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Abstract  

Climate change, population growth, institutional changes and the uncertainties inherent 

in these pose a major challenge to planning and management of water supply systems. 

Using historical river flow records to predict the behaviour of water resource systems 

into the future is no longer sufficient since the hydrologic record can no longer be 

assumed to represent future conditions. Planning under uncertainty approaches must 

allow considering future uncertainties in the water supply as well as demand and the 

institutions that manage water and its uses. Furthermore, water systems are complex and 

must meet multiple demands of a range of stakeholders whose objectives often conflict. 

Understanding these conflicts requires exploring many alternative plans to identify 

balanced solutions in light of important system trade-offs. The thesis focuses on 

improving the water resource planning process in the UK and to reflect trends in current 

water planning policy developments in the UK and worldwide. The challenge of long-

term human-natural resource system planning is to identify high value portfolios of 

human interventions whilst considering the two main challenges: future deep 

uncertainty and multiple concurrent societal goals. This identification process is 

severely complicated by the exponentially large number of alternative combinations of 

schemes available to manage future resources. This research project demonstrates how 

simulating systems under multiple plausible realizations of the future coupled with 

‘many-objective’ optimization can provide decision makers with robust solutions. 

Visual analytics is used to interact with results and demonstrate the benefits of this 

approach compared to traditional planning practices. Results presented here aim to aid 

water resources planners to orient investment strategies to meet key requirements and 

aspirations. These include but are not limited to maintaining the supply-demand balance 

and customer satisfaction in future, promoting sustainable use of resources, protecting 

the natural environmental, etc. The thesis aims to communicate to planners the increase 

in understanding of how such aspirations can be balanced taking into account 

uncertainties of future conditions using the proposed approaches. 
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point the more plans the intervention occurs in in the particular planning period. Panel 

a) illustrates schedules of all Pareto-approximate plans from the recommended set. 

Panel b) highlights schedules of plans that implement the UTR reservoir. Panels c) and 

d) then “brush” the schedules further where the highlighted plans build UTR in 2020 

and 2035, respectively. The colour of the lines in panels b, c, and d refers to the 

reservoir capacity. ......................................................................................................... 141 

Figure 5-12. Reservoir (UTR)/Transfer (RST) implementation and schedules (panel A). 

The cardinal axes show the same performance metrics as in Figure 5-10. The arrows 

point towards the direction of preference. The orientation of the cones illustrates the 

implementation of these supply interventions: cones pointing upwards refer to plans 

implementing RST, cones pointing sideways refer to plans building UTR, and the 

translucent cones pointing downwards refer to plans that do not implement any of those. 

The colour scale refers to the scheduling of the UTR and RST interventions; dark blue 

colour refers to the earliest possible planning period (2020) whilst the dark red colour 

refers to the latest planning period (2065). Panel B shows a cluster of promising plans 

as a subset of plans from panel A chosen for further analysis where the UTR/RST 

implementation is delayed till 2030 and further with maximum energy cost of £12m, 

maximum eco-deficit of 65% and maximum duration of failure (resilience) of 5 weeks. 

Five plans are singled out based on their similar schedules in the first decade and 

labelled for further analysis (see Figure 5-13 and ). ..................................................... 143 

Figure 5-13. Parallel axes performance plot of plans from the cluster of promising plans 

shown in Figure 5-12b. The vertical axes represent performance metrics and the arrow 

points towards the direction of preference; the best performance is at the bottom of axes 

whilst the worst performance at the top. The coloured lines highlight five singled out 

candidate plans. The table shows the metric values for the five candidate plans. ........ 145 

Figure 5-14. Five candidate plans selected from the cluster of promising plans shown in 

Figure 5 11b. The horizontal axis shows individual planning periods and the coloured 

lines track the different plans. The boxes represent implementation of individual 

interventions; a coloured box signifies the end point of a particular plan. Intervention 
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names and boxes shown in black signify that multiple plans implement the intervention 

in the particular period. ................................................................................................. 146 
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1. Chapter 1 - Introduction 

1.1.  Background 

Water resource systems consist of both natural (e.g. rivers, lakes, aquifers, etc.) and 

engineered elements (e.g. reservoirs, canals, pumping stations, etc.). The interactions 

between these elements are complex and must be managed by public or private bodies 

to ensure the sustainable use of water resources, especially in densely populated areas. 

Water supply infrastructure in many major cities globally relies on aging assets 

designed and constructed over a century ago (Boyko et al., 2012). Refurbishment of 

existing infrastructure and capacity expansion is needed to cope with future pressures. 

Planning for such systems is a complex task involving identification of the problem, 

data collection, modelling, analysis of alternative solutions and implementation of a 

chosen plan (Jewell, 1986). Simulation models help analysts and decision makers 

understand and predict the behaviour of the system whilst optimization models aid in 

finding a solution to the identified problem. The two general types of models are 

described in more detail in section 1.2. This thesis focuses on the optimization and 

analysis of alternative solutions processes of the water resource systems planning.   

Urban water supply planners have commonly employed narrowly defined, least-cost 

decision frameworks to guide capacity expansion subject to maintaining required 

service levels (e.g., Hsu et al., 2008; Padula et al., 2013). Planning that does not capture 

key concerns or preferences across major stakeholder groups explicitly increases the 

likelihood that policies are viewed as performing  poorly (McConnell, 2010) and 

maladaptative. The optimality assumptions implicit to least-cost approaches assume a 

central planner for whom expected aggregated costs fully describe their preferences 

amongst water supply alternatives. One vision of optimality inevitably forces a decision 

maker to prior judgments without the knowledge of the decision’s wider implications 

(Cohon and Marks, 1975). In real planning contexts, an increasingly diverse range of 

stakeholder perspectives must be addressed with major public investments and plans 

(Vogel and Henstra, 2015); this is particularly the case with decisions involving natural 

resources management (Jackson et al., 2012; Orr et al., 2007; Voinov and Bousquet, 

2010). The emphasis is no longer only on one vision of optimality (e.g. least-cost) but 

on converging on a plan that addresses major concerns and acceptably allocates benefits 

between the major stakeholder groups and economic sectors (Loucks et al., 2005). 

Generating multiple alternative solutions that are good with respect to multiple 
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objectives but differ from each other enables explicit examination of the alternatives and 

gaining insight and knowledge about the system (Brill et al., 1982). Methods that clarify 

the trade-offs across the various benefits and impacts of portfolios of different supplies 

and water conservation actions have garnered a more significant role in recent published 

work (Arena et al., 2010; Beh et al., 2015; Herman et al., 2014; Kasprzyk et al., 2009; 

Matrosov et al., 2015; Mortazavi et al., 2012; Zeff et al., 2014). 

Furthermore, many urban water systems across the globe face future stresses such as 

reduced or shifted water availability due to climate change, increased water demands, 

more demanding regulatory regimes and heightened service expectations (Ferguson et 

al., 2013; Hallegatte, 2009; Pahl-Wostl, 2009). Water resource systems are particularly 

sensitive to these changes and decision makers should consider these when assessing 

the suitability and effectiveness of their alternative future plans. Planners employed a 

single “most probable” future condition when designing their future system expansion 

in the past (Loucks and Van Beek, 2005). The likelihoods of future system stresses are 

however often deeply uncertain (Knight, 1921), i.e., it is difficult or impossible to 

quantify the probabilities of their occurrence. A system performing optimally under a 

single scenario of future conditions may perform poorly or even fail if future conditions 

diverge from the predictions of the single scenario. The uncertainty in future conditions 

motivates novel approaches that help discover which combinations of interventions 

would work well under a wide range of plausible futures, not only in a single 

anticipated scenario. Employing decision making under uncertainty methods (described 

in sections 1.3.2 and 1.3.3) is becoming a necessity for water resource systems 

planning. 

1.2.  Water resource systems modelling 

1.2.1. Simulation modelling 

Water resource simulation models have been used by researchers, engineers and 

decision makers, typically in an iterative or repetitive fashion, to aid the management 

and planning of their system since the 1950s (Maass, 1962). These models try to answer 

the “what if?” question (Harou et al., 2009) and predict the behaviour of a system. By 

changing input parameters the decision makers can explore how the system reacts to 

different situations thus assess the effectiveness of management policies and plans and 

inform decisions. Simulation can use decision variables as an input into the model and 

provide an answer about how a system’s performance would change by predicting the 
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distribution of flow and storages and associated metrics of economic, engineering and 

environmental performance. This corresponds to one of the main functions of water 

resource system analysis – evaluating the consequences of a certain pre-specified 

engineered system design. 

The performance of a water resource system design may be assessed by a variety of 

performance metrics. The traditional engineering performance of a system is described 

by ‘reliability’ and ‘resilience’ of the system. The most widely used definitions of the 

two metrics are those proposed by Hashimoto et al (1982), where the reliability of a 

system is a probability that the system will be in a satisfactory state, i.e. the percentage 

of the modelling time horizon during which the system remained reliable. Resilience 

describes how quickly a system is able to recover from a failure if it occurs, i.e. it 

reflects the duration of a failure. 

Kiritskiy and Menkel (1952) proposed three separate metrics of reliability later 

discussed by Klemes (1969): occurrence, temporal, and volumetric reliability. The 

occurrence reliability is represented by the ratio of the number of time steps in which 

the system was in satisfactory state to the total number of time steps in the modelling 

time horizon. The temporal reliability represents the ration of the total time spent in 

satisfactory state to the total modelled time horizon. As the number of time steps over 

which the temporal reliability is assessed approaches infinity the temporal reliability 

approaches Hashimoto’s definition of reliability. The volumetric reliability is defined as 

the ration of the volume of water supplied to the demand that meets the demand 

requirements to the total demanded volume which resembles the SI metric. Kundzewicz 

and Kindler (1995) argue that the volumetric reliability is often highly correlated with 

the temporal reliability.   

Another two measures of reliability as defined by Hsu et al. (2008) are Shortage Index 

(SI) and Stability Degree (SD). SI serves as an indicator of a relative deficit whilst the 

SD turns the SI index into percentage reflecting how well a demand was satisfied.  

Farhangi et al. (2012) use the SI, volumetric and temporal reliability measures to 

compare the performance of simulation and optimization models when applied to a 

single and three-reservoir system in Karoon basin in Iran. They show that considering 

different reliability metrics generates different solutions resulting in different 

conclusions about model suitability.  



26 

 

Shamir and Howard (1981) argue that when a system must be expanded to meet rising 

demands a reliability metric should be used to assess how well this rising demand is met 

by considered alternative designs. Similar to Farhangi et al. their work highlights that 

the reliability assessment depends on which definition of reliability is used and 

recommend to use reliability metric in terms of shortfalls relative to the desired demand, 

similar to the SI and volumetric reliability definitions.   

Butler et al. (2017) use a reliability definition as “the degree to which the system 

minimizes level of service failure frequency over its design life when subject to 

standard loading”. To 

assess such a metric of reliability, the chosen level of service measures and 

corresponding acceptable limits must be specified. This definition resembles the 

occurrence reliability definition and reflects the UK water companies’ approach to 

maintain reliable service. It is used in this project as reliability constraints in the 

problem formulation that constrain the frequency of imposing demand restrictions on a 

water company’s customers to a desired maximum frequency.  

The Hashimoto’s definitions of reliability and resilience were employed in this study for 

reliability and resilience performance metrics to minimize both the frequency and 

duration of unsatisfactory low reservoir storage levels. 

1.2.2. Simulation models 

Simulation models can be divided into two main categories: rule-based models that 

model the actual system operating procedures incorporating user defined operating rules 

and policies, and optimization driven models that use optimization engine to allocate the 

flow of water throughout the system (Matrosov et al., 2011). The former use procedural 

programming instructions through “if then else” statements and iterative loops. The 

behaviour of the system is predictable based on the input data and pre-defined operating 

rules. These models are generally challenging to build but are able to represent realistic 

behaviour of the system (Matrosov et al., 2011). An example of rule-based simulation 

model includes e.g. Aquator (Oxford Scientific Software, 2008),  and IRAS-2010 

(Matrosov et al., 2011). Aquator is a commercial water resources model used by some 

UK water resources planners. It is user oriented with graphical user interface (GUI) and 

can be customised with VBA code. It however requires a license to use and its 

processing speed and runtime is too high to be considered for this project. The IRAS-

2010 is a fast, generalised water resource system simulation model. The software is 

written in Fortran and is open-source allowing users to add new features or add 
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customised operating rules. Its ability to represent complex operating rules such as 

complex conjunctive surface-groundwater interactions is limited. More description of 

IRAS-2010 is provided in section 2.1.1.  

Optimization driven models choose their own operating rules each time step depending 

on what is optimal based on an objective function, which can be a penalty function or 

economic benefit or cost, etc. These models are easier to build but can have difficulties 

representing complex operating. Such models include WATHNET (Kuczera, 1992), 

WRIMS (formerly CalSim) (Draper et al., 2004), and WEAP (SEI, 2016). The 

WATHNET model uses a network linear program (NetLP) to simulate the operation 

which searches for the minimum cost solution for distributing water through a network. 

It is relatively fast but requires extensive user input in input script format and only a 

simplified water system network representation. Its custom coding ability is also very 

limited. The WRIMS model utilizes a mixed-integer linear program to determine 

reservoir releases and water allocations at each time step. Instead of operating policies 

the user defines relative priorities for water allocation and storage. However, the 

weighted approach requires careful consideration to achieve desired outcomes and its 

runtimes are relatively slow. The WEAP model consists of a conceptual rainfall-runoff 

sub-model connected to an optimization sub-model that applies a mixed-integer linear 

programming routine to maximize demand satisfaction based on the water demand 

prioritization, supply preferences and environmental requirements, mass balances, etc. 

to allocate water. It features a GUI and provides a possibility to extend its functionality 

with user–defined variables and functions (in VBScript, JavaScript, Perl, or Python). Its 

main weaknesses in relation to the purpose of this study are license costs, slow runtime 

and the ability to represent only a simple linear operating rules.    

Some simulation models can be used in either rule-based mode or optimization-driven 

mode such as RiverWare (Zagona et al., 2001) and Source (eWater, 2012; Welsh et al., 

2013). The RiverWare model is based on Object Oriented Programming (OOP) 

paradigm. Users can create water resource system networks from pre-specified network 

objects such as reservoirs, stream gauges, canals, etc. using GUI. The rule-based 

simulation mode uses operating rules that need to be expressed in the RiverWare 

specific language, RiverWare Policy Language (RPL), by using a built-in syntax-

directed editor. The optimization mode uses a pre-emptive goal programming algorithm 

and mixed-integer linear programming (MIP) to optimize user defined objectives 

according to their priorities. The MIP solver is used automatically to linearize any non-
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linear variable at each time step. Its slow runtime, license requirement and limited 

custom coding make it unsuitable for this project’s purposes. The Source model 

includes a GUI for building and modifying the water resource network. The rule-based 

mode is able to model complex rules and processes and runs faster than the other mode 

but does not search for the most efficient solution. The latter uses the NetLP linear 

program to find minimum cost solution of allocating water through a network of links 

but can have longer run times for complex networks, smaller time steps or longer travel 

times than the rule-based mode. It also requires a license to run. 

Table 1-1 summarizes the comparison of the mentioned models. The functionalities are 

listed in the order of preference for this project, i.e. the fast runtime being the most 

important due to the need to run many simulations during a single optimization run, and 

the flexible time-step being the least important. A model scored 1 against each 

functionality if it possessed the desired functionality, 0.5 if it had only partial 

functionality, and 0 if it did not have such functionality at all. The final scores show that 

the IRAS-2010 model provides the best application “fit” for this research project and 

was therefore selected for the simulation purposes.  

Table 1-1. Comparison of the simulation models considered for this study. 

Functionalit

y Fast 

runtime 

Free 

licence 

Custom 

coding (open 

source) 

Complex 

operating 

rules 

Flexible 

time-

step 

Final 

score 
Software 

Rule-based 

Aquator × ×     × 2 

IRAS-2010       Limited   4.5 

Optimization-driven 

WATHNET   Unclear Limited Limited   3.5 

WRIMS × 

XA 

solver 

needed 

Limited ×   2.5 

WEAP × ×   ×   2 

Both modes available 

RiverWare × × Limited     2.5 

Source × ×       3 

 

1.2.3. Optimization modelling 

Optimization models seek to answer the question “What is the best possible course of 

action that I may follow?” (ReVelle, 2004), i.e., seeking the preferred 

action/arrangement among all possible ones. These models require a mathematical 
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problem formulation consisting of objective function(s) as a function(s) of design 

decision variables. Decision variables represent design choices such as the capacity or 

operational release rules of a reservoir in water resource management and planning 

problems. The feasibility of a design can be subject to equality and/or inequality 

constraints limiting the design possibilities. The constraints are used as restrictions on 

decision variable values (e.g., the possible range of capacities) or performance metrics 

of a system such as minimum river flow requirements that need to be satisfied.  

Optimization problems can be single or multi/many-objective based on how many 

performance criteria are considered and how they are optimized for. A single objective 

(SO) problem consists of a single objective function and is defined as follows: 

𝑀𝑖𝑛 𝑓(𝑥) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     𝑔𝑖(𝑥) ≤ 0          ∀𝑖 ∈ {1, … , 𝑚} 

                         ℎ𝑗(𝑥) = 0          ∀𝑗 ∈ {1, … , 𝑛} 

                         𝑥 ∈ 𝛺                                                   (Coello Coello, 2007) 

1-1 

where 𝑥 = [𝑥1, … , 𝑥𝑝]
𝑇
 is a decision vector consisting of decision variables, 𝛺 is a 

decision space, 𝑓(𝑥) is a scalar, and  𝑔𝑖(𝑥) ≤ 0 with ℎ𝑗(𝑥) = 0 are constraints that 

must be satisfied.  

The objective function 𝑓(𝑥) can also consist of several objectives linearly combined 

into a single objective by weighting each accordingly (𝑤𝑖): 

𝑀𝑖𝑛 𝑓(𝑥) =  (𝑤1𝑓1(𝑥) + 𝑤2𝑓2(𝑥) + ⋯ + 𝑤𝑛𝑓𝑛(𝑥)) 

1-2 

This aggregation allows for traditional single objective optimization methods to be 

applied and has been widely used by water planners in the past as e.g. a single cost-

benefit ratio. For instance, Cui and Kuczera (2003) minimize the aggregated capital cost 

and failure penalty of a proposed reservoir; Tu et al (2008) aggregate three performance 

objectives, satisfaction of low flow requirements and shortage indices for public and 

agricultural demands, to optimize reservoir operating rules; Padula et al (2013) 

minimize the capital and operating costs of the water supply infrastructure capacity 

expansion problem for South East England. However, if a monetary metric such as cost 
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is aggregated with non-monetary metrics such as environmental and social impacts, the 

latter must be monetized, which is not always available or even possible, or scaled 

based on decision makers preferences prior to the optimization. Decision makers very 

often seek only those solutions that reflect their prior knowledge about the problem, 

potentially missing out new alternative solutions. This decision bias has been identified 

by Gettys and Fisher (1979) as “cognitive hysteresis”. Optimizing conflicting objectives 

simultaneously may hide potentially relevant information about how these objectives 

interact with each other and which of their combinations lead to which outcomes. 

Hogarth (Hogarth, 1981) identifies this form of short-sightedness as “cognitive 

myopia”.  

Many-objective optimization considers 4 or more objectives (Fleming et al., 2005; Reed 

et al., 2013) while multi-objective optimization involves only 2 or 3 objectives (Kang 

and Lansey, 2013; Kapelan et al., 2005; Mortazavi et al., 2012). Both allow for explicit 

optimization of each considered metric and instead of a single optimal solution provide 

a set of Pareto optimal solutions. A solution is Pareto optimal if and only if there exists 

no other feasible solution which, assuming minimization, would decrease some criterion 

without causing a simultaneous increase in at least one other criterion (Coello Coello, 

2007). The decision makers are then able to perform a trade-off analysis to select a 

solution from the multi or many-objective space. Figure 1-1 illustrates the Pareto 

optimality: although solution A performs better in objective f2, solution B performs 

better in objective f1. There is a trade-off between objectives f1 and f2; decision makers 

must assess how much they are willing to sacrifice the performance of one objective in 

order to improve the performance of the other. The curve of solutions in Figure 1-1 is 

termed Pareto front or trade-off curve and all solutions on the Pareto front are non-

dominated.   

A solution is non-dominated, i.e., Pareto optimal, when there is no other solution that 

would perform better in all considered metric. Considering a minimization problem, 

vector u dominates vector v if and only if u is partially less than v (Coello Coello, 

2007): 

∀𝑖 ∈ {1, … , 𝑘}: 𝑢𝑖 ≤ 𝑣𝑖 ∧ ∃𝑖 ∈ {1, … , 𝑘}: 𝑢𝑖 < 𝑣𝑖 

1-3   

The concept of dominance is illustrated by the blue boxes in Figure 1-1. Solution A is 

said to dominate the entire region depicted by the box which lower left-hand corner 
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starts with solution A. Any point inside this box exhibits worse performance in both 

objectives than solution A.  Solution A is non-dominated as there exists no other 

feasible solution that would perform better in both objectives simultaneously.  

 

Figure 1-1. Pareto optimal front example of a two objective problem showing a trade-off between 

objectives f1 and f2. The blue boxes illustrate a concept of dominance, e.g., solution A dominates the 

region depicted by the box which lower left-hand corner starts with point A. The direction of best 

performance is shown by arrows. 

The general formulation of a many-objective problem is as follows: 

𝑀𝑖𝑛 𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥)) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     𝑔𝑖(𝑥) ≤ 0          ∀𝑖 ∈ {1, … , 𝑚} 

                         ℎ𝑗(𝑥) = 0          ∀𝑗 ∈ {1, … , 𝑛} 

                         𝑥 ∈ 𝛺                                                      (Coello Coello, 2007) 

1-4 

where 𝐹(𝑥) is a vector of individual objective functions 𝑓𝑘(𝑥).  

1.2.3.1. Mathematical programming 

Mathematical programming methods have long been used in water resource planning 

research and practice (Loucks and van Beek, 2006; Mays, 2005; ReVelle, 2004). These 

include linear and non-linear programming and dynamic programming, amongst many. 

Linear optimization models are very efficient in finding solutions to linear problems but 

when applied to complex water resource systems they require approximations and 

simplifications of the system’s representation and problem objectives (Loucks and van 
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Beek, 2006). Mixed integer linear programming (MILP) reduces the need for 

continuous decision variables simplification. Decision variables in MILP can take a 

binary integer values representing a yes or no decision, i.e. if an option should be built 

or not (Mays, 2005). Padula et al. (2013) apply MILP to identify a least-cost plan for 

regional capacity expansion problem in South East England. 

Dynamic programming (DP) (Bellman, 1952) divides the optimization problem into 

smaller sub-problems and solves each individually before identifying the overall 

optimum solution to the original problem. It works well with multi-stage decision 

problems but suffers from the ‘curse of dimensionality’(Loucks and van Beek, 2006) as 

the number of optimization problems to be solved increases exponentially with the 

number of state variables. Braga et al. (Braga et al., 1985) applied DP for a proposed 

reservoir system planning in Sao Paulo, Brazil.  

The limitations of these methods include the difficulty of representing the non-linearity 

of simulations and their potential to mask important performance trade-offs for real 

systems (Woodruff et al., 2013). Water systems often use non-linear rules and are likely 

subject to non-linear cost and benefit functions. Their complexity may mean that 

aggregation and simplification of performance measures are often required when using 

classical optimization methods. Stochastic dynamic programming (SDP) (Yakowitz, 

1982; Yeh, 1985) has been developed to incorporate stochastic variables into DP. 

Stedinger et al. (Stedinger et al., 1984) apply SDP for optimizing reservoir operating 

rules for a single dam in the river Nile basin. Nevertheless, SDP might not be suitable 

for solving large ‘real-world’ water system problems (Castelletti et al., 2010) that are 

highly complex exhibiting non-linear, non-convex, high-dimensionality, i.e. requiring a 

large number of variables, characteristics and require considerations of multiple 

conflicting objectives. Multi-objective evolutionary algorithms (MOEAs) have been 

developed to effectively address these issues. MOEAs can help to overcome cognitive 

biases by discovering new solutions to new problems (Fogel, 1997). They are flexible 

and adaptive heuristic global search methods that simulate the process of natural 

evolution. The search is an iterative process that begins with a randomly generated 

initial population of solutions whose performance is then evaluated. Better performing 

solutions survive into the next generation. The algorithms use the evolutionary 

principles of selection to promote survival and reproduction of “better” solutions in lieu 

of less optimal solutions. The genetic operations of crossover and mutation are then 
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applied to introduce variation into the surviving population to promote fitness of 

solutions. 

MOEAs can handle large decision spaces and generate trade-offs  (Coello Coello, 2007; 

Deb, 2001). By providing a set of alternative optimal solutions MOEAs allow for trade-

off analysis to be incorporated into decision making process. When dealing with 

complex ‘real-world’ problems the “true” Pareto optimal set is unknown; a close 

approximation of the Pareto optimal set is therefore generally sought (Herman et al., 

2014). For simplicity this is referred to as Pareto optimal in the following text. The 

suitability of applying MOEAs to real-world water resource management and planning 

problems when linked to non-linear simulation models has been widely recognized 

(Maier et al., 2014; Nicklow et al., 2010; Reed et al., 2013). MOEA approach was 

therefore chosen as the optimization method for this research project. 

1.2.3.2. Robust optimization 

Robust optimization (Mulvey et al., 1995) was developed to incorporate uncertainty and 

risk aversion directly into the optimization (Ben-Tal et al., 2009; Ben-Tal and 

Nemirovski, 2002; Bertsimas et al., 2011; Bertsimas and Sim, 2004; Watkins and 

McKinney, 1997). The focus of the optimization shifts from “optimality” to robustness. 

A robust solution performs satisfactorily well over a range of plausible future conditions 

rather than optimally under one. The metrics used to assess robustness of alternative 

solutions differ. In general, the robustness metrics can be divided into two groups: 

regret and satisficing measures (Herman et al., 2015). Regret reflects monetary or non-

monetary cost of choosing incorrectly (Lempert and Collins, 2007a) or an incorrect 

choice of decision alternative (Savage, 1951). The former can be assessed as the 

deviation of a solution’s performance from its expected, i.e. average, performance 

across multiple future conditions (e.g., Kasprzyk et al., 2013) while the latter as the 

deviation of a solution’s performance from the desired performance under baseline 

conditions (e.g., Herman et al., 2015; Kwakkel et al., 2012). Satisficing reflects meeting 

specified performance requirements or reasonable performance (Simon, 1959). This is 

usually achieved by using a domain criterion (Schneller and Sphicas, 1983; Starr, 1962), 

which specifies the fraction of all considered future states where the solution performs 

satisfactorily (e.g., Beh et al., 2015; Herman et al., 2014; Moody and Brown, 2013). 

Ray et al (Ray et al., 2013) argue that standard deviation and the spread of performance 

values across all scenarios are equally penalizing deviations above or below the 

expected value and can be used interchangeably. Another metric used in robust 
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optimization is a minimax criterion that minimizes the maximum risk or the worst-case 

performance. Giuliani et al. (2014) optimize operating policies of Conowingo Dam on 

the Lower Susquehanna River, USA,  using the minimax approach, where the worst-

case objective values are considered. Mortazavi et al. (Mortazavi-Naeini et al., 2015) 

compare the minimax robustness criterion with minimizing the spread of objective 

values across all considered scenarios in multi-objective robust optimization combined 

with stochastic simulation to optimize Lower Hunter urban bulk water supply 

infrastructure and drought contingency measures in New South Walkes, Australia, 

considering 10,000 synthetic hydrologic scenarios and 2 demand scenarios. The two 

approaches provide significantly different results and conclusions on which alternative 

designs may be considered robust. Kwakkel et al. (Kwakkel et al., 2014) combine 

objective values with robustness measure such that the median objective value 

multiplied by its interquartile distance is optimized. All of these metrics assess 

robustness differently and would provide different advice on robust decisions; it is 

important to understand what exactly decision makers strive to achieve. Designing 

appropriate problem formulation should therefore directly involve the decision makers’ 

opinions for each individual problem. Robust optimization approach was employed in 

this project with a combination of performance metric assessments discussed directly 

with involved decision makers. 

1.3.  Water resource systems planning 

Planning into the future involves management of risk that may arise from various 

sources of uncertainty. Deterministic models are no longer adequate to represent future 

conditions where most of the data and parameters are unknown or uncertain (Pallottino 

et al., 2005).  Uncertainty inherent to water resources maybe caused by natural 

variability in external conditions or a fundamental lack of knowledge or understanding, 

i.e., ambiguity (Simonovic, 2009).  There are three sources of ambiguity: model 

uncertainty, arising from approximation and simplification of the modelled system, 

parameter uncertainty such as measurement and systematic errors, and decision 

uncertainty, which arises from the diversity of perspectives on the socio-economic and 

environmental value of water resources (Walker et al., 2003).  Water resource planning 

problems are a classic example of a “wicked” problem (Liebman, 1976; Reed and 

Kasprzyk, 2009; Rittel and Webber, 1973).  

Instead of defining “optimality” under historical or narrowly defined conditions, 

planners have been seeking “robustness” for planning under uncertainty (Ben-Haim, 
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2000; Haasnoot et al., 2013; Herman et al., 2015; Lempert et al., 2003).  A robust 

system is one that performs well or satisfactorily well over a broad range of plausible 

future conditions rather than optimally under one. This provides low regret solutions 

achieving sufficient benefits no matter what future unfolds and which stakeholder 

assesses its success (Lempert et al., 2003).  

Robustness is increasingly incorporated as a goal in many-objective water systems 

planning studies (Giuliani et al., 2014; Hamarat et al., 2014; Herman et al., 2014; 

Kasprzyk et al., 2013; Kasprzyk et al., 2012). Planning approaches seeking robustness 

have also been investigated in the UK’s water resource planning context (Borgomeo et 

al., 2014; Matrosov et al., 2013a; Matrosov et al., 2013b) but none of those have 

incorporated robustness into many-objective optimization. 

Several planning methods have been developed to consider uncertainty and seek 

robustness in water resources planning. These include Decision Scaling, Info-Gap 

Decision Theory (Info-Gap), Robust Decision Making (RDM) and Risk-based analysis, 

which are all described in the following subsections. .  

These approaches cater mainly for static robustness of a plan against plausible future 

states (Dessai and Hulme, 2007; Hallegatte et al., 2012) which does not consider plans 

that are able to change over time. In contrast, dynamic robustness explicitly values the 

flexibility of a system (Walker et al., 2013). Most planning problems need to deal with 

future uncertainties that cannot be reduced by gathering more information and are not 

statistical in nature (Haasnoot et al., 2011). A plan that can adapt to changing conditions 

is well suited to problems facing deep uncertainty (Walker et al., 2013). Flexibility 

provides the right but no obligation to take an action (Cardin and de Neufville, 2008); 

flexible systems thus allow the interventions to be introduced when and where they are 

needed and overcome the development of unnecessary capacity (de Neufville et al., 

2006). Planning approaches incorporating the dynamic robustness include Real options 

analysis and recently developed Dynamic Adaptive Policy Pathways, which are also 

discussed in following subsections. 

The matrix in Figure 1-2 divides the planning approaches based on what solution they 

seek (optimal, robust, or flexible) and what modelling method they primarily use 

(simulation, optimization, or simulation together with optimization).  
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Simulation  

Decision Scaling 

Info-Gap 

RDM 

 

Simulation-

optimization 
 Risk-based analysis 

Adaptation 

Pathways 

Real options 

Optimization Capacity expansion   

Figure 1-2. Matrix of water resources planning approaches based primary modelling method and 

solution aim. 

1.3.1. Planning approaches seeking optimal solutions 

1.3.1.1. Capacity expansion 

Increasing water demand and reduced or altered water supply result in a need to expand 

the water system supply capacity to maintain the supply-demand balance. When 

planning for future water supply system expansion decision makers have to decide 

where, when and by how much to increase the capacity of their supply system as the 

demand increases. Often there are many possible combinations of supply and demand 

management interventions to consider. Planners often do not possess enough time and 

computational resources to evaluate all possible combinations (portfolios) of 

interventions and their schedules using detailed simulation models. Optimization 

methods are therefore more often used to identify the preferred plan (Loucks and van 

Beek, 2006). A classical objective function minimizes the 

net present value of the total cost of the expansion often including monetized non-

monetary metrics such as environmental and social impacts. The problem is often 

constrained to satisfy minimum desired service levels such as “filling in” the supply-

demand gap as it occurs. Figure 1-3 illustrates the capacity expansion as the supply-

demand gap arises which is shown as deficit by the black line. The coloured blocks 

show the increased capacity in ML/d obtained by implementing additional 

interventions.   
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Figure 1-3. Bridging the supply-demand gap (deficit) shown by the black line by capacity expansion 

(coloured blocks). The plot is used only for illustration purposes (courtesy of Anna Wallen). 

1.3.2. Planning approaches seeking robust solutions 

The simulation-based planning approaches seeking robust solutions (Decision Scaling, 

Info-Gap, RDM) incorporate a sensitivity analysis in one form or another to better 

inform the decision-making process. Sensitivity analysis allows assessing how sensitive 

the output of a mathematical model is to different sources of uncertainty in its input 

(Saltelli et al., 2008). This aids the understanding of the model behaviour and from the 

water resources planning perspective understanding of how certain decisions or external 

conditions affect the behaviour of a system. There are several approaches to perform 

sensitivity analysis that may be divided into local and global analyses. In the local 

sensitivity analysis variables or parameters are varied one at a time by a small amount 

around some fixed point (Wainwright et al., 2014). In the global sensitivity analysis 

(e.g., Sobol sensitivity analysis (Sobol, 2001), Method of Morris (Morris, 1991)) 

variables or parameters are varied simultaneously over their entire plausible range and 

the effects on the output of both individual variables and parameters and interactions 

between them are assessed (Wainwright et al., 2014). The Decision Scaling and RDM 

are an example of a global sensitivity analysis whilst the Info-Gap applies local 

sensitivity analysis. 
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1.3.2.1. Decision Scaling 

Decision Scaling method proposed by Brown et al. (2012) extends the scenario-neutral 

approach proposed by Prudhomme et al. (2010) which is based on global sensitivity 

analysis of catchment responses to plausible climate changes. The study used 17 Global 

Climate Model (GCM) scenarios with 4 greenhouse gas emissions scenarios to estimate 

changes in precipitation and temperature and their time series. These were used in a 

hydrological model for flood sensitivity testing. A climate response function was then 

created to simulate future flood risk in the UK as a function of climate change. This 

function characterizes a system’s response to climate and is subsequently used to 

visualize and assess the impacts of climate change projections. By using the sensitivity 

of a given catchment information, climate model projections that would result in 

adverse effects such as violating certain operational thresholds can be identified. 

Prudhomme et al. (2010) suggest that the likelihood of such projections could then be 

derived.  

Decision Scaling advocates a “bottom-up” approach where a system is first assessed to 

identify the most important thresholds in terms of decision-relevant risks. Climate 

projections are then used to identify climate conditions where the decision thresholds 

are crossed and to estimate probabilities associated with such conditions. This method 

shifts the focus from what the future climate might be to more specific question of if the 

climate that favours decision plan A is more or less likely than the climate that favours 

decision plan B (Brown et al., 2012). The decision alternatives are usually assumed to 

be identified a priory.  

The Decision Scaling approach consists of three general stages as described by Brown 

et al (2012). The first stage begins with decision analysis where climate hazards, 

performance indicators and their thresholds, which when crossed indicate that adaptive 

action is needed, are identified. The second stage involves risk discovery, i.e., 

identification of climate states that cause risk. This includes sensitivity analysis to 

identify “risky” climate conditions, development of a climate response function and 

dividing the climate space according to optimal solutions. The benefit here is that the 

range of considered climate states is not limited by any probability distribution. The 

final stage proceeds with estimating “climate informed” probabilities of climate states 

and considering the residual risk (Brown and Baorang, 2011). 

Brown et al (2012) demonstrate the approach on the Quabbin-Wachusett reservoir 

system supplying Boston, Massachusetts. A climate response model is constructed that 
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allows reservoir reliability to be estimated from a large ensemble of possible future 

conditions without being computationally expensive. The model predicts reservoir 

reliability as a function of mean climate statistics (precipitation and temperature as 

demonstrated in Vogel et al. (2001). Turner et al. (2014b) use this approach to assess 

Melbourne’s bulk water supply system performance in Australia using a reliability and 

vulnerability thresholds. Ghile et al. (2014) evaluate water supply infrastructure 

investments in the Upper and Middle Niger River basin using multiple performance 

metrics.  

Decision Scaling is able to identify system vulnerabilities that “top down” approaches 

may struggle to discover (Turner et al., 2014b) and has demonstrated the importance of 

robustness indicators considering climate uncertainty (Moody and Brown, 2013).  

1.3.2.2. Ingo-Gap Decision Theory 

Proposed by Ben-Haim (2006), Info-Gap Decision Theory (Info-gap) is a non-

probabilistic method used to evaluate robustness of decisions under ‘severe’ uncertainty 

(comparable to deep uncertainty) given the minimum performance requirements. 

Conditions of severe uncertainty lead to an ‘information gap’ between what is known 

and what needs to be known in order to make a sound decision (Ben-Haim, 2004). Info-

gap compares the performance of candidate intervention plans under a wide range of 

plausible futures (robustness) and their potential rewards (opportuneness) under 

favourable conditions (Hall et al., 2012a). The method focuses on identifying the 

uncertainty horizon (i.e., the amount of uncertainty) that can be withstood before the 

system fails; it proceeds outwards from an initial ‘‘best-estimate’’, i.e., the expected 

future conditions which must be known or estimated, until it identifies thresholds 

causing poor performance (Matrosov et al., 2013b). Info-gap can thus be seen as a 

technique using local sensitivity analysis centred at a particular reference strategy or 

intervention plan  (Herman et al., 2014). 

The uncertainty in Info-gap is characterized by a group of nested sets illustrated in 

Figure 1-4 where the parameter 𝑢̃ represents the best estimate of future uncertain 

parameter 𝑢. The deviation between these two parameters is scaled by h which then 

represents the horizon of uncertainty α (Matrosov et al., 2013b). Each considered 

intervention plan is simulated against each horizon. This provides a range of 

performances or rewards for each plan in each uncertainty horizon where the minimum 

level of performance refers to robustness while the maximum level to opportuneness 

(Ben-Haim, 2006). The robustness measure reflects the maximum horizon of 
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uncertainty that can be tolerated by the plan whilst ensuring satisfactory performance 

above a predefined performance threshold. The opportuneness refers to the minimum 

level of uncertainty needed to obtain performance “windfall” or favourable performance 

(Ben-Haim, 2006). These measures are then usually plotted as functions of the horizon 

of uncertainty and performance levels which allows for direct comparison between the 

considered intervention plans.  

 

Figure 1-4. Info-gap approach framework (adapted from Hall et al., 2012a). The schematic of an 

Info-Gap uncertainty model (adapted from Matrosov et al., 2013b) shows the scaling (h) of each 

horizon of uncertainty (α) from the best estimate (𝒖̃). The uncertainty model can also be 

asymmetric. 

Hine and Hall (2010) perform Info-gap analysis to assess the sensitivity of flood 

management alternatives to a flood model uncertainty in the River Trent catchment in 

the UK. Korteling et al. (2013) apply the Info-gap decision theory to evaluate 

robustness of supply and demand management interventions under supply, demand and 

energy cost uncertainty for the Drift reservoir supply system in Cornwall, UK and 

compare the approach to the current water supply system planning in the UK. Hall et al. 

(2012a) compare the Robust Decision Making (RDM) (Lempert et al., 2003) approach 

and Info-gap theory for identifying robust climate policies aiming to reduce greenhouse 

gas emissions. The study concludes that both approaches provide similar results but 

different insights for the performance and vulnerabilities of the considered policies. 

Similarly, Matrosov et al. (2013b) compare the RDM and Info-gap methodologies using 

the River Thames basin water supply capacity expansion case study in the UK. They 

argue for joint application of the two approaches which reveals additional important 

information about the system that would not be available if only one method was 

implemented.   
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Although the Info-gap method provides the means to compare the robustness and 

opportuneness of alternative strategies simultaneously, it does not quantify their 

vulnerabilities (Matrosov et al., 2013b). The method also assumes that the best estimate 

of uncertainty can be identified; however, in the situations of deep uncertainty such 

estimate may be difficult to determine. Info-gap thus seeks local robustness in the 

subset of uncertainty around the best estimate instead of global robustness in the whole 

uncertainty space (Herman et al., 2014; Matrosov et al., 2013b). Decisions are assumed 

to be known prior to the analysis (Hall et al., 2012a). 

1.3.2.3. Robust Decision Making 

Robust Decision Making (RDM) is a planning framework designed to help decision 

makers formulate robust plans for the future under conditions of ‘deep’ uncertainty 

(Lempert and Collins, 2007b). RDM favours robustness over optimality and assumes a 

strategy that is able to satisfy minimum performance criteria (‘satisfice’) over a wide 

range of plausible futures is preferred by planners. ‘Deep’ uncertainty refers to the fact 

that analysts either do not know or do not agree on the probability distributions that 

govern one or more sources of uncertainty.  

RDM is multi-step process that requires a significant stakeholder engagement. The 

process begins with the selection of one or more candidate strategies. Often it makes 

sense for the current system to be one of the candidate strategies assessed (the 

‘baseline’); strategies proposed or favoured by planners are obvious choices for other 

candidate strategies. A system simulation model is used to simulate the performance of 

the candidate strategy under a wide spectrum of plausible futures, where each future is a 

combination of uncertain parameters (e.g., level of sustainability reductions, climate 

scenarios and demand levels). Performance of the system can be evaluated using one or 

multiple performance criteria that have the approval of stakeholders. Decision-maker 

approved performance thresholds then help determine if a strategy evaluated by 

simulating it under a particular scenario is a success or failure. At this stage the scenario 

discovery process (Bryant and Lempert, 2010; Groves and Lempert, 2007; Lempert et 

al., 2006) is run. Typically, a statistical data mining algorithm (such as the Patient Rule 

Induction Method, PRIM) (Friedman and Fisher, 1999) is used to determine the 

vulnerable realm of the preferred strategy, i.e., which combinations of future conditions 

or ‘scenarios’, cause the strategy to fail in one or more ways. Planners are meant to use 

this information to discard or further improve the candidate strategy leading to 

progressively improved strategies that hedge against those conditions which most 
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frequently cause unacceptable system failures. The new strategies can be resubmitted 

into the RDM framework and the process repeated iteratively until a suitably robust 

strategy is found. Figure 1-5 illustrates the RDM framework.  

 

Figure 1-5. Schematic of an RDM framework implementation (designed by Evgenii Matrosov). 

Candidate strategies and the baseline (current) system are submitted into the robust decision 

making framework. The strategies are simulated under a multitude of scenarios (covering for 

example climate change, demand and sustainability reduction uncertainties) and their performance 

is compared. A preferred strategy is selected to undergo a vulnerability analysis to determine under 

what future conditions the preferred strategy is likely to fail. Ameliorations to the strategy can then 

be proposed before resubmitting the improved strategy back into the scenario simulation step. 

Groves and Lempert (2007) use RDM to identify vulnerabilities of the California 

department of Water Resources’ California Water Plan (CWP). Lempert and Groves 

(2010) apply RDM to identify climate change vulnerabilities of the Inland Empire 

Utilities Agency’s 2005 Integrated Water Resource Plan and to develop a more robust 

plan including adaptive strategies. RDM approach was also investigated in UK studies; 

Matrosov et al. (2013a; 2013c) compare the RDM approach to the economic 

optimization and the Info-Gap analysis, respectively, when applied to the Thames basin 

capacity expansion case study. 

These studies however do not emphasize how decision alternatives should be generated 

in support of the decision-making process. Multi-objective Robust Decision Making 

(MORDM) proposed by Kasprzyk et al. (2013) uses MOEA optimization to generate 

trade-offs across a diverse set of planning alternatives prior to assessing their 

robustness. This overcomes the possibility of the candidate strategies fed into the RDM 

framework to be infeasible or severely suboptimal (Reed et al., 2013). Herman et al. 

(2015) apply the MORDM framework to a “Research Triangle” region of North 
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Carolina in the US to optimize and assess the robustness of four interconnected water 

utilities strategies. The robustness of candidate strategies is however still assessed post-

optimization, i.e., the robustness is not explicitly incorporated into the search for 

candidate strategies process itself. 

1.3.2.4. Risk-based analysis 

Risk may be defined as the quantification of uncertainties that may have adverse impact 

on a water resource system performance (Vucetic and Simonovic, 2011). Quantifying 

risk involves consideration of three important aspects: what can happen, how likely it is 

to happen, and what would the consequences be (Simonovic, 2009). The risk-based 

approach explicitly considers the probability or likelihood and consequences of adverse 

effects (Hall et al., 2012b).  

The risk-based water resource investment planning approach involves several steps (e.g. 

Borgomeo et al., 2014). First, a probability distribution of future projections such as 

temperature and precipitation is estimated and sampled. For each such sample a number 

of realizations of future conditions are produced. These future conditions are used as 

input into a water resource system simulation model to evaluate a predefined set of 

alternative investment plans. Based on the simulation output a probability of failure for 

each alternative plan is estimated. Because the probability of failure cannot be predicted 

precisely a distribution of such probabilities is estimated and used to calculate the 

probability of failure (Hall et al., 2012b). The alternative plans are then compared based 

on their ability to cost-effectively reduce the probability of failing.   

Jones (2001) and Johnson and Weaver (2009) describe a risk-based approach where 

risks are identified and managed using GCM projections. Hall et al. (2012b) propose a 

risk-based approach to incorporate UKCP09 projections (Murphy et al., 2009) into 

water resource planning in England and Borgomeo et al (2014) apply this approach to 

the London’s water supply system planning problem in the River Thames basin, UK. 

Turner et al (2014a) highlight the benefits of using the risk-based approach when 

compared to the UK’s conventional planning approach using the Ennerdale supply 

system case study in West Cumbria, UK.  

Although the risk-based approach incorporates uncertainty into the planning process by 

extensive sampling and is able to connect the results directly with risk indicators used in 

practice (Borgomeo et al., 2014), it has several limitations. For instance, the probability 

distribution of uncertainties that this approach relies on requires a prior knowledge 

(Vucetic and Simonovic, 2011); this may, however, not be appropriate for situations of 
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deep uncertainty (Knight, 1921) where assigning probabilities to future states is 

problematic (Kasprzyk et al., 2013; Lempert, 2002; Lempert et al., 2003; Walker et al., 

2013). Turner and Jeffrey (2015) conducted a survey between UK’s water practitioners 

and found that many indicated “distrust in the plausibility of synthetic droughts 

generated by stochastic models” and prefer designing a system whilst considering real 

and tangible events. The probabilistic metrics are also perceived difficult to 

communicate to stakeholders (Turner and Jeffrey, 2015). Despite these limitations on 

the use of probabilities, risk based approaches are promising and are viable option for 

aiding water resource plan decision-making.  Hall and Borgomeo (2013) argue: 

“transparently implemented risk analysis provides a mechanism for exposing the 

implications of uncertainty for outcomes that people value. It provides a structure for 

integrating multiple perspectives and objectives with respect to water resources systems 

in a way that, at its best, provides a platform for deliberative decision processes and 

expert critique”. 

1.3.3. Planning approaches seeking flexibility 

1.3.3.1. Real options 

Real options allow for recourse, i.e., change, in a physical design or operations of a 

system to respond to changing conditions (Jeuland and Whittington, 2014). Such 

options may arise from operational flexibility or from the possibility of delaying 

investments until more information about future conditions becomes available 

(Steinschneider and and Brown, 2012). Real options therefore provide for and value 

adaptive flexibility. The concept of real options originated in the field of finance 

(Myers, 1984) but since then it has become a recognized approach for climate change 

adaptation investment decisions (Dobes, 2008; Linquiti and Vonortas, 2012; Woodward 

et al., 2014). The benefits of applying real options analysis in water resource planning 

include not only reduced or delayed financial costs to water companies but may provide 

better security of supply and environmental standards to water companies’ customers 

and communities for lower water bills (NERA, 2012).   

Decision Trees and Dynamic Programming are the most widely applied methods for 

real options analysis (Cardin and de Neufville, 2008; NERA, 2012). Figure 1-6 

illustrates a real options approach based on a decision tree analysis. Intervention 

strategies are represented as decision trees with multiple paths into the future, rather 

than single paths fixed over the planning horizon (Woodward et al., 2014). The yellow 

rectangles represent a decision which could be taken or not. The green circle illustrates 
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a plausible future condition associated with the probability of its severity. Based on how 

this future condition unfolds another decision is considered, creating a tree like 

pathways. Each pathway is associated with the net present value of the whole plan on 

the pathway. An adaptable intervention strategy therefore consists of paths at each 

planning period, where each path corresponds to a set of intervention measures.  

 

Figure 1-6. Example of a decision tree approach (adapted from NERA, 2012) 

Jeuland and Whittington (2014) combine the real options analysis with sensitivity 

analysis in the form of RDM to a multipurpose dam case study on the Blue Nile river in 

Ethiopia. The assumed changes and probabilities of 7 future hydrological and 3 demand 

conditions are incorporated in the form of scenarios. The alternative designs that include 

the selection, sizing, and sequencing of dams as well as reservoir operating rules are 

identified a priory. The approach then uses Monte Carlo simulation to produce the 

downside risk (10th percentile of the cumulative distribution of simulated Net Present 

Value (NPV)), expected value, and upside potential (90th percentile of the NPV 

distribution) of alternative designs. These are then transformed into relative measures 

which are used for comparison between the alternatives using RDM principles to 

identify robust solutions. 

Woodward et al. (2014) combine the concepts of real options with multi-objective 

optimization to assess robustness of potential flood risk management alternatives in the 

River Thames estuary in the UK. The flexibility of an option is evaluated as the 

difference between options with embedded flexibility, i.e., real options, and an option 

identified via deterministic optimization (where only historical conditions are 

considered). The decision tree approach was used to create alternative design pathways 
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where intervention measures were allowed to be brought into effect at the beginning or 

the middle of the planning horizon. The latter is where the pathways diverge.  

All of these studies incorporate probabilistic distribution of uncertainties which, as 

already discussed, may not be appropriate in cases of deep uncertainty and consider 

only monetary objectives. A report investigating real options approach for the 

application to the UK water resource planning (NERA, 2012) identified several benefits 

and limitations of this technique. In particular, the approach is able to evaluate 

alternative plans more accurately than the current practice. It also provides more 

realistic view of the future thus often reducing conflicts and enquiries about long-term 

plans that in the current practice do not embed flexibility. The potential limitations 

include computational practicality in terms of evaluating many possible alternatives and 

the complexity of results that may require more time and effort in communication of the 

results. The approach, however, was assessed using mathematical programming 

technique which is currently applied in practice and whose limitations were discussed in 

section 1.2.3.1. The computational complexity could be addressed by the use of more 

efficient optimization techniques such as multi-objective evolutionary algorithms 

(discussed in section 1.2.3).  

1.3.3.2. Dynamic Adaptive Policy Pathways 

Proposed by Haasnoot et al. (2013), Dynamic Adaptive Policy Pathways combines two 

methods for decision making under uncertainty that incorporate flexibility – Adaptive 

Policymaking (Walker et al., 2001) and Adaptation Pathways (Haasnoot et al., 2012).  

The Adaptive Policymaking (APM) is a theoretical approach for developing 

contingency planning to adapt a basic plan according to new information when it 

becomes available (Walker et al., 2001). It argues for the importance of monitoring and 

pre-specification of responses to when a plan or policy no longer achieves satisfactory 

performance (Kwakkel et al., 2010). Signposts are used to track the performance and 

signpost triggers are used to determine when the additional actions should be 

implemented. The general idea is to design a basic plan with immediate actions, 

establish a monitoring system, track the signposts and adapt the basic plan once the 

trigger values are detected. Example applications are demonstrated by e.g., Kwakkel et 

al. (Kwakkel et al., 2010), who apply the APM principles to the Schiphol Airport long-

term development case study, and Hamarat et al. (Hamarat et al., 2014), who combine 

the APM approach with multi-objective robust optimization to assess possible 
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adaptation of EU energy production towards renewable energy generation and lower 

carbon emissions considering 46 plausible future conditions. 

Adaptation Pathways is an analytical approach to develop sequencing of possible 

actions to adapt to changing external conditions (Haasnoot et al., 2012). Adaptation 

tipping points (ATPs) (Kwadijk et al., 2010) are used to specify conditions under which 

a plan is no longer meeting its objectives, a plan’s “sell-by date”, which are scenario 

dependent. When such ATP is reached, additional actions are required, which results in 

a sequence of possible actions after each ATP in form of pathways or adaptation trees. 

This leads to the Adaptation Pathways map that defines alternative paths that satisfy a 

pre-specified minimum performance level to arrive to the same desired point in the 

future (Haasnoot et al., 2013). An example of such map is shown in Figure 1-7. The 

ATP points (or terminals) illustrate when the plan requires adaptation and the transfer 

stations indicate the available transfers from one pathway to another. The example 

shows that some actions are required in the near future. However, choosing action B 

may be inadequate as this plan quickly reaches its ATP and requires additional actions. 

Taking action C involves a risk; if scenario X is realized, this plan will also need to 

adapt with additional actions (shown by the green dashed line in Figure 1-7). Decision-

makers can thus make an informed decision and choose a dynamic adaptive plan which 

is able to achieve their intended objectives despite the myriad of uncertainties. 

 

Figure 1-7. Adaptation Pathways approach framework (adapted from Haasnoot et al., 2012) and 

Adaptation Pathways map (adapted from Haasnoot et al., 2013) 

The Dynamic Adaptive Policy Pathways approach consists of a transient scenario 

analysis where vulnerabilities and opportunities in a system under uncertainty are 

identified. Different actions to address these vulnerabilities are specified and the 

Adaptation pathways map is produced. The preferred plan is the chosen from the map 
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and a monitoring system is put in place to track the plan’s performance. Haasnoot et al. 

(2013) demonstrate the approach on the long-term water management problem in the 

lower Rhine Delta in Netherlands. Future uncertainties are represented by two climate 

change scenarios and two socio-economic scenarios; the possible interventions include 

flood management actions, supply water actions such as modifications to reservoir 

levels, and demand reduction actions. Kwakkel et al. (2014) extend this approach with 

the use of multi-objective robust optimization to identify promising adaptation 

pathways. The methodology is illustrated on a hypothetical flood risk management case 

study considering a range of climate and land use change, fragility of dikes, flood 

damage, and policy uncertainties.   

The Dynamic Adaptive Policy Pathways approach stimulates and aids the inclusion of 

adaptation into planning by explicitly identifying actions that may need to be 

implemented now to keep options open into the future and actions that can be postponed 

(Haasnoot et al., 2013). However, stakeholders, policy and decision makers in the UK 

prefer any changes to the established planning process to be introduced gradually; this 

approach currently poses too big a challenge to be implemented in practice.  

1.3.4. Summary 

Each of the planning approaches described above (apart from the Capacity expansion 

which is already used by water resource planners in the UK) was assessed for suitability 

to this research project. Several criteria in order of their importance included the ease of 

embedding the method into the current planning approach in the UK, the ease of 

explaining and visualizing the solutions, the ease of explaining the method to 

stakeholders, computational complexity and if the method could provide automatically 

linked simulation with optimization with search for robustness and flexibility. Table 1-2 

summarizes the benefits and limitations of each planning approach against the criteria. 

The Risk-based analysis and the proposed approach in this thesis have been found to be 

the most suitable methods for the current UK planning approach improvements. The 

latter however is proposed to be embedded step by step introducing minimal required 

changes to the current planning approach in each step to allow for easier and smoother 

transition which is illustrated in Figure 1-8. 
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Table 1-2. Summary of the planning approaches' suitability for this project. 

Criteria Ease of 

embedding into 

UK planning 

Results 

communicability 

to stakeholders 

Approach 

communicability 

to stakeholders 

Computational 

complexity 

Automatic search 

for robustness 

and flexibility  

Planning 

approach 

Decision 

Scaling 
Medium Medium Medium Medium No 

Info-Gap Medium Medium Low Medium No 

RDM Medium Medium Low Medium No 

Risk-based 

analysis 
Medium Medium Medium High Yes 

Adaptation 

pathways 
Low Low Low High Yes 

Real options High Low Medium High Yes 

Proposed 

approach 
High Medium Medium High Yes 

 

 

Figure 1-8. Proposed approach step-wise improvements to the current planning approach in the 

UK. 

1.4.  Case study 

1.4.1. Thames basin description 

The Thames basin is located in the south-east of England and is the driest part of Britain 

with an average annual precipitation of just 708mm (assessed between 1970 and 2000 

on a major part of the catchment upstream of Teddington Weir shown in Figure 1-9 by 

grey separating line using the National River Flow Archive monthly precipitation 

records available upon request)  whilst the national average is 897mm (British 

Geological Survey). The sub-catchment water balance analysis conducted here instead 
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of the whole Thames catchment is due to the limited data availability (precipitation 

record and licensed abstraction data). The total precipitation in summer (June, July and 

August) is on average 35mm lower than the precipitation in winter (December, January, 

February) when assessed between 1970 and 2000. Only a fraction of precipitation turns 

into the effective rainfall, i.e. the amount of precipitation stored in the soil from the 

rainfall after evapotranspiration and runoff. Based on the simplified precipitation-

effective rainfall relationship (Figure 1-10) the effective rainfall in the Thames basin 

represents approximately 40% of the rainfall in winter and 35% of the rainfall in 

summer (Figure 1-11). In reality, the effective rainfall is influenced by many factors 

such as climate, soil type and structure, topography, etc. and such data should be used to 

provide more accurate effective rainfall estimation.  

 

Figure 1-9. River Thames basin schematic showing the River Thames, its tributaries and major 

urban areas (adapted from Matrosov et al., 2011). The sub-catchment upstream of the Teddington 

Weir shown by grey line was used for the effective rainfall and CAMS estimations. Reservoirs are 

located to the west of London on the River Thames (London Reservoirs) and in the Lee Valley (Lee 

Reservoirs) and are all interconnected and referred to as London Aggregate Storage (LAS). 

WBGW is located in the south-west of the basin whilst NLARS in the Lee Valley. The desalination 

plant is in the Thames Estuary east of London. 

The population density in the basin is four times higher than that of the rest of England. 

Water from the River Thames is used to supply a large proportion of the domestic and 

industrial water needs. The Catchment Abstraction Management Strategies (CAMS) 

regulated by the Environment Agency (EA) specify the abstraction licenses in the basin 

which restrict the daily and annual volume of water each license holder is allowed to 

abstract from the river (Environment Agency, 2010). The Thames basin CAMS licenses 
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upstream of the Teddington Weir obtained from the EA were used to estimate the 

proportion of the effective rainfall being depleted for public water supply. On average 

690 ML/d is licensed for public water supply abstraction upstream of Teddington Weir 

(the licensed volumes vary between months of the year). The sub-catchment upstream 

of the Teddington Weir covers an area of 9,948km2 (Centre for Ecology & Hydrology). 

1 mm of rain corresponds to 1 litre of water over surface area of 1 m2. From this 

relationship the volume of effective rainfall per month over the whole sub-catchment 

was calculated and compared to the licensed abstraction average monthly volumes. It 

was found that he public water supply licensed abstraction constitutes approximately 

32% of the effective rainfall which corresponds with Thames Water’s estimations that 

More than half of the effective rainfall is licensed for abstraction and around 80% of 

that, i.e. approximately 40% of the effective rainfall, is used for public water supply 

(Thames Water, 2014). 

More than half of the effective rainfall is licensed for abstraction and around 80% of 

that, i.e. approximately 40% of the effective rainfall, is used for public water supply 

(Thames Water, 2014).  

 

Figure 1-10. Simplified precipitation/effective rainfall relationship (Natural Resources 

Managament and Environmental Department). 
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Figure 1-11. Precipitation in the River Thames basin upstream of Teddington Weir between 1970 

and 2000 (blue line) and the estimated effective rainfall (orange line). 

Water availability in the region is threatened by possible changes in rainfall patterns. 

The UK Climate Projections (UKCP09) (Murphy et al., 2009) estimate a 15% increase 

in winter precipitation and an 18% decrease in summer in the London area under the 

SRES A1B  medium emissions scenario when compared to the 1961-1980 baseline 

conditions (Environment Agency, 2009). Thames Water Utilities Ltd. (TWUL), which 

manages most of the Thames basin water resources, projects a 25% increase in 

population in the region by 2040 (Thames Water, 2014).  This “expected” future is 

nevertheless highly uncertain. From the precipitation records of the sub-catchment it 

was found that on average summers between 1970 and 2000 were drier than summers 

between 1940 and 1970 (average total summer rainfall of 156mm compared to 179mm) 

and winters were wetter in 1970-2000 than in 1940-1970 (average total winter rainfall 

of 191mm compared to 181mm). However, in the period between 2000 and 2014 both 

summers and winters were wetter (average total rainfall of 175mm and 211mm, 

respectively) than summers and winters between 1970 and 2000. This suggests that 

climate change may drive the precipitation patterns in either direction.  

Water resources in the Thames basin are comprised of reservoirs, aquifers and the River 

Thames. The groundwater provides for 20% and 70% of public water supply for 

London and Thames Valley, respectively (Thames Water, 2014) and plays a major role 

in recharging and maintaining high quality of rivers, streams and wetlands within the 

basin. The basin is divided into individual Water Resource Zones (WRZs) from which 

six are managed by Thames Water Utilities Ltd. (TWUL). The majority of the surface 

water supply is provided by 23 interconnected reservoirs on River Thames (south-west 

0

20

40

60

80

100

120

140

160

180

Precipitation (mm) Effective rainfall (mm)



53 

 

of London) and River Lee in Lee Valley (London Reservoirs and Lee Reservoirs in 

Figure 1-9, respectively) which constitute a combined storage of 200 Mm3. Additional 

supply is provided by the North London Artificial Recharge Scheme (NLARS in Figure 

1-9), a conjunctive surface – groundwater scheme to recharge the aquifer during 

droughts, the West Berkshire Groundwater Scheme (WBGW in Figure 1-9), used 

during dry periods, and a desalination plant in the Thames estuary (Beckton 

Desalination Figure 1-9). 

The non-linear seasonal Lower Thames Control Diagram (LTCD) shown in Figure 1-12 

specifies when drought-alleviating supply schemes should be activated based on the 

London Aggregate Storage (LAS) volumes. The LTCD also dictates when the minimum 

environmental flows in the Thames downstream of all abstractions at Teddington 

(Figure 1-9) should be lowered and when water-use restrictions are imposed. For 

instance, if the LAS level drops below Demand Level 1 (blue dashed line in Figure 

1-12), the Intensive media campaign to promote reduced water use is put in place. If the 

LAS level drops further below the Demand Level 2 (green dotted line in Figure 1-12), 

the campaign is enhanced and sprinkler/unattended hosepipe ban is established. The 

thresholds vary depending on the period of the year. The Levels of Service (LoS) 

specify the maximum frequency of imposing the associated water-use restrictions on 

customers (table in Figure 1-12). 

 

Figure 1-12. Lower Thames Control Diagram (LTCD) relating the London aggregate storage levels 

on the vertical axis, minimum environmental flows at Teddington Weir (shaded areas), and water-

use restrictions (dotted lines) throughout a year (horizontal axis). The table shows the associated 

water use restrictions and desired Levels of Service. 
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1.4.2. Current planning approach in the UK 

Water supply in the UK is managed by several private water companies whose activities 

are regulated by the non-departmental public body Environment Agency (EA). Their 

financial investments and prices for customers are regulated by the economic water 

industry regulator Ofwat. Every five years water companies must produce Water 

Resources Management Plans (WRMPs) where they demonstrate their plans to maintain 

supply-demand balance for the next 25-30 years (Environment Agency, 2012). The 

planning implies an estimation of future supply and demand, where the former is 

defined as ‘Water Available for Use’ (WAFU) which consists of the supply system 

yield of ‘deployable output’ (DO), anticipated reductions in licensed water abstractions, 

losses and short-term outage allowance (Matrosov et al., 2013a). Deployable output 

(DO) is the maximum rate at which a system can supply water throughout a dry period 

at a given reliability level (i.e,. Levels of Service) and an estimated uncertainty (Hall et 

al., 2012b). DO is obtained by simulating the water resource system using historical 

records and averaging the daily output of supply options during droughts. The 

uncertainty is incorporated using a safety margin called headroom which aggregates all 

sources of uncertainty into an annual estimate to reduce vulnerability at low cost 

(Hallegatte, 2009; UKWIR, 2002). A headroom allowance is used as a ‘buffer’ between 

WAFU and demand (Environment Agency, 2012) where the latter is estimated as water 

to be delivered increased by the distribution system losses (Matrosov et al., 2013a). 

Water companies set their ‘target headroom’ so they can guarantee the desired service 

reliability, i.e., Levels of Service, to their customers.  Planners then apply the 

Economics of Balancing Supply and Demand (EBSD) approach, where the main focus 

is to find appropriate balance between available water supply and demand management 

interventions and the customer needs to maintain the supply-demand balance seeking 

the least-cost plan (UKWIR, 2002). Once companies identify a list of available and 

feasible supply and demand interventions, their financial (capital and operating costs), 

environmental and social costs are estimated and an optimization algorithm is applied to 

identify the least-cost schedule of the supply and demand interventions. The social and 

environmental impacts are monetized and aggregated into the single cost objective. For 

practical reasons companies use discrete costing and sizing of interventions rather than 

continuous cost curves. A mixed integer linear programme such as one formulated by 

Padula et al. (2013) is typically implemented in the EBSD approach.  
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A stochastic extension of the EBSD approach called the ‘intermediate approach’ 

(UKWIR, 2002) has been previously developed to consider wider range of supply 

uncertainties. The identified optimal least-cost plan is assessed through Monte Carlo 

simulation using a probability distribution of DO to ensure the plan satisfies the chosen 

target reliability levels (Levels of Service). However, the water industry regulators that 

set out guidelines for water resource management plans now require consideration of 

climate change impacts and their uncertainties (Environment Agency, 2012) as well as  

uncertainties associated with estimations of future socio-economic and other conditions 

(Ofwat, 2013). In their latest WRMPs water companies employed a scenario testing 

approach where the identified least-cost plan was tested against plausible future 

scenarios, including the changes in DO, demand levels, energy prices, etc., and 

subsequently amended to deliver final least-cost plan (Thames Water, 2014). Each 

source of uncertainty was however considered separately; their combined effects were 

not taken into account.    

The regulators and water companies realize that such simple assessment of risks and 

uncertainties may lead to the lack of transparency in the decision making process (Hunt 

and Wade, 2016). In particular, the current approach does not adequately address 

important planning goals such as the resilience of plans to different futures, trade-offs 

between multiple performance metrics and the influence of uncertainties on investment 

decisions (Hunt and Wade, 2016). The variety and complexity of different available 

approaches to planning under uncertainty make it difficult for planners to choose one 

that would require the lowest level of transition whilst providing the most desired 

outcomes. The single least-cost objective approach may introduce bias into the decision 

making process as well as limits the exploration of the many possible combinations of 

supply and demand options and is potentially unsuitable for the high variability and 

uncertainty in future states. For instance, Padula (2015) demonstrates the diversity of 

near-optimal solutions for the Water Resources of South East England (WRSE) capacity 

expansion problem using the EBSD approach. The study found 240 near-optimal 

solutions within 10% of the least-cost optimal plan. The error of margin in cost 

estimations often exceeds 10% (Yeomans and Huang, 2003) thus focusing on only a 

single least-cost objective may potentially results in an inaccurate and conservative 

solution to a highly complex problem. Recently non-EBSD planning approaches 

seeking system robustness have been investigated for the Thames basin (Matrosov et 

al., 2013a; 2013b) as mentioned in section 1.3 but the variety and complexity of 

different available approaches to planning under uncertainty make it difficult for 
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planners to choose one that would require the lowest level of transition whilst providing 

the most desired outcomes. 

1.5.  Research question and objectives 

The challenge of long-term human-natural resource system planning is to identify high 

value portfolios of human interventions whilst considering the two main challenges 

described previously: future uncertainty and multiple concurrent societal goals. This 

identification process is severely complicated by the exponentially large number of 

alternative combinations of schemes available to manage future resources. This project 

aims to provide an answer to the question:  

How can: 

1. the uncertainty of future conditions and 

2. multiple concurrent societal goals  

be addressed to provide an efficient and straightforward practical implementation 

for the real world water resource systems planning problems? 

This research focuses on improving the water resource management and planning 

process in the UK by addressing the issues identified in previous sections. In particular, 

it intends to overcome cognitive biases in the decision making process by introducing 

an optimization approach that considers multiple conflicting objectives explicitly 

without the need of prior knowledge about how they interact and conflict with each 

other. Trade-off analysis has some, but limited, prior history of inclusion in water 

resource planning regulations (California Department of Water Resources, 2008; 

UKWIR, 2016). Here the aim is to provide a visually communicable approach which 

enables stakeholder deliberation about benefits achievable by the water system and its 

engineered assets that is compatible with the resilience and participatory aspirations of 

UK water planning (Environment Agency, 2015). From a policy perspective the trade-

offs and broader performance requirements help to avoid the myopia of least-cost 

decision making (Herman et al., 2015). Results aid policy makers to orient their 

investment strategies towards their key requirements and aspirations. 

Water planners and regulators in the UK recognize the limitations of the current 

approach as described in section 1.4.2 and are actively seeking to improve the statutory 

planning framework (Defra, 2011). This project intends to reflect the necessity of the 

current water planning policy changes that are being considered. Several theoretical 
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approaches have been developed to incorporate uncertainties into decision making as 

described in section 1.3.2. Many of these are complex and require multiple iterative 

processes to deliver desired and practical outcomes. Application of such frameworks by 

water system planners will require them to understand and accept the benefits of 

embedding the search for robustness within automated investment filtering approaches 

which historically only considered cost. The goal of this project is to communicate to 

water resources planners the increase in understanding and judgement they can obtain 

by incorporating uncertainty into automated intervention evaluation methods. This 

project proposes to introduce the many-objective simulation based optimization that 

incorporates multiple sources of uncertainty and the use of interactive visual analytics to 

the current water resource management and planning in the UK, as well as demonstrate 

the benefits of this approach compared to the current practice. 

1.6.  Outline of the thesis 

The next chapter describes the methodology used over the course of the project. In 

particular, both the simulation and optimization models chosen for the study as well as 

the simulation-optimization framework built from those are described in detail. The 

Interactive River-Aquifer Simulation 2010 (IRAS-2010) model used to simulate a water 

resource system is presented together with its adjustments and extensions required for 

the Thames basin case study conducted throughout this project. The chapter proceeds 

with a description of the Epsilon Non-dominated Sorting Genetic Algorithm II (ε-

NSGAII) heuristic algorithm used for many-objective optimization. The chapter 

concludes by presenting the simulation-optimization framework designed from the two 

above mentioned models as a screening tool for decision making under uncertainty 

covered by this thesis. 

Chapters 3 to 5 cover the individual studies undertaken throughout the research project 

to address the research question. Table 1-3 provides a summary of these chapters 

including the author contributions (initials shown in brackets following tasks), applied 

planning approach and models, data and data sources. 
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Table 1-3. Summary of individual project studies with author contributions  

 Chapter 3 Chapter 4 Chapter 5 

Main  

contribution 

Evgenii Matrosov (EM) 

& Ivana Huskova (IH) 
IH IH 

Case study River Thames basin 

Approach 
Many-objective 

optimization 

Multi-scenario 

many-objective 

optimization 

Scheduling 

Model used 
IRAS-2010 simulation model connected to ε-NSGAII multi-objective 

evolutionary algorithm 

Model  

improvements 

Thames basin 

representation in IRAS-

2010 (EM) 
 

MPF (EM) 
 

Improvements of IRAS-

2010 and calibration 

against TWUL’s 

WARMS simulation 

model (IH) 
 

Connecting IRAS-2010 

with ε-NSGAII (IH) 
 

Modification of ε-

NSGAII for the MPF 

(IH) 

MPF adjustments 

(IH) 
 

Modification of ε-

NSGAII for the 

MPF and multiple 

scenarios (IH) 

Extension of the 

simulation model to 

accommodate new 

resource options and 

schedules (EM+IH) 
 

MPF adjustments (IH) 
 

Modification of ε-

NSGAII for the MPF 

and multiple scenarios 

(IH) 

Scenarios  

of future 

conditions 

Historical river flow 

record (1970 – 2000) 
 

Demand (2035) 
 

Energy (2035) 
 

No sustainability 

reduction (current state) 

Future Flows (11 

x 2020 – 2050) 
 

Demand (2 x 

2035s) 
 

Energy (2 x 

2035s) 
 

Sustainability 

reductions (2 x 

2035s) 

Bootstrapped Future 

Flows (4 x 110 x 2020 

– 2070)  
 

Demand (2020 – 

2070) 
 

Energy (2020 – 2070) 
 

No sustainability 

reduction (current 

state) 

Scenario  

data sources 

Flow record – NRFA 
 

Demand – TWUL 
 

Energy price - DCE 

FFs – NRFA and 

HR Wallingford 
 

Demand, energy 

& sust. reduction 

scenarios – 

TWUL + DCE 

FFs - NRFA and HR 

Wallingford 
 

Demand and energy – 

TWUL + DCE 

Flow data 

manipulation 

Denaturalization of 

flows based on CAMS 

licenses (IH) 

Denaturalization 

of flows based on 

CAMS licenses 

(IH) 

Denaturalization of 

flows based on CAMS 

licenses (IH) 
 

Bootstrapping (IH) 

Visualization/ 

image  

manipulation 

software used 

Aerovis, Matlab, Excel, Gimp, Inkscape 

*MPF = Mathematical problem formulation 
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Chapter 3 presents the first step of changing the traditional water resource system 

planning approach using the screening tool described in Chapter 2. A deterministic 

study of the Thames basin water supply system expansion that considers many 

conflicting system’s performance objectives and a single “most probable” scenario of 

future conditions based on historical trends. We will show the benefits of considering 

multiple objectives concurrently when compared to a single least cost objective 

approach. The chapter also provides findings about how such planning approach may be 

communicated to decision makers and stakeholders. By doing so decision makers are 

given the opportunity to decide the balance between many system goals a posteriori as 

well as justify the choice of their final portfolio to interested parties. A part of this study 

was published in the Journal of Hydrology (Matrosov et al., 2015). 

Chapter 4 incorporates multiple sources of uncertainty in a form of scenarios into the 

problem analysed in the previous chapter to identify robust portfolios of supply and 

demand management interventions for the Thames basin. The potential future portfolios 

are evaluated here against scenarios of plausible climate impacted hydrological 

conditions, water demands, environmentally motivated abstraction reductions, and 

energy prices. The results obtained using this approach are compared to those obtained 

using the deterministic (single scenario) conditions. The benefits of considering 

multiple sources of uncertainty whilst searching such as perfect foresight bias reduction 

are highlighted and discussed. The results analysis again focuses on the most effective 

approach to communicate such findings to a wider audience. This study was published 

in the Global Environmental Change (Huskova et al., 2016).  

Chapter 5 then looks at how a time continuation may be incorporated into the many-

objective search for robust plans, i.e. schedules, of supply and demand management 

interventions. We will discuss how a major drought event and its time occurrence 

within the considered hydrological flows scenario ensemble affects the optimization. 

The study proposes a scenario ensemble manipulation technique - a bootstrapping 

method that respects the non-stationary trend of climate change scenarios and ensures 

even distribution of the major stress event in the scenario ensemble is proposed. Using 

such scenario ensemble reduces the possibility of optimizing the intervention schedules 

against perfect foresight. We demonstrate how the visual analysis of solutions can aid 

decision making by investigating the implied performance trade-offs and how the 

individual interventions and their schedules present in the robust plans affect the 

system’s behaviour. Multiple plans with similar initial actions may be combined into a 
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coherent intervention schedule over time allowing switching to other plans within the 

first decade. 

Chapter 6 concludes the thesis and its findings and identifies further research steps that 

may be undertaken in future. 
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2. Chapter 2 – Methodology 

2.1.  Simulation model 

2.1.1. Interactive River-Aquifer Simulation (IRAS-2010) 

The Interactive River-Aquifer Simulation (IRAS-2010) is an open-source and 

computationally efficient rule-based water resource system simulation model (Matrosov 

et al., 2011). A water resource system is represented by a network of nodes and links, 

where the former represent a reservoir, aquifer, gauge or consumption site, etc., and the 

latter defines natural or engineered connections between the nodes (example network is 

shown in Figure 2-1). Each of the model components is defined by parameters 

associated with its characteristics, e.g. a maximum capacity of a reservoir, flow time-

series of a gauge site, etc., which guide the simulation of water distribution throughout 

the system. During each user defined sub time-step water storage, flow, allocation and 

consumption are determined using four consecutive algorithm loops (Figure 2-1). At 

first, demand deficit is calculated, which determines the required storage releases. 

Second, the model calculates the total mass balance for all non-aquifer and non-wetland 

nodes. The third and fourth loop then determines the flows to and from aquifer and 

wetland nodes and their storage, respectively. The model is able to generate multiple 

performance metrics, such as energy consumption and hydropower generation.   

 

Figure 2-1. IRAS-2010 example water resource system network representation. The four 

consecutive loops illustrate the algorithm procedure (adapted from Matrosov et al., 2011). 

IRAS-2010 model requires input data such as network description and node/link 

parameters, the modelling time horizon and time steps, gauge nodes flow data in each 

time step, etc. The model is able to generate output in the form of multiple performance 

metrics, such as energy consumption and hydropower generation, as well as time series 

of any node inflows/outflows or storage levels. The model was chosen for this project 

due to its ability to represent complex water system element interactions and operating 



62 

 

rules and its fast runtimes (Matrosov et al., 2011). The latter is particularly important 

here as the model needs to evaluate many possible combinations of interventions during 

a single optimization run (section 2.3). 

2.1.2. Thames basin water supply system in IRAS-2010 

The Thames basin existing water resource system represented in the Thames IRAS-

2010 model is shown in Figure 2-2 and is based on the Thames model created by 

Matrosov et al (2011). There are three points of inflow into the system represented by 

gauge sites: Day’s Weir and Lower Thames on the River Thames, and Feildes Weir on 

the River Lee. The Rye-Meads represents the treated effluent input from the Rye Meads 

water treatment works with monthly profile (Table 0-1 in Appendix). The 

interconnected Thames and Lee reservoirs are aggregated into a single London 

Aggregate Storage node (LAS). The model incorporates the LTCD operating rules 

(Figure 1-12). The detailed description of each model component is included in the 

Appendix. 

 

Figure 2-2. IRAS-2010 Thames model components network representation showing the existing 

supply options. 

The Thames IRAS-2010 model was calibrated against TWUL’s simulation model to 

capture the TWUL’s practices as closely as possible using naturalised historical river 

flow records (1920-2005) and baseline demand (2,175 Ml/d). The Water Resources 

Management System (WARMS) model (Mountain, 2009) consists of series of 

mathematical simulation models that calculate the DO within the Thames basin. The 

Thames IRAS-2010 model provides coarser representation of the system than the 

WARMS model where some supply infrastructure options are aggregated into a single 

node (such as the London Aggregate Storage including all River Thames and River Lee 

reservoirs) and most supply option’s operational rules are simplified. Figure 2-3 

illustrates the simulated LAS storage levels by the WARMS and IRAS-2010 Thames 



63 

 

models (shown by grey and black lines, respectively). The trend of levels corresponds 

between the models but the LAS volume obtained by IRAS-2010 Thames model does 

not drop as low as in WARMS apart from drought periods when it drops slightly lower. 

This can be seen in Figure 2-4 where during 1934 the IRAS-2010 Thames model (black 

line in Figure 2-4) indicates the LTCD Demand Level 4 failure while the WARMS 

model does not (grey line in Figure 2-4). 

Figure 2-5 illustrates the simulated and gauged river flow comparison at Teddington 

Weir. The simulated flow is highly comparable between the WARMS and IRAS-2010 

Thames models and the observed flows obtained from NRFA (red dashed line in Figure 

2-5). Both IRAS-2010 Thames and WARMS models show slightly higher flows than 

the historic observed records in some wet periods and lower flows in some dry periods. 

These differences between the gauged and modelled flow result from the simplified 

hydrological representation of the basin, particularly in the IRAS model, including the 

lack of flow routing and stream-aquifer interaction. The latter in particular may be 

causing lower modelled river flows in dry periods when in reality aquifers drive the 

river base flows in summers after being themselves replenished by winter rainfall.    

 

Figure 2-3. Simulated London Aggregate Storage (LAS) levels comparison between the WARMS 

and IRAS-2010 Thames models. 
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Figure 2-4. LAS drawdown simulated by WARMS and IRAS-2010 Thames models (shown by grey 

and black lines, respectively) between 1933 and 1936 illustrated against the LTCD. 

 

 

Figure 2-5. Simulated (WARMS and IRAS-2010 Thames models) and gauged Thames river flow at 

Teddington Weir during 1933 – 1945.  

The calibration results suggest that the Thames IRAS-2010 model is able to emulate the 

TWUL’s simulation model very closely and may be used to simulate the Thames basin 

water resource system to investigate planning approach proposed here. 
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2.2. Optimization model 

The optimization in this study is performed using the Epsilon-dominance Non-

dominated Sorting Genetic Algorithm II (ε-NSGAII) (Deb et al., 2002; Kollat and Reed, 

2006), a type of MOEA. It was chosen for its search effectiveness and efficient parallel 

performance (Hadka and Reed, 2012; Kollat and Reed, 2006; Reed et al., 2013; Tang et 

al., 2006). ε-NSGAII employs non-dominated sorting, epsilon-dominance archiving 

(Laumanns et al., 2002) and adaptive population sizing tournament selection. The ε-

dominance archive sorts solutions based on the user specified levels of significant 

precision for the objectives (i.e., the minimum magnitude of change in the objectives 

that the user cares about). The adaptive population sizing reduces the need to investigate 

the most suitable initial population size a priori (Kollat and Reed, 2006). The algorithm 

consists of a series of connected runs between which the population size is adjusted 

with the introduction of new random solutions. Initially, the algorithm starts the search 

with a small number of candidate solutions. Over successive generations of each 

connected run, high quality solutions are passed into the epsilon-dominance archive. 

The archived solutions are injected into the population at the beginning of the next run 

and used to automatically adjust the search population size. A quarter of this population 

size is comprised of the archived solutions while the remaining three quarters are 

randomly generated solutions (Kollat and Reed, 2006). This ensures that high-quality 

solutions stored in the archive are not lost during the search and lowers the possibility of 

stalling at local optima during the search. ε-NSGAII has been demonstrated as a suitable 

and effective tool for complex many-objective optimization problems (Kollat and Reed, 

2006; Reed et al., 2013). 

2.3.  Simulation-optimization framework 

The IRAS-2010 simulation model was connected to the ε-NSGAII algorithm via a C++ 

wrapper code that runs the simulation model within the ε-NSGAII and exchanges 

required parameters between the two models. The framework’s pseudo-code is shown in 

Figure 2-6. The initial random population of decision variables based on the user 

defined input (i.e., how many variables, what bounds, etc.) is generated by the ε-

NSGAII using uniform random sampling. The variables are passed onto the IRAS-2010 

model as input parameters which performs the simulation of water resource system and 

generates required user defined performance measures. These are fed back to the 

evolutionary algorithm as objective and constraint values which are used to assign the 

“fitness” of each candidate solution. Next, non-dominated sorting is performed and 
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“survived” solutions are archived. The algorithm then applies its genetic variation 

operators of crossover and mutation, where the former combines genetic information of 

two individuals (parents) while the latter perturbs a genetic code of a single individual 

(parent) to create new individual (child) for the next generation of decision variables. 

This represents one generation of the heuristic search process. The operator parameters 

such as the probability of crossover and mutation are user defined. The next generation 

of decision variables is again passed to the simulator and the loop is repeated until the 

termination criteria are met. The termination criteria are set as the maximum number of 

function evaluations (FEs) where one FE represents one simulation of a single candidate 

solution and which are determined by the solutions’ “evolution” observation. Sufficient 

number of FEs occurs when the solutions converged towards and are diversifying along 

the Pareto optimal front (the front no longer moves spatially between the generations 

and is only smoothing out).  

 

Figure 2-6. Schematic of the IRAS-2010-ε-NSGAII framework. The ε-NSGAII generates random 

initial population of decision variables which are passed onto IRAS-2010 as input variables. IRAS-

2010 then simulates the system and provides performance measures that are fed back to the ε-

NSGAII as objective and constraint values. ε-NSGAII then evaluates the fitness of solutions, stores 

the most fit solutions in archive and performs genetic operations on these solutions to generate next 

generation of decision variables that are again passed to the simulation model. The process repeats 

until the termination criteria are met. 
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2.4.  Implementing many-objective robust optimization into 

the current  planning approach 

To demonstrate the implementation of the approach proposed by this thesis into the 

current planning practice in the UK the implementation is here performed in three 

gradual steps.  

First, the simulation-optimization framework described in section 2.3 is used to perform 

a many-objective optimization of the Thames basin water supply system considering 

new possible supply and demand management interventions and financial, engineering 

and environmental performance metrics. The portfolios of interventions, i.e., 

combinations of interventions, are evaluated for their performance against a single 

scenario of future conditions represented by historical climate conditions and a single 

value for demand growth and energy price estimation for 2035 under existing 

environmental regulations to reflect the traditional use of a single future scenario in the 

current practice. This is referred to a deterministic approach in the following text. 

Visual analytics of the obtained trade-offs is used to demonstrate the benefits of 

considering many objectives explicitly and how such analysis helps decision makers to 

navigate the trade-offs and gain knowledge about how their preferences interact and 

conflict with each other. For simplicity only a static snapshot of the system’s 

performance in 2035 without time continuation was considered, i.e., how the plausible 

portfolios would perform in 2035.  

Second, multiple scenarios of future conditions are incorporated into the many-objective 

optimization using the same problem formulation, i.e., decisions, objectives and 

constraints, and static approach. The portfolios are assessed against 88 possible 

scenarios of variable future conditions agreed with TWUL. The scenario ensemble 

contains different combinations of climate change impacts on river flows, demand 

growth levels, changing energy prices and stricter environmental conditions. Visual 

analytics is used to compare the obtained trade-offs with the deterministic optimization 

trade-offs from the first step to highlight the benefits of incorporating uncertainties into 

the optimization process.  

Third, the considered new supply and demand management interventions are updated 

according to the latest TWUL’s WRMP options. A time continuation consideration is 

added to the analysis to allow for scheduling of interventions over time, i.e., when the 

interventions should be built or implemented, which the current WRMPs need to 
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provide. The trade-offs here consist of intervention plans where a plan represents a 

combination of interventions and their schedules over a planning time horizon. Visual 

analytics is used to first assess the impacts of considered scenarios on the timing of 

interventions and second to aid decision making in choosing a robust and flexible plan. 

The exact methodology, results analysis and discussion for each step is provided in 

more detail in the following chapters. 
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3. Chapter 3 – Deterministic many-objective 
optimization 

3.1.  Introduction 

Most environmental systems are complex and require considering multiple conflicting 

system goals. Planning that considers multiple system goals and their trade-offs is a 

valuable addition to the decision making process (Reed and Kasprzyk, 2009). A new 

generation of heuristic search methods can be linked to system simulators to identify the 

Pareto optimal set of design alternatives. Pareto optimal signifies optimal in a multi or 

many-objective sense, i.e., the set of decisions which cannot be improved upon for one 

objective without simultaneously lowering performance in another. Pareto optimal 

solutions are also non-dominated which indicates they are better than all other solutions 

in at least one objective (Coello Coello, 2007; Kollat and Reed, 2006). Pareto optimal 

solutions can be presented in trade-off plots (Fleming et al., 2005) where stakeholders 

can select an appropriate balance of systems goals and visualise the trade-offs different 

decisions imply. 

This chapter investigates the trade-offs revealed by a many-objective optimization 

approach to planning future water supply system expansion investments in the Thames 

basin. Optimal combinations of supply and demand management interventions, i.e., 

portfolios, are evaluated against a range of performance measures including the 

financial, engineering and environmental performance of the system. Considering many 

objectives explicitly reveals information about the system that would remain hidden 

when only a single objective is considered. The trade-offs analysed here show that the 

engineering and environmental performance of the system can be improved with 

relatively modest investments. Visualizing the performance metrics progressively aims 

to help decision makers navigate the trade-offs and learn how their preferences conflict. 

Visualizing the interventions present within the Pareto optimal portfolios against the 

trade-offs reveals how individual interventions cluster in certain parts of the trade-off 

space and how they affect the performance of the system.  

The contribution of this chapter is to demonstrate the benefits of employing the many-

objective optimization and visual analysis in the current planning approach in England 

and Wales. Such approach reveals information that would remain hidden if the planning 

problem were solved using the traditional lower-dimensional analysis such as the least-

cost EBSD approach currently used by the English water sector (Padula et al., 2013). 
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Visualizing the performance trade-offs and how the portfolios of interventions and 

interventions themselves are distributed within those trade-offs gives planners valuable 

information about what system performances are achievable and what portfolios can 

lead to those levels of performance.  

Section 3.2 describes the applied problem formulation, i.e., which decisions, objectives 

and constraints were considered, and future conditions. Section 3.3 provides the 

optimization results and their analysis and section 3.4 the discussion of findings. The 

chapter concludes with section 3.5.  

3.2.  Methodology 

3.2.1. Problem formulation 

The London water supply problem was formulated to demonstrate the benefits of 

incorporating many performance objectives within the optimization of alternative 

investment portfolios. This section describes the objectives, decisions, and constraints 

used in the formulation. The performance objectives in this study consider the financial 

(capital, 𝑓𝐶𝑎𝑝𝐶𝑜𝑠𝑡, and energy, 𝑓𝐸𝑛𝑒𝑟𝑔𝑦, cost), engineering (supply deficit, 𝑓𝑆𝑢𝑝𝐷𝑒𝑓, 

reliability, 𝑓𝑆𝑢𝑝𝑅𝑒𝑙, and resilience, 𝑓𝑆𝑢𝑝𝑅𝑒𝑠) and environmental (eco-deficit, 𝑓𝐸𝑐𝑜 ) 

performance of the system. Some of the objectives used in the previous study (Matrosov 

et al., 2015) were changed after a consultation with stakeholders. In particular, the 

operating cost objective here includes only the cost of energy required to operate the 

system to assess the effects of possible energy price change explicitly. The resilience 

objective that minimizes the duration of failures considers the maximum duration of 

failure here instead of the average duration in the previous study. The environmental 

performance is assessed by comparing the natural and simulated flows in the river 

Thames rather than using the shortage index associated with a fixed river flow volume 

as was the case previously. The storage vulnerability objective maximizing the 

minimum aggregate storage level in the previous study is not included here as the 

reliability and resilience objectives were considered sufficient to assess the London’s 

aggregate storage performance. The same proposed future supply and demand 

management interventions are considered as decisions as in Matrosov et al (2015) with 

the difference of modelling the River Severn Transfer based on the actual River Severn 

flows rather than assuming constant supply and of not considering demand management 

interventions for other WRZ than London. The latter is due to TWUL not having the 

ability to influence demand management in these zones.  
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The feasibility of portfolios is constrained by the mutual exclusivity of certain supply 

interventions and by meeting the minimum Levels of Service (Figure 1-12). The 

problem formulation is defined by Equation 3-1: 

Minimize F(x) = (𝑓𝐶𝑎𝑝𝐶𝑜𝑠𝑡, 𝑓𝑆𝑢𝑝𝐷𝑒𝑓 , 𝑓𝑆𝑢𝑝𝑅𝑒𝑠, −𝑓𝑆𝑢𝑝𝑅𝑒𝑙 , 𝑓𝐸𝑐𝑜 , 𝑓𝐸𝑛𝑒𝑟𝑔𝑦) 

        x ∈  {𝑌𝑖, 𝐶𝑎𝑝𝑖} 

        𝑌𝑖 ∈ {0,1}          ∀𝑖 ∈ 𝛺 

subject to    𝑐𝑘 ≤ 𝐹𝑅𝑘 

                    ∑ 𝑌𝑖 ≤ 1𝑖∈𝑀𝐸  

3-1 

where x is a vector representing a portfolio of supply and demand interventions, Yi is a 

binary variable representing the inclusion of intervention i in portfolio x (1 means the 

intervention is included and 0 not included), Capi is a real variable associated with the 

capacity/release value of intervention i, Ω represents the whole decision space, ck is a 

constraint associated with Level of Service (LoS) k, FRk is the value of maximum 

failure frequency allowed for LoS k, and ME represents the set of mutually exclusive 

interventions. The individual decisions, objectives and constraints are described in more 

detail in the following subsections. 

3.2.1.1. Decisions 

This study considers 7 new supply and 5 demand management interventions for the 

London’s Water Resource Zone (WRZ) chosen from the TWUL’s proposed feasible 

intervention list (Thames Water, 2014). The supply interventions include the Upper 

Thames Reservoir (UTR), River Severn Transfer (RST), Northern Transfer (NT), 

Columbus transfer (CT), South London Artificial Recharge Scheme (SLARS), a water 

reuse scheme and a new desalination plant. Demand management options for London 

WRZ include active leakage control, a pipe repair campaign (i.e., main pipes 

replacement), water efficiency improvements, installation of meters, and 

implementation of seasonal tariffs. The Upper Thames Reservoir, River Severn 

Transfer, and Northern Transfer supply interventions are mutually exclusive where only 

one of these interventions can be implemented within a single portfolio.  The 

interventions are shown in Figure 3-1 and are described in more detail in Table 3-1. The 

uncertainty in available release or demand savings (deployable output in EBSD 

approach) was not considered here as the supply interventions’ releases are simulated 
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during the optimization, i.e. their release changes during the modelling time horizon 

based on water availability in the system, their storage levels and operating rules.  

 

 

Figure 3-1. Current and new possible supply and demand interventions considered as decisions. 

The upper panel shows the location of interventions in the Thames basin whilst the lower panel 

shows the extended Thames IRAS-2010 simulation model schematic. 
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Table 3-1. Supply and demand management interventions considered as decisions. 

Intervention Description Capacity or release  

Demand management interventions 

Active Leakage 

Control (ALC) 

Enhanced levels of “Find and Fix”, 

implementation of further pressure 

management, and trunk main leakage 

management 

2 – 50 ML/day 

reduction in demand 

Pipe repair 

campaign (Pipes) 

Replacement of water mains, 

communication pipes and supply pipes 

to reduce leakage in the distribution 

system. 

165.1 ML/day 

reduction in demand 

Enhanced 

efficiency 

improvements 

(EFI) 

Water efficiency campaigns, retrofitting 

and household and commercial 

customer audit programmes 

11.6 ML/day 

reduction in demand 

Installation of 

smart meters 

(Meters) with 

seasonal tariffs 

(Tariffs) 

Installing smart meters in properties 

with application of seasonal tariffs. 

Tariffs are considered as a decision 

conditional on implementing Meters.  

88.7 ML/day 

reduction in demand 

Supply interventions 

Upper Thames 

Reservoir (UTR) 

A proposed reservoir which would 

release water into the Thames during 

times of low flow and provide constant 

supply to a neighboring area.  

30-150 ML 

River Severn 

Transfer (RST) A proposed unsupported water transfer 

(i.e. without intermediate storage) that 

would bring water from the River 

Severn to the Thames during periods of 

low flow. The transferred volume 

depends on the Hands of Flow (HOF) 

condition for River Severn and 

maximum transfer capacity. 

300 ML/day if 

Severn flow is above 

2,490 MlLd 

0 – 240 ML/day if 

Severn flow is below 

2,490 ML/d but 

above 1,800 ML/d 

0 ML/day if Severn 

flow is below 1,800 

ML/d 

Northern Transfer 

(NT) 

A proposed water transfer that would 

bring water from Northern England to 

the Thames during periods of low flow. 

74 ML/day 

South London 

Artificial Recharge 

Scheme (SLARS) 

A proposed conjunctive use surface-

groundwater recharge scheme that 

would function analogous to the 

existing NLARS. 

5 – 24 ML/day 

Deepham Reuse 

Scheme (DRS) 

A proposed indirect water reuse scheme 

that would provide additional treatment 
25 – 95 ML 
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of wastewater from the Deepham’s 

water treatment works which would be 

pumped into the surface storage 

reservoir 

Columbus Transfer 

(CT) 

A proposed water transfer scheme that 

would bring water from the Dwr Cymru 

Welsh Water area to the River Thames 

during periods of low flow. 

39 ML/day 

Long Reach 

Desalination 

(LRD) 

A possible reverse osmosis treatment 

plant that would desalinate brackish 

groundwater leaking from the Thames 

Tideway and the Chalk aquifer 

underlying the Thames. 

15 ML 

 

3.2.1.2.  Objectives and constraints 

The capital cost objective (fCapCost), as in Matrosov et al (2015), is the annualized capital 

cost of implementing new supply and demand interventions in a portfolio normalized to 

each intervention’s expected design life. This is to provide equal comparison between 

interventions that have unequal design lives. For instance, it may be more practical to 

implement more expensive reservoir that remains functional for 80 years than less 

expensive desalination plant that would however need to be rebuilt after 25 years. The 

capital cost of each implemented intervention is therefore divided by its design life in 

years to assess how much it would cost per year if we assume its total capital cost 

requirement would be spread over the intervention’s life. The total annualized capital 

cost of a portfolio is minimized:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝐶𝑎𝑝𝐶𝑜𝑠𝑡 = ∑[(𝐶𝑎𝑝𝐶𝑜𝑠𝑡𝑖 𝐷𝐿𝑖⁄ ) ∗ 𝑌𝑖]

𝑖

 

3-2 

where CapCosti is the capital cost of implementing intervention i and the DLi is the 

design life of intervention i.  

The supply deficit (fSupDef) objective represents the maximum annual deficit [%] 

experienced by the London demand and is minimized: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑆𝑢𝑝𝐷𝑒𝑓 = max
𝑡

[((𝐷𝑇𝑡 − 𝑀𝑡) 𝐷𝑇𝑡⁄ ) ∗ 100%] 

3-3 
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where DTt is the London’s demand target for year t and Mt is the demand met during 

year t.  

Resilience is defined by how quickly the system recovers from a failure (Moy et al., 

1986). The supply resilience objective (fSupRes) is assessed on the LAS node and the 

failure occurs when the LAS storage level drops below the LTCD Demand level 3 

threshold and the non-essential use ban is brought into effect (Figure 1-12). The 

objective aims to minimize the maximum time period over the whole time horizon 

required to recover from the failure, which refers to a period during which the Demand 

level 3 restrictions are in place: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑆𝑢𝑝𝑅𝑒𝑠 = 𝑚𝑎𝑥𝐷 

3-4 

where D is the failure duration in weeks.  

The supply reliability objective (fSupRel) is also assessed on the LAS node and aims to 

minimize the frequency of failures [%] (Hashimoto et al., 1982). This is similar to 

temporal reliability (Kiritskiy and Menkel, 1952), The reliability therefore maximizes 

the proportion of time over the whole time horizon when the LAS level is above the 

LTCD Demand Level 3 threshold and the Demand level 3 restrictions are not brought 

into effect: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓𝑆𝑢𝑝𝑅𝑒𝑙 = (1 − (𝐹𝑆 𝑆⁄ )) ∗ 100% 

3-5 

where Fs is the number of time-steps (weeks) during which the system was in failure, 

and S is the total number of time-steps within the modeling time horizon.  

The eco-deficit objective (fECO) (Vogel et al., 2007) represents the difference between 

the naturalized low flows and simulated low flows [%] (low flows here denote the flows 

under Q70, i.e., flows that are not exceeded 70% of the record time) at the Teddington 

Weir on the River Thames. The naturalized flows here refer to the river flow where 

there are no TWUL’s abstractions; the objective therefore assesses direct impact of 

TWUL’s abstractions and return flows on the river itself. The higher the difference (i.e., 

deficit), the more the environmental conditions of the river deteriorate due to lower 

water levels than the natural state. Eco-deficit of 0% implies no deficit while 100% eco-

deficit is the largest possible deficit: 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝐸𝑐𝑜 = (|𝐴𝑁𝑄70 − 𝐴𝑆𝑄70| 𝐴𝑁𝑄70⁄ ) ∗ 100%  

3-6 

where ANQ70 is the area under the naturalized flow duration curve (FDC) and ASQ70 is 

the area under the simulated FDC. A flow duration curve (FDC) is a graphical 

representation of the overall variation of a streamflow, usually showing the probability 

of exceedance on the horizontal axis and the magnitude of flow on the vertical axis. 

FDCs provide an estimate of the percentage of time of the considered record during 

which the flow exceeds a particular magnitude. 

The energy objective (fEnergy) quantifies the cost of the average annual energy use of the 

whole supply system including the existing and implemented possible supply 

interventions: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝐸𝑛𝑒𝑟𝑔𝑦 = ((1 𝑇⁄ ) ∗ ∑ ∑ 𝐸𝑖,𝑡

𝑖

𝑇

𝑡=1

) ∗ 𝑈𝑃  

3-7 

where Ei,t is the energy requirement to operate the supply intervention i over each year t, 

T is the total number of years and UP represents the unit price of 1 kWh. The Ei,t is 

based on the release of the particular supply intervention during year t: 

𝐸𝑖,𝑡 = 𝑅𝑖,𝑡 ∗ 𝐸𝑅𝑖 

3-8                         

where Ri,t is the release of the supply intervention i during year t (ML) and ERi is the 

energy requirement for a mega liter of intervention’s i release (kWh/ML). 

The constraints ensure satisfactory reliability of the aggregate surface storage (assessed 

on LAS) that complies with the TWUL specified LoS (Figure 1-12) and are based on 

the occurrence reliability definition (Kiritskiy and Menkel, 1952):  

𝑐𝑘 = [1 − (𝐹𝑘 𝑇⁄ )] ∗ 100% 

3-9  

where k denotes a particular LoS level, Fk is the number of years during which the 

storage volume dropped below the LoS level k. The constraints limit how often storage 

volumes drop below the LTCD demand levels to the maximum frequency of occurrence 

specified by TWUL’s Levels of Service (Figure 1-12).  
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The algorithm implements a constraint based tournament operator where feasible 

solutions are always preferred to infeasible solutions. In general, simulations that do not 

meet these constraints are considered infeasible and are not passed into the archive of 

the MOEA. However, if all solutions are infeasible, the constrained tournament 

selection promotes solutions with the smallest aggregate constraint violations (Deb et 

al., 2002). 

3.2.2. Scenario of future conditions and computational experiment 

The deterministic optimization was performed using a 30-year historical time-series of 

river flows (1970-2000) with a weekly time-step. As in Matrosov et al (2015) this 

implies that we use 30 years of historical hydrology to represent hydrological conditions 

that we assume to be representative of those that may occur in the year 2035. This 30-

year period was chosen to reflect the 25-30 year planning time horizon of WRMPs and 

due to the presence of a major drought between 1975 and 1976 when severe water 

rationing measures were imposed (CIWEM, 2016). 

The water use demand for 2035 of 2,325 Ml/d was estimated by TWUL (Thames 

Water, 2014) based on the WRPG recommendations to incorporate the population 

growth estimations from local authorities and several assumptions such as continuation 

of the current metering policies, maintaining leakage at the 2015 levels, etc. 

(Environment Agency et al., 2012). This value is adjusted for each month of the year by 

applying monthly factors (Table 0-2 in Appendix) used by the Environment Agency’s 

commercial Aquator model. The energy cost estimate for 2035 of 13p/kWh uses the 

Department of Climate and Energy medium forecasts for industrial energy prices 

(Thames Water, 2014). No sustainability reductions, i.e., environmentally motivated 

reductions in licensed abstraction volumes, were considered; the historical trend 

suggests TWUL’s licenses will not change by 2035 (Thames Water, 2014). 

The MOEA optimization was run for 25,000 function evaluations (FEs) 50 times, each 

with a different random seed value to lessen the influence of random number generation 

on the results. As the “true” Pareto optimal set is unknown, close approximation to this 

set was sought (section 1.2.3.1). The reference set (obtained by non-dominated sorting 

of the 50 solution sets where any dominated solution, i.e., a solution that does not 

perform better against any objective when compared to the other solutions, thus is not 

Pareto optimal, is discarded) was almost identical to the Pareto optimal solutions 

obtained from a single seed analysis suggesting the results are very close approximation 

to the true Pareto optimal solutions. 
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3.3.  Results 

3.3.1. Performance trade-offs analysis 

The many-dimensional visualization offers a rich view into high performing 

combinations of interventions and their impacts. This analysis shows how progressively 

visualizing the performance dimensions helps communicate many-dimensional trade-

offs and aids stakeholder understanding and deliberation. 

Firstly, lower dimensional optimization approach results are shown to analyse the 

implications of many-objective optimization on decision making process. Water 

companies incorporate the operational, environmental and social cost in addition to the 

capital cost into the single cost objective. Because the environmental and social costs 

are very difficult to estimate and the estimations might not be accurate we are not 

considering these in the single cost objective optimisation here. The purpose of this 

analysis is to highlight the provision of many alternative plans as well as the process of 

learning about the system’s behaviour. Therefore, the single cost objective in our study 

consists of only the capital cost of portfolios. Considering only a single cost objective 

would provide a single least cost solution shown in a two-dimensional plot in Figure 

3-2a. The horizontal axis represents the capital cost while the vertical axis the reliability 

performance metric. The reliability of the system is constrained to reflect at least the 

minimum required Levels of Service (LoS), i.e. the maximum return periods of 

imposing demand restrictions as specified in Figure 1-12. This constraints the reliability 

metric here that reflects the LoS Level 3, to a minimum of 95% (return period of 1 in 20 

years). However, many times when the London Aggregate Storage falls below the 

Demand Saving Level 3 (Figure 1-12), it also falls below the Demand Saving Level 4 

when standpipes would be imposed. The optimization constraints here ensure such 

demand restriction is never imposed as the LoS Level 4 states (Figure 1-12). To never 

allow for LoS Level 4 failure (i.e. Level 4 reliability to be lower than 100%), the LoS 

Level 3 reliability as a result is constrained by the optimization to 99.2%. Although the 

solution requires the lowest possible capital investment while maintaining the specified 

Levels of Service, its supply reliability performance may still be improved upon. 

Optimizing for capital investments and supply reliability explicitly results in a trade-off 

curve between these conflicting objectives (Figure 3-2b); improving the system’s 

reliability requires higher investments. The trade-off curve provides information about 

how much more capital is required to improve the reliability of the supply by a certain 

amount. Achieving perfect reliability for the lowest possible cost, however, might not 
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satisfy every decision maker preferences. Considering many different objectives 

provides decision makers with better insight into the system’s behaviour and many 

alternative solutions to the problem where improvement in one objective reduces the 

performance in one or more other objectives. 

 

Figure 3-2. Single objective (plot a) and two objective (plot b) deterministic optimisation results. 

Plot b illustrates the trade-off between the capital cost and supply reliability objectives; improving 

reliability performance of the system requires higher capital investments. 

Figure 3-3a shows the full set of Pareto optimal portfolios obtained from the six 

objective optimisation. This two dimensional representation however does not provide 

sufficient insight into how these portfolios differ, potentially hiding decision relevant 

information. The two distinct fronts here show seemingly identical performance. 

Visualizing the Pareto approximate solutions in many dimensions helps to understand 

how the objectives and plans conflict and interact with each other. We show how 

building the understanding of these interactions progressively via visualization analytics 

may aid decision making. 

The colour scale in Figure 3-3b distinguishes the portfolios according to their 

environmental performance, i.e. the eco-deficit objective value. The red points represent 

the highest eco-deficit, i.e., the worst environmental performance, while the blue points 

show the lowest achievable eco-deficit, i.e., the lowest environmental impact. Portfolios 

with the same level of reliability differ in terms of their environmental performance; 

reducing the eco-deficit requires higher capital investment. 



80 

 

 

Figure 3-3. The full set of Pareto approximate portfolios obtained from the six objective 

optimization shown in two dimensions (plot a) and three dimensions (plot b). Adding the colour 

scale to visualize the environmental performance further distinguishes between the portfolios. The 

red solutions illustrate the highest eco-deficit while the blue solutions show the lowest eco-deficit.  

This three dimensional representation provides better means for the analysis but is still 

not sufficient to reveal all the information available to decision makers. We can explore 

the objective space further by adding supply deficit objective values as a “depth” into 

the three dimensional plot (Figure 3-4a) and rotating the view such that the interactions 

between all shown objectives is clearly visible (Figure 3-4b). The figure reveals two 

distinct “fronts” with one front skewed to the right, i.e., higher capital costs (shown on x 

axis in Figure 3-4) are required to achieve identical reliability between the right and left 

fronts. By improving the reliability of the system (downward direction on the vertical 

axis) one can also decrease supply deficits (shown on y axis in Figure 3-4). 

Nevertheless, many perfect reliability solutions (at the bottom plane of the cube in 

Figure 3-4) exhibit varied supply deficit that decreases with higher capital investment.  
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Figure 3-4. Adding 4th dimension, supply deficit, as a “depth” into three dimensional plot (plot a). 

The view in plot b indicates that improving the reliability also lowers the supply deficit.  

To incorporate the two remaining objectives, supply resilience and energy cost, the 

shape of the points representing the Pareto optimal solutions was changed to cones in 

Figure 3-5. The orientation of the cones in Figure 3-5 shows the resilience of the 

portfolios where the cones pointing upwards indicate the worst resilience, i.e., the 

longest maximum duration of LTCD Demand Level 3 failure, while the cones pointing 

downwards show the best achievable resilience. This performance objective is strongly 

correlated with reliability; improving the system’s supply reliability also increases the 

supply resilience, i.e., reduces the duration of the failure state.  

Visualizing the energy cost objective, however, reveals potentially unexpected 

information about the system. This objective is represented by the size of the cones in 

Figure 3-5b where the bigger the cone the higher the average annual operating cost the 

portfolio requires. Both of the two distinct fronts (discussed further in section 3.3.2) 

indicate that improving the system’s engineering and environmental performance 

requires higher energy use. More importantly, the portfolios on the left hand side front 

in Figure 3-5b exhibit higher energy cost requirements than the portfolios on the right 

hand side of the plot. Although the latter require higher capital investment to achieve 

similar engineering performance, these portfolios are also able to achieve lower eco-

deficit (colour in Figure 3-5b) than the former. Furthermore, lower average annual 

energy cost requirements might influence the total long-term cost of a portfolio. 

Decision makers who prefer the system with perfect reliability and good environmental 
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performance that require relatively low energy use may choose a plan from the 

portfolios in the lower part of the right hand side front in Figure 3-5b.   

 

Figure 3-5. Visualizing the resilience (plot a) and energy cost (plot b) objectives by the orientation 

and size of the cones, respectively. Cones pointing upwards indicate worst resilience while cones 

pointing downwards the best resilience; the bigger the cone the higher energy use the portfolio 

requires. Improving the reliability of the system (vertical axis) also increases its resilience but 

requires higher capital investment and energy use. The two distinct fronts differ in the portfolio 

energy requirements where the portfolios on the right hand side front require higher capital cost 

but exhibit lower energy cost than the portfolios on the left hand side front. 

3.3.2. Portfolio analysis 

The results of the many-objective optimization may be analysed further to assess how 

the individual interventions within the portfolios affect the system’s performance. As 

noted by Tsoukias (2008), decision makers find the strict mathematical separation of 

decisions and objectives to be a false construct that can limit decision relevant insights. 

Figure 3-6 displays a combination of both decisions (the intervention choices) and a 

subset of performance metrics. The cardinal axes show the capital cost, supply deficit 

and reliability metrics as in Figures 3-4 and 3-5. Similarly, the size of the cones depicts 

the energy cost requirements. The colour in Figure 3-6a shows the implementation of 

the strategic mutually exclusive supply interventions; the blue portfolios build none of 

these, the green portfolios build the Upper Thames Reservoir (UTR) and the red 

portfolios build the River Severn Transfer (RST). None of the Pareto optimal portfolios 

build the Northern Transfer (NT). When none of these new supply interventions are 

implemented portfolios require the lowest capital investment but have the worst supply 

deficit and reliability. Most of the Pareto optimal portfolios implement the UTR and 

only a fraction implement the RST. The latter (red points in Figure 3-6a) exhibit perfect 

reliability but these portfolios require the highest operating energy use, possibly making 

them impractical in the long-term. The orientation of cones in Figure 3-6a indicates 

implementation of the Pipe repair demand management intervention; cones pointing 
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upwards depict portfolios that include the Pipe repair campaign while cones pointing 

downwards show portfolios that do not. Both panels show a combination of portfolios 

with and without the Pipe repair campaign creating the two distinct fronts. Portfolios 

implementing this intervention require higher capital investment but exhibit better 

environmental performance (colour of cones in Figure 3-5) and demand lower energy 

use (size of cones in Figures 3-5b and 3-6) than the portfolios on the left front. This 

suggests the demand management interventions may help improve the system’s 

performance with reduced energy consumption.  

Panel b of Figure 3-6 illustrates implementation of the Long Reach desalination plant 

(shown by colour) and the Deephams Reuse Scheme (shown by the orientation of the 

cones). Portfolios building the desalination plant (red cones in Figure 3-6b) require 

higher capital investment than portfolios that do not (blue cones in Figure 3-6b) but the 

former improve the environmental performance (shown by colour in Figures 3-4 and 3-

5) for the same levels of supply deficit and reliability than the latter. The building the 

reuse scheme influences the energy cost requirements; portfolios implementing the 

reuse scheme (cones pointing upwards in Figure 3-6b) generally require higher energy 

cost to operate (shown by the size of the cones) than portfolios not implementing the 

reuse (cones pointing downwards in Figure 3-6b). 
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Figure 3-6. Pareto optimal portfolio composition analysis. The cardinal axes show the same 

performance metrics as in Figures 3-4 and 3-5 and the size of the cones refers to the energy cost. 

The colour in panel a shows the implementation of the strategic mutually exclusive supply 

interventions; blue portfolios do not implement any, green portfolios build the reservoir and red 

portfolios build the River Severn Transfer. The orientation of the cones in panel a depicts the 

implementation of the Pipe repair campaign; cones pointing upwards implement the campaign, 

cones pointing downwards do not. The colour in panel b shows the Long Reach desalination plant 

implementation; red portfolios build the plant, blue portfolios do not. The orientation of the cones 

in panel b illustrates the Deephams Reuse scheme implementation; cones pointing upwards build 

the scheme, cones pointing downwards do not. 

To analyse how the individual combinations of interventions, i.e. portfolios, affect the 

performance of the system five representative portfolios are singled out based on their 

performance. These are highlighted in Figure 3-7. The Least Cost portfolio requires the 

lowest initial investment, builds the least infrastructure and shows the worst engineering 

and environmental performance. The Reuse portfolio builds the Deephams reuse 

scheme and achieves the same engineering performance than the Pipe repair portfolio 

implementing the Pipe repair campaign instead with lower capital cost but higher 

energy cost requirements. The RST portfolio builds the River Severn Transfer supply 

intervention, exhibits perfect reliability and resilience but requires the highest energy 

cost to operate. The Highest cost portfolio implements all supply and demand 

management interventions and achieves the best engineering and environmental 

performance but requires the highest initial investment. Please note that even this best 
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performing portfolio cannot achieve 0% supply deficit (its supply deficit is 0.3%), i.e. 

result in any supply-demand balance surplus. 

 

Figure 3-7. Five representative portfolios singled out for further analysis. The Least Cost solution 

requires the lowest initial investment, performs the worst against the engineering and 

environmental metrics and builds the least infrastructure. The Reuse portfolio builds the reuse 

scheme and achieves the same level of engineering performance than the Pipe repair portfolio 

implementing the Pipe repair campaign with lower capital investment but higher energy cost 

requirements than the latter. The RST portfolio builds the River Severn Transfer, has perfect 

reliability and resilience but requires highest energy cost. The Highest cost portfolio achieves the 

best engineering and environmental performance but requires the highest initial investment.  

Table 3-2 details the individual supply and demand management interventions present 

in each representative portfolio as well as the TWUL’s WRMP14 Least Cost and final 

plan interventions. The current TWUL’s WRMP, WRMP14, considered slightly 

updated resource and demand management options as well as many small surface water 

and groundwater schemes. The cost included NPV of the capital, operating and 

environmental and social costs that is different from the capital cost in our study that 

represents average annual undiscounted capital investment only. Furthermore, the 

interventions in WRMP14 plans are scheduled over time whilst our study considers 

only a static snapshot of the system in 2030s. Small schemes such as groundwater 

schemes providing little supply volumes were not considered in our study for simplicity. 

Nevertheless, our results still bear some resemblance to the WRMP14 least cost and 

final plans for London. The latter is a revised more expensive strategy that is more 

sustainable and deliverable than the actual least cost plan identified by the EBSD model 
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(Thames Water, 2014). The former included similar SLARS capacity than our Least 

Cost, updated transfers volume than our Least Cost, and a reuse scheme with higher 

volume and different location than the Deephams Reuse considered in our study, which 

was not available at the time of our study. The Least Cost plan here does not implement 

a reuse scheme. The demand management interventions in WRMP14’s least cost plan 

provide much higher demand savings than Least Cost plan in our study. It is however 

important to note that the EBSD model assumes an intervention is able to provide the 

constant ML/day supply as DO every day of its operation whilst the IRAS simulation 

model is able to simulate more realistic release of each intervention based on the water 

availability in the system. 

Table 3-2. Five selected representative portfolio composition compared to the current TWUL’s 

WRMP14 final plan 

Solution 
Least 

Cost 
Reuse 

Pipe 

repair 
RST 

Highest 

Cost 

WRMP14 

Least-Cost 

WRMP14 

Final Plan 

Supply interventions (ML/day) 

UTR/RST/ 

NT 
× 

UTR 

(149.5) 

UTR 

(75.2) 

RST  

(300) 

UTR 

(149.9) 
× × 

SLARS 22.7 × 17.1 23.4 22.2 23 18 

Deephams 

Reuse 
× 62 × 94.5 95.0 1501 1501 

Columbus 

Transfer 
39 × × 39 39 342 342 

Long Reach 

Desalination 
× × × 15 15 × × 

Small GW 

schemes 
- - - - - 14.4 14.4 

Other 

reductions* 
- - - - - 0 5.7 

Demand management interventions (ML/day demand reduction) 

Active 

Leakage 

Control 

49.2 49.7 49.6 49.8 49.6 

212.23 

20 

Pipe repair 

campaign 
× × 165.1 × 165.1 39 

Efficiency × 11.6 × 11.6 11.6 13 

Meters 88.7 88.7 88.7 88.7 88.7 28.84 

Tariffs       

* Includes commercial reduction from competition and TWUL’s building water 

reduction 
1Beckton Sewage Treatment Works (not available at time of this study) 
22 transfer schemes (each of 17ML/d) represented in this study as Columbus Transfer 
3Leakage, metering and water efficiency all together 
4Resulting from different metering options not available at the time of this study 
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The WRMP final plan implements SLARS with similar capacity to our Pipe repair 

portfolio, a reuse scheme with again higher volume and different location than the 

Deephams Reuse considered in our study, small local transfers and groundwater 

schemes, other savings and all demand management interventions (with updated 

demand saving estimates not available at the time of our study). Nevertheless, the 

WRMP14 states that “three options (transfers, re-use and storage) are proposed to be 

taken forward for more detailed study in AMP6 to give future flexibility…” (Thames 

Water, 2014) which would bear more resemblance to our RST and Highest Cost 

portfolios. 

Figure 3-8 shows the performance metrics of the selected portfolios on a parallel axis 

plot. Each vertical line represents an axis for a specific metric with the preferred 

direction of optimization to be at the bottom of the plot. Each coloured horizontal line 

then represents a particular portfolio – the Least Cost portfolio is shown in red, Reuse in 

purple, Pipe repair in yellow, RST in green, and the Highest Cost in blue. The 

performance metric value is located where a coloured line crosses a corresponding 

vertical axis. Where the coloured lines cross each other between the vertical axes there 

is a trade-off between the adjacent axes, i.e. corresponding metrics. The Least Cost 

solution in our study builds only two small supply interventions (SLARS and Columbus 

transfer) and two demand management interventions (ALC and Meters with Tariffs). 

The Reuse portfolio builds large UTR and small reuse scheme with ALC, Efficiency, 

and Meters with Tariffs. The more expensive Pipe repair portfolio builds small UTR 

and SLARS with ALC, Meters with Tariffs, and Pipe repair campaign. The Pipe repair 

campaign implementation results in higher capital cost but lower energy cost when 

compared to the Reuse portfolio. The difference between the RST and Highest Cost 

portfolios is that the former build RST instead of UTR and does not implement the Pipe 

repair campaign, which results in lower capital cost but worse supply deficit and 

environmental performance as well as significantly higher energy cost when compared 

to the Highest Cost portfolio performance. 
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Figure 3-8. Five selected representative portfolio performance comparison on a parallel axis plot. 

The vertical axes represent performance metrics where the preferred (best) performance is at the 

bottom of axes whilst the worst performance at the top. The coloured lines show the five selected 

portfolios and the table shows each portfolio’s metric values. 

The volumetric glyph and parallel plots show the performance objectives of each 

solution evaluated over the whole of a simulation run.  The use of a simulation model in 

this optimization approach allows for direct performance comparison between any of 

the Pareto optimal plans. Figure 3-9 shows some of the simulated results for the London 

aggregate storage node for each of the five selected portfolios. The plot serves as a 

reminder that each cone or point in the Pareto-approximate plots is backed up by a 

detailed and realistic system simulation. The Highest Cost portfolio sees the least 

drawdown of the London Aggregate Storage (LAS) node.  The Least Cost portfolio (red 

line in Figure 3-9) performs most poorly; the RST and Highest Cost portfolios (green 

line and dark blue dashed line in Figure 3-9, respectively) have the lowest drawdown 

not crossing the LTCD Demand Level 1 (shown by the light dashed blue curve) with the 

latter maintaining higher level of the LAS storage in autumn 1997. 
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Figure 3-9. Simulated London Aggregate Storage drawdown for the five representative portfolios. 

3.4.  Discussion 

3.4.1. Many-objective optimization 

Water resource systems serve stakeholders with complex and varying interests who may 

have differing preferences regarding how the system should be able to adapt in the 

context of future uncertainty (Heffernan, 2012). It is therefore desirable to integrate 

these multiple needs in the decision making process (Simpson, 2014) and provide 

decision-makers with the ability to consider the broader consequences of various 

decisions (Loucks, 2012). Multi-objective optimization allows planners to incorporate 

different and often conflicting preferences into decision making. Optimizing for these 

preferences explicitly, without the need to monetize and aggregate them into a single 

objective, allows decision makers to visually assess the trade-offs that different 

investments imply. Trade-offs can facilitate stakeholder deliberations post optimization 

and provide planners with a rich view into high performing intervention portfolios that 

otherwise would remain hidden if lower dimensional analysis (monetary only) was 

used. In the Thames basin, reducing capital investments negatively affects the 

engineering and environmental performance of the system Figure 3-5). Higher capital 

investment results in maintaining good engineering and environmental performance 
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whilst saving on energy costs. Decision makers who value reliability and good 

environmental performance without a large increase in energy use may choose a plan 

from the portfolios in the lower part of the right front in Figure 3-5.  

3.4.2. Visual analytics 

Visualizing the Pareto optimal set of solutions in the many-dimensional objective space 

allows decision makers to discover how the different system performance criteria 

conflict and interact with each other. Visualization of trade-offs in multiple dimensions 

is well suited for situations where stakeholders have diverse interests. For instance, an 

environmental regulator could be interested in how different portfolios impact the 

environmental flows downstream of abstraction sites while water companies could be 

interested in seeing how well portfolios meet service reliability requirements. 

Visualizing and exploring the Pareto optimal portfolios progressively, as was shown in 

Figures 3-3 – 3-5 may aid the learning and decision making process and help justify to 

interested parties why a certain plan was selected. Decision makers are given the 

opportunity to decide the balance between performance preferences in the planning 

process a posteriori.  

The analysis presented here demonstrated that it is important to exploit visual analytics 

to promote linked views of both performance objectives and investment decision 

variables simultaneously. Figure 3-6 showed how the Thames system’s Pareto optimal 

portfolios ‘cluster’ into distinct suites of water supply and demand management 

interventions. Visualizing these diverse groups of portfolios in performance space 

provides decision makers with a rich perspective on key decision trade-offs and 

significant flexibility when choosing alternatives for further consideration. Decision 

makers can quickly build a mental map of the consequences of including certain 

interventions in their plans. The parallel axes plot in Figure 3-8 allows for visualizing 

multiple dimensions (performance metrics) “in parallel” on a single plot. Such 

representation is particularly suitable for demonstrating to decision makers how a small 

number of solutions can be compared directly against many performance metrics.    

3.4.3. Uncertainty of future supply and demand 

A limitation of the application described here is its consideration of one set of future 

conditions: it assumes historical inflows are representative of future plausible ones and 

that future demands, energy prices and abstraction license conditions are known. The 

historical record used in this study contains several stress events and therefore provides 

a useful stress test for future system designs. A 30-year historical hydrological record is 
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used in the current planning framework English water companies use which was also 

applied here. This deterministic study provides a baseline against which results from a 

future stochastic or multi-scenario optimization seeking robustness could be compared. 

3.4.4. Practical use of the proposed approach 

The current modelling to assist water supply-demand planning in the UK uses single 

objective least-cost optimization subject to reliability constraints (Padula et al., 2013). 

In the approach proposed here, the use of a water resource simulator allows 

performance metrics to be measured in diverse units familiar to stakeholders who may 

not agree on how or whether metrics should be monetized. As such the approach 

presented here is a contribution towards improved water planning for water utilities. 

Matrosov et al. (2013a,b) apply simulation-based water planning approaches on a UK 

case-study (Robust Decision Making and Info-Gap Analysis) and contrast them to the 

current regulator approved least-cost optimization approach. Borgomeo et al. (2014) 

present a risk-based framework that uses simulation to incorporate climate change 

projections into water resource planning.  These simulation-based system design 

approaches allow considering engineering, economic and environmental performance in 

greater detail, but they do not consider all combinations of proposed interventions as 

economic optimization does. A few options with ranges of possible capacities (even if 

coarsely discretized) quickly lead to an exponential number of possible intervention 

portfolios to try. Simulation based approaches such as those applied by Matrosov et al 

(2013 a,b) can be criticized for choosing to evaluate in depth portfolios of options that 

are to some extent arbitrarily defined. The approach presented here frees planners from 

having to choose a priori which portfolios of interventions (at fixed capacities) to 

evaluate; instead here the search for the most promising groupings of options and their 

capacities is automated.  

If trusted simulators are used in the proposed analysis, and performance metrics used in 

the optimization have been defined with stakeholders (Herman et al, 2015), the Pareto 

optimal solutions will likely be of interest to decision makers. The IRAS-2010 Thames 

basin simulator used in this study was shown to accurately emulate the TWUL’s 

simulation model WARMS (section 2.1.2) and the performance metrics were discussed 

with TWUL. 
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3.5.  Conclusion 

Water resource system and water supply planning are inherently multi-objective 

problems where decision makers must balance complex priorities such as costs, 

reliability, ecosystem services, etc. Single-objective planning such as least cost 

optimization gives planners only part of the picture when designing real systems where 

many aspects of system performance are relevant. Even if all system goals can and have 

been translated to one commensurate unit system (typically monetary), planners would 

lack the ability to understand the trade-offs embodied by different plans. This chapter 

presented Thames basin water resources supply system design optimization problem 

with 7 simultaneous objectives: minimizing capital and operating costs while 

maximizing environmental performance and engineering performance metrics such as 

supply deficit, resilience and reliability.  The objectives were subject to regulatory 

supply reliability constraints.  

Visual analytics was used to explore the Pareto optimal solutions in a multi-dimensional 

trade-off space. Adding dimensions progressively helps decision makers to navigate the 

trade-off space and gain understanding of how their preferences interact and conflict. 

Multi-dimensional plots aid analysts and decision makers see how individual 

interventions affect performance of the system in each dimension. Portfolios which 

share certain interventions were seen in some cases to cluster in some parts of the 

decision space showing that choosing certain options leads to certain types of 

performance. Conversely, other parts of the Pareto optimal front revealed that quite 

different portfolios had similar performance. Together the graphics underline the 

complexity of selecting interventions in complex human-natural systems when many 

metrics of performance are relevant and the richness of information communicable 

through a multi-objective search-based approach. The visual analytics graphics allow 

stakeholders and decision makers to assess trade-offs between objectives and show how 

different interventions and portfolios of interventions map to those trade-offs. 
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4. Chapter 4 – Multi-scenario many-objective 
optimization 

4.1.  Introduction 

This chapter describes a planning approach that explicitly considers both multiple 

sources of uncertainty and multiple evaluation objectives. In the proposed system 

design screening framework here the goal of robustness and resilience is incorporated 

explicitly into an automated intervention selection process. This contrasts with common 

approaches where robustness and resilience are evaluated post-optimization using 

sensitivity analyses (e.g. Thames Water, 2014). This provides analysts with a high 

performing set of robust system designs and the associated trade-offs in benefits implied 

by intervention choices. The benefits of incorporating multiple sources of uncertainty 

into a multi-objective decision making process are demonstrated; the analysis shows 

how considering only historical data can lead to poorly performing system designs 

under hydrological futures considered plausible by national climate model results 

(Centre for Ecology & Hydrology, 2015). 

This study proposes a multi-scenario multi-objective decision-making approach which 

addresses some limitations of the current planning approach. Several conflicting 

performance goals including the financial, engineering and environmental performance 

are considered explicitly. Multiple sources of uncertainty in the form of scenarios 

considered relevant by stakeholders are used in an automated search for robust 

combinations of interventions. The ensemble of scenarios consists of climate change 

impacted hydrological flows, plausible water demands, environmentally motivated 

abstraction reductions, and future energy prices. The approach is demonstrated by 

exploring portfolios of alternative water infrastructure and conservation investments for 

London’s water supply for an estimate of conditions in 2035. Visual analytics is used to 

investigate the trade-offs between performance goals and communicate the influence of 

specific interventions on a portfolio’s performance. Robust portfolios from a multi-

scenario search are compared to those developed when considering only historical 

conditions to highlight the benefits of explicitly considering multiple futures within the 

investment portfolio search. Visualizing the individual interventions implemented in the 

identified portfolios from both single and multi-scenario search aids the exploration of 

how the options affect the robustness of the system. The proposed multi-scenario 

efficient trade-off analysis is a valuable investment screening tool for utility planners 
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identifying robust infrastructure and conservation investment bundles that provide 

benefits over a wide range of future conditions. Such an approach is particularly 

valuable where decisions on resource development are contested and trade-offs need to 

be negotiated with stakeholders interested in a diverse set of definitions for desirable 

system performance. 

The approach is described in section 4.2 which details the optimization formulation and 

the scenarios of future conditions. Results are presented in section 4.3 and discussed in 

section 4.4. The chapter concludes with section 4.5. 

4.2.  Methodology  

4.2.1. Problem formulation 

In the multi-scenario optimization portfolios are identified as robust when they perform 

satisfactorily well over the considered range of external conditions in the form of 

scenarios. The performance metrics are calculated for each future scenario in the same 

way as for the deterministic case. We then calculate the average and the worst 95th 

percentile of values obtained from all scenarios to assess performance across the 

ensemble of scenarios. The percentile values here do not have a probabilistic 

interpretation but refer to the fraction of considered cases where an outcome occurs. 

Water planners are typically risk averse and will want to consider system performance 

under stressful conditions. The worst 95th percentile performance value reflects how a 

candidate solution would perform if nearly worst-case conditions occurred and is 

applied to metrics related to system failure (in our study, deficit, reliability and 

resilience).  

The feasibility of portfolios is again constrained by the mutual exclusivity of certain 

supply interventions and by meeting the minimum Levels of Service across the 

ensemble of scenarios (Figure 1-12). In this work we assume water managers are 

interested in solutions that are able to satisfy today’s minimum performance levels over 

a wide range of plausible future conditions. For this reason, current Levels of Service 

are applied to all future scenarios as constraints. The failure frequency, i.e., the 

maximum allowed frequency of imposing demand restrictions (Figure 1-12), is 

calculated for each scenario. If a candidate solution violates any of the constraints in 

any scenario, it is not brought forward into the trade-off space. Keeping the current 

Levels of Service limits the solutions to only those that would be acceptable under 

current planning goals. This does not consider that, in response to a changing climate, 
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future managers may decide 2015-era Levels of Service are too strict. The problem 

formulation is of the same format as defined by Equation 3-1 in section 3.2.1. 

4.2.1.1.  Decisions 

The same decisions as in the deterministic approach described in the previous chapter in 

section 3.2.1.1 are considered here to be able to directly compare the portfolios. 

4.2.1.2.  Objectives and constraints 

The objectives and constraints here are calculated in the same way as for the 

deterministic optimization (section 3.2.1.2) with the difference of statistical analysis of 

the values across multiple scenarios considered here. The equations are therefore 

adjusted as follows. 

The capital cost objective (fCapCost) is assessed as in the deterministic optimization and 

as described by Equation 3-2. The capital cost of a portfolio remains the same across all 

possible futures as it depends only on the implemented decisions. 

The supply deficit (fSupDef) objective represents the maximum annual deficit [%] 

experienced by the London demand and is minimized: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑃95
[𝑓𝑆𝑢𝑝𝐷𝑒𝑓 = max

𝑡
[((𝐷𝑇𝑡 − 𝑀𝑡) 𝐷𝑇𝑡⁄ ) ∗ 100%]]

𝑃
 

4-1                                                              

where P represents the percentile of the set of objective values across the whole 

ensemble of scenarios, P95 is the value at the worst 95th percentile, DTt is the London’s 

demand target for year t and Mt is the demand met during year t.  

The supply resilience objective (fSupRes) is assessed on the LAS node and the failure 

occurs when the LAS storage level drops below the LTCD Demand level 3 threshold 

and the non-essential use ban is brought into effect. The objective aims to minimize the 

maximum time period over the whole time horizon required to recover from the failure, 

which refers to a period during which the Demand level 3 restrictions are in place: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑃95
 [𝑓𝑆𝑢𝑝𝑅𝑒𝑠 = 𝑚𝑎𝑥𝐷]

𝑃
 

4-2                                                                                                                                   

where D is the failure duration in weeks.  

The supply reliability objective (fSupRel) is also assessed on the LAS node nd maximizes 

the proportion of time over the whole time horizon when the LAS level is above the 
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LTCD Demand Level 3 threshold and the Demand level 3 restrictions are not brought 

into effect: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑃95
 [𝑓𝑆𝑢𝑝𝑅𝑒𝑙 = (1 − (𝐹𝑆 𝑆⁄ )) ∗ 100%]

𝑃
 

4-3                                       

where Fs is the number of time-steps (weeks) during which the system was in failure, 

and S is the total number of time-steps within the modelling time horizon.  

The eco-deficit objective (fECO) (Vogel et al., 2007) represents the difference between 

the naturalized low flows and simulated low flows [%] (low flows here denote the flows 

under Q70, i.e., flows that are not exceeded 70% of the record time) at the Teddington 

Weir on the River Thames. The naturalized flows here refer to the river flow where 

there are no TWUL’s abstractions; the objective therefore assesses direct impact of 

TWUL’s abstractions and return flows on the river itself. The higher the difference (i.e., 

deficit), the more the environmental conditions of the river deteriorate due to lower 

water levels than the natural state. Eco-deficit of 0% implies no deficit while 100% eco-

deficit is the largest possible deficit: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝐴𝑣𝑒𝑟𝑎𝑔𝑒  [𝑓𝐸𝑐𝑜 = (|𝐴𝑁𝑄70 − 𝐴𝑆𝑄70| 𝐴𝑁𝑄70⁄ ) ∗ 100%]
𝑃

 

4-4 

where ANQ70 is the area under the naturalized flow duration curve (FDC) and ASQ70 is 

the area under the simulated FDC. The eco-deficit metric calculation for each scenario 

simulation is associated with the difference between natural and simulated (after all 

abstractions and return flows to the system) low flows, which are defined as flows that 

are exceeded more than 70% of the flow record (flows below Q70). This percentage 

deviation is different at different flows. The traditional Environmental Flow Indicators 

in the UK are assessed against Q10, Q30, Q70 and Q95. The Q70 and Q95 flows are 

generally projected by the Future Flows to decrease (Centre for Ecology & Hydrology). 

As the difference between the flow duration curves is usually very small towards the 

100% the Q70 was chosen in this project to reflect the eco-deficit metric. 

The energy objective (fEnergy) quantifies the cost of the average annual energy use of the 

whole supply system including the existing and implemented possible supply 

interventions: 



97 
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𝑖

𝑇

𝑡=1

) ∗ 𝑈𝑃 ]

𝑃

  

4-5              

where Ei,t is the energy requirement to operate the supply intervention i over each year t, 

T is the total number of years and UP represents the unit price of 1 kWh. The Ei,t is 

based on the release of the particular supply intervention during year t and is calculated 

in the same way as detailed in Equation 3-8. 

The constraints ensure satisfactory reliability of the aggregate surface storage (assessed 

on LAS) that complies with the TWUL specified LoS (Figure 1-12) and are calculated 

for each scenario in the same way as specified by Equation 3-9. If a solution violates 

any constraint in any scenario it is considered unsatisfactory and not robust. 

4.2.2. Scenarios of future conditions 

One of the most widely applied approaches to incorporate uncertainties into planning is 

using scenarios of plausible future conditions. The economic regulator for the UK water 

industry Ofwat (Ofwat, 2013) requires water companies to assess key risks of their 

proposed plan. Planners evaluate these risks post optimization by testing their preferred 

plans against plausible futures using scenario simulation. However, the considered 

resource options’ daily supply (deployable output) used in the search for least-cost 

portfolio is still estimated considering only baseline historical conditions. TWUL 

identified and used for scenario testing four external conditions with the highest 

potential to adversely impact their water resources system, based on Ofwat’s 

recommendations (Thames Water, 2014). These include climate change impact on 

hydrological flows, demand growth, sustainability reductions from stricter 

environmental regulations and energy prices. The scenarios for the four uncertainties 

were selected by TWUL to span the range of conditions that they would like their 

system to be able to respond to (Thames Water, 2014). For the purpose of our study we 

use the same scenarios as identified by TWUL and consider all of their possible 

combinations for the simplicity and ease of communication. The ensemble, which is 

incorporated within the optimization, includes 11 hydrological flow scenarios, 2 

demand levels, 2 sustainability reductions levels and 2 energy price scenarios resulting 

in the total of 88 scenarios of future conditions (Table 4-1).  
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Table 4-1. Future scenarios. All combinations of future conditions were considered in the multi-

scenario robust optimization 

Uncertainty dimension Number of scenarios Future conditions 

Hydrology 11 See section 4.2.2.1 

Water demand 2 
2,325 ML/day 

2,558 ML/day 

‘Sustainability reductions’ 

to water licenses 
2 

No reduction  

(current licensed) 

Total of 175 ML/day 

reduction 
Energy unit price 2 

13 p/kWh 

35 p/kWh 

Total number of 

scenarios 
88  

 

4.2.2.1.  Supply side scenarios 

The WRPG guidelines (Environment Agency et al., 2012) require assessing the effects 

of climate change on the supply availability and recommend four different approaches 

to do so. Two of these approaches use 11 Future Flows (FFs) hydrological flow 

scenarios. The FF scenarios represent equally probable hydrological scenarios 

characterized by future climate change impacted river flow time-series. The time-series 

were developed by the ‘Future Flows and Groundwater Levels’ project (Prudhomme et 

al., 2013) and are available from the National River Flow Archive (NRFA) online 

database (Centre for Ecology & Hydrology, 2012). The scenarios were derived from the 

set of transient climate projections obtained from the Met Office Hadley Centre 

Regional Climate Model (HadRM3-PPE) by dynamically downscaling the global 

climate model (Hadley Centre for Climate Predictions and Research, 2008). The model 

was run for the UK climate projections under the historical and medium emissions 

scenario (SRES A1B) and was also used to derive the UK Climate Projections scenarios 

produced in 2009 (UKCP09) (Murphy et al., 2009). TWUL applied FFs for their 

scenario testing (Thames Water, 2014). The SRES emission scenarios (IPCC, 2000) 

provide emission projections assuming no mitigation policies; the IPCC has recently 

produced the Representative Concentration Pathways (RCP) scenarios that take into 

account the current legislation on air pollutants projecting lower anthropogenic 

emissions (Kirtman et al., 2013). Climate projections obtained using the RCP scenarios 

may therefore provide different magnitude of change for temperature and precipitation.   

The flow time-series for the Thames basin were generated by the hybrid hydrological 

model CLASSIC (Crooks and Naden, 2007), a semi-distributed grid-based rainfall–
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runoff model that uses a combination of regionalized and catchment calibrated 

parameters. The entire time series of all 11 members of the Future Flows scenario 

ensemble (afgcx, afixa, afixc, afixh, afixi, afixj, afixk, afixl, afixm, afixo, and afixq) 

covers the period between 1950 and 2098 (Prudhomme et al., 2013). 

This study uses a 30-year period (2020 - 2050) of all 11 scenarios for simulating 

demands and energy prices estimated for 2035 where each of these 30 years is assumed 

to represent possible conditions in the year 2035. The study considers only conditions at 

the projected planning year of 2035. Using transient flow time-series may not be 

appropriate as time continuation is not represented. We used the Mann-Kendall trend 

test to detect and confirm any transient characteristics of all 11 scenarios. The Mann-

Kendall trend test (Kendall, 1975; Mann, 1945) is a non-parametric test widely used to 

detect significant trends in time-series. It is insensitive to outliers thus particularly 

suitable for hydrologic time-series trend analysis (Hamed, 2008). A significant 

statistical trend is present when the absolute value of Kendall’s tau, which ranges 

between -1 and 1, is near 1 (Helsel and Hirsch, 2002). The analysis of the whole 148-

year period confirmed the presence of a trend in all scenarios with the risk of rejecting 

the H0 or “no trend” hypothesis lower than 0.5%. Two scenarios (afixc and afixh) 

showed increasing trend in flow volumes over time (i.e., increasing year by year) while 

the other 9 were characterized by a decreasing trend. However, the test cannot confirm 

the presence of a trend with significance level of 5% or higher in 6 scenarios between 

2020 and 2050 while the absolute value of the Kendall’s tau statistic with the same 

significance level for the other 5 scenarios does not exceed values above 0.1. Due to the 

short time span this period may be used for an analysis that is concerned only with a 

static snapshot of a system’s performance in time (Ferguson et al., 2013; Knapp and 

Trainor, 2013). This study uses the 30-year period (2020 - 2050) of all 11 scenarios for 

simulating demands and energy prices estimated for 2035 where each of these 30 years 

is assumed to represent possible conditions in the year 2035. 

The left panel of Figure 4-1 shows the flow duration curves (FDCs) for low flows at 

Teddington (low flows here denote flows below Q70). A flow duration curve (FDC) is a 

graphical representation of the overall variation of a streamflow, usually showing the 

probability of exceedance on the horizontal axis and the magnitude of flow on the 

vertical axis. FDCs provide an estimate of the percentage of time of the considered 

record during which the flow exceeds a particular magnitude. The FFs scenarios reflect 

the period from 2020-2050 while the historical record (shown by a red dashed line in 
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the left panel of Figure 4-1) reflects the years 1970-2000. The latter was chosen for the  

deterministic study due to the high impact drought in 1976 (Burke et al., 2010) which 

required extreme water demand saving measures and water rationing. The left panel of 

Figure 4-1 indicates the low flows of the historical record fall in the middle of the FFs 

scenarios where the afixh scenario is the wettest and the afixa scenario the driest.    

The pattern of flows, particularly the duration and timing of extreme events, can also 

affect the water supply systems performance. These patterns are not seen in the FDCs. 

The right panel of Figure 4-1 illustrates the difference in flow patterns across the 11 FFs 

scenarios compared to the historical flow record for an example two year period. There 

is a large variation of peak and low flows between scenarios. For instance, the afixm 

scenario (shown by the yellow line in the right panel of Figure 4-1) follows the 

historical record (shown by the red dashed line in the right panel of Figure 4-1) in 2025 

but exhibits higher flows in winter 2026 and lower flows in winter 2027 than the 

historical series. Scenarios afgcx and afixj (dark blue and green lines in the right panel 

of Figure 4-1, respectively) show high flows in spring 2025 when the historical record 

exhibits low flows. 

 

Figure 4-1. Flow duration curve comparison for low flows (below Q70) between the Future Flows 

scenarios (2020-2050) and the historical flows (1970-2000, shown by the red dashed line) at 

Teddington Weir in Kingston on the River Thames (left panel). The afixa scenario is the driest 

while the afixh the wettest. The right panel illustrates the hydrological flow pattern comparison 

between the Future Flows scenarios (2025-27) and the historical flows (1975-77, shown by the red 

dashed line). 

4.2.2.2.  Socio-economic and regulatory scenarios 

The scenarios representing the socio-economic and regulatory uncertainties for the year 

2035 were chosen based on TWUL’s estimates (Thames Water, 2014) and the Ofwat’s 

recommendations (Ofwat, 2013). The socio-economic uncertainty is represented by two 

demand projection scenarios and two energy prices scenarios. The two demand 

scenarios use the estimate of demands for 2035 of 2,325 Ml/d, as in the deterministic 
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approach in Chapter 3, and 2,558 Ml/d, a 10% increase. These values are adjusted for 

each month of the year by applying monthly factors used by the Environment Agency’s 

commercial Aquator model. The demand of 2,325 Ml/d was estimated by TWUL 

(Thames Water, 2014) based on the WRPG recommendations to incorporate the 

population growth estimations from local authorities and several assumptions such as 

continuation of the current metering policies, maintaining leakage at the 2015 levels, 

etc. (Environment Agency et al., 2012). The 10% increase is used by TWUL to account 

for the errors in estimates (Thames Water, 2014). 

The energy price scenarios include an energy cost of 13p/kWh and 35p/kWh. The 

estimate of 13p/kWh was applied in the deterministic approach and uses the Department 

of Climate and Energy medium forecasts for industrial energy prices. The increase to 

35p/kWh was estimated by TWUL by doubling the forecasted price to account for 

possible carbon price increases, network replacements and upgrades, energy price 

increases, etc. (Thames Water, 2014).    

The institutional uncertainty is represented by two sustainability reduction scenarios. 

These reflect a possible reduction in the licensed abstraction volumes for water 

companies. TWUL currently abstracts from several locations on the River Thames and 

River Lee. The IRAS-2010 Thames model aggregates the surface water abstractions to a 

single abstraction node upstream of Teddington Weir on the River Thames and 

downstream of Feildes Weir on the River Lee, as well as a single groundwater 

abstraction point for the whole basin. The reductions are therefore applied to these 

single abstraction nodes. One scenario assumes no license change (i.e., that the 

company will be able to abstract the current volumes in 2035 as was considered in the 

deterministic study) while the other includes a reduction of 25 ML/d in groundwater and 

100 ML/d and 50 ML/d in surface water from the River Thames and River Lee, 

respectively, provided by the Environment Agency as a plausible future reduction 

(Thames Water, 2014).   

4.2.3. Computational experiment 

The MOEA algorithm in the multi-scenario optimization was run for 50,000 FEs with 

10 random seeds. In the multi-scenario runs, a higher number of function evaluations 

than in the deterministic optimization (section 3.2.2) were required due to the 

computational complexity of solving that case. Fewer random seeds (10) were used here 

than in the deterministic case (50) in order to reduce the computational burden. The 
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obtained reference set again closely resembles the Pareto optimal solutions from a 

single seed analysis suggesting a close approximation to the true Pareto optimal set. 

4.2.4. Comparison with deterministic approach 

Least-cost optimal plans are typically identified using baseline historical conditions and 

tested against multiple realizations of future conditions, particularly in the UK planning 

context (Environment Agency et al., 2012; Thames Water, 2013). Linking to this 

standard evaluation scheme a many-objective approach is applied here considering a 

range of supply and demand management interventions as decisions and a combination 

of financial, engineering and environmental objectives (detailed in sections 3.2.1 and 

4.2.1). A deterministic baseline described in Chapter 3 was developed using only 

historical hydrological conditions and demands estimated for the year 2035 (i.e., a 

single deterministic scenario of the future) as a preliminary screening for the Thames 

basin water supply and demand investments. Here a multi-scenario many-objective 

optimization approach that incorporates multiple plausible realizations of future 

conditions of concern to planners with the same problem formulation as in the 

deterministic approach, with the only difference being that the objective values are 

assessed across the ensemble of scenarios, is implemented. Decisions are evaluated 

against all possible combinations of considered future changes in external conditions; 

solutions that work well across the multiple future states are sought via the multi-

objective multi-scenario optimization. The results of the two approaches are then 

compared. Lastly, solutions from the deterministic optimization are subjected to the 

multiple scenarios of the 2nd problem. Deterministic solution performance is contrasted 

with that of the multi-scenario solutions to assess the advantages of considering 

multiple futures whilst searching. Figure 4-2 illustrates the steps performed in this 

study. 
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Figure 4-2. Flow chart showing the steps of the approach followed in this study. Two separate 

optimizations, deterministic (left), described in Chapter 3, and multi-scenario (right), were 

performed and the results analysed. The deterministic solutions were then simulated against the 

multiple scenarios and their performance was compared to that of the multi-scenario solutions. 

4.3.  Results 

4.3.1. Comparison of deterministic and multi-scenario optimization results 

4.3.1.1.  Portfolio performance 

Figure 4-3 illustrates how the Pareto optimal front changes when we incorporate 

multiple sources of uncertainty in the form of scenarios into the optimization. The 

individual objectives are represented as for the deterministic analysis in Figure 3-5. The 

cardinal axes show the capital cost, supply deficit and reliability and the arrows point 

towards the direction of preference, i.e., ideal solution. The colour of the cones shows 

environmental performance; blue cones exhibit the best environmental performance 

whilst the red cones the worst. The orientation of the cones depicts the resilience and 

their size the energy cost requirements; cones pointing downwards of the smallest size 

have the best resilience and require the lowest energy cost and vice versa. The 

translucent points here show the deterministic optimization results analysed in the 

previous chapter while the full coloured points show the multi-scenario optimization 
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Pareto optimal portfolios. The figure indicates the uncertainties cause the objective 

space to shrink and shift slightly towards the right hand side of the cube, i.e., towards 

higher capital investment. Achieving absolute reliability under a range of plausible 

futures requires higher capital investment than when only deterministic conditions are 

considered. The range of the objective values is lower for the multi-scenario solutions 

than for the deterministic solutions. For instance, the annualized capital cost of 

portfolios varies between £18.2m/a and £65.6m/a for the former while the latter has 

values between £9.1m/a and £64.4m/a. This suggests that the higher variability of 

external conditions requires higher capital investment to maintain good engineering and 

environmental performance.  

The multi-scenario optimization solutions (full-coloured cones in Figure 4-3) achieve 

similar levels of reliability and resilience in varied conditions with better environmental 

performance at the expense of higher capital and operating costs as compared to the 

deterministic solutions (translucent cones). It is worth noting, however, that the highest 

energy cost value does not significantly exceed the highest value obtained by 

deterministic optimization. The similar engineering performance of the two Pareto 

optimal sets of portfolios can be explained by the Levels of Service constraints ensuring 

the acceptability of the system’s behaviour under varying future conditions. The two 

distinct fronts present in the multi-scenario results differ in terms of the operating cost 

requirements as was the case in the deterministic solution set (Figure 3-5).  
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Figure 4-3. Multi-scenario Pareto optimal portfolio trade-offs (full colour cones) compared to the 

deterministic Pareto optimal portfolio trade-offs (translucent cones). The multi-scenario 

optimization objective space shrinks and shifts towards higher capital and energy cost 

requirements (i.e., the full colour cones positioned further from the ideal point on the capital cost 

axis and bigger than the translucent cones). These multi-scenario efficient portfolios attain good 

engineering performance despite the higher variability of stresses while outperforming the 

deterministic portfolios in the ecological objective (colour scale). Please note that the translucent 

deterministic solutions and the full coloured multi-scenario solutions were evaluated against 

different future conditions and are therefore not directly comparable. The plot highlights how the 

optimal space changes and shifts when multiple sources of uncertainty are considered. 

4.3.1.2.  Portfolio composition 

Figure 4-4 compares portfolio composition (i.e., how interventions map to the 

performance objective space) between the deterministic (left) and multi-scenario (right) 

results in the same view as shown in Figure 4-3. The size of the cones illustrates the 

energy cost requirements of portfolios. The colour represents the implementation of the 

mutually exclusive supply options; green cones show portfolios that include the Upper 

Thames Reservoir (UTR), the red coloured portfolios incorporate the unsupported River 

Severn Transfer (RST), and blue cones depict portfolios that do not implement any of 

these. The deterministic Pareto optimal portfolios implement a combination of these. 

When none of these new supply interventions are implemented portfolios require the 

lowest capital investment but have the worst supply reliability. Most of the Pareto 

optimal portfolios implement the UTR and only a fraction implement the RST. The 
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latter (red points in Figure 4-4) exhibit perfect reliability but these portfolios require the 

highest operating energy use, possibly making them impractical in the long-term. None 

of the multi-scenario Pareto optimal portfolios (right panel in Figure 4-4) implement the 

transfer intervention which requires higher capital and operating costs than the 

reservoir; all build the UTR reservoir.  

 

Figure 4-4. Comparison of portfolio composition between the deterministic and multi-scenario 

Pareto optimal solutions. The cardinal axes show the same objectives as in Figure 4-3. Cone size 

represents the portfolio energy cost while colour shows which of the mutually exclusive supply 

interventions was implemented. Cone orientation indicates whether or not each portfolio 

implemented the London pipe repair campaign. Implementing (lighter coloured cones pointing 

upwards) or not implementing (darker coloured cones pointing downwards) the pipe repairs 

divides the trade-off space into two distinct fronts. 

The orientation of cones in Figure 4-4 indicates implementation of the Pipe repair 

demand management intervention for the London Water Resource Zone (WRZ); cones 

pointing upwards depict portfolios that include the Pipe repair campaign while cones 

pointing downwards show portfolios that do not. Both panels show a combination of 

portfolios with and without the Pipe repair campaign creating the two distinct fronts. 

Portfolios implementing this intervention require higher capital investment but exhibit 

better environmental performance (colour of cones in Figure 4-3) and demand lower 

energy use (size of cones in Figure 4-4) than the portfolios on the left front. This 

suggests the demand management interventions may help improve the system’s 

performance with reduced energy consumption. All of the multi-scenario Pareto optimal 

solutions implement all the other demand management interventions for the London 

WRZ (i.e., active leakage control, efficiency improvement, metering, and seasonal 

tariffs). Demand management interventions may therefore be considered to increase the 

robustness of plans against uncertain future conditions.     
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4.3.2. How deterministic solutions would perform under uncertainty 

Intervention portfolios developed whilst considering only historical conditions (i.e., 

deterministic optimization) might not perform well under conditions that are possible in 

an uncertain future. To demonstrate the potential bias in this approach we select six 

representative solutions (supply and demand management portfolios) from the 

deterministic Pareto optimal front. The six portfolios are highlighted in Figure 4-5 by 

full colour points while the translucent points depict the whole set of Pareto optimal 

solutions from the deterministic (left) and multi-scenario (right) optimization. The 

portfolios are distinguished by indicative names reflecting their capital investment 

requirements or implementation of one of the mutually exclusive supply interventions. 

The Least Cost portfolio does not implement any of the mutually exclusive strategic 

supply interventions and requires the lowest capital investment. The Reservoir 1 and 2 

portfolios build the UTR, exhibit the same performance against the reliability objective 

but differ in the capital investment requirements. The more expensive Reservoir 2 

portfolio implements the Pipe repair campaign demand management intervention for the 

London WRZ, while the cheaper Reservoir 1 portfolio does not. The Reservoir 3 

portfolio also implements the UTR and Pipe repair campaign but requires even higher 

capital investment which results in perfect reliability. The Transfer portfolio implements 

the RST and achieves 100% reliability. The Highest Cost portfolio achieves perfect 

reliability by implementing all considered supply (including UTR) and the majority of 

demand interventions and requires the highest capital investment.  

The six solutions were simulated under the same 88 scenarios that were used in the 

multi-scenario optimization. When subjected to the multi-scenario conditions only two 

of the six portfolios satisfy the LoS constraints as calculated over the scenario 

ensemble. The performance of these two portfolios (Reservoir 3 and Highest Cost) 

under multiple future conditions is shown in the right panel in Figure 4-5 (full colour 

points) and compared to the multi-scenario Pareto optimal portfolios (translucent points 

in the right panel of Figure 4-5). These two solutions exhibit worse reliability 

performance under the 88 future scenarios than they did under the deterministic 

analysis. In fact, both of these portfolios exhibit worse performance in all other 

objectives under uncertainty (summarized in Table 4-2). The operating costs show the 

highest difference indicating that to satisfy the Levels of Service under higher 

variability of conditions the system would need to operate more intensively resulting in 

higher operating expenditure. 



108 

 

 

Figure 4-5. Six representative deterministic (left) Pareto optimal portfolios (large full colour 

spheres in the left panel) were simulated under the 88 future scenarios. The performance of these 

solutions over the future scenarios is compared to that of the multi-scenario Pareto-approximate 

optimal solutions (full colour spheres vs translucent cones, respectively, in the right panel). Only 

two portfolios (Reservoir 3, Highest Cost) satisfy the LoS constraints when subjected to the 

multiple scenarios but are dominated by other portfolios (they show higher capital costs than 

portfolios with the same reliability). Please note that while these two solutions were Pareto optimal 

under deterministic conditions, they are not Pareto optimal under the 88 possible scenarios. The 

two-dimensional plots are projections of a six-objective frontier onto a two-dimensional surface and 

as such show only the trade-off between the two plotted dimensions. 

Table 4-2. Performance comparison of the Reservoir 3 and Highest Cost portfolios depicted in 

Figure 4-5 between the deterministic and multi-scenario conditions. 

Objective 

Reservoir 3 Highest Cost 

Deterministic 
Multi-

scenario 
Deterministic 

Multi-

scenario 

Supply deficit (%) 1.20 2.63 0.35 1.35 

Supply resilience 

(weeks) 
0 8 0 2 

Supply reliability 

(%) 
100 99.50 100 99.87 

Eco-deficit (%) 56 57 51 54 

Energy cost (£m/a) 5.56 7.87 9.30 13.69 

 

To illustrate the importance of incorporating uncertainty directly into the optimization 

the whole deterministic Pareto optimal set of solutions was simulated over the 88 

scenarios. Only 40% of this set satisfied LoS constraints when calculated over all 88 
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plausible future scenarios. These surviving solutions were then sorted amongst each 

other to preserve only the dominating solutions in the set, discarding majority of these 

solutions. Only 3% of the original deterministic Pareto optimal solutions were left.  

While these solutions were Pareto optimal under deterministic conditions, they are not 

Pareto optimal under the 88 possible scenarios.  

Figure 4-6 illustrates how the performance of these remaining solutions compares to 

that of the multi-scenario Pareto optimal solutions. The latter are shown as opaque 

while the former are depicted by translucent points. The two panels show two different 

views of the same solution sets. When subjected to the 88 future scenarios, the 

remaining deterministic solutions (translucent spheres in Figure 4-6) are dominated by 

the multi-scenario Pareto optimal solutions (full colour spheres in Figure 4-6), i.e., they 

can no longer be considered Pareto optimal. The translucent portfolios require higher 

capital investment and energy use (shown by the size of points in Figure 4-6) to achieve 

the same levels of reliability than the full coloured portfolios (that are located in the 

same position regarding the vertical axis of Figure 4-6a). The latter also require lower 

capital investment and energy use to maintain the same levels of supply deficit than the 

former, also exhibiting better environmental performance (shown by colour in Figure 

4-6). This is particularly visible in Figure 4-6b where the same set of portfolios as in 

Figure 4-6a is shown in different view; the reliability and supply deficit axes were 

switched and the plot rotated anticlockwise. The full coloured spheres require lower 

capital and operating cost as they are closer to the ideal point with respect to the capital 

cost axis and of lower size than the translucent spheres.  
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Figure 4-6. Deterministic Pareto optimal solutions that comply with the LoS constraints under the 

multi-scenario conditions (translucent points) and the multi-scenario Pareto optimal solutions (full 

coloured points) visualized together. The cardinal axes show the same objectives as Figures 4-3 and 

4-4.  Colour represents the environmental performance of portfolios while the size of the points 

indicates their energy costs. The deterministic solutions are dominated by the multi-scenario 

efficient solutions (i.e., their positions, colours, and sizes are further away from the ideal point than 

the multi-scenario solutions). Whilst deterministic solutions were Pareto optimal under historical 

conditions, they are not Pareto optimal under the 88 plausible scenarios. 

4.4.  Discussion 

4.4.1. Incorporating uncertainty into many-objective optimization 

When planning under uncertainty planners should ensure their system is able to cope 

with a wide range of plausible futures. This study illustrates that taking into account 

multiple performance objectives and planning for robustness can be achieved 

concurrently. Deterministic optimization the Thames water resource system 

interventions considering only the historical flow record was compared to a multi-

scenario optimization which considered multiple sources of uncertainty. It was found 

that using historical flow records to assess future system investments can provide biased 

information about individual portfolios, i.e., make them seem favourable when in fact 

they do not perform well in many alternate plausible futures. Figure 4-5 illustrated how 

the performance of six representative solutions from the deterministic optimization 

analysis changes subject to multiple sources of uncertainty. Only two solutions remain 

feasible (Reservoir 3 and Highest Cost in Figure 4-5) but show worse performance 

against the optimized objectives than suggested by the deterministic approach (Table 

4-2). In total 60% of portfolios considered Pareto optimal in the deterministic analysis 

fail under the wider set of future conditions with only 3% of the original set surviving 

non-dominated sorting (see the first paragraph of section 3.3). Figure 4-6 showed that 

the multi-scenario portfolios perform better with respect to the environmental and 

economic objectives than the survived deterministic portfolios. By incorporating 
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uncertainty directly into the optimization process one identifies robust solutions that 

perform well under a range of plausible future states.  

4.4.2. Visual analytics 

Visualizing the Pareto optimal set of solutions in the many-dimensional objective space 

allows decision makers to discover how the different system performance objectives 

conflict and interact with each other. Many objectives may be represented by other 

visualization techniques such as parallel plots (Rosenberg, 2015). The many-

dimensional trade-off scatter plots presented here highlight the interactions and conflicts 

between the objectives for the purpose of this study. In our experience communicating 

the information provided by many-objective trade-off plots to decision makers is best 

done by visualizing dimensions progressively. The many-dimensional plot of Figure 4-3 

only represents the final stage of the exploration. The progressive introduction of 

dimensions within trade-off plots is explored in Chapter 3. Visualizing and exploring 

the Pareto optimal portfolios progressively may aid the learning and decision making 

process and help justify to interested parties why a certain intervention was selected. 

Decision makers are given the opportunity to decide the balance between performance 

preferences a posteriori. Visual analytics can provide the means to compare the 

deterministic and multi-scenario optimization objective spaces as well as how and why 

their Pareto optimal portfolios differ.  

When multiple scenarios of future conditions are incorporated into the search for 

optimal portfolios the Pareto optimal front shrinks and shifts slightly towards higher 

capital investment than when only a single scenario is considered (Figure 4-3). 

Achieving absolute reliability under a range of plausible futures requires higher capital 

investment than when only a single scenario is considered. Higher variability of external 

conditions requires higher capital investment to maintain good engineering and 

environmental performance. The similar engineering performance (supply reliability 

and resilience) of the two Pareto optimal sets of portfolios can be explained by the 

Levels of Service constraints ensuring the acceptability of the system’s behaviour under 

a single and varying future conditions. This indicates that planners can achieve the 

desired service levels in uncertain future but with portfolios implementing higher 

capacity interventions that require higher capital and operating costs than what was 

suggested by the portfolios evaluated against only a single future scenario. 

Robust interventions can be identified by their presence in the Pareto optimal solutions 

obtained from the multi-scenario optimization. Figure 4-4 showed that although some 
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deterministic Pareto optimal portfolios implement the unsupported River Severn 

Transfer instead of the Upper Thames Reservoir, none of the multi-scenario portfolios 

select the more expensive and less reliable transfer. In contrast, the UTR is implemented 

in all of the multi-scenario portfolios. This suggests that, given how the system is 

currently modelled, the reservoir intervention improves the system design’s robustness 

against a variety of future conditions. Similarly, the Pipe repair demand management 

intervention improves the system’s performance under the considered range of future 

conditions. Further analysis showed that all the other demand management interventions 

are implemented in all the robust portfolios in the London WRZ. Water companies 

generally prefer implementing supply-side measures to plan for future deficits (Charlton 

and Arnell, 2011) but our results suggest that reducing demand by implementing 

demand management interventions increases plan robustness. These interventions do 

not require energy unlike the majority of supply interventions, do not rely on uncertain 

hydrological flows and are likely appropriate strategies for relatively water scarce 

systems in the face of uncertainty.  

4.4.3. Limitations and future work 

Future conditions in this study were represented in a limited way. The set of 11 Future 

Flow scenarios is recommended for the climate change impact assessment in the UK by 

regulators and used in the Thames basin water resource system planning (Environment 

Agency et al., 2012; Thames Water, 2014). The 30-year flow time-series used here 

(2020-2050) may be considered quasi-stationary at best; just over half of the scenarios 

do not exhibit transient characteristics during this time period. Transient time-series, 

where the probability distribution that characterizes the flow at any given time period 

changes progressively as time moves forward, are not appropriate for studies 

considering a static snapshot of a system’s performance in time. The sample of water 

demand, energy prices and sustainability reductions was suitable in the particular 

planning context (chosen in consultation with stakeholders) but it does not represent a 

wide range of possibilities; only 2 different states for each were represented. The 

shortcomings of using a limited number of scenarios as well as estimates based on the 

extrapolations of current socio-economic trends to consider uncertainty of future 

conditions are acknowledged. If a low number of scenarios is used or future conditions 

are sampled incorrectly, the Pareto optimal solutions obtained using such limited future 

conditions may not exhibit robustness characteristics and perform unsatisfactorily under 

a different set of future conditions. The scenarios of future conditions should be 



113 

 

identified carefully and represent as wide a range of possible futures for the specific 

problem as possible. The scenarios used in this study were identified by TWUL as 

posing the highest risk to their system and covering the maximum and minimum impact 

ranges of the possible future conditions in 2030s (Thames Water, 2014). It was accepted 

to use only the lower and upper bounds of future demands, energy prices, and 

sustainability reductions here as the water supply system was constrained to maintain 

the specified Levels of Service. Sampling between those ranges would influence the 

results substantially as they were meant to maintain the service levels for both lower 

and upper bounds. A different approach would be to allow the system fail in some 

conditions when a bigger sample of futures covering more extreme conditions is used 

which is applied in the following chapter. The purpose of the study is to highlight the 

possible improvements to the current planning approach in England, one of which is 

using the scenarios to identify the robust portfolios instead of evaluating the 

deterministic least-cost portfolio against each of those separately. In future, a larger 

more diverse scenario set could be sampled and more advanced sampling techniques 

could be used. 

Identifying robust combinations of assets is valuable but it does not fully serve the 

planning processes where investments must be chosen and prioritized over time. The 

approach as applied here did not recommend a schedule of implementation (as does the 

current EBSD approach); this is left to future work which will need to consider, and 

trade-off, the value of flexibility (Woodward et al., 2014) and adaptation (Haasnoot et 

al., 2013; Hamarat et al., 2014).      

The proposed approach is computationally intensive, even when only 88 scenarios are 

considered. Our multi-scenario optimization ran in 46 hours on 96 CPU cores. Further 

increasing the number of possible future scenarios increases the number of their 

combinations exponentially. Evaluating each candidate portfolio against such a large 

ensemble poses significant computational challenges. The ability of the MOEA 

optimization algorithm to converge to the true Pareto optimal front becomes 

increasingly difficult to demonstrate. Here we performed a random seed analysis for the 

multi-scenario optimization with 10 different random seeds (see Kollat and Reed (2006) 

for more details) while the deterministic optimization random seed analysis checked the 

approximation to the true Pareto optimal set using 50 random seeds. As more scenarios 

are used, it might be increasingly harder to verify the approximation sufficiently.   
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4.5.  Conclusion 

This chapter proposed an approach to identify and visually display robust plans for 

water resource systems that meet many financial, engineering and ecological goals. The 

approach was applied to identifying portfolios of new water supplies and demand 

management interventions that could meet London’s estimated water supply demands in 

2035. Proposed portfolios were evaluated against the following metrics: annualized 

capital cost, maximum annual supply deficit, supply resilience, supply reliability, 

hydro-ecological deficits and annual average energy cost. Future portfolios were also 

assessed against multiple scenarios of future climate change impacted hydrological 

flows, water demands, environmentally motivated abstraction reductions, and energy 

prices. To identify the most robust portfolios amongst the many available options a 

search algorithm (many-objective evolutionary algorithm) linked to a water resource 

system simulator was used. The Pareto optimal portfolios identified as robust in this 

study are considered robust to the scenarios used. If a different set of future conditions 

was used, the approach could potentially identify different portfolios as robust to the 

particular set. The scenarios of future conditions to be considered in the search for 

robust portfolios should therefore reflect the plausible conditions that may occur in a 

particular study area as well as the decision makers’ aspirations of which conditions 

they would like their system to be robust to. 

Results were presented via many-dimensional visualizations that help decision-makers 

consider how the performance objectives trade-off with each other for the portfolios 

identified as Pareto optimal. Plots can also show how options are distributed within the 

Pareto front and how they influence the system’s performance. The study was designed 

to show the benefits of considering multiple plausible futures to optimize a complex 

system, rather than a single deterministic scenario. Only 3% of deterministic Pareto 

optimal solutions perform satisfactorily well under the set of plausible future conditions 

chosen by stakeholders in our study. Multi-scenario optimization identified portfolios 

that dominate those suggested by deterministic optimization. Exploring the Pareto 

optimal portfolios of supply and demand interventions helps identifying robust 

interventions that provide benefits over a wide range of futures including those with 

conditions similar to today.  
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5. Chapter 5 – Scheduling 

5.1.  Introduction 

The current planning approach for London’s water supply planning utilizes least cost 

optimization of future intervention schedules with limited uncertainty consideration. 

The plans are identified using historical flow records and linear interpolation of a past 

trend in population growth, i.e. a single scenario approach. The uncertainties associated 

with future supply and demand are simply incorporated using an aggregated safety 

buffer called headroom (Environment Agency, 2012; Padula et al., 2013). The multi-

scenario optimization approach described in the previous chapter demonstrated how 

such limited representation of uncertainties could potentially provide biased information 

and lead to inefficient planning strategies. The study optimised for static portfolios that 

perform well under a static snapshot of future conditons (for year 2035). It did not 

consider transient hydrological change stemming from climate change progression and 

for this reason did not consider the scheduling of interventions. In practice, water 

utilities need to schedule the implementations of investments whilst minimizing their 

capital and operating costs and ensuring that the supply-demand balance is maintained 

and ecosystem services are kept in good health in the future. Delaying investments can 

reduce costs and provides more time for obtaining better information about future but 

may result in a risk of near future failure (Kang and Lansey, 2014).  

Only few multi-objective studies have addressed the water supply capacity expansion 

scheduling problem to this date. Mortazavi et al. (2015) applied a multi-objective 

evolutionary algorithm using multiple scenarios of future conditions to optimize the 

capacity expansion scheduling and operating rules of the Canberra headworks system in 

Australia. Three objectives were considered, financial, engineering and social, where 

the latter two were monetized. The study used unique optimization for each future 

scenario and as such robustness across scenarios was not considered. Kang and Lansey 

(2014) used a multi-period multi-scenario optimization (MPMSO) where first a set of 

single-scenario single objective deterministic problems were solved. Common decisions 

between the multiple results were identified and the MPMSO model was then used to 

determine the optimal compromise solution. Beh et al. (2015) followed a similar 

approach of identifying optimal plans for each considered scenario deterministically 

with the exception of considering multiple objectives. The obtained optimal plans were 

then assessed for robustness and flexibility post-optimization and the recommendations 
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for implementation at a particular planning period were made based on the performance 

trade-offs, robustness and flexibility indicators and common interventions. The 

approach was demonstrated on the Adelaide water supply system in Australia. 

Borgomeo et al. (2016) employ multiple nonstationary climate model inputs into multi-

objective optimization to assess trade-offs between the financial cost of the simplified 

London’s water resource system capacity expansion scheduling and the probabilistic 

risk of exceeding the target frequency of water use restrictions. The risk-based approach 

incorporates uncertainty into the planning process by extensive sampling and is able to 

connect the results directly with risk indicators used in practice (Borgomeo et al., 2014). 

However, the probability distribution of uncertainties that this approach relies on 

requires a prior knowledge (Vucetic and Simonovic, 2011); this may, however, not be 

well suited for situations of deep uncertainty (Knight, 1921) where assigning 

probabilities to future states is problematic (Kasprzyk et al., 2013; Lempert, 2002; 

Lempert et al., 2003; Walker et al., 2013).  

The approach in this chapter optimizes future water supply system investments 

schedules considering robustness in addition to multiple discounted performance 

objectives explicitly. The candidate plans of scheduled investments are evaluated 

against a bootstrapped ensemble of 110 transient hydrological scenarios. The approach 

is demonstrated on London’s water supply system case study for a 50 year planning 

time horizon.  A many-objective robust optimization that explicitly considers the 

robustness of candidate plans (how well plans maintain desired levels of service) across 

a selection of future scenarios is then applied. Six objectives, including financial, 

engineering and environmental performance and robustness indicators are used in the 

automated search for high value scheduled portfolios of investment options. The future 

scenario ensemble is generated by random resampling of the chosen equally probable 

scenarios to ensure even time distribution of the major stress event within the modelled 

time horizon. The resampling method respects the nonstationary trend of the original 

scenarios. The ensemble size is kept small to enable computational tractability with real 

world water system simulators. Because the scheduling problem implies the passage of 

time we have discounted all engineering and environmental performance (Pearce et al., 

2003) in addition to the financial performance to take into account human time 

preferences. Visual analytics is used to help decision makers select a subset of 

promising scheduled portfolios of interventions. Once a cluster of plans with 

stakeholder acceptable trade-offs is identified, the plans are analysed for their diversity 
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and how they can be combined into a coherent intervention schedule over time. The 

flexibility of the Pareto optimal plans are assessed post-optimization; a plan is 

considered flexible if its staged investments allow switching to other plans within the 

first decade. 

The next section describes the scheduling approach, problem formulation and the 

scenarios of future conditions. Two experiments conducted to investigate the impact of 

major drought event within the hydrological scenarios together with proposed random 

resampling method (5.2.3) and the assessment of the engineering and environmental 

objectives (5.2.4) are also described here. The results obtained from the recommended 

approach are presented and analysed in section 5.3. Section 5.4 provides discussion of 

the results and approach and section 5.5 concludes this chapter.  

5.2.  Methodology 

5.2.1. Scheduling of interventions 

Despite requiring plans to plan for the next 25 years, the EA guidelines (Environment 

Agency et al., 2012) recommend that companies consider a long-term perspective 

beyond the 25-year planning horizon to “make companies’ systems more resilient to 

future uncertainties” and “to allow efficient, sustainable water resources planning to 

meet the needs of customers and the environment”.  This study considers a 50 year 

planning time horizon, twice as long as the planning time horizon in WRMPs. The time-

horizon is divided into 5 year planning periods. New interventions can only be activated 

at the beginning of each 5 year planning period. Interventions follow the “one-off” rule 

(Beh et al., 2015; Borgomeo et al., 2016; Mortazavi-Naeini et al., 2015), i.e., once an 

intervention is implemented, its capacity and operating rules do not change for the 

remainder of the time horizon. Following Beh et al. (2015), we take into account 

interventions’ lifespans by deactivating them once they reach their expected design 

lives. This study does not consider the refurbishment of interventions that have reached 

their design lives. In contrast to the previous studies, the construction period of 

interventions is incorporated into the simulation; an intervention becomes operational in 

the simulation model only after its construction period has passed. As the water supply 

system’s performance beyond the planning time horizon is not considered, the 

interventions are only allowed to be scheduled such that they become operational within 

the planning time horizon. Mutually exclusive interventions are modelled such that if 

any scheme from the mutually exclusive interventions is implemented in any planning 



118 

 

period, the remaining interventions from the same group can no longer be implemented 

within the remainder of the time horizon. 

5.2.2. Original problem formulation 

The scheduling problem addressed in this study considers multiple performance and 

robustness objectives. The performance objectives include the financial 

(𝑓𝐶𝑎𝑝𝑒𝑥 , 𝑓𝐸𝑛𝑒𝑟𝑔𝑦), engineering (𝑓𝑆𝑢𝑝𝑅𝑒𝑠) and environmental performance (𝑓𝐸𝑐𝑜) of the 

water supply system. Originally only the financial performance was discounted using a 

discount rate of 4.5% (Environment Agency, 2012; Thames Water, 2014) and an 

average value across scenarios of future conditions was considered. The robustness 

objectives (𝑓𝐿𝑜𝑆3, 𝑓𝐿𝑜𝑆4) reflect how well a plan of intervention schedules satisfices 

desired performance thresholds over the considered future states. The supply deficit and 

reliability used in the previous two chapters are not considered here after consultation 

with TWUL as those studies showed strong correlation of these two metrics with the 

supply resilience metric. Furthermore, the reliability metric is here reflected by the 

robustness objectives. 

The decision vector consists of 3 components for each decision: if an intervention 

should be implemented (𝑆𝑖), when (𝑇𝑖) and at what capacity (𝐶𝑎𝑝𝑖). To reduce the 

search space complexity, the time and capacity components of the decision vector are 

simplified. Interventions are scheduled in 5 year periods within the planning time 

horizon and their capacities in ML considered only as integer values. Mutual exclusivity 

of some interventions is handled via the first component of the decision vector, i.e., the 

selection integer variable. For instance, if two interventions are mutually exclusive, only 

a single selection decision variable defines which of these is selected, e.g., 0 means 

none of these is selected, 1 means intervention 1 is selected, and 2 means intervention 2 

is selected. This reduces the need for mutual exclusivity constraint employed in the 

previous two studies (Chapters 3 and 4).   

No constraints are posed on the feasibility of portfolios as only feasible combinations of 

interventions are generated. Furthermore, the uncertainties associated with future 

conditions make posing constraints on the performance of the system somewhat 

arbitrary; instead, the robustness metrics (𝑓𝐿𝑜𝑆3, 𝑓𝐿𝑜𝑆4) serve as an indicator of how well 

the system would perform under considered plausible conditions. By this the approach 

aims to improve the decision making process by stimulating the exploration of all 

available possibilities and subsequent interrogation and negotiation of trade-offs 
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between decision makers and stakeholders. The problem formulation is defined by 

Equation 5-1 below:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐅(𝐱) = (𝑓𝐶𝑎𝑝𝑒𝑥 , 𝑓𝐸𝑛𝑒𝑟𝑔𝑦 , 𝑓𝑆𝑢𝑝𝑅𝑒𝑠, 𝑓𝐸𝑐𝑜 , −𝑓𝐿𝑜𝑆3, −𝑓𝐿𝑜𝑆4)            

  

𝐱 ∈  {𝑆𝑖, 𝑇𝑖, 𝐶𝑎𝑝𝑖}                                                                                                                     

𝑆𝑖 ∈ {0,1} ∀𝑖 ∈ 𝐼𝑛𝑑, 𝑎𝑛𝑑 𝑆𝑖 ∈ {0,1,2} ∀𝑖 ∈ 𝑀𝐸 

5-1     

where x is a decision vector consisting of 3 components for each considered 

intervention. Si refers to the selection of intervention i where Si = 1 if selected, 0 if not 

for individual options (Ind); for mutually exclusive options (ME) Si = 1 if intervention 1 

is selected, 2 if intervention 2 is selected, and 0 if none of those are selected. Ti refers to 

the implementation planning period of intervention i, where a planning period occurs 

each 5 years within the planning time horizon, i.e., there are 10 planning periods within 

the 50 year planning horizon. The last component of the decision vector x, Capi, refers 

to the capacity of intervention i. 

5.2.2.1.  Decisions 

This study considers 8 new supply and 5 demand management interventions for the 

London’s Water Resource Zone (WRZ) that were updated after consultation with 

TWUL based on the constrained list of options considered for the upcoming WRMP19. 

The supply interventions include the Upper Thames Reservoir (UTR), River Severn 

Transfer (RST), Oxford Canal Transfer (OCT), South London Artificial Recharge 

Scheme (SLARS), Deephams and Beckton water reuse schemes and a Long Reach and 

South Estuary desalination plants. Demand management options for London WRZ 

include active leakage control, a pipe repair campaign (i.e., main pipes replacement), 

water efficiency improvements, installation of meters, and implementation of seasonal 

tariffs. The Upper Thames Reservoir and River Severn Transfer, as well as the reverse 

osmosis (RO) and non-reverse osmosis (nonRO) reuse supply interventions are 

mutually exclusive where only one of these interventions can be implemented within a 

single portfolio.  The interventions are shown in Figure 5-1 and are described in more 

detail in Table 5-1. 
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Figure 5-1. Current and new possible supply and demand management interventions considered in 

the scheduling study. The upper panel shows the schematic of the Thames basin water supply 

system extension whilst the lower panel shows the same system as modelled in the Thames IIRAS-

2010 simulation model. 
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Table 5-1. Supply and demand management interventions considered in the scheduling study. 

Intervention Capacity (ML) 

Construction 

period 

(years) 

Design 

life 

(years) 

Mutual 

exclusivity and 

other conditions 

Supply interventions 

Upper Thames 

Reservoir (UTR) 

30 - 150 (in 5 step 

integer intervals) 
10 80 Yes, with RST 

River Severn 

Transfer (RST) 

Maximum of 300 

ML/day based on 

River Severn 

Hands Off flow 

conditions 

12 60 Yes, with UTR 

South London 

Artificial 

Recharge Scheme 

(SLARS) 

2 - 26 5 60 No 

RO/nonRO 

Deephams Reuse 

Scheme (DRS) 

25 – 60 (in 5 step 

integer intervals) 
6 60 

Yes, RO with 

nonRO 

RO/nonRO 

Beckton Reuse 

Scheme (BRS) 

50 – 150 (in 5 step 

integer intervals) 
6 60 

Yes, RO with 

nonRO 

Oxford Canal 

Transfer (OCT) 
17 12 60 No 

Long Reach 

Desalination 

(LRD) 

15 4 25 No 

Estuary South 

Desalination 

(ESD) 

50 – 150 (in 5 step 

integer intervals) 
6 25 No 

Demand management interventions 

Active Leakage 

Control (ALC) 

2 – 50 (ML/day 

saving) 
N/A 25 No 

Pipe repair 

campaign (Mains) 

165.1 (ML/day 

saving) 
N/A 60 No 

Enhanced 

efficiency (Eff) 

11.6 (ML/day 

saving) 
N/A 25 No 

Smart metering 

(Meters) 

88.7 (ML/day 

saving) 
N/A 60 No 

Seasonal tariffs 

(Tariffs) 

Monthly profile of 

demand savings 
N/A N/A 

Only available if 

Meters 

implemented 

 

5.2.2.2.  Objectives and constraints 

The capital cost objective (fCapex) represents the total discounted capital cost investment 

requirements of implementing new supply and demand interventions taking into 
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account their construction periods and design life. The capital cost assessment is based 

on the calculations applied in the EBSD framework (Padula et al., 2013). The 

undiscounted financial cost of interventions is spread over their construction period 

which provides annual cash flows; the future cash flow value is then evaluated at the 

end of the construction period: 

𝑓𝑐𝑐𝑖 = ∑
𝑢𝑓𝑐𝑖

𝐶𝑃𝑖
∗ (1 + 𝑖𝑐)𝑡

𝐶𝑃𝑖−1

𝑡=0

 

5-2 

 where fcci is the financial capital cost of intervention i, ufci is the undiscounted 

financial cost of intervention i depending on its capacity or release rate, CPi is the 

construction period of intervention i, ic is the discount rate and t refers to a yearly time 

step. Future capital costs are then annualized over option’s design life:  

𝑎𝑓𝑐𝑐𝑖 = 𝑓𝑐𝑐𝑖 ∗
𝑖𝑐(1 + 𝑖𝑐)𝐷𝐿𝑖

(1 + 𝑖𝑐)𝐷𝐿𝑖−1
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where afcci is the annualized financial capital cost of intervention i and DLi is the design 

life of intervention i in years. The total capital cost of portfolio then represents the sum 

of annualized and discounted capital costs of all selected interventions: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝐶𝑎𝑝𝑒𝑥 = ∑(𝑎𝑓𝑐𝑐𝑖 ∗ 𝑆𝑖)

𝑖
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The energy cost objective (fEnergy) is the total discounted energy cost requirement to 

operate the whole water supply system over the whole planning time horizon: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝐸𝑛𝑒𝑟𝑔𝑦𝐴𝑣𝑒𝑟𝑎𝑔𝑒
= (

1

𝑇
∑ ∑ 𝐸𝑖,𝑡

𝑖

∗ 𝑈𝑃𝑡 ∗ (1 + 𝑖𝑐)𝑡−1

𝑇

𝑡=1

)

𝑃

  

5-5 

where where P represents the percentile of the set of objective values across the whole 

ensemble of scenarios, Ei,t is the energy requirement in kWh to operate supply option i 

during year t, UPt is the unit price (£) per kWh in year t, and T is the total number of 
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years in the planning time horizon. The energy requirement Ei,t depends on the supply 

option’s i release during year t: 

 𝐸𝑖,𝑡 = 𝑅𝑖,𝑡 ∗ 𝐸𝑅𝑖 

5-6 

where Ri,t refers to the total volume (ML) released by supply option i during year t, and 

ERi is the energy required to release 1 ML associated with supply option i. If an option 

is not selected, its release will remain 0 ML over the whole planning time horizon thus 

its energy cost requirement will be £0. 

Resilience is defined by how quickly the system recovers from a failure (Moy et al., 

1986). The supply resilience objective 𝑓𝑆𝑢𝑝𝑅𝑒𝑠 is assessed on the LAS node and the 

failure occurs when the LAS storage level drops below the LTCD Demand level 3 

threshold and the non-essential use ban is brought into effect (Figure 1-12). The metric 

is calculated for each scenario and an average value is taken as the final metric as 

follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝐴𝑣𝑒𝑟𝑎𝑔𝑒  [𝑓𝑆𝑢𝑝𝑅𝑒𝑠 = 𝑚𝑎𝑥𝐷]
𝑃
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where 𝐷 is the failure duration in weeks.  

The eco-deficit objective (fECO) (Vogel et al., 2007) represents the difference between 

the naturalized low flows and simulated low flows [%] (low flows here denote the flows 

under Q70, i.e., flows that are exceeded 70% of the record time) at the Teddington Weir 

on the River Thames. The naturalized flows here refer to the river flow were there no 

TWUL’s abstractions; the objective therefore assesses direct impact of TWUL’s 

abstractions and return flows on the river itself. The higher the difference (i.e., deficit), 

the more the environmental conditions of the river deteriorate due to lower water levels 

than the natural state. Eco-deficit of 0% implies no deficit while 100% eco-deficit is the 

largest possible deficit. Similarly to the supply resilience metric eco-deficit is calculated 

for each scenario and an average value is taken as the final metric as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝐸𝐶𝑂𝐴𝑣𝑒𝑟𝑎𝑔𝑒
= [(|𝐴𝑁𝑄70 − 𝐴𝑆𝑄70| 𝐴𝑁𝑄70⁄ )

𝑃
∗ 100%]

𝑃
 

5-8 
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where ANQ70 is the area under the naturalized flow duration curve (FDC) and ASQ70 is 

the area under the simulated FDC. 

The robustness objectives (fLoS3 and fLoS4) are applied here as satisficing robustness 

indicators used similarly in other urban water supply studies (e.g., Beh et al., 2015; 

Herman et al., 2014; Paton et al., 2014a; Paton et al., 2014b). These metrics here assess 

how well a candidate plan satisfies the desired Levels of Service across future scenarios 

as a fraction of the considered scenario ensemble in percent. The Level 3 demand 

restrictions (non-essential and hosepipe use ban in Figure 1-12) are currently limited to 

once in 20 years, while the Level 4 restrictions (standpipe in Figure 1-12) are not 

allowed to occur anytime. The frequency of occurrence is calculated using annual 

reliability metric: 

𝐴𝑅𝑘 = (1 −
𝐹𝑘

𝑇
) ∗ 100% 

5-9 

where ARk is the annual reliability of level k, Fk is the number of years during which the 

LAS level dropped below level k, and T is the total number of years in the planning time 

horizon. The fLoS3 and fLoS4 then reflect in how many scenarios (in %) the Level 3 and 4 

LoS, respectively, were maintained (Equations 5-10 and 5-11, respectively):  

𝑓𝐿𝑜𝑆3 = (
𝑁𝑆(𝐴𝑅3≥95%)

𝐽
) ∗ 100% 

5-10 

𝑓𝐿𝑜𝑆4 = (
𝑁𝑆(𝐴𝑅4=100%)

𝐽
) ∗ 100% 

5-11 

where NSm is the number of scenarios where the condition m occurs and J is the total 

number of scenarios in the scenario ensemble. 

5.2.2.3.  Flexibility indicator 

A flexibility indicator is calculated for each Pareto optimal plan. The flexibility metric 

aims to reflect how flexible a plan is within the first 10 years of the planning time 

horizon, i.e., if planners have a possibility to “switch” to a different plan schedule 

within the first ten year period if the near future unfolds differently than anticipated. A 

plan schedule represents a “path” over time specifying which interventions to build 

when. If a plan shares the same schedule with other plans at the beginning of the 
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planning time horizon, it is considered more flexible than plans with unique schedules. 

The degree of flexibility depends on how many plans within the Pareto optimal set a 

plan shares its schedule with. The flexibility indicator metric (𝐹𝐼) is calculated as 

follows:  

𝐹𝐼 =  (
𝑁𝑃10

𝑁𝑃
) ∗ 100% 

5-12 

where  𝑁𝑃10 is the number of plans present in the Pareto optimal set that a plan shares 

the same schedule with in the first 10 years of the planning time horizon, and  𝑁𝑃 is the 

total number of plans in the Pareto optimal set of plans. Please note that the flexibility 

indicator reflects only how many other plans within the Pareto optimal set a plan shares 

the same schedules with within the first decade of the planning time horizon. It does not 

indicate how well a plan is able to adapt to changing future conditions. 

5.2.3. Scenarios of future conditions 

This study uses an ensemble of 11 equi-probable Future Flows (FF) scenarios 

(Prudhomme et al., 2013) represented by climate change impacted river flow time-series 

for the UK as the basis for our hydrology scenarios. The scenarios are considered 

equally probable to occur in future as the probabilities of their occurrence cannot be 

estimated. The FF ensemble represents 148 years (1950 - 2098) of transient climate 

change and is recommended by regulators (Environment Agency et al., 2012) to be used 

when performing the sensitivity analysis on their proposed least-cost plans. TWUL 

tested their 2014 WRMP with the FF ensemble (Thames Water, 2014). Section 4.2.2.1 

in Chapter 4 provides a detailed description and analysis of the ensemble. This study 

uses a 50 year segment of the full time-series (2020-2070) with weekly time-step of all 

11 FF scenarios. Similar to the multi-scenario approach (section 4.2.2.1) a Mann-

Kendall trend test (Kendall, 1975; Mann, 1945) was performed here on the 11 50 year 

time-series to confirm that the shorter series displayed the nonstationary characteristics 

of the full 150-year set. The absolute value of Kendall’s tau did not exceed 0.2 for any 

of the 11 scenarios suggesting only a weak climate change trend. This allows for a time 

series resampling method to be applied in this study which justification is provided in 

section 5.2.3.1 and which is described in more detail in section 5.2.3.2.  

The scheduling study here employs transient water demand and energy prices with a 

single socio-economic scenario to focus the investigation on the impacts of the 
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hydrological uncertainty. The London demand for 2020 was estimated to be 2,125 ML 

based on the expected population growth and household water use (Thames Water, 

2014) and was assumed to increase by 12.5 ML each year reaching 2,750 ML in 2070 

(Thames Water, 2014). The demand is again adjusted each month using the monthly 

profiles factors (Table 0-2 in Appendix). The energy price for 2020 was estimated to be 

8.9 p/kWh in 2020 based on the Committee on Climate Change (CCC) estimations 

(CCC, 2014) for industrial sectors and was assumed to increase nonlinearly (based on 

values in 2013, 2020, and 2030 as provided by the CCC). 

5.2.3.1.  Major stress event and drought manipulation 

The FF scenarios used in this study were analysed for major stress events that may 

potentially influence the scheduling of interventions. The most extreme drought event in 

the considered 50-year planning time horizon (2020 - 2070) was found to occur in the 

afixa scenario between 2040 and 2045 (Figure 5-2). Three dry winters appear in this 

five year period, consecutively in 2040/41 and 2041/42, and in 2043/44 where the dry 

winters are also preceded by dry summer months. The dry winters pose a significant 

strain on the London’s water supply system as most storage supply schemes use the 

winter periods to replenish their storage levels deployed during drier summer months 

(Thames Water, 2014). This 5-year period of the afixa scenario was identified as the 

most extreme event in the FF ensemble. The occurrence of extreme hydrological stress 

events cannot be predicted and can occur under even mild climate change scenarios. A 

single major drought event within a scenario ensemble may bias the scheduling towards 

the exact period where it occurs in the ensemble. The timing of this particular drought 

was found to have a significant impact on the resultant schedules present in the Pareto 

optimal plans obtained from the many-objective robust optimization. The experiment 

confirming this bias is described below. 

To assess the effect of the most extreme drought position in time four scenario 

ensemble cases were designed. Case 1 applied the original ensemble of 11 Future Flow 

scenarios described above and used by water companies for scenario testing of their 

preferred plans. In Case 2, the most extreme drought was “shifted” to the beginning of 

the planning time horizon within the scenario where it originally occurs (Figure 5-2). 

This was done by “cutting out” the 2040-2045 period from the afixa scenario time series 

and “pasting” this five year period at the beginning of the time series to represent the 

2020-2025 period whilst shifting the 2020-2040 period in time to represent the 2025-

2045 period instead. All the other scenarios within the ensemble remained unchanged. 
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In Case 3, the same drought was “shifted” to the end of the planning time horizon in the 

same way as described above with all the other scenarios unchanged. Case 4 then used 

only the single scenario where the drought occurs, i.e., the afixa scenario, in its original 

form ignoring all the other scenarios within the ensemble. The scheduling optimization 

problem using the original problem formulation (section 5.2.2) was then solved for each 

case separately. 

 

Figure 5-2. Afixa scenario drought between 2040 and 2045 identified as the most extreme event in 

the 50 year planning time horizon (2020-2070) of the Future Flows (FF) scenario ensemble. 

Figure 5-3 summarizes the schedules present in the Pareto optimal fronts obtained for 

the 4 experimental scenario ensemble cases. The individual bars represent the 

implementation of interventions where the colour corresponds with a particular 

intervention (as shown in the legend), the position of bars on the x axis refers to the 

planning period and the height of a bar illustrates how many plans implement the 

intervention at a particular planning period.  

In Case 1 majority of the supply interventions are mostly implemented in the 2035 

planning period, just before the afixa drought occurs. The demand management 

interventions are implemented in 2040 as they do not require a construction period, 

apart from the metering (brown colour in Figure 5-3) which appears to be equally 

spread over the first half of the planning time horizon. In Case 2 the implementation of 

the demand management interventions is significantly shifted to the first planning 

period of 2020 with 80% of Pareto optimal plans implementing metering in 2020. Case 
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3 sees a slight shift in intervention implementation towards the second half of the 

planning horizon. Meters (brown colour in Figure 5-3) are still mostly implemented in 

2020 and OCT transfer (light green colour in Figure 5-3) in 2040. Case 4 differs 

significantly from the other three cases. There is a substantial spike of supply 

intervention implementation across the Pareto optimal plans in 2035 and demand 

intervention implementation in 2040, just before the drought occurs. Only few plans 

implement any intervention after 2040.  

 

Figure 5-3. Schedules of interventions occurring across the Pareto optimal plans obtained in the 

drought manipulation experiment. The x axis shows the 5 year planning periods, the y axis and the 

colour of the bars depicts individual interventions, whilst the vertical axis as well as the height of 

the bars corresponds to the fraction of the Pareto optimal plans that implement a particular 

intervention in a particular planning period. 

5.2.3.2.  Scenario resampling 

To reduce the extreme event timing bias investigated above a bootstrapping method 

ensuring that the major stress event occurs evenly across the planning time horizon 

whilst preserving the transient climate change signal of each scenario is proposed here.  

Bootstrapping is a statistical technique of random resampling with replacement 

originally developed by Efron (1979). This study employs local block bootstrapping 

(LBB) (Paparoditis and Politis, 2002) which was developed as a modification of the 

block bootstrap to address resampling of nonstationary time series where the non-
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stationarity is due to a slowly changing stochastic structure or where local but not global 

stationarity is present. As mentioned previously in section 5.2.3, the Mann-Kendall 

analysis of the FF scenarios used in this study confirmed a weak trend in the 50-year 

segment of the entire 150 year time series but showed local stationarity when a 30-year 

segment was analysed (section 4.2.2.1). To preserve these characteristics, the 50-year 

FF time series are here recommended to be resampled using the LBB method to only 

resample blocks of consecutive data, e.g., hydrological years that are in close proximity 

to each other within the whole record. The method has been shown to capture the 

distribution of nonparametric trend estimators and resample nonstationary data with 

local stationarity without the need for de-trending the data (Dowla et al., 2013). A 

rigorous description of the LBB method is provided in Paparoditis and Politis (2002).  

This study considers a 50-year planning time horizon (2020-2070) split into 5-year 

planning periods at the start of which interventions can be implemented. To reduce the 

bias of the extreme afixa drought event between 2040 and 2045 10 different sets of the 

original 11 scenarios were generated ensuring that the afixa drought occurs in a 

different 5-year period in each afixa scenario within each new ensemble while still 

preserving the trend of the original afixa time series. The 10 remaining scenarios were 

also bootstrapped to make each new ensemble ensuring that their respective trends were 

maintained. This resulted in 10 sets of 11 scenarios creating an ensemble of 110 

scenarios in total.  

The scenarios were generated following the recommendations of Paparoditis and Politis 

(2002). The block size b was set to 5, i.e. the time series were resampled in 5 year 

blocks, and the real number B (where 𝐵 ∈ (0,1] and b*B is an integer) to 0.2 for our 

sample size n of 50 years within a single scenario. The LBB algorithm was then used to 

generate new bootstrapped samples of the 50-year time series. Each bootstrapped 

scenario was analysed using the Mann Kendall trend analysis (Kendall, 1975; Mann, 

1945) to check if the trend present in the original scenario was preserved within the 

5x10-3 difference in the direction of the original scenario’s Sen slope. The Sen slope is 

an estimation of the changing nature of the time series and specifies the median slope 

joining all pairs of observation points. A difference of 5x10x-3 in the Sen slope between 

the original time series and the bootstrapped time series implies that the trends seen in 

both time series are very similar. If the Sen slope of the time series was outside the 

permitted bounds, the bootstrapped scenario was discarded and new scenario was 

generated. In addition, the bootstrapped afixa scenarios were checked for the drought’s 
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position in time; if the drought appeared in new 5-year period not yet represented in the 

newly generated ensembles and the trend preservation condition was met, the 

bootstrapped scenario was kept, otherwise it was discarded. The procedure was repeated 

until 10 different sets of 11 bootstrapped scenarios were produced ensuring that the 

afixa drought occurred within each 5-year planning period over the 10 sets of scenarios 

within the ensemble. 

To investigate the effects of the proposed bootstrapping method on the scheduling 

approach four different bootstrapped ensembles were generated (4 ensembles each 

containing 110 scenarios, in total 440 scenarios). Figure 5-4 shows the flow duration 

curves of the resampled afixa scenarios (grey lines) compared to the original afixa 

scenario (shown by the red line). The resampled afixa scenarios vary in the magnitude 

of low flows as well as in their distribution across the bootstrapped ensembles ensuring 

that the different scenarios vary hydrologically and are distributed relatively equally 

around the original afixa scenario. The four ensembles were used in four separate many-

objective robust optimization runs to investigate the impacts of different problem 

formulations described in the following section (5.2.4) and in the final approach 

detailed in section 5.2.6.  

 

Figure 5-4. Flow duration curves showing low flows (i.e., flows with the probability of exceedance 

70% of the record time and higher) of the bootstrapped afixa scenarios (grey lines), where the 

major drought event occurs, compared to the original afixa scenario (red line) from the original 

ensemble of 11 Future Flows scenarios. 
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5.2.4. Investigated problem formulations 

5.2.4.1. Original objective values across scenarios 

The bootstrapped ensembles described in the previous section were first applied in the 

many-objective robust optimization using the original problem formulation (section 

5.2.2). Figure 5-5 shows the obtained Pareto optimal schedules of interventions where 

the axes, colours and bars represent the same dimensions as in Figure 5-3. Despite a 

slight difference, the schedules seem to follow the same pattern. In all four Pareto 

optimal sets, the metering (brown bars in Figure 5-5) is mostly implemented in the first 

planning period, efficiency (dark red bars) in 2045, ALC (orange bars) in 2045, ESD 

(yellow bars) in 2040, and LRD (green bars) in 2050. SLARS implementation (light 

blue bars in Figure 5-5) tends to focus around the middle of the planning horizon, while 

the BRS implementation (light turquoise bars) around the beginning of the planning 

horizon. The UTR implementation (dark blue bars in Figure 5-5) is evenly spread across 

the first 30 years of the planning horizon in all four sets. These results suggest that using 

the bootstrapped scenarios reduces the extreme drought event timing bias on the optimal 

scheduling of interventions and the random resampling does not affect the optimization 

results. 

 

Figure 5-5. Schedules of interventions within the Pareto optimal plans obtained using the 

bootstrapped scenario ensembles and original objective values. The bars and axes represent the 

same dimensions as shown in Figure 5-3. 
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Nevertheless, the plan flexibility assessment using the flexibility indicator measure 

(section 5.2.2.3) revealed that the majority of plans in all four Pareto optimal sets of 

plans recommended "doing nothing" within the first two planning periods, i.e., the first 

10 years of the planning time horizon. This contradicts with the usual planner intention 

where a planner would like to know what immediate actions he or she should take. 

Furthermore, it indicates that calculating the performance metrics such as resilience and 

eco-deficit over the whole planning time horizon when time continuation is considered 

may not represent the performance adequately. For instance, if the system performs 

poorly when the drought occurs earlier in the planning time horizon but very well in the 

rest of the planning time horizon the overall performance is balanced out whilst the 

discounted financial metrics force the investments to be delayed. 

5.2.4.2.  Average worst 5 year engineering and environmental performance 

To address this issue the problem formulation was changed to assess the worst 5 year 

(or the worst planning period) engineering and environmental performance, i.e., supply 

resilience and eco-deficit, within a single scenario whilst keeping the assessment across 

scenarios average to avoid planning for the worst case scenario only. By doing so the 

resilience and eco-deficit performance metrics reflect the worst planning period (i.e., 5 

year) performance encountered during the planning time horizon (i.e., 50 years).  

The Equations 5-7 and 5-8 were changed as shown by Equations 5-13 and 5-14, 

respectively: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝐴𝑣𝑒𝑟𝑎𝑔𝑒 [𝑓𝑆𝑢𝑝𝑅𝑒𝑠 = max
𝑇

𝐷𝑗] 

5-13 

where j represents a five year period within the planning time horizon T, and Dj is the 

failure duration in weeks in period j. The supply resilience metric minimizes the average 

maximum duration of a failure across all periods within the planning time horizon 

across all scenarios in the ensemble. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝐴𝑣𝑒𝑟𝑎𝑔𝑒 [𝑓𝐸𝐶𝑂 = max
𝑇

{(|𝐴𝑁𝑄70 − 𝐴𝑆𝑄70| 𝐴𝑁𝑄70⁄ )
𝑗

∗ 100%}] 

5-14 

where ANQ70 is the area under the naturalized flow duration curve (FDC) and ASQ70 is 

the area under the simulated FDC. The final eco-deficit metric minimizes the average 

worst deficit across all periods that occurred in the planning time horizon across all 

scenarios in the ensemble. 
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Using this formulation results in most flexible Pareto optimal plans in all four sets 

implementing Meters in the first 10 years of the planning time horizon. However, using 

different bootstrapped scenario ensembles within the optimization creates different 

schedules present in the Pareto optimal sets, i.e. the recommendations are affected by 

the random resampling of scenarios. In practice that would mean that if decision makers 

used a single ensemble of resampled scenarios, they would obtain different solutions 

than if they used a slightly different bootstrapped ensemble generated in the same way. 

Figure 5-6 shows the four Pareto optimal schedules obtained using the worst five year 

performance assessment of the resilience and eco-deficit objectives. The difference 

between the sets is more significant that in Figure 5-5. In particular, the ESD 

implementation (yellow bars) spikes in 2040 for the ensemble 1 but gets distributed 

between 2040 and 2055 for the other three ensembles. The LRD implementation (light 

green bars) spikes in 2040 for ensembles 2 and 4, but is more evenly distributed for 

ensembles 1 and 3. The OCT and SLARS implementation (greenish-blue bars and light 

blue bars, respectively) spikes in different periods for each ensemble. The remaining 

intervention schedules also show some degree of difference between ensembles. This 

suggests that the worst 5 year performance occurs in different planning periods between 

the ensembles and assessing this performance as it stands is not suitable for 

optimization across randomly resampled scenarios.                                                                    

 

Figure 5-6. Schedules of interventions within the Pareto optimal plans obtained using the 

bootstrapped scenario ensembles and average of the worst 5 year engineering and environmental 

performance. The bars and axes represent the same dimensions as shown in Figure 5-3 and Figure 

5-5. 
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5.2.4.3.  Combination of discounting and worst 5 year performance 

Discounting only financial performance in time with the engineering and environmental 

performance temporally undistinguished delays investments that may prove effective in 

short term. This results in unequal consideration of the multiple criteria over time 

resulting in potentially biased solutions as demonstrated above. The financial 

performance is discounted here as water companies are required to discount the 

financial aspects of their strategies when planning for the next 25-30 years 

(Environment Agency, 2012). Therefore, to reduce the temporal inequalities between 

objectives this study proposes to discount the engineering and environmental 

performance. Pearce et al. argue that if people’s preferences count and if people 

perceive future risks to be regarded as of lower consequence than current risks, those 

preferences should be incorporated in the policy making.  

The resilience and eco-deficit objective is discounted here for each five year period of 

the planning time horizon using the same discount rate of 4.5% as applied to the 

financial objectives. The resilience and eco-deficit objective value in a particular 

scenario then refers to the worst discounted five year performance value that occurs 

within the planning horizon. The final value across scenario ensemble is taken as the 

average value of the above. This allows for considering adverse events such as system 

failures that occur within near future to be of greater impact than events occurring in 

distant future as new technology or information may become available to prepare for 

adverse events more effectively.  

Equations 5-13 and 5-14 were updated as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝐴𝑣𝑒𝑟𝑎𝑔𝑒 [𝑓𝑆𝑢𝑝𝑅𝑒𝑠 = max
𝑇

{𝐷𝑗 ∗ (1 + 𝑖𝐶)−𝑗}] 

5-15 

where j represents a five year period within the planning time horizon T, Dj is the failure 

duration in weeks in period j, and ic is the discount rate. The supply resilience metric 

minimizes the average discounted maximum duration of a failure across all periods 

within the planning time horizon across all scenarios in the ensemble. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝐴𝑣𝑒𝑟𝑎𝑔𝑒 [𝑓𝐸𝐶𝑂 = max
𝑇

{[(|𝐴𝑁𝑄70 − 𝐴𝑆𝑄70| 𝐴𝑁𝑄70⁄ )
𝑗

∗ 100%] ∗ (1 + 𝑖𝐶)−𝑗}] 

5-16 

where ANQ70 is the area under the naturalized flow duration curve (FDC), ASQ70 is the 

area under the simulated FDC, and ic is the discount rate. The final eco-deficit metric 
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minimizes the average discounted worst deficit across all periods that occurred in the 

planning time horizon across all scenarios in the ensemble. 

This updated problem formulation ensures that the most flexible plans within the four 

Pareto optimal sets implement the ALC and Meters within the first decade of the 

planning time horizon. The optimal schedules from the four optimizations using the four 

bootstrapped scenario ensembles shown in Figure 5-7 are more similar than when 

undiscounted worst 5 year engineering and environmental performance was considered 

(Figure 5-6). In particular, ALC (orange bars), Mains (light red bars), Meters (brown 

bars), and OCT (light green bars) are mostly implemented in 2020, ESD (yellow bars) 

in 2040, and LRD (green bars) in 2045 with small degree of variation between the rest 

of the considered interventions.  

 

Figure 5-7. Schedules of interventions within the Pareto optimal plans obtained using the 

bootstrapped scenario ensembles and average of the discounted worst 5 year engineering and 

environmental performance. The bars and axes represent the same dimensions as shown in Figure 

5-3, Figure 5-5, and Figure 5-6. 

5.2.5. Summary of the investigations 

The similarity of schedules within Pareto optimal plans was also assessed more 

formally using the the Kolmogorov-Smirnov (KS) test. The KS test is a non-parametric 

test to assess the equality of continuous one-dimensional sample with a known 

probability distribution sample or another sample (Massey, 1951). The latter, often 
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termed two-sample KS test, was used here. The test either confirms or rejects a null 

hypothesis that the two datasets are from the same continuous distribution, i.e. are likely 

to follow the same pattern.  

The schedules of interventions consist of integer values (i.e., the implementation years) 

and each Pareto approximate set contains different number of portfolios. For these 

reasons the schedules of each intervention within the Pareto set were converted into 

percentiles such that if e.g., a 90th percentile of an intervention’s implementation is 

2050, that corresponds to 90% of portfolios within the Pareto set implementing the 

intervention by 2050.  These percentiles were then used in the two-sample KS test such 

that percentile dataset of an intervention from one Pareto set was compared to the 

percentile dataset of the same intervention from another Pareto set. In the case of 

comparing four Pareto sets, six two-sample KS tests were performed to compare all 

possible pairwise combinations. The final similarity comparison metric was then 

designed to correspond to the percentage of the pairwise combinations where the null 

hypothesis of the KS test, in this case that the schedules are likely to follow the same 

pattern, was confirmed. 

Figure 5-8 shows the percentage metric of the similarity of schedules across scenario 

ensembles (vertical axis) for each intervention (horizontal axis). The lines correspond to 

each investigated case and the points summarize the average similarity across all 

interventions for each investigated case where the colour of a point corresponds to the 

colour of a line for each case. Larger scenario ensembles, containing 220 scenarios and 

generated randomly in the same way as the bootstrapped ensembles consisting of 110 

scenarios, were also investigated to assess if more scenarios within ensemble would 

provide better similarity of the Pareto optimal schedules (orange line and point in Figure 

5-8). Using these larger ensembles did not improve the similarity of schedules and the 

optimizations required longer computational time to converge. All cases apart from the 

original problem formulation used with 110 bootstrapped scenario ensemble (light blue 

dashed line) show no similarity for the RST schedules. The best similarity of schedules 

across all bootstrapped ensemble cases is achieved for the BRS supply and Mains 

demand management interventions. The most varying schedule similarity across all 

cases can be seen for the UTR supply and Eff demand management interventions. The 

average percentage of similarity across all interventions (shown by points in Figure 5-8) 

shows the lowest similarity of only 14% for the drought experiment case (green point). 

The 110 bootstrapped scenario ensemble with the average discounted worst 5 year 



137 

 

performance case (red point) exhibits the same average similarity of 63% that the 110 

bootstrapped scenario ensemble with the original problem formulation case (light blue 

point). The latter was however found to result in most flexible optimal schedules “doing 

nothing” within the first decade of the planning time horizon (section 5.2.4.1). The 

larger bootstrapped scenario ensemble size of 220 scenarios (orange point) shows 

slightly lower average schedule similarity of 57% than the 110 bootstrapped scenario 

ensemble using the same “final” problem formulation (red point). For this reason and 

because of the increased computational complexity of the former it is recommended to 

use the minimal required ensemble size to reduce the major drought event timing bias 

which is in this case 110 scenarios. 

 

Figure 5-8. Similarity of schedules across scenario ensembles. The lines illustrate the investigated 

scenario ensembles cases and the points show the average schedule similarity across all considered 

interventions for each investigated case; the colour of a point corresponds with the colour of a 

matching case. 

The trade-offs obtained by using the chosen problem formulation of discounting the 

worst 5 year performance for the resilience and eco-deficit metrics (described in section 

5.2.4.3) and the four 110 bootstrapped scenario ensembles were assessed for similarity. 

Figure 5-9 shows the four trade-off sets where the horizontal axes show the total 

discounted capital cost, the vertical axes the discounted resilience and the aggregated 

robustness metric is shown by the colour scale. The axes were scaled to show the 

minimum and maximum values from all four sets of trade-offs. There is a slight 
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variation between the upper and lower objective value bounds between the four sets. 

The trade-off curves are however very similar only differing in the number of solutions 

found. This together with the previous findings that these trade-off solutions are also 

similar in the schedules they implement is here considered as satisfactory validation that 

the results obtained from the recommended approach are only slightly sensitive to the 

proposed random resampling of the hydrological flow scenarios.  

 

Figure 5-9. Trade-offs obtained from four 110 bootstrapped scenario ensembles using the 

discounted worst 5 year performance problem formulation. 

5.2.6. Final recommended approach 

Following the major drought event and problem formulation investigation detailed in 

sections 5.2.3 and 5.2.4 the final approach recommended here employs the scenario 

bootstrapping method (section 5.2.3.2) to generate ensembles of 110 scenarios and the 

problem formulation as detailed in section 5.2.2 with the equations 5-7 and 5-8 for 
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calculating the resilience (fSupRes) and eco-deficit (fECO) objectives replaced by Equations 

5-15 and 5-16, respectively.  

The four optimizations using the four bootstrapped ensembles of 110 scenarios 

produced similar Pareto optimal fronts ensuring that the bootstrapping method provides 

consistent optimization results. Each of the four unique Pareto optimal solution sets was 

considered to be optimal for one respective ensemble (110 scenarios) only. In order to 

produce one final set of Pareto optimal plans, each of the plans that made up the four 

optimal solution sets was simulated over all 4 ensembles (in total 440 scenarios). The 

performance of each plan over the 440 scenarios was calculated identically to how it 

was calculated over the 110 scenarios within the optimization. The resultant simulation 

solutions were then sorted to keep only those that were non-dominated (Kollat and 

Reed, 2006) resulting in one final Pareto optimal solution set. 

5.3.  Results 

Despite the optimization problem formulation discounting the non-financial 

performance of the system, the visual interrogation of results uses non-discounted non-

financial performance. Decision makers are generally interested in how their system 

would perform over the considered planning time horizon. Thus to assess the 

performance trade-offs the engineering and environmental performance of the Pareto 

optimal plans is converted to reflect the worst experienced resilience and eco-deficit, 

i.e., without discounting the future performance. 

5.3.1. Recommended trade-off set 

The recommended Pareto optimal set of plans obtained by simulating the four Pareto 

optimal sets from the four bootstrapped ensembles against combined bootstrapped 440 

scenario ensemble and non-dominated sorting is shown in Figure 5-10. The cardinal 

axes represent the total discounted energy cost requirements (fEnergy), total discounted 

capital cost requirements (fCapex), and undiscounted supply resilience (fSupRes) to reflect 

the worst 5 year period duration of occurred failure experienced by a plan. The arrows 

point towards the direction of preference; the ideal solution would lie in the lower left 

hand side corner of the cube. Such solution is not possible to achieve due to the trade-

off between the financial and engineering performance. Improving the resilience of the 

system requires higher capital investment. However, plans of the same capital cost 

requirements and resilience levels differ in their energy requirements. The colour 

illustrates the undiscounted environmental performance of portfolios (fEco); the red plans 
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exhibit the worst eco-deficit while the blue plans the lowest eco-deficit. The 

environmental performance seems correlated with the engineering performance of the 

system but some plans of the same resilience levels and capital cost requirements with 

higher energy cost requirements achieve lower eco-deficit than plans of lower energy 

cost. The size of the points refers to the aggregated robustness indicator, which shows 

the average robustness of the two considered metrics fLoS3 and fLoS4. The indicator is 

strongly correlated with the resilience; the bigger the point the more robust the plan is. 

The two distinct fronts visible in this particular many-dimensional view are created by 

implementation of the RO/nonRO Deephams reuse scheme. Plans from the right hand 

side front implement the RO DRS which requires much higher energy to operate than 

the nonRO DRS scheme. In contrast, the majority of plans implement only nonRO 

Beckton reuse scheme.

 

Figure 5-10. Recommended set of Pareto optimal plans and their performance trade-offs. The 

cardinal axes reflect the total discounted capital cost, energy cost and undiscounted supply 

resilience. The undiscounted eco-deficit is shown by colour; blue plans exhibit lowest deficit whilst 

red plans the highest deficit. The size of the points refers to the aggregated robustness metric for 

Demand Level 3 and Level 4 LTCD violations; the bigger the point the more robust the plan is. The 

arrows point towards the direction of preference. 

The variety of plan schedules within the recommended Pareto optimal plans is 

illustrated in Figure 5-11. The horizontal axis shows the individual interventions whilst 

the vertical axis shows the planning periods. The lowest label on the vertical axis refers 

to no implementation, i.e., where an intervention is not implemented within the 

planning time horizon at all. The lines in Figure 5-11 illustrate the individual schedules 
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and the size of the points refers to the number of plans where a particular intervention 

occurs in a particular planning period. The colour of the lines shows the Upper Thames 

Reservoir capacity where plan schedules shown in blue build the smallest reservoir 

present in the Pareto optimal plans (90 ML) whilst the red lines the biggest reservoir 

(150ML). 

Figure 5-11a illustrates schedules of all Pareto optimal plans from the recommended set. 

It can be seen that majority of schedules does not include the RST transfer supply 

intervention and about half of the plans do not implement the UTR reservoir and ESD 

desalination plant. Plans that do implement ESD built it from 2040 onwards. All plans 

include the implementation of Meters and ALC demand management interventions and 

the majority do so at the beginning of the planning time horizon. Figure 5-11b illustrates 

the diversity of plans where the most controversial intervention, the UTR reservoir, is 

implemented (coloured lines in Figure 5-11b). Most of these plans build the reservoir 

bigger than 130 ML. It is worth noting that all these plans always implement all demand 

management interventions in various planning periods.  

 

Figure 5-11. Schedules within the recommended Pareto optimal plans. The horizontal axis shows 

interventions whilst the vertical axis refers to the planning periods. A single line then illustrates the 

schedule of a single plan. The size of the points refers to the number of plans implementing an 

intervention at a particular period; the bigger the point the more plans the intervention occurs in in 

the particular planning period. Panel a) illustrates schedules of all Pareto-approximate plans from 

the recommended set. Panel b) highlights schedules of plans that implement the UTR reservoir. 

Panels c) and d) then “brush” the schedules further where the highlighted plans build UTR in 2020 

and 2035, respectively. The colour of the lines in panels b, c, and d refers to the reservoir capacity. 
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The schedules can be “brushed” further to explore plans that implement UTR in 

particular period. For instance, Figure 5-11c shows all plan schedules where UTR is 

built at the beginning of the planning horizon. The colour of the lines shows that all of 

these plans build the reservoir of the highest capacity (140 – 150 ML). Most of these 

plans also schedule the Meters, ALC, Mains and the BRS reuse scheme for the 

beginning of the planning horizon. Figure 5-11d shows schedules where UTR is built 15 

years later, in 2035. There is a greater variety of schedules than when UTR is built in 

2020 (Figure 5-11c) as well as the implemented reservoir capacity (shown by the colour 

scale).  

5.3.2. Deliberation of the preferred schedule 

The trade-offs may be interrogated in terms of how the individual interventions and 

their schedules affect the system’s performance. Figure 5-12a illustrates the 

implementation and schedules of the most controversial supply interventions, i.e. the 

mutually exclusive UTR reservoir and RST transfer. The cardinal axes in Figure 5-12 

show the same metrics as in Figure 5-10. The orientation of the cones illustrates the 

implementation of the interventions: cones pointing upwards show plans implementing 

the RST transfer, cones pointing sideways show plans implementing the UTR reservoir, 

and translucent cones pointing downwards show plans that do not implement any of 

those. Plans implementing these supply interventions provide better engineering and 

environmental performance spanning across almost the whole range of the capital and 

energy cost requirements than plans not implementing these interventions. The colour 

scale in Figure 5-12 refers to the schedules of the two interventions; dark blue plans 

build the interventions in the earliest possible period, i.e., 2020, whilst the light green 

plans build them in 2055. None of the plans build these interventions later than 2055 

due to their long construction period requirements (10 years for UTR and 12 years for 

RST, see Supplementary material). The earlier these interventions are built the better 

engineering and environmental performance the plans exhibit but the higher the initial 

investment is required. It is worth noting that plans implementing the transfer in the 

same period as plans implementing UTR generally require lower initial investment but 

show worse performance in resilience and eco-deficit than the latter. 

The plans may be “brushed” based on the preferred performance and schedules to 

identify a smaller cluster of promising plans that balance stakeholder preferences. For 

instance, if decision makers would like to preserve good environmental and engineering 

performance of the system, they would consider plans building either UTR or RST. 
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However, due to the controversy of these interventions decision makers may want to 

delay their implementation. Furthermore, decision makers may also want to consider 

minimizing the total energy cost requirements of the system over the planning horizon. 

Figure 5-12b shows a cluster of promising plans that satisfy such preferences (full 

coloured cones). These plans schedule the UTR or RST interventions’ construction to 

2030 or later, maintain the eco-deficit to a maximum of 65% and maximum duration of 

failure of 5 weeks and require total operating cost lower than £12m. Five plans are 

singled out based on their similar schedules in the first decade and labeled for further 

analysis: Least Cost (LC), Delayed Supply (DS), Least Energy (LE), High Performance 

(HP), and High Energy (HE).    

 

Figure 5-12. Reservoir (UTR)/Transfer (RST) implementation and schedules (panel A). The 

cardinal axes show the same performance metrics as in Figure 5-10. The arrows point towards the 

direction of preference. The orientation of the cones illustrates the implementation of these supply 

interventions: cones pointing upwards refer to plans implementing RST, cones pointing sideways 

refer to plans building UTR, and the translucent cones pointing downwards refer to plans that do 

not implement any of those. The colour scale refers to the scheduling of the UTR and RST 

interventions; dark blue colour refers to the earliest possible planning period (2020) whilst the dark 

red colour refers to the latest planning period (2065). Panel B shows a cluster of promising plans as 

a subset of plans from panel A chosen for further analysis where the UTR/RST implementation is 

delayed till 2030 and further with maximum energy cost of £12m, maximum eco-deficit of 65% and 

maximum duration of failure (resilience) of 5 weeks. Five plans are singled out based on their 

similar schedules in the first decade and labelled for further analysis (see Figure 5-13 and Figure 

5-14Error! Reference source not found.). 

Figure 5-13 shows a parallel axes plot of the cluster plans performance. The vertical 

axes illustrate performance metrics with the best performance at the bottom and the 

worst at the top. The horizontal lines represent all plans from the cluster shown in 

Figure 5-12b. When the lines cross between two vertical axes it signifies that there is a 
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trade-off between the two metrics. For instance, there is a clear trade-off between the 

capital cost and resilience, resilience and energy cost, energy cost and eco-deficit, and 

Level 4 robustness indicator and flexibility. In contrast, the eco-deficit and robustness 

indicator for the LoS Level 3 seem almost correlated. The coloured lines illustrate five 

candidate plans selected for further analysis (labelled cones in Figure 5-12b). The Least 

Cost plan (red colour) requires the lowest capital investment, is the most flexible of all 

plans within the cluster but has the lowest Level 3 robustness and the worst eco-deficit. 

The Delayed Supply plan (purple colour), implementing only small demand 

management interventions and Oxford Canal Transfer at the beginning of the planning 

time horizon and delaying all investments in the supply interventions until 2035, shows 

the worst resilience and low robustness and flexibility. This plan was chosen based on 

the resilience and eco-deficit metrics; it has the worst resilience out of all plans within 

the cluster and worst eco-deficit together with the LC plan but requires higher capital 

and energy cost investment than the latter. The Least Energy plan (blue colour) requires 

the lowest energy cost of the cluster plans, lies in the middle on the capital cost 

requirements axis but exhibits low engineering and environmental performance. The 

High Performance plan (orange colour) shows good resilience, low eco-deficit and high 

Level 3 robustness when compared to the other four singled out candidate plans but 

exhibits the lowest flexibility (there is no other plan within the whole Pareto-

approximate set that has the same schedule within the first 2 planning periods). Lastly, 

the High Energy plan (green colour) requires the highest capital and energy cost out of 

the five candidate plans but shows the highest Level 4 robustness, average flexibility, 

and good engineering and environmental performance. 
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Figure 5-13. Parallel axes performance plot of plans from the cluster of promising plans shown in 

Figure 5-12b. The vertical axes represent performance metrics and the arrow points towards the 

direction of preference; the best performance is at the bottom of axes whilst the worst performance 

at the top. The coloured lines highlight five singled out candidate plans. The table shows the metric 

values for the five candidate plans. 

The five singled out candidate plans may be combined into a plan strategy based on 

their intervention schedules (Figure 5-14). The horizontal axis in Figure 5-14 shows the 

“time continuation” and the boxes represent implementation of an intervention in a 

particular planning period. Each coloured line refers to a single plan whilst coloured 

intervention names belong to the same coloured plan; black intervention names mean 

that the particular intervention is implemented within multiple plans. A coloured box 

signifies where the plan schedule of the same colour ends.  

The Least Cost plan (red line in Figure 5-14) implements only Meters in 2020 and 

continues with other interventions from 2030; it does not share the same schedule 

within the first 10 years with any other of the singled out candidate plans. The plan also 

builds the River Severn Transfer (RST) in 2035 instead of the reservoir. In contrast, the 

Least Energy and High Energy plans (blue and green lines in Figure 5-14, respectively) 

share the same schedule in the first 10 years, i.e., both plans introduce the Meters and 

Mains demand management interventions in 2020 and diverge only in 2030 where the 

Least Energy plan builds the UTR reservoir and LRD desalination plant whilst the High 

Energy plan builds the BRS reuse scheme. This would allow decision makers to take 

common immediate actions whilst leaving them more alternative plan schedules to 

follow in future. The two plans differ in their energy cost requirements considerably 
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which is caused by the High Energy plan implementing the energy intensive 

desalination plants (LRD and ESD) and reuse schemes (DRS and BRS) earlier in the 

planning time horizon than the Least Energy plan. The High Performance and Delayed 

Supply plans (orange and purple plans in Figure 5-14, respectively) both implement 

ALC and OCT in addition to Meters and Mains in 2020. The former then builds DRS 

reuse in 2025 and UTR in 2030 whilst the latter does not introduce any supply 

intervention until 2035 which results in the plan’s poor performance (Figure 5-13) when 

compared to the other four candidate plans. 

 

Figure 5-14. Five candidate plans selected from the cluster of promising plans shown in Figure 5 

11b. The horizontal axis shows individual planning periods and the coloured lines track the 

different plans. The boxes represent implementation of individual interventions; a coloured box 

signifies the end point of a particular plan. Intervention names and boxes shown in black signify 

that multiple plans implement the intervention in the particular period. 

5.4. Discussion 

5.4.1. Bootstrapping 

The scenarios of future hydrological conditions used in this study were chosen based on 

the current practice and regulator recommendations. Nevertheless, using only the 

original ensemble of the 11 Future Flow scenarios showed that a major stress event time 

occurrence projection may bias the scheduling of interventions (section 5.2.3.1). This 

study therefore proposed a scenario manipulation technique based on a bootstrapping 

method to generate a wider ensemble where such stress event is considered to occur at 
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any point in time. Evaluating the candidate solutions against such scenario ensemble 

ensures the Pareto optimal plans are robust to a wide range of future conditions. Based 

on the robustness metric indicators planners are given the opportunity to trade-off the 

financial requirements of plans with their long-term ability to maintain the desired 

levels of service where stress events may occur unexpectedly. The ensemble was kept 

small for practical purposes; larger ensembles did not result in higher quality solutions 

(section 5.2.5). Real world water resource system planning problems are complex and 

planners typically need to make decisions fast whilst not having access to high-

performing clusters that can perform millions of system evaluations.  

The investigation into the resampling influence on the Pareto optimal solutions (sections 

5.2.4 and 5.2.5) showed that the problem formulation, i.e. the objective value 

calculations across the scenarios, can influence the schedules within the Pareto optimal 

solutions. The four different bootstrapped scenario ensembles were generated in the 

same way redistributing the major drought event equally across the planning time 

horizon in each ensemble. Nevertheless, the noise in random resampling may still have 

some influence what solutions are obtained from using each ensemble. The 

investigation of trade-offs obtained from using the four different bootstrapped scenario 

ensembles shown in Figure 5-9 confirmed that this noise is sufficiently low to cause 

substantial differences if the recommended problem formulation is used. Generating 

scenarios in different way as well as using a different problem formulation may result in 

greater sensitivity of solutions to the resampling noise and a sensitivity analysis 

technique should be used to assess the extent of the solutions’ sensitivity.      

5.4.2. Discounting performance 

The supply and demand intervention plans were optimized for discounted financial, 

engineering and environmental performance. Financial discounting to value and price 

future financial assets for today has long been applied in planning (Frederick et al., 

2002). Society values future gain or loss lower than the same gain or loss occurring now 

(Pearce et al., 2003). This, however, holds true not only for the financial aspect of assets 

but for all associated benefits and dis-benefits. In the case of a water supply system this 

includes the ability to provide sufficient levels of service as well as minimize the 

negative environmental impacts. As the traditional least cost approach monetizes the 

social and environmental impacts and aggregates all metrics into a single financial 

objective it could be argued that such approach already considers the time discounting 

of future non-financial performance. The many-objective optimization however 
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considers all metrics separately where usually only the financial metrics are discounted 

(e.g., Beh et al., 2015; Borgomeo et al., 2016). This results in unequal performance 

valuation of the system in future, i.e., the cost of future assets is lower today if they are 

implemented later in time but the risks associated with their future performance such as 

supply failures are valued the same today as at any point in future.  

The conducted experiments in section 5.2.4 also revealed that discounting only the 

financial performance results in delaying the investments as much as possible as near 

future poor performance of the system is considered of lower concern than bigger 

failure in e.g. 25 years from now. As Olson and Bailey argue (Olson and Bailey, 1981) 

zero discounting logically implies the impoverishment of the current generation. 

Furthermore, the uncertainty associated with future conditions predictions such as 

climate change and population growth tends to increase with the length of the 

projections time span. This implies that predictions about near future may be more 

accurate than predictions about distant future. Thus a water supply system failure in 

near future may be of more concern to planners than the failure in distant future as there 

is more time available to prepare for the latter through technological advancements, 

more sophisticated prediction methods, etc. This study therefore discounts all 

considered performance metrics using the same discount rate to ensure their equal 

temporal assessment. 

5.4.3. Plan analysis 

The trade-off analysis and deliberation of the preferred plan schedule presented in this 

study aim to show how the results of the many-objective robust optimization may be 

used for decision making. Firstly, the performance of the whole Pareto optimal front 

may be assessed using multi-dimensional visual analytics to provide information about 

the system's performance trade-offs (Figure 5-10). In this case improving the 

robustness, resilience and environmental performance of the system requires higher 

capital investment but not necessarily higher energy use; plans with the same capital 

cost differ in their energy cost requirements. It is worth noting that higher energy use 

does not result in higher robustness. Figure 5-10 showed that plans located towards 

right hand side on the energy cost axis (i.e., higher energy cost) are of lower size (i.e., 

lower robustness) than plans located towards left (i.e., lower energy cost) that are of the 

same capital cost and resilience but different eco-deficit. Planners may therefore want to 

consider less long-term cost alternatives that provide better resilience and robustness 

with slightly worse environmental performance. 
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The investigation of the Pareto optimal plan schedules illustrated in Figure 5-11 

provides decision makers with insight into the high-performing combinations of 

interventions and their schedules. For instance, planners may hypothesize that building 

a single large intervention such as a reservoir right at the beginning of the planning time 

horizon would mean smaller interventions do not need to be implemented for several 

years to follow if at all. However, the results here suggest that such plans are not 

optimal under a wide range of future hydrological conditions as all Pareto optimal plans 

that build the UTR reservoir in 2020 implement several smaller interventions in 2020 or 

2025 (Figure 5-11c). Furthermore, these plans build the reservoir of the highest 

considered capacity (colour of lines in Figure 5-11c). In contrast, planners may believe 

that delaying the reservoir implementation inevitably requires implementing most of the 

other considered interventions at the beginning of the planning horizon for the system to 

perform satisfactorily. The results here however suggest that plans which build UTR in 

e.g. 2035 (Figure 5-11d) provide a variety of both UTR capacity and other intervention 

scheduling. Such information helps decision makers to acquire more knowledge about 

their system’s behaviour.  

The Pareto optimal plans may then be interrogated in terms of what interventions are 

implemented and when they should be built. In the Thames basin the most socially and 

economically controversial intervention is the Upper Thames Reservoir which in this 

study is considered mutually exclusive with the River Severn Transfer. Therefore, these 

two interventions and their schedules may be mapped to the trade-off surface as shown 

in panel A of Figure 5-12b. By doing so decision makers are provided with the 

information of how the individual decisions affect their system's performance and this 

may help to narrow down the whole set of alternative solutions to a cluster of few 

(Figure 5-12b). The plans within the identified cluster may then be analysed in more 

detail by e.g. choosing a small number of promising solutions with similar performance 

that share similar intervention schedules in the first decade and comparing their relative 

performance (Figure 5-13). Mapping and combining the intervention schedules of such 

plans against time frame as illustrated in Figure 5-14 results in a schematic of a flexible 

plan that provides multiple choices over time. Choosing to implement interventions that 

are shared between multiple plans in the first five year planning period such as Meters 

and Mains for Least Energy and High Energy plans or Meters, Mains, ALC and OCT 

for High Performance and Delayed Supply plans in Figure 5-14 allows switching 

between these plans within the first five years. If for example planners chose to 

implement the Delayed Supply plan but the demand management interventions it 
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implements would not deliver anticipated demand savings within the first five years, the 

High Performance plan could instead be implemented by building the DRS scheme in 

the following five year planning period. The latter plan shows higher resilience and 

robustness indicating that switching to this plan would improve the system’s 

performance. Nevertheless, all five plan combined into the single schematic exhibit 

similar performance when compared to the other Pareto optimal plans (Figure 5-12b) 

thus switching between these plans would not violate overall optimality. This allows 

decision makers to select not one but multiple plans with the same immediate actions 

whilst providing more flexibility in which actions to implement in the following 

planning periods. However, the current planning approach in the UK is repeated every 

five years the approach proposed here may also be repeated after the first five year 

planning period which may result in different paths after the initial period as the new 

data become available (i.e. scenarios of future conditions, cost of interventions, etc.). 

The plan schematic presented here is meant to show planners they can combine multiple 

plans with similar initial investments when considering initial decisions.  

5.5.  Conclusion 

This chapter proposed an approach to identify and visually deliberate robust plans for 

water resource systems that meet many financial, engineering and ecological goals. The 

approach was applied to identifying plans of new water supply and demand 

management intervention schedules that could meet London’s estimated water supply 

demands in the next 50 years. Plans were evaluated against the following discounted 

metrics: capital and energy cost, and supply resilience and hydro-ecological deficits; 

two robustness indicators were also considered. Future plans were assessed against 

multiple scenarios of future climate change impacted hydrological flows. These were 

generated by bootstrapping method that respects the non-stationary trend of climate 

change scenarios and ensures even distribution of the major stress event in the scenario 

ensemble. Using such scenario ensemble reduces the possibility of optimizing the 

intervention schedules against perfect foresight. 

Results were presented via many-dimensional trade-off visualizations that help 

deliberation of preferred plan between stakeholders. The trade-offs interrogation in 

terms of what interventions individual plans implement and when provides decision 

makers with information about how the interventions affect the system’s behaviour. The 

set of Pareto optimal plans may be narrowed down based on their performance and 
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intervention schedules. Promising plans that share similar intervention schedules in the 

first decade were combined into a coherent flexible plan that provides multiple choices 

over time. This allows decision makers to select not one but multiple plans with the 

same immediate actions whilst providing more flexibility in which actions to implement 

in the following planning periods. 
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6. Chapter 6 – Conclusions 

6.1. Summary 

Water supply planning in many major world cities faces several challenges associated 

with but not limited to climate change, population and economic growth and 

environmentally motivated regulations. Long-term plans to maintain supply-demand 

balance and ecosystem services require careful consideration of uncertainties associated 

with future conditions. In addition, such plans must meet multiple demands of a range 

of stakeholders whose preferences often conflict. Understanding these conflicts 

necessitates exploration of many alternative plans to identify possible compromise 

solutions and important system trade-offs. The current approach for London’s water 

supply planning in the UK utilizes least cost capacity expansion of future plans of 

intervention schedules with limited consideration of uncertainty beyond a supply-

demand buffer. The traditional capacity expansion approach typically requires 

simplified aggregated models that have difficulties in representing non-linearities and if 

multi-objective it limits the weighting or prioritization of objectives ‘a posteriory’. The 

single least-cost objective approach may introduce bias into the decision making 

process as well as limits the exploration of the many possible combinations of supply 

and demand options and is potentially unsuitable for the high variability and uncertainty 

in future states.  

Recently developed planning under uncertainty approaches that evaluate many plausible 

candidate strategies and consider trade-offs between multiple water supply system 

performance criteria have been mostly applied to hypothetical or simplified case studies. 

The simulation-based planning approaches are typically applied to predefined strategies 

to assess their vulnerabilities and robustness. If these predefined strategies are desired to 

balance multiple societal goal such as reliability of the associated water supply system 

and its environmental impacts in addition to the required investments the search process 

for such strategies has to be performed prior to the robustness assessment. The existing 

simulation-optimization based planning approaches that link these two steps together 

have some limitations when considered for the application to the current planning 

approach in practice. Firstly, the methodology they employ represents too big a 

challenge to be incorporated into the UK’s planning process ‘as is’. Secondly, the 

results obtained by using these approaches are in general too complex for decision 

makers to understand, let alone justify their choices arising from such results to 
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regulators. The variety and complexity of different available approaches to planning 

under uncertainty make it difficult for planners to choose one that would require the 

lowest level of transition whilst providing the most desired outcomes. Application of 

such frameworks by water system planners will require them to understand and accept 

the benefits of embedding the search for robust plans that perform well under wide 

range of future conditions within automated investment filtering approaches. 

This thesis described a step-wise approach of introducing the many-objective robust 

optimization of water supply system expansion investments to UK’s water industry 

regulators, planners and stakeholders. Chapter 3 presented the first step of implementing 

the many-objective optimization to the Thames basin water supply planning problem. 

Six performance objectives were considered explicitly including the financial, 

engineering and environmental performance. Historical records were used to represent 

conditions in 2035. The performance trade-offs were visualized progressively to help 

decision makers become familiar with many-objective analysis, navigate the trade-offs 

and reveal information that would remain hidden if lower dimensional analysis was 

used. Individual interventions within the Pareto optimal portfolios were mapped on the 

trade-off space to reveal how the interventions themselves affect the system’s 

performance.  

Multi-objective optimization linked to simulation allows planners to incorporate 

different and often conflicting preferences into decision making explicitly as well as 

reducing the need to choose a priori which portfolios of interventions at fixed capacities 

to evaluate. Instead of estimating the deployable output of each supply scheme by using 

a simulation model separately and using this information in separate optimization model 

with discrete scheme capacities the proposed approach automates the search for the 

most promising portfolios of interventions and their capacities. Visualizing the trade-

offs helps planners to decide on appropriate balance between different planning goals 

and assess the consequences of including certain interventions in their plans.In Chapter 

4 multiple sources of future uncertainty were implemented in the same many-objective 

optimization problem in the form of scenarios. All possible combinations of 11 

scenarios of future hydrological conditions, 2 demand growth scenarios, 2 energy price 

growth scenarios and 2 sustainability reduction scenarios were considered to represent 

conditions considered plausible to occur in 2035. The objectives were proposed to be 

assessed across scenarios as average for the environmental impact and energy cost 

requirement and as ‘nearly’ worst-case for the engineering performance. Different 
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objective assessment as well as using different scenario set could potentially lead to 

different results. The objectives and scenarios were discussed with decision makers to 

ensure the results reflect their planning efforts. The candidate portfolios were 

constrained to maintain the desired service reliability (Levels of Service) across all 

considered futures. The results were compared to those obtained from the deterministic 

optimization described in Chapter 3. Visual analytics was used to highlight the benefits 

of incorporating uncertainties whilst searching for the robust portfolios.  

The previous chapters considered only a static snapshot of the Thames basin water 

supply system’s performance in a single year (2035). Chapter 5 then introduced time 

continuation to incorporate the scheduling of interventions into the many-objective 

robust optimization. A planning time horizon of 50 years (2020 – 2070) was considered. 

The decisions were updated according to the latest TWUL’s WRMP and the six 

objectives considered included discounted financial, engineering and environmental 

performance as well as robustness metrics reflecting how well the candidate plans of 

intervention schedules would perform across the considered future scenarios. A 

bootstrapping method that respects the non-stationary trend of climate change scenarios 

and ensures even distribution of the major stress event in the hydrological flows 

scenario ensemble within the planning time horizon was proposed. Results were 

presented via many-dimensional trade-off visualizations to help planners make a 

decision based on Pareto optimal plans’ performance and intervention schedules. 

Promising plans that share similar intervention schedules in the first decade were 

combined into a coherent flexible plan that provides multiple choices over time.     

6.2. Findings 

This thesis examined how the challenges of incorporating multiple societal goals and 

uncertainty consideration may be addressed to provide efficient and straightforward 

practical implementation for the real world water resource system planning problems. 

The goals considered and optimized for in the studies included the initial capital 

investment requirements of implementing new infrastructure and demand management 

interventions, their operating cost requirements, the supply reliability and resilience of 

the water supply system, the environmental impacts of the new infrastructure and 

demand savings on the river flows and a measure of plan’s robustness to a range of 

future scenarios. The studies presented in Chapters 3, 4, and 5 and summarized above 

demonstrated the implementation of the many-objective robust optimization that 

considers both multiple performance criteria and a wide range of future conditions for 
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the Thames basin water supply system expansion planning problem. The findings from 

each study are summarised below. 

Chapter 3 demonstrated that optimizing for multiple preferences explicitly is well suited 

for situations where stakeholders have diverse interests and allows decision makers to 

visually assess the trade-offs that different investments imply. Visualizing and exploring 

the trade-offs progressively aids the learning and decisions making process. In the 

Thames basin, reducing capital investments negatively affects the engineering and 

environmental performance of the system. Higher capital investment results in 

maintaining good engineering and environmental performance whilst saving on energy 

costs. Visualizing performance objectives and investment decisions simultaneously 

reveals how individual decisions affect the system’s performance. Building the 

unsupported River Severn Transfer instead of the reservoir requires lower initial 

investment but significantly higher operating costs; implementing the pipe repair 

campaign intervention requires higher capital costs but provides energy cost savings. 

The approach presented here frees planners from having to choose a priori which 

portfolios of interventions to evaluate and the trade-off exploration findings may help 

justify to interested parties why a certain strategy was selected. 

Chapter 4 demonstrated that taking into account multiple performance preferences and 

planning for robustness can be achieved concurrently. Such approach identifies robust 

solutions that perform well under a wide range of future conditions. The analysis here 

showed that sing only a single future scenario based on historical records might suggest 

future system investments that are optimal for the specific future condition but are 

unlikely to perform well under a range of plausible future conditions. Robust 

interventions can be identified by their presence within the identified robust portfolios. 

The results suggest that, given how the system is currently modelled, building the 

reservoir and reducing demand by implementing the demand management interventions 

are likely appropriate strategies for the Thames basin water supply system in the face of 

uncertainty.   

In Chapter 5 where time continuation is considered the investigations revealed that a 

presence of a single major drought event within the hydrological flow scenarios may 

bias the scheduling of interventions towards the timing of this drought. Ensuring even 

distribution of such event within the considered scenario ensemble reduces such bias 

significantly. Based on the robustness metric indicators planners are given the 

opportunity to trade-off the financial requirements of plans with their long-term ability 
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to maintain the desired levels of service where stress events may occur unexpectedly. 

The investigation also showed that discounting only financial performance of the 

system results in delaying investments with unequal consideration of the engineering 

and environmental performance over time. Discounting all considered performance 

metrics equally ensures that the robust plans perform satisfactorily within near future as 

well as over the whole planning time horizon. The visual trade-off analysis provides 

insights of not only how the individual intervention implementation affects the system’s 

performance but how also their sequencing over time changes the performance. 

Building the reservoir and implementing demand management interventions early 

improves the robustness, resilience and environmental performance of the system, 

requires higher capital investment but not necessarily higher energy use. In general, 

higher plan’s energy use does not results in higher plan’s robustness. This chapter also 

demonstrates how some Pareto optimal plans of intervention schedules may be 

combined into a single coherent plan that provides multiple choices in the first five 

years of the plan implementation. The current planning approach in the UK is repeated 

every five years; the approach proposed here may also be repeated after the first five 

year planning period which may result in different paths following after the initial 

period due to updated input data (i.e. scenarios of future conditions, cost of 

interventions, etc.). The plans that may be combined implement the demand 

management interventions in the first five years which suggests that reducing demand at 

the beginning of the planning time horizon may provide planners with higher flexibility 

of which supply interventions and when to implement in the following periods. The 

coherent plan schematic presented here is meant as a recommendation for planners to 

consider combining multiple plans with similar initial investments when designing their 

preferred strategy. 

6.3. Limitations 

This thesis focused on investigating the implementation of many-objective robust 

optimization approach into the current water supply system planning practice in the UK. 

A single case study of the Thames basin water supply system planning problem was 

used throughout the project. Some findings, benefits and limitations discussed here may 

not directly apply to other water resource planning problems that may require the use of 

other specific performance metrics (e.g., hydropower performance, irrigation, etc.) and 

scenarios of future conditions not discussed here. 
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Future conditions in this study were represented in a limited way; only a limited number 

of scenarios as well as estimates based on the extrapolations of current socio-economic 

trends to consider uncertainty of future conditions were employed. The Pareto optimal 

portfolios identified as robust in this study are considered robust to the scenarios used. 

If a different set of future conditions was used, the proposed approach could potentially 

identify different portfolios as robust to the particular set. The climate change impacted 

scenarios used throughout this thesis may also underrepresent the true complexity of the 

potential effects of climate change on hydrology. These scenarios are currently 

recommended by the regulators as one of the approaches for scenario testing and are 

used by water companies. Increasing the number of possible future scenarios increases 

the number of their combinations exponentially. Evaluating each candidate portfolio or 

plan against such a large ensemble poses significant computational challenges that 

many water companies are not technologically and temporally equipped to undertake. 

The purpose of this thesis is to highlight the possible improvements to the current 

planning approach in England. The approach proposed here was therefore designed to 

resemble the current practice as close as possible and offer a relatively straightforward 

methods of implementation. 

6.4. Future work 

This thesis proposed a methodology of implementing the many-objective robust 

optimization in the water supply system expansion planning. Despite representing the 

real water supply system the approach has not yet been implemented in practice. A 

project to include this approach in TWUL’s WRMP19 based on the methodology 

presented here is currently being undertaken.  

The scheduling of interventions as proposed in this thesis does not take into account the 

value of flexibility (Woodward et al., 2014) and adaptation (Haasnoot et al., 2013; 

Hamarat et al., 2014) explicitly. Approaches seeking plans of supply and demand 

management interventions represented as dynamic trajectories over time, which are able 

to be adapted to the changing environment whilst considering many system goals and 

plausible futures, may be more suited to situations of deep uncertainty. The robust plans 

were optimized for considering static robustness here and were assessed for flexibility 

post-optimization. Searching for dynamic robustness involves searching for plans that 

are able to adapt as conditions change (Walker et al., 2013). One possible method is the 

Adaptation Pathways approach (Haasnoot et al., 2012) described in section 1.3.3.2. 

Instead of optimizing the exact planning period when an intervention should be built or 
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implemented the search would optimize an adaptation tipping point (Kwadijk et al., 

2010) of each intervention within each plan, i.e., a condition which when “observed” 

would signal the need to implement the specific intervention in order to maintain the 

desired service levels in future. The tipping points may be in the case of the Thames 

basin water supply system specified as the frequency of occurrence of certain LTCD 

Demand level failure. For instance, if the sprinkler/hosepipe use ban (LTCD Demand 

level 2 failure) is imposed more than once within the first decade of the planning time 

horizon, a reuse scheme should be built to maintain desired service levels in the next 80 

years. This would result in a plan consisting of an adaptation pathways map specifying 

trigger conditions for each intervention within the plan. Such rules to guide the 

implementation of interventions as the future unfolds may result in more flexible 

strategies where a decision is made based on observations on how the future is actually 

unfolding. 
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Appendix – Thames IRAS-2010 components 
This Appendix provides the Thames IRAS-2010 simulation model components 

description as illustrated in Figure 2-2. 

Day's Weir and Lower Thames inputs                                                                                          

The naturalised flow sequences we use are those for Day's Weir and Teddington. The 

lower Thames input is derived by simply subtracting Day’s Weir flows from 

Teddington flows, making no allowance for time of travel downstream. The model is 

run on a weekly time-step. This calculation depends on the assumption that flow from 

Day’s Weir reaches Teddington in less time than one time-step. 

WBGW (West Berkshire Groundwater Scheme) 

WBGW release water into the Thames when the Demand Level 2 restriction line on the 

Lower Thames Control Diagram (LTCD) is crossed. When invoked, the scheme can 

release 66 Ml/d for 18 months. The scheme is represented in the model as a reservoir of 

capacity 18x30x66 Ml (one month=30 days). WBGW is refilled using an input of 0.2 

m3/s which represents natural GW infiltration. 

AffThamesAbs 

This is the sum of Affinity abstractions from the Thames to its Central and Southern 

WRZs (Affinity Central and Affinity South, respectively, in Figure 2-2). This is set as a 

constant amount representing the sum of abstraction licences, 405.4 Ml/d. However, to 

account for the return flows the Affinity abstraction was reduced by 30% to 283.8 Ml/d. 

Thames Abs 

The Thames Nominal Intake component represents combined abstractions at Datchet, 

Wraysbury, Laleham, Walton, Hampton, the Thames-Lee tunnel and Surbiton. We 

assume that Thames Water will be able to take the maximum aggregate daily licensed 

value (5455 Ml/day) if it is available and needed. An annual license of 663716 Ml can 

be implemented. Abstraction is also constrained by the minimum environmental flow at 

Teddingon, as set by the LTCD. 

LAS (London Aggregated Storage) 

In our model all the London reservoirs are aggregated into one reservoir with total 

capacity of 202 828 Ml. In the WARMS model they are lumped into three: north 

Thames reservoirs, south Thames reservoirs and Lee Valley reservoirs. In fact, the 

Thames and Lee storage is connected by the Thames-Lee tunnel with a capacity of 410 

Ml/d (flow goes only in 1 direction: Thames-Lee). Splitting the reservoir in the 

modelling would introduce considerable extra complication. 
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Besides the Thames abstractions there are currently two other inputs to the aggregate 

storage. One is the North London Artificial Recharge Scheme (NLARS) which only 

supplies water in dry situations when an LTCD control curve is crossed (please see 

description of ‘NLARS’ for details). The other is the combined intake from the Lee, 

component NLARS_abs. Because there is more than one input, the Aggregated Storage 

component has a supply order, calling on the Lee first, then the Thames and finally 

NLARS. 

Groundwater, in the representation, is considered as supplying demand directly rather 

than adding to storage. Demand calls on groundwater first and is always considerably 

more than it can supply.  

Feildes Weir (Lee input) 

These are the denaturalised flow time-series for Feildes Weir. The TWUL abstractions 

are aggregated into a single node located below Feildes Weir inflow point. We assume 

all TWUL Lee abstraction points (Chingford South, Chingford supply channel, Enfield 

lock, Enfield lock navigation, Keids Weir) are indeed downstream of Feildes Weir.  

Rye-Meads  (Rye Meads treated effluent input) 

The input here is a monthly profile repeated in each year based on the WARMS model 

shown in Table 0-1.  

Table 0-1. Rye-Meads effluent monthly profile 

Month 
Release 

(Ml/d) 
Month 

Release 

(Ml/d) 
Month 

Release 

(Ml/d) 
Month 

Release 

(Ml/d) 

January 75.9 April 75.9 July 82.8 October 74.4 

February 77.4 May 76.7 August 77.4 November 74.4 

March 76.7 June 77.4 September 76.7 December 74.4 

 

Lee abstraction (Lee nominal intake) 

Lee abstraction to LAS. The Lee intake is similar to the Thames nominal intake. Hands-

off flow after abstraction (Lee ecoflow node) is set to 34 Ml/d. The constraints on the 

abstraction are the annual and daily licences: 238,119.5 Ml annually and 2,636.7 Ml/d 

daily as sums of all TWUL licences on the River Lee. The pumping capacity is however 

limited to 1,171 Ml/d; the maximum daily abstraction is therefore set to reflect the 

pumping capacity. 

Essex & Suffolk (Essex and Suffolk Water Bulk Supply) 

Thames Water provides a bulk supply of raw water to Essex and Suffolk of 91 Ml/d on 

average.  
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To this average demand, Thames Water applies a monthly. We apply the same profile 

expressed as proportions of 91.  

Thames water also has to make available raw water to Three Valleys for pollution 

incidents on an emergency basis, and as sweetening flow in the connecting tunnel to 

their Iver WTW. This is included as an export of a constant 10 Ml/d.  

WTW (Nominal Treatment Works, Returns to River) 

Losses from the treatment works are expressed as a percentage of the amount treated, 

currently set to 7.2% of which 88% is fed back to the Thames at Teddington. The River 

Thames WTW returns its losses to the river above Teddington but some losses go to the 

River Lee.  

If the potential losses at each WTW (below) are added, the total losses come to 113 

Ml/d. In that case 88% of the losses would go to the Thames and 12% to the Lee.  

Affinity Bulk Supply 

There is a binding bulk supply agreement for the provision of 10 Ml/d to Three Valleys 

Water at Fortis Green which is a constant amount with no associated profile.  

NLARS (North London Artificial Recharge Scheme) 

The use of the NLARS resource depends on the Lower Thames Control Diagram. It is 

called upon when the level 1 demand savings line is crossed (same as the 600/400 Ml/d 

environmental flow line).   

NLARS release is set to vary between 80 Ml/d and 130 Ml/d based on its current 

available storage. The annual license is set to 55,000 Ml. As in the EA AQUATOR 

model we assume that NLARS can operate continuously for 16 months. To incorporate 

the annual license we model NLARS as a reservoir of capacity equal to the total amount 

that might be extracted from it (limited by the annual licence prorated to 16 months), 

assuming 30 days per month. This results in a capacity of 73.3 Mm3 (55,000 Ml 16 

months/12 months). 

When the LAS is at 99% of capacity (ample water supply), NLARS is recharged using a 

diversion from Lee abstraction-LAS link. In reality, the Lee reservoirs recharge NLARS 

but it would be difficult to model it in IRAS as it would result in circular flow. The way 

we model it does not affect the model and better represents the fact that NLARS 

recharge originates from the Lee reservoirs (no recharge comes from Thames 

reservoirs). The recharge rate is 60 Ml/day. 
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London GW (London aggregated groundwater) 

This is set to the sum of the London groundwater DOs (432 Ml/d) from the latest 

WRMP, adjusted by +8 Ml/d to 440 Ml/d. Groundwater is assumed to feed demand 

directly because losses are included in the DO calculation (and because demand always 

exceeds groundwater supply). London GW includes the CHARS scheme. For the 

baseline simulation the time varying GW output was used based on the time-series used 

in WARMS. 

London (London demand) 

London demand is modelled as the expected demand in 2050 as given in the Thames 

Water WRMP. A monthly profile obtained from the EA’s AQUATOR model is used 

(Table 0-2). This demand is reduced when LTCD restrictions are invoked. Demand 

reductions for each successive LTCD level were obtained from the EA’s AQUATOR 

model. 

Table 0-2. Monthly factors for London’s demand 

Month 1 2 3 4 5 6 7 8 9 10 11 12 

Factor 0.989 0.977 0.965 0.964 1.006 1.014 1.043 1.056 1.001 0.975 0.99 1.02 

 

Teddington (Teddington Weir) 

The environmental flow normally required at Teddington Weir is 800 Ml/d but can be 

reduced in increments according to the LTCD. 

Beckton desal (Beckton desalination plant) 

This node is modelled as an infinite reservoir that releases water straight into London 

when the Thames flow at Teddington goes below 3,000Ml/d.  

Junction nodes (black nodes) 

The junction nodes serve only as “connections” between other nodes, i.e. their mass 

balance follows the relationship ∑ 𝑖𝑛𝑓𝑙𝑜𝑤𝑗𝑖 =𝑗 ∑ 𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝑖𝑗𝑗 , where i represents the 

junction node and j represents any other node connected to node i via link ij (where i is 

the upstream node) or ji (where j is the upstream node). 

 


