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Abstract 

Quantitative Susceptibility Mapping (QSM) is a relatively new Magnetic Resonance 

Imaging (MRI) technique that gives information about the relative quantities of magnetically 

active constituents of a biological system. Using phase data, not normally utilised in standard 

MRI, measurements are made of local variations in the main magnetic field, B0. This data is 

then processed to calculate a map of local magnetic susceptibility within an organ of interest. 

This map yields relatively quantitative information, and compositional inferences can be 

made regarding the organ. Thus far, the body of literature on QSM has focussed almost 

exclusively on the brain, and has been performed on clinical data. This will be a preclinical 

project, and will focus primarily on the liver.  

The first two chapters of this thesis will establish the context of the research, as well 

as the background theory of QSM, including a detailed discussion of the set of algorithms 

selected to calculate the susceptibility maps for this body of work. The implementation of 

QSM in the preclinical liver has not been performed previously, and the novelty of the 

technique and the experimental work performed necessitated optimising both data acquisition 

and processing protocols. This was done on an empirical basis, and comprises the 

experimental work detailed in chapter 3. 

Chapters 4 – 6 describe the application of QSM to a number of hepatic conditions. It 

was established in chapter 4 that QSM is sensitive to changes in the oxygen saturation of 

blood in large branches of the major hepatic blood vessels in healthy mice. Chapter 5 

discusses the application of QSM to a preclinical model of colorectal liver metastases, and 

also examines the ability of QSM to assess the efficacy of a Vascular Disrupting Agent 

(VDA), a novel chemotherapeutic drug. Finally, chapter 6 details the application of QSM to a 

model of liver cirrhosis. 
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1 

 

Chapter 1 

 The aim of this thesis is to explore novel applications of Quantitative Susceptibility 

Mapping in the liver. A number of scenarios have been investigated in a preclinical context, 

and are discussed in chapters 4 – 6. The implementation of QSM in the preclinical liver 

required significant experimental work which has been detailed in chapter 3. 

 This chapter establishes the context of the research, discussing both micro- and macro 

scale liver anatomy, as well as imaging techniques currently used to image the liver, and to 

diagnose hepatic diseases. Finally, some of the advantages QSM can offer over current liver 

imaging techniques are highlighted. 
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Context of Research 

 Quantitative Susceptibility Mapping (QSM) is a novel MRI technique that uses 

variation in magnetic susceptibility as a contrast mechanism. While QSM is of relatively 

recent inception, it has spawned a rapidly growing field of research that has found a wide 

range of diverse applications – from quantifying changes in cerebral iron deposition caused 

by neurodegenerative diseases 
[1-3]

, to quantifying cerebral perfusion 
[4]

, to estimating blood 

oxygen saturation
[5-7]

. Thus far however, much of the research in the field has explored the 

application of QSM to the brain in a clinical setting. 

It is the aim of the experimental work carried out herein to implement QSM in the 

pre-clinical liver, and to investigate its subsequent application to pre-clinical models of 

human liver disease - namely colorectal liver metastases and liver cirrhosis. 

It is the purpose of this thesis to present a thorough argument in support of the 

experimental work, and to justify its undertaking. This chapter will discuss the structure and 

function of the liver under healthy conditions, and will examine some of the modalities 

currently used in clinical examination. Chapter 2 will elucidate the relevant background 

theory, and establish the case for the use of QSM in the liver. Chapter 3 will discuss the 

optimisation of the acquisition and processing pipeline, while chapters 4 – 6 will present the 

experimental work that has been carried out to test the hypotheses put forward in the previous 

chapters. Finally, there will be a general discussion of the use of QSM in the liver, and an 

outline of work that could be carried out should the project be continued. 
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Fig 1.1: Anatomical image depicting the liver in-situ [9]  

1.1 THE LIVER 

The liver is the second largest 

organ in the body, and at any one time 

contains roughly 10% of the total 

blood volume. It plays a major role in 

blood filtration, biosynthesis and 

metabolism, and is responsible for the 

storage of a number of vitamins and 

minerals, most notably iron in the 

form of ferritin. Correct functioning of 

the liver is of great importance, and 

the diagnostic procedures available for 

assessing liver health and function 

range from invasive testing in the form 

of biopsy and biochemical assay, to non-invasive imaging. The work carried out herein 

focusses exclusively on Quantitative Susceptibility Mapping, and it underpins all of the 

hypotheses presented that QSM can offer unique compositional and functional information 

that could aid in the diagnosis and monitoring of liver diseases. As such, let us begin our 

discussion with an examination of the structure and function of a healthy liver (Figure 1.1). 

Under normal circumstances, the human liver can weigh up to 1.5 kg. Despite its size 

however, the structure of the liver is relatively simple when compared to other major organs. 

On a macroscopic level, the liver is divided into 4 main lobes - the right, left, caudate and 

quadrate, but there is little in structure and function to differentiate the lobes from one 

another. This lack of regional specificity within the liver imbues the organ with a number of 

advantages. In the first instance, it allows the liver to assume roles in systems as diverse as 

the digestive, endocrine, immune and circulatory. Secondly, it means that small, regional 

insults can be absorbed with little impact on the functionality of the entire organ, allowing it 

to efficiently metabolise and expel toxins. Thirdly, the uniform functionality of the tissue 

allows significant surgical resection in the case of chronic liver diseases. 

The homogeneous structure of the liver also allows for another of its peculiar facets – 

its remarkable ability to regenerate. Unlike bone and skin which rely on stem cells, the 

regeneration of the liver tissue is due to the proliferation of existing mature cell types in the 
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Fig 1.2: Internal anatomy of the liver depicting the blood supply [9] 

intact portion of the organ 
[10]

. A complete restoration of the liver after partial hepatectomy 

can take as little as 3 – 6 months 
[11]

, so is often a useful intervention in cases of 

Hepatocellular Carcinoma or Colorectal Liver Metastases. It is known however that certain 

disease states (e.g. cirrhosis) can undermine or inhibit the liver’s restorative properties 
[12]

, 

thus precluding certain patients from this form of treatment. As such, an accurate assessment 

of the liver and its function will play a major role in determining the subsequent treatment 

pathway. 

Another 

attribute unique to the 

liver is its dual blood 

supply (Figure 1.2). 

The Hepatic Portal 

Vein delivers nutrient 

rich, partially 

deoxygenated blood 

that has passed through 

the gut and mesentery. 

It supplies roughly 75% 

of the total liver blood 

volume, but only 50% of 

the required oxygen. The 

shortfall is made up by the Hepatic Artery, which delivers richly oxygenated blood from the 

descending aorta. Both vessels enter the liver through the porta hepatis on the inferior surface 

of the liver before branching into the various lobes. The blood they carry then passes through 

the liver tissue before draining to the hepatic veins, and finally into the inferior vena cava 

(IVC). 

The liver cells are known as hepatocytes (Figure 1.3). These form hepatic plates – thin 

layers of cells roughly 1 – 2 cells thick, separated by extremely permeable capillary spaces 

called sinusoids. The hepatic plates are arranged into functional units called liver lobules, 

which consist of a large number of hepatic plates nucleated around a central vein. At the 

periphery of each lobule are portal triads – branches of the hepatic portal vein and hepatic 

artery, as well as bile canaliculi – a thin conduit through which bile is channelled from the 

hepatocytes. Blood enters the lobule through the portal triad and mixes in the sinusoids where 
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Fig 1.3a & b: Histological Anatomy of the liver
[8]

  

the structure of the hepatic plates maximises contact with the hepatocytes. Finally, the blood 

drains through the central vein, branches of which converge to form the hepatic veins. 

 

 

 

 

 

 

 

 

 

 

 

While an exhaustive list of vital functions in which the liver plays a role would be 

difficult to compile, some estimates put the number at several hundred 
[13]

. As such, any 

damage or condition that impedes the normal functioning of the liver can have an extremely 

serious effect on the patient in whom they manifest. Liver diseases are often asymptomatic 

until they reach an advanced stage, and even when patients seek medical help symptoms can 
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be ambiguous. This difficulty is compounded by the fact that liver lesions and tumours can 

often be mistaken as benign (or vice versa) on standard MRI and CT images 
[14]

. This may go 

some way to explain why liver disease is the only major cause of death still increasing year 

on year 
[15]

. Existing non-invasive imaging techniques provide limited information beyond 

morphology 
[16]

, and so there is a strong clinical need for improvements to be made in this 

area. Quantitative Susceptibility Mapping may go some way to filling that void. 

1.2 LIVER IMAGING 

 As mentioned, there are a number of modalities available when performing liver 

imaging. Computed tomography (CT) and ultrasound may be used to identify morphological 

abnormalities such as liver lesions that are the hallmarks of cirrhosis. Images acquired with a 

CT scanner are usually high resolution, which is important for detecting smaller lesions, but 

acquiring the image requires a high dose of ionising radiation to be administered to the 

patient. This is particularly true in the abdomen, where the effective dose of radiation is 

increased due to the air/tissue boundary at the lungs. This is not an issue in ultrasound 

imaging, but the images are extremely low resolution by comparison, and interpretation is 

heavily dependent on the operator. 

 Biopsies and serum assays give compositional and functional information 

respectively, but are limited by the fact that they are invasive, and are also open to sampling 

error. Functional information can also be derived from positron emission tomography (PET) 

but this too necessitates irradiation. Magnetic Resonance Imaging offers non-invasive, high 

resolution images, without the need for ionising radiation. As such, it is becoming the 

principal diagnostic modality for hepatic ailments, particularly for staging and re-staging 

oncological patients
 [17]

. 

 The assessment and monitoring of liver disease has benefitted greatly from the advent 

of MRI imaging. MRI has been used to measure liver fat fraction 
[18]

, gauge liver perfusion 

[19]
, or to measure elasticity of the liver tissue (to diagnose fibrosis)

 [20]
. Relaxometry can be 

further enhanced in some cases by the incorporation of exogenous contrast agents such as 

gadolinium (Gd) 
[20]

 or super paramagnetic iron oxide particles (SPIOs) 
[21]

. Diffusion 

weighted imaging (DWI) has been used to identify hepatic lesions 
[22]

. Susceptibility 

Weighted Imaging (SWI) has been used to identify haemorrhages
 [23]

, and to improve the 

identification of liver nodules that are believed to be a precursor for hepatocellular carcinoma 

(HCC) 
[24]

. Furthermore, there is a large body of work dedicated to the identification and 
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quantification of iron within the liver (see table 1 for an extensive but not exhaustive list of 

literature regarding the quantification of liver iron with MRI).
 

It is expected that the advantages offered by QSM will be extremely beneficial to the 

techniques currently used to image the liver. For instance, the measurements made on QSM 

images are independent of imaging parameters like field strength and relaxation times, 

allowing more robust comparisons between studies performed across different centres. 

Secondly, magnetic susceptibility is an intrinsic property of the tissue under examination, and 

it has been shown that the correlation between tissue iron content and susceptibility is 

stronger and more significant than with R2* 
[25]

.  Susceptibility mapping is sensitive to 

changes in the deoxyhaemoglobin content of blood 
[26]

, but unlike SWI, QSM can offer 

quantitative measurements that can be used to calculate venous oxygen saturation 
[6, 7, 27]

. 

Furthermore, the contrast in QSM images is more localised than that in SWI images, giving 

rise to a more accurate depiction of blood vessels 
[25]

. This may be particularly relevant for 

liver imaging due to the peculiar fashion in which the liver derives its blood supply, as it is 

well known that a number of pathologies can affect hepatic haemodynamics 
[16]

. Additionally, 

it is well known that both liver regeneration and the presence of cancer can both result in an 

increased demand for oxygen 
[28, 29]

 .  

 The experimental work detailed in the upcoming chapters has examined the changes 

in hepatic magnetic susceptibility brought about by the administration of a hyperoxic gas 

challenge to a healthy cohort, and has sought to apply QSM to pre-clinical models of both 

colorectal liver metastases (CRLM) and liver cirrhosis. The chapters that immediately follow 

however are a detailed discussion of the QSM background theory, and an examination of how 

implementation of QSM was optimised for application to the liver. 
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Year Author Title Journal 

1995 

Turlin, B., et 

al. 

Increased liver iron stores in patients with hepatocellular 

carcinoma developed on a noncirrhotic liver Hepatology 

1995 

Turlin, B., et 

al. 

Increased liver iron stores in patients with hepatocellular 

carcinoma developed on a noncirrhotic liver Hepatology 

1997 

Angelucci, 

E.G., A. 

Limitations of Magnetic Resonance Imaging in Measurment of 

Hepatic Iron. Blood 

2000 

Clark, P.R. 

and T.G. St 

Pierre 

Quantitative mapping of transverse relaxivity (1/T(2)) in 

hepatic iron overload: a single spin-echo imaging methodology. 

Magn Reson 

Imaging 

2000 

Clark, P.R. 

and T.G. St 

Pierre 

Quantitative mapping of transverse relaxivity (1/T(2)) in 

hepatic iron overload: a single spin-echo imaging methodology. 

Magn Reson 

Imaging 

2001 

Fenzi, A., et 

al. 

In vivo investigation of hepatic iron overload in rats using T2 

maps: quantification at high intensity field (4.7-T). 

J Magn Reson 

Imaging 

2001 

Fenzi, A., et 

al. 

In vivo investigation of hepatic iron overload in rats using T2 

maps: quantification at high intensity field (4.7-T).  

J Magn Reson 

Imaging 

2002 

Carneiro, 

A.A., et al. 

Theoretical evaluation of the susceptometric measurement of 

iron in human liver by four different susceptometers Physiol Meas 

2002 

Carneiro, 

A.A., et al. 

Theoretical evaluation of the susceptometric measurement of 

iron in human liver by four different susceptometers Physiol Meas 

2003 

Brittenham, 

G.M., et al. 

Noninvasive measurement of iron: report of an NIDDK 

workshop Blood 

2003 

Clark, P.R., 

W. Chua-

anusorn, and 

T.G.S. Pierre 

Bi-exponential proton transverse relaxation rate (R2) image 

analysis using RF field intensity-weighted spin density 

projection: potential for R2 measurement of iron-loaded liver. 

Magnetic 

Resonance 

Imaging 

2003 Sheth, S. SQUID biosusceptometry in the measurement of hepatic iron Pediatr Radiol 

2003 

Clark, P.R., 

W. Chua-

Anusorn, and 

T.G. St Pierre 

Proton transverse relaxation rate (R2) images of liver tissue; 

mapping local tissue iron concentrations with MRI  

Magn Reson 

Med 

2004 

Gandon, Y., 

et al. Non-invasive assessment of hepatic iron stores by MRI. The Lancet 

2004 

Li, T.Q., 

A.M. Aisen, 

and T. 

Hindmarsh 

Assessment of Hepatic Iron Content Using Magnetic Resonance 

Imaging. 

Acta 

Radiologica 

2005 

Wood, J.C., et 

al 

MRI R2 and R2* mapping accurately estimates hepatic iron 

concentration in transfusion-dependent thalassemia and sickle 

cell disease patients Blood 

2005 

Carneiro, 

A.A., et al. 

Liver iron concentration evaluated by two magnetic methods: 

magnetic resonance imaging and magnetic susceptometry 

Carneiro, 

A.A., et al. 

2005 

St Pierre, 

T.G., P.R. 

Clark, and W. 

Chua-

Anusorn 

Measurement and mapping of liver iron concentrations using 

magnetic resonance imaging 

Ann N Y 

Acad Sci 
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2005 

St Pierre, 

T.G., et al. 

Noninvasive measurement and imaging of liver iron 

concentrations using proton magnetic resonance. Blood 

2006 

Merkle, E.M. 

and R.C. 

Nelson 

Dual Gradient-Echo i-o phase hepatic MR imaging: A useful 

tool for evaluating more that fatty infiltration. Radiographics 

2007 

Storey, P., et 

al. 

R2* imaging of transfusional iron burden at 3T and 

comparison with 1.5T 

J Magn Reson 

Imaging 

2007 

Pakbaz, Z., et 

al. 

Liver Iron Measurement by SQUID Biosusceptometry 

Compared to Liver Biopsy: A More Accurate Definition of 

Optimal Iron Range.  Blood 

2008 

Deugnier, Y., 

P. Brissot, 

and O. Loreal Iron and the liver: update 2008 J Hepatol, 

2008 

Dereure, O., 

et al. 

Measurement of liver iron content by magnetic resonance 

imaging in 20 patients with overt porphyria cutanea tarda 

before phlebotomy therapy: a prospective study.  

Acta Derm 

Venereol 

2008 

Dujardin, M., 

et al. 

Indications for body MRI Part I. Upper abdomen and renal 

imaging Eur J Radiol 

2008 

Virtanen, 

J.M., M.E. 

Komu, and 

R.K. Parkkola 

Quantitative liver iron measurement by magnetic resonance 

imaging: in vitro and in vivo assessment of the liver to muscle 

signal intensity and the R2* methods 

Magn Reson 

Imaging 

2009 

Taouli, B., 

R.L. Ehman, 

and S.B. 

Reeder Advanced MRI methods for assessment of chronic liver disease. 

AJR Am J 

Roentgenol 

2009 

Chandarana, 

H., et al. 

Hepatic iron deposition in patients with liver disease: 

preliminary experience with breath-hold multiecho T2*-

weighted sequence. 

AJR Am J 

Roentgenol 

2009 

Olthof, A.W., 

et al. 

Non-invasive liver iron concentration measurement by MRI: 

comparison of two validated protocols. Eur J Radiol 

2009 Vag, T., et al MR imaging findings of iron overload Radiographics 

2009 

Fischer, R. 

and P.R. 

Harmatz Non-invasive assessment of tissue iron overload. 

ASH 

Education 

Program 

Book 

2010 

Lim, R.P., et 

al.,  

Quantification of hepatic iron deposition in patients with liver 

disease: comparison of chemical shift imaging with single-echo 

T2*-weighted imaging.  

 AJR Am J 

Roentgenol 

2011 

Deugnier, Y. 

and B. Turlin  Pathology of hepatic iron overload 

Semin Liver 

Dis 

2011 

Meloni, A., et 

al. 

Feasibility, Reproducibility and Reliability for the T2* Iron 

Evaluation At 3T in Comparison with 1.5T.  Blood 

2011 

Meloni, A., et 

al. 

Feasibility, Reproducibility and Reliability for the T2* Iron 

Evaluation At 3T in Comparison with 1.5T.  Blood 

2012 Lv, W., et al. 

Value of abdominal susceptibility-weighted magnetic resonance 

imaging for quantitative assessment of hepatic iron deposition 

in patients with chronic hepatitis B: comparison with serum 

iron markers.  J Int Med Res 
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2012 Hou, P., et al. 

A practical approach for a wide range of liver iron quantitation 

using a magnetic resonance imaging technique. 

Radiol Res 

Pract 

2012 

Virtanen, 

J.M., et al. 

Iron overload: accuracy of in-phase and out-of-phase MRI as a 

quick method to evaluate liver iron load in haematological 

malignancies and chronic liver disease. Br J Radiol 

2013 

Tirnitz-

Parker, J.E.E., 

et al. Iron and Hepatic Carcinogenesis 

Critical 

Reviews in 

Oncogenesis 

2013 

Trottier, B.J., 

et al. 

Association of iron overload with allogeneic hematopoietic cell 

transplantation outcomes: a prospective cohort study using R2-

MRI-measured liver iron content. Blood 

2014 

Hernando, D., 

et al. 

Quantification of liver iron with MRI: state of the art and 

remaining challenges 

 J Magn 

Reson 

Imaging 

 

Table 1.1: List of literature regarding the quantification of liver iron with MRI 
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Chapter 2 

 This chapter discusses in detail the background theory of QSM. The relationship 

between the phase of the T2*-weighted signal is established, and is followed by a discussion 

of the general processing steps required to calculate a susceptibility map from raw phase data. 

There subsequently follows a detailed description of the various algorithms that have been 

chosen in this instance to perform the necessary processing steps. Finally, there is a 

discussion of QSM in general, and an argument for its use in liver imaging. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 

 

Background Theory 

 Magnetic resonance imaging (MRI) uses radio-frequency (RF) magnetic waves to 

probe the physicochemical environment of hydrogen protons within a subject.  RF energy is 

absorbed and subsequently re-emitted by a subject under examination, and the emitted signals 

provide physiological information that can be used to form an image. So far, the majority of 

MRI applications involve monitoring the magnitude of the signal at each point in a region of 

interest. Differences in the rates of signal relaxation give rise to image contrast, and by 

careful selection of the acquisition parameters the resulting image can be sensitised to a 

variety of time constants that impart information on the tissues being examined. 

 The MRI signal is complex, meaning that in addition to magnitude information, the 

phase of the signal at each point is also recorded. This information is often discarded in the 

interests of efficient use of computer memory, but it has been shown recently that the phase 

of T2*-weighted data - when correctly processed - can yield useful physiological information 

[2]
. MRI phase-based imaging can produce high contrast to noise ratio (CNR) images that are 

more sensitive to some physiological information than standard magnitude MRI imaging 
[3]

. 

 The phase of the T2*-weighted gradient echo (GRE) MRI signal is sensitive to 

variations in the magnetic field induced within a subject undergoing an MRI scan 
[4]

 . These 

variations are due to changes in the magnetic susceptibility throughout the biological tissue 

under examination, as well as shim imperfections and background field effects. Recently it 

has been shown that the phase distribution can be related to the underlying magnetic 

susceptibility of the subject through a magnetic dipole kernel 
[5]

. This has led to a new field of 

research called Quantitative Susceptibility Mapping. 

 Quantitative Susceptibility Mapping is a processing technique that produces images 

with exquisite anatomical detail, and, furthermore allows the relative quantification of 

magnetic susceptibility throughout a volume of interest (VOI) 
[6]

 . From this, information 

about the composition of the tissue can be inferred, providing clinically relevant information 

based on intrinsic properties of the tissue under interrogation 
[7, 8]

. 

 So far, the majority of the research into susceptibility mapping has focussed on 

neurological applications 
[9-12]

, wherein the technique promises to be extremely useful in the 

study of a wide range of neurodegenerative disorders such as Parkinson’s disease 
[13]

, 

Alzheimer’s disease 
[14]

, and Multiple Sclerosis 
[15]

. There are, however a large number of 
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processes and pathologies that can affect physiological magnetic susceptibility, meaning the 

technique is not confined to the brain. The iron contained in blood for example, or 

calcifications that may accompany some forms of cancer mean that susceptibility mapping 

has the potential to find a wide range of non-neurological clinical use. As such, it is the aim 

of the work undertaken hence to investigate the use of QSM in pre-clinical applications, 

focussing primarily on the liver.  

  
 

2.1 PHASE 

 Phase based MRI techniques provide a means with which to measure variations in the 

magnetic field induced in a subject undergoing an MRI scan 
[2]

. There are a number of 

magnetically active components present in biological systems. As such, for purposes 

described here, volumes of interest within the system can be thought of as susceptibility 

distributions.  

When an otherwise homogeneous magnetic field passes through a susceptibility 

distribution, it gives rise to a characteristic field pattern. The phase of a GRE signal provides 

the means with which to measure variations within the field, and susceptibility mapping 

allows quantification of the underlying susceptibility distribution based on the recorded 

phase. Inferences can then be made regarding the composition of the tissue. As such, let us 

examine the origin of MRI phase data and its relationship to magnetic susceptibility. It should 

be noted that the susceptibility effects discussed throughout this body of work pertain 

specifically to those caused by magnetically active constituents of biological tissue that result 

in distortions of the B0 field. These are distinct from susceptibility artefacts, which cause 

distortion of the linear field gradients, resulting image misregistration. 

 MRI phase imaging is performed using a T2*-weighted gradient-recalled echo 

acquisition sequence. The T2*-weighted signal contains components from two relaxation 

mechanisms – pure T2, and T2’ 
[16]

. Pure T2 decay is caused by dipole-dipole interactions 

that result in irreversible dephasing of the transverse magnetic signal. T2’ decay is a 

reversible effect caused by physiological magnetic susceptibility variation, as well as main 

magnetic field inhomogeneity, and chemical shift 
[17]

. It is the latter that is of interest when 

performing phase imaging. Hence a gradient echo sequence is used, as a spin echo will cancel 

the T2’ effects. 
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Fig 2.1: Schematic of RF quadrature coil 
[1] 

 MRI signals are commonly detected 

in quadrature. Quadrature coils consist of 2 

concentric RF pick-up coils that are oriented 

at 90
o
 to each other (fig. 2.1). They detect 

the signal simultaneously in both the x- and 

y- directions. Magnitude MRI utilises the 

modulus of the signal: 

          Smod = √(Sx
2
 + Sy

2
)                          [1] 

Conversely, phase MRI measures the change 

in the angle of orientation of the 

magnetisation vector, and is independent of 

the magnitude response: 

           φ = arctan (Sx / Sy)                         [2] 

  

 The Larmor frequency (ω) is equal to the product of the gyromagnetic ratio of the 

protons (hydrogen in this case) and the main magnetic field: 

ω = γ. B0                                      [3] 

The phase of a T2*-weighted signal can be expressed as the product of the Larmor frequency 

and time: 

                                                                     φ = φ0 + ω. TE                            [4] 

where φ0 is the initial phase offset and TE is the echo time, i.e. the time the signal is 

measured. The difference in phase between two regions can be expressed as:  

   Δφ = φ0 + Δω. TE                                [5]  

                                                     Δω = γ. ΔB                                    [6]                 

And, (neglecting chemical shift effects): 

                                                  ΔB = g. Δχ. B0                                  [7]                
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where g accounts for the geometry of the tissue, and χ is the volume magnetic susceptibility. 

Changes in the magnetic field due to shim imperfections and air-tissue interfaces are 

neglected as they will be suppressed during post-processing 
[18]

. As such, variation in the 

phase of the T2*-weighted signal will reflect distortions of the magnetic field. 

  Recent theoretical work has shown that the magnetic susceptibility of an irregular 

object can be calculated from the magnetic field distribution that results as the response of the 

object to a static magnetic field 
[5]

. T2*-weighted phase provides a means with which to 

measure the magnetic field distribution. 

 

2.2 MAGNETIC SUSCEPTIBILITY 

  Magnetic susceptibility is the degree to which an object becomes magnetised 

when exposed to a magnetic field 
[19]

: 

                                     M = χ H   ≡   χ (B0 / μ0)                               [8]                

Paramagnetic materials – those with a susceptibility greater than one – enhance the 

strength of a magnetic field that passes through them. Diamagnetic materials, whose 

susceptibility is less than one have the opposite effect. As such, an object held in a static 

magnetic field will distort the field according to its susceptibility distribution.  

  The distorted field can be interpreted as the convolution of the susceptibility 

distribution with a unit dipole response, and its description gives rise to a complicated 

function. Convolution theorem allows this to be expressed in the Fourier domain as a simple 

point-wise multiplication 
[20]

: 

                                  ΔBz(k) = B0 χ(k)                          [9] 

where ΔBz(k) is the measured field in the z-direction in k-space, and β is the angle between 

the k-vector and the static magnetic field such that 
[5]

:  

                                            =                                 [10] 

where kz is the k-vector in the z-direction, and K is the magnitude of the k-vector. Re-writing 

eqn. 9 and solving for χ: 
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       χ(k) =  / (  )                         [11] 

This equation allows the calculation of a susceptibility distribution from a measured magnetic 

field. The simplest solutions take advantage of convolution theorem, allowing the 

deconvolution of the distribution with the dipole response to be performed as a simple point-

wise division in k-space. Taking the inverse Fourier transform of the result gives the 

susceptibility distribution in real space. 

 

2.3 CALCULATION OF SUSCEPTIBILITY MAP 

 The input data to the susceptibility calculation is T2*-weighted phase data. This gives 

a measure of the distortion of the static B0 field caused by the susceptibility distribution of the 

sample, known as a field map. As mentioned however, the distortions of the magnetic field 

are due to contributions from a number of sources 
[4]

. The field contributions of interest must 

be extracted from the raw phase data in order to calculate a useful susceptibility map. The 

raw data is further confounded by the fact that phase can only be measured between the finite 

limits of ± π. Hence, large changes in susceptibility result in aliasing that must also be 

removed from the data prior to the susceptibility calculation. As such, there are three main 

steps involved when calculating a susceptibility map: Phase unwrapping, background field 

suppression, and finally the susceptibility calculation. 

 

2.3.1 Phase Unwrapping 

 Phase unwrapping is the name given to the process of removing the aliasing caused by 

the finite limits of phase. When values of phase exceed the boundaries of ± π, they “wrap” 

back to the origin and pass through their initial value repeatedly over time. In phase images 

this results in a series of light and dark bands across the image. Phase wrapping is a 

complication in a number of disciplines and is well known problem. There are numerous 

freely available algorithms that will perform spatial phase unwrapping 
[21-23]

. Multi-echo MRI 

images can also be unwrapped temporally 
[9, 24]

.  
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2.3.2 Background Field Suppression 

 A large portion of the literature regarding susceptibility mapping has been devoted to 

separating the extraneous phase contributions from those of interest 
[6, 25-27]

. The approaches 

can roughly be divided into two main groups: Heuristic and physical. 

 The sub-division of background suppression algorithms is essentially based on 

assumptions made about the background field. The underlying assumption inherent in the 

heuristic approaches is that the background field manifests itself as large, spatially slowly 

varying phase undulations across the image. As such, removal of the low-spatial frequency 

components from the image will suppress the background field. This leaves in-tact the high 

spatial frequency components of the signal, which are assumed to be the phase variations 

caused by the susceptibility distribution throughout the regions of interest 
[4]

. 

 Physical methods are more sophisticated, and use complex algorithms to manipulate 

the mathematical properties of the signal to separate the contributions to the phase data. It has 

been shown repeatedly that the physical approaches to background field suppression supply 

data that are superior to those derived by heuristic means 
[6, 20, 25]

. Heuristic approaches can 

only remove the background field if it is spatially slowly varying, which may not be the case 

[19]
. Physical solutions remove even high spatial frequency background field components 

while preserving contrast 
[6, 20]

. Hence, as the field of susceptibility mapping progresses, 

physical approaches are becoming the standard methods of background field suppression 
[8, 14, 

28]
.  

 The resultant images - known as field maps - depict the field shifts caused by 

variation in physiological magnetic susceptibility, and provide users with a contrast 

mechanism that is independent of the magnitude of the signal. The images have a high 

contrast to noise ratio, and this type of phase imaging is a pre-cursor to SWI and 

susceptibility mapping 
[2, 29]

.  

The anatomical accuracy of the field maps is undermined by the non-local 

relationship between phase shifts and susceptibility variations 
[9]

. Secondly, the measured 

phase shifts (and hence contrast) are dependent on the angle of the anatomical feature to the 

magnetic field 
[20]

. As such, there was strong impetus to overcome these difficulties. The 

solutions were provided by susceptibility mapping. 
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2.3.3 Susceptibility Calculation 

 The calculation of magnetic susceptibility from a field map is an ill-posed inverse 

problem. The reason becomes clear from a closer look at the inversion calculation: 

                                          χ(k) =  / (  )                             [12] 

As the values on the right hand side of the denominator approach 1/3, the numerator is 

divided by values that approach zero. As such, the susceptibility values approach infinity, 

resulting in severe streaking artefacts and noise amplification in the susceptibility map 
[27]

. 

The ambiguous values of the dipole kernel lie at the “magic angle”, a conic surface in k-space 

that lies at ~54.7
o
 to B0 

[9]
. Circumventing the inverse problem has been the focus of a number 

of studies, and several solutions have been explored. 

 The most reliable way of calculating a susceptibility map is to oversample the data by 

scanning the subject at several angles with respect B0 
[11]

. The images are then co-registered, 

and any values that are ambiguous at one orientation are compensated for in the others. While 

this allows the calculation of an artefact free susceptibility map, re-orienting the subject 

within the confined space in the bore of the scanner is not always possible, particularly in 

patients with restricted movement. Furthermore the scan time is increased by the number of 

acquisitions that are needed, the accuracy of the images is dependent on the registration 

algorithm, and it is now thought that magnetic susceptibility is anisotropic 
[30]

. As such, 

multi-orientation acquisitions are not practicable solutions to the inverse problem. 

 Clinical use of susceptibility mapping will most likely depend on those calculated 

from single orientation (SO) acquisitions. As such, SO solutions to the inverse problem 

almost always involve supplying a priori information to the inversion algorithm to 

compensate for ambiguity in the inversion kernel. Image space approaches usually involve 

providing information on organ shape to impose constraints on a minimisation function 

which is then solved iteratively 
[31-33]

. These have been shown to calculate high quality 

susceptibility maps but can be computationally cumbersome, sometimes taking up to several 

hours to perform the inversion 
[27]

. 

 Alternately, there are a number of k-space based approaches to performing the 

inversion calculation 
[4, 9, 20]

. K-space inversion algorithms take advantage of convolution 

theorem which allows operations to be performed as simple point-wise multiplication or 
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division in k-space. These are the simplest approaches to performing the inversion, and differ 

from real-space algorithms in that instead of supplying spatial information, the a priori data 

attempts to mitigate the problem by correcting, substituting or removing the ill-conditioned 

regions of the data before transformation back into image space. The resulting susceptibility 

maps are of lower quality than those calculated in image space 
[27]

, and there is an inherent 

trade-off between image quality and fidelity to the measurement (contrast) when deciding the 

boundaries of the ill-conditioned data. The advantages however lie in the simplicity of the 

algorithms, and the fact that the time to perform the calculation is of the order of seconds 
[9]

. 

 

2.3.4 Algorithms 

 There is a large variety of algorithms available for performing each operation in the 

QSM processing pipeline. As mentioned previously, each comes with its own advantages and 

drawbacks, and careful selection of algorithms is necessary for each undertaking. For 

example, it has been shown that heuristic methods of background field suppression deal 

poorly with unwanted high spatial frequency contributions, and the time taken to perform 

some inversion operations may not be suitable when dealing with very large data sets. 

Conversely, heuristic background field suppression can be useful if the experiment aims to 

examine small structures, and if an extremely high quality susceptibility map is required then 

a more cumbersome inversion may be necessary. 

 The algorithms employed in the pipeline used for this body of work were a Laplacian 

based SHARP algorithm, which performs both phase unwrapping and background field 

suppression in a single step, and a Thresholded K-space Division (TKD) algorithm to 

perform the inversion calculation. These were chosen as it was found that they provided good 

quality images while minimising processing time. There follows a discussion of how each 

performs its respective operation. 
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2.3.5 SHARP algorithm 

The approach to background field suppression used throughout the experimental work 

presented here is known as the Sophisticated Harmonic Artefact Reduction for Phase images 

(SHARP), which relies on the properties of a Laplacian operator to remove the unwanted 

phase contributions within a user defined ROI 
[6]

. 

 The measured magnetic field within a region of interest can be thought of as the 

summation of contributions from external (i.e. unwanted) and internal sources: 

                                             B
tot

  = B
ext

 + B
int

                               [13] 

The internal contributions are the result of variations in magnetic susceptibility within the 

ROI. They are orders of magnitude smaller than the external contributions, and so to map the 

susceptibility within the ROI the two must be separated. SHARP background field 

suppression techniques are based on the assumption that phase contributions from outside the 

ROI are harmonic throughout the region, i.e. that they give rise to functions that satisfy that 

Laplace equation; whereas those generated by sources from within the region of interest are 

anharmonic 
[34]

. As such, the second order derivative of the external contributions (i.e. the 

background field) within the ROI (as calculated via the Laplace equation) will equal zero: 

                                                                         ∇
2
 B

ext
 = 0;                                    [14] 

where ∇
2 

is the Laplacian operator. Hence: 

                                                                       ∇
2
 B

tot
 = ∇

2 
B

int
                                [15] 

 Solving this equation can be accomplished by taking advantage of the spherical mean 

value (SMV) theorem which states that a harmonic function is preserved when convolved 

with any non-negative, radially symmetric, normalised function. This allows separation of the 

respective field contributions, and hence isolation of the field shifts of interest 
[6]

. In practice, 

this is done in three steps:  

1: Convolution of the data set with a spherical kernel; 

2:  Masking the results to define the internal and external field contributions; 

3:  Deconvolution with the spherical kernel.  



23 

 

Convolution and deconvolution are performed in Fourier space as simple point-wise 

multiplication and division respectively. 

 The edges of the region of interest can prove troublesome however, as during 

convolution the spherical kernel incorporates values from outside the defined ROI, thus 

violating the SMV theorem 
[34]

.  This results in false extreme values around the outline of the 

subject in the processed images, which are unacceptable sources of noise when performing 

susceptibility mapping. One simple solution to this problem is to erode the binary mask 

applied in the second step, thus eliminating the problem areas from the processed phase data 

[35]
. 

 A further confounding factor when performing SHARP based processing is the 

presence of anharmonic contributions to B
ext

 caused by the initial phase offset at TE = 0. 

Mitigation of this source of noise can be accomplished by relaxing the condition that states 

that the unwanted contributions to the measured magnetic field are entirely harmonic 

throughout the ROI. This is done by truncated singular value decomposition (TSVD) of the 

deconvolution 
[6]

. 

 In practice, TSVD is carried out by providing a priori information to the algorithm. 

As the values of the spherical kernel approach zero, the values of the inverse kernel used for 

deconvolution become unacceptably large. TSVD essentially truncates the inverse kernel 

such that its values are set to zero whenever they fall outside a user defined threshold 
[35]

. 

This is explored experimentally in chapter 3 (sec. 3.2.1.1). 

 

2.3.6 Laplacian phase unwrapping 

 The SHARP algorithm can be modified such that it can be applied directly to wrapped 

phase data 
[35]

, performing both phase unwrapping and background field suppression in 

tandem. To do this, the algorithm incorporates a solution offered by Schofield and Zhu 
[36]

 

that shows that the unwrapped phase can be derived directly from the wrapped phase by 

recognising certain trigonometric properties. Hence the unwrapped phase is equal to: 

                                       ∇
2
 φunwr = (cos φwr . ∇

2
sin φwr) – (sin φwr . ∇

2
 cos φwr)                 [16] 

where φunwr is the unwrapped phase and φwr is the wrapped phase 
[37]

. The result of the 

calculation is then deconvolved with the Laplacian operator to yield an unwrapped, 
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background field suppressed phase image. As before, the convolution and deconvolution 

operations are carried out in k-space. 

The combination of SHARP and Laplacian phase unwrapping was carried out in this 

instance by performing the three steps required by the SHARP algorithm using the following 

3D dimensional kernel: 

First plane     Second plane    Third plane  

The construction of this operator is based on the discrete form of the Laplacian equation in 

three dimensions 
[34]

, and returns an unwrapped, background field suppressed image. 

 

 

2.3.7 Thesholded k-space Division 

The simplest inversion method is the thresholded k-space division (TKD) algorithm 

[9]
. In order to solve the inverse problem the algorithm simply removes ambiguous values 

from the inversion kernel once a user defined threshold value is reached. The values are then 

replaced with the threshold value 
[9]

. This is the fastest inversion algorithm 
[27]

 and is easy to 

implement, however the removal of information compromises the accuracy of the 

susceptibility values 
[35]

. Careful selection of the threshold is extremely important, as removal 

of too much information compromises the susceptibility values (and hence image contrast), 

but including too much ambiguity compromises the image quality by increasing the severity 

of the streaking and noise amplification 
[9, 20, 35]

 (see chap. 3, sec. 3.2.2.1) The simplicity and 

speed of the TKD algorithm makes it an attractive solution to the inverse problem, and it has 

already been used in a number of clinical studies 
[13, 38, 39]

. In addition to this, there have been 

attempts to derive a correction factor for images of the brain at 3T to counteract the systemic 

underestimation of susceptibility values caused by thresholding 
[35]

. 
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Fig 2.2 A – D: Images depicting each step of the processing pipeline. A: Magnitude Image w/ water 

reference, B: Raw Phase data w/ water reference, C: Segmented, unwrapped, background corrected field map 

(SHARP), D: Susceptibility Map (TKD inversion). Note the blood vessel (red arrow) in the susceptibility 

map is more visible than on the field map due to the localised contrast.  



26 

 

2.4 QUANTITATIVE SUSCEPTIBILITY MAPPING 

While still in relative infancy, susceptibility mapping promises to be an extremely 

beneficial addition to the clinical MRI techniques that are currently available. The non-

invasive measurement of magnetic susceptibility has been sought across a number of 

disciplines for a number of reasons. For example: biosusceptometry has been used to 

investigate liver iron stores 
[40]

, drug delivery systems 
[41]

, and in the treatment of liver 

diseases such as thalassemia  
[42]

. As such, the extension of susceptometry to MRI seems a 

natural progression. 

Susceptibility weighted imaging (SWI) is a phase based MRI technique that is seen as 

the progenitor of QSM. SWI involves the derivation of a positive or negative phase mask 

which is used to enhance contrast in magnitude images 
[3]

. It is reasonably well established as 

a clinical technique, and has been used in the brain to examine changes in cerebral iron 

deposition 
[43]

, to enhance cerebral vascular structures 
[44, 45]

, and to evaluate brain lesions 
[46]

. 

In addition to this there have been numerous studies that have implemented SWI in 

abdominal organs 
[47-49]

. While SWI is a useful clinical tool, there are a number of inherent 

drawbacks when compared to QSM. 

The phase masks used in SWI are derived from field maps, so the contrast is both 

non-local and dependent on the orientation of the object to the magnetic field 
[9, 50]

.This is 

overcome by the inversion procedure in QSM, so does not present an issue in susceptibility 

maps. Secondly, susceptibility weighted images can only show positive or negative shifts in 

susceptibility, whereas susceptibility maps can display both on the same image. This allows 

differentiation between blood products and calcifications for example 
[8]

. Thirdly, 

susceptibility weighted images are not quantitative, and so while they can highlight 

differences in deoxyhaemoglobin concentrations in the blood, or iron in the brain, 

comparison between cohorts is far less precise. 

There have been a number of clinical applications explored with QSM. Initial 

investigations focussed on quantifying the changes in focal iron deposits in the brain 

associated with a variety of neurodegenerative disorders, including Parkinson’s 
[51]

 and 

Alzheimer’s disease 
[14]

. Some of these studies have since progressed to mid-sized (~50 

patients) longitudinal clinical trials 
[52, 53]

. 
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It has been shown that QSM is sensitive to changes in myelination that are associated 

with the onset of Multiple Sclerosis (MS), and it has even been suggested that QSM may be 

more sensitive than R2* at the earliest stages of the disease 
[51]

. More recently, there has been 

a degree of interest generated in using QSM to estimate changes in the deoxyhaemoglobin 

content of blood. It is known that the susceptibility of blood is linearly related to its 

deoxyhaemoglobin content 
[54]

, and that changes in deoxyhaemoglobin are directly indicative 

of changes in blood oxygen saturation.  

Deoxyhaemoglobin (dHb) is paramagnetic, however when oxygen binds to 

haemoglobin it has a profound effect on the magnetic signature of the molecule, turning 

paramagnetic dHb into diamagnetic oxyhaemoglobin (Hb). QSM has afforded a novel way to 

exploit this difference, and has given rise to a number of studies attempting to estimate 

changes blood oxygen saturation (SO2) from measured differences in susceptibility. For 

example, it has been shown recently that QSM can differentiate between cerebral venous 

blood under normoxic and hyperoxic conditions, which could play a role in detecting 

differences brought about by neurological pathophysiology 
[39, 55]

. Other studies have sought 

to use QSM to quantify the Cerebral Metabolic Rate of Oxygen (CMRO2) on a global and 

regional basis - an important tool for assessing metabolic changes associated with strokes, 

tumours, and some neurodegenerative disorders 
[56-58]

. It is this area of research that is of 

particular interest for application to the liver. Table 1 at the end of the chapter contains an 

extensive but not exhaustive list QSM literature. 

 

2.5 QSM in the liver 

The use of phase imaging in the liver is not a new phenomenon. SWI has been the 

subject of a number of papers that have aimed to examine a diverse range of disease states. 

For instance, it was found in a feasibility study that decreases in the liver-to-muscle signal 

intensity ratio as measured on a susceptibility-weighted image correlated strongly with 

increasing grades of liver fibrosis 
[59]

. In another study it was found that SWI was better at 

identifying certain morphological features that are associated with hepatocellular carcinoma 

(e.g. pseudo-capsules, haemorrhage) than conventional MR imaging 
[60]

, and in a study 

focussing on liver cirrhosis it was found that SWI provided the most sensitive method to 

detect the siderotic regenerative nodules associated with the disease 
[61]

.  
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The aim of the work carried out in this thesis focusses entirely on pre-clinical models. 

While there have been attempts to implement QSM in the pre-clinical kidney, the work was 

ex-vivo 
[62]

. Implementation of QSM in an in-vivo pre-clinical liver has never been performed 

before, and will offer a number of advantages over clinical imaging. Firstly, pre-clinical 

imaging can be carried out at high field strengths, allowing high resolution images to be 

acquired with excellent SNR. All of the experiments conducted presently were performed 

using a 9.4T MRI scanner. Secondly, models of human diseases can be induced in pre-

clinical subjects, allowing a thorough comparison of healthy and disease cohorts. Thirdly the 

burden of ethics is significantly lower for performing pre-clinical trials, allowing far more 

experimental procedures to be carried out on the test subjects. The latter is particularly 

prevalent when attempting to implement and develop the application of novel imaging 

techniques. 

We are particularly interested in the ability of QSM to quantify changes in blood 

oxygen saturation. As discussed, the liver derives its blood supply in a unique manner, and 

under normal conditions there is a balance between the blood supplied by the portal vein and 

hepatic artery. Disruption of this balance is well known to be indicative of a number of 

disease states 
[63, 64]

, and deterioration of hepatic homeostasis is associated with a high 

morbidity rate. We believe that this creates an opportunity to study liver pathologies using 

QSM, as it has been shown that QSM correlates more strongly with iron than comparable 

techniques such as R2* imaging 
[9]

. Furthermore, the quantitative nature of QSM allows not 

only the observation of changes in blood oxygen, but also the calculation of changes in the 

absolute value of SvO2 that show good agreement with invasively measured values. This has 

been shown in cerebral blood the literature 
[55]

, and will be shown here in chapter 4 (sec 

4.2.4.). 

Colorectal liver metastases (CRLM), for example, are secondary cancers that have 

spread from the colon. The condition is associated with poor prognosis, and there have 

previously been a number of MRI studies focussed on CRLM. Haemodynamic response 

imaging (HRI) for example has explored the use of endogenous contrast in the form of 

BOLD imaging to improve the diagnosis of CRLM 
[65]

, as well as to assess the changes in the 

vascular profile of tumours 
[66]

. The advantage offered by QSM in this instance is that 

susceptibility mapping is independent of imaging parameters such as field strength, and 

overcomes the directional dependence of R2* mapping and SWI. It has been shown that as 

the tumours grow, they receive blood primarily from the hepatic artery 
[63, 67]

. It will be 
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shown that the difference in the deoxyhaemoglobin concentration of blood in the portal vein 

and hepatic artery means that it is possible to differentiate between tumours and healthy liver 

tissue, and, furthermore, that it is possible to use QSM in conjunction with a gas challenge to 

assess the vascularity and oxygenation status of the tumours (chapter 5). 

Similarly, liver cirrhosis is caused by a chronic scarring of the liver tissue. This 

reduces the functionality of the hepatocytes, and causes a deterioration of the elasticity of the 

tissue. As a result, the blood pressure in the portal vein is rendered insufficient, and the blood 

cannot enter the hepatic plates. In order to prevent hypoxia, the blood supplied by the arterial 

source is increased, thus increasing the amount of oxygenated blood supplied to the liver. 

Furthermore, hepatic siderosis is a known facet of cirrhosis 
[61]

. The ability to use QSM to 

assess the extent of cirrhosis based on changes in liver iron and tissue oxygenation will be 

investigated in chapter 6. 

The sensitivity of phase-based MR imaging techniques to variations in physiological 

susceptibility means that they are well placed to examine hepatic diseases, and it is thought 

that QSM can offer a number of further advantages. For example, it has been shown that 

QSM correlates more strongly with iron stores than R2* measurements 
[9]

, and the localised 

nature of the contrast means that the images aren’t beset by the blooming artefacts known to 

affect SWI and R2* images 
[9]

. Furthermore, it has been shown in the literature that the 

quantitative nature of QSM allows the calculation of venous oxygen susceptibility (SvO2) 
[55]

. 

While cerebral SvO2 has been the focus of a number of experiments, it is relatively underused 

in the liver, even though several studies have shown it to be an eminently useful parameter 

[68-70]
. On this basis it is hypothesised that QSM will prove to be an advantageous addition to 

existing hepatic imaging techniques. The latter half of this thesis contains a number of novel 

applications of QSM, however the highly experimental nature of the work necessitates 

extensive optimisation of both data acquisition and QSM image processing. This will be the 

focus of the upcoming chapter. 
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Author Year Title Journal 

Liu, T. 2010 

Unambiguous identification of superparamagnetic iron oxide particles 
through quantitative susceptibility mapping of the nonlinear response to 
magnetic fields 

Magn Reson 
Imaging 

Li, W. 2011 
Quantitative susceptibility mapping of human brain reflects spatial 
variation in tissue composition Neuroimage 

Klohs, J. 2011 
Detection of cerebral microbleeds with quantitative susceptibility mapping 
in the ArcAbeta mouse model of cerebral amyloidosis 

J Cereb Blood 
Flow Metab 

Schweser, F. 2012 
Quantitative susceptibility mapping for investigating subtle susceptibility 
variations in the human brain Neuroimage 

Liu, J. 2012 

Morphology enabled dipole inversion for quantitative susceptibility 
mapping using structural consistency between the magnitude image and 
the susceptibility map Neuroimage 

Langkammer, 
C. 2012 

Quantitative susceptibility mapping (QSM) as a means to measure brain 
iron? A post mortem validation study Neuroimage 

Bilgic, B. 2012 
MRI estimates of brain iron concentration in normal aging using 
quantitative susceptibility mapping Neuroimage 

Liu, T. 2012 
Accuracy of the morphology enabled dipole inversion (MEDI) algorithm for 
quantitative susceptibility mapping in MRI 

IEEE Trans Med 
Imaging 

Wong, R. 2012 
Visualizing and quantifying acute inflammation using ICAM-1 specific 
nanoparticles and MRI quantitative susceptibility mapping 

Ann Biomed 
Eng 

Wang, S. et. al. 2013 
Hematoma volume measurement in gradient echo MRI using quantitative 
susceptibility mapping Stroke 

Deistung, A. 2013 
Quantitative susceptibility mapping differentiates between blood 
depositions and calcifications in patients with glioblastoma PLoS One 

Acosta-
Cabronero, J. 2013 In vivo quantitative susceptibility mapping (QSM) in Alzheimer's disease PLoS One 

Xie, L. 2013 
Quantitative susceptibility mapping of kidney inflammation and fibrosis in 
type 1 angiotensin receptor-deficient mice NMR Biomed 

Zheng, W. 2013 
Measuring iron in the brain using quantitative susceptibility mapping and 
X-ray fluorescence imaging Neuroimage 

Lim, I. A. 2013 

Human brain atlas for automated region of interest selection in 
quantitative susceptibility mapping: application to determine iron content 
in deep gray matter structures Neuroimage 

Deistung, A. 2013 

Toward in vivo histology: a comparison of quantitative susceptibility 
mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high 
magnetic field strength Neuroimage 

Wang, S. 2013 Noise Effects in Various Quantitative Susceptibility Mapping Methods 
IEEE Trans 
Biomed Eng 

Li, W. 2014 
Integrated Laplacian-based phase unwrapping and background phase 
removal for quantitative susceptibility mapping NMR Biomed 

Balla, D. Z. 2014 Functional quantitative susceptibility mapping (fQSM) Neuroimage 

Xu, B. 2014 
Flow compensated quantitative susceptibility mapping for venous 
oxygenation imaging 

Magn Reson 
Med 

Liu, C. et. al. 2015 
Quantitative Susceptibility Mapping: Contrast Mechanisms and Clinical 
Applications Tomography 

Ozbay, P. S. 2015 
Effect of respiratory hyperoxic challenge on magnetic susceptibility in 
human brain assessed by quantitative susceptibility mapping (QSM) NMR Biomed 

Sun, H. 2015 
Validation of quantitative susceptibility mapping with Perls' iron staining 
for subcortical gray matter Neuroimage 



31 

 

Zhang, J. 2015 
Quantitative mapping of cerebral metabolic rate of oxygen (CMRO2 ) using 
quantitative susceptibility mapping (QSM) 

Magn Reson 
Med 

Xu, B. 2015 
Quantification of cerebral perfusion using dynamic quantitative 
susceptibility mapping 

Magn Reson 
Med 

Wang, Y. 2015 
Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue 
magnetic biomarker 

Magn Reson 
Med 

Sun, H. 2015 Quantitative susceptibility mapping using single-shot echo-planar imaging 
Magn Reson 
Med 

Sharma, S. D. 2015 
Quantitative susceptibility mapping in the abdomen as an imaging 
biomarker of hepatic iron overload 

Magn Reson 
Med 

Dimov, A. V. 2015 
Joint estimation of chemical shift and quantitative susceptibility mapping 
(chemical QSM) 

Magn Reson 
Med 

Deng, W. 2015 
Iterative projection onto convex sets for quantitative susceptibility 
mapping 

Magn Reson 
Med 

Haacke, E. M. 2015 Quantitative susceptibility mapping: current status and future directions 
Magn Reson 
Imaging 

Barbosa, J. H. 2015 
Quantifying brain iron deposition in patients with Parkinson's disease using 
quantitative susceptibility mapping, R2 and R2 

Magn Reson 
Imaging 

Liu, C. 2015 
Susceptibility-weighted imaging and quantitative susceptibility mapping in 
the brain 

J Magn Reson 
Imaging 

Dong, J 2015 
Simultaneous phase unwrapping and removal of chemical shift (SPURS) 
using graph cuts: application in quantitative susceptibility mapping 

IEEE Trans Med 
Imaging 

Reichenbach, 
J. R. 2015 Quantitative Susceptibility Mapping: Concepts and Applications 

Clin 
Neuroradiol 

Schweitzer, A. 
D. 2015 

Quantitative susceptibility mapping of the motor cortex in amyotrophic 
lateral sclerosis and primary lateral sclerosis 

AJR Am J 
Roentgenol 

Murakami, Y. 2015 
Usefulness of quantitative susceptibility mapping for the diagnosis of 
Parkinson disease 

AJNR Am J 
Neuroradiol 

Schweser, F. 
et. al. 2016 

Foundations of MRI phase imaging and processing for Quantitative 
Susceptibility Mapping (QSM) Z Med Phys 

Hsieh, M. C. 2016 

Quantitative Susceptibility Mapping-Based Microscopy of Magnetic 
Resonance Venography (QSM-mMRV) for In Vivo Morphologically and 
Functionally Assessing Cerebromicrovasculature in Rat Stroke Model PLoS One 

Du, G. 2016 Quantitative susceptibility mapping of the midbrain in Parkinson's disease Mov Disord 

Zhang, Y. 2016 

Longitudinal change in magnetic susceptibility of new enhanced multiple 
sclerosis (MS) lesions measured on serial quantitative susceptibility 
mapping (QSM) 

J Magn Reson 
Imaging 

Chang, S. 2016 
Quantitative Susceptibility Mapping of Intracerebral Hemorrhages at 
Various Stages 

J Magn Reson 
Imaging 

Kudo, K. 2016 
Oxygen extraction fraction measurement using quantitative susceptibility 
mapping: Comparison with positron emission tomography 

J Cereb Blood 
Flow Metab 

Moon, Y. 2016 
Patterns of Brain Iron Accumulation in Vascular Dementia and Alzheimer's 
Dementia Using Quantitative Susceptibility Mapping Imaging 

J Alzheimers 
Dis 

Stuber, C. 2016 
Iron in Multiple Sclerosis and Its Noninvasive Imaging with Quantitative 
Susceptibility Mapping Int J Mol Sci 

van Bergen, 
J.M.G. 2016 

Quantitative Susceptibility Mapping Suggests Altered Brain Iron in 
Premanifest Huntington Disease 

American 
Journal of 
Neuroradiology 

Xie, L. 2016 
Dynamic contrast-enhanced quantitative susceptibility mapping with 
ultrashort echo time MRI for evaluating renal function 

Am J Physiol 
Renal Physiol 
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Zhang, Y. 2016 

Quantitative Susceptibility Mapping and R2* Measured Changes during 
White Matter Lesion Development in Multiple Sclerosis: Myelin 
Breakdown, Myelin Debris Degradation and Removal, and Iron 
Accumulation 

AJNR Am J 
Neuroradiol 

Tan, H. 2016 
Quantitative Susceptibility Mapping in Cerebral Cavernous Malformations: 
Clinical Correlations 

AJNR Am J 
Neuroradiol 

Wei, H. 2017 
Joint 2D and 3D phase processing for quantitative susceptibility mapping: 
application to 2D echo-planar imaging NMR Biomed 

Santin, M. D. 2017 
Reproducibility of R2 * and quantitative susceptibility mapping (QSM) 
reconstruction methods in the basal ganglia of healthy subjects NMR Biomed 

Lauzon, M. L. 2017 
Quantitative susceptibility mapping at 3 T: comparison of acquisition 
methodologies NMR Biomed 

Sharma, Samir 
D. 2017 

MRI-based quantitative susceptibility mapping (QSM) and R2* mapping of 
liver iron overload: Comparison with SQUID-based biomagnetic liver 
susceptometry 

Magnetic 
Resonance in 
Medicine 

Straub, S. 2017 
Suitable reference tissues for quantitative susceptibility mapping of the 
brain 

Magn Reson 
Med 

Hsieh, M. C. 2017 
Investigating hyperoxic effects in the rat brain using quantitative 
susceptibility mapping based on MRI phase 

Magn Reson 
Med 

Straub, Sina 2017 
Potential of quantitative susceptibility mapping for detection of prostatic 
calcifications 

Journal of 
Magnetic 
Resonance 
Imaging 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1: Non-exhaustive list of QSM literature. 
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Chapter 3 

 Chapter 3 outlines the implementation of QSM in the preclinical liver, and is divided 

into two sections. The first section (3.1) pertains to the acquisition of the data, detailing the 

various parameters selected for the acquisition sequence, as well as modifications to the 

sequence such as flow compensation, that were found to be necessary. Chapter 3.1 also 

contains some preliminary experimental work, including susceptibility maps calculated from 

data acquired from a pre-clinical liver in-vivo, as well as a justification for acquiring 2D vs 

3D data in the experiments exploring novel applications that follow. Finally there is a brief 

discussion of the influence of liver fat on QSM images in this context. 

 The second section (3.2) pertains to the processing of the data, and outlines the 

experimental work undertaken to empirically optimise the series of algorithms required to 

calculate a susceptibility map from raw T2*-weighted phase data, and, furthermore, 

characterises the impact that the interaction between the algorithms has on the final image. 

Lastly, a novel method to compensate for the inherent underestimation of susceptibility 

values calculated using the selected inversion algorithm is presented. 
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OPTIMISATION 

3.1 Acquisition 

 With the exception of a handful of papers 
[3, 4]

, research into the use of susceptibility 

mapping has so far focussed exclusively on the brain, and there are even fewer studies 

exploring preclinical models 
[5-7]

. The novelty of the work undertaken as part of this thesis 

necessitated a degree of optimisation before QSM could successfully be implemented in a 

preclinical liver. For example, it was found that the large vessels and high degree of blood 

flow in the liver required modification of the acquisition sequence to mitigate artefacts. 

Secondly, while the particular processing pipeline selected for the main experiments that 

follow has been shown to yield clinically relevant data in the brain 
[8, 9]

, implementation in a 

preclinical liver at high field strengths required a degree of calibration of the various 

algorithms. As such, the following chapter aims to justify the data acquisition procedure and 

processing pipeline that was be used for the remainder of the experiments detailed in the 

upcoming chapters. 

 

3.1.1 Acquisition parameters 

The fidelity of a susceptibility map to the physiological environment it represents 

relies on the input of high quality data to the inversion algorithm. This is particularly true 

when using TKD inversion, as it is prone to noise amplification which can have deleterious 

effects on the measurements derived from the images. It is, however equally important to 

minimise the length of time each animal is under anaesthetic. As such, selection of 

acquisition parameters must strike a careful balance between maximising SNR and 

minimising acquisition time. Some parameters need to be tailored to individual mice or 

specific studies, but others can be standardised for all experiments. There follows a brief 

discussion of the acquisition parameters employed in the experiments that follow. 
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3.1.1.1 Echo Time 

 Quantitative Susceptibility Maps are derived from the phase (φ) of GRE data, which 

is equal to:  

                                  φ = φ0 + γ. B. TE                         [1] 

where φ0 is the initial phase offset,  γ is the gyromagnetic ratio of the (hydrogen) protons, B is 

the local magnetic field, and TE is the echo time. Of these, the first two are a constants and 

the second is effectively the measurand, so from a data acquisition standpoint the echo time is 

the experimentally defined parameter which enables control of the signal. 

 Optimising the echo time is an important consideration when performing QSM, as 

contrast in the final image will depend on the extent of the distinction between tissues based 

on their respective phase. Phase evolves over time, and increasing the time between 

excitation and acquisition will allow small differences in susceptibility to become apparent. 

Conversely, for reasons that will be discussed below, it is imperative that the field map has a 

high signal to noise ratio (SNR). When magnitude SNR is greater than ~3, the noise in a 

phase image is inversely proportional to the magnitude SNR 
[10]

. As such, it is also desirable 

to minimise the echo time in order to boost SNR. There is general agreement in the literature 

that an echo time equal to the T2* value of the tissue offers the optimal compromise 
[11]

.  The 

T2* value of a healthy mouse liver was measured using a multi-GRE technique. Briefly, a 

multi-echo image of a healthy mouse liver was acquired at 9.4T. A T2* map of the liver was 

calculated by first calculating the logarithm of the exponential T2* decay at each point in the 

image. A linear fit was then performed on a voxel-wise basis, and the slope of the linear fit 

was taken to be the T2*-value at each point. The mean value in a region liver tissue was then 

taken as the T2* value of the tissue, and was found to be ~4ms at 9.4T. This process is 

depicted in figure 3.1. This is the echo time used for all of the main experiments that follow. 
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3.1.1.2 Respiratory gating 

All in-vivo acquisitions were respiratory-gated. This was done by monitoring the 

animals breathing rate with a pressure sensitive respiratory monitor (SA Instruments, Stony 

Brook, NY, USA) while they were in the scanner. Data were acquired only during a flat 

region of the respiratory cycle (i.e. between breaths) in order to avoid respiratory related 

motion artefacts in the image. 

 

 

 

 

 

Figure 3.1: Calculation of liver T2* 

relaxation at 9.4T. The graph in A shows the 

T2* decay in a single voxel as echo time 

increases. B depicts the calculated logarithm 

of the T2* decay, as well as the linear fit. C 

shows a T2*-map of the liver of a healthy 

mouse acquired at 9.4T (axial orientation). 
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3.1.1.3 Repetition Time & Flip Angle 

The T1 of the liver at 9.4T is relatively long (>1s) 
[12]

 compared to lower field 

strengths. In order to minimise T1 influence on the acquired images, each was acquired at a 

repetition time of 1s. In order to maximise magnitude SNR a flip angle of 70
o
 was chosen as 

it is close to the Ernst angle for the above TR and T1 values. 

 

3.1.1.4 Resolution & Averages 

Only the z-component of the magnetic field will differ significantly from zero in 

response to the susceptibility distribution 
[13]

. As such, the number of sampling points will be 

specified by the number of slices in an axial oriented acquisition. These must be sufficiently 

numerous to give a reasonable facsimile of the distorted field. It was found that 60 – 100 

slices of 200 µm thickness (mice), or 300 µm thickness (rats) would cover the entire liver at a 

sufficient resolution. These slice thicknesses was chosen as they are the upper limit of 

resolution achievable with this scanner under these circumstances. 

It was shown in a phantom experiment detailed in the literature that a voxel aspect to 

slice thickness ratio above 1:2 resulted in a deviation from the expected susceptibility, which 

was ascribed to partial volume effects
[14]

. As such, the matrix size in the phase and frequency 

encode directions employed throughout the experimental work were selected such that the 

voxels were isotropic, and were tailored to the FOV required to ensure each individual animal 

was entirely contained within the image. 

The number of signal averages acquired for the animals in each study was dependent 

on their tolerance of the anaesthetic. As such, signal averages were limited to 4 for disease 

cohorts. This was doubled for healthy young animals. 

 

3.1.2 FLOW COMPENSATION 

Flow compensation is a well-known modification of MRI acquisition sequences that 

improves the quality of images when first order laminar flow is present in an area under 

examination. During a standard acquisition, a signal is excited with a resonant RF pulse. 

Magnetic gradients are applied for spatial localisation (i.e. phase encoding and read 
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dephasing), and a “readout” gradient is then applied at a predetermined time such that the 

isochromats rephase, and the echo is realised. This however is true only in the case of static 

isochromats. Any non-stationary spin packet, e.g. those within the blood vessels, will not 

rephase upon read-out, resulting in magnitude signal loss.  

The effect is equally detrimental to phase images. The phase of the GRE signal is 

essentially a measure of the extent of the precession of the isochromats at a given (echo) 

time. Isochromats accumulating extra phase as they move through magnetic gradients will 

distort local field estimations, leading to erroneous susceptibility measurements. Flow 

compensation involves modifying the acquisition sequence by adding extra gradients that are 

designed to ensure all of the isochromats rephase upon readout. 

Initial applications of QSM were mostly concerned with assessing changes in the 

focal centres of iron in the brain, and so were not affected by blood flow. Advances in the 

field however have given rise to a number of QSM applications for which flow compensation 

has been crucial. For instance, QSM venography has been applied to a preclinical model of 

stroke 
[7]

, which involved the detection of small cerebral blood vessels. The image distortion 

caused by blood flow would most likely prove detrimental in this scenario. Equally, there 

have been a number of studies attempting to quantify cerebral venous oxygen saturation 

(SvO2) through susceptibility measurements 
[9, 15, 16]

. Accurate estimation of SvO2 depends on 

the linear relationship of deoxyhaemoglobin content and magnetic susceptibility, and in the 

presence of uncompensated flow this linearity is severely undermined 
[16]

. 

 The blood vessels contained within the liver are extremely abundant and large relative 

to those in the brain, meaning that there are large volumes of blood entering, leaving and 

passing through the liver during the acquisition sequence. As such, a series of short 

experiments were carried out to assess the necessity of flow compensation in the liver. There 

follows a brief discussion of the implementation of flow compensation in this instance, and 

an analysis of its effect on the Quantitative Susceptibility Maps derived thereafter. 

 

3.1.2.1 Implementation 

The effect a gradient has on the precession of an isochromat during the course of a 

pulse sequence can be described by its moment. Positive and negative gradients will have 

opposing effects, and the extent to which they do will depend on their strength and duration. 
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In order to ensure all spins rephase at the desired echo time, the area under the positive and 

negative curves described by each gradient waveform must sum to zero. Gradient Moment 

Nulling (GMN) refers to the technique that ensures that this condition is met. 

Gradient moments can be nulled to varying degrees, referred to as orders. Zeroth-

order moment nulling ensures that all stationary spins rephase at the desired echo time, and is 

included in virtually all pulse sequences. The situation becomes more complex when a ROI 

contains both stationary and moving spins, and it is the objective of higher order moment 

nulling to ensure that the total phase dispersion is zero for all spins at the echo time whether 

they are stationary or not. As such, first-order nulling is pertinent to spins that move through 

the gradient at a constant velocity, second order nulling refers to spins moving at a constant 

acceleration, and so on. GMN is performed by including extra lobes on a gradient waveform 

of sufficient strength, duration and polarity such that all spins up to the desired order will 

rephase upon read-out.  

In the interests of clarity, let us examine a velocity compensated slice select gradient, 

where lobe 1 is the refocussing gradient, and lobe 2 is the velocity compensating gradient (fig 

3.1). 

 

 

Fig 3.2: A velocity compensated slice select gradient
[1]

. 
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The amplitude and duration of the slice select gradient are represented by Gs and Ts 

respectively, the widths of the lobes are w1,2, and rs is the gradient ramp time. The goal of the 

exercise is to calculate the widths, amplitudes and shape of the unknown lobes 1 & 2, such 

that the net area under the waveform is equal to zero, i.e. that: 

                                         A1 = A2 + As                                         [2] 

where A denotes the absolute value of the area under each lobe, and As is the area 

from the RF isodelay point to the end of the slice selection lobe (i.e. t = 0).  

Manipulation of the gradient waveform requires modification of the programme that 

dictates the sequence protocol. Each gradient is treated separately, so compensation can be 

applied to each cardinal direction individually, or any combination thereof. To ensure the 

extra lobes are of the appropriate size etc., they are described by a series of equations that 

incorporate information from the sequence protocol, and calculate the required amplitude and 

duration accordingly. So, for example, A2 in eqn. 1 can be calculated using the equation (as 

derived in Bernstein)
[1]

: 

 

                                   [3] 

 

where h is the maximal gradient amplitude, r is the minimal rise time from 0 to h, and ms is 

the absolute value of the first moment of the slice select lobe. The variables h, r, are directly 

calculated during the execution of the sequence, and both ms and As can be calculated from 

sequence parameters. The variables A2 and As can then be used to calculate A1 (eqn. 1), and 

the gradients of lobes 1 & 2 can be calculated such that their net area sums to zero, thus 

nulling the 1
st
 moment of the sequence. Similar equations allow the calculation of gradients 

that will null the first moment of the frequency and phase-encode gradients. For the 

experimental work below, flow compensation was applied in all three directions, so the 

sequences are said to be fully first-order flow compensated. 

The Agilent scanner used for these experiments offers two possible options when 

implementing GMN. The first is to programme the acquisition such that the individual 

gradient waveforms run in a sequential fashion. While this is easy to implement from a 
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programming point of view, the extra lobes come with a time penalty that may increase the 

echo and repetition times to an unacceptable degree.  

The second option is to take advantage of the gradient kernel programming capability 

built into the Agilent paradigm. Instead of running each gradient sequentially, this removes 

the blocking constraints imposed on the sequence, and allows individual waveforms to 

arbitrarily overlap. The individual waveforms are combined into a single compound gradient 

shape, which has the effect reducing the minimum echo and repetition times. Upon 

implementation it was found that the required echo time necessitated programming the 

acquisition sequence in kernel form. 

Implementation of flow compensation was done in two stages. The first stage was 

conducted entirely on a flow phantom, as this allowed on-line sequence development without 

the use of animals. Once it was established that the sequence could successfully compensate 

for laminar flow, in-vivo animal data was acquired with and without flow compensation in 

order to gauge the effect on the subsequent susceptibility maps. 

 

3.1.2.2 Stage I – Flow Phantom 

The flow phantom was constructed in-house, and consisted of a 15 ml falcon tube 

filled with agar (figure 3.3). A hole was cut in the top and bottom of the falcon tube, through 

which a thin flexible plastic pipe was inserted such that the direction of the pipe was parallel 

to that of the falcon tube. The pipe was connected at either end to a water bath and pump that 

were outside the scan room so that when the pump was turned on water flowed at a constant 

rate in a closed system. 

The tube was positioned in the scanner such that the flow was perpendicular to the 

main magnetic field. The dataset consisted of 3 GRE acquisitions: 

Acq 1: No flow, no flow compensation 

Acq 2: Flow, no flow compensation 

Acq 3: Flow, flow compensated sequence. 



46 

 

The acquisition parameters were as such: B0 = 9.4T, TR = 1000 ms, TE = 8.9 ms, FA = 70
o
, 

FOV = 30 x 30 x 23 mm, Matrix = 128 x 128 x 50, Voxel = 234 x 234 x 460 µm, bandwidth 

= 50 kHz, average = 1. 

 Susceptibility maps were calculated from the raw phase data of each acquisition using 

the SHARP and TKD algorithms discussed in chapter 2. Images were examined by visual 

inspection, and susceptibility was measured in the agar and in the pipe. The susceptibility 

shift is quoted in ppb, and is the difference in susceptibility between the two regions. The 

standard deviation of the susceptibility within the pipe is also compared as a measure of the 

success of the flow compensation. 

 

 

 

 

 

 

 

 

Figure 3.3: Photograph of flow phantom. 
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3.1.2.2.1 Stage I – Results 

 

 

 

. 

Figure 3.4 shows a trio of images from each dataset. Columns 1 – 3 are populated by 

Acq. 1- 3 respectively. The top row contains magnitude images, the second row contains the 

corresponding phase images, and the bottom row contains the subsequent susceptibility maps. 

All images are shown in sagittal orientation 

In the magnitude image with no flow, the water is hyperintense from the top to the 

bottom of the image with respect to the agar. In the image with no flow compensation the 

water and the agar are of almost the same intensity, while in the image with flow 

compensation the water is also hyperintense, but the contrast seems to drop off slightly at the 

top and bottom of the image. 

Figure 3.4 A- I: Images from data acquired with no flow (A, D, G), flow but no compensation (B, E, H), and 

flow with compensation (C, F, I). The top row contains magnitude images from each acquisition, the second 

row is the raw phase data, and the third row contains the corresponding susceptibility maps. 
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The raw phase images are contained in the second row (D - F). As discussed in 

chapter 2 section 2.3.1 the pixel values in a raw phase image are expressed between the finite 

limits of ± π. As such, when the values of phase exceed this limit, they “wrap” back to the 

origin, resulting in a series of bright and dark bands throughout the image. The effect is 

clearly visible in figure 3.4, and a comparison of the phase wraps gives an insight into the 

effectiveness of the flow compensated sequence. In the first image (D), in which there is no 

flow, the phase wraps form a continuous band across the entirety of the phantom, as 

expected. In the second, uncompensated image (E), there is a break in the phase wraps as 

they pass through the section of the phantom that contained the flowing water. The reason for 

this is that the isochromats contained in the water pipe did not rephase at the echo time, as 

they have accumulated extra phase while passing through the various gradients. Conversely, 

in the compensated phase image (E), the phase wraps manifest as unbroken lines that pass 

across the entire phantom, as the modification to the sequence has resulted in the correct 

rephasing of the majority of the isochromats at the correct time. 

The resultant susceptibility maps are contained in the third row (G – I). In the no-flow 

image (G), the susceptibility of the water in the pipe is slightly hypointense with respect to 

the agar that surrounds it (see figure 3.5). By comparison, the water in the susceptibility map 

calculated from the uncompensated data is hyperintense. Again this is attributed to the 

distortion of the phase as the moving isochromats passed through the various imaging 

gradients. As expected, the water in the compensated image (G) is hypointense, in reflection 

of the first image. The water in image G however is slightly more hypointense than in the 

first image. This may be attributed to non-laminar flow at the edges of the pipe that has not 

been entirely compensated for by the sequence. 

The graph in figure 3.5 A shows the shift in measured susceptibility between the 

water and agar for each acquisition. The susceptibility of the water in the uncompensated 

image is measured as paramagnetic (i.e. > 0), while in the others it is diamagnetic. The 

susceptibility of the water in the flow compensated image is slightly more diamagnetic than 

the water in the no flow image. According to the literature, the magnetic susceptibility of 

both water and agar is very similar 
[17]

, so it is unclear why in this instance the water appears 

to be slightly diamagnetic by comparison. The difference is ~30 ppb, and it may be that the 

water in the phantom contains some impurities (i.e. calcium) which would explain the 

discrepancy. 
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 The graph in figure 3.5B shows the standard deviation of the susceptibility measured 

in the water in each data set. As expected, the standard deviation in the uncompensated image 

is the highest. The SD in the compensated image is slightly higher than that in the image with 

no flow. The differences between the compensated and no flow images may be due to non-

laminar flow that is not compensated for by first order gradient moment nulling. 

 

 

 

 

3.1.2.2.2 Stage I – Conclusions 

It is clear from the above that the presence of flow during the acquisition will have a 

noticeable effect on the resultant images, and a detrimental effect on the susceptibility maps 

and the values measured therein. It is also shown that first-order flow compensation was 

successfully implemented, and that it goes some way to mitigating the errors introduced by 

flow. It must be noted however that the compensation is imperfect; some residual flow 

artefact remains, which may be a systemic source of error throughout the experiments. 

Inclusion of higher order compensation would however push the echo time to an 

unacceptable value, so it was decided that first order compensation was the optimal choice.  

 

 

Figure 3.5 A & B: Graphs depicting the contrast measured in each of the susceptibility maps displayed in 

figure 2 (A) and the standard deviation of the susceptibility measured in the water in the same images (B). 
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3.1.2.3 Stage II – In-vivo acquisition 

Once the efficacy of the flow-compensated acquisition sequence was established, in-

vivo data was acquired to determine the effect of flow compensation on a susceptibility map 

that was more representative of data that would be acquired during the main experiments in 

the upcoming chapters. 

GRE data was acquired from a healthy CD1 mouse (6 -8 weeks old). The subject was 

anaesthetised using 4% isoflurane in 100% O2. During scanning, respiratory rate was 

monitored and maintained at ~50 - 70 breaths p/m by varying isoflurane concentration 

between 1.5 and 3%. Data were acquired while the mouse was administered medical air, by 

means of a respiratory gated sequence on a 9.4T scanner (Agilent Technologies). 

The acquisition parameters were as such: Flow compensated acquisition: TR = 1000 

ms, TE = 4 ms, FA = 70
o
, FOV = 25.6 x 25.6 x 16 mm, Matrix = 128 x 128 x 80, Voxel = 

200 µm isotropic, bandwidth = 50 kHz, average = 4. Standard acquisition: TR = 1231 ms, 

TE = 4.712 ms, FA = 70
o
, FOV = 25.6 x 25.6 x 16 mm, Matrix = 128 x 128 x 80, Voxel = 

200 µm isotropic, bandwidth = 50 kHz, average = 4.  

 Data was manually segmented using ITK-snap
[18]

 and susceptibility maps were 

calculated from raw phase data using the SHARP and TKD algorithms. Images were assessed 

by visual inspection, and the magnetic susceptibility was measured in a large blood vessel, 

and in the liver tissue. The difference in susceptibility between each region was taken as a 

measure of image contrast, and the standard deviation of the measured susceptibility in the 

blood vessel quoted as a measure of image quality. 
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3.1.2.3.1 Stage II – Results 

 

 

 

 

Figure 3.6 (top row) shows single slice magnitude images of the mouse liver (sagittal 

orientation) acquired with (left) and without (right) flow compensation. The second row 

contains maximum intensity projections (MIP) over 2 mm (10 slices) of the susceptibility 

maps calculated from the same data set.  

 The image quality of the magnitude image acquired with the flow compensated 

sequence is superior to the image acquired with the standard sequence as evidenced by the 

fact that contrast in the liver volume is more homogeneous, and there is less signal dropout, 

particularly towards the superior section of the organ. Additionally, the large blood vessel 

Figure 3.6 A- D: In-vivo images of mouse liver (sagittal orientation) acquired with (A, C), and without (B, D) 

flow compensation. The top row contains magnitude images, and the bottom row contains Maximum Intensity 

Projections over a 2 mm area of the corresponding susceptibility maps. The red arrow draws attention to the 

prominence of a large blood vessel in the uncompensated image. 
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that is visible on the right hand side of the uncompensated image (red arrow) is less 

conspicuous in the flow compensated image. This is because the acquisition sequence has 

reduced signal drop out due to flow artefact. 

 The MIPs displayed in the second row of figure 3.6 also display obvious differences. 

The delineation of the blood vessels in the flow compensated image is far superior to that in 

the uncompensated image. Furthermore, the vessels in the uncompensated image appear more 

diffuse, which will have implications for the susceptibility measured not only in the blood 

vessels, but also in the surrounding tissue. 

 Figure 3.7 shows a series of graphs that depict differences in the susceptibility 

measured in the blood vessel and liver tissue. Graph A shows that the contrast between the 2 

regions is higher in the flow compensated image due to the superior delineation of the blood 

vessels – when the signal from the blood vessels is diffuse, it contaminates the signal from 

the adjacent regions thus undermining the measurement. Graph B shows that the standard 

deviation is higher in the susceptibility in the blood vessel in the uncompensated image. This 

is as expected, and is due to flow artefact.  

 

 

 

 

  

Figure 3.7 A & B: Graphs depicting a comparison between the contrast (A) and the standard deviation of the 

susceptibility measured in a large blood vessel (B) in images acquired with and without flow compensation. 
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3.1.2.3.2 Stage II – Conclusions 

 It is clear from the above that first order flow compensation improves the quality of 

QSM images and measurements. The delineation between the blood vessels and tissue is 

vastly improved, as is image contrast. Additionally, the susceptibility measured in the blood 

vessels is less noisy when flow compensation is included in the imaging sequence. This is 

highly desirable, as susceptibility changes are of the order of parts per billion, and so could 

easily be obscured by noise. 

 From this set of experiments it is concluded that first order flow compensation is 

extremely beneficial when performing in-vivo QSM on the liver. As such, all results 

discussed in the remainder of the thesis will be derived from images acquired with a first 

order flow compensated sequence. 

 

3.1.3 2D vs 3D images 

 When performing susceptibility mapping in the brain, it is usual to acquire data using 

a 3D GRE acquisition sequence, the reasons cited in the literature being that 3D acquisitions 

offer superior SNR, and that 2D acquisitions may introduce phase inconsistencies among 

adjacent slices 
[19]

. It is also noted in the same review however that 2D data are also 

compatible with QSM, and it has been suggested in an SWI study of the liver that a 3-

dimensional acquisition sequence is not suitable for abdominal imaging, due to the long 

acquisition times and the large B0 variations encountered when doing so
[20]

.  

 There are a number of recent examples in which the application being explored has 

necessitated calculating susceptibility maps from 2D GRE data. These are instances which 

require fast acquisitions, such as in the case of functional QSM 
[21]

 or for use in patients that 

are unable to remain still for the duration of the scan 
[22]

. The latter is particularly prevalent, 

as the most well developed application of QSM is to assess changes in focal iron deposition 

in the brains of Parkinson’s or Huntington’s disease sufferers. 

 In order to assess the suitability of each acquisition sequence for use in the preclinical 

liver, 2D and 3D GRE data was acquired of an excised mouse liver at 9.4T. As mentioned, it 

is important to minimise the time each subject spends in the scanner, and optimisation of the 

acquisition parameters selected must involve a trade-off between maximising SNR and 
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minimising scan time. As such, the acquisition parameters of the 3D sequence were 

manipulated to ensure that the scan time required by both sequences was the same, such that 

a comparison can be drawn between the (magnitude) SNR in both images, and the quality of 

the susceptibility maps calculated from each data set. 

 

3.1.3.1 Methods 

 2D and 3D GRE data was acquired from a non-fixed, freshly excised mouse liver that 

was immersed in Fomblin. The acquisition parameters were as such: 

2D: B0 = 9.4T, TR = 1000 ms, TE = 4 ms, FA = 70
o
, FOV = 25.6 x 20 x 16 mm, Matrix = 

128 x 100 x 80, Voxel = 200 x 200 x 200µm, bandwidth = 50 kHz, average = 8, acquisition 

time: 13m 20s. 

3D: B0 = 9.4T, TR = 100 ms, TE = 4 ms, FA = 8
o
, FOV = 25.6 x 20 x 24 mm, Matrix = 128 x 

100 x 100, Voxel = 200 x 200 x 200µm, bandwidth = 100 kHz, average = 8, acquisition time: 

13m 20s. 

The masks required for QSM processing, and regions of interest were manually 

segmented on the magnitude images using ITK-snap
[18]

. ROIs consisted of a region of liver 

tissue that did not contain any obvious large blood vessels, and a region of the image within 

the FOV but outside the sample in order to measure the image noise. 

Susceptibility maps were calculated from raw phase data using the SHARP and TKD 

algorithms. Signal to noise was calculated using the following equation: 

                                 SNR = 0.655∙S/σ                                  [4] 

Where S is the magnitude signal in a region of the object being imaged, and σ is the 

standard deviation of the noise, measured in the aforementioned region. The standard 

deviation of the susceptibility measured in the liver tissue is also quoted as a measure of 

image quality. 
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3.1.3.2 Results 

Figure 3.8 shows the magnitude SNR measured in the 2D and 3D datasets 

respectively. Unsurprisingly given the acquisition parameters, the SNR in the 2D image 

(37.92) is higher than in the 3D image (31.74). Increasing the receive bandwidth lowers the 

acquisition time but increases the amount of noise sampled with the signal. Secondly, the flip 

angle with which the 3D data was acquired was not the at the Ernst angle (~25
o
 at this TR for 

tissues with this T1), also contributing to reducing the SNR by reducing the signal. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 shows the T2*-weighted magnitude, raw phase, field maps, and 

susceptibility maps acquired with both 2D (left) and 3D (right) acquisition sequences. For the 

purposes of display, the raw phase data has been masked such that only the sample is 

displayed.  

 

Fig 3.8: Graph depicting difference in Signal to Noise ratio as measured in 2D and 3D magnitude data. 
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Fig 3.9 A- H: T2*-weighted magnitude images (A,B), raw phase (C,D), frequency maps (E,F), and 

susceptibility maps (G,H), of 2D (left hand column), and 3D (right hand column) data. The red arrows in 

(H) indicate the streaking artefact caused by noise in the data supplied to the TKD algorithm. 



57 

 

As expected, the signal in the 2D magnitude image (A) is far superior to that in the 3D 

image (B) due to the reasons discussed in the previous paragraph. A comparison of the raw 

phase data (C & D) shows that the phase lines are more dense and numerous on the 2D image 

(C). It is unclear why this is the case, but may have something to do with the differences in 

which the data is acquired. During 2D acquisitions, each slice is excited in isolation, and the 

data from that slice is then acquired. During 3D acquisitions, the entire image volume is 

excited, and an extra phase encoding gradient is applied in the “slice” direction such that it is 

spatially encoded. The difference in how each of these gradients are applied during their 

respective acquisition sequence may explain the differences in phase wraps in the raw 

images. In any case, this will not have any effect on the susceptibility map calculated from 

either data set as the phase wraps will all be removed during processing. More importantly, 

there was no evidence in the 2D image of any broken, or “open-ended” fringe lines that may 

be indicative of phase inconsistencies, and can adversely affect the phase unwrapping 

process
[23]

.  

The frequency maps displayed in E & F show that in both cases the phase wraps and 

background field contributions have been successfully removed by the SHARP algorithm. 

The dipole patterns that are visible in the images are due to the presence of blood vessels. The 

tissue visible between the dipoles in each image is less homogeneous in the 3D data. This 

may be due to increased noise. 

The quality of the susceptibility map calculated from the 2D data (G) is superior to 

that from the 3D data (H). The streaking artefact caused by the TKD algorithm is more 

prominent in the 3D susceptibility map (red arrows). This is most likely due to the increased 

noise in the image, and will negatively impact any quantitative measurements. 

 

 

 

 

 

 



58 

 

 

 

 

 

 

 

 

 

 

 

The negative impact of the artefacts in the susceptibility is confirmed numerically in 

figure 3.10, which displays the standard deviation on a measurement taken in the liver tissue 

of each image, which is quoted as a measure of image quality. It is clear that the SD on the 

measurement of the 3D image (50.88) is greater than that of the 2D image (43.66). 

 

 3.1.3.3 Discussion 

 The results of this experiment are borne out of a very preliminary dataset acquired in 

the early stages of the project. Nevertheless, the results are broadly indicative of the 

differences between 2D and 3D susceptibility maps in the context of pre-clinical abdominal 

imaging. As the data was ex-vivo, the B0 inhomogeneities caused by the large air-tissue 

interfaces in the abdomen were not encountered, allowing the study to focus explicitly on the 

trade-off between SNR and acquisition time. 

 As mentioned, noise in a phase image is proportional to the noise in the corresponding 

magnitude image
[10]

. While it would be possible to optimise the 3D acquisition sequence used 

here - by reducing the receive bandwidth for example, improving data acquisition to the point 

at which the SNR in the 3D dataset was significantly higher than in the 2D dataset would 

Fig 3.10: The standard deviation in ppb on the measurement of susceptibility taken from the 2D and 3D images 

respectively. The higher SD in the 3D image is caused by more prominent streaking artefacts in the 

susceptibility map. 
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almost certainly involve a time penalty, particularly so if respiratory-gating is introduced to 

the sequence.  

 The reduction in scan time brought about by 2D acquisitions is an attractive prospect 

for many applications. For instance, QSM-fMRI has been the subject of investigation
[21]

, and 

recently a processing method has been developed that allows the calculation of QSM images 

from 2D-EPI data
[24]

. In that instance it was shown that quantitative results derived from 2D 

susceptibility maps are consistent with those derived from 3D susceptibility maps. 

Additionally, reduced scan time allows a higher throughput when dealing with cohorts of 

multiple subjects, which is advantageous in both research and clinical scenarios. 

 

3.1.3.4 Conclusion 

 The scan time required to acquire 3D data can be reduced by adjusting some 

acquisition parameters, but this comes at the expense of reducing the SNR in the magnitude 

images, which negatively impacts the subsequent susceptibility maps.  

Based on the above, it was deemed that 2D acquisitions provide data that is of 

sufficient quality to perform susceptibility mapping in the pre-clinical liver at high fields, and 

any improvement in SNR that could be brought about by a lengthy 3D acquisition is less 

desirable than reducing the scan time required for each animal. 

 

 

3.1.4 Mouse liver fat fraction 

 The influence of fat is a topic not usually discussed in the context of QSM images, the 

reason being that the majority of applications focus on the brain. When performing QSM in 

organs outside the head however, the contribution of fat to the MRI signal must be 

considered.  

 Chemical shift is a well-known phenomenon in MR imaging, and refers to the 

difference in resonant frequencies of two nuclei due to their local environments. It is most 

commonly seen in regions that contain fat. Chemical shift is electronic in nature, and occurs 

when the electron cloud around protons contained in a fat molecule produce a local, induced 
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magnetic field that opposes B0. As such the electron cloud produces a shielding effect that 

reduces the magnetic field experienced by the protons, effectively resulting in a diamagnetic 

response to the applied field. 

Less well known however is the effect that fat will have on QSM images. The contrast 

in images derived from T2*-weighted phase data is brought about by differences in the phase 

angle of the magnetic vector of the acquired signal at each point in the image. These 

differences are due to local variations in the main magnetic field (B0) caused by regional 

susceptibility differences in the tissue under examination. As such, if a voxel contains both 

water and fat, it is probable that the fat will have the effect of undermining the susceptibility 

shift caused by paramagnetic components of the tissue that may be of interest (e.g. iron), or, 

conversely, causing an overestimation of the contribution of any diamagnetic substances that 

may be present. 

In order to ascertain the levels of fat present in the livers of the mice examined in later 

chapters, the histological images obtained as part of the respective studies were visually 

inspected for the presence of fat (figure 3.11). These were compared to images from a study 

in the literature that focussed on mouse models of non-alcoholic fatty liver disease (NAFLD), 

in which large lipid droplets are clearly visible 
[2]

 (figure 3.12). In addition, another study that 

aimed to compare a variety of MRI fat quantification techniques found histologically that the 

liver fat content of wild type mice was 0.53 ± 0.19 %, compared to 23.03 ± 2.59% found in 

obese mice 
[25]

. Furthermore, upon visual inspection no mis-registration artefacts, indicative 

of the presence of fat, were visible on any of the acquired magnitude images. 

At time of writing, there have been two papers published that have sought to address 

the problem of chemical shift in the context of QSM imaging, both of which have involved 

complex modifications of the processing protocol. As the amount of fat present in the livers 

of the mice examined was negligible, implementing a chemical shift correction in the data 

processing protocol was deemed unnecessary.  
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Fig 3.12 A & B: Images taken from literature
[2]

. H & E stained histological histological images of livers 

from a healthy mouse (A) and a mouse fed a high fat/fructose diet (B). Large lipid droplets are clearly 

visible in the second image, indicating the presence of a high degree of fat in the liver.  

Fig 3.11 A & B: H & E stained histological images of livers from a healthy mouse (A) and a mouse with 

tumours (B) from the studies described in chapter 4 and chapter 5 respectively. No lipid droplets are visible 

in either image. 
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3.2 Processing 

 As discussed in chapter 2, calculation of a susceptibility map requires three main steps 

– phase unwrapping, background field suppression, and inversion. There are a number of 

algorithms that can perform each stage of the process, and it was decided that the experiments 

conducted herein would employ a SHARP algorithm to perform both phase unwrapping and 

background field suppression, and a TKD algorithm to perform the inversion calculation. 

 This particular processing pipeline was chosen because it has been previously been 

shown to work well in practice
[26]

, it is relatively easy to implement and optimise for novel 

applications, and it can generate a susceptibility map from raw data in a matter of seconds
[8]

. 

To the best of our knowledge, implementing QSM to study the pre-clinical liver has never 

before been performed. Within each processing pipeline there are a number of variables that 

must be matched to the application. For example, it was found upon initial implementation 

that the combination of high field strength and the unique geometry of the liver – in particular 

the location and size of the air/tissue interfaces of the abdomen – required careful calibration 

of the SHARP algorithm. By the same token, all inversion algorithms require optimisation 

upon initial implementation. This process was performed on an empirical basis, and the speed 

with which these algorithms perform their respective functions allowed an exploration of the 

effect that each of these variables – and their interaction - had on the resultant susceptibility 

map. Once established, this pipeline had the added advantage of allowing large volumes of 

data to be processed relatively quickly.    

 The following section highlights the steps taken to optimise the selected processing 

pipeline for calculating an in-vivo susceptibility map from raw GRE phase data acquired 

from a mouse liver at 9.4T. The first experiment details a comparison of a heuristic and 

physical (homodyne and SHARP) background field suppression algorithms discussed in 

chapter 2 (sec. 2.3.2) in order to bolster the argument that the SHARP filter is more suitable 

for liver imaging. The second step was incremental adjustment of the TSVD threshold of the 

SHARP algorithm such that the raw data is unwrapped and the background field 

contributions are sufficiently suppressed. It was also necessary at this point to mitigate the 

artefacts at the edge of the image by adjusting the erosion of the binary mask. The second 

step was to adjust the threshold of the TKD algorithm such that the resulting susceptibility 

maps retained a reasonable degree of contrast, but displayed minimal inherent streaking 

artefact. 
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The data selected for the first experiment (sec. 3.2.1) is human brain data acquired at a 

very preliminary stage of the project. Otherwise, the data selected for the optimisation 

procedure was that of a healthy mouse, considered to be broadly representative of the data 

acquired for the main experiments that follow. The acquisition parameters are as such: B0 = 

9.4T, TR = 1000 ms, TE = 4 ms, FA = 70
o
, FOV = 32 x 32 x 12 mm, Matrix = 160 x 160 x 

60, Voxel = 200 µm isotropic, bandwidth = 50 kHz, average = 8. The acquisition sequence 

was respiratory gated and first order flow compensated in all directions. Binary masks were 

manually drawn in ITK-SNAP
[18]

, and all post processing was performed in Matlab (version 

2015b, The MathWorks, Natick, MA). As all of the main experiments involve administering 

a hyperoxic gas challenge, it was necessary to consider images acquired under both medical 

air and pure oxygen in the optimisation procedure. 

 

3.2.1: Heuristic vs Physical Background Field Suppression 

This first experiment investigates the argument that physical background field 

removal algorithms are superior to heuristic algorithms when preparing data that is to be 

input to the susceptibility algorithm. Field maps will be calculated from human brain data, 

and comparisons will be drawn between data processed with a homodyne filter (heuristic), 

and a SHARP based algorithm (physical). 

The same raw T2*-weighted phase data will be processed with both algorithms. The 

resultant field maps will be compared visually, and the mean frequency values from different 

brain regions will be compared to each other and to literature values. 

There follows first a brief description of the background theory of the homodyne 

filter. For the theory regarding the SHARP algorithm, the reader is referred to chap. 2 sec. 

2.3.5. 
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3.2.1.1 Homodyne filtering 

 Homodyne filtering is a type of synchronous detection, and falls into the heuristic 

category of approaches to background field suppression. The underlying assumption of the 

technique is that the complex T2*-weighted signal can be interpreted as consisting of high 

spatial frequency components that we wish to examine, modulated by an undesired low 

spatial frequency background. To extract the component that is of interest the signal must be 

demodulated, requiring a demodulation reference. This can be isolated from the original 

signal by low pass filtering (LPF), such that the reference will encompass the low spatial 

frequency background field. Demodulation is then carried out by performing complex 

division of the original by the filtered signal.  This removes the unwanted low spatial 

frequency component, but leaves in-tact the high spatial frequency phase variations of 

interest. In addition to this, as the calculation is carried out in the complex plane, phase wraps 

are also removed 
[27]

.  

 There is a trade-off involved when performing homodyne filtering: The band-pass of 

the filter must be of sufficient width that the demodulation reference is an adequate 

representation of the unwanted phase variation, while at the same time narrow enough to 

preserve the contrast between large structures. This trade off becomes readily apparent when 

trying to mitigate the problems associated with phase imaging. It can be seen from eqn. 4 

(chap. 2 sec. 2.1) that the contrast in a phase image is dependent on field strength, and can be 

manipulated by careful selection of echo time. Equally, both phase wraps and background 

field effects are exaggerated by increases in field strength or echo time, becoming higher 

spatial frequency components of the image. This increases the overlap between wanted and 

unwanted signal, making the respective contributions harder to separate. Hence an increase in 

echo time will necessitate filter with a wider bandwidth, however the contrast gained by 

virtue of the increased echo time can in some cases compensate for this. 

 K-space is filled such that the high spatial frequency components of the image that 

make up the sharp details, such as the edges, are mapped to the outside of k-space. 

Conversely, the low-spatial frequency components – those responsible for contrast - are 

mapped to the centre. As such, filtering was carried out by performing a Fourier transform of 

the image, and then multiplying the result by a 3D Gaussian function. This preserved the 

values at the centre of k-space, while minimising the values in the outer region. The data was 

then inverse Fourier transformed to yield a low pass filtered image, and the demodulation 
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was carried out by complex division in the image domain. Finally, the homodyne filtered 

images were multiplied by a sufficiently eroded binary brain mask to remove edge effects. 

The brain mask was extracted from the magnitude data using the BET tool in the FSL 

package 
[28]

. 

 The bandpass of the filter can be discussed in terms of the full width half maximum 

(FWHM) of the Gaussian function. It is quoted in terms of the number of points in the x-

direction of k-space (kx) as Δkx = FOVx
-1

. The filter has been designed such that it will act on 

the same spatial frequencies in all three directions in k-space.  

 A FWHM of 60 voxels in the kx direction was used to filter the complex data. The 

filter width was determined empirically by visual inspection of the filtered images 
[27]

. 

 

3.2.1.2 Data Acquisition 

 Scans were performed on a 3T scanner (Magnetom, Siemens Healthcare, Germany). 

A multi-echo (5) T2*-weighted 3D GRE coronal acquisition was performed. The image 

acquired at TE4 (19.68 ms) was chosen for examination as it has been determined in a 

previous experiment on the same data set (not shown) that this image provides the best 

balance between SNR and contrast after filtering. Parameter values are presented in table 3.1 

Parameter Value 

TR / TE1 / TE5 (ms) 30 / 4.92 / 24.6  

ΔTE (ms) 4.92 

Flip Angle (
o
) 20 

FOV (mm) 178.86 x 192 x 220  

Voxel size (mm) 0.859 x 2 x 0.859  

Number of averages 1 

Receiver BW (Hz/px) 400  

 

Table 3.1: Acquisition parameters for sec. 3.2.1 
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3.2.1.3 ROI 

 Regions of interest (figure 3.13) were placed in: 

- White matter in the primary motor area 
[29, 30]

. 

- Grey matter in the primary motor area 
[29, 30]

. 

- The putamen, an iron rich structure in the base of the forebrain 
[31]

. 

- CSF in the ventricles 
[31]

. 

 These regions were chosen as they are often used throughout the literature to gauge 

the usefulness of phase based images. Briefly, grey matter (GM) has been shown to contain 

more iron than white matter (WM). WM contains myelin, which is slightly diamagnetic. As 

such, the mean frequency shift between grey and white matter has been used as a measure of 

contrast in field maps 
[29, 30]

. The putamen is an iron rich deep brain structure, so will be 

readily apparent on a calculated susceptibility map. As the calculated susceptibility maps 

contain no areas of known absolute susceptibility, the measured susceptibility values must be 

quoted relative to a reference. CSF is thought to contain very little iron, and so will have a 

susceptibility close to that of water. As such, it is often used as the reference for susceptibility 

measurements in the literature 
[31]

. Susceptibility values are quoted as the difference in 

measurements. ROIs were hand drawn on the magnitude image acquired at the first echo 

using ITK-SNAP 
[32]

. 
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A: Motor region of cortex 

 

B: Close up of motor region delineating white 

(yellow) and grey (green) matter 

  

  

 

C: Putamen 

 

 

D: CSF in the ventricles 

 

Fig 3.13: Regions of interest, as drawn on magnitude T2*-weighted images. 
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3.2.1.4 RESULTS 

The images displayed in figure 3.14 and 3.15 show the magnitude, raw phase, 

homodyne and SHARP filtered field maps in coronal and axial planes. It is clear from the 

field maps that phase based imaging provides contrast of iron rich areas of the brain that is 

not evident on the magnitude data. The highlighted region in the SHARP field map in figure 

3.14 is where we would expect to find the red nucleus and substantia nigra, two iron rich 

deep brain nuclei. It is also clear however that the contrast is non-local and depends on the 

orientation of the structure to the main magnetic field. 

 

T2*-weighted magnitude image 

 

Raw phase data (rads) 

   

 

 

 

 

Field map – Homodyne filter (ppm) 

 

Field map – SHARP (ppm) 

 

 
Fig 3.14: Coronal images. Magnitude, raw phase and field maps calculated with a homodyne filter and SHARP 

algorithm respectively. The highlighted region in the SHARP derived field map shows the region that contains iron 

rich structures 
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T2*-weighted magnitude image 

 

Raw phase data (rads) 

   

  

 

Field map – Homodyne filter (ppm) 

 

Field map – SHARP (ppm) 

 

Fig 3.15: Axial images of the data displayed in fig. 3.14. The highlighted region in the raw phase image shows 

phase discontinuities in the area adjacent to the sinus. 
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Both homodyne and SHARP algorithms removed phase wraps and suppressed the 

background field to an extent that is sufficient for susceptibility calculation, but it is equally 

clear that the field maps derived by the SHARP algorithm provide superior contrast to the 

homodyne filtered images. Both algorithms struggled to remove the unwanted field effects in 

the area that is adjacent to the sinuses (figure 3.15). This area is known to cause particular 

difficulty when processing phase images due to the steep susceptibility gradient at the tissue / 

air interface. The effect can even be seen as a slightly darker region of the magnitude image. 

In this data set, this region appears to cause particular difficulty for the processing algorithms 

due to the presence of phase discontinuities (highlighted region in figure 3.15). Phase 

discontinuities are incomplete phase wraps and are thought to be caused by the algorithm 

responsible for the combination of the multi-channel phase data
[33]

. It is thought these can be 

mitigated by using the SENSE rather than the GRAPPA algorithm
[33]

. 

 The graphs in figure 3.16 display the absolute field shift between grey and white 

matter in the motor region. Graph 3.16 A confirms that the measured field shift and hence 

image contrast is superior in the SHARP filtered image. Graph 3.16 B compares the field 

shift measured in the SHARP images to similar values from the literature measured on 

systems with different field strengths 
[29, 30]

. As expected, the contrast increases with field 

strength. 
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Fig 3.16 A & B: Graph A displays the measured absolute field shift between the grey and white matter in the 

motor region. Graph B shows the measured field shift in the SHARP processed data compared to values from 

the literature measured at different field strengths[29, 30] . 
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3.2.1.5 CONCLUSIONS 

It was shown that physical approaches to data processing produce superior input data 

for the susceptibility algorithm, but that useable susceptibility maps can be calculated from 

the data derived via heuristic means. 

 

 

3.3.1 : SHARP algorithm 

 Figure 3.17 shows the magnitude image of the area within the subject’s liver that 

contains the region of interest (red box). Figures 3.17 B & C show the corresponding raw 

phase image (for display purposes masked such that only the liver is shown) and SHARP 

processed field map, the latter of which will be the subject of the measurement. Figure 3.17 C 

depicts the regions of interest in green (tissue) and red (vessel), and has been scaled to Hz, 

such that image contrast – measured as the mean frequency shift between the liver tissue and 

a large vessel - could be discussed in terms of the optimisation protocol. All images shown 

were derived from the data set acquired while the subject was breathing pure O2, as the 

observed background field was much more pronounced under these conditions. It is thought 

that this is because O2 is a paramagnetic molecule, so its administration may have had a 

greater effect on the susceptibility gradient between the lungs and the liver. 

Previous studies have implemented this pipeline in the brain with TSVD threshold 

values that range from 0.016
[8]

 to 0.2
[9]

. For this work, the TSVD threshold was incrementally 

increased from 0.006 – 0.04. The resulting field maps were visually inspected to determine 

sufficient suppression of the background field
[31]

 . The number of times the mask was eroded 

was then increased incrementally from 1 – 3 until the edge artefacts were deemed adequately 

removed (see below).  
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Figure 3.17 A – C: (A)T2*-weighted magnitude image of in-vivo mouse liver (coronal orientation). The 

highlighted area containing the ROIs is magnified in the bottom row. (B) Corresponding region of raw phase 

image. (Image has been masked for clarity during display) (C) Corresponding field map displaying vessel (red) 

and liver tissue (green) regions of interest. 
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3.3.1.1: SHARP results 

 As mentioned in chapter 2 (sec. 2.3.2), background field effects most obviously 

manifest as large scale contrast undulations throughout the image. As such, it can be seen 

from figure 3.18 that the characteristic hypo- and hyperintensities (yellow arrows) indicative 

of external field contributions to the image are reduced as the TSVD threshold is increased. 

Conversely, the edge effects (green arrows) – caused by an idiosyncrasy of the SHARP 

algorithm (chap. 2 sec. 2.3.5) - remain largely unchanged. These are eliminated as the mask is 

eroded to a greater degree. 

  

 

 

 

 

 

 

 

Figure 3.18: Field map of mouse liver (axial orientation) calculated using the SHARP algorithm. Series 

shows the reduction in background field contributions (yellow arrows) and edge effects (green arrows) as the 

TSVD regularisation threshold and degree of mask erosion are increased respectively. 
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The graphs in figure 3.19 show the image contrast and standard deviation within each 

ROI as the algorithm is optimised. Image contrast increased with the TSVD threshold. The 

reason for this is that as the relatively large contributions to the image that constitute the 

background field are removed, the underlying contrast brought about by field shifts within the 

organ of interest is revealed. There is a slight reduction in contrast as the number of times the 

mask is eroded is increased due to the removal of the extreme values around the edge of the 

image. 

  

 

Images were visually assessed in all instances. The criteria for acceptance was 

removal of any large scale contrast undulations that are indicative of background field effects. 

Equally, the removal of edge effects was deemed sufficient when there were no obvious signs 

of abrupt contrast changes around the edges of the liver in the images. The progression of this 

removal process is depicted in figure 3.18. It was deemed that a TSVD threshold of 0.04 with 

a mask eroded 3 times resulted in adequate suppression of the background field effects and 

removal of edge artefacts from the field map. As such, raw data processed with these 

thresholds was used as the input data for the susceptibility algorithm.   

 

Figure 3.19: Graphs depicting the measured contrast (left) and standard deviation in the ROIs (right) as 

the SHARP algorithm is optimised 
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Figure 3.20: Quantitative Susceptibility Map of mouse 

liver (coronal orientation), displaying large blood vessel 

(red) and liver tissue (green) ROIs. 

3.2.3: Thresholded K-space (TKD) Algorithm 

 There is also a large degree of 

variability in the regularisation threshold 

value selected for the TKD algorithm in 

previous studies. Values ranging from 

0.2 – 0.5 were found agreeable in the 

literature 
[26]

. Presently, the threshold 

was incrementally increased from 0.008 

to 1. Images were examined by visual 

inspection, and the difference in mean 

susceptibility between the liver tissue 

and a large vessel (figure 3.20) was used 

to numerically gauge image contrast in 

terms of the optimisation procedure. 

Additionally, and in similar fashion to previous studies, the standard deviation of the 

susceptibility within the tissue ROI was used to assess the severity of the streaking artefact 

inherent to the TKD algorithm 
[26]

.  

 

3.2.3.1: TKD results 

Figure 3.21 shows a series of representative susceptibility maps calculated with 

increasing thresholds. As expected, there is a strong positive correlation between image 

quality and TKD threshold. This is due to the fact that as the threshold is lowered it allows 

more ambiguity into the susceptibility calculation, resulting in greater noise amplification. 

Conversely, as the threshold is increased more a priori information is supplied to the 

calculation, resulting in a decrease in image contrast. 
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This is confirmed numerically in figure 3.22. The graph in 3.21 A shows an almost 

linear decrease in image contrast as the TKD threshold is increased. Equally, 3.21 B shows an 

almost linear decrease in the standard deviation of the values within the liver tissue ROI as 

the threshold is increased. Optimisation of the TKD algorithm requires striking a balance 

between reducing the image artefact while retaining adequate contrast. In this instance, a 

TKD threshold value of 0.2 was deemed to meet these criteria. 

 

Figure 3.21: Series of Quantitative Susceptibility Maps depicting changes in image quality and contrast as the 

TKD threshold is increased 

Figure 3.22: Graphs depicting image contrast (A) and SD in the liver tissue ROI (B) as the TKD threshold is 

increased 
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3.2.4: Interaction between Algorithms 

 In order to ensure a thorough analysis of the processing pipeline, an investigation was 

carried out on the impact that the interaction between the SHARP and TKD algorithms have 

on the final susceptibility map. The same raw data was processed with the SHARP algorithm 

three times with variations in the TSVD threshold and degree of mask erosion: 

Field Map 1: TSVD = 0.04, # mask erodes = 1; 

Field Map 2: TSVD = 0.04, # mask erodes = 3; 

Field Map 3: TSVD = 0.08, # mask erodes = 3; 

Susceptibility maps were then calculated from each field map using the TKD algorithm with 

the same range of regularisation thresholds examined in the previous section (i.e. 0.008 - 1). 

Images were subject to visual inspection, and contrast was calculated as before. Again, the 

SD of the susceptibility values in the tissue ROI was used to gauge the severity of the 

streaking artefact. 

 

3.2.4.1: Results 

Figure 3.23 shows a representative susceptibility map calculated from each dataset 

and a graph showing the how image contrast in each changes as the TKD threshold is 

increased. There is little difference in contrast between each of the data sets, however the data 

processed with the highest TSVD threshold consistently has the lowest contrast of the three. 

Of the other 2, the data set subject to a greater degree of mask erosion displayed higher 

contrast at low values of the TKD threshold. Contrast in each image decreases by an average 

of 11.99 ± 3.39%, 12.74 ± 2.35% and 12.95 ± 2.52% per 0.1 increment of the TKD threshold 

for field maps A, B, and C respectively.  
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The graphs in figure 3.24 depict the progression of the measured susceptibility values 

in the liver tissue and blood vessel respectively as the TKD threshold is increased. The 

susceptibility values measured in the blood vessel decrease gradually with each increment of 

the TKD threshold, but there is little difference between the values measured in each image at 

each point. As expected, each tends to zero as the regularisation value is increased. As before, 

the values in the image processed with the highest TSVD threshold is consistently the closest 

to the zero point. 

 

 

 

Figure 3.23: Top: Series of 

quantitative susceptibility maps of 

mouse liver (coronal orientation) 

depicting the differences to the final 

image brought about by changes in 

input data to the inversion 

calculation. Images calculated with 

TKD algorithm, threshold = 0.2. 

Bottom: Graph depicting changes 

in image contrast measured in 

susceptibility maps for each field 

map, as the TKD threshold is 

increased. 
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The susceptibility measured in the liver tissue is more sensitive to the number of times 

the mask has been eroded than to the TSVD threshold when the TKD regularisation is at a 

low value (i.e. < 0.2). As the TKD threshold is increased however the values from the data set 

with the same TSVD threshold are almost identical. Again, the values in the image processed 

with the highest TSVD threshold are consistently the closest to the zero point. As the TKD 

threshold is increased, the contrast in all images is increasingly undermined. The convergence 

of all susceptibility values on the zero point is demonstrative of this. 

The graph in figure 3.25 shows the progression of the SD measured in the liver tissue 

as the TKD threshold is increased, and is presented as a measurement of the streaking artefact 

in the susceptibility maps. As expected, the SD has an inverse relationship with the 

regularisation threshold, and there is virtually no difference between data sets for most 

increments. At low values of the TKD threshold the data set processed with the highest 

TSVD value is higher than the others, indicating a slight sensitivity of the TKD algorithm. 

 

 

Figure 3.24: Graphs depicting the changes in measured susceptibility in the blood vessel (left) and liver 

tissue (right), for each input data as the TKD threshold is increased. 
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3.2.4.2: Conclusions 

 The above experiment explored the interaction between the various algorithms that 

are to be used to process the data for the main experiments carried out as part of this body of 

work. Image quality (given by the standard deviation on measurements from ROIs), and 

image contrast were examined. The expected trade-off between image quality and fidelity 

was observed. It was found that the TSVD threshold and number of times that the mask was 

eroded during the SHARP processing step have some effect on image contrast, however it 

was also found that the factor most affecting image contrast was the amount of information 

supplied to the inversion algorithm via the threshold value. 

 

 

Figure 3.25: Graph depicting changes in the standard deviation of the susceptibility values measured in the liver 

tissue for each field map as the TKD threshold is increased. 
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3.2.5: TKD Systemic Underestimation 

While it is true that the derivation through careful processing of a pristine field map 

from raw data is a crucial component of the susceptibility mapping process, it can be seen 

from the above that the differences in measured susceptibility values calculated from the 

various field maps is of the order of tens of parts per billion. It is equally clear that once a 

field map has been deemed a suitable substrate for inversion, the largest influence on the 

susceptibility measurements when using the TKD method is the TKD regularisation 

threshold. 

The systemic underestimation of susceptibility values in images calculated using the 

TKD method is a well-known problem 
[8, 26]

, and is an inherent property of the algorithm. As 

shown above, each 0.1 increment of the regularisation threshold results in a ~12% change in 

susceptibility values. This comes about because the regularisation of the algorithm involves 

replacing very small values of the deconvolution kernel with a value equal to the 

regularisation threshold. As such, the division of the field map in k-space is performed in this 

region with inflated values 
[8]

. 

The effect is almost linear with the TKD threshold, and is consistent across the entire 

image. As such, one simple solution to the problem is the inclusion of a simple multiplicative 

factor when carrying out the inversion calculation 
[8]

. The study in which this solution was 

presented detailed a rigorous comparison between a TKD susceptibility map and a one 

calculated from multi-echo data via the COSMOS method. This enabled the derivation of a 

curve that expressed the degree of underestimation for each increment of the TKD 

regularisation threshold (figure 3.27 B). This was then compared to theoretically predicted 

values of underestimation. While it was shown that this successfully mitigated the 

underestimation engendered by the algorithm, the purpose of the exercise was to demonstrate 

its applicability to human brain imaging, and as such may not be pertinent at high field 

strength in a preclinical liver. 

The solution to the underestimation issue proposed herein is to perform linear 

regression on the series of values measured within an ROI as the TKD regularisation 

threshold is increased. As such, the intercept of the fitted line will be the mean susceptibility 

within the ROI if the regularisation threshold was 0. This can then be used to estimate the 

underestimation of susceptibility values, and to subsequently calculate a correction factor for 

the image.  
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The data selected was that used in previous sections. The raw data was processed with 

the SHARP algorithm (TSVD threshold = 0.04, #msk erodes = 3). TKD threshold values 

were incrementally increased from 0.008 – 1, and the mean susceptibility measured in the 

blood vessel ROI (figure 3.20) was selected as the measurement on which to perform the 

regression.  

 

3.2.5.1: Results 

The graph in figure 3.26 shows the progression of the measured value as the TKD 

threshold is increased, and the results of the linear least squares fit. The intercept of the 

regression line with the y-axis was observed at a value of 185.81 ppb. Figure 3.27 shows the 

projected underestimation plotted against the TKD regularisation threshold as derived from 

the results of the linear regression, and the graph depicting the same from Scheweser 2013
[8]

. 

The table 1 shows the calculated correction factor for each increment of the TKD threshold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.26: Graph depicting changes in susceptibility measured in the blood vessels within the liver as the 

TKD threshold is increased, and the results of a linear regression performed on the measured values. The y-

intercept of the regression indicates the predicted susceptibility value in the ROI when the TKD threshold is 

0. 
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Figure 3.27: (A) Graph depicting the projected underestimation for each TKD threshold value as calculated 

from the results of the linear regression. (B) Graph depicting the projected underestimation from Schweser 

(2013) 

 

 

 

 

 

 

 

 

 

 

 

 

 

TKD 

threshold 

Underestimation 

0.008 1.138798 

0.02 1.048383 

0.05 0.954739 

0.1 0.884237 

0.2 0.786287 

0.3 0.694796 

0.4 0.585544 

0.5 0.491362 

0.6 0.412787 

0.7 0.353049 

0.8 0.31107 

0.9 0.276088 

1 0.248641 
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Figure 3.28: Quantitative Susceptibility Maps calculated from identical field maps using TKD inversion. 

Image on the right has been calculated with algorithm including the correction factor. Note the difference in 

contrast between the images. 

Figure 3.28 shows an image from a susceptibility map calculated with an inversion 

threshold of 0.2, with and without the inclusion of the correction factor. There is an 

improvement in contrast in the image in which the underestimation has been mitigated. This 

is confirmed numerically in the graph shown in figure 3.29, which depicts the progression of 

the mean susceptibility value measured within the blood vessel as the TKD threshold is 

increased in the corrected and uncorrected susceptibility maps respectively. As expected, the 

negative correlation between susceptibility values and TKD regularisation threshold has been 

mitigated. 

 

 

 

 

 

 

 

Figure 3.29: Graph 

depicting the difference in 

susceptibility values 

between the corrected and 

uncorrected images 

measured in the blood 

vessel as the TKD 

threshold is increased. 
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3.2.5.2: Discussion and Conclusions 

While there were no explicitly reported numerical values accompanying the graph in 

the Schweser et. al. (2013), there appears to be good agreement between the underestimation 

calculated by both methods. It has been shown previously that the correction factor derived 

from the curve in the literature can compensate for the systemic underestimation inherent to 

the TKD algorithm 
[8]

. This has been confirmed numerically above (figure 3.29). 

There are a number of advantages to using the TKD algorithm when calculating a 

susceptibility map by comparison to other inversion algorithms. For example, it has been 

shown that iterative inversion methods can take up to several hours to perform the necessary 

calculations
[34]

. The speed of the TKD algorithm means that it is well suited to investigating 

novel applications of QSM, and it has been shown that the images derived by means of TKD 

inversion retain the advantages that QSM has over other similar techniques
[34]

.  

While the correction factor derived above shows good agreement with that in the 

literature, it should also be noted that the underestimation values in the literature were 

derived by using a multi-orientation (MO) acquisition susceptibility map as a gold standard 

(i.e. the COSMOS method). While this is a common practice when performing susceptibility 

mapping, it is known that there are limitations to the accuracy of the images calculated via 

the COSMOS method (see chapter 2). While no measurement is absolutely perfect, any 

thorough study that employs TKD must at the very least acknowledge the shortcomings of 

the algorithm, and would preferably make an attempt to mitigate the problem. As such, the 

appropriate correction factor as estimated above will be included in the inversion calculation 

for the experiments performed henceforth. The acquisition and processing factors with which 

QSM will be performed in the following chapters is contained in table 2 below. 

Quantitative Susceptibility Mapping is a rapidly developing, and relatively new field 

of research which can broadly be split into two main groups – those that seek to improve the 

accuracy of the processing pipeline, and those that endeavour to discover new applications. 

As with any field of research, both pathways will develop in tandem, informing and 

encouraging each other. The work carried out hence is of the latter variety. 
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Acquisition 
 

 

 

Parameter 

 

Value 

 

 
B0 (T) 9.4 

 

 
TR (ms) 1000 

 

 
TE (ms) 4 

 

 
FA 70 

 

 
FOV (mm) TBC (as discussed) 

 

 
Matrix TBC (as discussed) 

 

 
Vox (µm) 200 isotropic 

 

 
BW (kHz) 50 

 

 
#avg TBC (as discussed) 

Processing 

 

Algorithm 

 

Variable 

 

Value 

 

SHARP 

 

TSVD Threshold 

 

0.4 

 

SHARP 

 

Mask Erosion 

 

X 3 

 

TKD 

 

TKD threshold 

 

0.2 

 

TKD 

 

Algorithm Correction Factor 

 

185.81 ppb 

Table 2: Summary of empirically derived acquisition and processing parameters that will be used for the 

remainder of the experimental work presented in this thesis 
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Chapter 4 

 Chapter 4 presents the first implementation of QSM in the mouse liver with the 

optimised acquisition and data processing protocols. This chapter contains two experiments. 

The aims of the first experiment were to establish the case for using an external susceptibility 

reference, to examine a variety of regions of interest in the liver in terms of susceptibility, and 

to demonstrate the robustness of the acquisition and processing protocols. 

 The aims of the second experiment were to examine the use of QSM to assess 

changes in venous oxygen saturation in the portal and hepatic veins, as modulated by a 

hyperoxic gas challenge. Data was acquired from a cohort of health mice (n = 10) under both 

normoxic and hyperoxic conditions. Susceptibility was measured on QSM images in the 

aforementioned regions, and was used to calculate the venous oxygen saturation in both. 

Finally, the values calculated from the susceptibility of the hepatic vein were compared to 

invasively measured values. 
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4.1 QSM with optimised pipeline 

 

4.1.1 Introduction 

 Once it had been ascertained that calculating a susceptibility map of a pre-clinical 

liver was feasible, data from a small cohort of healthy mice were acquired and processed with 

the optimised protocols established in the previous chapter. The aim of this experiment was 

threefold – to establish the case for the use of an external reference against which 

susceptibility values could be measured; to explore the suitability of various regions of 

interest from a QSM standpoint; and to demonstrate the robustness of the imaging protocol 

by examining the precision of the measurements made within a cohort. 

 

4.1.1.1 Susceptibility Reference 

Susceptibility mapping is said to be a semi-quantitative technique, as the phase (φ) of 

a GRE signal from which the image is calculated, is equal to: 

                                 φ = φ0 + γ B TE                    [1] 

where φ0 is the initial phase value, γ is the gyromagnetic ratio of the protons, B is the local 

magnetic field, and TE is the echo time. The initial phase value, also referred to as the 

induction field offset, is an unknown property, and, as such, the values derived from the 

image are not absolute, so must be discussed as being relative to a reference point common to 

all images in a dataset.  

When performing QSM in the brain it is generally agreed that susceptibility values 

should be quoted relative to the cerebrospinal fluid (CSF) located in the ventricles
[1]

, though 

other references are also used (e.g. white matter). These are imperfect solutions however. In 

the first instance, it is impossible to quantify intra-subject variability, though it is highly 

likely that this will be a source of error
[1]

. Secondly, reference ROI’s are often manually 

segmented, so can be mistakenly contaminated by values from non-reference tissues (e.g. the 

choroid plexus
[2]

). Furthermore, it has been shown recently that the susceptibility of the 

reference tissue can be affected by the independent variables of the experimental protocol 

(e.g. administration of gases 
[3]

). 
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Fig. 4.1: Magnitude image, axial 

orientation, healthy mouse with water 

reference. 

 Performing QSM in the liver presents challenges for identifying a reference ROI. In 

comparison to the brain, the liver is an amorphous structure, and is relatively homogeneous. 

As such it is difficult to select an internal reference that is conspicuous enough not only to be 

identified repeatedly in the same animal, but is clear and unambiguous in an entire study 

cohort. This difficulty is compounded by the fact that the anatomical position of the liver 

results in significant movement over the course of the respiratory cycle.  

The solution suggested here is the inclusion of a sample of distilled water in the 

scanner with each subject (figure 4.1). This has the advantage of being easily identified, 

eliminates intra-subject and intra-experiment variability, and, although the ROI is still 

manually segmented, the large homogeneous nature of the sample reduces dramatically the 

possibility of contamination by human error. 

 

4.1.1.2 Regions of interest 

 The homogeneous nature of the liver also presents challenges when first attempting to 

identify regions for examination. Unlike the brain which contains well-defined focal points of 

accumulated iron (e.g. red nuclei, substantia nigra etc.), there is no clear, recognisable 

differentiation between regions of the liver. It has been shown previously however that QSM 

is sensitive to fluctuations in the deoxyhaemoglobin content of blood
[3-5]

. As such, it was 

decided that the most obvious areas to focus on were the major blood vessels of the liver, and 

a section of liver tissue. The regions of interest that were selected for examination were the 

Portal Vein (PV), the Hepatic Vein (HV), the Hepatic Artery (HA), and a region of liver 

tissue that did not contain any obvious blood vessels. 
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4.1.1.3 Precision and Robustness 

The calculation of a susceptibility map involves processing raw data with a series of 

complex algorithms, each of which must be optimised according to the requirements of the 

application and anatomical location. Once the acquisition protocol and processing pipeline 

had been optimised for use in the pre-clinical liver, it was decided that image quality and the 

precision of susceptibility measurements must be assessed before the technique could be 

reliably applied to disease models. As such, data were acquired and susceptibility maps were 

calculated using the protocols that have been discussed in chapter 3. 

 

        4.1.2 Materials and Methods 

4.1.2.1 Animal Preparation 

  All animal studies were performed in accordance with the UK Home Office Animals 

Science Procedures Act (1986). 5 healthy CD1 mice (female 8 – 12 weeks) were scanned 

with a 9.4T MRI scanner (Agilent Technologies, Santa Clara, CA, USA) using a 39-mm-

diameter bird cage coil for signal transmission and reception (RAPID Biomed, Rimpar, 

Germany). 

Each animal was anaesthetised using 4% isoflurane in 100% O2. Data were acquired 

while each subject was administered a mixture of pure O2 and isoflurane at a rate of 0.5 ltr / 

min. for the duration of the scan. Respiratory rate was constantly monitored using a pressure 

pad (SA instruments, Stony Brook, NY USA) and maintained at ~40 - 80 breaths per minute 

by varying isoflurane concentration between 1.5 and 3%. Rectal temperature was maintained 

at 37.5 ± 0.5
o
C using a warm water circulation system. 

 

4.1.2.2 Data Acquisition 

 The data acquired were single echo, fully first order flow compensated, respiratory 

gated, T2*-weighted 2D GRE acquisitions. Scan parameters were as follows: 

B0 = 9.4T, TR = 1000 ms, TE = 4 ms, FA = 70
o
, Voxel = 200 µm isotropic, bandwidth = 50 

kHz, average = 8.  
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FOV was adjusted to accommodate each animal, and the matrix size was adjusted to ensure 

the voxel dimensions were as above. 

 

4.1.2.3 QSM processing 

Quantitative susceptibility maps were calculated from the raw phase data. A binary 

mask was manually drawn around the entire liver in each magnitude image using ITK-

SNAP
[6]

. The corresponding phase data were unwrapped and background field suppression 

was performed using the SHARP algorithm
[7]

 (TSVD threshold = 0.04, # mask erode = 3).  

Susceptibility inversion was carried out using the Thresholded K-Space Division 

(TKD) algorithm
[8]

. The threshold of the TKD kernel was set to ± 0.2, such that absolute 

values outside of this range were set to the threshold value with the appropriate sign 

depending on the position of the voxel within the kernel. A correction factor of 1.26 (i.e. 1 / 

0.786) was included in the deconvolution operation of the TKD algorithm, as previously 

discussed. All post processing was performed in Matlab (version 2015b, The Math Works, 

Natick, MA). 

 

4.1.2.4 External Reference 

In order to establish the homogeneity and precision of the measurement taken from 

the water reference in the susceptibility map, an ROI was manually segmented from each 

magnitude image using ITK-SNAP
[6]

. The standard deviation of the voxels in each ROI was 

examined, as well as the mean value and SD for the entire set of measurements. For 

comparison, similar measurements were taken from a region of liver tissue located as far as 

possible from any large vessels. 
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4.1.2.5 Regions of interest 

 Regions of interest were manually segmented on each magnitude image using ITK-

SNAP
[6]

, and corresponded to large branches of the portal vein (PV), the hepatic vein (HV), 

and the hepatic artery (HA). A segment of liver tissue that was as remote as possible from 

any large veins was also included for examination. 

Each region of interest was identified as follows: 

Hepatic vein (figure 4.2 A & B): Branches of the hepatic veins are quite large, and as they 

carry blood with a high concentration of deoxyhaemoglobin usually appear hypointense on 

GRE magnitude images. As such, they are relatively easy to identify, and if visually traced 

through the image volume will connect to the inferior vena cava (IVC), which is itself easily 

identifiable as the largest vessel in the image. 

Portal Vein (figure 4.3 A & B): Branches of the portal vein are smaller than the hepatic vein, 

and are slightly more difficult to identify. As they are supplying blood to the liver, the vessel 

walls are usually much thicker than those of the hepatic vein, and they can be identified as 

hyperintense areas on the GRE magnitude image. When visually traced through the image 

volume they connect to the main branch of the portal vein, which is the second largest vessel 

in the image, and is located close to the IVC. 

Hepatic artery (figure 4.4 A, B & C):  The hepatic artery is extremely small with respect to 

the other vessels, and at the resolution of the images examined here is often the size of a 

single voxel in the x-y plane. It appears as a small, hypointense dot towards the inferior 

portion of the image, and can be identified as it branches off the coeliac trunk, located below 

the liver and perpendicular to the direction of the hepatic artery (i.e. it lies upon the y-axis of 

an axial image).  

It was found that the hepatic artery was more easily identifiable if the magnitude 

image is inverted (i.e. each voxel is multiplied by -1), such that the vessel appears as 

hyperintense. During segmentation, image contrast can be manipulated such that the HA can 

be easily identified and traced through the image volume. 
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Fig 4.2: Magnitude image of a healthy mouse liver in sagittal (A) and axial (B) orientation, displaying branches of 

the hepatic vein and the IVC. 

Fig 4.3: Magnitude image of a healthy mouse liver in sagittal (A) and axial (B) orientation, displaying branches of 

the portal vein and the main portal vein 
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4.1.2.6 Precision and Robustness 

All images were visually assessed in order to gauge their quality and to detect any 

artefacts. Magnetic susceptibility was measured in the aforementioned regions of interest, and 

is quoted as the susceptibility shift with respect to the water sample. Lastly, the standard 

deviation of each ROI is taken as an indication of the precision of each measurement
[9]

. The 

precision of each measurement will also be the criteria used to gauge the suitability of the 

regions of interest that have been selected for examination.  

 In addition to MRI data, histology was performed on a selection of liver samples to 

assess the iron content of the liver tissue. 

 

 

Fig 4.4 A, B & C: Magnitude image of a 

healthy mouse liver in axial orientation, 

displaying the coeliac trunk (A), the hepatic 

artery (B), and an inverted image (C) 

displaying the hepatic artery as hyperintense 

with respect to the rest of the liver 
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4.1.2.7 QSM in blood vessels 

Taking measurements from blood vessels can be problematic in QSM images. Gibbs 

ringing, caused by the under-sampling of high spatial frequencies in the image causes an 

oscillation of contrast at sharp signal intensity transitions in the image. This is known to 

happen at the interface between blood vessels and tissue in susceptibility maps. This is 

depicted in fig 4.5 A 
[10]

, which shows a 2 dimensional profile plot across a cylinder – 

representative of a blood vessel - in a numerical phantom. It can be seen that the artefact 

causes erroneous negative values at the boundary of the object, noted in the study to be up to 

±85% of the input susceptibility value. In reality, this manifests as a ring of negative values 

around blood vessels in a susceptibility map (fig 4.5B). 

 

 

 

 

The difficulty is compounded by partial volume effects. In the voxels that lie at the 

vessels boundary, the phase inside and outside the vessel will be integrated across the voxel. 

In the magnitude image this leads to blood vessels appearing thicker than they are - the so- 

called “blooming” artefact. This can be problematic when segmenting ROIs within the blood 

Fig 4.5 A & B: (A) Taken from Haacke et. al. (2010)
[1]

 Displays the results of a numerical susceptibility 

phantom that has been subject to inversion. The cylinder in the image represents a blood vessel, and the image 

is demonstrates the artefact that arises due to Gibbs ringing when areas of sharp contrast are inverted. (B) 

Susceptibility map taken from one of the data sets examined here, depicting a large branch of the hepatic vein 

featuring the negative susceptibility values that surround it. 
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vessel, and also means that the phase in these voxels will be an inaccurate estimate of the true 

value. 

One solution put forward in the literature is to only accept susceptibility values within 

blood vessels that are in the top 20
th

 percentile of those within the region of interest
[11]

, thus 

reducing the chances that the measured values lie at the border between the blood vessel and 

tissue, and so confounded by either error. As such, this will be the criteria of acceptance of a 

measured value within a blood vessel region. 

 

4.1.2.8 Histology 

Animals were culled immediately after scanning. Livers were excised and stored in 

10% neutral buffered formalin. Standard Perl’s iron staining was carried out on livers from 

three subjects in order evaluate the iron content of the liver tissue. 

 

4.1.3 Results 

4.1.3.1 External Reference 

 Figure 4.6 shows the mean and standard deviation of the individual measurements 

taken from the QSM images in regions of the external water reference and liver tissue 

respectively. As discussed, values measured on a susceptibility map necessitate a reference 

against which to be measured. As such, the mean values quoted below are themselves 

meaningless, but the variation measured within each ROI (i.e. SD) gives a measure of the 

homogeneity of the measured susceptibility within each region, and the SD of the mean 

values of each ROI within the dataset allows evaluation of the precision of the measurement. 

The susceptibility measurements made in experiments rely heavily on both of these 

parameters. Inhomogeneities brought about by the acquisition or processing procedures will 

introduce noise in subsequent measurements. As the expected changes are of the order of 

parts per billion, erroneous variation could obscure changes in susceptibility that are 

indicative of experimentally dependent variables. Equally, imprecise measurements could 

undermine differences between cohorts. 
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The values taken from the water reference in each image are -0.0319 ± 10.1 ppb, 

0.0254 ± 11.3 ppb, 0.0356 ± 10.3 ppb, 0.1950 ± 9.6 ppb,-0.1860 ± 10.6 ppb. Conversely, the 

values taken from the liver tissue are 4.8663 ± 34.17 ppb, -2.0963 ± 37.65 ppb, 2.0269 ± 41.8 

ppb, -4.2519 ± 30.98 ppb, 2.2597 ± 45.8 ppb. 

 Figure 4.7 shows the mean and standard deviation of the above values. The standard 

deviation is quoted as a measure of the precision of the measurement. The mean and standard 

deviation of the values are 0.0076 ± 0.1372 ppb, and 0.5609 ± 3.66 ppb for the water and 

liver ROIs respectively. 

 

 

 

 

 

 

 

 

Fig 4.6: Comparison of the standard deviation of susceptibility measurements measured in regions of the 

external water reference (left) and liver tissue (right). This is given as a measure of the homogeneity of the 

values in each region. 

Fig 4.7: Comparison of the 

standard deviation of the 

mean susceptibility values 

measured in the water 

reference and liver tissue. 

This is given as a measure 

of the precision of the 

measurement. There is 

greater variation in the 

values measured in the liver 

tissue, assumed to be due to 

compositional variation 

between subjects. 
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4.1.3.2 Precision and Robustness 

Figure 4.8 shows representative slices of the magnitude (A), raw phase data (masked 

for display purposes, such that only the liver is visible in the FOV) (B), frequency map (C), 

and susceptibility map (D). The images are from the dataset of a single subject.  

 

 

 

 

Fig 4.8 A- F: Representative images taken from the dataset of one subject. All images are taken from the 

same region. (A) T2*-weighted magnitude image. (B) Raw phase data (masked for display purposes). (C) 

Frequency map. (D) Susceptibility map. (E) Maximum Intensity Projection (MIP) of susceptibility map (12 

slices, 2.4 mm segment). (F) MIP of magnitude image taken from same region as (E). 
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All images were visually inspected at each point in the processing pipeline. Inspection 

of the magnitude and raw phase images showed that the data had been successfully 

reconstructed. Furthermore, there were no obvious artefacts in the phase data that indicated 

any phase distortions or inconsistencies which may have had a negative impact of the 

subsequent processing steps. Inspection of the field map (C) showed that the SHARP 

algorithm had successfully unwrapped the raw phase data, and that the background field had 

been removed to an adequate degree. Again, there were no obvious artefacts that would have 

had a negative impact on the inversion calculation. The susceptibility map was inspected 

upon completion of the inversion. The streaking artefact was minimal, and there were no 

obvious signs of artefacts or excessive noise which may have influenced the images or the 

quantitative values that were to be measured. This procedure was carried out for the data 

from all subjects.  

Once it had been ascertained that the calculation of the susceptibility map had been 

successful, a maximum intensity projection (MIP) of a region of the susceptibility map (12 

slices, 2.4 mm segment, coronal orientation) was composed is displayed in figure 4.8 E. To 

allow a comparison of the information offered by susceptibility maps and magnitude data, a 

MIP over the same region of the magnitude image is shown in figure 4.8 F.  

In order to demonstrate the precision of the quantitative measurements taken from the 

images, as well as the suitability of the regions of interest, the mean susceptibility and 

standard deviation of each set of measurements are displayed in figure 4.9. Values from each 

region are quoted as relative to the water reference. Mean values in each region were as 

follows: PV:  226.4 ± 65.44 ppb, HV: 293.33 ± 46.92 ppb, HA: 274.4 ± 188.9 ppb, tissue: 

0.55 ± 3.79 ppb.  
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Figure 4.10 shows a series of representative images of a histological sample at 

increasing magnification. Also included for comparison is a reference image from the 

literature that has been subject to the same stain
[12]

. The reference image is taken from a 

mouse model of haemochromatosis, a disorder that is characterised by excess iron deposition 

in the liver parenchyma. The difference in terms of iron deposition between the healthy and 

reference images is quite pronounced, to the extent that the healthy samples contain very little 

iron by comparison. 

 

 

Fig 4.9: Graph displaying mean susceptibility values and standard deviation measured in each of the regions 

of interest. The variation in measurements from each region are used as a criteria by which to gauge the 

suitability of the region for examination 
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Fig 4.10 A - D: Representative 

images of histological samples 

from healthy mouse livers 

subject to Perl’s iron stain. 

Images are from the same 

sample displayed at increasing 

magnification – x2.43 (A), 

x13.35 (B), and x35.15(C). 

Also included is a reference 

image from the literature to 

allow comparison to an iron 

overloaded image (D). It should 

be noted that there is a marked 

difference in the staining of the 

healthy and reference samples 
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4.1.4 Discussion 

The variability of the reference against which susceptibility is measured in QSM 

experiments is often not discussed in the literature, however it is widely acknowledged that 

there will be a degree of variability between subjects, and even individual scans. It has been 

shown recently that the variability of the reference value depends on the reference tissue that 

is chosen. In the (human) brain, CSF has been shown to have the smallest variability (mean 

susceptibility 10 ± 14 ppb), while in the same study, the mean susceptibility of the white 

matter ranged from 6 ± 20 ppb to 28 ± 23 ppb depending on the location in which it was 

measured
[1]

. As such, standardisation of the susceptibility reference is an important factor 

when trying to maximise the benefit of the quantitative nature of QSM. 

In that regard, the external reference used in this experiment was a successful 

inclusion to the experimental set-up. As discussed in the literature, the reference against 

which susceptibility is measured should be independent of experimental variables, easy to 

depict and delineate, and easily identifiable across a wide range of subjects
[1]

. The external 

reference meets all of the criteria. Furthermore, the sample displays excellent homogeneity 

and precision when compared to the liver tissue as measured here, but also by comparison to 

the CSF measurement in the study cited above. 

The inclusion of the reference into the set-up is extremely simple; however the 

drawback is that the FOV must be increased to accommodate its inclusion in the image. This 

should not present too great a problem however - the sample used here was quite large 

relative to the subject but could easily be made smaller depending on the constraints of the 

experiment. While the CSF may be a suitable reference when performing cerebral QSM in 

humans, the expansion of the field into abdominal imaging will require the use of an easily 

identifiable reference that gives rise to repeatable measurements. The external water 

reference included here provides one possible solution. 

The images displayed in figure 4.8 exemplify the steps taken to calculate a 

susceptibility map, and the rigour of the inspection of the images that takes place at every 

point during the process. Improper reconstruction of the images can result in aberrations in 

the raw phase data such as open-ended fringe lines which are detrimental to the unwrapping 

process, thus undermining the final susceptibility map. Equally, the frequency maps that are 

the result of the SHARP algorithm must be inspected for any residual phase wraps, 

background field contributions or edge effects that would introduce excessive noise in the 
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final susceptibility map. Finally, the susceptibility map is inspected for any artefacts that may 

have occurred during the inversion, including excessing streaking which may undermine the 

measurements taken from the images. The purpose of performing this experiment was to 

discern whether the protocols that were optimised in the previous chapter could be applied to 

a number of datasets such that high quality susceptibility maps could be calculated repeatedly 

and consistently. In that regard the exercise was a success. 

The blood vessels displayed in 4.8 (E) are the hepatic veins. Hepatic veins carry a 

relatively high proportion of deoxyhaemoglobin so are paramagnetic, and, hence, 

hyperintense with respect to the liver tissue. As such, they feature prominently on the MIP of 

the susceptibility map. Conversely, the portal veins are hyperintense relative to the 

surrounding liver tissue due to the thickness of the vessel walls (as discussed sec. 4A.2.5). As 

such, the portal veins feature more prominently on the MIP of the magnitude image. This 

shows that susceptibility mapping can provide information that is not available on a standard 

GRE magnitude image. 

The susceptibility of the blood in the hepatic vein is more paramagnetic than that in 

the portal vein (fig. 4.9), which is indicative of the fact that the blood being carried away 

from the liver (i.e. in the hepatic vein) contains a higher concentration of deoxyhaemoglobin 

than the blood entering the liver. It was expected that the difference in susceptibility between 

the two on this basis would have been more pronounced, but this may be because the blood in 

the portal vein already contains an appreciable concentration of dHb, having already passed 

through the gut and mesentery. Furthermore, the blood in the HV contains a mixture of 

contributions from the portal and hepatic veins, so trying to predict a relationship between the 

portal and hepatic vein without considering the hepatic artery may be difficult. 

 The susceptibility of the blood in the hepatic artery appears more paramagnetic than 

that in the portal vein. This was not expected, as arteries carry richly oxygenated blood. As 

such, it is expected that the susceptibility of the arterial blood would register as diamagnetic 

with respect to that in the portal vein. As mentioned above, the hepatic artery is an extremely 

small vessel, with a diameter that is often the size of a single voxel under this imaging 

protocol. As such, it may be the case that partial volume effects at the edge of the vessel – 

unavoidable at the resolution of the images – may have resulted in erroneous values with 

relatively large variation between subjects. 



107 

 

It would be an interesting experiment in any future work that lead on from this thesis 

to attempt to use the aorta as a reference against which to measure the susceptibility of the 

large hepatic veins. Given the linearity of the relationship between susceptibility and blood 

deoxyhaemoglobin content this may allow the calculation of a decrease in blood oxygen 

concentration without the use of an external standard. This would however necessitate the 

assumption that the blood in the aorta was 100% oxygenated, which may not be the case in 

each animal, and so could introduce systematic errors. Furthermore, measuring the 

susceptibility in the aorta would require both cardiac and respiratory gating, thus introducing 

additional complexity into both data acquisition and image reconstruction, as well as 

increasing the required scan time for each subject. 

 The magnetic susceptibility of the tissue is almost identical to that of the water 

reference. It was expected that the iron in the liver would have resulted in the liver tissue 

registering as paramagnetic with respect to water, but as is indicated by the histology it would 

appear that there is very little iron present in the livers of the subjects examined. Taking this 

into consideration it is conceivable that the liver tissue is of roughly the same susceptibility as 

water, as that will be the main magnetically active constituent of the organs composition. An 

interesting proof of concept experiment would be a comparison between the susceptibility 

measured in the liver tissue of healthy subjects and those from a disease model that resulted 

in liver iron overload (e.g. haemochromatosis). The lack of availability of such a model in our 

lab would have required implementing the disease model ourselves, requiring ethical and 

licensing approval, and as such was outside of the realistic time limits of the PhD. This could 

however be considered as an experiment in future, now that QSM acquisition and processing 

pipelines are established for use in a pre-clinical model. 

 The precision of the measurements across the cohort is illustrated by the standard 

deviation in each ROI. This is taken as an indication of the suitability of each region for 

examination with QSM under the imaging protocol employed here. The SD of the 

measurements in the portal and hepatic veins are lower than that in the hepatic artery. Again, 

this is due to the size of the various ROIs, and the ease with which they can be segmented. 

The PV and HV are much larger, and values can be quoted with a greater degree of 

confidence that the measurements are not contaminated by values from outside the intended 

ROI, or are affected by partial volume effects that are present at the vessel wall. This is not 

possible with the HA, and is reflected in the relatively high standard deviation of the 

measurement across the cohort. Based on the results presented here, it appears that the HA is 
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not a suitable region of interest for study under this imaging protocol. It may be possible if 

the resolution of the images was increased, but this would come at a cost to scan time and/or 

SNR. 

The robustness of the experimental protocol would have benefitted from scanning the 

same mouse a number of times in succession, and measuring the susceptibility in the same 

area to assess the repeatability of the measurement. This is difficult in the liver however, as it 

moves and it’s amorphous nature makes it difficult to examine precisely the same region 

again and again. This difficulty could have introduced systematic errors into the measurement 

and undermined the exercise. 

 

4.1.5 Conclusion 

The water reference that accompanied each animal in the scanner was a successful 

addition to the imaging protocol. It provided a robust reference point against which to 

measure the susceptibility values, it was easily identifiable each image, and as it is external 

was not influenced by the experimental protocol. As such it will be included in all of the data 

sets examined hence. 

It is shown above that it is possible to calculate high quality susceptibility maps of a 

healthy pre-clinical liver that allows repeatable measurements in a number of differentiable 

regions. Based on the evidence presented herein, it is shown that the portal and hepatic veins, 

as well as the liver tissue are suitable regions for examination under this imaging protocol, 

however the hepatic artery is not.  
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4.2: Hyperoxic Gas Challenge 

4.2.1 Introduction 

It was shown in the previous section that it is possible to use Quantitative 

Susceptibility Mapping to estimate the magnetic susceptibility of blood in large branches of 

the liver vasculature. It was also shown in figure 4.8 (E) that hepatic veins feature more 

prominently than portal veins on MIPs of QSM images. The reason for this is that as the 

blood passes through the liver, oxygen is being metabolised, meaning the deoxyhaemoglobin 

content of the blood is higher as it leaves the liver through the hepatic vein. The susceptibility 

of the blood is linearly related to its deoxyhaemoglobin content
[1]

, which, in turn, is indicative 

of the oxygen content of the blood. 

The assessment of venous blood susceptibility using QSM has been the focus of 

several studies in recent years, as the measurement can be used to calculate Venous Oxygen 

Saturation (SvO2)
[2-4]

.  Studies have been performed in both pre-clinical
[4]

 and clinical 

scenarios
[2, 3]

. It has been shown that QSM is sensitive to changes in deoxyhaemoglobin 

brought about by a hyperoxic gas challenge
[3, 4]

, can be used to measure the Cerebral 

Metabolic Rate of Oxygen Consumption (CMRO2)
[1]

, and can even quantify regional venous 

oxygenation in the brain
[2]

. To date however, all of the work has been carried out in the 

cerebral vasculature. It is the hypothesis explored here that this can be extended to the liver. 

Hepatic Venous Oxygen Saturation (ShvO2) is an indicator of the hepatic oxygen 

supply-demand ratio
[5]

, and has been the focus of a number of studies. Several in particular 

have investigated ShvO2 in patients that have undergone surgical procedures, as this may 

have important implications for their postoperative care
[6]

. For instance, it was found that 

after Fontan operations – a palliative procedure performed on children – monitoring ShvO2 in 

the immediate post-operative period could predict the occurrence and severity of subsequent 

acute liver dysfunction
[7]

. Furthermore, it was shown in a preclinical study that ShvO2 in rats 

that have undergone partial hepatectomy could be used to gauge the regeneration status of the 

remnant portion
[6, 8]

. 

Previously, measurement of ShvO2 has been performed invasively by means of 

catheterisation. This increases the risk of infection and thrombosis, making it unsuitable for 

some patients. Quantitative Susceptibility Mapping may offer the ability to assess ShvO2 
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non-invasively, which could have a positive impact on the post-operative care and assessment 

of those who have undergone treatment. 

To test the hypothesis, a hyperoxic gas challenge was administered to a cohort of 

healthy mice, such that the deoxyhaemoglobin content of the blood was manipulated in a 

controlled fashion. Susceptibility was measured in a large branch of the hepatic vein in each 

subject under both normoxic and hyperoxic conditions. Susceptibility measurements were 

then used to calculate ShvO2 under each condition. Magnetic susceptibility and SvO2 were 

also measured and calculated respectively in a branch of the portal vein, as it is expected that 

the differences brought about by the gas challenge will also manifest here. The magnitude of 

the change brought about by the gas challenge should be the same in both blood vessels 

provided the rate of oxygen metabolism remains the same under each condition. This is 

assumed to be the case. Finally, venous oxygenation was measured invasively in the inferior 

vena cava in order to provide validation for the calculations. 

 

4.2.2 Theory 

4.2.2.1 Magnetic susceptibility of blood 

The magnetic properties of the haemoglobin molecule are dependent on its 

oxygenation state
[9]

. Haemoglobin consists of 4 globin subunits, each of which contains a 

haem molecule consisting of iron (Fe(II)) surrounded by a porphyrin ring
[10]

. Both molecular 

O2 and Fe(II) contain unpaired electrons, and as such are paramagnetic. When Oxygen binds 

to haemoglobin however, the product is a singlet state with an equal number of spin up and 

spin down electrons, and so is diamagnetic. Upon dissociation both revert to their previous 

state, and are once again paramagnetic
[11]

.   

Venous blood oxygen saturation is, effectively, the percentage of haemoglobin 

binding sites that are occupied, and so is directly measurable by susceptometry. While there 

is also a small amount of O2 dissolved in the plasma (~2% under resting conditions), and it is 

possible for carbon-monoxide to bind to haemoglobin, these are negligible under normal 

circumstances, and so have little impact on the overall susceptibility of the blood. 

Carbominohaemoglobin – the compound that forms when CO2 binds to haemoglobin, 

accounting for ~10% of CO2 transported by the blood – is also paramagnetic, so will not 

result in an underestimation of ShvO2. 
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4.2.2.2 Calculating ShvO2 

The susceptibility difference between blood and water can be related to SvO2 by the 

following: 

                             Δχ blood – water
 
 = Δχdo . Hct . (1 – SvO2)                    [1] 

where Δχdo
 
= 2.26 ppm (SI) is the difference in susceptibility between fully oxygenated and 

deoxygenated blood
[12]

, and Hct is the fraction of blood composed of haematocrit, assumed in 

this instance to be 0.4
[4]

. 

 In the study cited above the equation relates SvO2 to the susceptibility shift between 

the vein and surrounding tissue. As shown in the previous section the difference in 

susceptibility between liver tissue and the water reference is negligible, but as the water 

reference is less likely to be confounded by inter-subject variability, all calculations will be 

performed using the water sample as the reference point. 

 

4.2.3 Methods 

4.2.3.1 Animal Preparation 

 All animal studies were performed in accordance with the UK Home Office Animals 

Science Procedures Act (1986). 10 healthy CD1 mice (female 8 – 12 weeks) were scanned 

with a 9.4T MRI scanner (Agilent Technologies, Santa Clara, CA, USA) using a 39-mm-

diameter bird cage coil for signal transmission and reception (RAPID Biomed, Rimpar, 

Germany). 

Gasses were administered through a nose cone at a rate of 0.5 ltr/min. Images were 

acquired under normoxic conditions as the subject was administered medical air (21% 

O2/balance Nitrogen), and again under hyperoxic conditions as the subject was administered 

100% O2. 10 minutes were allowed between gasses to allow the animal to acclimatise. All 

other animal preparation was as discussed in chapter 4.1. 

Data acquisition, QSM processing and ROI segmentation were all performed as 

discussed previously. 
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4.2.3.2 Blood Gas Measurement 

In order to quantify the degree of hyperoxia induced by the gas challenge, blood gases 

were measured invasively in 3 mice with a blood gas analyser. Mice were anaesthetised and 

blood was extracted from a portion of the inferior vena cava (IVC) within the liver, under 

ultrasound guidance. The procedure was carried out under normoxic and hyperoxic 

conditions for each mouse. Data were acquired on a RAPIDLab 348EX blood gas system 

(Siemens), and 10 minutes were allowed following a change in administered gas to allow the 

animal to acclimatise before sampling. Samples were transferred from the syringe to a 2 µl 

heparinised glass tube, and then to the blood gas analyser. 

 

4.2.3.3 Statistical Analysis 

Parameter estimates were compared using a Wilcoxon matched-pairs signed rank test, 

in which a difference was considered statistically significant for p < 0.05.  

 

4.2.4 Results 

Figure 4.11 depicts an array representative images from a single subject. Shown are a 

single slice of the magnitude, the corresponding raw phase (masked for display), the 

frequency map, and the susceptibility map. Each image depicts the same slice from each 

image. Both normoxic (left column) and hyperoxic (right column) states are shown. 

In the magnitude images (A & B) the hepatic veins feature less prominently on the 

hyperoxic images. The reason for this is that the administration of pure O2 reduces the 

deoxyhaemoglobin content of the blood. This in turn reduces T2* dephasing and associated 

signal loss. Additionally hyperoxia is known to have a vasoconstrictive effect, so it may also 

be the case that the blood vessels themselves are less dilated. There were no obvious artefacts 

in any of the magnitude images that would have indicated adverse conditions for performing 

susceptibility mapping. 

The phase images (C & D) acquired under either state are very similar to each other – 

both contain the same number of phase wraps, which appear in broadly the same place in the 

image. Again there was no indication of phase inconsistencies (e.g. broken phase wraps) that 
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Fig 4.11 A - H: Magnitude images (A, B), raw phase (C, D), frequency maps (E, F) and susceptibility maps 

(G, H) from data acquired under normoxic and hyperoxic conditions. Both portal and hepatic veins feature 

on the QSM images (blue and green arrows respectively), while only the hepatic vein appears on the 

normoxic magnitude image and only the portal vein appears on the hyperoxic magnitude image. 

 

may have indicated improper data reconstruction or uncompensated blood flow artefacts 

which may impact negatively on the susceptibility maps. 
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The frequency maps calculated from the raw phase data are depicted in E & F. Blood 

vessels appear more prominently in the normoxic image (E), than in the hyperoxic image. 

This is due to the fact that the greater deoxyhaemoglobin content of the blood under 

normoxic condition causes a greater perturbation of the B0 field, resulting in a more 

prominent manifestation on the phase image. The bright and dark areas which are particularly 

obvious in (E) are the characteristic dipole patterns of susceptibility variations on phase 

images, and exemplify the orientation dependence and non-local contrast of phase imaging. 

The normoxic and hyperoxic susceptibility maps are shown in images (G) and (H) 

respectively. As expected, the blood vessels feature more prominently on the normoxic 

image. Interestingly, branches of both the portal vein (blue arrows) and hepatic vein (green 

arrows) are visible on the QSM images, whereas on the magnitude images, the hepatic vein is 

only prominent on the normoxic image, and the portal vein is only prominent on the 

hyperoxic image. There were no obvious artefacts on the susceptibility maps. 

The change in susceptibility brought about by the gas challenge is highlighted in 

figure 4.12, which features maximum intensity projections of a segment of the susceptibility 

maps (11 slices, 2.2 mm segment.) As expected, the blood vessels appear more prominently 

on the normoxic image. 

 

 

 

Fig 4.12: Maximum Intensity Projections over 2.2 mm segment of a representative mouse liver under 

normoxic and hyperoxic conditions. Large branches of the hepatic and portal veins are clearly visible in each 

image. Note that the vessels are brighter with respect to the liver tissue in the normoxic image compared 

with the hyperoxic image, indicating a more paramagnetic susceptibility. This is due to the increased 

concentration of deoxyhaemoglobin in the blood under normoxia. 
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Figure 4.13 illustrates the changes in magnetic susceptibility in the hepatic (A) and 

portal (B) veins under both normoxic and hyperoxic conditions respectively. A significant 

diamagnetic shift in mean susceptibility (p < 0.01) was detected in the hepatic vein under 

hyperoxic conditions. Susceptibility decreased from 427.9 ± 161.2 ppb to 234.5 ± 80.5 ppb 

under normoxic and hyperoxic conditions respectively. Similarly, the mean susceptibility in 

the portal vein decreased significantly from 383.6 ± 134.3 ppb under normoxia to 248.7 ± 

161.8 ppb under hyperoxia (p < 0.05).  

A significant increase in venous oxygen saturation was detected in both vessels under 

hyperoxic conditions. This is depicted in figure 4.14. In the hepatic vein (A), mean ShvO2 

increased by 21.39% from 52.67 ± 17.83% to 74.06 ± 8.9% (p < 0.01), and in the portal vein 

(B) SpvO2 increased by 14.93% from 57.57 ± 14.85% to 72.5 ± 17.9%. 

Figure 4.15 shows a comparison of ShvO2 as calculated from the QSM data, and the 

blood gas measured invasively via the IVC. The invasive measurement showed a mean 

increase of 26.14% in blood oxygenation, from 52.83 ± 9.78% to 78.97 ± 11.45%. The 

difference was not statistically significant. 
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Fig 4.13 A & B: Graphs showing the change in susceptibility (ppb) in the portal (A) and hepatic (B) veins. 

There is a statistically significant shift in susceptibility in response to hyperoxia in both regions (* p<0.05 

– PV, **p<0.01 - HV). 
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Fig 4.14 A & B: Graphs showing the change in venous oxygen saturation in the portal (A) and hepatic (B) 

veins. There is a statistically significant increase in response to hyperoxia in both regions. (* p<0.05 – 

PV, **p<0.01 - HV). 
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Fig 4.15: Graphs showing the change in venous oxygen saturation in the hepatic vein - calculated from the 

QSM data, and the IVC – measured invasively from using the blood gas analyser. The difference measured 

invasively is not statistically significant but there is excellent agreement between the two datasets. 
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4.2.5 Discussion 

 The ability to non-invasively perform venous oximetry in the liver could have 

important clinical implications. For instance, thanks to improvements in diagnostic radiology, 

patient selection and operative technique, partial hepatectomy has increasingly become a 

more viable treatment option in cases of hepatic lesions, both malignant and benign. It is 

known that the regenerating liver places an increased metabolic burden on patients that have 

undergone the procedure, and it has been shown previously that ShvO2 reflects the metabolic 

status of the remnant liver
[6, 8]

. The advent of QSM means that the ability to relate magnetic 

susceptibility to ShvO2 offers a way to asses this in a non-invasive and repeatable fashion. 

In the present study, we employed QSM to assess changes in hepatic venous oxygen 

saturation modulated by a hyperoxic gas challenge. This is the first report that examines the 

ability of QSM to assess oxygen changes in the major hepatic vessels, and it is shown that it 

is possible to detect statistically significant differences in blood oxygenation in response to 

hyperoxia. 

It is known that exposure to hyperoxic conditions will reduce the deoxyhaemoglobin 

concentration of venous blood. This has been confirmed presently by invasive measurement. 

QSM uses deoxyhaemoglobin as a native contrast agent, so it logically follows that under 

hyperoxic conditions there would be a reduction in contrast between the hepatic vein and the 

surrounding tissue when compared to an image acquired under normoxia. This is shown in 

figures 4.11 (G & H) and 4.12. 

The diamagnetic shift in response to the gas challenge shown in figure 4.13 

substantiates the effect depicted in figure 4.11 (G & H). The difference in susceptibility 

brought about by the gas challenge in both the portal and hepatic vein is statistically 

significant, but there is also a high degree of variability between subjects. This is most likely 

due to natural variation in metabolic rates between subjects. 

The SvO2 changes in figure 4.14 are within realistic physiological boundaries. 

Previous studies that have calculated SvO2 from QSM measurements in the cerebral 

vasculature have reported a ~10% increase from ~88% to ~99% in response to hyperoxia
[4]

. 

The absolute values measured here are much lower. It should be noted however that the blood 

from which these measurements have been taken has already passed through the gut and 

mesentery before reaching the liver, so it is expected that blood oxygenation would be lower 
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than that measured in the brain. Furthermore, the effect of the gas challenge measured here is 

greater than that measured in the brain, but again, this may be a function of the fact that the 

venous blood the liver receives is partially deoxygenated, and so the effects of hyperoxia on 

hepatic blood may be greater than in the brain. 

There is no statistically significant difference between the portal and hepatic veins in 

terms of SvO2 under hyperoxic or normoxic conditions. As the hepatic vein is downstream 

from the portal vein it was expected that the deoxyhaemoglobin concentration would be 

higher than in the PV, and that this relationship would remain constant over the course of the 

experiment. There are reports in the literature of the effective arterialisation of portal venous 

blood in rats in response to hyperoxia – i.e. SpvO2 increased from ~53% under normoxia to 

~93% under hyperoxia in healthy control animals
[13]

. While the nomoxic SpvO2 value is 

comparable to the measurement made in our experiment, the increase under induced 

hyperoxia is far greater than we have observed, but may go some way to explaining the 

relationship between blood oxygenation between the two vessels under hyperoxia. It is 

difficult to draw any conclusions from this however without data from the hepatic artery. 

The ability to non-invasively perform venous oximetry in the liver could have important 

clinical implications. Hepatic venous oxygen saturation is an eminently useful metric, and has 

been used to assess hepatic oxygen kinetics in studies with respective focusses as diverse as 

haemodialysis 
[22]

, acute and chronic heart failure 
[23]

, and hepatic ischemic/reperfusion 

injuries 
[24, 25]

. Furthermore, thanks to improvements in diagnostic radiology, patient selection 

and operative technique, partial hepatectomy has increasingly become a more viable 

treatment option in cases of hepatic lesions, both malignant and benign. It is known that the 

regenerating liver places an increased metabolic burden on patients that have undergone the 

procedure, and it has been shown previously that ShvO2 reflects the metabolic status of the 

remnant liver 
[15, 17]

. The advent of QSM means that the ability to relate magnetic 

susceptibility to ShvO2 offers a way to assess this in a non-invasive and repeatable fashion. 
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4.2.6 CONCLUSIONS 

The present study clearly demonstrates that it is possible to measure changes in blood 

oxygen saturation in the portal and hepatic veins on the basis of susceptibility. Furthermore, it 

has been shown that the susceptibility measurement can be used to calculate venous blood 

oxygen saturation in the major hepatic vessels, and that the calculated values reflect 

physiologically realistic ones. Venous oxygen saturation calculated from measurements of 

susceptibility in the hepatic vein have been validated by invasive blood gas measurements, 

and there was good agreement between the measurements. 
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Chapter 5 

 Chapter 5 details two experiments. The first demonstrates the first application of 

QSM to a preclinical model of colorectal liver metastases (CRLM). Data was acquired in a 

cohort of mice that had been inoculated with CRLM (n = 10). Magnetic susceptibility was 

measured in both the healthy liver tissue and in the liver tumours. Secondly, a comparison 

was made between the susceptibility of the liver tumours under normoxic and hyperoxic 

conditions. Thirdly, the venous oxygen saturation was calculated from susceptibility 

measurements taken from the hepatic vein under normoxic conditions, and was compared to 

that of a cohort of healthy mice. 

 The aim of second experiment was to determine the ability of QSM to assess the 

efficacy of a Vascular Disrupting Agent (VDA), a novel chemotherapeutic agent. A cohort of 

mice (n = 10) that had been inoculated with SW1222 colorectal cancer cells were scanned 

immediately before, and 72 hours after the drug was administered to half of the animals. 

Hyperoxia was induced in all mice during both scanning sessions, and susceptibility maps 

were calculated under both hyper- and normoxic conditions. Susceptibility was measured in 

the healthy liver tissue and tumours under normoxic conditions, and in the tumours under 

both hyper- and normoxic conditions, at both time points. A comparison was also made 

between the venous oxygen saturation of the hepatic vein, as calculated from the measured 

susceptibility of both groups at both time points. 
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5.1 QSM and Colorectal Liver Metastases 

5.1.1 Introduction 

 Though still considered a novel technique, Quantitative Susceptibility Mapping has 

shown considerable potential in terms of clinical use. As discussed in chapter 2, the 

application of QSM has been investigated in the context of a broad assortment of clinical 

conditions, ranging from neurodegenerative disorders 
[1-4]

, to volumetric measurement of 

haematomas 
[5]

, to a variety of experiments examining various facets of cerebral venous 

oxygenation 
[6-10]

. To date however, the application of QSM to cancer research has been 

limited to a handful of studies, and within those has been confined to the identification of iron 

and calcium deposits in tumour volumes 
[11, 12]

.  

In the previous chapter, the differences between oxygenated and partially 

deoxygenated blood were discussed in terms of magnetic susceptibility, and it was shown that 

QSM could differentiate between normoxic and hyperoxic blood in both the portal and 

hepatic veins. It is well known that cancer cells require a rich supply of oxygenated blood to 

service their enhanced metabolic requirements 
[13]

, and in this chapter the hypothesis will be 

extended to investigate the application of QSM to a preclinical model of colorectal liver 

metastases.  

Colorectal cancer is the 4
th

 most common cancer in the UK, accounting for 12% of all 

new cancer diagnoses 
[14]

. It is most common in older age groups, and the median 5-year 

survival rate for those diagnosed between the ages of 60 – 69 is ~67%, a figure which 

decreases with age. It is estimated that of those diagnosed, between 50 - 70% will develop 

secondary tumours in the liver, known as colorectal liver metastases (CRLM). CRLM have a 

negative effect on prognosis, reducing the 5 year median survival rate to ~5% 
[15]

. As with all 

cancers, early detection and intervention are critical for improving outcome. 

Hepatic resection, often in combination with either pre- or post-surgical 

chemotherapy is the only curative treatment available for CRLM 
[16]

.  As few as 20% of 

patients diagnosed with CRLM will qualify for surgical intervention, but of those that do, 5-

year survival has been reported to range from 37 – 58%. The remaining patients must be 

assessed for palliative care options.  Imaging plays a vital role in the diagnosis and 

assessment of patients with CRLM, and there are a number of modalities available at each 

stage of the treatment cycle. 
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Ultrasound (US), for example, has been shown to improve tumour detection intra-

operatively, identifying additional tumours in 16% of patients in one study 
[17]

. The limited 

size of the visual field however generally precludes US imaging from pre-operative 

assessment 
[18]

. Similarly, FDG-PET can identify malignant lesions with extremely high 

accuracy 
[19]

, but its diagnostic value can be undermined by the increased uptake of FDG by 

tissues suffering from inflammation 
[20]

. High resolution, contrast enhanced, computed 

tomography (CT) is the most widely used modality for pre- and post-operative assessment 

and monitoring of CRLM, however it has been shown that MRI has a higher sensitivity to 

sub-centimetre lesions 
[21]

, and it is generally recommended that CT findings should be 

integrated with those from other imaging modalities before any significant changes to 

therapeutic strategy are introduced
[20]

. As such, it is clear from the literature that no one 

imaging modality can act as a panacea. 

Beyond identification and morphological assessment of CRLM, there are some 

techniques that give information concerning the haemodynamics and vasculature of tumours. 

Gadolinium and iodinated contrast agents can be intravenously administered during MRI and 

CT protocols respectively to assess tumour blood flow, and there have been attempts in the 

literature to characterise the vascular profile of liver tumours using BOLD MRI in 

conjunction with gas challenges 
[13]

. 

The ability to assess changes in tumour oxygenation has important implications for 

the selection of oncological treatment pathways, and a non-invasive technique that produces 

reliable and reproducible results could find broad use in a clinical setting. Hyperoxia is a 

well-known tumour radiosensitiser that works by increasing the amount of dissolved oxygen 

in plasma in order to allow the diffusion of oxygen into chronically hypoxic regions of 

tumours 
[22]

. It was shown in the previous chapter that QSM could provide functional 

information regarding changes in blood oxygenation in the branches of the major hepatic 

blood vessels. In this chapter, the hypothesis is extended to ascertain information regarding 

the oxygenation status of colorectal liver metastases. 

This study aimed to test three hypotheses in a preclinical (mouse) model of colorectal 

liver metastases. The first was that it is possible to differentiate between healthy liver tissue 

and tumours on the basis of susceptibility, as the tumours receive greater amounts of 

oxyhaemoglobin from the hepatic artery than normal liver tissue 
[13, 23, 24]

. The second was 

that QSM can be used to detect changes in the susceptibility of the tumours that are indicative 
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of changes in oxygenation status. In order to test this, the susceptibility of the tumours was 

measured under the administration of pure O2. This was then compared to baseline 

susceptibility measured under normoxic conditions. Finally the third hypothesis was that the 

increased metabolic demand placed on the liver by the tumours will manifest in the hepatic 

venous oxygen saturation (ShvO2). To examine this, ShvO2 was calculated from the 

susceptibility measured in the hepatic vein of the mice with tumours, and was compared to 

that of the healthy mice examined in the previous experiment. Data acquired from a small 

cohort of mice of the same species as the disease cohort that had not been inoculated with 

cancer cells was also included for completeness. 

 

 

5.1.2 Materials & Method 

5.1.2.1 Animal Preparation 

All animal studies were performed in accordance with the UK Home Office Animals 

Science Procedures Act (1986). Severe combined immunodeficiency (SCID) mice (n = 10) 

were inoculated with 1x10
6 

SW1222 CRLM cells via intrasplenic injection
[25]

. A splenectomy 

was then performed immediately post-injection. Mice were scanned 19 days post-surgery. 

The healthy cohort were CD1 wild type mice (WT, n = 10), and the third cohort were 

uninoculated SCID mice (n = 2). The small size of the third cohort precluded their inclusion 

in any statistical analysis. 

Gasses were administered through a nose cone at a rate of 0.5 ltr/min. Normoxic data 

was acquired as the subjects were administered medical air (21% O2/balance Nitrogen), 

while hyperoxic data was acquired under the administration of 100% O2. 10 minutes were 

allowed between gasses to allow the animal to acclimatise. All other animal preparation was 

as discussed in chapter 4. 

 

5.1.2.2 Data Acquisition 

 The data acquired were single echo, fully first order flow compensated, respiratory 

gated, T2*-weighted 2D GRE acquisitions. Scan parameters were as follows: 
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B0 = 9.4T, TR = 1000 ms, TE = 4 ms, FA = 70
o
, Voxel = 200 µm isotropic, bandwidth = 50 

kHz, average = 4.  

FOV was adjusted to accommodate each animal, and the matrix size was adjusted to ensure 

the voxel dimensions were as above. 

QSM processing (sec. 4.1.2.3), venous oxygen saturation (SvO2) calculations (sec. 

4.2.2.2) and statistical comparisons (sec. 4.2.3.3) were as performed previously. 

 

5.1.2.3 Regions of Interest 

Liver tumours were identified as hyperintense regions on the T2*-weighted magnitude 

data (figure 5.1 - highlighted). Multiple tumours were identified in each animal and were 

manually segmented en masse in each image, such that the values quoted for the tumours 

represent the combined mean value measured in all identified tumours for each animal. 

Regions of healthy liver tissue were also segmented manually from areas that were as remote 

as possible from tumours or large branches of the hepatic vessels. All other ROI’s were 

identified and segmented as discussed previously (sec. 4A.2.5).  

 

 

 

 

 

 

 

 

 

 

Fig 5.1: Representative 

coronal (top) and sagittal 

(bottom) orientation T2*-

weighted magnitude images 

displaying the liver tumours 

(red arrows) that appear as 

hyperintensities relative to the 

healthy liver tissues. 
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5.1.3 Results 

The images in figure 5.2 are a representative slice from a magnitude image (A), the 

corresponding raw phase image (masked for display purposes) (B), the corresponding 

frequency map (C), and the corresponding susceptibility map (D), from a single mouse with 

tumours. There was nothing in the magnitude image that would have indicated any 

respiration, flow, or reconstruction artefact that could have negatively impacted on the 

subsequent processing procedure. The raw phase data showed no evidence of artefacts or 

phase discrepancies that could have undermined the unwrapping and background field 

removal process that they were to be subjected to. The SHARP algorithm successfully 

unwrapped the phase image, and removed the background field contributions to the measured 

magnetic field (C). In the particular frequency map displayed there are still some visible edge 

effects that were not removed by the mask erosion process (red arrows). It was expected that 

these would not have any major impact on the susceptibility map. Upon carrying out the 

inversion this proved to be the case, and there were no major streaking artefacts visible in the 

susceptibility map (D). It was found that the contrast from the blood vessels was entirely 

localised, as expected. The images displayed are representative of the entire cohort, and the 

inspections that they have been subjected to were carried out for each image of every subject. 

Fig 5.2 A - D: T2*-weighted magnitude image (A), corresponding raw phase image (B), frequency 

map (C) and calculated susceptibility map (D) of a single mouse, representative of the entire dataset 

examined here. 
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Some of the tumours displayed in figure 5.2 have been highlighted in the magnitude 

and corresponding susceptibility map (green arrows A & D). As mentioned, these appear as 

hyper-intense on the T2*-weighted magnitude images, however on susceptibility maps appear 

as slightly hypo-intense regions relative to the healthy liver tissue, and are difficult to detect. 

The reason for this is that relative to other regions (e.g. venous blood vessels), the B0 field 

perturbation caused by the tumours is quite small, and so they generate little contrast on QSM 

images. 

The graph in figure 5.3 depicts the difference in mean susceptibility between the 

healthy liver tissue and the tumours of all of the subjects under normoxic conditions. The 

susceptibility of the tissue and tumours is 1.38 ± 2.76 ppb and -33.54 ± 18.5 ppb respectively. 

The tumours are significantly more diamagnetic that the surrounding healthy liver tissue (p < 

0.0001), thus confirming the first experimental hypothesis. It is expected that this is due to 

the increased amount of oxyhaemoglobin received by the tumours due to their increased 

arterial blood supply. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.3: Graph displaying the difference in mean susceptibility (ppb) between healthy liver tissue and liver 

tumours. Tumours are significantly more diamagnetic that the liver tissue. This is ascribed to the increased 

arterial component of their blood supply. 
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Figure 5.4 illustrates the behaviour of the tumours under hyperoxic and normoxic 

conditions as measured on a susceptibility map, and shows that the tumours are significantly 

more paramagnetic under hyperoxic conditions (p < 0.01). The susceptibility under hyper- 

and normoxia is -15.63 ± 10.72 ppb and -33.54 ± 18.5 ppb respectively. The result is counter-

intuitive, as it was shown in the previous experiment (chap. 4.2) that the administration of 

pure O2 results in a diamagnetic shift in the susceptibility of the blood in the blood vessels, 

and it was expected that the same effect would be observed in the tumours. This suggests that 

the susceptibility of the tumours is not entirely governed by the deoxyhaemoglobin content of 

the blood. 

 

 

 

 

 

 

 

 

 

 

The images in figure 5.5A & B show the effect of the administration of pure O2 as 

detected by the T2*-weighted magnitude images (A) and the corresponding susceptibility 

maps (B). Normoxic images are included for comparison, and hyperoxic and normoxic 

images are indicated in each by H & N respectively. Also included are magnified images of a 

single tumour (magnified areas indicated by blue boxes). There is a clear increase in 

magnitude signal intensity in response to the administration of oxygen relative to the 

normoxic images. The effect was observed in both the healthy liver tissue and the tumour. 

This was as expected. 

Fig 5.4: Graph displaying the mean 

susceptibility of the liver tumours under 

both hyperoxic and normoxic conditions. 

The administration of pure O2 results in a 

significant paramagnetic shift from 

normoxic susceptibility. 
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Conversely, there was little change in signal intensity in response to hyperoxia 

observed in the susceptibility maps (5.5B). Again, the tumours are difficult to detect and are 

indicated by blue arrows in the close up image. The images of the tumours are slightly more 

hypo-intense when acquired under normoxic conditions, confirming that they are more 

paramagnetic under O2 administration. There is little difference in the signal intensity of the 

liver tissue, however the blood vessels are more hyperintense in the normoxic image due to 

the increased levels of deoxyhaemoglobin. 

 

 

 

 

 

 

Fig 5.5A: Coronal orientation T2*-weighted magnitude images of the liver of a representative mouse with 

tumours, under hyperoxic (H) and normoxic (N) conditions. The left had column contains magnified images of 

a single tumour (highlighted by the blue box in the left hand images). The administration of pure O2 results in 

enhancement of the T2* weighted signal in both the healthy liver tissue and liver tumours. 
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The graphs in figure 5.6 shows the venous blood saturation measured under normoxic 

conditions in the portal (A) and hepatic (B) veins of the mice with tumours and the healthy 

cohort from the previous chapter. Also included is the SvO2 of the uninoculated mice. There 

was no significant difference between the cohorts measured in the portal vein, however the 

oxygen saturation of the blood in the hepatic vein was significantly lower in the mice with 

tumours when compared to the wild types (p < 0.05). As the effect was not observed in the 

portal vein, this would indicate that the effect is not systemic, and is instead caused as the 

blood passes through the liver. It is expected that this can be attributed to the increased 

metabolic requirements of the liver tumours. Although statistical analysis was not possible 

for the uninocculated mice, the mean oxygen saturation in both regions was higher than that 

in the other groups. While it is difficult to draw any meaningful conclusion from a cohort of 

Fig 5.5B: Coronal orientation susceptibility maps calculated from the corresponding phase data of the 

magnitude images in 5A. The administration of oxygen has little effect on the contrast visible in the liver 

tissue. In addition, the tumours are difficult to detect relative to the magnitude images, however appear as 

slightly hypointense regions, indicating that they are diamagnetic with respect to the surrounding liver tissue. 
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two mice, this lends credence to the argument that the diminished oxygen observed in the 

mice with tumours is related to the increased oxygen needs of the tumours. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.6 A & B: Graphs displaying the difference in venous blood oxygen saturation between the mice with 

tumours, healthy wild type, and uninoculated (uninc) SCID mice as calculated from susceptibility measured 

in the blood in the portal vein (A) and the hepatic vein (B). The blood in the hepatic vein of the mice with 

tumours contained significantly less oxygen than the healthy cohort. This is attributed to the tumour burden 

of the liver. 
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5.1.4 Discussion 

Hypoxia is known to be one of the main limiting factors in the efficacy of cancer 

treatment for a number of reasons. For instance, oxygen molecules stabilise the DNA damage 

caused by the reactive oxygen species that result from the radiolysis of water molecules 
[26]

. 

In the absence of oxygen the damage is readily reversible, meaning a higher dose of radiation 

is required to ensure adequate effect. Secondly, a well oxygenated tumour is indicative of a 

healthy blood supply, which increases the likelihood that chemotherapeutic agents will reach 

their intended target. Thirdly, it is well known that hypoxia results in genotypic mutations in 

tumour cells, increasing their malignant potential 
[27]

.  

As recently as the 1990s, tumour hypoxia was assessed in clinical studies by means of 

polarographic needles, and, while useful in demonstration, the invasive nature of the 

procedure prevented its inclusion in regular clinical assessment 
[26]

. Improvements in imaging 

in recent decades however have meant that hypoxia can now be measured using alternative, 

non-invasive approaches, which has opened the possibility of routine assessment of tumour 

oxygenation. 

The inclusion of hypoxia imaging in regular diagnostic protocol brings with it a 

number of advantages. Firstly, the non-invasive nature of imaging allows longitudinal 

monitoring of individual patients. Secondly, previous clinical analyses have shown that there 

is a large degree of heterogeneity among tumours, and even within and between the same 

tumour types 
[27]

. Hypoxia imaging allows customisation of treatment plans – for instance in 

the form of conformal radiotherapy, or combinations of radio- and chemotherapy. 

Furthermore, hypoxia imaging would allow assessment of methods designed to alleviate 

hypoxia. In this study, QSM has been successfully applied to a preclinical model of colorectal 

liver metastases. It has been shown that it is possible to derive clinically relevant information 

regarding blood oxygenation in the context of liver cancer from QSM images, and is the first 

such application of Quantitative Susceptibility Mapping. 

The graph shown in figure 5.3 displays the difference in susceptibility between the 

healthy liver tissue and the tumours under normoxic conditions. The tumours are significantly 

more diamagnetic than the healthy liver tissue, and this has been ascribed to arterial blood 

supplied to the tumours. While it is possible that the susceptibility of the tumours relative to 

the surrounding tissue may be due to physical differences between the regions – for example 

tumours are known to be far less vascular than normal tissue, and the cells of which the 
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tumours are composed are of a different type to liver cell – this seems unlikely, as it has been 

shown in the literature 
[13, 23, 24]

 that CRLM derive blood predominantly from the hepatic 

artery, and is show in fig. 4.13 and fig. 5.4 that the susceptibility of both blood and tumours 

can be manipulated by the administration of oxygen. As such, it is thought that the 

susceptibility of the tumours is predominantly affected by the blood that is supplied to them. 

It has been shown repeatedly that the effect of oxygen administration manifests in 

T2*-weighted magnitude images of healthy liver tissue and tumours as an increase in signal 

intensity. This is clearly visible in the images displayed in fig. 5.5A, and has been well 

documented in the literature 
[28-31]

. The reason given for this is that the administration of O2 

reduces the presence of paramagnetic deoxyhaemoglobin, and, by extension, the local B0 field 

inhomogeneities that increase the rate of T2* relaxation 
[22]

.  

As such, the effect of O2 administration on the susceptibility of the tumours observed 

here is somewhat counter-intuitive. It was expected that the decrease in deoxyhaemoglobin 

brought about by hyperoxia would have resulted in a diamagnetic shift in susceptibility in the 

tumours, whereas the opposite was observed. It may be, however, that the paramagnetic shift 

observed here indicates the presence of O2 that is unbound, i.e. dissolved in the plasma.  

As discussed previously (sec 4B.2.1), oxygen, when bound to haemoglobin, results in 

a diamagnetic molecule, and, as shown in the previous chapter, the administration of O2 

causes a diamagnetic shift in the susceptibility of venous blood due to a systemic decrease in 

deoxyhaemoglobin. Arterial blood on the other hand is almost entirely saturated. As such, 

inducing hyperoxia results in an increase in the amount of O2 dissolved in the plasma 
[22, 32]

. 

Unbound O2 is a paramagnetic molecule, and, as the tumours examined here receive a large 

proportion of blood from the hepatic artery, it may be the case that the paramagnetic shift in 

susceptibility observed in response to hyperoxia is due to the increased influx of unbound O2 

that diffuses into the tumour. 

The discrepancy between the magnitude and QSM results is intriguing, as the two 

seem to directly contradict each other. One possible explanation however may be related to 

mechanistic differences between phase and magnitude image contrast. It is noted in the 

literature that bulk susceptibility (as measured by QSM) is more directly related to tissue 

composition than T2* (or R2*) measurements, as changes in the latter can more accurately be 

thought of as measures of local field inhomogeneities 
[33]

. It is noted elsewhere that the 

dephasing which results in the T2* effect only occurs when a phase dispersion exists across a 
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voxel, and that tissues that have uniform distributions of susceptibility will exhibit a phase 

effect but no T2* response 
[34]

. As such, it may be the case that hyperoxic gasses have a 

uniform effect across the tumours to the extent that field inhomogeneities are reduced (thus 

increasing T2*), but still result in an increase in the delivery of (paramagnetic) O2. If this is 

the case, it further exemplifies one of the advantages QSM has over standard magnitude 

imaging i.e. that QSM can differentiate between para- and diamagnetism, whereas T2* is only 

sensitive to field (in)homogeneity, and as such tissue composition by proxy. 

The difference in hepatic venous blood saturation between the mice with tumours and 

healthy wild type mice from the previous chapter could have significant clinical potential. 

The images in both cases were acquired under normoxic conditions so their acquisition 

necessitates little more than a single standard T2* scan. Future experimental work could be to 

perform a longitudinal study in order to characterise the correlation between tumour burden 

and ShvO2. Once this is established, it opens the possibility of using QSM to non-invasively 

diagnose or monitor liver cancer, differentiate between benign and malignant lesions, or even 

to gauge the efficacy of treatment regimes. 

 The main drawback of QSM in the context of liver cancer as observed here is the 

difficulty with which tumours are identified on the susceptibility maps. As such, QSM can 

only provide complimentary information to the magnitude data, however the breadth and 

clinical potential of the functional information derived from susceptibility maps more than 

compensated for this shortcoming. 

 

5.1.6 Conclusions 

 The results presented here have shown that QSM can differentiate between healthy 

liver tissue and liver tumours in a preclinical model of colorectal liver metastases. It has also 

been shown that QSM is sensitive to changes in tumour oxygenation brought about by the 

administration of pure O2 in the same model. Lastly, it was shown that QSM measurements 

can be used to detect changes in hepatic venous blood oxygenation that are indicative of liver 

cancer. 
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5.2 VDA EXPERIMENT 

5.2.1 Introduction 

 Colorectal liver metastases (CRLM) are, by definition, a secondary cancer. As such, 

treatment strategies are complex and multi-faceted 
[18]

. Ultimately, the only available 

treatment that will allow long-term survival is removal by surgical resection 
[35]

, however 

surgery can only be performed in the context of the entire treatment regime 
[16]

. For example, 

treatment of the primary cancer will require intervention in the form of surgery, chemo- or 

radiotherapy, or some combination thereof, and may take place before or after treatment of 

the metastases. Secondly, patients may present with tumours that are initially unresectable, 

requiring pre-operative chemo- or radiotherapy to downstage the tumours to resectable status 

[16]
. Furthermore, only a relatively small percentage of patients will qualify for surgical 

intervention, but those that do not can still benefit from palliative care designed to inhibit 

growth, and minimise the spread of further tumours. 

 Imaging plays a vital role during the treatment of CRLM. CT is the most commonly 

used modality for assessing the treatment response of metastatic liver tumours, due to its 

wide availability and excellent spatial resolution. Traditionally, morphological changes (i.e. 

shrinkage) of the tumour have been used to assess treatment efficacy. As therapies become 

more sophisticated however, there is a growing body of evidence to suggest that tumour size 

does not always adequately correlate with treatment outcome 
[36]

. Bevacizumab, for example, 

is an anti-vascular endothelial growth factor (anti-VEGF) antibody which works by inhibiting 

the growth of new blood vessels, but does not immediately lead to the reduction of tumour 

mass. In situations such as these, functional imaging plays a much more important role. 

It is possible to derive functional information from both CT and MR techniques 

through the use of contrast agents. Iodine or gadolinium based agents (for CT and MRI 

respectively) can be administered intravenously prior to imaging, in order to assess the 

vascular characteristics of tumours
[37]

. Furthermore, there are myriad MRI techniques such as 

diffusion-weighted and BOLD MRI that can impart information regarding pathophysiology, 

heterogeneity, and may also predict clinical outcomes
[36]

. 

Oxi4503 is a combretestatin-derived chemotherapeutic drug known as a vascular 

disrupting agent (VDA). It works by preventing the formation of microtubules within 

endothelial cells, which precipitates morphological abnormalities as the cells replicate. This 



139 

 

causes an increase in vascular permeability, leading to the collapse of the vascular wall. 

Ultimately, the tumour undergoes necrosis due to an acute reduction of its blood supply
[38]

. 

Oxi4503 has been shown in the literature to have a deleterious effect on a number of diverse 

tumour types
[38-40]

, including a preclinical model of colorectal liver metastases
[41, 42]

. It acts 

quickly within tumours, having a profound effect immediately after administration
[41]

. 

However, as with bevacizumab, its effects may not have an immediate impact on tumour 

morphology. Previously, the efficacy of Oxi4503 was assessed in CRLM by means of 

histology, stereology, and laser Doppler flowmetry, wherein it was shown that treated 

tumours displayed significant necrosis and a decrease in tumour blood flow relative to the 

surrounding tissue
[42]

.  

In the previous chapter, the response of colorectal liver metastases to hyperoxia was 

examined using QSM, and it was established that by altering the oxygen concentration of the 

blood, changes could be detected in the magnetic susceptibility of the tumours. Secondly, it 

was shown that the hepatic venous oxygen saturation of mice with liver tumours was 

significantly lower than that of healthy wild type mice, which was ascribed to the increased 

metabolic demands of the cancer. 

The aim of this chapter is to examine whether QSM can be used to assess the efficacy 

of the vascular disrupting agent Oxi4503. It was hypothesised that the change observed in the 

susceptibility of the tumours in response to hyperoxia necessitates a functioning tumour 

vasculature. As such, a disruption of the tumour vasculature by Oxi4503 will undermine the 

effect induced by the gas challenge to which QSM is sensitive. Furthermore, it was 

hypothesised that the destruction of the tumour vasculature would reduce the metabolic 

burden on the liver, and that this would be reflected in the oxygen saturation of the hepatic 

venous blood. 

 

                                                   5.2.2 Methods 

5.2.2.1 Animal Preparation 

All animal studies were performed in accordance with the UK Home Office Animals 

Science Procedures Act (1986). Severe combined immunodeficiency (SCID) mice (n = 10) 

were inoculated with 1x10
6 

SW1222 CRLM cells via intrasplenic injection
[25]

. A splenectomy 

was then performed immediately post-injection.  
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This was a longitudinal study during which data was acquired at 2 distinct time-

points. The cohort was divided into a treated (n = 5) and control (n = 5) group, and the initial 

scan took place 19 days post-surgery. Immediately after this, the treated group was 

administered 40 mg/kg of Oxi4503 via tail vein injection. Subsequently, all animals were 

rescanned 72 hours later. 

Hyperoxia was induced in all animals during both scan sessions via the administration 

of 100% O2, and data was acquired under hyperoxic and normoxic conditions, with 10 

minutes allowed between each gas to allow the animals to acclimatise. Gases were 

administered through a nose cone at a rate of 0.5 ltr/min. 

The data acquired during scan sessions 1 & 2 will be referred to as pre- and post-

treatment respectively for the treated group, and as control 1 and control 2 respectively for 

the control group. 

Otherwise, animal preparation (chap. 4A sec 4A.2.1), data acquisition (chap. 5A sec. 

5A.2.2), QSM processing (chap. 4 sec. 4A.2.3), region of interest identification (chap. 5A 

sec. 5A.2.3) and venous oxygen saturation calculation (chap. 4B sec. 4B.2.2) were performed 

as discussed previously. As in all experimental chapters, magnetic susceptibility 

measurements are quoted with respect to the external water reference that was included with 

each subject in the scanner. 

5.2.2.2 Histology 

Animals were culled immediately after the second scanning session. The livers were 

excised and stored in 10% neutral buffered formalin. Standard Hemotoxylin & Eosin staining 

was carried out on all livers from both the treated and untreated animals in order evaluate the 

morphological changes brought about by administration of the VDA. 

 

5.2.2.3 Statistical Analysis 

Parameter estimates were compared using either a Wilcoxon matched pairs signed 

rank test or a Mann-Whitney test for paired and unpaired data respectively. A difference was 

considered statistically significant for p < 0.05. 
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5.2.3 Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.7 A - H: T2*-weighted magnitude (A,B), raw phase (C, D), frequency map (E, F), and 

susceptibility map (G, H) of single mouse from the treated cohort, acquired during scan sessions 1 (left) 

and scan session 2 (right) 
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Figure 5.8 A - H: T2*-weighted magnitude (A,B), raw phase (C, D), frequency map (E, F), and susceptibility 

map (G, H) of single mouse from the control cohort, acquired during scan sessions 1 (left) and scan session 2 

(right) 
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Figures 5.7 & 5.8 contain representative images from the treated (figure 5.7) and 

control (figure 5.8) groups. Images A, C, E, and G were acquired during the first scan 

session, and images B, D, F, and H are the images of the same subject from the second 

session in each. All images were subject to the same inspection that was detailed in 

previously (Chap. 5A sec. 5A.3). The raw phase data did not contain any obvious artefacts 

that could have confounded QSM processing, the SHARP algorithm successfully unwrapped 

and removed the background field from the raw phase data, and the susceptibility inversion 

was carried out successfully by the TKD algorithm in all cases.  

 

 

 

 

 

 

 

 

Figure 5.9: Magnetic susceptibility (ppb) of the healthy liver tissue and liver tumours in both 

groups, at both time-points, under normoxic conditions. The susceptibility of the liver 

tumours is significantly more diamagnetic than the liver tissue in all cases. 
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Figure 5.9 depicts the susceptibility of the liver tumours and healthy liver tissue under 

normoxic conditions for both groups at both time points. Results are summarised in table 1. 

In all cases, the susceptibility of the liver tumours was significantly more diamagnetic than 

the healthy liver tissue. This was as expected given the results of the previous chapter (5.1). 

There were no significant differences between any group for either region of interest. The 

susceptibility of the healthy tissue in the control group at the second time point is more 

paramagnetic than in the other groups, or in any other experiment that has been presented as 

part of this thesis. This measurement may be artefactual – the tumour burden of some of the 

animals in this group at this time-point was so large that selecting an ROI that contained only 

healthy liver tissue was extremely difficult. It is entirely possible that the region in some of 

the subjects contained large blood vessels, which would account for the relatively 

paramagnetic susceptibility. This is depicted in figure 5.10, which shows the T2*-weighted 

magnitude images of several mice from the control group acquired at the first time point (left) 

and the second time-point (right), under normoxic conditions. It is clear that the tumour 

burden increased to an extreme degree in some cases (e.g. image pair A). 

 

  

Healthy Tissue (ppb) 

 

Tumours   (ppb) 

 

Pre-treated 

 

-2.64005 ± 7.42 

 

-33.02± 21.32 

 

Post-treated 

 

-1.25544 ± 7.73 

 

-31.54 ± 23.16 

 

Control 1 

 

-0.50172 ± 7.16 

 

-34.17 ±26.41 

 

Control 2 

 

14.88 ± 17.76 

 

-17.5 ± 18.97 

Table 5.1: Summary of data presented in fig. 5.9 
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Figure 5.10 A- C: T2*-weighted magnitude images in axial (A & B) and saggital (C) orientation, showing 

extreme tumour burden of control group. Image pairs A, B & C are from 3 mice acquired during the scan 

sessions 1 & 2 
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Figure 5.11 A & B: 

(A) H & E stained histology of 

liver slice of treated mouse 

showing necrosis, viable tumour 

remnant, and tumours unaffected 

by treatment. Green Arrows: 

Successfully treated tumours, 

Yellow Arrows: Viable ring of 

tumour cells, Grey Arrows: 

Tumours unaffected by VDA 

(B): ) H & E stained histology of 

liver slice of untreated mouse 

shown for comparison 
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Figure 5.11 A shows a H&E stained histological image of one liver specimen from 

the treated group (A) and untreated group (B). As mentioned, the animals were culled 

immediately after the second MR acquisition. It can be seen from image (A) that the VDA 

has successfully acted on several of the large tumours (green arrows). The destruction of the 

tumours is incomplete however, and there is a ring of viable cells visible at their periphery 

(yellow arrows). This is well documented in the literature, and is attributed to the fact that the 

tumour periphery is fed by surrounding vessels of the host tissue, which are less susceptible 

to the effects of the drug 
[38]

. For comparison, image B shows a H&E stained histological 

image of a slice of liver from the untreated group. There is no evidence of the necrosis at the 

centre of advanced tumours that indicates the result of the administration of the VDA. 

Many of the smaller tumours appear unaffected by the treatment (grey arrows). The 

reason for this may be that the VDA selectively acts on tumour neo-vasculature, which is 

only necessitated by the tumour after it reaches a certain size 
[41]

. It is possible that the 

tumours which were micro-metastases at the time the drug was administered were sustained 

by the healthy vasculature of the liver tissue, and continued to grow until the animal was 

culled. Conversely, it is noted in the literature that the impact of the VDA is immediate, and 

its effect peaks at ~24 hours after administration, after which time the vasculature begins to 

regenerate
[41]

. The data acquired at the second time-point in this experiment was at 72 hours 

after the administration of the drug, which may have been enough time to abrogate some of 

the damage done by the drug. 
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 Hyperoxia  

(ppb) 

Normoxia   

(ppb) 

Difference 

(ppb) 

 

Pre-treated 

 

-13.26 ± 9.49 

 

-33.02± 21.32 

 

19.76 

 

Post-treated 

 

-25.55 ± 14.6 

 

-31.54 ± 23.16 

 

5.99 

 

Control 1 

 

-18.0 ± 12.44 

 

-34.17 ±26.41 

 

16.17 

 

Control 2 

 

-10.27 ± 20 

 

-17.5 ± 18.97 

 

7.23 

Figure 5.12 A - D: Susceptibility response of the tumours to hyperoxia and normoxia. Results from the first 

scan session are displayed on the left (A, C), and the corresponding results from the second session are on 

the right (B, D). 

Table 5.2: Summary of the results displayed in figure 6 & 7. 
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Figure 5.12 shows the susceptibility of the tumours in both groups at both time points 

under hyperoxia and normoxia. The data is summarised in table 2.  None of the differences 

brought about by the gases are significant in any group, however there are some interesting 

similarities and differences between the groups that merit some discussion. The susceptibility 

of the tumours calculated from data acquired during the first scan session (A, C) is more 

paramagnetic under hyperoxia in all cases. Again this is as expected, and it is hypothesised 

that this is due to the increased influx of paramagnetic, unbound O2 molecules that diffuse 

into the tumours from the hepatic artery.  

The measurements taken from the data acquired at the second time-point (B, D) are 

less clear. The mean shift in susceptibility in response to the gases was reduced in both cases 

by comparison to the first scan session, and the susceptibility of the tumours of the control 

group (D) was more paramagnetic under both gases than any of the other groups. 

 

 

 

 

 

 

Figure 5.13: Susceptibility response of the tumours to hyperoxia and normoxia displayed on one graph to 

allow direct comparison between groups. Error bars have been omitted in the interests of clarity. 
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In order to allow a direct comparison between the results of the gas challenge, the data 

is presented on a single graph showing the mean susceptibility of the tumours under both 

hyperoxia and normoxia (Figure 5.13). The mean susceptibility of the tumours under hyper- 

and normoxic states is similar for both groups at the first time-point (pre-treated, control 1). 

The susceptibility of each under normoxia is -33.02 ppb and -34.17 ppb for the pre-treated 

and control 1 subjects respectively, and the difference in susceptibility between hyper- and 

normoxia is 19.76 ppb and 16.17 ppb respectively. This suggests that the treatment and 

control groups were well matched during the first scan session. 

The paramagnetic shift in response to hyperoxia is reduced in the tumours of the post-

treated group. Again, the difference in susceptibility brought about by hyperoxia is not 

statistically significant, but the reduced response of the tumours may be indicative of the 

effects of the VDA. 

This response to hyperoxia is also reduced in control 2, and the susceptibility of the 

tumours under both normoxic and hyperoxic conditions is more paramagnetic than in the 

other mice. One possible reason is that the tumour burden in some of the mice was so 

extensive that the blood supply to the tumours was restricted (figure 5.10). This would have 

the effect of reducing the delivery of both oxyhaemoglobin and unbound oxygen, thus 

reducing the diamagnetism of the tumours under normoxic conditions, and undermining the 

effects of the gas challenge.  

Figure 5.14 shows the venous oxygen saturation calculated from the mean 

susceptibility measured in the hepatic vein of both groups at each time point. The differences 

between the groups are not statistically significant, but the data suggests that there is a slight 

increase in the oxygen saturation of the treated group after the drug has been administered. 

Again, the small size of the groups makes it difficult to draw any conclusion from the results. 
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5.2.4 Discussion   

The capacity of combretastatins to destroy tumour vasculature has been known about 

for some time. Oxi4503 is a second generation VDA that has repeatedly been shown to have 

a deleterious effect on the vasculature of a range of preclinical tumour models, including 

head and neck squamous cell carcinomas 
[39]

, KHT sarcomas 
[38]

, and colorectal liver 

metastases 
[41, 42]

. The efficacy of Oxi4503 has previously been assessed with a range of 

disparate imaging modalities, however each has drawbacks that may limit their use in various 

scenarios. 

For example, microvascular casting has been used to allow visualisation of the effect 

of the drug on the vasculature 
[42]

, but requires the tumours to be excised, usually post-

mortem, thus disallowing longitudinal assessment. Similarly, photoacoustic imaging has 

indicated necrosis at the centre of a treated subcutaneous xenograft 
[43]

, but the depth 

penetration currently available with photoacoustic imaging means its use is limited, 

particularly when attempting to image large, dense organs like the liver. Other studies have 

used bioluminescent imaging (BLI), or Gd-enhanced MRI to assess changes in tumour 

Figure 5.14: ShvO2 (%) calculated from the measured susceptibility of the blood in the hepatic vein under 

normoxic conditions. There were no significant differences between the groups or timepoints. 
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vascularity. Both of these require the use of exogenous contrast agents, rendering them 

unsuitable for certain cohorts of patients. The advantages offered by QSM are that functional 

information pertaining to the tumour vasculature can be obtained non-invasively through the 

effects of deoxyhaemoglobin. The use of an endogenous contrast agent makes it a viable 

option for a broader cohort of patients, and means that repeated scans can be carried out with 

little risk to the patient. 

The results of gas challenge were inconclusive. There were no significant differences 

in the susceptibility of the tumours under hyperoxia when compared to normoxia, and there 

were no significant differences in the susceptibility of the tumours between any group. It was 

assumed that the VDA would have destroyed the blood vessels supplying the oxygenated 

blood from the hepatic artery, thus affecting the normoxic susceptibility of the post-treated 

group, as well as reducing the paramagnetic shift caused by hyperoxia (as was observed). It 

was shown however that the normoxic susceptibility of the pre- and post- treatment tumours 

was very similar (table 2).  

A major limitation of this study was the fact that the mice were imaged at 72 hours 

after the administration of the drug. The results of the histology have confirmed the presence 

of necrosis in some of the tumours that were clearly affected by the administration of the 

VDA, however it also shows that the smaller tumours were unaffected, and, furthermore, that 

a peripheral ring of viable tumour remained where the drug did take effect. It is shown in the 

literature that the effects of the drug manifest most strongly 24 hours after administration 
[41]

, 

after which point the tumours can begin to regenerate as the drug affects less strongly the 

cells at the periphery of the tumours. This phenomenon is clearly visible in the fig 5.11. 

Furthermore, it is equally clear that some of the tumours were unaffected by the drug, which 

may be due to the fact that micrometastases will most likely be unaffected by the VDA due to 

the lack of neo-vasculature in small, young tumours. As such, it is possible that the 72 hour 

time window allowed these micrometastases to continue to grow. Both of these factors would 

have a negative effect on the experimental variable it was hoped to measure using QSM. The 

experimental protocol would be greatly improved by imaging the mice 24 hours after the 

drug was administered. 

The difference between the treated and control groups at the second time point (post-

treated and control 2) may have been undermined by the extreme tumour burden of the 

control group (figure 5.10). Chronic hypoxia limits the diffusion of oxygen to cells that are 
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distal from the blood vessels, and acute hypoxia restricts the flow of blood into the tumours. 

Both conditions are exacerbated by an increased tumour load, and could also have had the 

effect of confounding the results. Both of these situations could have been avoided if the 

second scan session had been performed at an earlier time-point. 

The differences between the groups in terms of ShvO2 were equally inconclusive. 

While the data suggests that there was some divergence between the pre- and post-treated  

animals, the underpowered nature of the study has limited the conclusions that can be drawn. 

Based on the results of the last experiment however it is entirely conceivable that ShvO2 

could be used as a metric to assess treatment efficacy, however as mentioned this would 

require more work to characterise the correlations of oxygen saturation with tumour burden. 

The treated cohort in this study were administered a single dose of 40 mg/kg of the 

drug. This is broadly in line with similar experiments 
[39, 42]

, though single doses range from 1 

– 100 mg/kg, and comparisons have been made between single doses and continuous, daily 

and intermittent dosing 
[42]

 where it was shown that intermittent dosing produced the greatest 

reduction in tumour growth. As such, an improvement to the experimental approach 

described in this chapter could be to recommend that the treated subjects receive intermittent 

doses of the drug, or that imaging take place 24 hours after the administration of a single 

dose. Furthermore, increasing the numbers is each group would have allowed a more 

powerful statistical analysis, such that the results could be expressed with a greater degree of 

confidence. 

A common metric used in similar studies has been to compare the mass of treated and 

untreated livers as a proxy for tumour burden, or to measure tumour necrosis via histology, 

however it has been suggested that a more accurate assessment of drug efficacy would 

measure the remaining viable tumour 
[41]

. While it was not possible in this instance, it is 

conceivable that using QSM to measure the response of a single tumour to a gas challenge 

could yield information regarding the amount of viable vasculature present after treatment 

without the use of exogenous contrast agents. 

The results of this experiment would benefit from the inclusion of more in-depth 

histopathological analysis. While the standard H & E stained images sufficiently showed the 

necrosis of the tumours that were affected by the VDA, more information could have been 

gleaned by the expansion of the imaging protocol. For example, intravenous injection of 

pimonidazole between the administration of the VDA and the second scanning session may 
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have confirmed hypoxia in tumours that were initially affected by the drug but then 

recovered. Equally, some of the mice could have been imaged using a dynamic contrast 

enhanced (DCE) protocol to discern changes in tumour blood flow caused by the VDA. It 

may then have been possible to compare DCE and QSM images of tumours, although, as 

already noted, drawing comparisons between individual tumours is extremely difficult in the 

liver due to the amorphous nature, and high degree of movement of the organ between scans. 

These limitations may be difficult to address however, as the mice under examination do not 

tolerate the administration of drugs, stains or anaesthetic well, and so the inclusion of 

additional imaging techniques may require redesigning the protocol of the entire experiment. 

 

 

5.2.5 Conclusions 

 Though not statistically significant the difference in hepatic venous blood oxygen in 

between the pre- and post-treated groups reflects the results presented in section 5.1. It is 

conceivable the measurement of ShvO2 with QSM could be used to assess the efficacy of the 

VDA, however further experimental work is required to confirm this. 

 

 

 

 

 

 

 

 

 

 



155 

 

References 

 

1. Acosta-Cabronero, J., et al., In vivo quantitative susceptibility mapping (QSM) in 

Alzheimer's disease. PLoS One, 2013. 8(11): p. e81093. 

2. Barbosa, J.H., et al., Quantifying brain iron deposition in patients with Parkinson's 

disease using quantitative susceptibility mapping, R2 and R2. Magn Reson Imaging, 

2015. 33(5): p. 559-65. 

3. Schweitzer, A.D., et al., Quantitative susceptibility mapping of the motor cortex in 

amyotrophic lateral sclerosis and primary lateral sclerosis. AJR Am J Roentgenol, 

2015. 204(5): p. 1086-92. 

4. Du, G., et al., Quantitative susceptibility mapping of the midbrain in Parkinson's 

disease. Mov Disord, 2016. 31(3): p. 317-24. 

5. Wang, S., et al., Hematoma volume measurement in gradient echo MRI using 

quantitative susceptibility mapping. Stroke, 2013. 44(8): p. 2315-7. 

6. Xia, S., et al., Decreased oxygen saturation in asymmetrically prominent cortical 

veins in patients with cerebral ischemic stroke. Magn Reson Imaging, 2014. 32(10): 

p. 1272-6. 

7. Hsieh, M.C., et al., Investigating hyperoxic effects in the rat brain using quantitative 

susceptibility mapping based on MRI phase. Magn Reson Med, 2017. 77(2): p. 592-

602. 

8. Zhang, J., et al., Quantitative mapping of cerebral metabolic rate of oxygen (CMRO2 

) using quantitative susceptibility mapping (QSM). Magn Reson Med, 2015. 74(4): p. 

945-52. 

9. Ozbay, P.S., et al., Effect of respiratory hyperoxic challenge on magnetic 

susceptibility in human brain assessed by quantitative susceptibility mapping (QSM). 

NMR Biomed, 2015. 28(12): p. 1688-96. 

10. Fan, A.P., et al., Baseline oxygenation in the brain: Correlation between respiratory-

calibration and susceptibility methods. Neuroimage, 2016. 125: p. 920-31. 

11. Deistung, A., et al., Quantitative susceptibility mapping differentiates between blood 

depositions and calcifications in patients with glioblastoma. PLoS One, 2013. 8(3): p. 

e57924. 

12. Straub, S., et al., Potential of quantitative susceptibility mapping for detection of 

prostatic calcifications. Journal of Magnetic Resonance Imaging, 2017. 45(3): p. 889-

898. 

13. Edrei, Y., et al., Vascular Profile Characterization of Liver Tumors by Magnetic 

Resonance Imaging Using Hemodynamic Response Imaging in Mice. Neoplasia, 

2011. 13(3): p. 244-IN5. 

14. Liver cancer statistics. 2015. 

15. Xu, L.H., et al., Imaging diagnosis of colorectal liver metastases. World J 

Gastroenterol, 2011. 17(42): p. 4654-9. 

16. Haddad, A.J., et al., Colorectal liver metastases. Int J Surg Oncol, 2011. 2011: p. 

285840. 

17. Choti, M.A., et al., Patient Variability in Intraoperative Ultrasonographic 

Characteristics of Colorectal Liver Metastases. Arch Surg, 2008. 143(1): p. 29 - 34. 

18. Tzeng, C.W. and T.A. Aloia, Colorectal liver metastases. J Gastrointest Surg, 2013. 

17(1): p. 195-201; quiz p 201-2. 

19. Bipat, S., et al., Colorectal Liver Metastases: CT, MR imaging meta analysis. 

Radiology, 2005. 237: p. 123 - 131. 



156 

 

20. Bonanni, L., et al., A comparison of diagnostic imaging modalities for colorectal liver 

metastases. Eur J Surg Oncol, 2014. 40(5): p. 545-50. 

21. Niekel, M.C., S. Bipat, and J. Stoker, Diagnostic Imaging of Colorectal liver 

metastases with CT, MR imaging, FDG PET, and/or FDG PET/CT: A meta-analysis 

of prospective studies including patients who have not previously undergone 

treatement. Radiology, 2010. 257(3): p. 674 - 684. 

22. Robinson, S.P., et al., Magnetic Resonance Imaging Techniques for monitoring 

changes in tumour oxygenation and blood flow. Semin Radiat Oncol, 1998. 8(3): p. 

197 - 207. 

23. Ramasawmy, R., et al., Hepatic arterial spin labelling MRI: an initial evaluation in 

mice. NMR in Biomedicine, 2015. 28(2): p. 272-280. 

24. Haugeberg, G., et al., The vascularization of liver metastases. J Cancer Res Clin 

Oncol, 1988. 114(415 - 419). 

25. Fidarova, E.F., et al., Microdistribution of Targeted, Fluorescently Labeled Anti–

Carcinoembryonic Antigen Antibody in Metastatic Colorectal Cancer: Implications 

for Radioimmunotherapy. Clinical Cancer Research, 2008. 14(9): p. 2639-2646. 

26. Jordan, B.F. and P. Sonveaux, Targeting tumor perfusion and oxygenation to improve 

the outcome of anticancer therapy. Front Pharmacol, 2012. 3: p. 94. 

27. Padhani, A.R., Diffusion magnetic resonance imaging in cancer patient management. 

Semin Radiat Oncol, 2011. 21(2): p. 119-40. 

28. Robinson, S.P., et al., Effects of different levels of hypercapnic hyperoxia on tumour 

R2s and areterial blood gases. Magnetic Resonance Imaging, 2001. 19: p. 161 - 166. 

29. Karczmar, G.S., et al., Effects of hyperoxia onT2* and resonance frequency weighted 

magnetic resonance images of rodent tumours NMR Biomed, 1994. 7 (1-2): p. 3 -11. 

30. Fan, Z., et al., Blood Oxygen Level-Dependent Magnetic Resonance Imaging of the 

Human Liver: Preliminary Results. Journal of Computer Assisted Tomography, 2010. 

34(4): p. 523-531. 

31. Barash, H., et al., Functional magnetic resonance imaging monitoring of pathological 

changes in rodent livers during hyperoxia and hypercapnia. Hepatology, 2008. 48(4): 

p. 1232-41. 

32. Xu, F., et al., Effect of Hypoxia and Hyperoxia on Cerebral Blood Flow, Blood 

Oxygenation, and Oxidative Metabolism. Journal of Cerebral Blood Flow & 

Metabolism, 2012. 32(10): p. 1909-1918. 

33. Shmueli, K., et al., Magnetic susceptibility mapping of brain tissue in vivo using MRI 

phase data. Magn Reson Med, 2009. 62(6): p. 1510-22. 

34. Tao, R., et al., An in vitro and in vivo analysis of the correlation between 

susceptibility-weighted imaging phase values and R2* in cirrhotic livers. PLoS One, 

2012. 7(9): p. e45477. 

35. Misiakos, E.P., N.P. Karidis, and G. Kouraklis, Current treatment for colorectal liver 

metastases. World J Gastroenterol, 2011. 17(36): p. 4067-75. 

36. Van Cutsem, E., et al., Imaging in Colorectal Cancer: Progress and Challenges for 

the Clinicians. Cancers (Basel), 2016. 8(9). 

37. Tirumani, S.H., et al., Update on the Role of Imaging in Management of Metastatic 

Colorectal Cancer. RadioGraphics, 2014. 34(7): p. 1908-1928. 

38. Salmon, H.W. and D.W. Siemann, Effect of the second-generation vascular 

disrupting agent OXi4503 on tumor vascularity. Clin Cancer Res, 2006. 12(13): p. 

4090-4. 



157 

 

39. Bothwell, K.D., M. Folaron, and M. Seshadri, Preclinical Activity of the Vascular 

Disrupting Agent OXi4503 against Head and Neck Cancer. Cancers (Basel), 2016. 

8(1). 

40. Sheng, Y., et al., Combretastatin family member OXI4503 induces tumor vascular 

collapse through the induction of endothelial apoptosis. Int J Cancer, 2004. 111(4): p. 

604-10. 

41. Nguyen, L., T. Fifis, and C. Christophi, Vascular disruptive agent OXi4503 and anti-

angiogenic agent Sunitinib combination treatment prolong survival of mice with CRC 

liver metastasis. BMC Cancer, 2016. 16(1): p. 533. 

42. Malcontenti-Wilson, C., et al., Vascular targeting agent Oxi4503 inhibits tumor 

growth in a colorectal liver metastases model. J Gasteroenterol Hepatol, 2008. 23. 

43. Johnson, S.P., et al., Photoacoustic assessment of OXi4503 pharmacodynamic effect 

and tumour vessel regrowth in colorectal carcinoma xenograft models of cancer. 

Conference Proc. Nat Cancer Research Inst, 2013. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



158 

 

Chapter 6 

 Chapter 6 details the application of QSM to a model of liver cirrhosis. Data was 

acquired from a cohort of rats in which cirrhosis had been induced by bile duct ligation, as 

well as a cohort that had been subject to a sham operation. Susceptibility was measured in the 

liver tissue and major blood vessels of both sets of animals. 
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Liver Cirrhosis 

6.1 Introduction 

 Liver fibrosis is characterised histologically by the presence of excess collagen caused 

by chronic inflammation 
[1]

. Early stage fibrosis is potentially reversible, and causes only 

minor clinical symptoms or disturbance of liver function. Liver cirrhosis occurs in the final 

stage of liver fibrosis. It is an irreversible development, the transition to which involves 

inflammation, activation of hepatic stellate cells, and parenchymal extinction due to vascular 

occlusion 
[2]

. Normal hepatic architecture is replaced with a spectrum of partially restorative 

nodules surrounded by fibrous bands, resulting in portal hypertension, hepatic perivascular 

shunting, and ultimately end-stage liver disease 
[3]

. Normal liver function and perfusion are 

increasingly compromised as fibrosis progresses 
[4]

. 

 The severity of liver fibrosis is gauged using a series of histological gradations 

ranging from 0 - 4, with stage 4 liver fibrosis being equivalent to cirrhosis 
[5]

. There are 

myriad factors that precipitate fibrosis, however all aetiologies of cirrhosis lead to the same 

pathology. Fibrosis and cirrhosis are often asymptomatic until patients present with 

ambiguous ailments, at which point blood testing may reveal abnormal liver function 
[3]

. The 

extent of fibrosis will strongly influence the treatment pathway embarked upon, so accurate 

estimation of its progression is an important facet of the initial diagnosis. 

Upon suspicion of cirrhosis there are numerous diagnostic procedures available to 

clinicians. Histological evaluation via liver biopsy remains the gold standard 
[3]

, but it is 

prone to sampling error, and the invasive nature of the procedure renders it unsuitable in 

many instances. Equally, there are a range of serum markers that are useful for differentiating 

between fibrosis and cirrhosis, but these often lack the accuracy required for differentiating 

between the early stages of fibrosis 
[6]

, particularly in cases of inflammation 
[7]

. Conversely, 

there are a number of imaging modalities that can provide non-invasive assessment, but 

traditionally the primary role of radiography is the determination and assessment of the 

complications that accompany cirrhosis e.g. ascites or hepatocellular carcinoma 
[3]

. 

In recent years, a number of novel imaging techniques have been developed that could 

allow accurate, non-invasive staging of fibrosis and cirrhosis. Magnetic Resonance 

Elastography (MRE) analyses the propagation of a mechanical wave generated by an external 

driver through the liver tissue. An overabundance of collagen will affect the stiffness of the 



160 

 

tissue, and subsequently the velocity and wavelength of the propagating wave. MRE has been 

shown to have a sensitivity of 98% and a specificity of 99% for diagnosing any grade of liver 

fibrosis 
[8]

, though it is noted in the literature that the MRE signal may be poor in patients 

with moderate to severe iron load, leading to failed examinations 
[6]

. This may prove 

problematic, as siderosis is a known facet of advanced liver fibrosis. 

Of particular interest in this instance are the phase based approaches to MRI imaging. 

One such technique is Susceptibility Weighted Imaging (SWI), the precursor to QSM. It too 

utilises the phase of a T2*-weighted signal, so is sensitive to compositional variations that 

affect magnetic susceptibility, however it uses this information to enhance its associated 

magnitude image. The accumulation of iron within reticuloendothelial cells is known to occur 

with the progression of fibrosis as ferritin is mobilised from damaged hepatocytes 
[9]

, and on 

this basis it has been shown that the detection and grading of liver fibrosis is feasible with 

SWI 
[7]

. Furthermore, cirrhotic liver iron can also accumulate in the regenerative nodules 

associated with the disease, and it has been shown that SWI can more accurately identify 

siderotic nodules in the cirrhotic liver than conventional magnitude-based MRI techniques 
[9, 

10]
. Susceptibility weighted imaging, while more sensitive to iron deposition than 

conventional techniques, is not, however, quantitative in nature, and is beset by the blooming 

artefacts that can also be detrimental to T2*-weighted imaging. The latter in particular could 

prove problematic when performing liver imaging due to the relative size of the blood 

vessels. 

The aim of this study was to apply QSM to a preclinical model of liver cirrhosis 

implemented in a cohort of Bile Duct Ligated (BDL) rats, and in doing so test three 

hypotheses. In the first instance, QSM overcomes the aforementioned quantification and non-

locality problems that are inherent to SWI, and it is though that the quantitative nature of the 

technique may allow a more accurate assessment of excess hepatic iron. To test this, the 

susceptibility of the liver tissue was measured under normoxic conditions, and compared to 

that of a sham cohort. Secondly, it has been shown that the livers of cirrhosis patients exhibit 

a significant enhancement of the T2* signal when administered pure O2 that was not observed 

in healthy volunteers 
[11]

. As such, the sensitivity of QSM to the changes in liver perfusion 

associated with advanced fibrosis was assessed by administering a hyperoxic gas challenge to 

the BDL rats, and comparing the change in susceptibility of the BDL and sham cohorts. 

Finally, it has been suggested in the literature that the progression of liver disease correlates 

inversely with tissue oxygen uptake 
[12]

. As such, the final hypothesis explored here is that a 
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reduction in oxygen extraction from the blood by the liver tissue will be reflected in the 

hepatic venous oxygen saturation (ShvO2) of the BDL cohort. To test this, ShvO2 was 

calculated from the measured susceptibility of the blood in the hepatic vein and was 

compared to that of the sham cohort. 

 

6.2 Theory 

6.2.1 Cirrhosis Model 

Cirrhosis in this instance was induced using via bile duct ligation (BDL) in order to 

implement obstructive cholestasis in the livers of the experimental subjects. Ligation of the 

duct is achieved via surgical means, and disrupts the secretion of bile causing it to accumulate 

in the liver tissue. The compounds of which bile is comprised e.g. bile salts, bilirubin, as well 

as the potentially toxic compounds that result from the clearance function of the liver result 

cause inflammation of the liver tissue, as well as the progressive development of fibrosis. The 

process ultimately results in liver failure, or progression to liver cancer 
[13]

. 

 

6.3 Methods 

6.3.1 Animal preparation 

Surgical preparations were performed as previously reported 
[14]

. Briefly, male 

Sprague-Dawley rats (body weight 350 – 400g) were obtained from Charles River 

Laboratories (Kent, UK). Under general anaesthesia (5% isoflurane in 100% O2 for 

induction, 2% in air for maintenance) 30 rats underwent triple ligation of the bile duct (via 

laparotomy) to induce chronic liver injury. A number of rats (n = 7) were randomly selected 

for inclusion in the experiment presented here, and were imaged approx.. 4 weeks after 

surgery.  

In addition to this, a number of rats that had undergone a sham operation (n = 3) were 

also selected for inclusion. However, one of these died while under anaesthetic in the scanner 

and was excluded from the study.  
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6.3.2 Data acquisition 

Data were acquired on a 9.4T MRI scanner (Agilent Technologies, Santa Clara, CA, 

USA) using a 72-mm-diameter bird cage coil for signal transmission and reception (RAPID 

Biomed, Rimpar, Germany). Subjects were anaesthetised using 5% isoflurane in 20% O2, 

80% medical air. During scanning, respiratory rate was monitored and maintained at ~60 - 70 

breaths per minute by varying isoflurane concentration between 1.5 and 3%. Rectal 

temperature was maintained at 37.5 ± 0.5
o
C using a warm water circulation system. 

Gases were administered through a nose cone at a rate of 1 ltr/min. Images were 

acquired under normoxic conditions as the subject was administered medical air (21% 

O2/balance Nitrogen), and again under hyperoxic conditions as the subject was administered 

100% O2. 10 minutes were allowed between gases to allow the animal to acclimatise.  

The acquisition parameters were as such: TR = 1000 ms, TE = 4 ms, FA = 70
o
, voxel 

size = 300 µm isotropic, acquisition bandwidth = 50 kHz, number of averages = 4. The FOV 

was adjusted such that the entire liver and water reference were imaged (see Chap. 4A sec. 

4A.1.1), and the matrix size was adjusted to maintain isotropic voxel size. 

Regions of interest were manually segmented on the magnitude images and 

transferred to QSM images after processing. ROIs included a large branch of the hepatic vein, 

which was segmented as discussed previously (see Chap. 4 sec. 4.1.2.5). In this instance, 

large regions of liver tissue were segmented because disruption to the liver architecture was 

not obvious from signal intensity changes in the magnitude image so as much tissue was 

included for examination as possible while avoiding large blood vessels (fig 6.1). 

QSM processing (chap. 4 sec. 4.1.2.3) and venous oxygen saturation calculations 

(chap. 4 sec. 4.2.2.2) were performed as discussed in previous chapters. 
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Figure 6.1: Slice showing liver tissue ROI on T2*- magnitude image (axial orientation). Due to the diffuse 

nature of the disease the ROI included as much liver tissue as possible, while avoiding any obvious blood 

vessels. As such, the tissue ROI included many slices in the liver volume. 
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6.3.3 Statistics 

The diminutive size of the sham cohort precluded any meaningful statistical 

comparison between the groups, or within the sham cohort brought about by means of 

intervention (i.e. the gas challenge).  

Where possible, parameter estimates were compared using a Wilcoxon matched-pairs 

signed rank test, in which a difference was considered statistically significant for p < 0.05.   

 

6.4 Results 

Figures 6.2 & 6.3 contain a T2*-weighted magnitude, raw phase, frequency map and 

susceptibility map of a subject each from the BDL (figure 6.2) and sham cohort (figure 6.3). 

Each image of every animal was subjected to the same visual inspections detailed elsewhere 

(chap. 5 sec 5.1.3), and all acquired data was deemed fit for inclusion in the study. As in the 

other experiments, frequency maps and subsequent susceptibility maps were calculated 

without issue. 

 Figure 6.2 A- D: T2*-weighted magnitude (A), raw phase (B), frequency map (C) and susceptibility map (D) 

of a single animal from the BDL cohort. 
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Figure 6.4 depicts the susceptibility (ppb) of the liver tissue in the BDL and sham 

animals under normoxic conditions. The mean values were -0.825 ± 5.97 ppb and -1.77 ± 

0.366 ppb for the BDL and sham animals respectively. The difference between the cohorts 

was not significant. 

 

 

 

 

 

 

Figure 6.3 A - D: T2*-weighted magnitude (A), raw phase (B), frequency map (C) and susceptibility map 

(D) of a single animal from the sham cohort. 

Figure 6.4: Magnetic susceptibility (ppb) of liver 

tissue of the BDL and sham animals. There was no 

significant difference between the cohorts. 
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Figure 6.5 is an image taken from the literature
[15]

 that shows segments taken from the 

livers of sham (a) and BDL model (b) rats, that have been histologically stained with Perl’s 

iron stain. There is a small build-up of iron in the Kuppfer cells of the BDL model animals, 

however it would appear from the images that the change in liver iron content may not be 

enough to have a significant impact on the QSM measurements of the liver tissue of similar 

animals. This may explain the lack of significant difference between the QSM measurements 

taken from either cohort. 

 

 

 

 

Figure 6.6 contains graphs showing the susceptibility measured in the liver tissue of 

the BDL (A) and sham (B) cohorts. The results are summarised in table 1. There was no 

significant difference in susceptibility brought about by the gas challenge, and there were no 

significant differences between the groups. The data suggests that the liver tissue of the BDL 

rats is slightly more paramagnetic than that of the sham cohorts, but low numbers of sham 

animals makes it difficult to draw any conclusion. 

 

 

 

Figure 6.5 A & B: Perl stained histological images of liver segments from a sham (a) and BDL model rat 

(b). (Taken from the literature) This shows the iron accumulated in the liver of each animal. There is a slight 

build-up of iron in the kupffer cells of the BDL rats that is not present in the sham cohort. 
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Figure 6.6 A & B: Susceptibility of liver tissue under norm- and hyperoxia measured in the BDL rats (A) 

and the sham rats (B) 



168 

 

Figure 6.7: Venous Oxygen 

Saturation calculated from the 

susceptibility of the blood 

measured in the hepatic vein. 

There was no significant 

differences between the groups, 

but the data suggests that there 

ShvO2 is higher in the BDL 

cohort.  

 

 

 

 

 

 

 

 

 

 

Figure 6.7 shows the venous oxygen concentration calculated from the measured 

susceptibility of the blood in the hepatic vein. The mean values were 48.87 ± 13.8% and 

29.17 ± 25.71% for the BDL and sham rats respectively. The difference between the cohorts 

was not significant but the data suggests that the oxygen saturation of the blood from the 

BDL cohort is the higher of the two. 

 

 

 

 

 

Normoxia (ppb) 

 

Hyperoxia (ppb) 

 

BDL (mean) 

 

-0.825 ± 5.97 

  

0.28 ± 5.14 

 

Sham (mean) 

 

-1.77 ± 0.36 

  

-0.77 ± 0.202 

Table 6.1: Summary data of the susceptibility of the liver tissue in either cohort under norm- and hyperoxia. 

Mean and SD displayed. 
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6.5 Discussion 

Liver disease is one of the largest causes of mortality in the UK, and is the only major 

cause of death still increasing year on year 
[16]

. Diagnosis is notoriously difficult as most 

patients don’t present until experiencing secondary symptoms such as ascites, sepsis, or 

encephalopathy, among others 
[2]

. While it is not possible to reverse the sclerosis of the liver 

tissue, it is often possible to delay its progression or prevent further damage, as well as treat 

other complications that may arise.  

It is increasingly accepted that cirrhosis is a dynamic process that is no longer a 

terminal condition 
[2]

. The standard METAVIR system used to gauge the severity of fibrosis 

does not have a grade past cirrhosis, and a new sub-classification system has been proposed 

to gauge the severity of cirrhosis and the likelihood of mortality at each stage. For patients in 

the advanced stages of cirrhosis, these further prognostic scores are widely used to predict 

survival and the need for transplant. As such, the development of accurate, non-invasive 

diagnostic modalities is becoming increasingly important. 

The susceptibility of the liver tissue measured in this experiment is consistent with the 

other experiments presented in this thesis, i.e. the susceptibility of the cirrhotic liver tissue as 

measured in QSM images is approximately the equal to that of the water reference, indicating 

no increase in hepatic iron in the BDL rats. In the previous mouse experiments it was shown 

histologically that the amount of iron present in the liver was minimal (chap. 4 fig. 4.10) , 

however it is known that the accumulation of excess liver iron is a facet of advanced liver 

diseases including cirrhosis. The findings in this experiment are in contrast with the expected 

results based on the findings of similar studies that have shown that shown that it is feasible 

to use changes in liver iron to accurately stage liver fibrosis such that susceptibility estimates 

correlate well with liver biopsies 
[17]

 and R2* measurements 
[18]

. The reasons for this are 

unclear, however it may be the case that iron over load is not as prevalent in this model as 

was assumed (fig. 6.5).  

Based on the results of a similar experiment 
[11]

, it was expected that a hyperoxic gas 

challenge would induce a meaningful shift in susceptibility from baseline (normoxic) 

conditions. This was not the case. In the experiment conducted by Patterson et. al., the 

significant increase in T2* observed in the livers of patients suffering from cirrhosis was 

hypothesised to be caused by a breakdown in the auto-regulatory mechanisms of the liver 

vasculature. The data suggests a paramagnetic shift in the susceptibility of almost all of the 
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animals in the BDL cohort (figure 6.6) in response to the gas challenge, but the difference 

was miniscule i.e. on the order of a few parts per billion. 

The difference in oxygen extraction between cirrhotic and healthy livers is the subject 

of conflicting reports in the literature. It has been shown previously that oxygen uptake in 

patients with liver cirrhosis had an inverse relationship with the severity of the disease (as 

determined by Pugh score) 
[19]

. One hypothesis to explain this was that this was due to an 

abnormal limitation of tissue extraction caused by the disease. Conversely, while it has been 

shown that ShvO2 reflects the hepatic oxygen supply/demand ratio 
[20]

, it has also been shown 

in several studies that, despite the disruption to liver perfusion, there is no difference between 

the hepatic venous oxygen content of healthy and cirrhotic livers as measured in both 

preclinical and clinical studies 
[21, 22]

. The data here would suggest that there is a reduction in 

the amount of O2 extracted from the blood in the BDL animals, but due to the low numbers of 

the sham cohort, no conclusion could be reached. 

This experiment encountered a number of limitations. Most importantly, the study is 

underpowered. More control animals are required to draw meaningful conclusions from the 

results. The reason the number of sham animals was so limited was that this experiment was 

outside of the initial scope of the project, which had originally intended to perform mouse 

experiments only. During the course of the PhD however, the opportunity presented itself to 

examine another disease model which had previously been unavailable. As the animals were 

intended for another study this resulted in a number of additional limitations. Firstly, 

obtaining the animals proved quite difficult due to clashes in the experimental calendars of 

this and the other study. Secondly, this precluded the possibility of further examination of the 

liver tissue (e.g. histological examination) which could have further informed the results of 

the QSM experiment, and thirdly, the animals had had a significant amount of time and effort 

invested by the group that owned them, and so obtaining the number of animals required for 

statistical validation was not possible.  In the future, if access to greater numbers was 

possible, a longitudinal study of changes in susceptibility and ShvO2 as cirrhosis progressed 

may yield interesting results. 

Despite the apparent usefulness of the measurement 
[20, 23, 24]

, ShvO2 has been the 

focus of very few studies, fewer still that focus on rats. Of the few studies that have examined 

rats, there are large variations in the measured ShvO2 values ranging from ~30% 
[25]

 to ~65% 

[20]
 in healthy and sham hepatectomy rats respectively. Further work on this topic could 
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include an in-depth characterisation of changes in ShvO2, as well as a comparison of invasive 

and non-invasive measurements under a variety of experimental conditions. 

In addition to the small cohort, the tuning rod of the transmit/receive coil used during 

scanning was broken at the time the data was acquired, so the signal intensity (and hence 

SNR) was reduced. As the animals that were the focus of this experiment were primarily 

being used in a separate study, the window of opportunity to acquire data was limited. This 

window coincided with a time during which the tuning rod on the transmit/receive coil was 

malfunctioning, thus undermining the quality of the acquired data. The data acquired from 

the BDL rats was more reliable as the cohort consisted of 7 animals, however the small size 

of the sham cohort disallowed meaningful statistical analysis of control data, as well as 

meaningful comparison between the two cohorts.  

The BDL model of liver cirrhosis is the most common model used to induce 

obstructive cholestatic injury to mice and rats 
[1]

. However, there are a number of methods 

available to inflict the same injury. Toxic models involve the administration of substances 

such as carbon tetrachloride or ethanol over roughly the same amount of time as the BDL rats 

examined here (~4 – 6 weeks), and it is noted in the literature that the administration of 

ethanol will decrease the response of the liver to hyper- and hypoxic challenges 
[26]

. This is 

most likely due to the presence of ethanol, rather than the manifestation of the liver’s 

response to the insult. This is somewhat representative of the clinical situation – the liver’s 

reaction to a wide variety of insults from hepatitis to drug and alcohol abuse is reasonably 

similar, and results in the same pathological characteristics. 

6.6 Conclusions 

In this work, I have demonstrated that it is possible to measure the susceptibility, and 

to calculate the SvO2 in the major blood vessels of a cirrhotic liver. The susceptibility of the 

liver tissue as measured with QSM did not reflect the expected increase in iron deposition in 

the disease cohort, and administration of pure oxygen did not seem to reflect the vascular 

disruption that is characteristic of liver fibrosis. These results were unexpected, and most 

likely reflect the limited number animals studied and hardware problems that were present at 

the time of data acquisition. Nevertheless, the data presented here provide a proof of principle 

for the application of QSM to animal models of liver cirrhosis, and also provide motivation 

for a follow-up study to investigate the usefulness of QSM for diagnosing and staging the 

disease. 
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Final Discussion 

The primary aim of this thesis was to investigate novel applications of Quantitative 

Susceptibility Mapping (QSM). The work focussed specifically on the liver, as this is a niche 

area that has so far been almost entirely unexplored otherwise, but one which could provide a 

rich area for improving the diagnosis and understanding of disease. The experiments 

performed represent the development and implementation of QSM in the rodent (mouse and 

rat) liver for the first time, and, furthermore, demonstrate the first instances in which QSM 

has been applied to a diverse range of liver pathologies. While preliminary in nature, the 

undertaking has resulted in a viable paradigm within which future experiments can be carried 

out, and has laid the groundwork for further avenues of study. 

QSM is an exciting field that has given researchers a novel way to explore tissue 

composition and microstructure. Initial applications focussed on quantifying the changes in 

tissue iron content that are indicative of neurological disorders, but the field has grown 

rapidly to give rise to a diverse range of clinically relevant applications, many of which have 

been discussed during the course of this thesis. A number of clinical trials are currently 

ongoing 
[1-3]

 , including one that aims to evaluate regional gadolinium (Gd) retention in 

patients that have undergone Dynamic Contrast Enhanced (DCE) MRI 
[1]

. This is of 

particular relevance, as at time of writing the issue of toxicity caused by residual Gd is a 

highly contentious one in the MR community 
[4]

, and the results may have significant 

implications for diagnostic MR in clinical practice. 

Applications of QSM in organs outside the brain are still relatively few in number, 

and some of the reasons for this may be due to the relative simplicity of acquiring images of 

the brain. For example, the lack of organ motion is advantageous, as it allows the acquisition 

of repeatable images with relative ease, and the comparably small air/tissue interfaces in the 

head require the removal of less information during processing. Secondly, the consistent 

architecture of the brain allows more robust comparisons between subjects, or in the same 

subject longitudinally. Similarly, the wide availability of brain masks and atlases means that 

processing the images is far less cumbersome, allowing segmentation to be performed 

automatically in seconds, as opposed to the hours required to do so manually. This has the 

added advantage of reducing the error that could be caused by human intervention. Thirdly, 

while it has been shown that there is a negligible amount of fat in the animals examined here 
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(chap. 3A. sec. 3.4.1), this will be a challenge in clinical imaging, requiring a reasonably 

complex augmentation of the processing protocol 
[5]

. 

A significant amount of experimental work was dedicated to addressing the obstacles 

encountered during the implementation phase of the project, and there is still scope for 

further improvement. For example, respiratory gating was used during the all of the 

acquisitions, necessitating a regular respiratory rate. While this was not an issue when 

imaging healthy subjects, controlling by means of anaesthetic the respiratory rate of animals 

that were at an advanced stage of disease required a considerable level of skill and patience. 

In some instances the animals would periodically hyperventilate, resulting in ghosting and 

increased image noise. Another solution to this problem could be to implement retrospective 

gating, meaning that data is acquired throughout the entire respiratory cycle. Slices acquired 

during motion could then be identified during processing and removed from the dataset 
[5]

. 

The trade-off between prospective and retrospective gating is a complex one – the data may 

be acquired at a faster rate, as the sequence doesn’t require a trigger from the respiratory 

cycle and instead acquires data constantly. Conversely, retrospective gating necessitates an 

increased number of signal averages to ensure the missing data is adequately compensated 

for, and so may increase acquisition time, and subsequently the risk of subject mortality.  

Some of the difficulties encountered during implementation however gave rise to 

novel solutions that may benefit the field of QSM imaging as a whole. As discussed in 

chapter 4 sec. 4.1.2.4, the reference against which QSM values are measured can easily be a 

source of systematic error when taken from an internal region (e.g. CSF, white matter). The 

inclusion of a sample of distilled water to act as an external reference is an entirely novel 

solution to the problem, and elegantly addresses a number of known issues, such as 

standardisation, and ensuring easy identification in all images. Selection of a suitable 

reference has been a point of contention for some time in the QSM community 
[6]

, and it is 

hoped that this may go some way to settling the argument. 

Similarly, the TKD algorithm selected to perform the QSM inversion is well-suited to 

the exploration of novel applications. As mentioned, the speed with which it can carry out the 

calculation is extremely advantageous, as empirically optimising an image processing 

protocol requires repeatedly performing the same calculation while incrementally adjusting a 

variety of parameters. The drawback of the algorithm is the trade-off between image quality 

and fidelity, and is most likely the reason it is underused in the literature. The solution (chap 



176 

 

3 Sec 3.2.4) presented here to the systematic underestimation of susceptibility values inherent 

in the algorithm is also entirely novel. As discussed, the correction curve presented in the 

literature was derived experimentally, specifically for images of the brain acquired at 3T. The 

solution proposed here allows a correction curve to be calculated from a single data set 

(negating the need for multi-orientation acquisitions and the requisite processing thereof), in 

any organ, at any field strength.  

The main experimental chapters detailed the application of QSM to a diverse range of 

hepatic scenarios. A hyperoxic gas challenge was utilised in all experiments, as it was 

thought that controlled modulation of the deoxyhaemoglobin content of the blood would 

impart information regarding blood oxygenation (chapter 4) and vascular status (chapter 5 & 

6). 

Chapter 4 detailed the first attempt at using QSM measurements to calculate the 

venous oxygen saturation in large branches of liver vasculature. Data was acquired under 

normoxic and hyperoxic conditions, and susceptibility was measured in both the portal and 

hepatic veins.  SvO2 was then calculated in each under both conditions. This was validated by 

means of invasive measurement, and it was found that there was excellent agreement between 

the calculated and directly measured values under both norm- and hyperoxic conditions. 

It was not possible to obtain susceptibility measurements from the hepatic artery with 

the imaging protocol used here. However, susceptibility measurements from all three hepatic 

blood vessels at once would be extremely useful. For instance, it has been shown previously 

that it is possible to measure the blood flow in each vessel in rats using phase contrast MRI 

[7]
. If one could measure both blood flow and oxygen saturation in all three major hepatic 

vessels, it would be entirely possible to calculate the hepatic metabolic rate of oxygen 

consumption. The cerebral metabolic rate of oxygen consumption has proved to be an 

extremely useful marker when assessing a variety of brain insults, and is thought to be a 

direct index of energy homeostasis and brain health 
[8]

. The ability to non-invasively measure 

oxygen metabolism in the liver could prove equally useful for a wide variety of applications. 

Chapter 5 describes the first application of QSM to a pre-clinical model of colorectal 

liver metastases, or, indeed, any cancer outside of the brain. In sec. 5.1 susceptibility was 

measured in the tumours and healthy liver tissue, and it was found that the tumours were 

significantly more diamagnetic than the surrounding tissue. Hyperoxia was induced in order 

to assess the vascularity of the tumours, and it was found that the susceptibility of the 
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tumours was significantly more paramagnetic during the administration of pure O2. This is in 

contrast to a number of similar experiments contained within the body of literature on the 

subject, and it is hypothesised that this is due to an increased influx of unbound paramagnetic 

O2 molecules dissolved in the blood plasma. In addition, susceptibility was measured in the 

portal and hepatic veins, and the calculated oxygen saturation in each was compared to that of 

a healthy cohort under the same conditions. It was found that there was significantly less 

oxygen in the hepatic venous blood of the animals that had tumours when compared to the 

healthy cohort. This was ascribed to the increased metabolic demands of the cancer.  

Chapter 5 sec 5.2 outlined the first attempt at using QSM in conjunction with a gas 

challenge to assess the efficacy of a Vascular Disrupting Agent (VDA). Currently, there is a 

critical need for noninvasive imaging biomarkers of the response of cancer to therapy, and 

the aim of this chapter was to evaluate hepatic QSM in this context. The study examined 10 

mice that had been inoculated with cancer. Half were administered the drug, and half were 

not in order to act as a control. The mice were scanned immediately before and 72 hours after 

the VDA was given to the treated cohort, and hyperoxia was induced during both sessions. 

Susceptibility was measured in tumours under both hyper- and normoxic conditions at both 

time points. It was found that, as in sec. 5.1, the susceptibility of the tumours was more 

paramagnetic under hyperoxic conditions, however the response of the tumours to the gas 

challenge was reduced after the administration of the VDA, possibly indicating a reduction in 

tumour blood supply caused by the denigration of their vasculature. The effect of the drug 

was confirmed by histology. 

The cancer studies discussed in chapter 5 were extremely technically challenging, and 

took roughly two years to complete. It proved extremely difficult to cultivate tumours in the 

animals, and attempts to implement the model in several strains of mice using a number of 

different cell lines repeatedly failed, or met with very limited success. When the model was 

implemented successfully, it was found that the animals did not tolerate anaesthetic very 

well, which somewhat precluded cross validation with other MRI techniques. 

While in contradiction to the existing literature, the reaction of the tumours to 

hyperoxia as measured via susceptibility was consistent across a number of experiments. It 

could be argued that this study may have benefited from invasive measurement of tumour 

oxygenation, although the tumours were extremely small and diffuse, and the measurements 

taken from the susceptibility maps encompassed all the tumours en masse by necessity. 
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Invasive measurements would have had to have been made in several tumours in each animal 

in order accurately assess changes in the changes in oxygenation status. The difficulty of 

ensuring the sample was actually taken from a tumour notwithstanding, it is unlikely that the 

mice could have tolerated the severity of the protocol. 

The reduced reaction of the tumours to the gas challenge after the administration of a 

VDA in sec. 5.2 is encouraging, though there is scope for improvement in the experimental 

design. For example, one obvious improvement is to increase the numbers in each cohort to 

10 animals each. This would allow a more rigorous statistical analysis, allowing the results to 

be discussed with greater confidence. Conversely, administering the drug to half of the 

animals, but scanning once, at an earlier timepoint (i.e. 24 hours after the drug was 

administered) may have meant that the animals could have better tolerated the anaesthetic, 

and would have eliminated the need to ensure the animals survived the entirety of a 

longitudinal study. This may have allowed their time in the scanner to be extended, 

potentially allowing cross-validation with other MRI techniques (e.g. R2* or ASL). 

The experiment described in chapter 6 was the first instance in which QSM had been 

applied to a model of liver cirrhosis. As mentioned, the experimental work was carried out as 

part of a broader experiment to study hepatic encephalopathy. As such, priority was placed on 

ensuring the survival of the animals by minimising their time in the scanner. Furthermore, 

there were some technical difficulties which have already been outlined (chapter 6). While 

the results of this experiment are limited, it is reasonably apparent that QSM cannot detect 

changes in liver iron deposition that are associated with liver cirrhosis. The precise reasons 

for this remain unclear, particularly as it has been shown in the literature that it is possible 

with SWI. It may be the case that the iron distributed through the liver tissue is too diffuse to 

have a noticeable effect on the bulk susceptibility of the liver that is measureable by QSM. 

This is unlikely however, as it has been shown in the experiments presented here that QSM is 

sensitive to changes in susceptibility of the order of part per billion. Conversely, it may be the 

case that, as is shown in fig 6.4, the accumulation of iron in this model may be so limited as 

to not have a significant effect on the QSM measurement. 

In general, the mechanisms underpinning changes (or lack thereof) in susceptibility of 

rodent liver tissue, as measured with QSM in all of the above experiments, remain somewhat 

mysterious. Upon commencement of the project, it was thought that the variation of iron 

throughout the liver tissue would have been obvious, particularly so as iron delineation and 
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quantification was the initial focus of QSM experiments in the brain. Furthermore, it was also 

assumed that hyperoxia would have had a measureable effect on the susceptibility of the liver 

tissue, due to the fact it is a highly vascularised organ with a relatively high throughput of 

blood. This was not the case, although changes in blood oxygen status were apparent.  

One challenge throughout the course of this project has been the lack of literature on 

the subject. While liver susceptometry has been carried out clinically to assess iron overload 

for a number of years, very little work has been performed in rodents. As such, it is very 

difficult to find any experiments that have examined venous blood oxygen saturation in either 

the rodent or human liver, or changes therein associated with gas challenges. Furthermore, 

the existing literature values vary wildly from one experiment to the next, so comparing 

experimental results to literature values was extremely difficult. As such, future work could 

involve cannulating the major hepatic blood vessels and characterising changes in blood 

oxygen saturation brought about by various gas challenges or disease states. This would most 

likely be carried out in rats due to the size of the blood vessels in mouse livers. 

The novelty of the work also made validating the experimental results extremely 

difficult, as there is no “gold standard” to compare results to. This is partially due to the semi-

quantitative nature of QSM (see chapter 4 sec. 4.1.2.4 – water reference), but also because 

performing susceptometry is a difficult endeavour. For example, validation of susceptibility 

values could be sought by comparing QSM results to those obtained from a Superconducting 

Quantum Interference Device (SQUID). Examining samples on a SQUID however is by no 

means a trivial process, requiring rigorous preparation of the sample. Equally, validating 

results with similar MRI techniques may not be suitable in all instances. R2* for example, 

while related to susceptibility, effectively gives proxy measurements of susceptibility via 

local field inhomogeneities. As such, validation of the results in the above experiments was 

done where possible by invasive, direct measurements (chapter 4), or by histology (chapter 4 

& 5). 

The combination of QSM and a hyperoxic gas challenge puts to good use its ability to 

exploit dHb as an endogenous contrast agent, and is potentially quite a useful technique. The 

assessment of tumour vasculature and oxygenation is an important component of oncologic 

diagnostic procedure, particularly when deciding a treatment pathway. It is thought that the 

administration of O2 could be well tolerated by the vast majority of patients, and so could 

easily be integrated into clinical protocol. The added advantage of performing measurements 
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in the blood vessels is that fat does not need to be accounted for during processing. ShvO2 is 

an underutilised measurement, and it would appear that it can tell a lot about the health of the 

liver. Its underuse may be because, currently, it can only be measured invasively. The ability 

to perform the measurement non-invasively may allow more in-depth diagnoses or post-

operative monitoring at very little cost in terms of morbidity.  

Susceptibility mapping has the potential to be a powerful diagnostic tool, however 

currently much of the work in the field is focussed on improving the processing techniques as 

opposed to investigating novel applications. It is hoped that the work put forward in this 

thesis will go some way to opening new avenues of research, and stimulating a discussion 

that will encourage the exploration of new clinical applications and diagnostic perspectives. 
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