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Abstract

In this work we consider a generalisation of Kelly’s conjecture which is due Alspach,
Mason, and Pullman from 1976. Kelly’s conjecture states that every regular tour-
nament has an edge decomposition into Hamilton cycles, and this was proved by
Kühn and Osthus for large tournaments. The conjecture of Alspach, Mason, and



Pullman concerns general tournaments and asks for the minimum number of paths
needed in an edge decomposition of each tournament into paths. There is a natural
lower bound for this number in terms of the degree sequence of the tournament
and they conjecture this bound is correct for tournaments of even order. Almost all
cases of the conjecture are open and we prove many of them.
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1 Introduction

There has been a great deal of recent activity in the study of decompositions
of graphs and hypergraphs. The general prototypical question is this area asks
whether, for some given class C of graphs, hypergraphs or directed graphs, the
edge set of each H ∈ C can be decomposed into parts satisfying some given
property. A striking development in the area is the proof of the existence of
designs due to Keevash [7] (and proved later by a different method by Glock,
Kühn, Lo, and Osthus [5]) resolving a 150 year old problem. The special
case of this problem where one wishes to establish the existence of Steiner
systems asks for a decomposition of the edge set of the complete r-uniform
hypergraph into r-uniform cliques of a fixed given size. In a different direction,
the development of the robust expanders technique by Kühn and Osthus [8]
is a second major breakthrough allowing the resolution of several conjectures
relating to the decomposition of (directed) graphs into spanning structures
such as matchings and Hamilton cycles; see e.g. [4,9].

The problem we address in this paper is that of decomposing tournaments
into paths. A tournament is an orientation of the complete graph, that is, one
obtains a tournament by assigning a direction to each edge of the (undirected)
complete graph. Let us begin however in the more general setting of directed
graphs.

Let D be a directed graph with vertex set V(D) and edge set E(D). A path
decomposition of D is a collection of paths P1, . . . , Pk of D whose edge sets
E(P1), . . . , E(Pt) partition E(D). Given any directed graph D, it is natural
to ask what the minimum number of paths is in a path decomposition of
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D. This is called the path number of D and is denoted pn(D). A natural
lower bound on pn(D) is obtained by examining the degree sequence of D.
For each vertex v ∈ V (D), write d+D(v) (resp. d−D(v)) for the number of edges
exiting (resp. entering) v. The excess at vertex v is defined to be exD(v) :=
max{d+D(v) − d−D(v), 0}. We note that in any path decomposition of D, at
least ex(v) paths must start at v and therefore we have

pn(D) ≥ ex(D) :=
∑

v∈V (D)

ex(v),

where ex(D) is called the excess of D. Any digraph for which equality holds
above is called consistent. Clearly not every digraph is consistent; in particular
any nonempty digraph D of excess 0 cannot be consistent. However, Alspach,
Pullman, and Mason [1] conjectured that every even tournament is consistent.

Conjecture 1.1 Every tournament T with an even number of vertices satis-
fies pn(T ) = ex(T ).

It is almost immediate to see that this conjecture is a considerable gener-
alisation of Kelly’s conjecture stated below.

Conjecture 1.2 (Kelly; see e.g. [3]) The edge set of every regular tournament
can be decomposed into Hamilton cycles.

Kühn and Osthus [8] proved Kelly’s conjecture for large tournaments using
their powerful robust expanders technique, which was subsequently used to
prove several other conjectures on edge decompositions of (directed) graphs
[9,4].

Theorem 1.3 Every sufficiently large regular tournament has a Hamilton de-
composition.

To see that Conjecture 1.1 implies Conjecture 1.2, take any regular (n+1)-
vertex tournament T and any v ∈ V (T ), and note that ex(T − v) = n/2. If
Conjecture 1.1 holds, then T − v can be decomposed into n/2 paths, so they
must be Hamilton paths. Adding v back to T − v, it is easy to see that each
path can be completed to a Hamilton cycle, giving a Hamilton decomposition
of T . The converse is also easy to see. Thus the special case of Conjecture 1.1
in which ex(T ) = n/2 is equivalent to Kelly’s Conjecture. In general, however,
ex(T ) can take a large range of values.

Proposition 1.4 If T is an n-vertex tournament with n even, then n/2 ≤
ex(T ) ≤ n2/4. Furthermore each value in the range occurs.



As we saw, the lower bound occurs for any almost-regular tournament and
it is easy to verify that the upper bound occurs for the transitive tournament
(in fact for any tournament with a vertex partition into two equal parts A and
B where all edges are directed from A to B). Alspach and Pullman [2] showed
that for any tournament T , pn(T ) ≤ n2/4 thus verifying Conjecture 1.1 for
the special case ex(T ) = n2/4 (and this was generalised to digraphs [11]).
Thus the conjecture has been solved for the two extreme values of excess,
namely n/2 and n2/4: for every other value of ex(T ) between n/2 and n2/4
the conjecture remains open. Our main contribution is to solve many more
cases of the conjecture.

Theorem 1.5 There exists ε > 0 and n0 ∈ N such that if T is a tournament
on n > n0 vertices with n even and ex(T ) ≥ n2−ε, then pn(T ) = ex(T ).

The proof of this result is self-contained relying on a novel application
of the absorption technique due to Rödl, Ruciński, and Szemerédi [12] (with
special forms appearing in earlier work e.g. [10]). However, we believe that a
refinement of the ideas used for Theorem 1.5 combined with Theorem 1.3 will
allow us to prove the following result, which is work in progress.

Theorem 1.6 There exists C > 0 such that if T is an n-vertex tournament
with n even and ex(T ) > Cn then pn(T ) = ex(T ).

In the next section we discuss the ideas behind the proof of Theorem 1.5.

2 Sketch proof of Theorem 1.5

Below we state some easy observations about oriented graphs in the form of
a proposition. These turn out to be useful in the proof of Theorem 1.5.

Proposition 2.1 (a) If G is an acyclic oriented graph then pn(G) = ex(G).

(b) For every oriented graph G, we can find edge-disjoint subgraphs GA and
GE of G such that GA is acyclic, GE is Eulerian, and G = GA ∪GE.

Proof. Part (a) can be shown e.g. by repeatedly removing a path of maximum
length, and part (b) by repeatedly removing cycles from G and adding them
to GE until no cycles remain. 2

The key step in our proof of Theorem 1.5 is to show that for every tour-
nament T with ex(T ) ≥ n2−ε, we can find a oriented subgraph H of T which
has the following properties:

(i) pn(H) = ex(H);



(ii) writing H ′ := T − E(H), we have ex(T ) = ex(H) + ex(H ′);

(iii) for any Eulerian graph F on V (T ) that is edge-disjoint from H, we have
pn(H ∪ F ) = ex(H ∪ F ) = ex(H).

We call a subgraph H of T that satisfies (i), (ii), and (iii) an absorber. If we
can find an absorber H in T then it follows that the tournament is consistent.
Indeed let H ′ = T −E(H) and using the proposition, decompose H ′ as H ′ =
H ′A ∪H ′E where H ′A is acyclic and H ′E is Eulerian. Now T = (H ∪H ′E) ∪HA

and we have

ex(T ) ≤ pn(T ) ≤ pn(H ∪H ′E) + pn(H ′A) = ex(H) + ex(H ′A)

= ex(H) + ex(H ′) = ex(T ).

The absorber H can in fact be easily described. We define a (k, `)-path
system of an n-vertex tournament T = (V,E) to be a collection of nk paths
P v
i of T indexed by v ∈ V and i = 1, . . . , k, where

• for each fixed v, P v
1 , . . . , P

v
k are vertex disjoint paths except that they all

pass through v;

• all paths are edge disjoint;

• every path has length at most `;

• the oriented graph H formed by taking the union of the paths and the
oriented graph H ′ = T −E(H) satisfy pn(H) = ex(H) = nk and ex(H)+
ex(H ′) = ex(T ).

For suitable values of k, `, the union of paths in any (k, `)-path-system
of T gives an absorber. The reason for this is roughly as follows. Suppose
F ⊆ T is any Eulerian subgraph of T that is edge disjoint from H. Then by a
result of Huang, Ma, Shapira, Sudakov, and Yuster [6], one can decompose any
Eulerian graph into at most n3/2 cycles. We can use the path decomposition
of H to absorb the cycles of F one at a time into the path system as follows.
Given a cycle C, we carefully pick vertices v1, . . . , vt on C and paths Q1, . . . , Qt

from the path system such that Qj is one of the paths that passes through vj,
i.e. one of the paths P

vj
i . Assume each path Qi is from vertex ai to bi. If we

make our choices carefully, then we can ensure that Qj is vertex-disjoint from
vj−1Cvj+1 the segment of the cycle between vj−1 and vj+1 (where indices are
understood to be modulo t). Now each path Qi can be replaced by the path
aiQiviCvi+1Qi+1bi+1. These new paths contain all the edges of the original
paths and the edges of C. Showing that every cycle in the cycle decomposition
of F can be absorbed in this way shows that H has the property of an absorber.



Finally, provided the tournament T has sufficiently high excess ex(T ) >
n2−ε, a careful iterated application of Menger’s Theorem allows us to construct
a (k, `)-path system in T .
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