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ABSTRACT 

Ecosystem collapse, i.e. the endpoint of ecosystem decline, is a central concept of 

IUCN Red List of Ecosystems (RLE) assessments and the identification of 

ecosystems most vulnerable to global environmental change. Estimating collapse 

risk can be challenging for ecosystems reliant on a few dominant species to perform 

most of their functions because the range of suitable and feasible indicators is small. 

This study investigates the robustness and adequacy of the current RLE approach 

for risk assessments in such ecosystems, using a fringe mangrove ecosystem as a 

case study. Following the RLE protocol, we constructed a conceptual model of the 

key ecosystem processes for the Philippines’ fringe mangrove forests. Satellite 

remote sensing data and existing maps of mangrove forests were then combined to 

assess the spatial distribution of the ecosystem considered (Criteria A and B), while 

the Normalized Difference Vegetation Index was used to assess biotic degradation 

(Criterion D). Insufficient data were available to assess Criteria C (environmental 

degradation) and E (quantitative analysis). Overall, the ecosystem was assessed as 

‘Least Concern’ based on extensive geographic distribution and only weak support 

for declines in extent. Criterion D was classed as ‘Data Deficient’ since there was no 

clear relationship between the vegetation index and fringe mangrove degradation. 

Our results demonstrate how gaps in our appreciation and understanding of the 

structure and functioning of ecosystems are more likely to impede risk assessments 

of ecosystems characterised by a small number of foundation species, due to the 

low level of redundancy between candidate indicators available for their 

assessments. Satellite remote sensing combined with derivation of explicit 

conceptual ecosystem models provides a way to structure efforts to identify suitable 

indicators as well as opportunities to overcome many of these challenges, even for 

relatively data-poor ecosystems.  

KEY WORDS: Ecosystem collapse, foundation species, fringe mangroves, IUCN 

Red List of Ecosystems



 

1. INTRODUCTION 

Ecosystems have immense intrinsic value whilst also providing vital ecosystem 

services on which human life depends (Millennium Ecosystem Assessment, 2005). 

Human activities have however led to degradation of many ecosystems globally 

(Hansen et al., 2013; Davidson, 2014; Haddad et al., 2015), reducing their capacity 

to support life. Degradation can eventually lead to ecosystem collapse, a state in 

which ecosystems lose their defining abiotic and biotic features to the extent that 

their identity has been irremediably changed. Ecosystem collapse amounts to a 

transition into a novel ecosystem, characterised by different biota and mechanisms 

of organisation and/or altered abundance, interactions, and ecological functions of 

the remaining original biota (Jackson et al., 2001; Folke et al., 2004; Bland, Keith, 

Miller, Murray & Rodríguez, 2016). Ecosystem collapse can have severe 

consequences for biodiversity, ecosystem services and subsequently human welfare 

(Dobson et al., 2006; but see Raudsepp-Hearne et al., 2010), meaning that there is 

currently increasing interest in being able to avoid them whenever possible. 

Predicting where and when transitions into novel ecosystems may occur is however 

often difficult (Keith, 2015) since the number of species and processes that can 

change before an ecosystem loses its original identity has rarely been quantified 

(Boitani, Mace & Rondini, 2015). Three years ago, the International Union for the 

Conservation of Nature (IUCN) adopted the Red List of Ecosystems (RLE) 

Categories and Criteria as a robust and consistent tool for monitoring the risk status 

of ecosystems in order to plan appropriate conservation actions (Keith et al., 2013; 

Bland et al., 2016). Key to the RLE assessments is the concept of ecosystem 

collapse, defined there as the endpoint to ecosystem decline, “when it is virtually 

certain that its defining biotic or abiotic features are lost from all occurrences, and the 

characteristic native biota are no longer sustained” (Bland et al. 2016). Two of the 

risk assessment criteria assess spatial symptoms of ecosystem collapse through 

declines in distribution (Criterion A) and restricted distribution (Criterion B); two 

criteria assess functional symptoms of ecosystem collapse through environmental 

degradation (Criterion C) and biotic disruption (Criterion D); the final criterion 

(Criterion E) evaluates quantitative estimates of the risk of collapse through the 

integration of multiple threats and symptoms into models of ecosystem dynamics 



 

(Bland et al. 2016). The RLE assessment is based on a conceptual model which 

summarises the most important biotic and abiotic components of a given system, as 

well as significant ecosystem functions and processes. This model facilitates 

characterising all relevant pathways to collapse, as well as choosing appropriate 

variables to monitor ecosystem degradation.  

But is this general approach robust enough to help detect ecosystem collapse risk 

for ecosystems dependent on a few dominant, so-called “foundation species”, to 

perform most of their functions? Relatively minor reductions in the abundance of a 

foundation species could indeed have critical consequences for the functioning of 

these ecosystems, with significant impacts on associated biota, even before the 

characteristic native biota is entirely lost (Dayton, 1972; Ellison et al., 2005). In this 

situation, monitoring the foundation species provides a robust estimate of collapse 

risk only if changes that affect ecosystem functioning are captured. For instance, 

merely monitoring tree cover to assess the condition of a forest will not be enough to 

robustly assess collapse risk if the functions supported by trees (e.g. as habitat for 

other biota) vary with stand or age structure (Burns et al., 2015). Non-foundation 

species or the abiotic environment may moreover change in a way that 

fundamentally alters ecosystem functioning, but unless the foundation species are 

significantly affected, the ecosystem may not appear to have changed. For instance, 

defaunation of structurally intact forests alters processes such as seed dispersal and 

tree seedling recruitment (Stoner, Vulinec, Wright & Peres, 2007; Terborgh et al., 

2008), resulting in changes in the relative abundance of tree species at the seedling 

stage (Terborgh et al., 2008; Effiom, Nuñez-Iturri, Smith, Ottosson & Olsson, 2013). 

Due to the long generation time of trees, recently defaunated forests are difficult to 

distinguish from forests with a full set of large vertebrates, in terms of tree distribution 

and composition (Harrison et al., 2013).  

To investigate the robustness of the current RLE approach for collapse risk 

assessments in ecosystems dependent on a few foundation species to perform most 

of their functions, we here apply the RLE protocol to fringe mangrove forests in the 

Philippines. Fringe mangrove forests are tide-dominated mangrove forests (i.e. they 

have the highest tidal inundation frequency), as opposed to river-dominated or inland 

(basin) mangrove forests (Ewel, Twilley & Ong’s (1998). Fringe mangrove forests 



 

have distinct abiotic settings, as well as distinct ecosystem composition and 

functioning compared to riverine and basin mangroves; distinctive features include 

consistently high salinity, relatively higher abundance of migratory birds, and the 

highest carbon export values among all mangrove forest types (Ewel, Twilley & Ong, 

1998). Taken together, this suggests they are best conceptualised as a separate 

ecosystem. In the Philippines, fringe mangrove forests are dominated by only two 

true mangrove species (Avicennia marina and Sonneratia alba; Ricklefs & Latham, 

1993; FAO, 2007; Sinfuego & Buot, 2008, 2014), making them an ideal case study of 

ecosystems dominated by few foundation species. Over 50% of the total mangrove 

area in the Philippines has reportedly been lost in the last century, and mangrove 

forests in general are continuing to disappear from South East Asia at an estimated 

rate of 3.6-8.1% per year (Polidoro et al. 2010; Long, Napton, Giri & Graesser, 2014; 

Hamilton & Casey, 2016); this suggests that fringe mangroves, like other types of 

mangroves, could be at an increased risk of collapse. As they provide vital 

ecosystem services including coastal protection, provision of raw materials, and 

carbon sequestration, this would not only result in loss of biodiversity, but would 

likely have devastating consequences for humans, both locally and worldwide 

(Garcia, Malabrigo & Gevaña, 2014).  

 

2. METHODS 

A detailed description of the RLE assessment process is provided by Bland et al. 

(2016) and Murray et al. (2016). In short, this entails describing the fringe mangrove 

ecosystem, identifying suitable variables to assess ecosystem degradation, and 

defining ecosystem collapse as bounded thresholds in these variables. These are 

used to assign one of eight risk categories to each criterion: Collapsed (CO), 

Critically Endangered (CR), Endangered (EN), Vulnerable (VU), Near Threatened 

(NT), Least Concern (LC), Data Deficient (DD), or Not Evaluated (NE). The overall 

risk category for the ecosystem is the highest overall risk category assigned in any 

criterion. 

 



 

2.1 Ecosystem Description 

Information from published literature was compiled to describe the functioning of 

fringe mangroves in the Philippines. From this, the key ecosystem dynamics and 

threatening processes were identified to construct a conceptual model (Figure 1) to 

support the identification of suitable variables for assessing ecosystem decline. 

Following Bland and colleagues’ protocol (2016), we identified key abiotic and biotic 

ecosystem components, processes and threats that influence the integrity of fringe 

mangrove forests, building on from previous models by Lugo & Snedaker (1974) and 

Twilley et al. (1996). An abbreviated ecosystem description is provided in the 

Supplementary Material (Table S1.1 in Supplementary Materials). Fringe mangroves 

in the Philippines are dominated by salt-tolerant true mangroves of the genera 

Avicennia, Sonneratia, Aegiceras, and Rhizophora, in particular Avicennia marina 

and Sonneratia alba (Ricklefs & Latham, 1993; FAO, 2007; Sinfuego & Buot, 2008, 

2014). These species drive most ecosystem processes and functions in fringe 

mangrove forests: they provide nursery habitat for fish and shrimp species (Farley, 

Batker, de la Torre & Hudspeth, 2010; Brander et al., 2012; Buelow & Sheaves, 

2015); their roots play a significant role in sedimentation control (Alongi, 2008); they 

also generate large amounts of organic matter, contributing to local and global 

nutrient and carbon cycles (Ewel et al., 1998; Kathiresan & Bingham, 2001; Barbier 

et al., 2011). Counterintuitively, mangrove litter has been shown to have little 

importance for local secondary productivity (Heithaus, Heithaus, Heithaus, 

Burkholder & Layman, 2011). Few animal species are exclusive to fringe mangroves, 

with many only present during parts of their life cycle, particularly migratory birds 

(Table S1.2 in Supplementary Materials; Ewel et al., 1998), and thus have a limited 

functional importance. Crucially, whilst fiddler and sesarmid crabs have been 

described as keystone species for fringe mangrove ecosystems, these ecosystems 

have been shown to be stable even at low density of these crabs (Lee, 1998). Crab 

species richness and community composition have been found to be poor predictors 

of mangrove tree species richness, forest structure and anthropogenic pressure; this 

suggests that crab density is not a useful bioindicator for the stability of fringe 

mangroves (Geist, Nordhaus & Hinrichs, 2012).  



 

 

Figure 1. A simplified cause-and-effect conceptual model of the ecological 

processes most relevant to the Philippines’ fringe mangrove ecosystem risk 

assessment. The black box indicates different life stages of the mangrove trees. Red 

boxes indicate threats, green and blue hexagons represent the characteristic biota 

and the abiotic environment respectively, and green and blue ovals represent the 

biotic and abiotic processes respectively. Arrows indicate positive relationships while 

dots indicate negative relationships.  

 

 



 

2.2 Ecosystem Collapse indicators 

Fringe mangrove forests have clear bottom-up trophic regulation, with non-dominant 

species (fish, crabs, shrimps) playing a relatively small ecological role. As a result, 

assessing spatial and functional symptoms of collapse is here solely based on 

monitoring mangrove species (Table 1), with mangrove loss or degradation seen as 

the dominant pathway to collapse (Figure 1; Lee, 1998; Geist, Nordhaus & Hinrichs, 

2012). Specifically, it is assumed that the absence of true mangroves signifies the 

transition of the fringe mangrove forest into a collapsed or novel ecosystem, with the 

leading threat causing collapse dictating the post-transition ecosystem, e.g. 

persistent sea level rise potentially resulting in a transition to peat swamp forest 

(IUCN, 2012) or deforestation for aquaculture resulting in a transition to brackish 

water ponds (Primavera & Esteban, 2008). 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 1. Overview over collapse thresholds, variables and underlying data used to 

assess Philippines’ fringe mangrove forests according to the IUCN Red List of 

Ecosystems assessment. The description of the criteria was adapted from Bland and 

colleagues (2016). 

Criterion Purpose Variable Collapse 

threshold 

Underlying 

data 

A (Reduction in 

geographic 

distribution) 

Identifies ecosystems 

that are undergoing 

declines in area, most 

commonly due to 

threats resulting in 

ecosystem loss and 

fragmentation. 

Change in the 

distribution of  A. 

marina and S. alba 

100% loss Maps of 

mangrove 

forests from 

2000, 2010 and 

2016 

B (Restricted 

geographic 

distribution) 

Identifies ecosystems 

with small distributions 

that are susceptible to 

spatially explicit threats 

and catastrophes. 

Current fringe 

mangrove 

distribution 

Extent and 

area of 

occurrence 

are 0 

Maps of 

mangrove 

forests from 

2016 

C (Environmental 

Degradation) 

Identifies ecosystems 

that are undergoing 

environmental 

degradation. 

Change in 

hydroperiod 

NA NA 

Change in sealevel NA NA 

D (Disruption of 

biotic processes 

and interactions) 

Identifies ecosystems 

that are undergoing 

loss or disruption of 

key biotic processes or 

interactions. 

Primary productivity 

of A. marina and S. 

alba  

50-100% loss NDVI time 

series 

Seedling 

recruitment of A. 

marina and S. alba 

NA NA 

E (Quantitative 

risk analysis) 

Allows for an integrated 

evaluation of multiple 

threats, symptoms, and 

their interactions. 

Quantitative risk 

model 

NA NA 

  



 

When it comes to assessing spatially explicit RLE criteria (namely criterion A, which 

assesses changes in spatial distribution over a given timeframe, and criterion B, 

which assesses the size of the current ecosystem distribution; Bland et al., 2016), 

fringe mangroves were considered collapsed when their mapped distribution 

declines to zero (100% loss). Specifically, the collapse of the fringe mangrove 

ecosystem is defined as the loss of the characteristic native biota, Avicennia marina 

and Sonneratia alba, since it entails loss of key ecological and ecosystem 

processes, such as decomposition and sediment-trapping, and the ecosystem can 

no longer sustain other characteristic biota such as fish, crabs, and migratory birds. 

Assessing functional criteria was more challenging. A possible indicator of 

environmental degradation (Criterion C) highlighted by the conceptual model (Figure 

1) is a change in hydroperiod. However, there is a lack of both baseline information 

and understanding of the direct influences of hydroperiod on fringe mangrove 

forests, hence thresholds for collapse cannot be established. Alternatively, relative 

sea-level rise has been suggested to be the greatest threat to mangroves (Gilman, 

Ellison, Duke & Field, 2008; Giri et al., 2011). Variables such as shoreline 

geomorphology, sedimentation rates and biotic processes play a large role in how 

mangrove forests respond to rising sea levels (Krauss et al., 2008; Soares, 2009; 

Lee et al., 2014). There are gaps in our understanding of how biological and physical 

processes interact to accommodate sea-level rise (Alongi et al, 2008; Gilman et al., 

2008; Krauss et al., 2008), making it difficult to quantify how Philippines’ fringe 

mangrove forests will be affected by sea-level rise. Ultimately, we therefore could not 

set thresholds for collapse for any of the possible indicators we identified for Criterion 

C. 

Net primary productivity (NPP) was identified as a suitable indicator for assessing 

ecosystem degradation due to disruption of biotic processes and interactions 

(Criterion D). Fringe mangrove forests are indeed highly productive ecosystems 

(Kristensen, Bouillon, Dittmar & Marchand, 2008), and productivity has been 

suggested to increase with stand age and when mangroves are more abundant, 

showing a strong link between the condition of these characteristic native biota and 

the productivity of the ecosystem (Kristensen et al., 2008; Brander et al., 2012; 

Alongi, 2014). We consider the Philippines’ fringe mangrove ecosystem to be 



 

collapsed when its NPP declines by 50-100%. Such a bounded estimate represents 

a range of plausible alternative values for the measure in order to characterise the 

uncertainty involved in setting thresholds to describe collapsed states (Bland et al., 

2016). In this case, the large bounds are required in order to account for the 

relatively low sensitivity of the measure. At the most extreme end, the upper bound 

(100%) represents the complete loss of net primary productivity (e.g. if mangroves 

are replaced by built-up area or bare ground). The lower bound is necessary to 

account for the collapse of the ecosystem via replacement by a novel ecosystem that 

has a lower NPP; in this case, fringe mangroves are usually replaced by aqua- or 

agricultural and urban production systems (Primavera, 2000, Lee et al., 2014, Garcia 

et al., 2014), which have much lower NDVI. This bound also acknowledges that 

there are natural fluctuations in mangrove productivity over time (both intra- and 

interannual, Day et al., 1996), which are unrelated to ecosystem collapse. We here 

use the Normalized Difference Vegetation Index (NDVI) as a proxy for net primary 

productivity (Pettorelli, 2013), as this was the only available information for the time 

period and spatial extent considered. An alternative indicator for biotic disruption is 

mangrove seedling dispersal, along with their establishment and recruitment to the 

sapling stage, which are critical stages in the mangrove life cycle (Padilla, Fortes, 

Duarte, Terrados & Kamp-Nielsen, 2004). A Philippine fringe mangrove ecosystem 

can be considered collapsed when the rate of seedling recruitment falls to 0. 

However, there are no data available to assess recruitment rates across the 

Philippines, precluding the use of this indicator in the present assessment. Lastly, 

although fringe mangrove ecosystems support dense assemblages of birds, crabs, 

insects, fish, and prawns (Ewel et al., 1998; Ellison, 2005; Nagelkerken et al, 2008), 

none of these species are reliably linked to roles supporting the sustainability of the 

ecosystem (Duke, Ball & Ellison, 1998; Lee, 1998; Heithaus et al., 2011; Geist, 

Nordhaus & Hinrichs, 2012), hence changes in their respective abundances and 

overall species richness would only serve as additional measures of ecosystem 

productivity and not reliable indicators of risk of collapse.  

There is currently no existing quantitative risk model of the Philippines’ fringe 

mangrove forests (Criterion E), primarily due to the lack of relevant local information 

for this particular ecosystem and location. 



 

2.3 Data 

Criteria A/B: Landsat imagery was used to map the spatial distribution and assess 

the areal extent of the Philippines’ fringe mangrove forests in 2016 via supervised 

land cover classification, and was compared to distribution and extent of fringe 

mangroves in 2000 and 2010, produced by Long & Giri (2011) and Long, Napton, 

Giri & Graesser (2014) respectively. Image processing and analysis was conducted 

in R v. 3.2.5 or 3.3.3 (R Core Team, 2016) or QGIS v. 2.18.3 (QGIS Development 

Team, 2016) unless otherwise stated. Surface reflectance data from Landsat 8 was 

downloaded from the United States Geological Survey (USGS) 

(http://earthexplorer.usgs.gov/). These scenes have a spatial resolution of 30m and 

are pre-processed to at-surface reflectance level using the Landsat Surface 

Reflectance Code (LaSRC) (Vermote, Justice, Claverie & Franch, 2016). Scenes 

were restricted to November-May 2016 to exclude the rainy season and limit cloud 

cover; the majority of scenes used had <10% cloud cover. Where persistent cloud 

rendered obtaining sufficiently clear scenes impossible, multiple images were 

mosaicked to obtain a single scene (Long & Giri, 2011); it was intermittently 

necessary to use imagery from 2015 (Table S1.3 in Supplementary Materials). 

Clouds and cloud shadows were masked from each scene using the fmask product 

provided with the Landsat 8 surface reflectance data (Connette, Oswald, Songer & 

Leimgruber, 2016). Where necessary, images were reprojected to WGS 84/UTM 

zone 51 before mosaicking, using the gdalwarp utility in GDAL v. 1.11.4 (GDAL 

Development Team, 2016). To reduce data volume and improve overall classification 

accuracy, only areas where mangroves are most likely to occur were retained for 

subsequent analysis. Specifically, only areas falling within a 10,000 m buffer around 

the coastline (based on the Philippines’ administrative boundaries from the Global 

Administrative Areas Database; Hijmans, Garcia & Wieczorek, 2015) were retained. 

This buffer encompassed the previous 2000/2010 mangrove areas within a 

substantial margin, whilst excluding the large areas inland where fringe mangroves 

are unlikely occur.  

Following Connette et al. (2016), high-resolution imagery from Google EarthTM was 

used to create training data for the supervised land cover classification 

representative of the land-cover types to be classified from across the Philippines. 



 

To be consistent with the time period of the assessment, training data was 

exclusively derived from high-resolution imagery from 2015-2016. Previous 

mangrove distributions were used to support identification of mangroves. The final 

training dataset contained 125-175 polygons from each target land-cover class 

(‘Mangrove’, ‘Water’, ‘Barren’, ‘Non-mangrove’). The NDVI (Pettorelli, 2013) and 

Modified Normalised Difference Water Index (MNDWI; Xu, 2006) were calculated 

and used together with the original Landsat 8 bands 1-7 as predictors in the land 

cover classification process. A supervised classification was performed using a 

Random Forest algorithm implemented in the R package ‘Rstoolbox’ (Leutner & 

Horning, 2010). 1500 samples per land cover class were randomly selected from the 

training data and split into 70% independent training data and 30% validation data 

(Wegmann, Leutner & Dech, 2016).  

To eliminate the majority of non-fringe mangrove forest from the mangrove map of 

2016, pixels classified as mangroves outside a 2500 m buffer around the coastline 

were discarded. The size of this buffer was selected so that it included all mangrove 

forests (basin, riverine, fringe) mapped in 2000 (Long & Giri, 2011) and 2010 (Long, 

Napton, Giri & Graesser, 2014). A 200 m buffer of rivers created from a shapefile of 

the Philippines’ waterways (www.mapcruzin.com) was used to exclude mangroves 

that were likely riverine. The buffer was not applied to areas less than 200 m from 

the coastline to avoid excluding coastal fringe mangrove forests that extended into 

riverine areas. Basin forests were excluded by manually removing sheltered areas 

(e.g. lagoons) and mangrove forests lacking coastline-adjacent boundaries. The 

procedure was used to extract fringe mangrove distributions from the 2000 and 2010 

mangrove distributions. 

Criterion D: NDVI MOD13A1 data from the Moderate-resolution Imaging 

Spectroradiometer (MODIS) covering the study area from March 2000 to December 

2016 was downloaded from USGS via the R package ‘MODIS’ (Mattiuzzi & Detsch, 

2017). This data is provided every 16 days at 500 m spatial resolution. The NDVI 

and quality layer were extracted and the tiles mosaicked and masked to remove 

cloud pixels as indicated by the quality layer (Solano, Didan, Jacobson & Huete, 

2010), then cropped to areas where fringe mangroves occurred in 2000, yielding a 



 

17-year time-series of NDVI values for areas classified as fringe mangrove areas in 

2000. 

 

2.4 Analyses 

Criteria A/B: To inform Criterion A, the 2000, 2010 and 2016 fringe mangrove 

distributions were compared to quantify declines in spatial distribution. The 

distributions from 2000-2010 and 2000-2016 were used to assess the reduction in 

geographic distribution of the ecosystem as percentage area change. As the data 

does not fit the 50-year timeframe for an assessment, the proportional rate of decline 

(PRD) and absolute rate of decline (ARD) were calculated using equations (1) and 

(2) and used to estimate the area in 2050, 50 years since the first observed data 

point (Murray et al., 2016).  

𝑃𝑅𝐷 = 100 × (1 − (
𝐴𝑟𝑒𝑎.𝑡2

𝐴𝑟𝑒𝑎.𝑡1
)
(

1

𝑌𝑒𝑎𝑟.𝑡2−𝑌𝑒𝑎𝑟.𝑡1
)
)     (1) 

𝐴𝑅𝐷 =
−(𝐴𝑟𝑒𝑎.𝑡2−𝐴𝑟𝑒𝑎.𝑡1)

(𝑌𝑒𝑎𝑟.𝑡2−𝑌𝑒𝑎𝑟.𝑡1)
        (2) 

To inform subcriteria B1 and B2, the extent of occurrence (EOO) of fringe mangrove 

forests in 2016 was calculated as the area of a minimum convex polygon including 

all ecosystem occurrences, and the area of occupancy (AOO) was assessed by 

applying a grid of 10 x 10-km cells and selecting cells in which the ecosystem 

covered more than 1% (1 km2) of the cell area (Bland et al., 2016). The 1% rule was 

used to prevent inflation of the AOO due to the large number of small, dispersed 

patches of fringe mangrove forest which may not substantially offset risks (Keith et 

al., 2013).  

Criterion D: For each pixel, linear trends in mean NDVI between 2000 and 2016 

were calculated using the Annual Aggregated Time Series method (Forkel et al., 

2013) using the R package ‘greenbrown’ (Forkel & Wutzler, 2015); the results were 

inspected visually in QGIS to investigate the spatial distribution of the trends and 

identify any relationship between trends and fringe mangrove forests degradation. 

Additionally, annual mean NDVI values in 2050 were estimated assuming either 



 

ARD or PRD (Murray et al., 2016). To assess the relative severity of the projected 

changes in NDVI, these were expressed as a percentage of the NDVI values 

indicating ecosystem collapse (both for the 50% and the 100% threshold). 

3. RESULTS 

Fringe mangroves were successfully identified by our land cover classification 

approach, with an overall classification accuracy of 88.1% (Kappa coefficient: 

0.8414; Table 2). The extent of the Philippines’ fringe mangrove forests in 2000, 

2010, and 2016 was estimated as 2038 km2, 1924 km2, and 2538 km2 respectively. 

The resulting estimates of percentage area change range from a 28% loss to a 99% 

gain (Table 3). A 28% loss is within 10% of the threshold for the Vulnerable category, 

qualifying the ecosystem for Near Threatened status; however, the wide range 

makes Least Concern the most plausible category under subcriterion A2, especially 

since the estimates based on a longer time period predict an increase in area. Due 

to the absence of quantitative past data and historical data respectively, subcriteria 

A1 and A3 were assessed as Data Deficient (Table 4).  

 

Table 2. Confusion matrix for the Random Forest Classification of the 2016 Landsat 

8 imagery. ‘Barren’ training polygons contained representations of barren land in the 

form of empty fields or sandy areas; ‘Mangrove’ training polygons contained 

representations of mangrove forest; ‘Non-mangrove’ training polygons contained 

representations of terrestrial non-mangrove vegetation; ‘Water’ training polygons 

contained representations of water bodies and ocean areas. 

 

 

 

 

 



 

 

Reference User’s 

Accuracy 

(%) 
Barren Mangrove 

Non-

mangrove 
Water Total 

P
re

d
ic

ti
o

n
 

Barren 1335 19 310 0 1664 80.23 

Mangrove 15 1334 105 0 1454 91.75 

Non-

mangrove 
145 94 1098 0 1337 82.12 

Water 21 0 0 1484 1505 98.60 

Total 1516 1447 1513 1484 5960 - 

Producer’s 

Accuracy (%) 
88.06 92.19 72.57 100.00 - - 

 

Table 3. Comparison of the Philippines’ fringe mangrove forest distributions from 

2000-2010 and 2000-2016 and resulting estimates of percentage area change over 

a 50-year period from 2000 and 2050. 

 2000 – 2010 2000 – 2016 

Proportional Rate of Decline (PRD) 0.57 -11.38 

Absolute Rate of Decline (ARD) 11.34 -31.25 

% Area Change -5.56% +24.54% 

Area in 2050 (assuming PRD) 1530.52 km2 4045.81 km2 

Area in 2050 (assuming ARD) 1470.83 km2 3600.58 km2 

% Area Change 2000-2050 (assuming 

PRD) 

-24.90% +98.53% 

% Area Change 2000-2050 (assuming 

ARD) 

-27.82% +76.69% 

 

 

 



 

Table 4. Overview over the IUCN Red List of ecosystem assessment results for 

fringe mangrove forests in the Philippines. LC = Least Concern; DD = Data Deficient. 

Criterion A B C D E Overall 

Sub-criterion 1 A1: DD B1: LC 

 

C1: DD D1: DD E: DD LC 

Sub-criterion 2 A2: LC B2: LC 

 

C2: DD D2: DD - - 

Sub-criterion 3 A3: DD B3: LC C3: DD D3: DD - - 

       

  



 

The EOO of the Philippines’ fringe mangrove ecosystem was estimated to reach 

1,131,150 km2, and the AOO of the ecosystem was 621 10 x 10-km grid cells, 

resulting in an assessment of Least Concern under subcriteria B1 and B2 

respectively (Figure 2). The significant threats likely to cause collapse of the 

ecosystem over the next two decades are likely to affect forests individually rather 

than impacting the entire extent of the Philippines in one event. The number of 

threat-defined locations (“a geographically or ecologically distinct area in which a 

single threatening event can rapidly affect all occurrences of an ecosystem type”, 

Bland et al., 2016), was estimated to be larger than 5. This indicated that spatial 

autocorrelation of threats is likely to be low, and resulted in an assessment of Least 

Concern under subcriterion B3. 



 

 

Figure 2. The mapped distribution of the Philippines’ fringe mangrove forests and its 

assessment under Criterion B of the IUCN RLE. Black areas show the mapped 

distribution of fringe mangrove at 30 m resolution. The thick black line indicates the 

EOO (extent of occurrence) of the ecosystem. The dark grey grid cells represent 

areas of 10 x 10-km and indicate the AOO (area of occupancy) of the ecosystem 

(AOO = 2140); cells shaded red indicate the AOO with the 1% rule (AOO = 621). 

The location of the study area is shown in an inset. 



 

Annual mean NDVI values for both 2000 and 2016 could be calculated for 8894 

cloud-free pixels. Around 22% of these pixels (n= 1947) showed a significant trend (p 

< 0.05) in annual NDVI values over the 17-year time-series 2000-2016, of which 63% 

(n=1236) exhibited an increase in NDVI value whilst the rest exhibited a decrease 

(Table 5). Inspection of these pixels showed them to be distributed randomly across 

the study area, only sometimes occurring in clusters of several pixels with similar 

trends. Comparison with high resolution Google satellite imagery from 2016-2017 

and the 2016 map of fringe mangrove did not show a systematic relationship 

between pixels exhibiting a decreasing trend and evidence of mangrove degradation, 

with both increasing and decreasing pixels coinciding with both apparently healthy 

mangrove forest and other land-cover types (e.g. aquaculture ponds). This 

undermines the choice of this variable as a suitable indicator of collapse for fringe 

mangrove forests in the Philippines. Combined with the absence of a satisfactorily 

robust method of projecting the 17-year time-series data to the 50-year period 

required for the assessment, this caused the ecosystem to be classed as Data 

Deficient under subcriteria D1, D2 and D3. 

 

Table 5. The relative severity of the decline in NDVI 2000-2050 assuming PRD or 

ARD as calculated from the decline between 2000 and 2016. The proportion of 

pixels showing each relative severity of NDVI decline was assumed to correspond to 

the fraction of the extent of the ecosystem affected. CR = Critically Endangered; EN 

= Endangered; VU = Vulnerable. 

  % Ecosystem affected 

 Lower Bound (50% Loss) Upper Bound (100% Loss) 

Relative 

Severity 

(assuming 

PRD) 

≥80% 4.53% 0.58% 

≥50% 12.58% 3.29% 

≥30% 24.14% 10.78% 

Relative 

Severity 

≥80% 6.43% 0.34% 

≥50% 14.55% 2.37% 



 

(assuming 

ARD) 

≥30% 25.35% 8.84% 

CR: Rel. severity ≥80% + ≥80% extent 

EN: Rel. severity ≥50% + ≥80% extent / ≥80% + ≥50% extent 

VU: Rel. severity ≥30% + ≥80% extent / ≥50% + ≥50% extent / ≥30% + ≥80% extent  

 

4. DISCUSSION 

The RLE risk assessment provides support for classifying fringe mangroves in the 

Philippines as ‘Least Concern’, based on small projected changes in geographic 

distribution (Criterion A) and their currently large extent (Criterion B; Table 4). Given 

that mangroves in the Philippines have generally undergone deforestation and 

degradation (Garcia, Malabrigo & Gevaña, 2014), this may seem surprising. The 

large variability in projected distribution changes might in part be underpinned by 

differences in classification errors between the 2000 and 2016 mangrove maps used 

for change detection. However, given the overall high user accuracy for fringe 

mangroves (~92%), it is unlikely that the ecosystem as a whole experienced a 

severe decline in distribution which went undetected. This conclusion is supported by 

the observation that many of the threats and declines documented for mangrove 

forests in general are unlikely to affect fringe mangrove forests in particular. For 

example, aquaculture development is well documented as the leading cause of 

mangrove deforestation in the Philippines (Primavera, 2000), but this process likely 

affects fringe mangroves comparatively less, since basin and riverine mangrove 

forests in higher intertidal regions are often cleared first for the construction of 

aquaculture ponds. Indeed, almost half of mangrove species found primarily in these 

regions are currently at increased risk of extinction, compared to less than a third of 

species primarily found in fringe forest areas (Primavera & Esteban, 2008; Walters et 

al., 2008; Polidoro et al., 2010). Additionally, fringe mangrove forests may have 

benefitted from enhanced levels of conservation, lowering their overall risk of 

collapse. Fringe mangrove ecosystems have become highly valued in the Philippines 

for their coastal protection properties (Duncan et al., 2016), and laws mandating the 

conservation of mangrove greenbelts have resulted in strips of fringe mangrove 



 

forest being left standing along coasts, even where inland mangrove forests have 

been degraded (Malik, Fensholt & Mertz, 2015). Additionally, mangrove replanting as 

part of rehabilitation schemes is often focused around former fringe mangrove forest 

areas (Primavera, 2000; Primavera, Rollon & Samson, 2011). Although mangrove 

greenbelt and buffer zones are only sporadically enforced (e.g. Duncan et al., 2016), 

and the long-term survival rate of replanted mangroves is low (10-20%; Garcia et al., 

2014), the combined conservation, protection, and replanting efforts may have 

reduced the net deforestation of fringe mangrove forests. 

Whilst theoretical and practical difficulties of defining and measuring risk of 

ecosystem collapse have been discussed in general (Sato & Lindenmayer, 2017), 

this case study highlights some unique challenges for assessing collapse risk in 

ecosystems depending on a few foundation species. In such ecosystems, the range 

of candidate indicators for symptoms of ecosystem collapse is likely to be small, 

since most pathways to collapse will cluster around a small number of foundation 

species (e.g. Figure 1). In cases where the ecology and distribution of these species 

are poorly understood and/or documented, the scope for a quantitative risk 

assessment will be severely limited, even though the identification of such species 

itself as useful bioindicators is relatively straightforward. This also means that 

problems with data availability and quality for any given indicator (cf. Table 4) are 

likely to be a bigger challenge for ecosystems with few foundation species than 

others, because there are fewer alternative appropriate indicators. Drawing on our 

case study, we discuss strategies to overcoming these challenges for data-poor 

ecosystems (summarised in Figure 3). 



 

 

Figure 3. Overview over the steps required to assess collapse risk for ecosystems 

dependent on a small number of foundation species (sensu Dayton et al., 1972). 

Before assessment, constructing a conceptual ecosystem model will help to guide 

selecting appropriate indicators of collapse (a). During assessment, it helps assess 

alternative candidate data sets or analytical approaches, and therefore compare time 

constraints associated with each decision (b). The arrows in (b) illustrate which data 

sources and approaches are preferable. FS=Foundation species.  



 

As satellite data availability continues to grow and the range of spatial, temporal and 

spectral resolutions of satellite imagery continues to expand, advances in analytical 

techniques and processing capacity have enabled researchers to distinguish 

between subtly different types of land cover categories (e.g. Dierssen, Zimmerman, 

Drake & Burdige, 2010; Lucas et al., 2011). Such developments have made it 

possible to increase the number of ecosystems where changes in distribution can be 

relatively cheaply assessed, particularly those ecosystems in which foundation 

species dominate land cover structurally. The main bottleneck for such mapping 

efforts is the availability and reliability of reference data to train classification 

algorithms and/or validate ecosystem maps. Appropriate reference data are 

generally available to assess current extent: in the absence of ground-truth data, 

open access imagery with very high spatial resolution (e.g. from Google Earth) can 

indeed often be used, as in this case study. Alternatively, such imagery can be 

obtained from commercial satellites (e.g. Giri et al., 2008). The recent move towards 

developing low-cost, small satellites (so-called smallsats or cubesats; Marvin et al., 

2016) is likely to improve even further the availability of these types of imagery, 

although making these data affordable over large spatial scales remains a challenge. 

Citizen science approaches to land cover classification (Fritz et al. 2017) are a 

second potential avenue towards developing and improving current maps at large 

spatial scales for data-poor ecosystems. However, reference data for historical 

distributions is likely to be scarcer (as was the case for fringe mangroves, see also 

Long et al., 2014), although aerial imagery and historical maps or other ground-truth 

data can enable the production of remote-sensing derived maps of ecosystem 

distribution as far back as the 1960s or 1970s in some cases (Gilman, Ellison & 

Coleman, 2007; Giri et al., 2008). 

Risk assessments have to assess potential declines or degradation, or alternatively 

project future distributions, across relatively long time frames (e.g. 50 years for the 

RLE). In ecosystems that depend on a few foundation species with high longevity, 

such as mangrove trees, the short-term monitoring of long-lived mature individuals 

may not provide a sensitive indicator for changes in ecosystem extents relevant to 

assessments such as the RLE (Keith et al., 2013; Bland et al., 2016). For some 

areas, there may be appropriate quantitative data to reconstruct distribution of 

foundation species at a relevant temporal extent; this may be particularly true for 



 

ecosystems with long-standing economic importance (such as marine and coastal 

ones; e.g. zu Ermgassen et al., 2012). Alternatively, historical distribution could be 

approximated using potential ecosystem maps based on a strong causal 

understanding between environmental variables (e.g. climate or topography) and 

ecosystem distribution (as approximated by plant communities, e.g. demonstrated by 

Prentice et al., 1992; Crespin et al., 2015). In the case of fringe mangroves in the 

Philippines, one way forward would be to build on the global distribution models for 

fringe mangrove foundation species (Record, Charney, Zakaria and Ellison, 2013), 

which are based on climatic variables, by introducing variables that shape their 

distribution at smaller spatial scales (such as sea level and topography). In cases 

where neither relevant historical data nor potential distribution models are available, 

short-term trends of distribution change can be extrapolated to project future 

distributions, as was done in our case study. However, variability in predicted 

distributions based on short-term trends may exceed real changes, which means the 

former strategies are preferred. 

If the response of foundation species to threats and consequent changes in their 

functioning are poorly understood, identifying pertinent variables for assessment of 

abiotic degradation will be challenging, with alternative variables based on non-

foundation species unlikely to be relevant. For example, uncertainty around the 

responses of fringe mangroves to changes in hydroperiod and sea level rise 

precluded, in our case, the assessment of abiotic degradation. By contrast, when 

responses of foundation species to changes in abiotic parameters are well 

understood, this information can be reliably used to assess abiotic degradation. For 

instance, in the River Red Gum and Black Box floodplains in Australia, tree die back 

was gauged to be linked to declines in river flow, a key aspect of abiotic degradation 

for this system (Keith et al., 2013). The same is true for detecting disruption of biotic 

interactions (under Criterion D); here, indicators need to be sensitive to changes in 

the role of the foundation species in shaping ecosystem functioning (see e.g. 

Alvarez-Filip, 2009; Bland et al., 2016). For instance, habitat and shelter provision by 

kelp forests in Alaska depends on kelp density, which can then be used to assess 

biotic interactions for this system (Keith et al., 2013). Similarly, coral cover or surface 

rugosity has been suggested as a proxy for biotic interactions for coral reefs (Keith et 

al., 2013). However, in this particular case study, the chosen indicator (a proxy for 



 

NPP) did not seem sensitive to ecosystem degradation, and datasets for alternative 

variables were not available, meaning that this functional criterion could not be 

assessed. In such cases, variables sensitive to symptoms of degradation at shorter 

temporal scales could be used to estimate collapse risk from abiotic degradation or 

interruption of biotic interactions. Such variables reflect elevated risks of future 

decline, and will likely be proxies of population growth rate of the foundation species, 

such as survival/recruitment (Keith et al., 2013) or population age structure (Burns et 

al., 2015). For fringe mangroves, seedling recruitment could be used to detect 

mangrove species declines before they manifest in altered distribution of adults 

(Padilla et al., 2004). Where age or stand structure information is available, 

population viability analyses for foundation species could also contribute to more 

robust estimates of ecosystem collapse risk (Menges, 2000). 

5. Conclusion 

Integrating different types of data via satellite remote sensing, GIS and modelling 

approaches is a promising way to meet the unique demands of risk assessments for 

ecosystems depending on a few foundation species. The conceptual ecosystem 

model at the heart of the RLE assessment protocol is central to structuring both the 

identification of relevant data sets and for the integration process, including the 

development of quantitative models to address particular indicators. Gathering new 

data will be necessary in some cases, as will be the continuation of existing 

monitoring programmes (including satellite remote sensing) to provide sufficiently 

long time series. Our study illustrates that despite these constraints a large range of 

valuable tools are already available to assess the risk of collapse for ecosystems 

dominated by foundation species.  
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