7 

and component values as in Tabs. 7.7 and 7.8. Three circuits were built, the first one as in the 

schematic shown in Fig. 7.13, and the others having similar schematics with the only 

exception of resistors R4=R5, which had values as in the third and fourth rows of Tab. 7.8. 

 

Fig. 7.13. Electronic schematic produced with LTSpiceXVII, representing the electronic circuit on 
which the improved version of the EII system, object of this work, was based. 

 

The measured curve of S21 vs frequency, obtained with the Network Analyser (NA) by 

connecting the instrument to the circuit shown in Fig. 7.13, was compared with the circuit’s 

response (gain vs frequency), resulting from a simulation performed with LTSpiceXVII, to 

ensure that the results obtained with the NA were as expected. The curves obtained in this 

way are reported in Figs. 7.14-7.15. Similar curves were obtained by using circuits similar to 

the one shown in Fig. 7.13, with R4=R5 taking on the values listed in the third and fourth rows 

of Tab. 7.8. The circuits’ responses in frequency obtained with the NA are shown in Figs. 7.16 

and 7.18. Results of simulations obtained with LTSpiceXVII are reported in Figs. 7.17 and 7.19. 

Figs. 7.14, 7.16 and 7.18 represent screenshots of the NA, each of which indicate the resonant 

frequency (first value on the top left of each figure) and the Q-factor, also indicated in the key 

to each plot of S21 vs frequency. 
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Fig. 7.14. Screenshot from the Network Analyser, obtained after inducing a stimulus (start frequency 
10 kHz – stop frequency 30 kHz) in the circuit, having set the circuit’s resistance to RF =6.8 KΩ. 

 

Fig. 7.15. Simulation (from LTSpiceXVII) of the electronic circuit’s response, when its components 
had values as in Fig. 7.13, and its resistance RF was equal to RF =6.8 KΩ. 
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Fig. 7.16. Screenshot from the Network Analyser, obtained after inducing a stimulus (start frequency 
10 kHz – stop frequency 30 kHz) in the circuit, having set the circuit’s resistance to RF =8.2 KΩ. 

 

Fig. 7.17. Simulation (from LTSpiceXVII) of the electronic circuit’s response, when its components 
had values as in Fig. 7.13, and its resistance RF was equal to RF =8.2 KΩ. 



 

185 

 

Fig. 7.18. Screenshot from the Network Analyser, obtained after inducing a stimulus (start frequency 
10 kHz – stop frequency 30 kHz) in the circuit, having set the circuit’s resistance to RF =9.9 KΩ. 

 

Fig. 7.19. Simulation (from LTSpiceXVII) of the electronic circuit’s response, when its components 
had values as in Fig. 7.13, and its resistance RF was equal to RF =9.9 KΩ. 
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The curve reported in Fig. 7.14 showed that the measure system’s response vs 

frequency at the value of resonant frequency fr1=23.65 kHZ had a spurious peak of non-

negligible amplitude that interfered with the Q-factor calculation performed by the NA, 

because it fell within the bandwidth of the resonance curve. This will be object of a further 

analysis, conducted in the following section. The resonant frequency values obtained from 

the simulations reported in Figs. 7.15, 7.17 and 7.19 were, respectively, equal to: fr= 23.2 kHz, 

fr=19.2 kHz, fr=15.9 kHz. These results showed an agreement between measured and 

simulated data within 2%. 

 

7.5 Discussion 

 

The values of resonant frequency obtained with the Network Analyser and from the 

simulation were in agreement within 2%. The results shown in Figs. 7.14-7.19 demonstrated 

that the developed system, based on the circuit shown in Fig. 7.13, could be used for 

detection purposes, given the results of measurements obtained with the NA, which were in 

agreement with the predicted response resulting from the simulation software (LTSpiceXVII). 

The values of Q-factor obtained with this active-filter-based circuit were substantially larger 

by a factor between 17 and 56, compared with the values obtained with the previously used 

LCR-based system. This result represented a significant improvement for the EII investigations 

carried out in this research activity. The novel EII system should take detection and imaging 

of conductive samples to the next level, by enabling material characterisation of samples 

made of conductive materials ranging from low σ to high σ, as well as detection of samples 

hidden behind conductive shields. 
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7.6 Measurements of Q-factor shifts to detect the presence of metals 

 

The previous section reported on measurements of Q-factor values of the EII system 

shown in Fig. 7.13. These measurements have to be put into the context of exploring the 

system’s capabilities with regards to the accomplishment of 2D imaging of metallic samples.  

Firstly, the choice of measuring Q, rather than the system’s resonant frequency, lies on the 

result reported in Chapter 5, according to which the most sensitive method for imaging was 

found to be the one based on position-resolved-measurements of the Q-factor (rather than 

the resonant frequency). Satisfactory results reported in Section 7.6 led to assess the 

feasibility of the proposed system to achieve results similar to those reported in Chapters 5 

and 6. The first question to be answered on this subject was to verify that the novel system 

enabled measurements of the Q-factor shifts due to the presence of metallic objects having 

different values of electrical conductivity. Initially, a test was done to quantify the response 

of the developed EII system when the inductor (labelled “L” in Fig. 7.13 and shown in Fig. 7.20) 

was in air, i.e., no metal was placed in the vicinity of the coil, and when it was positioned over 

an Al sample (6-cm-diameter, 2-mm-thick disk). The coil was used both in an air-cored 

configuration and a ferrite-cored one, for comparison purposes. This was done by inserting a 

ferrite core into the coil’s former and comparing the results with the ones obtained without 

the core. Upon selection of the value of resistance RF =6.8 kΩ (Tab. 7.8), the system in air was 

made to resonate at a frequency fr=23.75±0.81 kHz (measured with the NA). The Q-factor was 

measured using the coil in the two configurations, as follows: 1) when the system was in air; 

2) when the Al sample specified above was introduced into the system. The resulting average 

values (obtained by taking 10 consecutive measurements with the NA) are shown in Tab. 7.10, 

which includes differences “Delta” between the values obtained for Q in the two 

configurations, and relative errors, obtained by taking the standard deviation of Q values, and 

propagating the errors to determine the error on “Delta” (Err(Delta)). 
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Fig. 7.20. Picture of the coil used in this study (L=79.4±10% μH, height 1.8±0.1 cm, inner diameter 
2.0±0.1 cm, outer diameter 2.3±0.1 cm). The coil was connected to the other circuits’ components as 

in Fig. 7.13. 

 

Tab. 7.10. Values of Q measured with Network Analyser when the EII system was in air, when an Al 
sample was placed under the coil, for both the air-cored and the ferrite-cored coil. The percentage 
difference between the Q factors in air and Al was calculated (last column). 

Coil type Q in air Err(Qair) Q with Al Err(QAl) Delta Err(Delta) 

Air cored 189 9% 195 10% 3.2 % 16% 

Ferrite cored 243 8% 242 10% -0.4 % 14% 

 

In the investigations conducted in this section and the following ones, the measurement 

acquisition performed with the NA was optimised by setting the parameters detailed below, 

both when measurements were taken in air and when the metallic samples were introduced, 

for consistency. 

 Number of points during a sweep of S2/S1 vs frequency: 1601 

 Average factor (number of repeated independent measurements of which the 

average was computed by the NA): 16 

 Scale of y axis (S2/S1 minimum and maximum): 300m - 600 

 Frequency range of the applied stimulus: start frequency 10kHz, stop frequency 30 

kHz 

 Power level of output: -45 dB 

 0.05% smoothing applied to the curve of S2/S1 vs frequency. 

Resonance curves were obtained by using the NA in the following two scenarios: 1) 

when the system was “in air” (i.e., in the absence of the metal); 2) when the Al disk was put 

in contact with the coil, as shown in Figs 7.21-7.22. 



 

189 

 

Fig. 7.21. Resonance curve obtained with the Network Analyser when the coil of the EII system was 
in air, i.e., no metallic sample was present. 

 

 

Fig. 7.22. Resonance curve obtained with the Network Analyser, when the coil part of the EII system 
with schematic as in Fig. 7.13 was in contact with the Al disk sample. 
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The shift in Q showed by results reported in Tab. 7.10 demonstrated that imaging with 

the new EII system could be achieved. The circuit’s responses obtained with the system in air 

and with Al, reported in Figs. 7.21 and 7.22, showed a similar trend in the two scenarios, 

characterised by an unwanted peak at a fixed frequency of 23 kHz, in agreement with what 

was found in the “S21 vs frequency” plots showed in Figs. 7.14, 7.16 and 7.18. 

One clarification must be made about values labelled “Delta” in Tab. 7.10. These 

values represented the contrast of the image reproducing the metallic sample. They were not 

indications of the capability of the imaging system to distinguish between two different 

conductors having similar values of electrical conductivity. Such capability was the 

performance parameter that was the object of the following investigations. These involved 

calculating the difference between the values of Q-factor obtained when the system was in 

air and when a Cu sample (with geometry 25x25x1 mm3 and electrical conductivity values as 

in Tab. 5.1) was inductively coupled to the system’s coil. 

The main goal of this part of the investigations was to assess the measurement 

feasibility of the system for metal samples’ detection and, particularly, testing the 

reproducibility of results in terms of measured Q-factor shifts. For this purpose, a procedure 

was adopted, based on taking 20 independent measurements of the Q-factor with the NA, at 

the three values of resonant frequency selectable by tuning RF from the circuit shown in Fig. 

7.13: 1) 23.6 kHz; 2) 19.9 kHz; 3) 16.1 kHz. The Q-factor average and standard deviation values 

were calculated in the following scenarios: 1) system in the absence of any metallic sample 

(“in air”) and 2) system coupled to a 25x25x1 mm3 Cu sample. 

Results of this experimental work are reported in Tab. 7.11, which shows measured 

average Q-factor values obtained in air (second column) and when the Cu sample was coupled 

to the inductor (fourth column), together with their uncertainties (standard deviation) and Q-

factor shifts (“DeltaQ”). The last row of Tab. 7.11 reports values obtained with the previously 

used LCR-based EII system described in Section 4.3, with L=680±10% μH, R=1±1% MΩ, C=1 μF. 
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Tab. 7.11. Comparison between the Q-factor values obtained when the new EII system with air-cored 
coil and ferrite-cored coil was in air (second column) and when a Cu sample was introduced (third 
column). These Q-factor differences (DeltaQ) were compared to the ones obtained with the previously 
used LCR-based system (“Old system”, described in Chapter 5). 

fr=24 kHz Q in air Err(Qair) Q with Cu Err(QCu) DeltaQ Err(DeltaQ) 

Air-cored 138 9% 126 9% 12 13% 

Ferrite-cored 146 8% 149 8% -3 11% 

“Old” system 18 1% 14 1% 4 1% 

 

Results shown in Tab. 7.11 highlighted that the Q-factor values of the new EII system 

were larger by a factor of 8-11, compared to values measured with the previously developed 

LCR-based system (Tab. 7.11). This showed that the new system represented an improvement 

from the “old” version. Large measurement uncertainties, though, prevented differences in 

Q-factor values to allow discrimination between air and Cu. The cause of these large 

measurement uncertainties will be object of the next sections. 

For a more complete investigation, more samples with different conductivity values 

were included, to assess the EII system’s response when it was coupled to each of them, and 

its feasibility for detection of low, medium and high conductivity samples, both of 

ferromagnetic and non-magnetic nature. The following pieces of metal were chosen as 

representative among the metals listed in Tab. 5.1: copper, manganese, iron (with geometry 

25x25x1 mm3 and electrical conductivity values as in Tab. 5.1). 

Tab. 7.12 reports differences DeltaQ between Q-factors measured after placing a 

25x25x1 mm3 metal sample (made of Cu, Mn and Fe) in touch with the coil included in the EII 

system represented in Fig. 7.13, and Q-factors measured with the system in the absence of 

the metal, i.e., “in air” (DeltaQ=Q(air)-Q(metal)). The error of these values were calculated by 

taking the standard deviation of 10 consecutive measurements of Q, and propagating the 

errors to derive the error of DeltaQ (e.g. “err(air-Cu)” in Tab. 7.12). 

Figs. 7.23-7.25 represent values of average Q and their standard deviation obtained 

as described in the previous paragraph (Tab. 7.12). Values on the y axis of the graphs stand 

for the three metallic samples described above (material “1”: air, material “2”: Cu, material 



 

192 

“3”: Mn, material “4”: Fe). Each graph reports measurements obtained after making the EII 

system resonate at the three values of resonant frequency fri selectable by tuning the rotary 

switch: 23.6 kHz, 19.9 kHz, 16.1 kHz. A plot of DeltaQ=Q(air)-Q(metal) vs fri is shown in Fig. 

7.26, in which results of 20 consecutive Q-factor shift measurements (as in Tab. 7.12) are 

compared to the shifts measured with the “old” LCR-based system, in the following scenarios: 

system in air and coupled to copper (blue, diamond data-set); system in air and couple to 

manganese (red, square data-set); system in air and coupled to iron (green, triangle data-set). 

 

Tab. 7.12. Values of average and standard deviation of DeltaQ (first column), at the following resonant 
frequency values: fr1=24 kHz (second column), fr2=20 kHz (third column) and fr3=16 kHz (fourth 
column). DeltaQ/Q(air) are ratios of DeltaQ divided by the Q-factor values measured in air. 

DeltaQ fr1=23.6 kHz fr2=19.9 kHz fr3=16.1 kHz 

air-Cu 14.2 4.1 4.6 

err(air-Cu) 7.7 5.0 4.1 

DeltaQ/Q(air) % 4.8 1.6 2.1 

air-Mn -0.3 -2.0 0.9 

err(air-Mn) 7.9 4.7 4.1 

DeltaQ/Q(air) % 0.1 -0.8 0.4 

air-Fe 3.2 -8.4 1.1 

err(air-Fe) 7.2 5.2 4.6 

DeltaQ/Q(air) % 1.1 -3.4 0.5 
 

 

Fig. 7.23. Comparison between the average Q measured with the Network Analyser, when the 
system was resonating at 23.6 kHz and it was coupled to the following materials: material “1”: air, 

material “2”: Cu, material “3”: Mn, material “4”: Fe. Error bars were added, by calculating the 
standard deviation of the measured quantities. 
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Fig. 7.24. Comparison between the average Q measured with the Network Analyser, when the 
system was resonating at 19.5 kHz and it was coupled to the following materials: material “1”: air, 

material “2”: Cu, material “3”: Mn, material “4”: Fe. Error bars were added, by calculating the 
standard deviation of the measured quantities. 

 

 

Fig. 7.25. Comparison between the average Q measured with the Network Analyser, when the 
system was resonating at 16.2 kHz and it was coupled to the following materials: material “1”: air, 

material “2”: Cu, material “3”: Mn, material “4”: Fe. Error bars were added, by calculating the 
standard deviation of the measured quantities. 
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Fig. 7.26. Plot of DeltaQ=Q(air)-Q(metal) vs resonant frequency values fri (as in Tab. 7.12), obtained 
from results of 20 consecutive Q-factor shift measurements (Tab. 7.12), compared to the shifts 

measured with the “old” LCR-based system, in the following scenarios: system in air and coupled to 
copper (blue, diamond data-set); system in air and couple to manganese (red, square data-set); 

system in air and coupled to iron (green, triangle data-set). 

 

7.7 Discussion 

 

The larger Q-factor values of the new EII system, compared to those measured with 

the previously developed LCR-based system, showed that the new system represented an 

improvement from the “old” version (Tab. 7.11). However, poor reproducibility of results was 

observed when taking consecutive measurements of the same parameter (e.g. Q-factor) in 

equivalent conditions. Specifically, Q values differed from one measurement to the next one 

by an amount up to 10% (Tab. 7.10, Figs. 7.23-7.25). This issue became even more serious 

when the error in the Q-factor shifts (DeltaQ) was taken into account (Tab. 7.12, Fig. 7.26). 

This is because the relative standard errors of the measurements (third and fourth columns 

of Tab. 7.10) were too large to allow the change in Q-factor values due to the presence of the 

metal to be significant (Tab. 7.10, sixth column). The large Q-factor uncertainties (“err(air-

Cu)”, “err(air-Mn)” and “err(air-Fe)” in Tab. 7.12), compared to the difference in the Q-factor 

values obtained when the system was in air and when a piece of metal was coupled to it 
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(“DeltaQ/Q(air)” in Tab. 7.12), implied that the EII system could not discriminate between the 

presence of a high-conductivity sample, at this stage, due to the large measurement 

uncertainties. 

Figs. 7.23-7.26 showed that the measurement uncertainties were dependent on the 

frequency at which the system resonated and not on the material coupled to the system. In 

particular, absolute values of Q-factor were found to be larger when the EII system was 

resonating at 23.6 kHz than at the other two values (Figs. 7.23-7.26). The larger error bars of 

Q-factor values shown in Fig. 7.23 showed the poorer reproducibility of results obtained at 

23.6 kHz, compared to those obtained at lower values of frequency. This behaviour was 

attributed to the presence of spurious peaks at 23 kHz, already detected with the system and 

reported in Figs. 7.14, 7.16, 7.18, 7.21 and 7.22 in Section 7.4. These figures showed that the 

curve of the system’s response vs frequency at this value of resonant frequency had a 

‘spurious’ peak of non-negligible amplitude that interfered with the Q-factor calculation 

performed by the NA, because it fell within the bandwidth of the resonance curve (Figs. 7.14, 

7.21 and 7.22). The presence of the spurious peak at 23 kHz ‘disturbed’ the measurements 

around this frequency while having no impact on the ones at the other two frequency of 

operation, because of the fixed frequency position of the spurious peak. This explained the 

higher standard deviation values of the sets of measurements obtained at 23.6 kHz, compared 

to the ones obtained for smaller resonant frequencies (19.9 and 16.1 kHz), where the spurious 

peaks did not fall within the region of the curves where the Q-factor values were calculated. 

The graph reported in Fig. 7.23, obtained with fr1=23.6 kHz, confirmed this explanation, since 

it showed that the system’s Q-factor values produced by the presence of Mn and Fe samples 

did not significantly differ from the corresponding values measured with the same system 

when this was in air, due to the large error bars. 

These results are important because they underline that the current system and 

measurement method did not allow distinguishing between the presence of low and medium 

conductivity metals such as Mn and Fe, due to the large uncertainties of measurements. High-

conductivity copper was the only metal that produced a significant shift from the scenario in 

which the system was in air. The larger Q-factor shift produced by this metal, compared to 
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the other two, is in agreement with results found with the old LCR-based EII system (Chapter 

5). 

As regards measurement results obtained with values of resonant frequency equal to 

fr2 = 19.5 kHz and fr3 = 16.2 kHz, two observations can be made by looking at Figs. 7.24 and 

7.25. Firstly, the absolute values of Q-factor are lower than those measured at resonant 

frequency fr1=23.6 kHz, thus implying that this value represented the most suitable 

operational frequency of the EII system. At the frequency fr2 = 19.5 kHz, the only metal that 

produced a significant shift in the system’s Q-factor was iron. The values of Q obtained with 

non-magnetic metals did not differ significantly from the value measured in air. The lowest 

selectable resonant frequency fr3 = 16.2 kHz did not allow to distinguish any of the metal 

samples from the “air” scenario. 

Investigations were carried out to determine the source of the spurious peaks found 

at 23 kHz in all resonance plots (Figs. 7.14, 7.16, 7.18), as will be detailed in Section 7.8. This 

was beneficial because the largest Q-factor absolute values were obtained with the system 

resonating at fr = 23.6 kHz, thus making this value of resonant frequency ideal for the 

investigations carried out in this work. 

 

7.8 Initial investigations to determine the sources of spurious peaks 

 

Investigations around the origin of the unwanted peaks that were causing large 

uncertainties in the Q-factor measurements are object of this section. Improvements in the 

measurement precision could be attained by either acting on the measurement system, or 

improving the measurement method, or both. This needed to be done before focusing the 

attention towards investigating the effect that different conductive materials produced on 

the novel EII system. The measurement system and method were based on the use of the 

Network Analyser, the electronic circuit and the power supply feeding it. With this in mind, 

two hypotheses were initially made and tested, in order to identify the origin of the unwanted 
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peaks, which was causing the poor measurement reproducibility. The first hypothesis was 

that the NA averaging function had introduced the unwanted peaks at 23 kHz into the “S21 

vs frequency” plots. The second hypothesis was that the power supply might have been the 

cause of the unwanted peaks. 

To test the first hypothesis, the fit done by the NA on the data of the circuit’s frequency 

response was compared to the response obtained without using the averaging function of the 

NA. This was accomplished by taking one frequency sweep after inducing a stimulus in the 

circuit, and switching off the data averaging function. After this, 9 more sweeps were taken, 

the 10 resulting curves were overlapped to see whether they were different. The result was 

that no differences were found, implying that the NA averaging function was unlikely to cause 

problems. To further investigate the impact of the NA averaging function on measurements, 

Q was measured “in air” (setting the following parameters with the NA: 1601 points, log y axis 

300m – 600, stimulus 10 kHz – 30 kHz, power -45 dBm, 0.05% smoothing) in two different 

ways. Firstly, the NA averaging function was set to “OFF”, single measurements of Q were 

taken with the instrument and then averaged manually. Secondly, the NA averaging function 

was switched to “ON”, the same number of total measurements as before was taken and the 

NA performed the average and standard deviation of measurements. Results are shown in 

Tab. 7.13, in which the first two columns report Q values obtained with the averaging function 

switched off, by taking 30 and 100 consecutive measurements (third and fourth rows, 

respectively); the last two columns report Q values obtained by setting the averaging factor 

of the NA to 10 and taking, respectively, three and ten consecutive measurements of Q (third 

and fourth rows). 

 

Tab. 7.13. Results of the study of the influence of the automatic averaging of the NA. In the table, 
“meas” stands for “measurements”; av(Q) stands for average of Q, calculated by taking 30 and 100 
consecutive measurements without using the NA averaging function (3rd and 4th rows of the first 
column) and performed using the NA averaging function of the same number of measurements (third 
column); corresponding standard deviations are reported in the second and fourth columns (σQ). 

av(Q) σQ av(Q) σQ 

AVERAGING OFF AVERAGING OFF AVERAGING ON (10) AVERAGING ON (10) 

363 (30 meas) 37 (30 meas) 339 (3x10 meas) 12 (3x10 meas) 

313 (100 meas) 29 (100 meas) 297 (10x10 meas) 4 (10x10 meas) 
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The difference between values of av(Q) reported in the second and fourth of Tab. 7.13 

were attributed to the varying amplitude of the spurious peaks systematically found at 23 

kHz, which caused the Q-factor values to vary from one measurement to the next one. 

Discussion of these results is reported in the next two pages.  

The potential effect of leaving the power supply on while taking measurements was 

investigated to test the second hypothesis that was made to find the source of the spurious 

peaks at 23 kHz. For this purpose, a series of measurement acquisitions was done by switching 

off the power supply after each measurement sweep, with details as below and results as in 

Tab. 7.14: 

a) 30 single measurements were taken with the NA, by switching off the power supply 

between each of the measurement acquisitions (2nd and 3rd columns of Tab. 7.14); 

b) The NA averaging factor was set to 10, and 3 consecutive measurements were taken, 

by switching off the power supply as before, and waiting 30 mins after the power 

supply was switched on again, before starting the measurement acquisition (4th and 

5th columns of Tab. 7.14). 

 

Tab. 7.14. Results showing the influence of the power supply being left on, or switched on and off in 
between consecutive measurements. 

 av(Q) σQ av(Q) σQ 

 AVERAGING OFF AVERAGING OFF AVERAGING ON (10) AVERAGING ON (10) 

Power supply 
switched off 
each time 

332 (30 meas) 40 (30 meas) 291 (3x10 meas) 4 (3x10 meas) 

Power supply 
left on 

363 (30 meas) 37 (30 meas) 339 (3x10 meas) 12 (3x10 meas) 

  

The lowest measurement uncertainty found when the NA automatic averaging 

function was switched on (Tabs. 7.13-7.14) implied that using it increased the measurement 

precision and it was established that this should be done when taking Q-factor 

measurements. 
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The issue linked to the presence of spurious peaks was not solved by switching off the 

power supply after each measurement sweep, which led to eliminating this hypothesis, as 

well as the one based on the use of the NA automatic averaging function. Lowest 

measurement uncertainties observed from values in the third and fifth columns of Tab. 7.14 

were in agreement with results reported in Tab. 7.13 and confirmed the decision of adopting 

the NA automatic averaging function to improve the measurements’ precision. 

Finally, the awaiting time between the moment at which the power supply was turned 

on and the start of the measurement acquisition was varied, to see whether this impacted 

the measurements and to determine an ‘ideal’ awaiting time. The aim of this investigation 

was determining the optimal conditions for the measurement acquisition process. The 

following measurement scenarios were used for this purpose: 

1) After the power supply had just been turned on, 10 frequency sweeps were performed 

with the NA averaging function being set to ON (with averaging factor=10). 

2) 30 minutes after the power supply was switched on, 10 sweeps were performed in 

the same conditions as in 1). 

The results in terms of average Q and standard deviation were as follows: 

1) av(Q)=303, σQ=6. 

2) av(Q)=297, σQ=4. 

The smaller uncertainty found with a 30-minutes-waiting-time led to establishing that this 

awaiting time was to be used when taking Q-factor measurements, in order to contain their 

random uncertainties. 

In conclusion, neither the power supply nor the NA automatic averaging function were 

found to have an impact on Q-factor measurements that could explain the origin of the 

unwanted peak observed at 23 kHz in plots of S21 vs frequency. Further investigations were 

conducted to solve the issue linked to the presence of this peak that prevented the system to 

be optimal for detection and imaging of conductive samples. The next section reports on an 

analysis which was conducted to compare the EII system based on active filters to the “old” 
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LCR-based circuit and Section 7.9 describes a method developed to remove the unwanted 

peak and perform measurements of Q-factor with the proposed system. 

 

7.9 Towards the optimisation of a novel EII system for detection of 
conductive objects  

 

The purpose of this part of the research was to test the new system based on active 

filters and check whether this could produce better results than the LCR-based system 

developed in the first half of this research work (Chapters 4-6). The final goal was to test the 

new system in terms of its capability of producing 2D imaging of metallic samples for security 

applications (Section 7.9). A crucial dilemma needed to be resolved in the first place, which 

was whether the new EII system represented an optimised version of the previous one, or 

whether the higher Q-factor values (Section 7.5-7.7) were the result of a more precise 

measurement acquisition achieved by using the NA instead of the previously used impedance 

analyser (IA). With this in mind, an issue arose by considering that the investigations carried 

out so far involved changes of two parameters, one being linked to the two different 

measurement systems (LCR-parallel circuit and active-filter-based circuit as in Fig. 7.13), the 

other one being given by the different instruments that were used to perform the 

measurements (IA vs NA). As long as two parameters were changed at the same time, no 

answer to the dilemma above could be found. For this reason, a consistent method needed 

to be determined to assess whether the new system, based on active filters, represented an 

improvement w.r.t. the “old” LCR-based system. This was based on changing a single 

parameter at a time, to understand where the cause for the larger values of Q-factor lied, and 

establish an improved method for detection and imaging of conductive samples. For this 

purpose, the following actions were taken. 

1) The active filter-based system was connected to the impedance analyser (IA) and a 

series of 10 consecutive Q-factor measurements were performed with this 

instrument. This was done by placing a piece of Cu (25x25x1 mm3) under the coil 
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shown in Fig. 7.20, which was part of the EII system based on the circuit represented 

in Fig. 7.13. This experiment is reported in Section 7.9.1. 

2) The same series of measurements as in 1) was performed by using the LCR circuit 

constituting the “old” system, by means of the impedance analyser. This experiment 

is reported in Section 7.9.2. 

3) Results obtained from 1) and 2) were compared and differences in the Q-factor 

measurements evaluated. 

At this point, the following plan was established. If the active filter-based system produced 

better results, then the conclusion would be that the new system represented an 

improvement of the older one, and was worth investigating further. To this extent, the 

following should be done: 

1) The active-filter based system needed to be connected to the NA and measurements 

acquired in this configuration, first in air and then by placing a piece of Cu (25x25x1 

mm3) under the coil; 

2) The Q-factor shifts produced when the system was in air and when a metallic sample 

was placed under it should be compared with the ones obtained with the LCR-based 

system. 

If the active filter-based system was not found to be better than the older one, based on 

the comparison of results obtained from 1) and 2), then it would mean that future 

investigations should be directed towards finding a more precise instrument than the IA to 

perform measurements, for instance the NA. 
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7.9.1 Active-filter-based circuit connected to the impedance analyser  

Q-factor measurements were performed with the active-filter-based circuit shown in 

Fig. 7.13, by connecting it to the impedance analyser, and conducting a frequency sweep of 

the impedance Z vs frequency, in a range of frequency centred around the system’s resonant 

frequency, with start and end frequency values as follows: f(start)=5 kHz, f(stop)=15 kHz. 

Resonant frequency values obtained from the “Z vs frequency curve”, as well as inductance, 

capacitance and resistance values of the system, measured with the IA, are reported in Tab. 

7.15. 

 

Tab. 7.15. Results of 10 consecutive measurements of Q-factor, resonant frequency, inductance, 
capacitance and resistance, measured when the active filter-based system was in air and when a piece 
of Cu was placed under the coil. 

 Air Cu 

 Q fr (kHz) L (μH) C (μF) R (Ω) Q fr (kHz) L (μH) C (μF) R (Ω) 

1 52.8 32.6 2.6 9.0 28.5 40.8 32.4 2.0 12.4 16.2 

2 21.6 31.0 9.8 2.7 41.1 17.2 30.8 9.5 2.8 31.8 

3 5.9 32.5 18.4 1.3 22.0 10.9 30.9 15.1 1.8 32.1 

4 18.6 31.0 10.5 2.5 38.0 16.6 31.6 6.7 3.8 22.2 

5 18.7 31.3 11.1 2.3 40.8 13.4 30.9 13.0 2.0 33.8 

6 13.1 31.4 15.4 1.7 39.6 7.3 31.0 22.3 1.2 31.8 

7 13.5 32.3 11.3 2.2 30.9 17.0 30.9 9.2 2.9 30.3 

8 35.3 32.5 3.2 7.5 23.1 7.9 30.9 21.5 1.2 33.0 

9 23.9 32.5 5.6 4.3 27.2 16.1 30.9 10.2 2.6 32.1 

10 36.0 31.1 6.2 4.2 43.5 43.2 32.4 2.2 11.1 19.2 

 

The following values were found after taking the average and standard deviation of 

values reported in Tab. 7.15. In air: av(Q)=20.7, σQ=10.0; with Cu: av(Q)=13.3, σQ=4.1. The Q-

factor shift between air and Cu was found to equal DeltaQ=7, with an uncertainty equal to 

σ(DeltaQ)=11. Such a large uncertainty was due to the background noise which prevented the 

Q-factor measurement to be more precise and implied that this measurement system did not 

produce a significant Q-factor shift that could be used to identify the presence of conductive 

samples. The Z vs frequency sweeps obtained in this part did not include any spurious peaks 

as the one observed in plots of S21 vs frequency obtained with the NA. 
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7.9.2 LCR system used in conjunction with the impedance analyser 

Q-factor measurements were performed with the “old” LCR system, based on a 

ferrite-cored coil (L=680±10% μH), a capacitor C=0.5±1% μF, and a resistor R=10±1% KΩ, by 

connecting it to the impedance analyser, as described in Chapter 4. 

Resonant frequency values, measured in air and with Cu with the IA, were respectively 

equal to: 9.1 kHz and 10.2 kHz. Results were reported in Tab. 7.16. 

 

Tab. 7.16. Results of 10 consecutive measurements of Q-factor, inductance, capacitance and 
resistance, measured with the IA when the LCR system was in air and when a piece of Cu was placed 
under the coil. 

 Air Cu 

 Q L (μH) C (nF) R (Ω) Q L (μH) C (nF) R (Ω) 

1 21.3 612.3 501.1 743.1 11.3 490.4 497.0 354.6 

2 21.4 613.5 500.3 748.8 11.3 490.9 496.5 354.4 

3 21.4 613.4 500.3 751.0 11.3 491.0 496.2 354.5 

4 21.2 613.0 500.4 741.4 11.3 491.0 496.2 354.8 

5 21.2 613.1 500.5 741.0 11.3 491.1 496.1 354.9 

6 21.2 613.2 500.2 743.3 11.3 491.1 496.0 355.0 

7 21.2 613.5 500.0 743.3 11.3 491.1 496.1 355.0 

8 21.2 613.4 500.3 741.7 11.3 491.2 496.0 355.0 

9 21.2 613.2 500.3 743.2 11.3 491.1 496.2 354.9 

10 21.2 613.3 500.4 742.1 11.3 491.0 496.3 355.1 

 

The following values were found after taking the average and standard deviation of 

values reported in Tab. 7.16. In air: av(Q)=21.3, σQ=0.1; with Cu: av(Q)=11.3, σQ=0.01. The Q-

factor shift between air and Cu was found to equal DeltaQ=10, with an error equal to 

σ(DeltaQ)=0.1. Comparison of these uncertainties with the much larger values obtained with 

the NA and reported in Tabs. 7.12-7.14 implied the best measurement precision obtained 

with the IA. This was caused by the absence of spurious peaks found with the NA at fixed 

frequency (around 23 kHz), from plots obtained with the IA. However, the Q-factor absolute 

values were much smaller than the ones obtained with the active filter-based system 

(Sections 7.5-7.7), as already noted from results shown in Chapter 5. 
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The results obtained from this experiment were compared to those obtained with the 

active-filter-based system and the IA (Section 7.9.1), and with those obtained using the active-

filter-based system and the NA, as reported in Tab. 7.17. 

 

Tab. 7.17. Q-factor average values in air and with Cu (2nd and 4th columns), differences between these 
two values, DeltaQ=Q(air)-Q(metal) (6th column), standard deviations (3rd, 5th and 7th columns); 
measurements were obtained with the IA=impedance analyser (first two rows) and the NA (last three 
rows). 

 Q(air) σQ(air) Q(Cu) σQ(Cu) DeltaQ σ(DeltaQ) 

LCR – IA 21.3 0.1 11.3 0.01 10 0.1 

FILTER – IA 21 10 13 4 7 11 

FILTER – NA 
23.6 kHz 

294 6 280 5 14 8 

FILTER – NA 
16.1 kHz 

221 3 217 3 5 4 

FILTER – NA 
19.9 kHz 

250 4 246 3 4 5 

 

Three observations should be pointed out after examining results reported in Tab. 

7.17. Firstly, absolute values of Q reported in Tab. 7.17 highlight the larger values obtained 

with the active-filter-based system w.r.t. those obtained with the IA. The Q-factor values 

measured when the active-filter-based system was in air and when a Cu sample was coupled 

to it were larger by a factor of 14 and 25, respectively, compared to corresponding values 

obtained with the LCR-based system. Secondly, the largest difference between Q in air and Q 

with Cu (DeltaQ) was attained when the active-filter-based system resonating at 23.6 kHz was 

used. Thirdly, the measurement uncertainties for the active-filter-based system were larger 

than those obtained with the LCR-based system. This was attributed to the presence of the 

spurious peak affecting measurements taken with the filter resonating at 23.6 kHz and 

removal of the spurious peak is addressed in the next Section. 
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7.10 Removal of spurious peaks and 2D imaging of conductive samples 

 

The spurious peaks found at fixed frequency (around 23 kHz) were not present with 

the IA, meaning that they were unlikely to be due to the filter-based system, since if that was 

the case, these peaks would rise in the presence of both the IA and the NA. Based on this 

conclusion, a hypothesis was made, based on which the cables connecting the filter-based 

circuit to the NA may be the source of the unwanted peaks. According to this hypothesis, the 

cables’ parasitic capacitance was causing the peaks at 23 kHz. If this had been the case, then 

changing the cable length would have shifted the frequency of the peaks. This experiment 

was done by connecting two coaxial BNC cables to the ones originally used (each with an N-

type connector on one ending), by means of two double male connectors. The frequency of 

the peaks did not vary, which meant that the hypothesis was false. 

Following this, the influence of computer’s monitors and signals from the surrounding 

instrumentation was checked, thinking those may have been possible sources of the 

unwanted peaks. The results were negative, though. 

Finally, the hypothesis that the spurious signal might come from the surrounding 

experimental equipment was made. To test this hypothesis, the experimental set-up, 

including the box containing the active-filter-based circuit, the cables connecting it to the NA 

and the power supply, and the power supply itself, were wrapped up with Al foil. The spurious 

peaks could not be eliminated this way either. Therefore, the following hypotheses were 

rejected: 1) the source of the unwanted peak was coming from the environment, and 2) the 

signal producing it could be screened by using Al foil. 

A method was then developed to remove the spurious peaks from the data. Two 

options were considered, which were based on the observation that the peak amplitude was 

not constant when different frequency sweeps were performed, and changed from one 

measurement to the next one in an uncontrolled way (it also changed when the Al foil was 

used). The important observation that was taken into account was that the unwanted peak 

was always falling within the same range of frequencies, between 22.9 kHz to 23.1 kHz. This 
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constituted the criteria on which the choice of a method to remove the unwanted peak was 

based. The first option which was considered was to modify the hardware in order for the 

circuit to filter the frequencies around which the unwanted peak was found. The second 

option, which was adopted, as described in the following, was to use a peak removal 

algorithm to modify the data measured with the NA and remove the spurious peak from the 

curve of S21 vs frequency. The measurement acquisition was performed by setting the 

resonant frequency of the active-filter-based circuit to the value fr= 23.6 kHz, because this 

value produced larger Q-factor absolute values, as noted in Section 7.7. This was achieved by 

initially performing a frequency sweep of the S-parameter S21 with the NA, as described on 

page 165. A Matlab script was written to do the following: 

1) read the data from the NA; 

2) plot the S-parameter S21 against the frequency values; 

3) fit the curve of S21 vs frequency with the function expressed by Eq. 7.20: 

𝑦(𝑥) =  
1

√𝑎2+(
𝑏

2𝜋𝑥
−2𝜋𝑐𝑥)

2
     (7.20) 

In Eq. 7.20, the parameters 𝑎, 𝑏 and 𝑐 satisfied the following equations: 𝑎=1/R, 𝑏=1/L, 𝑐=C 

(R=effective resistance, L=effective inductance, C=effective capacitance). 

4) derive R, C, L from the fit parameters, and use them to calculate Q as in Eq. 4.2; 

5) follow point 1) and remove 13 data points contributing to the spurious peak. These 

were data points lying within a range of frequency characterised by the lower 

frequency f1=22.9 kHz and the upper frequency f2=23.1 kHz; 

6) follow points 2) to 3) and fit the new data curve with the function expressed by Eq. 

7.20; 

7) find values of R’ C’ L’ and Q’ from the fit of the new curve (after data point removal). 

 

The procedure above was repeated for ten curves of S21 vs frequency, acquired in 

sequence with the NA, and calculating the average and standard deviation of the quantities 

L, R, C and Q, and R’ C’ L’ and Q’. The measurement errors of these quantities were calculated 
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by propagating the errors of the fit parameters a, b and c (estimated by Matlab with 95% 

confidence bounds). 

A comparison was made between values of Q’ and L’ obtained when the system was 

in air and when three 25x25x1 mm3 samples made of Cu, Mn and Fe, respectively, were placed 

under the coil. 

 

7.11 Results and discussion 

 

The original resonance curve was characterised by the following value of Q-factor, 

measured with the NA: Q=79.1 ± 1.9. The Q-factor of the modified curve, after the data 

removal algorithm was applied, had the following value: Q’=82.9 ± 1.3. These results imply 

that reduction of the measurement percentage error was successfully achieved by adopting 

the algorithm. 

Tab. 7.18 shows Q’ and L’ values obtained in air ad with Cu (2nd and 3rd columns). 

Differences between values of Q and L in air and when the metal was introduced into the 

system are reported in the fourth and sixth columns of Tab. 7.18. Uncertainties of these values 

are listed in the fifth and seventh columns of the table. 

 
Tab. 7.18. Average values of Q-factor Q’ and inductance L’, obtained after the Matlab fitting routine 
was run, after applying the peak removal algorithm to the curve of S21 vs frequency, measured with 
the NA. Uncertainties were calculated as standard deviation of the measurements. The 4th and 6th 
column list relative variations between values obtained in air and after a Cu sample was coupled to 
the system, calculated using Eqs. 7.21-7.22. These results were obtained when the resonant frequency 
of the active-filter-based system was set to the value fr = 23.6 kHz. 
 

 Q’ L’ DeltaQ ErrDeltaQ DeltaL ErrDeltaL 

Air 51.0 1.6E-5 69.5% 0.7% 30.8% 0.3% 

Cu 86.5 1.1E-5     

 

The algorithm for the spurious peak removal successfully increased the system 

capability of detecting conductive samples, since the Q-factor and L-shifts were significantly 

larger than the measurement uncertainties obtained with this method (ErrDeltaQ and 

ErrDeltaL in the 5th and 7th columns of Tab. 7.18). 
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The differences between the Q-factor values obtained with the system in air and when 

Cu, Mn and Fe were placed under the coil were as follows: DeltaQ(air-Cu)=35, DeltaQ(air-

Mn)=0.24 and DeltaQ(air-Fe)=1.5. The ratios between each of these values and the Q-factor 

value measured in air were equal to: DeltaQ/Q(air)1=69%, DeltaQ/Q(air)2=0.4% and 

DeltaQ/Q(air)3=2.8%. The efficiency of the developed algorithm for spurious peak’s removal 

was attested by comparing the values with the ones obtained before applying the algorithm, 

when the measurement errors negatively impacted the results, as shown by results reported 

in Sections 7.4-7.7 (see Tab. 7.12). 

It is useful to compare the values of DeltaQ above with the ones obtained with the 

LCR system (second row of Tab. 7.17). When copper was introduced into the system, the Q-

factor shifted by a quantity equal to DeltaQ=10, and the ratio between this value and the Q-

factor value measured in air was equal to DeltaQ/Q(air)=48%. This means that, with regards 

to imaging of copper, the sensitivity of the new EII system based on active filters is higher by 

a factor of 3.5 than the sensitivity of the previously used LCR-based system. However, based 

on the results of the investigations carried out in this work, this conclusion seems to be limited 

to copper and cannot be extended to lower conductivity samples such as manganese and 

lead. The active-filter-based system did not represent a significant improvement when these 

metals were to be detected. However, it could make possible to distinguish between copper 

and aluminium samples, based on the measurements of the Q-factor shifts produced by them. 

The results shown here proved that: 1) the active-filter based EII system was more 

sensitive than the LCR-based one (DeltaQ larger by a factor of 3.5); 2) images having higher 

contrast could be produced with the new system, as demonstrated by the Q-factor larger 

absolute values of the active-filter based system (e.g. 86.5 vs 11.3, for a 25x25x1 mm3 sample 

made of Cu, as in Tabs. 7.17 and 7.18). This implied the possibility to obtain clearer images 

that would help identifying hazardous materials, also in the case of objects having 

complicated shapes. 

The results demonstrated that the proposed EII method based on the use of an active-

filter-based system and the application of a data removal algorithm represented a better 

solution than the method based on LCR circuits, previously developed. The further step that 
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was taken to demonstrate this achievement was to adopt the imaging technique described in 

Section 4.3 to image a Cu sample by means of the active-filter-based system proposed in 

Section 7.4, with the measurement method described in Section 7.10. For this purpose, a 3-

cm-diameter Cu disk was placed under the coil and the scanning technique based on position-

resolved-measurements of the Q-factor described in Section 4.3 was adopted. Additionally, 

the Labview program previously created (Section 4.3) was modified to allow the remote 

control of the NA and the XY stage that was used to move the sample. This allowed an 

automated imaging process similar to the one used with the LCR-based EII system to take 

place. The Matlab data removal algorithm was embedded in the Labview program. 

The proposed method was successful as an image reproducing the 3-cm-diameter Cu 

disk was obtained, as shown in Fig. 7.27. 

This result proved the capability of the proposed EII method to image high 

conductivity samples. To complete these investigations, the feasibility of the system to 

identify metals hidden behind a conductive shield was assessed, by placing a 1.5-mm-thick Al 

shield in between the 3-cm-diameter Cu disk previously used and the coil part of the active-

filter-based circuit. The result of this final part of the investigation is reported in Fig. 7.28. 

 
Fig. 7.27. Image representing a 3-cm-diameter Cu disk, obtained with the EII active filter-based 

system developed in this study. 



 

210 

 

 

Fig. 7.28. Image representing a 3-cm-diameter Cu disk, shielded with a 1 mm-thick Al shield. The 
image was obtained with the EII active filter-based system developed in this study, resonating at a 

frequency fr=23.6 kHz. 
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8 Conclusions 

This work describes the development of a method which opened a route to imaging 

and characterisation of conductive samples. The proposed method successfully imaged high-

conductivity samples (made of copper, Cu, and aluminium, Al), which were covered with Al 

foil. Further investigations addressed the problem of adopting the developed method for 

imaging metals that were hidden behind thicker shields than the Al foil used at this stage. 

Setting up an automated measurement system allowed achieving higher precision in the 

positioning of the samples, and made the measurement process faster and remotely 

controlled. This led to establishing a new experimental method that was successful at 

producing 2D images of 14 metallic objects, both magnetic and non-magnetic, with few 

different planar geometries, and values of conductivity ranging from 0.54х106 to 59.77х106 

S/m. These images were conductivity maps obtained by means of two imaging techniques 

based on position-resolved measurements of the system’s Q-factor and resonant frequency, 

respectively. Both techniques enabled to produce conductivity maps of the samples included 

in this study. 

Experimental results highlighted the higher sensitivity of the Q-factor technique 

compared to the resonant frequency one. The sensitivity for Q-factor measurements was 

quantified as the relative difference between the Q-factor value measured with the system in 

the presence of a metallic sample and the Q-factor value of the system in the absence of the 

sample. In a similar fashion, the sensitivity for resonant frequency measurements was 

assessed by measuring the resonant frequency of the system in the presence of the sample 

and calculating the difference between the resonant frequency measured ‘in air’. The higher 

sensitivity of the Q-factor technique is shown by looking at the measured Q-factor and 

resonant frequency values, which were found to vary within the following ranges, for the 14 

conductive samples considered in these investigations: ∆Q=[-11,-2]%, ∆f=[-0.3,0.7]%. These 

brackets represent intervals of Q-factor and resonant frequency shifts, measured in the 

presence of the 14 samples used in these investigations. The values on the left correspond to 

the lower values of ΔQ and Δfr within the given intervals, those on the right correspond to the 

higher values. 
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Images were obtained for a set of aluminium disks of different diameters, and a Canny-

edge detection algorithm was applied to them, to find the contour of the imaged disk. The 

diameter estimated from the images displayed a linear relationship with the samples’ 

tabulated diameters, for both Q-factor and resonant frequency images, with a coefficient of 

determination equal to unity within a few percent. Results obtained by applying the Canny-

edge detection method to images obtained by means of the two proposed techniques, based 

on position-resolved measurements of the Q-factor and resonant frequency shifts, revealed 

differences between the two techniques. In particular, results obtained with respect to 2D 

imaging of ‘unshielded’ conductive samples highlighted that the Q-factor technique allowed 

more accurate reproduction of the samples’ dimensions than the resonant frequency 

technique, with an agreement within 2% between the estimated diameters and the measured 

ones (for disk diameters larger than 4 cm). Results obtained with both imaging techniques 

were very satisfactory as they showed that the contours of the imaged samples could be 

determined with an agreement between 1% and 8% for Q-factor and resonant frequency 

measurements of disks with diameters between 1.5 and 7.6 cm, respectively. This validated 

the reliability of the proposed imaging system for reproducing the samples’ dimensions in the 

case of ‘unshielded’ conductive samples. 

Further investigations aimed at optimising the values of components that were used 

to build the LCR-based system with a capacitor bank, used to adjust its resonant frequency to 

achieve penetration through shielding materials. This led to identifying the best choice of 

resistance and capacitance, for achieving the highest Q-factor shift that could be obtained, 

when a conductive sample was placed in the vicinity of the coil. By using the LCR-based EII 

system with a capacitance C causing the skin depth through Al to be equal to δ=3 mm, 2D 

imaging of concealed metallic samples hidden behind 1.5-mm-thick Al shields was successful. 

In particular, the proposed method enabled to reveal the presence of concealed metallic 

objects (having conductivities ranging from 0.54 to 59.77 MSm-1), as well as accurately 

estimate their shape, thus demonstrating that the proposed EII system represented an 

effective detection tool that could be used for security applications. 

The same quantitative analysis previously used to determine the imaged samples’ 

diameters was conducted for images of ‘shielded’ samples, aimed at identifying the 

dimensions of imaged ‘shielded’ samples. This analysis showed that the images obtained with 

resonant frequency measurements reproduced the samples’ dimensions more accurately 
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than the Q-factor images. In both cases, the diameter of the imaged 6-cm-diameter disk was 

underestimated (by 10% and 23%, with fr and Q measurements, respectively), due to the 

presence of the aluminium shield covering the targets and ‘masking’ them. An agreement 

within 1% was obtained after using fitting equations to determine the diameters of the 

imaged samples. This represented an important result, as it proved that utilising the method 

based on a LCR-based EII system with a variable capacitor could successfully enable imaging 

of conductive samples shielded and therefore not visible from the outside. 

The second part of this work involved the implementation of a novel version of the EII 

system, which was based on an active bandpass filter, allowing high Q-factor values to be 

achieved. The progress following the implementation of this novel EII system constituted the 

breakthrough of this research work. In particular, the novel system’s design allowed Q-factor 

values larger by a factor up to 46, to be achieved, and Q-factor shifts, due to the presence of 

a sample made of Cu, larger by a factor of 3.5, compared to the shifts measured with the 

previously adopted LCR-based system. These improvements were achieved by adopting a 

measurement procedure based on an algorithm for the removal of a spurious peak that was 

contaminating the data acquired with the active-filter-based system, by utilising a Network 

Analyser. 

The larger sensitivity of the new system described in Chapter 7 could allow material 

characterisation of metals having similar electromagnetic properties, to a larger extent 

compared to the previously adopted solution, based on LCR circuits. Furthermore, the relative 

variation of Q obtained by dividing the Q-factor shift produced by a copper sample by the Q-

factor value measured with the system in the absence of the sample, returned the value of 

DeltaQ (%) = 69.5%. This variation used to be equal to 48% with the ‘old’ EII system. This 

meant that an improvement in the image contrast was also obtained, thus implying the 

possibility to obtain clearer images that would help identifying hazardous materials. With this 

regard, the possibility of using the proposed EII solution for imaging of conductive samples 

hidden by conductive shields was also investigated. For this purpose, a method based on 

position-resolved-measurements of the Q-factor was tested by inductively coupling a Cu 

sample hidden behind an aluminium shield, to the inductor inserted into the active filter 

constituting the EII system. As a result, an image revealing the presence of the hidden sample 

was obtained, thus proving that the proposed method could also allow the identification and 

imaging of shielded conductive objects. 
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Results of the EII techniques described in this work showed the suitability of both the 

LCR-based and the active-filter-based EII systems for imaging of both high and low 

conductivity metals, even when these were shielded by a metallic shield. A sensitivity higher 

by a factor of 3.5 was obtained with the method based on the use of active filters to image 

copper, thus making this method more suitable for imaging of highly conductive samples, 

compared to the previously developed method, based on LCR circuits. 

A final remark is about an important advantage that is related to using an EII technique 

like the one proposed here, which is based on a single coil acting as a sensor and detecting 

the shifts in the system’s resonant frequency and Q-factor, to image conductive samples. This 

specific technique relies on the coil being facing the hidden side of the sample object during 

the measurement process. Adopting this particular detection configuration makes the 

developed EII system extremely useful for practical applications, as the hidden sample is often 

not accessible from all sides. Having demonstrated the working principle of such system adds 

value to this work and project it to practical applications, such as detection of unexploded 

items, often not accessible from all sides. This opens up the possibility of turning the proposed 

EII system into a portable device for identification of materials of suspicious nature (e.g., 

unexploded items). 

Limitations of the developed imaging system are mainly connected to electromagnetic 

interference, which would constitute an issue if the system was to be deployed for 

measurements outside the lab environment (for example, at airport security checks). Suitable 

shielding should be developed for this purpose, which would enhance the sensitivity and 

diminish the noise contribution due to the presence of metallic materials in the surrounding 

of either the coil or the active-filter system. Low-frequency measurements are limited by the 

larger noise in the quantities of interest (e.g. inductance) and therefore noise reduction 

methods would be needed to enhance penetration through shields to identify hidden 

samples. Using more advanced equipment such as impedance analysers with wider 

functionalities, such as averaging and measurement bandwidth, is a possible solution. 
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9 Future work 

The results highlighted in the conclusions to this work raise some questions that could 

be answered by carrying out further investigations. In particular, the potentiality of the 

proposed EII system based on active filters for the identification of hidden samples has not 

been fully exploited yet. To start with, imaging shielded conductive materials, also by 

penetrating through shields thicker than the one used in this work should be investigated. 

The EII systems developed in this work and based on a parallel LCR circuit and an active-filter-

based circuit allowed imaging a copper sample hidden behind a 1.5-mm-thick Al shield. 

Whereas this result is significant, given that Al is the most difficult non-ferromagnetic metal 

to penetrate through, due to its largest value of conductivity, it would be necessary to test 

the possibility of the system to image through thicker shields. Materials such as lead are 

currently employed to hide hazardous objects and bombs, since lead is X-ray absorbent. 

Therefore, investigating the possibility to image by penetrating through thick shields made of 

this type of metal would be interesting for detection and imaging aimed at security 

applications. This is possible in principle, as long as electromagnetic radiation of appropriate 

skin depth is employed. It could be achieved by using the EII system here proposed, by 

introducing resistors of higher values into the rotary switch, thus enabling the active-filter-

based system to resonate at lower values of frequency, leading to larger values of skin depth. 

For this purpose, the behaviour of the system at low values of resonance frequency, i.e., of 

the order of magnitude of the Hz, should be investigated. Provided that the system electronics 

works and the noise/interference sources are under control, the system should allow imaging 

through shields of much larger thicknesses than the one with which the system was tested. 

Another open question would be about imaging metals of lower conductivities than 

copper, especially in shielded configurations. The possibility of tuning the system’s resonant 

frequency, thus adjusting the skin depth, was beneficial in allowing penetration through 

materials having both different values of thickness and different electromagnetic properties, 

which is fundamental for practical applications. One of the other parameters, on which the 

performance of EII systems depends, is given by the amount of eddy currents induced inside 

the system, which in turns depends on the coil’s inductance. On this subject, these studies 

have one limitation: there will always need to be a compromise between having good spatial 
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resolution and the ability to discriminate between different materials, including the target 

material and the material screening it. This is because using larger coils having larger 

inductance might impact the image resolution, due to the measurement method here 

proposed being based on a coil that is used both to induce eddy currents inside the sample 

and to detect the resonance shifts due to the presence of the sample. Two alternatives to the 

use of a coil with a larger diameter should be explored. The first one relies on the use of a coil 

having a larger number of turns thus producing a higher magnetic field. The second one 

involves investigating the impact of increasing the current circulating in the coil, in order to 

increase the eddy current amount. These investigations should be carried out with the 

purpose of finding a trade-off between the need to induce a larger amount of eddy currents 

in the sample to be imaged, and the need for the image spatial resolution to allow 

reproduction of the objects’ shape, especially in the more interesting case of non-simple 

geometries. 

From a theoretical point of view, modelling of the EII system based on the active-filter-

based circuit and the conductive sample may be useful to understand the effects due to the 

presence of a metal which is inductively coupled to a resonant circuit, in terms of both eddy 

currents and magnetic field enhancement. 

Finally, further investigations should be carried out to assess the possibility to turn the 

active-filter-based system into a 3D system that could allow 3D images of conductive objects 

to be obtained. One possibility would be to use a similar resonant circuit and move this coil 

w.r.t. the sample to be imaged, while maintaining the sample in a fixed position. A first 

section of the 3D image could be obtained by adopting a scanning procedure similar to the 

one proposed and tested in this work. The sample would then need to be rotated by 

different angles in order to produce more sections to create a 3D image, by using a suitable 

reconstruction algorithm. 
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