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Abstract—The path signature feature (PSF) which was initially 

introduced in rough paths theory as a branch of stochastic analysis, 
has recently been successfully applied to the field of pattern 
recognition for extracting sufficient quantity of information 
contained in a finite trajectory, but with potentially high 
dimension. In this paper, we propose a variation of path signature 
representation, namely the dyadic path signature feature (D-PSF), 
to fully characterize the trajectory using a hierarchical structure 
to solve the rotation-free online handwritten character recognition 
(OLHCR) problem. We adopt the deep neural network (DNN) as 
classifier, and investigate three hanging normalization methods to 
improve the robustness of the DNN to rotational distortions. 
Extensive experiments on digits, English letters, and Chinese 
radicals demonstrated that the proposed D-PSF, jointly with 
hanging normalization and DNN, achieved very promising results 
for rotated OLHCR, significantly outperforming previous 
methods. 

Keywords—rotation-free recognition; online handwritten 
character recognition; path signature feature; rotation 
normalization; neural network 

I. INTRODUCTION 

With the development and commercialization of pen-based 
or touch-screen devices, online handwritten character 
recognition (OLHCR) is becoming increasingly important, and 
has been intensively studied to maintain a small footprint [1–3], 
yield high recognition accuracy [4–7], yet maintain robustness 
in its use for unconstrained handwriting styles. Many existing 
handwriting input method editors (IME) do fulfill most of the 
above goals, but they often fail to achieve robustness to 
rotational distortion. This is because rotational distortion may 
reduce the recognition accuracy by generating confusion for 
some characters that are originally distinguishable. However, 
despite the possible reduction in accuracy, a rotation-free 
recognizer can deliver a compelling user experience in special 
cases, such as supporting multi-user operations in association 
with the device, recognizing handwritings written in free styles, 
or during emergencies, and so on. In order to facilitate these 
applications of the handwriting IME, rotated OLHCR merits 
more attention. 

In OLHCR, the popular directional feature extracted from 
the decomposed directions of adjacent sampling points, is 

invariant to local directional variations of strokes, which is one 
of the valuable characteristics for recognition. However, the 
directional feature is hard to absorb the rotational distortion 
which can be regarded as a global transformation of characters. 
In [10], to exploit global information in a rotated trajectory, the 
path signature feature (PSF in brief) developed in [8–9], is 

Fig. 1. Illustration of the proposed dyadic path signature features. The 
hanging normalization in [14] is adopted as preprocessing step in this figure. 
The parameter n is the hierarchical level, and N is the number of dyadic paths 
at the corresponding level. When the level n is small, the features represent 
global information. When n increases, more local information is involved. 
These hierachical features help us to obtain global, regional, and local 
information. 
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introduced to extract features by considering the entire character 
as a path. It has been proven to be effective, but the 
dimensionality increases fast when higher degrees of a signature 
feature are required to describe more detailed (local) 
information in the entire path.  

In this paper, we propose a variation of PSF using a 
hierarchical path structure, namely the dyadic path signature 
feature (D-PSF), to overcome the aforementioned problems. At 
a certain hierarchical level, we equally divide a path to generate 
two smaller paths for the next level of the hierarchy. Thus, the 
number of paths is equal to 2n  at the nth level of the hierarchy. 
The D-PSF is then considered as the combination of the PSFs of 
both the entire path (i.e., the 0th level) and all the derived smaller 
paths. The illustration of the D-PSF is presented in Fig. 1. This 
modification allows the features to capture both the global (or 
local) information and the regional information. Since the large 
dimensional features make different contributions to rotation-
free recognition, we adopt the deep fully-connected neural 
network as classifier for weight adjustment. Moreover, we 
employ the efficient hanging normalization methods to further 
improve the performance of the rotated, isolated OLHCR. The 
elicited experimental results on three subsets (i.e., digits, English 
letters, and Chinese radicals) of the CASIA-OLHWDB1.1 [4] 
demonstrate that the proposed D-PSF outperforms other features 
and achieves a higher accuracy in association with hanging 
normalization and DNN. 

The rest of the paper is organized as follows. The proposed 
dyadic path signature feature is given in Section II. The hanging 
normalization methods are discussed in Section III. The 
explanation of the adoption of DNN is presented in Section IV. 
Two relevant handwritten character recognition technologies we 
used are described in Section V. Extensive experimental results 
are reported in Section VI. Finally, we conclude the paper in 
Section VII.  

II. DYADIC PATH SIGNATURE FEATURE 

The theory of rough paths can be thought as a non-linear 
extension of classical theory of controlled differential equations 
driven by very irregular paths, and the essential object in rough 
paths theory is the path signature, which was first studied by a 
geometer Chen in the form of iterated integrals [8] and was 
further developed by Lyons [9, 11]. The PSF is capable to 
extract important analytic and geometrical properties from a 
path. Diehl [12] first used iterated integrals of a curve in OLHCR, 
and Graham [5] then introduced this feature to a large-scale 
recognition task that allowed him to win the ICDAR2013 
competition [13].  

First, we present a brief introduction of the PSF. An online 
trajectory (path) of finite length can be described as a continuous 
mapping function :[0, ] dP T    within the time interval 

[0, ]T   . The dimension d is equal to two if the trajectory is 
on a plane, or larger than two if more information of the 
trajectory is considered. For an integer 1k  , and a collection of 
indices 1 2, ,..., {1, 2,..., }ki i i d , the k-fold iterated integral of the 

path along the indices 1 2, ,..., ki i i  can be defined as  
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where 
1 20 ... k T       . The signature of P consists of all 

the iterated integrals of P, and the dimension of S(P) is infinite. 
For practical use, the signature truncated at degree m, also 
known as the mth degree truncated signature, is adopted to ensure 
that the signature feature is finite dimensional. The truncated 
signature is the collection of the iterated integrals whose degree 
is no greater than m, 
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By simple calculation, the dimension is equal to 1 1( 1)( 1)md d   . 
It is noted that the higher degree of truncated signature is 
required in order to capture a finer description of a path, but it 
leads to that the dimension of signature increases exponentially.  

 To alleviate this problem, the proposed D-PSF replaces the 
higher degrees of PSF with a collection of the lower degrees of 
PSF extracted from smaller pieces of the entire path. More 
specifically, we divide the entire path into dyadic pieces and set 
up a hierarchical representation of the path. The nth hierarchical 
level of D-PSF is the collection of the signatures of N dyadic 
pieces, 

 1 1 10, 0, , ,
( ) ( ( ) ,..., ( ) ,..., ( ) ),i i N

N N N N

n
T T T T T T

D S P S P S P S P   (3) 

where 2 ,  nN n  . It is obvious that when n = 0, D0S(P)0,T = 
S(P)0,T is the PSF of the entire path, so it can be regarded as the 
global representation of path P. When n increases, the dyadic 
pieces of a path have shorter length, so DnS(P)0,T provides the 
regional information. If n is large, then local information can be 
extracted from DnS(P)0,T. If we would like to keep all these 
information, then the D-PSF is given by: 

 0 1
0, 0, 0, 0,( ) ( ( ) , ( ) ,..., ( ) ).n

T T T TDS P D S P D S P D S P  (4) 

The number of dyadic pieces in eq. (4) is 12 1n   . The level n 
cannot be infinite because the path is finite in the first place. The 
kth degree signature of this path can be calculated by that of the 
dyadic pieces, according to Chen’s identity [8] which states that  

  ( ) ( ) ( )
0, 0, ,0

( ) ( ) ( ) ,
kk j k j

T S S Tj
S P S P S P 


   (5) 

where 0<S<T, and   denotes a tensor product and the 
superscript denotes the length of indices. By extension theorem 
in rough paths theory [21], the information provided by the 
higher degree signature of the entire path can be well 
approximated by the lower degree signatures over the dyadic 
partition of this path when the hierarchical level n is large. 

 Note that for practical use, functions S(P) in eq. (3) and (4) 
are usually replaced by TS(P) as follows: 

 ( ) 0 ( ) 1 ( ) ( )
0, 0, 0, 0,( ) ( ( ) , ( ) ,..., ( ) ).m m m n m

T T T TDTS P D TS P D TS P D TS P  (6) 

The dimension of (6) is 1 1 1(2 1)( 1)( 1)n md d     , which increases 
linearly in terms of the number of dyadic partition (2n+1–1), but 
exponentially with respect to m. 
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In the rotated OLHCR experiments in Section VI, we 
employ the features described in (6) and evaluate the effects of 
the truncated degree m, and the hierarchical level n, on the 
performance of the networks using D-PSF. Since the 0th degree 
of truncated signature is defined as 1 by convention, so we do 
not include it in our features and the actual dimension is

1 1 1(2 1)( )( 1)n md d d     . 

III. HANGING NORMALIZATION METHODS 

In rotated OLHCR, the hanging normalization first proposed 
in [14], is one of the most intuitive and efficient ways to achieve 
rotation-invariance. It assumes that the relative positions of 
some key points in an online character are stable under the 
rotation. Thus, the direction between the key points can be used 
to compensate the distorted characters and transform them to a 
relatively stable position for recognition. These key points often 
appear in pairs, such as the start and center points [14] (SC for 
short), the start and end points [15] (SE), the average start and 
end points of all the strokes [3] (ASE), etc. Fig. 2 presents some 
examples before and after hanging normalization. 

Without loss of generality, let us consider the SC hanging 
normalization as an example. Given an online handwritten 
character sample with T sampling points 

1 2( , ,..., ,..., )t TP P P P P , 
where 1 t T  , we define the x-y plane as the rotation plane, 
and ( , )t tx y  as the only two coordinates associated with the 
rotation. The start point and the center point can then be defined 
as  

  1 1 1( , ),S P x y   (7) 
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For a character, hanging normalization is the transformation of 
each point to a new position to change the direction from C to S 
as follows: 
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After the hanging normalization, the compensated character P  
may not be in the original regular position, but the intra-class 
characters can be similar with each other if they are normalized 
in the same way.  

However, we must emphasize that these informative key 
points that benefited from the stability of the online strokes, are 
most affected by the conditions of the strokes. In unconstrained 
handwritings, the order, direction, quantity, and connection of 
the strokes are no longer regular, so the key points of hanging 
normalization may become unstable, as shown in Fig. 2. Thus, 
the selection of different hanging normalization methods should 
depend on the stroke conditions of the handwritten objects. 
Further analysis, based on experiments, will be presented in 
Section VI.  

IV. DEEP NEURAL NETWORK  

The extraction of D-PSF provides sufficient features which 
have different importance in recognizing rotated characters, we 
thus adopt the deep fully-connected neural network as classifier 
to iteratively adjust the weights of features. For DNN, the ability 
in classification is not only dependent on the structure or hyper 
parameters of network, but also influenced by the difficulty of 
the task. A challenging task can make full use of the learning 
capacity of neural networks so that effective features can be 
selected through training [16]. In rotated OLHCR, the rotational 
variations of samples give rise to the task difficulty and facilitate 
the DNN to use rotation-invariant features for recognition. 
However, in some cases of our implementation, the hanging 
normalization may reduce the variations of samples and cause 
an information loss. Therefore, we suggest that the 
normalization operations can be considered as a fine-tuning step 
instead of a preprocessing step when facing a challenging task, 
for example in rotated OLHCR, the rotated characters are used 
for training, and the compensated characters are used for fine-
tuning and testing.  

For all the experiments in this paper, our fully-connected 
neural network with six hidden layers, is trained by back-
propagation. The number of neurons is set to 128 for the first 
layer, and increases in increments of 128 for the following layers. 
The mini-batch size is set to 100. We use the method of 
stochastic gradient descent with a momentum value equal to 0.9. 
The learning rate updates in accordance to ( ) (0) exp( )t t     , 
where 4(0) 0.002,  5 10     . The dropout [20] rates for the last 
five layers are set to 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. 

Fig. 2. Examples of the handwritten letter ‘F’ using different hanging 
normalization methods. The first row denotes the original characters 
(prototypes), and the second row is the series of the corresponding randomly 
rotated characters. The last three rows represent the compensated characters 
using the SC, ASE, and SE hanging normalization methods respectively. Note 
that only the 4th letter follows the standard stroke order, and the 3rd letter is 
completed in one stroke. 
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V. HANDWRITTEN CHARACTER RECOGNITION TECHNOLOGIES  

A. Imaginary stroke technique 

The imaginary strokes [17–18], which are those pen-moving 
trajectories when the pen tip leaves the writing plane, are 
sometimes virtual straight lines since they are not recorded in 
the data. One intuitive way in which imaginary strokes embed 
to a multi-stroke character, while being distinguishable from the 
real strokes, is adding an “ink” dimension [15] to the original 2D 
points. The release of “ink” increases in the pen-down state and 
ceases in the pen-up state, so the entire 3D trajectory is 
continuous without breaking or overlapping points. 

B. 8-directional feature extraction 

 The 512-dimensional 8-directional feature extraction 
method in [19] is adopted. In order to incorporate the imaginary 
stroke technique, we extract a second 512-dimensional vector 
from the character in which all the real strokes and imaginary 
ones are concatenated into a single stroke. Finally, a total of 
1024-dimensional, 8-directional features are obtained for each 
character. 

VI. EXPERIMENTS 

A. Experimental datasets 

The experiments are conducted on digits (10 classes), 
English upper letters (26 classes) and Chinese radicals (52 
classes, as shown in Fig. 3) of CASIA-OLHWDB1.1 (DB1.1 in 
brief), because these three datasets contain online characters 
with different structural complexities and various average stroke 
numbers. Each class has approximately 240 prototype samples 
for training and 60 for testing. In the training stage of rotated 
OLHCR, the rotated characters are generated artificially from 
the prototypes, and the rotation angle is randomized at each 
iterative step. The training of the digits, letters, and radicals, are 
completed after 3000, 4000, and 5000 epochs, respectively. In 
the test stage, each prototype generates 30 testing samples 
through sequential rotations by an angle increment of 12° to 
fully simulate different rotations. Thus, the rotated test set is 30 
times larger than the prototype test set.  

B. Evaluation of dyadic path signature features 

 In the first set of experiments, we study the performance of 
different combinations of the truncated degrees m, and the 
hierarchical level n of D-PSF in rotated OLHCR. We use “0–n” 
to denote the collection of levels of D-PSF. The results are given 
in Tables I – III and the corresponding number of dimensions 
are listed in Table IV. In the case when n = 0 (i.e., the method 
used in [15]), the performances improve when higher truncated 
degrees of PSF are applied, even though features are extracted 
only from the entire path. When higher levels of dyadic paths 
are involved to extract regional and local information, the results 
are significantly improved. Note that from the results of the last 
columns, when level n is large enough, we may not need a very 
high degree of m of PSF to achieve better results. It is because a 
certain degree truncated PSF of the dyadic small paths contain 
sufficient regional and local information which can well 
approximate a higher degree PSF of the entire path. Actually, 
when degree m increases, the number of dimensions increases 
exponentially. We observe that, most of the time, involving a 

TABLE I.  RESULTS OF D-PSF ON DIGITS OF DB1.1 

Test error rate (%)
Hierarchical Level of D-PSF 

n:0 [15] n:0–1 n:0–2 n:0–3

Truncated 
Degree 
of PSF 

m:1 60.25  4.97  1.52 1.43 
m:2 10.03  1.67  0.92 0.97 
m:3 2.86  1.35  0.77 0.73 
m:4 1.50  1.19  1.07 0.97 

TABLE II.  RESULTS OF D-PSF ON ENGLISH LETTERS OF DB1.1 

Test error rate (%)
Hierarchical Level of D-PSF 

n:0 [15] n:0–1 n:0–2 n:0–3

Truncated 
Degree 
of PSF 

m:1 84.88 23.79 6.14 5.12
m:2 28.76 7.02 4.49 4.50
m:3 14.23 5.44 4.49 4.21
m:4 9.04 4.76 4.50 4.09

TABLE III.   RESULTS OF D-PSF ON CHINESE RADICALS OF DB1.1 

Test error rate (%)
Hierarchical Level of D-PSF 

n:0 [15] n:0–1 n:0–2 n:0–3

Truncated 
Degree 
of PSF 

m:1 91.14 38.33 11.81 9.44
m:2 42.18 11.56 8.86 8.37

m:3 18.48 10.87 8.68 7.91

m:4 15.51 10.25 8.89 7.98

TABLE IV.  NUMBER OF DIMENSIONS FOR VARIOUS SETTINGS OF D-
PSF 

Number of 
dimensions 

Hierarchical Level of D-PSF 

n:0 [15] n:0–1 n:0–2 n:0–3

Truncated 
Degree 
of PSF 

m:1 3 9 21 45
m:2 12 36 84 180
m:3 39 117 273 585
m:4 120 360 840 1800

Fig. 3. Handwrittern examples of the 52 Chinese radicals. The actual label 
of each example is shown in the upper left corner. Note that many radicals 
are similar with each other even without rotational distortion. 
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higher level n, results in fewer additional dimensions and better 
performance than increasing the degree m. For the following 
experiments, we adopt the settings of levels n=0–3 and degree 
m=3 because of its high performance on average. It is suggested 
that the dyadic level should not be too high, because if it did, the 
length of the dyadic paths would be too small to be insensitive 
to local noise of sampling points.  

C. Investigation of different features and hanging 
normalization methods 

 We compare three kinds of features including baseline 
bitmap features, 8-directional features, and D-PSF. The baseline 
network is supplied with data that is directly rendered from the 
online characters as 40×40 offline bitmaps without any ordered 
information, so its input features are of dimension 1600. The 8-
directional features has dimension 1024, while the D-PSF we 
used has only dimension 585. As shown in Tables V, the bitmap 
features using offline information perform poorer than those 
using sequential information. Compared with bitmap features 
and 8-directional features, our proposed D-PSF yields 
significantly better performance, irrespective on whether the 
hanging normalization is employed or not.  

The hanging normalization can be considered as either a 
preprocessing step or a fine-tuning step in our DNN. When 
hanging normalization is a preprocessing step, most results 
outperform those of the networks without using hanging, except 
for the results of D-PSF on the Chinese radical dataset. It is 
attributed to the fact that the rotated radical recognition is a more 
difficult task than the letter or digit recognition of which the 
networks easily learn and quickly fit the data even under rotation, 
so, the hanging normalization in rotated radical recognition 
reduces the variations of samples, which is harmful for the 
network to find out effective features to solve the hard problem. 
To prove this viewpoint, we regard the hanging normalization 
as a fine-tuning step for rotated radicals, and deliberately cease 
the training of the networks after 4000 epochs and use the 
compensated characters to fine tune the DNN for the remaining 
1000 epochs. Eventually, the test error rates of using hanging 
normalization achieve the best performance in our rotated 
OLHCR.  

Among different hanging normalization methods, the SC 
method [14] usually outperforms others because the character 
center points are by definition more stable than the start and end 
points. It is noted that in CASIA-OLHWDB1.1, handwritten 
characters are either cursive or neat, and most of them do not 
follow the standard stroke order. Therefore, the ASE method [3] 
performs better than the SE method [15], since it is insensitive 
to the stroke order. Furthermore, it is worse than the SC method 
because it can be inversely affected by the additional 
connections of cursive strokes, thereby causes some start and 
end points to vanish. Taking into consideration the stroke 
conditions in our datasets, the SC method may be a relatively 
better choice as proven in our experiments. 

Finally, to demonstrate the proposed method is robust to 
rotational distortion and be able to recognize unconstrained 
handwritten characters, some recognition results are shown in 
Fig. 4. The output first candidates are shown above each sample 
together with the corresponding ground truth labels and rotation 
angles. We can see that even though the rotated characters 
generate confusions for some classes, the proposed method can 
find out the detailed differences and achieve rotation-free 
performance. In addition, the misclassified examples are given 
in red boxes. Some of them are difficult even for humans to 
classify. 

VII. CONCLUSIONS 

In this paper, we have proposed a new dyadic representation 
of path signature features (D-PSF) to solve the problem of 
rotated online handwritten character recognition problem. The 
proposed D-PSF can effectively extract global, regional, and 
local information, from the online characters for rotation-free 
recognition tasks. For classification, we have exploited the 
learning capacity of deep fully-connected neural network. We 
have also investigated hanging normalization as preprocessing 
or fine-tuning step in DNN to further improve the performance. 
Based on the comparisons of different features, the D-PSF has 
manifested an excellent ability in detailed feature representation 
of sequential trajectory. In regard to future work, we will use the 
dyadic path signature feature for more difficult pattern 
recognition tasks, like handwritten text recognition, writer 
identification, speaker verification, and others. It would be 

TABLE V.  RESULTS OF DIFFERENT FEATURES AND DIFFERENT HANGING NORMALIZATION METHODS ON THREE DATASETS OF DB1.1 

Test error rates (%) 

Rotation-free OLHCR 

No Hanging 
Hanging Normalization  

SC [14] ASE [3] SE [15] 

Digits 
Bitmap 17.06 4.03 4.36 4.70 
8-directional [3,19] 1.88 1.85 1.01 1.17 
D-PSF (proposed) 0.73 0.67 0.84 1.01 

English 
Upper Letters 

Bitmap 18.99 8.35  9.44  10.02  
8-directional [3,19] 4.99 4.57  4.88  4.69  
D-PSF (proposed) 4.21 3.70  4.01  4.12  

Chinese 
Radicals 

Bitmap 28.14 13.96 14.45 14.68 
8-directional [3,19] 10.57 9.13 10.24 10.44 
D-PSF (proposed) 7.91 8.53 (7.31)* 8.89 (7.43) 9.05 (7.57)

* The results in the brackets come from the training of the networks with rotated characters, fine-tuned, and tested with compensated characters. 
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interesting to see the feature representation capability in 
describing other sequential data in these tasks.  
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Fig. 4. The first candidate recognition results given by the proposed method for some rotated characters. The start and end points are marked to roughly describe 
the sequential information of each online character. The predicted classes, ground truth labels, and rotation angles are shown above the characters. 


