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ARTICLE INFO ABSTRACT

Keywords: For many years, researchers have sought to understand whether and when stroke survivors with acquired lan-
Stroke guage impairment (aphasia) will recover. There is broad agreement that lesion location information should play
Language some role in these predictions, but still no consensus on the best or right way to encode that information. Here,
Aphasia we address the emerging emphasis on the structural connectome in this work — specifically the claim that
Outcomes . . .. . . L. . . .
MRI disrupted white matter connectivity conveys important, unique prognostic information for stroke survivors with
C . aphasia.
onnectomics

Our sample included 818 stroke patients extracted from the PLORAS database, which associates structural
MRI from stroke patients with language assessment scores from the Comprehensive Aphasia Test (CAT) and basic
demographic. Patients were excluded when their lesions were too diffuse or small (< 1 cm3) to be detected by
the Automatic Lesion Identification toolbox, which we used to encode patients' lesions as binary lesion images in
standard space. Lesions were encoded using the 116 regions defined by the Automatic Anatomical Labelling
atlas. We examined prognostic models driven by both “lesion load” in these regions (i.e. the proportion of each
region destroyed by each patient's lesion), and by the disconnection of the white matter connections between
them which was calculated via the Network Modification toolbox. Using these data, we build a series of prog-
nostic models to predict first one (“naming”), and then all of the language scores defined by the CAT.

We found no consistent evidence that connectivity disruption data in these models improved our ability to
predict any language score. This may be because the connectivity disruption variables are strongly correlated
with the lesion load variables: correlations which we measure both between pairs of variables in their original
form, and between principal components of both datasets. Our conclusion is that, while both types of structural
brain data do convey useful, prognostic information in this domain, they also appear to convey largely the same
variance. We conclude that connectivity disruption variables do not help us to predict patients' language skills
more accurately than lesion location (load) data alone.

White matter

1. Introduction

For many years, researchers have tried to understand and predict
whether and when stroke survivors will recover lost speech and lan-
guage abilities (Bang et al., 2005; Cloutman et al., 2009; Crinion and
Price, 2005; Hope et al., 2017; Hope et al., 2013; Konig et al., 2008;
Lazar et al., 2008; Lendrem and Lincoln, 1985; Marshall and Phillips,
1983; Payabvash et al., 2010; Pedersen et al., 1995; Seghier et al., 2016;
Tilling et al., 2001; Ween et al., 2000). There is broad agreement that
lesion location information should play some role in this work
(Plowman et al., 2012), but still no consensus on the best or right way
to encode that information (Forkel et al., 2014; Hope et al., 2013; Mah

et al., 2014; Price et al., 2017; Zhang et al., 2014). An emerging em-
phasis on structural (i.e. white matter) connectivity in studies of lan-
guage has naturally encouraged the same attention in studies of aphasia
(Agosta et al., 2010; Epelbaum et al., 2008; Fridriksson et al., 2013;
Hope et al., 2016; Olsen et al., 2015; Ripamonti et al., 2014). As many
studies have shown that disrupted connectivity contributes to language
impairments and their recovery (Forkel et al., 2014; Hope et al., 2016;
Kuceyeski et al., 2015a; Pani et al., 2016; Wu et al., 2015; Yourganov
et al., 2016), it is natural to presume that connectivity disruption data
should be pivotal when predicting language outcomes after stroke.
However, lesion distributions are highly structured (Inoue et al.,
2014; Mah et al., 2014). If one brain region is damaged, neighbouring
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regions are often damaged too, and white matter disruption will tend to
be highly correlated with cortical damage. So even if connectivity
disruption is the causal mechanism for some post-stroke cognitive
symptoms, it may be that lesion location can serve as a reliable proxy in
prognostic models. We might find that the addition of connectivity
disruption data adds little, unique prognostic value to our models of
post-stroke outcomes. Or to put the point another way, mechanistic
importance is no guarantee of clinical importance, in this domain. In
what follows, we test the clinical importance of connectivity disruption
data in a very large sample stroke patients.

2. Methods
2.1. Patient data

Our patient data were extracted from our PLORAS database (Seghier
et al., 2016), which associates stroke patients, tested over a broad range
of times post stroke, with demographic data, behavioural test scores
from the Comprehensive Aphasia Test (Swinburn et al., 2004), and high
resolution T1-weighted MRI brain scans. Patients are excluded from the
PLORAS database when there is evidence they have other neurological
conditions (e.g. dementia, multiple sclerosis), contraindications to MRI
scanning, are unable to see or hear the stimuli required to assess their
language abilities, or have insufficient comprehension of the purpose of
the study to provide consent for their participation. We included all
patients whose data was available at the time, irrespective of their: age
at stroke onset; sex; premorbid handedness; or native language. Patients
were only excluded if their lesions were too diffuse or small (< 1cm®)
to be detected by our Automatic Lesion Identification (ALI) toolbox
(Seghier et al., 2008).

2.2. Structural brain imaging data

Imaging data were collected using sequences described elsewhere
(Hope et al., 2015). Data from different scanners were combined after
conversion to quantitative probabilistic estimates of grey matter den-
sity. Pre-processed with Statistical Parametric Mapping software (SPM,
2012), these images were spatially normalised into Montreal Neurolo-
gical Institute (MNI) space using a modified version of the unified
segmentation algorithm (Ashburner and Friston, 2005) that has been
optimized for use in patients with focal brain lesions (Seghier et al.,
2008). We used the ALI toolbox (Seghier et al., 2008) to index the
degree of abnormality at each voxel in each patient image (in relation
to the same type of images in healthy controls), combining the grey and
white matter outputs to generate a single thresholded (i.e. binary)
image that shows the presence or absence of a lesion at each voxel.
Lesion volume is calculated as the sum of those voxels where lesions
were deemed to be present.

Following the approach taken by Yourganov and colleagues
(Yourganov et al., 2016), in a recent study which demonstrates that
connectivity disruption data can drive useful predictions for language
outcomes after stroke, we encoded our lesion images using the 116
grey-matter regions defined by the Automatic Anatomical Labelling
atlas (Tzourio-Mazoyer et al., 2002a). We examined models driven by
both lesion load in these regions (i.e. the proportion of each region
destroyed by each patient's lesion), and by the disconnection of the
white matter connections between them. Disconnection was calculated
via the Network Modification toolbox (Kuceyeski et al., 2013), which
generates the mean disconnection implied by each lesion, using struc-
tural connectomes defined for a separate sample of 73 neurologically
normal controls. This toolbox has been used to successfully predict both
network atrophy (Kuceyeski et al., 2014) and cognitive outcomes
(Kuceyeski et al., 2016) after stroke, and has also been successfully
employed in studies of longitudinal patterns of atrophy in Alzheimer's
patients (Raj et al., 2015), the spread of Progressive Supranuclear Palsy
(Pandya et al., 2017), cortical atrophy in temporal lobe epilepsy

23

Neurolmage: Clinical 19 (2018) 22-29

(Abdelnour et al., 2015), and early Multiple Sclerosis (Kuceyeski et al.,
2015b).

2.3. Behavioural data

Every patient was assessed using the Comprehensive Aphasia Test
(CAT) (Swinburn et al., 2004). For ease of comparison across tasks, task
scores are expressed as T-scores, representing each patient's assessed
skill on each task (e.g., describing a picture; reading non-words) re-
lative to a reference population of 113 aphasic patients. The threshold
for impairment is defined relative to a separate population of 27 neu-
rologically normal controls such that performance below threshold
would place the patient in the bottom 5% of the normal population
(Swinburn et al., 2004). Lower scores indicate poorer performance. The
CAT yields 34 separate scores, though six refer to non-linguistic skills
such as line bisection, arithmetic and memory. Here, we focus initially
on scores in naming (i.e. of visually presented pictures), before
widening the analysis to include all of the other 27 language scores.
Detailed descriptions of the tasks are given in the CAT manual
(Swinburn et al., 2004).

2.4. The baseline model

Our aim here was to measure what the introduction of structural
(dis)connection variables buys us, in terms of improved predictive ac-
curacy. Our baseline for this comparison, is a model driven by variables
whose prognostic relevance is already supported by prior evidence: (i)
basic demographic data including time post-stroke (Hope et al., 2017;
Hope et al., 2013), age at stroke (Ramsey et al., 2017), pre-stroke
handedness (Knecht et al., 2000), and bilingualism (Hope et al., 2015);
(ii) lesion volume (Plowman et al., 2012); and (iii) lesion location
(Hope et al., 2013; Plowman et al., 2012; Yourganov et al., 2016),
which is calculated as described above. We use the term ‘lesion load
variables’ to refer to variables representing the proportion of each of a
series of anatomically defined regions, which is destroyed or en-
croached upon by each patient's lesion(s). We use the term ‘lesion load
model’ to refer to models driven by the combination of: (a) demo-
graphic and lesion volume variables, as described above; and (b) lesion
load variables.

2.5. Structural connectivity models

To measure whether structural connectivity variables add prog-
nostic information over and above that already conveyed by lesion-load
models, we compare the predictions made by lesion-load models to
those made using models which either: (a) replace the lesion load
variables with structural connectivity variables, or (b) add structural
connectivity variables to the lesion-load model, or (c) stack lesion-load
and connectivity models together. Like the lesion load model, all of
these models also include basic demographic data and lesion volume.
For the sake of brevity, we refer to them as: “connectivity models”,
‘lesion load plus connectivity models’, and “stacked models” in what
follows.

Stacking starts by training component models separately (e.g. a le-
sion-load model and a structural connectivity model), and using those
models to predict the language scores under study via cross-validation.
The resulting predictions are then used as input to a new model, also
trained to predict the same language scores. This new, higher level
model is also assessed in cross-validation, using the same folds as em-
ployed to generate the predictions from the component models. Our use
of this approach is motivated by recent work which employs stacking to
apparently good effect in this domain (Pustina et al., 2017), reporting
modest but significant improvements in predictive power over what
was possible with any component model alone. More generally,
stacking is thought to be useful when — as here — we want to combine
inferences made from datasets containing very unequal numbers of
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variables. The argument is that if such datasets are merely appended,
the larger set may dominate the resulting model, even at the cost of
increased prediction error (Pustina et al., 2017).

2.6. Feature selection

Following the approach recently preferred by Yourganov and col-
leagues (Yourganov et al., 2016), we applied an initial, mass univariate
filter to the lesion load and connectivity variables in all of our models.
Correlating each variable, singly, with our target language score, we
kept only those variables for which the result was significant after a
Bonferroni correction for multiple comparisons. This is a convenient if
not particularly powerful feature selection method, but alternatives
such as wrapper selection (Kohavi and John, 1997; Pustina et al.,
2017), in which features are added or removed sequentially based on
more direct measures of their predictive utility, are also prone to
overfitting, which can dramatically reduce out-of-sample predictive
performance (Pustina et al., 2017).

Surprisingly, our feature selection filter left more than a thousand
connectivity disruption variables included when regressed against
many language scores. Models with too many variables are known to
suffer from a ‘curse of dimensionality’, which hampers their predictive
power; left as it was, we thought that the comparison between the le-
sion load and connectivity models would not be fair (biased in favour of
lesion load). So we repeated each analysis using a second restricted set
of connectivity variables that were equal in number to the load vari-
ables: i.e. if the filter led to the selection of N lesion load variables when
predicting a given language score, we selected the N connectivity
variables with the strongest correlations to the same language score.

2.7. Model comparison

Model performance was assessed via 10 times 10-fold cross-valida-
tion (Kohavi and John, 1997), with the same folds used for every
analysis focused on predicting the same language score. Feature selec-
tion, as described above, was performed within each fold, using only
the training data for that fold. This process yields 10 predictions per
patient, and the final prediction is their mean average. One intuitive
way to measure the quality of these predictions, is via the coefficient of
the correlation between predicted and empirical scores. Larger coeffi-
cients imply better predictions (Hope et al., 2015; Pustina et al., 2017;
Yourganov et al., 2016), and the coefficients can be compared directly
via a Fischer r-to-z transform (Pustina et al., 2017). However, while
usually related, these correlation coefficients are also potentially or-
thogonal to prediction error: for example, the correlation between
predicted and empirical scores is unaffected if we add a constant to all
predictions, whereas this manipulation will certainly affect prediction
error. For this reason, we compare models by comparing their predic-
tion errors directly: specifically, by comparing the variances of their
prediction error distributions: more accurate predictions have smaller
prediction error distribution variances. But we also use correlation
coefficients as a convenient and intuitive way to report model quality.

Our analysis involves comparing the prediction error distribution
variances of our lesion-load model to those of all of the connectivity
models: i.e. (a) when lesion load variables are replaced by connectivity
variables (i.e. producing a connectivity model); (b) when lesion-load
and connectivity variables are appended (i.e. producing a lesion load
plus connectivity model); and (c) when lesion load models are stacked
with connectivity models (i.e. producing a stacked model). Each con-
nectivity model is reproduced twice, with either the full or the re-
stricted connectivity datasets for each task analysis, so there are a total
of 6 model comparisons to make. Each comparison is a one-tailed
variance test, because we are only interested in situations where the
prediction error distribution variances for the lesion load models are
significantly larger (worse) than they are for any connectivity model.
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2.8. Inducers

There are many different ways to tackle regression problems; here,
we consider a range of popular alternatives. Our analysis begins with
support vector machines, with a linear kernel, simply because this in-
ducer has been more prominent than others in the recent, relevant
literature: e.g. (Mah et al., 2014; Yourganov et al., 2016). But we go on
to employ all of the different inducers distributed in the Matlab 2017a
Classification Learner application: (i) multiple linear regression; sup-
port vector machines with (ii) linear; (iii) quadratic; (iv) polynomial
order 3; and Gaussian kernels with kernel scales of (v) 5; (vi) 10; and
(vii) 20; Gaussian Process regression models with (viii) squared ex-
ponential; (ix) rational quadratic; (x) exponential; and (xi) matern5/2
kernel functions; regression trees with minimum leaf sizes: (xii) 4, (xiii)
12 and (xiv) 36; and (xv) boosted and (xvi) bagged regression trees.
Taken together, these methods represent a reasonable cross-section of
the current state of the art in regression modeling.

2.9. Omnibus analysis

With 16 inducer configurations, 28 language scores from the CAT
(Swinburn et al., 2004), and 7 model predictor configurations to test,
we had a total of 3136 repetitions of the core (10 x 10-fold) cross-va-
lidation process to complete (112 per task analysis). These were run
with Matlab 2017b, on a 16-core PC running Windows 8.1, and took
~72h to complete. Full results are available in Supplementary Mate-
rial: here, we summarise the key features of those results.

3. Results
3.1. Lesion and language data

There were a total of 818 patients in our sample, including 260
women and 98 patients who were left-handed or ambidextrous pre-
stroke. Their mean age at stroke onset was 55 years (standard devia-
tion = 13 years), and the mean time after stroke onset at which they
were assessed was 58 months (standard deviation = 66 months). Fig. 1
illustrates the distribution of the patients' lesions. Median scores and
ranges for each task score are included in Table 1.

3.2. Analysis 1: naming

To make the structure of the analysis as clear as possible, we start by
reporting results from a single inducer, employed to predict patients'
scores in a single language skill: naming. Naming is a popular focus for
research in aphasia because deficits of this skill, anomia, are perhaps
the most common of the persistent language impairments that stroke
survivors suffer. We began the analysis using a support vector machine
with a linear kernel, simply because this is the most popular inducer
both in our field (e.g. (Mah et al., 2014; Yourganov et al., 2016)) and in
other studies which aim to use structural neuroimaging to predict labels
of clinical interest (Arbabshirani et al., 2017). With this inducer, we can
see some evidence both that the intuition behind restricting the con-
nectivity disruption data was right, because the restricted connectivity
models tend to perform at least as well as the full connectivity models,
and that the use of that data significantly improves our ability to predict
the patients' naming skills (see Fig. 2).

When tackling these prediction problems in the past, we have pre-
ferred Gaussian process model regression with a rational quadratic
kernel (e.g. (Hope et al., 2013)) to support vector regression with linear
kernel. Linear inducers are often preferable because their weights are
easier to interpret, but our impression is that non-linear inducers are
more powerful in this domain. This impression was confirmed when we
repeated the previous analysis with our preferred inducer: the results
with all predictor configurations are better, and in particular the
Gaussian process models appear to handle the full connectivity datasets
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Fig. 1. Lesion frequency. Axial slices of a lesion frequency image for 818 patients.

more gracefully (see Fig. 2). But critically, this inducer also ex-
tinguished any apparent benefit of using connectivity disruption data to
predict naming scores (see Fig. 2; allp > 0.1).

In effect, we have opened a Pandora's box here, because our com-
parisons of interest appear to be inducer-dependent. This is confirmed
when the same analysis is repeated with many different inducers (as
listed in the Methods): analyses with 5/16 inducers reveal what seem to
be significant benefits of the use of the structural connectivity data
(though only 3/16 would survive a correction for multiple compar-
isons), but there are no significant benefits when we use the other 11
inducers. When we take just the best result (i.e. with the smallest pre-
diction error distribution variance) for each configuration of predictors,
the results are consistent and there are no significant differences (all
p > 0.3; see Fig. 2). In other words, when we are as sure as we rea-
sonably can be that we are making best use of the available predictors,

Table 1

structural connectivity variables do not drive significantly better pre-
dictions of naming scores.

3.3. Predicting all the language scores

We next turned to all of the other 27 language scores defined by the
CAT: repeating all of the analyses described so far for every one of those
scores. Since our comparisons of interest were inducer dependent in the
last section, we now report only those comparisons of predictions de-
rived from the best inducer for each predictor configuration (Table 1).
The sample sizes vary across language scores, because some patients
had missing data in some tasks, but even the minimum sample size is
very large (781). The results of these analyses are all essentially similar
to those that we found for naming: we find no evidence that the use of
connectivity disruption data significantly improves our ability to

Predictive performances (simple correlations between predicted and empirical = Pearson's R) of the best of 16 inducers for each language score and data config-
uration. No model which employed connectivity variables was significantly better than the lesion load model, when predicting any language score (all p > 0.2).

Med. =

median; N = sample size; L = lesion load model; C(r) = restricted connectivity model; C(f) = full connectivity model; LC(r) = lesion load appended to

restricted connectivity; LC(f) = lesion load appended to full connectivity; LsC(r) = stacked model with lesion load and restricted connectivity; LsC(f) = stacked

model with lesion load and full connectivity.

TASK R: Predicted vs. Empirical
Med. (range) N (all/impaired) L C(r) C(H) LC(r) LC(f) LsC(r) LsC(f)

Fluency 68 (38) 812/255 0.72 0.73 0.73 0.73 0.73 0.72 0.70
Comprehension of spoken words 65 (40) 814/158 0.50 0.51 0.50 0.51 0.50 0.51 0.50
Comprehension of spoken sentences 63 (44) 813/370 0.66 0.67 0.66 0.67 0.66 0.67 0.65
Comprehension of spoken paragraphs 60 (26) 805/116 0.44 0.43 0.39 0.43 0.40 0.44 0.45
Comprehension of spoken language 63 (48) 805/283 0.66 0.67 0.66 0.67 0.67 0.66 0.65
Comprehension of written words 65 (37) 813/256 0.54 0.53 0.55 0.54 0.55 0.54 0.53
Comprehension of written sentences 64 (47) 809/278 0.67 0.66 0.66 0.68 0.67 0.66 0.64
Comprehension of writing 65 (48) 808/339 0.67 0.66 0.67 0.68 0.67 0.67 0.65
Repeating words 57 (30) 813/312 0.63 0.64 0.65 0.63 0.64 0.63 0.62
Repeating complex words 62 (24) 812/252 0.64 0.66 0.64 0.65 0.64 0.64 0.62
Repeating non-words 67 (29) 813/233 0.57 0.57 0.56 0.57 0.56 0.57 0.58
Repeating digit strings 66 (31) 815/253 0.70 0.70 0.69 0.69 0.69 0.70 0.70
Repeating sentences 63 (24) 811/293 0.76 0.75 0.75 0.76 0.75 0.76 0.75
Repeating (all) 58 (38) 810/445 0.73 0.74 0.74 0.74 0.74 0.74 0.73
Object naming 66 (37) 815/352 0.71 0.72 0.72 0.72 0.72 0.72 0.70
Action naming 69 (30) 813/420 0.68 0.70 0.69 0.70 0.69 0.70 0.68
Naming (all) 69 (40) 807/341 0.74 0.75 0.75 0.75 0.75 0.75 0.74
Spoken picture description 63 (36) 805/397 0.72 0.73 0.73 0.73 0.73 0.73 0.72
Reading words 69 (31) 809/362 0.68 0.70 0.69 0.69 0.69 0.68 0.67
Reading complex words 67 (27) 805/304 0.69 0.69 0.69 0.69 0.69 0.69 0.68
Reading function words 62 (27) 808/97 0.60 0.60 0.60 0.60 0.60 0.58 0.58
Reading non-words 61 (28) 807/330 0.70 0.70 0.70 0.70 0.69 0.70 0.69
Reading 66 (33) 805/335 0.72 0.73 0.73 0.73 0.73 0.72 0.71
Writing (copying) 61 (28) 796/101 0.45 0.43 0.43 0.44 0.43 0.38 0.38
Written picture naming 67 (29) 801/189 0.58 0.60 0.59 0.59 0.58 0.58 0.56
Writing to dictation 68 (30) 799/299 0.68 0.68 0.67 0.68 0.67 0.69 0.68
Writing 65 (35) 786/270 0.67 0.67 0.66 0.67 0.67 0.69 0.67
Written picture description 71 (33) 781/354 0.71 0.71 0.71 0.72 0.71 0.71 0.71
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Fig. 2. Predictive performance on naming scores. Model predictive performance is shown for: (a) linear support vector machines (light grey bars); (b) Gaussian
processes with a rational quadratic kernel (mid-grey bars); and (c) the best of 16 inducers tried (dark grey bars). Models were trained on each of 7 data config-
urations: (i) lesion load only, L; (ii) restricted connectivity disruption, C(r); (iii) full connectivity disruption, C(f); (iv) lesion load plus restricted connectivity, LC(r);
(v) lesion load plus full connectivity, LC(f); (vi) lesion load stacked with restricted connectivity, LsC(r); and, (vii) lesion load stacked with full connectivity, LsC(f).
When produced using a linear support vector machine, there was a marginally significant benefit for the stacked model using lesion load and restricted connectivity
(p = 0.04), and non-significant trend for the model which simply replaced lesion load with restricted connectivity (p = 0.07). No significant benefits were observed
when predictions were made using either GPMR (all p > 0.1) or the best of 16 inducers (all p > 0.2). Numbers in each bar are prediction error distribution

variances: all of the model comparisons are comparisons of these variances.
predict any language score (all p > 0.2).

3.4. Connectivity disruption is correlated with lesion load

Finally, we sought to understand why the prior analyses yield no
significant benefits, by comparing the lesion load and connectivity
disruption variables to each other. Specifically, we hypothesised that
both data types convey a great deal of shared information, and this does
appear to be true. First, we identified all of the lesion load and con-
nectivity disruption variables which could reasonably be correlated: i.e.
those that were affected by at least 3 patients' lesions. All of the 116
lesion load variables met this criterion, but only 2420 connectivity
variables were included. Pairwise correlations between these variables
revealed that every lesion load variable was correlated with at least one
connectivity variable and vice versa, even after a Bonferroni correction
for multiple comparisons. These two sets of variables are highly cor-
related.

Another way to make this measurement is by reducing the di-
mensionality of each dataset separately, and measuring the correlations
between the principle components of each set. Here again, and having
also applied a Bonferroni correction for multiple comparisons, sig-
nificant pairwise correlations existed for every principle component
which, individually, explained at least 1% of the total variance in the
original data (11 components of the lesion load variables, and 13
components of the connectivity variables). Fig. 3 presents an example
of this correspondence, plotting the first principal components of each
dataset against each other (r = —0.94).

4. Discussion

We found no evidence that the addition of connectivity disruption
data improves our ability to relate the lesions a patient has suffered to
any subsequent language outcome. When predicting language outcomes
after stroke, we found no use for connectivity disruption data, over and
above what we could garner from lesion location (load) data.

One caveat to these results is that we have inferred connectivity
disruption from T1-weighted MRI, rather than measuring it “directly”
with subject-specific diffusion data. Results derived from the Network
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CONNECTIVITY COMPONENT 1

LESION LOAD COMPONENT 1

Fig. 3. Scatter plot of the first principal component of the lesion load data
versus the first principal component of the connectivity disruption data.

Modification toolbox, which we used to make those inferences, have
been validated elsewhere (Kuceyeski et al., 2013; Kuceyeski et al.,
2015a), but subject-specific information is still lost here. Quite how
important this is remains to be seen. Two recent studies from the same
lab (Del Gaizo et al., 2017; Yourganov et al., 2016) used subject-specific
diffusion data to run similar analyses to those that we employed here,
albeit with smaller samples and a single inducer: a linear support vector
machine. The earlier study (Yourganov et al., 2016) reported apparent
advantages when using their connectivity data, but did not report a
formal model comparison to quantify that benefit. The later study (Del
Gaizo et al., 2017) does report a formal model comparison, but finds no
significant predictive benefit of including their connectivity data. In
this respect, our results are actually more positive than theirs, because
we find significant advantages in 9/28 tasks when using the same in-
ducer (a linear support vector machine), albeit only without a correc-
tion for multiple comparisons (see Supplementary Material). The only
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study that we know of which does report a formally quantified ad-
vantage over and above lesion load, is that by Pustina and colleagues
(Pustina et al., 2017); these authors inferred their connectivity vari-
ables much as we have done, rather than using subject-specific diffusion
data. So at present, there is no evidence that subject-specific diffusion
data makes a critical difference here.

Superficially, our results appear to directly contravene those re-
ported by Pustina and colleagues (Pustina et al., 2017); they reported a
significant advantage over lesion load only models, where we found no
such advantage. Notably, their analysis also employed variables derived
from resting state fMRI, and did not distinguish whether the advantages
they saw were driven by the connectivity data, the fMRI, or both. Our
results and theirs could be compatible, in other words, if the key driver
of the advantage they report is the fMRI data. However, these authors
also quantified that advantage using paired t-tests to compare sets of
correlation coefficients (predicted versus empirical task scores) gener-
ated from 20 repetitions of a 10-fold cross-validation process. This is a
considerably more permissive test than we have used here. As an il-
lustration, the lesion load models in our analyses rarely have the
highest correlation coefficients in Table 1: a paired t-test reveals that
coefficients for the lesion load plus restricted connectivity (LC(r))
models are significantly higher across all language tasks, than those for
the lesion load (only) models (t = 3.95, p = 0.001). But the mean im-
provement in correlation coefficients here is just 0.005: numerical
differences this small can hardly make a compelling case for the use of
connectivity data.

Another caveat flows from the method we used to segment the
patients' lesions. Most prior studies in this area employ binary lesion
images to predict stroke patients' language scores (Del Gaizo et al.,
2017; Hope et al., 2015; Hope et al., 2016; Mah et al., 2014; Ramsey
et al., 2017; Yourganov et al., 2016), so we used the same approach to
maximise the comparability between our study and that earlier work.
Nevertheless, several recent studies have suggested that algorithmic
approaches to binary lesion segmentation should be treated with cau-
tion, at least in the sense that they may diverge from the presumed
“gold standard” of manual segmentation by a neurologist (Pustina
et al., 2016; Yourganov et al., 2016). In response, we would emphasise
that our lesion images were all checked, by eye, by experienced neu-
roscientists: this process should highlight any dramatic or systematic
artefacts in these data. And in any case, our aim is to capture the in-
formation in lesion images which predicts cognitive/behavioural out-
comes, rather than to maximise the similarity between manually and
automatically segmented lesions. Our predictive results are at least
comparable, and often favourably so, with those reported in other re-
cent work (Del Gaizo et al., 2017; Ramsey et al., 2017; Yourganov et al.,
2016; Zhang et al., 2014), which suggests that we are capturing most of
the relevant variance in the patients' lesions.

A third caveat concerns the regions of interest used to encode both
lesion load and connectivity disruption, regions derived from the
Automatic Anatomic Labelling atlas (Tzourio-Mazoyer et al., 2002b).
This was a pragmatic choice, made because: (a) comparable, recent
studies have used this atlas (Del Gaizo et al., 2017; Yourganov et al.,
2016); and (b) the Network Modification toolbox also works with the
same atlas (Kuceyeski et al., 2015a). Our own experience is that dif-
ferent parcellations of the brain do not drive dramatically different
predictive power in this domain, but it is certainly conceivable that an
alternative parcellation might drive predictions which are both better
than those reported here, and which also show more significant benefits
associated with the use of connectivity disruption data. Indeed, even
without a different parcellation, there are many different ways to re-
present connectivity disruption which we have not considered here,
such as the dynamical measures recently employed to good effect by
Del Gaizo and colleagues (Del Gaizo et al., 2017), though note this
measure did not significantly improve on lesion load models either.
Some alternative representation or encoding of this data may yet reveal
a more significant role for connectivity-based analyses. The same logic
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applies more widely too: since our comparisons of interest are inducer-
dependent, there is always the chance that some new inducer will be
better than those used here, while also making a stronger case for the
use of connectivity disruption data.

Even with those caveats in mind, we contend that these results
should encourage caution over claims surrounding the clinical utility of
structural connectivity data in this area. White matter connectivity is
difficult to measure, particularly in the damaged brain, and the diffu-
sion weighted MRI required to make those measurements precisely is
far from routine in clinical care. Neither of those challenges is in-
superable, if we can make a compelling case that this kind of analysis is
really critical to post-stroke prognostics; however, our experiences so
far, as reported here, suggest that this case may be rather more difficult
to make than many might have hoped or expected it to be. In fact, this
case might be even more difficult to make than our results suggest,
because there are good reasons to suspect that our lesion-load models
are not as powerful as they could be. For example, Rondina and col-
leagues (Rondina et al., 2016) recently showed that a voxel-level en-
coding of lesion location data drove significantly better predictions of
outcomes for patients suffering from hemiparesis after stroke, than did
a regional lesion load encoding like that used here. If an alternative
encoding like this, which does not employ structural connectivity data,
can improve on the predictive performance of our lesion load models in
the language domain, the case against using structural connectivity
variables will grow stronger.

We expected to find some benefit here, mainly because we imposed
a wholly artificial limitation on the lesion-load-only models, by only
including lesion load related to grey matter locations rather than in-
cluding lesion load related to white matter tracts. This limitation is easy
to circumvent by including white matter tracts as regions of interest — as
we have done routinely in the past (Hope et al., 2015; Hope et al., 2013;
Hope et al., 2016). Accordingly, we expected to find an initial benefit of
using structural connectivity variables, which was then either reduced
or eliminated when our baseline models were expanded to capture
white matter lesion load. We never needed to take that extra step be-
cause the expected, initial advantage never emerged. This begs the
question of how our models treat patients with white-matter-only le-
sions: in fact, there were only 7 patients with these lesions in our
sample (which excluded lacuna infarcts that were smaller than 1cm®),
and all had language scores in the normal range in most tasks. This
might indicate that these patients are either rare, or rarely suffer the
enduring language impairments which might encourage participation
in a study like ours. Another explanation is that our sample does include
patients with white matter only lesions, but that our grey matter re-
gions are simply liberal, in the sense that they encroach into what a
neurologist might call white matter, thereby capturing enough of the
key lesion-symptom trends embodied by these patients to predict their
language skills at least reasonably well.

In conclusion, we found that our ability to predict language out-
comes after stroke was not significantly improved for models that in-
cluded white matter connectivity disruption. Some sort of improvement
is necessary to justify the claim that any neuroimaging data modality is
clinically useful in this domain. We do not question the popular pre-
sumption that connectivity is important to language, nor that dis-
connection is important to impairments of language: we ourselves have
recently shown that the latter is likely to be true (Hope et al., 2016). But
our results here suggest that lesion load variables can serve as reliable
proxies for connectivity disruption data in prognostic models. We hope
that this result will encourage others to make similar analyses, estab-
lishing whether and how structural connectivity data can be used to
reap the promised, predictive benefit.

Author contributions

TMHH and CJP conceived the analyses, and TMHH implemented
them. TMHH also led the writing of the manuscript, though all co-



T.M.H. Hope et al.

authors supported this process. CJP established the processes for ac-
quiring the patient data, with support from APL, who helped curate it.

Author Information

All authors declare that they have no competing financial interests
in this work.

Acknowledgements

This study was supported for the Medical Research Council (MR/
K022563/1), the Wellcome Centre for Human Neuroimaging (091593/
7Z/10/Z), and the Stroke Association (TSA PDF 2017/02). Tom
Schofield, Jenny Crinion, Sue Ramsden and Andre Selmer for setting up
the patient database; and Alice Grogan, Katharine Bowers, Erin Carrol,
Nicola Wilson, Caroline Ellis, Julie Stewart, Sharon Adjei, Rebecca Lee,
Anna Isherwood, Matthew Lawrence, Louise Lim, Louise Ruffle, Rachel
Bruce, Zula Haigh, Johanna Rae, Deborah Ezekiel, Hayley Woodgate,
Sophie Roberts and others for their help collecting the data.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2018.03.037.

References

Abdelnour, F., Mueller, S., Raj, A., 2015. Relating cortical atrophy in temporal lobe
epilepsy with graph diffusion-based network models. PLoS Comput. Biol. 11,
e1004564.

Agosta, F., Henry, R.G., Migliaccio, R., Neuhaus, J., Miller, B.L., Dronkers, N.F., Brambati,
S.M., Filippi, M., Ogar, J.M., Wilson, S.M., Gorno-Tempini, M.L., 2010. Language
networks in semantic dementia. Brain 133, 286-299.

Arbabshirani, M.R., Plis, S., Sui, J., Calhoun, V.D., 2017. Single subject prediction of brain
disorders in neuroimaging: promises and pitfalls. Neurolmage 145, 137-165.

Ashburner, J., Friston, K.J., 2005. Unified segmentation. Neurolmage 26, 839-851.

Bang, O.Y., Park, H.Y., Yoon, J.H., Yeo, S.H., Kim, J.W., Lee, M.A., Park, M.H., Lee, P.H.,
Joo, LS., Huh, K., 2005. Predicting the long-term outcome after subacute stroke
within the middle cerebral artery territory. J. Clin. Neurol. 1, 148-158.

Cloutman, L., Newhart, M., Davis, C., Heidler-Gary, J., Hillis, A.E., 2009. Acute recovery
of oral word production following stroke: patterns of performance as predictors of
recovery. Behav. Neurol. 21, 145-153.

Crinion, J., Price, C.J., 2005. Right anterior superior temporal activation predicts audi-
tory sentence comprehension following aphasic stroke. Brain 128, 2858-2871.

Del Gaizo, J., Fridriksson, J., Yourganov, G., Hillis, A.E., Hickok, G., Misic, B., Rorden, C.,
Bonilha, L., 2017. Mapping language networks using the structural and dynamic
brain connectomes. eNeuro 4 ENEURO.0204-0217.2017.

Epelbaum, S., Pinel, P., Gaillard, R., Delmaire, C., Perrin, M., Dupont, S., Dehaene, S.,
Cohen, L., 2008. Pure alexia as a disconnection syndrome: new diffusion imaging
evidence for an old concept. Cortex 44, 962-974.

Forkel, S.J., Thiebaut de Schotten, M., Dell'Acqua, F., Kalra, L., Murphy, D.G.M.,
Williams, S.C.R., Catani, M., 2014. Anatomical predictors of aphasia recovery: a
tractography study of bilateral perisylvian language networks. Brain 137,
2027-2039.

Fridriksson, J., Guo, D., Fillmore, P., Holland, A., Rorden, C., 2013. Damage to the
anterior arcuate fasciculus predicts non-fluent speech production in aphasia. Brain
136, 3451-3460.

Hope, T.M.H., Seghier, M.L., Leff, A.P., Price, C.J., 2013. Predicting outcome and re-
covery after stroke with lesions extracted from MRI images. Neurolmage Clin. 2,
424-433.

Hope, T.M., Parker, J., Grogan, A., Crinion, J., Rae, J., Ruffle, L., Leff, A.P., Seghier, M.L.,
Price, C.J., Green, D.W., 2015. Comparing language outcomes in monolingual and
bilingual stroke patients. Brain 138, 1070-1083.

Hope, T.M.H., Seghier, M.L., Prejawa, S., Leff, A.P., Price, C.J., 2016. Distinguishing the
effect of lesion load from tract disconnection in the arcuate and uncinate fasciculi.
NeuroIlmage 125, 1169-1173. http://dx.doi.org/10.1016/j.neuroimage.2015.09.
025.

Hope, T.M.H., Leff, A.P., Prejawa, S., Bruce, R., Haigh, Z., Lim, L., Ramsden, S.,
Oberhuber, M., Ludersdorfer, P., Crinion, J., Seghier, M.L., Price, C.J., 2017. Right
hemisphere structural adaptation and changing language skills years after left
hemisphere stroke. Brain 140 (6), 1718-1728.

Inoue, K., Madhyastha, T., Rudrauf, D., Mehta, S., Grabowski, T., 2014. What affects
detectability of lesion—deficit relationships in lesion studies? Neurolmage Clin. 6,
388-397.

Knecht, S., Dréager, B., Deppe, M., Bobe, L., Lohmann, H., Floel, A., Ringelstein, E.-B.,
Henningsen, H., 2000. Handedness and hemispheric language dominance in healthy
humans. Brain 123, 2512-2518.

Neurolmage: Clinical 19 (2018) 22-29

Kohavi, R., John, G.H., 1997. Wrappers for feature subset selection. Artif. Intell. 97,
273-324.

Konig, L.R., Ziegler, A., Bluhmki, E., Hacke, W., Bath, P.M., Sacco, R.L., Diener, H.C.,
Weimar, C., 2008. Predicting long-term outcome after acute ischemic stroke: a simple
index works in patients from controlled clinical trials. Stroke 39, 1821-1826.

Kuceyeski, A., Maruta, J., Relkin, N., Raj, A., 2013. The network modification (NeMo)
tool: elucidating the effect of white matter integrity changes on cortical and sub-
cortical structural connectivity. Brain Connect. 3, 451-463.

Kuceyeski, A., Kamel, H., Navi, B.B., Raj, A., Iadecola, C., 2014. Predicting future brain
tissue loss from white matter connectivity disruption in ischemic stroke. Stroke 45,
717-722.

Kuceyeski, A., Navi, B.B., Kamel, H., Relkin, N., Villanueva, M., Raj, A., Toglia, J., O'Dell,
M., Iadecola, C., 2015a. Exploring the brain's structural connectome: a quantitative
stroke lesion-dysfunction mapping study. Hum. Brain Mapp. 36 (6), 2147-2160.

Kuceyeski, A.F., Vargas, W., Dayan, M., Monohan, E., Blackwell, C., Raj, A., Fujimoto, K.,
Gauthier, S.A., 2015b. Modeling the relationship among gray matter atrophy, ab-
normalities in connecting white matter, and cognitive performance in early multiple
sclerosis. AJNR Am. J. Neuroradiol. 36, 702-709.

Kuceyeski, A., Navi, B.B., Kamel, H., Raj, A., Relkin, N., Toglia, J., Iadecola, C., O'Dell, M.,
2016. Structural connectome disruption at baseline predicts 6-months post-stroke
outcome. Hum. Brain Mapp. 37, 2587-2601.

Lazar, R.M., Speizer, A.E., Festa, J.R., Krakauer, J.W., Marshall, R.S., 2008. Variability in
language recovery after first-time stroke. J. Neurol. Neurosurg. Psychiatry 79,
530-534.

Lendrem, W., Lincoln, N.B., 1985. Spontaneous recovery of language in patients with
aphasia between 4 and 34 weeks after stroke. J. Neurol. Neurosurg. Psychiatry 48,
743-748.

Mabh, Y.-H., Husain, M., Rees, G., Nachev, P., 2014. Human Brain Lesion-deficit Inference
Remapped.

Marshall, R.C., Phillips, D.S., 1983. Prognosis for improved verbal communication in
aphasic stroke patients. Arch. Phys. Med. Rehabil. 64, 597-600.

Olsen, R.K., Pangelinan, M.M., Bogulski, C., Chakravarty, M.M., Luk, G., Grady, C.L.,
Bialystok, E., 2015. The effect of lifelong bilingualism on regional grey and white
matter volume. Brain Res. 1612, 128-139.

Pandya, S., Mezias, C., Raj, A., 2017. Predictive model of spread of progressive supra-
nuclear palsy using directional network diffusion. Front. Neurol. 8, 692.

Pani, E., Zheng, X., Wang, J., Norton, A., Schlaug, G., 2016. Right hemisphere structures
predict poststroke speech fluency. Neurology 86, 1574-1581.

Payabvash, S., Kamalian, S., Fung, S., Wang, Y., Passanese, J., Kamalian, S., Souza, L.C.,
Kemmling, A., Harris, G.J., Halpern, E.F., Gonzalez, R.G., Furie, K.L., Lev, M.H.,
2010. Predicting language improvement in acute stroke patients presenting with
aphasia: a multivariate logistic model using location-weighted atlas-based analysis of
admission CT perfusion scans. AINR Am. J. Neuroradiol. 31, 1661-1668.

Pedersen, P.M., Jorgensen, H.S., Nakayama, H., Raaschou, H.O., Olsen, T.S., 1995.
Aphasia in acute stroke: incidence, determinants, and recovery. Ann. Neurol. 38,
659-666.

Plowman, E., Hentz, B., Ellis Jr., C., 2012. Post-stroke aphasia prognosis: a review of
patient-related and stroke-related factors. J. Eval. Clin. Pract. 18, 689-694.

Price, C.J., Hope, T.M.H., Seghier, M.L., 2017. Ten problems and solutions when pre-
dicting individual outcome from lesion site after stroke. Neurolmage 145 (Pt B),
200-208.

Pustina, D., Coslett, H.B., Turkeltaub, P.E., Tustison, N., Schwartz, M.F., Avants, B., 2016.
Automated segmentation of chronic stroke lesions using LINDA: lesion identification
with neighborhood data analysis. Hum. Brain Mapp. 37, 1405-1421.

Pustina, D., Coslett, H.B., Ungar, L., Faseyitan, O.K., Medaglia, J.D., Avants, B., Schwartz,
M.F., 2017. Enhanced estimations of post-stroke aphasia severity using stacked
multimodal predictions. Hum. Brain Mapp. 38, 5603-5615.

Raj, A., LoCastro, E., Kuceyeski, A., Tosun, D., Relkin, N., Weiner, M., 2015. Network
diffusion model of progression predicts longitudinal patterns of atrophy and meta-
bolism in Alzheimer's disease. Cell Rep. 10 (3), 359-369.

Ramsey, L.E., Siegel, J.S., Lang, C.E., Strube, M., Shulman, G.L., Corbetta, M., 2017.
Behavioural clusters and predictors of performance during recovery from stroke. Nat.
Hum. Bahav. 1, 0038.

Ripamonti, E., Aggujaro, S., Molteni, F., Zonca, G., Frustaci, M., Luzzatti, C., 2014. The
anatomical foundations of acquired reading disorders: a neuropsychological ver-
ification of the dual-route model of reading. Brain Lang. 134, 44-67.

Rondina, J.M., Filippone, M., Girolami, M., Ward, N.S., 2016. Decoding post-stroke motor
function from structural brain imaging. Neurolmage Clin. 12, 372-380.

Seghier, M.L., Ramlackhansingh, A., Crinion, J., Leff, A.P., Price, C.J., 2008. Lesion
identification using unified segmentation-normalisation models and fuzzy clustering.
NeuroImage 41, 1253-1266.

Seghier, M.L., Patel, E., Prejawa, S., Ramsden, S., Selmer, A., Lim, L., Browne, R., Rae, J.,
Haigh, Z., Ezekiel, D., Hope, T.M.H., Leff, A.P., Price, C.J., 2016. The PLORAS da-
tabase: a data repository for predicting language outcome and recovery after stroke.
NeuroImage 124, 1208-1212 Part B.

SPM, 2012. SPM12 - Statistical Parametric Mapping.

Swinburn, K., Porter, G., Howard, D., 2004. Comprehensive Aphasia Test. Psychology
Press.

Tilling, K., Sterne, J.A., Rudd, A.G., Glass, T.A., Wityk, R.J., Wolfe, C.D., 2001. A new
method for predicting recovery after stroke. Stroke 32, 2867-2873.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N.,
Mazoyer, B., Joliot, M., 2002a. Automated anatomical labeling of activations in SPM
using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
NeuroImage 15, 273-289.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N.,
Mazoyer, B., Joliot, M., 2002b. Automated anatomical labeling of activations in SPM


https://doi.org/10.1016/j.nicl.2018.03.037
https://doi.org/10.1016/j.nicl.2018.03.037
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0005
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0005
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0005
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0010
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0010
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0010
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0015
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0015
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0020
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0025
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0025
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0025
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0030
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0030
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0030
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0035
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0035
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0040
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0040
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0040
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0045
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0045
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0045
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0050
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0050
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0050
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0050
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0055
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0055
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0055
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0065
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0065
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0065
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0070
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0070
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0070
http://dx.doi.org/10.1016/j.neuroimage.2015.09.025
http://dx.doi.org/10.1016/j.neuroimage.2015.09.025
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0085
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0085
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0085
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0085
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0090
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0090
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0090
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0095
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0095
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0095
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0100
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0100
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0105
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0105
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0105
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0110
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0110
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0110
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0115
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0115
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0115
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0120
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0120
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0120
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0125
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0125
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0125
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0125
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0130
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0130
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0130
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0135
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0135
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0135
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0140
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0140
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0140
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0145
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0145
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0150
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0150
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0155
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0155
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0155
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0160
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0160
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0165
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0165
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0170
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0170
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0170
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0170
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0170
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0175
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0175
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0175
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0180
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0180
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0185
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0185
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0185
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0190
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0190
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0190
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0195
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0195
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0195
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0200
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0200
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0200
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0205
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0205
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0205
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0210
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0210
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0210
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0215
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0215
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0220
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0220
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0220
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0225
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0225
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0225
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0225
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0230
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0235
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0235
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0240
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0240
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0245
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0245
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0245
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0245
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0250
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0250

T.M.H. Hope et al.

using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
NeuroImage 15, 273-289.

Ween, J.E., Mernoff, S.T., Alexander, M.P., 2000. Recovery rates after stroke and their
impact on outcome prediction. Neurorehabil. Neural Repair 14, 229-235.

Wu, J., Quinlan, E.B., Dodakian, L., McKenzie, A., Kathuria, N., Zhou, R.J., Augsburger,
R., See, J., Le, V.H., Srinivasan, R., Cramer, S.C., 2015. Connectivity Measures are
Robust Biomarkers of Cortical Function and Plasticity after Stroke.

29

Neurolmage: Clinical 19 (2018) 22-29

Yourganov, G., Fridriksson, J., Rorden, C., Gleichgerrcht, E., Bonilha, L., 2016.
Multivariate connectome-based symptom mapping in post-stroke patients: networks
supporting language and speech. J. Neurosci. 36, 6668-6679.

Zhang, Y., Kimberg, D.Y., Coslett, H.B., Schwartz, M.F., Wang, Z., 2014. Multivariate
lesion-symptom mapping using support vector regression. Hum. Brain Mapp. 35,
5861-5876.


http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0250
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0250
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0255
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0255
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0260
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0260
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0260
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0265
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0265
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0265
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0270
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0270
http://refhub.elsevier.com/S2213-1582(18)30107-4/rf0270

	Predicting language outcomes after stroke: Is structural disconnection a useful predictor?
	Introduction
	Methods
	Patient data
	Structural brain imaging data
	Behavioural data
	The baseline model
	Structural connectivity models
	Feature selection
	Model comparison
	Inducers
	Omnibus analysis

	Results
	Lesion and language data
	Analysis 1: naming
	Predicting all the language scores
	Connectivity disruption is correlated with lesion load

	Discussion
	Author contributions
	Author Information
	Acknowledgements
	Supplementary data
	References




