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Abstract 

Impaired procedural learning has been suggested as a possible cause of 

developmental language disorder and dyslexia (Nicolson & Fawcett, 2007; Ullman & 

Pierpont, 2005). However, studies investigating this hypothesis have so far delivered 

inconsistent results. These studies typically use extreme group designs, frequently with 

small sample sizes and measures of procedural learning with unreported reliability.  

This thesis first used a meta-analysis to examine the existing evidence for a 

procedural deficit in language disorders. The experimental studies then took a different 

approach to previous studies, using a concurrent correlational design to test large 

samples of children unselected for ability on a wide range of implicit (serial reaction 

time, Hebb serial learning, contextual cueing and probabilistic category learning) and 

declarative learning tasks and literacy, language and arithmetic attainment measures. 

The reliability of the tasks was also carefully assessed. A final study explored the 

hypothesis from an extreme group design perspective, comparing a typically 

developing sample with a group of dyslexic children matched for reading ability. None 

of the studies found evidence of a relationship between procedural learning and 

language-related abilities. By contrast, a relationship between verbal declarative 

learning and attainment was found replicating earlier studies. Crucially, the first large-

scale study showed that procedural learning tasks of a similar length to those typically 

used in earlier studies had unacceptably low reliability and correlated poorly with each 

other and with attainment. The second large-scale study, used extended procedural 

learning tasks that had proved reliable in adults, but found similar low levels of 

reliability in children. Additionally, the level of attention children paid during these 

extended tasks accounted entirely for the relationship between procedural learning and 

attainment. 

The results in this thesis highlight the importance of establishing task reliability, as 

well as considering the potential effects of individual differences in basic cognitive 

processes such as attention in all investigations of procedural learning. 
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Chapter 1 Developmental disorders of language 

Developmental disorders of language involve problems in acquiring spoken and 

written language. The focus in this thesis will be on two of these disorders: 

developmental language disorder (DLD) and developmental dyslexia (DD). 

1.1 Developmental language disorder 

Developmental language disorder is a disorder affecting the development of oral 

language, in spite of normal non-linguistic development (Bishop, 2006). Until recently 

the disorder was termed specific language impairment (SLI). The word “specific” in 

the title was justified on the basis of the co-occurrence of language impairment 

alongside unimpaired non-verbal intelligence (Mareschal, Butterworth, & Tolmie, 

2013) or where language impairments were disproportionately greater than any 

impairments in non-linguistic domains (Webster & Shevell, 2004). However, the 

requirement for a definition based on a discrepancy diagnosis has now been dropped 

and the term developmental language disorder recommended in its place for all cases 

where language disorder presents without a known biomedical aetiology (Bishop, 

Snowling, Thompson, & Greenhalgh, 2016b). Diagnosis of developmental language 

disorder no longer requires non-verbal ability to outstrip verbal ability, not least 

because this excluded many children with other co-occuring difficulties from 

diagnosis and, therefore, from much–needed clinical support. The term developmental 

language disorder will be used throughout this thesis, even where cited authors have 

referred to SLI.   

Developmental language disorder is estimated to affect around 3% - 7% of the 

population (Norbury et al., 2016; Tomblin et al., 1997). Language development in 

children with developmental language disorder is delayed, with children using and 

combining words later and plateauing earlier than typically developing children 

(Leonard, 2014). Children with developmental language disorder do not follow a 

typical profile of language development. They have particular problems with 

morphology and syntax (Tager-Flusberg & Cooper, 1999). In particular, they show 

impairments in learning language structure, for example, in marking tenses and with 
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grammatical inflections. They also have difficulty with phonology, finding it more 

difficult than typically developing children to both process and produce word sounds 

correctly (Bishop, 1994; Webster & Shevell, 2004). They also have impaired verbal 

working and short-term memory (Archibald & Gathercole, 2006; Weismer, Evans, & 

Hesketh, 1999), as evidenced by poorer non-word repetition and word recall 

performance. 

Developmental language disorder can persist into adolescence (Clark et al., 2007; 

Conti-Ramsden & Durkin, 2007; Stothard, Snowling, Bishop, Chipchase, & Kaplan., 

1998) and even adulthood (Clegg, Hollis, Mawhood, & Rutter, 2005; Snowling, 

Bishop, & Stothard, 2000; Whitehouse, Line, Watt, & Bishop, 2009), with ongoing 

difficulties with grammar, phonological awareness, speech production and verbal 

short-term memory, which frequently extend into problems with literacy too (Young 

et al., 2002). The outlook for children classed as having persistent developmental 

language disorder is poor. In many children, however, developmental language 

disorder can appear short-lived. In a longitudinal study of 87 children diagnosed with 

language difficulties at the age of four, Stothard et al. (1998) reported that 44% of the 

children who had received a diagnosis of developmental language disorder no longer 

qualified for it 18 months later. It should be noted that only 11% of children with 

language difficulties alongside low non-verbal IQ had shown similar levels of 

improvement. A different picture emerged in adolescence, however. Although spoken 

language improved, at age 15 these same children showed verbal short-term memory 

and phonological impairments and many were experiencing academic difficulties, 

leading to the conclusion that “resolving” language difficulties in developmental 

language disorder may be an illusion for many (Duinmeijer, 2013; Snowling, Adams, 

Bishop, & Stothard, 2001). 

1.2 Developmental dyslexia 

Developmental dyslexia (DD) is a disorder characterised by impaired printed word 

recognition and spelling in spite of normal IQ and educational opportunities (Bishop 

& Snowling, 2004). It is associated primarily with difficulties in phonological 

processing, most commonly with deficits in phonological awareness and decoding, 
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impairing the ability to access and manipulate the sounds of speech (Bradley & Bryant, 

1983; Snowling, 2013; Vellutino, Fletcher, Snowling, & Scanlon, 2004). This core 

deficit is frequently compounded by others, such as slow lexical retrieval and poor 

verbal short-term memory and these factors collectively affect the development of 

reading fluency and spelling (Ramus, 2004). Dyslexia is characterized by a difficulty 

in acquiring letter-sound knowledge, and learning to read words accurately and 

fluently.  Difficulty with spelling are typically more severe and more persistent than 

difficulties with word reading. (Treiman, 1985). Developmental dyslexia is estimated 

to affect between 3% to 7% of the population, but estimates vary depending on the 

stringency of the diagnostic criteria (Barbiero et al., 2012; Snowling, 2013). 

Proportionately more boys than girls receive a diagnosis of dyslexia - from 1.5:1 to 

3.1:1, according to Rutter et al. (2004). However, as many as 6 boys are referred for 

clinical diagnosis for every one girl, possibly as a result of increased rates of 

comorbidity with other disorders, such as attention deficit hyperactivity disorder 

(ADHD), in boys (Willcutt & Pennington, 2000). 

The traditional IQ discrepancy definition of dyslexia is based on the idea that low 

IQ sets a cap on achievement as a result of general learning difficulties, while the 

deficits seen in dyslexia are caused by something else. For example, genes are thought 

to contribute more to high than low IQ dyslexia (Wadsworth, Olson, & DeFries, 2010). 

The utility of an IQ discrepancy definition is that by excluding those whose language 

and / or literacy impairments are due to more general learning difficulties, it is easier 

to isolate and investigate the cognitive deficits specifically implicated in the disorders. 

However, just as with developmental language disorder, discrepancy definitions have 

proved highly controversial, particularly in the light of evidence that individual 

differences in response to remedial instruction are not related to IQ (Jiménez, 

Rodríguez, & Ramírez 2009; Stuebing, Barth, Molfese, Weiss, & Fletcher, 2009). 

1.3 Developmental language disorder & dyslexia are distinct disorders 

Research to date suggests that developmental language disorder and dyslexia are 

distinct developmental disorders, but with considerable overlap and frequent 

comorbidity (Bishop & Snowling, 2004; Catts, Adlof, Hogan, & Weismer, 2005; 
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Krishnan, Watkins, & Bishop, 2016).  Both reading and writing are scaffolded on oral 

language (Fletcher, 2009) and early problems with oral language place children at 

greater risk of problems with literacy later on.   

Many older children receiving a diagnosis of reading disability qualify for a 

diagnosis of developmental language disorder (McArthur, Hogben, Edwards, Heath, 

& Mengler, 2000), just as many children receiving a diagnosis of developmental 

language disorder go on to experience difficulties with reading. For example, Ramus, 

Marshall, Rosen, & van der Lely (2013) found circa 50% of their sample of language-

disordered children qualified for a diagnosis of both developmental language disorder 

and dyslexia. Similarly, Snowling et al. (2000) found 43% of children with earlier 

developmental language disorder had a reading disability aged fifteen. Snowling, Duff, 

Nash, and Hulme (2016) classed children diagnosed with language impairment at age 

three into two groups dependent on their subsequent developmental trajectory. 

Children with language impairment that had resolved by the start of literacy instruction 

had similar literacy outcomes to typically developing children. Children with 

persisting language impairment were likely to experience reading difficulties. A third 

group of children was also identified, with late-emerging language impairment. These 

children also had poor literacy outcomes and were likely to have a family history of 

dyslexia. The study concluded that children who have language impairments at school 

entry are likely to go on to have reading difficulties.    

Although the above may suggest that developmental language disorder and 

dyslexia be conceived of as different points on the same developmental continuum, 

Bishop and Snowling (2004) highlight clear differences between the disorders. 

Primarily, children with developmental language disorder have non-phonological 

difficulties with semantics and syntax alongside their phonological difficulties, while 

the impairments of children with dyslexia are often confined to problems with 

phonological processing. In addition Ramus et al. (2013) suggested that a distinction 

be made between phonological representations, which are more predominantly 

impaired in developmental language disorder and phonological skills, such as verbal 

short-term memory or retrieval skills, which are more impaired in dyslexia.  
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1.4 Both disorders are dimensional 

The impairments seen in both developmental language disorder and dyslexia are 

dimensional in nature (Fletcher, 2009; Shaywitz, Escobar, Shaywitz, Fletcher, & 

Makuch, 1992). People with the disorders represent the tail end of a normal 

distribution in spoken language or reading ability, rather than a distinct category. As 

such, research into developmental language disorder and dyslexia and research on 

individual differences in language and reading development can be seen as two sides 

of the same coin. 

1.5 Heterogeneity 

The profiles of impairment in both disorders show substantial heterogeneity 

(developmental language disorder: Webster & Shevell, 2004; dyslexia: Petersen & 

Pennington, 2015). This may reflect variations in the distribution of subtle and multi-

factorial cortical abnormalities that underlie the disorders (Ramus, 2014). To 

complicate matters phenotypic heterogeneity at a single time point is not a simple 

reflection of biological heterogeneity within the disorders. For example, one study 

classified over 2000 children with developmental language disorder into five groups 

based on language disability profiles (Conti-Ramsden & Botting, 1999), but a year 

later only 55% still fitted the same profiles. In dyslexia, attempts have been made to 

classify dyslexics into sub-groups based on reading profiles (Castles & Coltheart, 

1993), but this has been criticized as a poor description of  the dyslexic population as 

a whole (Griffiths & Snowling, 2002). Even those with similar profiles of reading 

impairment do not exhibit a homogenous profile of cognitive deficits (Zoubrinetsky, 

Bielle, & Valdois, 2014). 

1.6 Comorbidity with other developmental disorders 

Developmental language disorder and dyslexia often co-occur with other 

developmental disorders including ADHD (McGrath et al., 2011; Pennington et al., 

2006) and dyspraxia (Rochelle & Talcott, 2006). A study by Dyck, Piek, and Patrick 

(2011) administered a battery of language and other cognitive tests to a mixed group 

of typically developing children and those with developmental coordination disorder, 
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language disorder, autism, ADHD and mental retardation, subjecting test scores to 

latent class analysis. Only two classes were identified from test scores: typically 

developing and disordered, with 50% of children with developmental coordination 

disorder and 20% of language-disordered children classed with the typically 

developing group. The authors concluded that boundaries between disorders and 

between disorder and normality are far from clear-cut. These findings echo those of 

Kaplan, Dewey, Crawford, and Wilson (2001) who found that 50% of a large sample 

of children referred for learning or attention disorders qualified for two or more 

diagnoses, with children that qualified for a diagnosis of ADHD having an 80.4% 

probability of meeting the criteria for at least one other developmental disorder. 

Grouping children into fine-grained, distinct categories of developmental disorder 

depends as much on the person making the diagnosis as on any impairment profile 

(Bishop, 2013). The same may be said of researchers grouping participants into 

experimental groups. Comorbidity complicates research into the underlying cause of 

developmental language disorder and dyslexia because measured deficits may not be 

reflective of a specific disorder.  

How do we explain the comorbidity between different developmental disorders 

and the heterogeneity of symptoms seen in a given disorder? One suggestion is that 

having one condition could lead to an increased risk for others. For example, a child 

with developmental language disorder may go on to develop dyslexia, because 

development of efficient reading skill is hampered by deficits in oral language 

(Fletcher, 2009). Another possibility is that the different conditions may share a 

common cause (more of this later), with particular presentations dependent on 

differences in the extent and location of atypical brain development and subsequent 

connectivity (Powell & Bishop, 1992).  

1.7 Genetic and environmental factors 

Genetic risk factors play a role in the etiology of both dyslexia and developmental 

language disorder. There is a significantly higher rate of developmental language 

disorder in children with a first degree relative with language impairment compared to 

those with no family history of impairment (Stromswold, 1998). Twin studies have 
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also shown that genetic risk factors are important in developmental language disorder 

(Bishop 2002), with higher concordance rates in monozygotic twins (72%) than 

dizygotic twins (49%). However, the heterogeneity of symptoms and comorbidity 

issues makes identifying specific genetic risk factors for any disorder difficult.  

Genetic risk factors appear to be important in the etiology of dyslexia.  Twin 

studies provide evidence that phonological impairments in reading are particularly 

heritable (Castles, Datta, Gayan, & Olson, 1999; Olson et al., 2013; Hensler, 

Schatschneider, Taylor, & Wagner, 2010; Logan et al., 2013). The heritability of 

dyslexia has been estimated to be around 0.50 (Plomin et al., 2013), which is in line 

with other developmental cognitive disorders. A recent review by Peterson and 

Pennington (2015) summarised huge advances in the understanding of the genetic 

factors related to dyslexia at a molecular level. Linkage studies have identified risk 

loci and candidate genes for the disorder, several of which (DYX1C1, DCDC2, 

KIAA0319, and ROB01) affect neuronal migration during early brain development. 

KIAA0319 has been shown to lead to atypical auditory processing in rats (Szalkowski 

et al., 2013) and these findings are in line with biological evidence of the existence of 

ectopias in superficial cortical layers in the brains of dyslexics. 

However, it appears that any developmental cognitive disorder will be influenced 

by multiple genes, working together and in synergy with multiple environmental risk 

factors. In this way gene environment interactions increase or decrease risk for 

developmental language disorder and dyslexia. For example, in dyslexia these may 

range from the genetic influence on parental reading skill and the number of books in 

the home and / or parental interest in fostering good reading habits to the amount of 

time children at genetic risk of dyslexia may spend with books. Dyslexic children read 

less than typically developing children and their lack of reading experience may have 

an ever-increasing negative influence on reading fluency and vocabulary development 

(Torgesen, 2005). In a similar vein, dyslexia has been found to be more heritable in 

families with higher levels of parental education (Friend, DeFries, & Olson, 2008). 

This is consistent with the idea that in supportive environments genetic influences will 

be the main reason for reading difficulties, while in families with lower parental 
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education environmental factors may play a greater role. The fact that relatives of 

dyslexics may show deficits on phonological processing tasks, yet possess reading 

ability within the normal range reinforces the complex multi-factorial etiology of the 

disorder (Petersen & Pennington, 2015). 

Perhaps unsurprisingly, both developmental language disorder and dyslexia show 

a relationship with socioeconomic status (SES), with delayed language acquisition and 

poorer word reading, as well as a flatter trajectory of improvement, associated with 

lower SES (Hecht, Burgess, Torgesen, Wagner, & Rashotte, 2000; Kelly, 2010). 

However, Peterson and Pennington (2015) note that systematic reviews suggest that 

approximately 90% of the variation in reading outcome is not related to SES. The 

remaining 10% variation can be whittled down still further, as around half of this is 

thought to be mediated by genetic factors that themselves set a limit on social mobility 

within society (Petrill, Deater-Deckard, Schatschneider, & Davis, 2005).  

1.8 The biological basis of developmental language disorder and dyslexia 

Brain-imaging studies fail to show any evidence of obvious atypical structure in 

children or adults with language disorders (Bishop, 2013). However, even though 

gross brain structure appears to be the same in brains of individuals with language 

disorders and normal brains, research does point to the existence of subtle differences 

in brain structure and function. For example, magnetic resonance imaging has found 

numerous, small differences in grey matter volume between developmental language 

disorder and control brains, such as subtle reductions in grey matter in perysylvian 

structures (Jernigan, Hesselink, Sowell, & Tallal, 1991). Badcock, Bishop, Hardiman, 

Barry, and Watkins (2012) found reduced grey matter volume in the caudate nucleus 

and superior temporal cortex bilaterally and increased volume in the left inferior 

frontal cortex, with corresponding reduced activity in the latter two areas as well as in 

the right putamen in the brains of those with developmental language disorder 

compared to controls.  

A study investigating atypical cerebral lateralization in young adults using 

functional transcranial Doppler ultrasonography (Whitehouse & Bishop, 2008) found 
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greater right-sided lateralization and bilaterality in participants with developmental 

language disorder, compared to normal adults and those with remediated childhood 

developmental language disorder. Functional MRI studies have also shown greater 

bilaterality in children with developmental language disorder than controls during 

language tasks (Bernal & Altman, 2003). However, while atypical cerebral dominance 

may be “a biological marker” of persisting developmental language disorder, it is as 

likely to be a consequence of the impaired learning of language, as any heritable cause 

of the disorder itself (Bishop, 2013).  

Investigations into atypical brain development in developmental dyslexia are not 

clear-cut either. Pernet, Andersson, Paulesu, and Demonet (2009) have shown similar 

overall brain volume in dyslexics and controls, but subtle differences in grey matter 

distribution and lateralization in several areas, most strikingly, in the cerebellum. 

Imaging studies have also shown abnormal activation of left hemisphere language 

networks in the disorder (Demonet, Taylor, & Chaix, 2004; Richlan, Kronbichler, & 

Wimmer, 2009) and many studies have reported subtle differences in the left peri-

sylvian cortex, the thalamus, corpus callosum, and cerebellum, suggestive of 

abnormality during brain maturation (Ramus, 2004; Habib, 2000). Ectopias in the 

surface layers of language-related cortex in the brains of dyslexics, suggestive of 

abnormal neuronal migration during early brain development, may explain some of 

the differences in connectivity (Kaufman & Galaburda, 1989; Galaburda, LoTurco, 

Ramus, Fitch, & Rosen, 2006). This atypical neuronal migration is thought to be of 

genetic origin and results in abnormal neuronal connectivity between cortical and 

thalamic areas in the dyslexic brain. 

Differences in brain symmetry between dyslexic and typically developing brains 

have also been documented. The planum temporale, an important structure within 

Wernicke’s area, associated with both auditory and phonological processing (Blau et 

al., 2010; Dehaene et al., 2010), is larger on the left than on the right side in typically 

developing brains. Indeed, it is one of the most lateralized structures found in the 

normal brain (Geschwind & Levitsky, 1968). However, it has been found to be the 

same size on both hemispheres in dylsexics (Cohen, Campbell, & Yaghmai, 1989; 
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Bloom, Garcia-Barrera, Miller, Miller, & Hynd, 2013). This difference in 

lateralization between normal and dyslexic brains suggests a functional link with the 

cognitive impairments found in the disorder. However, asymmetry of the planum 

temporale has not been found to be significantly associated with language laterality in 

normal adults (Eckert, Leonard, Possing, & Binder, 2006) and hemispheric symmetry 

in dyslexics has not been replicated in all studies (Leonard & Eckert, 2008). Indeed, 

adult dyslexic brains in some studies have been found to have increased, not decreased, 

planum temporale asymmetry (Leonard et al., 1993; 2001).  

More recently, focus on the perisylvian language-related areas of the brain has 

shown promise; under-activation, reduced grey matter and atypical white matter 

microstructure has been found in the left temporoparietal and left inferior frontal gyrus 

(Broca’s area) of dyslexics, with the reduced grey matter shown to pre-date reading 

instruction (Raschle, Chang, & Gaab, 2011; Richlan et al., 2009; Rimrodt, Peterson, 

Denckla, Kaufmann, & Cutting, 2010). Both of these areas are critically involved in 

phonological processing. Additionally, reduced grey matter in the left 

occipitotemporal area involved in whole word recognition, has also been related to 

dyslexia. 

Ultimately, however, findings of structural or functional brain differences in either 

developmental language disorder or dyslexia must still be accepted with some caution. 

Individual differences in neural structure, combined with frequent small sample sizes 

and methodological differences between studies, as well as intrinsic difficulties in 

establishing cause and effect, make it difficult to draw any definitive conclusions.   

1.9 Causal explanations of developmental language disorder 

A number of causal explanations for developmental language disorder have been 

put forward. A description of the most influential accounts follows. 
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1.9.1 Language specific accounts of developmental language disorder 

Several language-specific accounts of the root causes of developmental language 

disorder exist. These theories hinge on the assumption that language processing forms 

a distinct module in the brain and are rooted in the morpho-syntactic weaknesses that 

are a core symptom of the disorder. Gopnik and Crago’s (1991) study of a family with 

autosomal language impairment led to their suggestion that the language difficulties 

they exhibited, such as the over-regularization of irregular verbs, were the result of 

impaired acquisition of the rules of grammar at an abstract morpho-syntactic level. 

This was attributed to a single faulty gene: the FOXP2 gene. However, subsequent 

research has shown that the family’s impairments include a complex mix of 

intellectual and articulatory deficits in addition to linguistic ones, refuting the notion 

of a single gene for grammar. This research has failed to find evidence of any clear 

association between the family’s impairments, genes and language and most people 

with developmental language disorder have normal FOXP2 genes (Bishop, 2006). 

An alternative language-specific view concentrates on the difficulty children with 

developmental language disorder have with tense-marking. There is a stage in normal 

language development when young children do not yet apply the correct marking to 

verbs, preferring to use the simpler infinitive instead. The extended optional infinitive 

theory (Rice & Wexler, 1996) suggests that children with developmental language 

disorder never progress past this stage or are, at least, much delayed. It is certainly true 

that children with developmental language disorder do not use agreement or mark 

tenses properly. For example, Rice et al. (1995) demonstrated that children with 

developmental language disorder performed even more poorly than younger language-

ability matched children on a past tense generation task and far below the level of their 

age-matched typically developing peers. 

However, while language-specific theories are excellent at a descriptive level, they 

fail to explain why language develops in this atypical fashion in developmental 

language disorder, how the range of typical symptoms might relate to each other, 

comorbidity with other developmental disorders, or the level of heterogeneity in the 

disorder. In addition, the inconsistent use of the rules of grammar in developmental 
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language disorder is a stumbling block for any language specific theory, even if 

inconsistency between correct and incorrect application of grammar rules is ascribed 

to the learning of words and phrases by rote, rather than as lexical items. Attempts to 

explain developmental language disorder (or indeed both developmental language 

disorder and dyslexia together) at a more basic domain-general cognitive level appear 

to be more promising in this regard.  

1.9.2 Cognitive level explanations of developmental language disorder 

A prominent cognitive explanation for developmental language disorder relates to 

impairments in processing speed.  This explanation also extends to dyslexia (see 

section 1.10.3.1). Processing speed theories of developmental language disorder range 

from the suggestion that slower information processing across both linguistic and non-

linguistic domains is behind the language deficits in the disorder (Kail & Salthouse, 

1994; Miller, Kail, Leonard, & Tomblin, 2001) to a tighter focus on a specific deficit 

in the auditory processing of rapidly changing sounds (Poldrack et al., 2001; Tallal & 

Piercy, 1973; Tallal, Sainburg, & Jernigan, 1991) that leads to difficulties with speech 

perception.  

Impaired performance on a range of auditory processing tasks, such as auditory 

repetition, backwards recognition masking and frequency discrimination are 

characteristic of the disorder. For example, children with developmental language 

disorder have difficulty in discriminating between morphologically similar syllables, 

characterized by extremely short formant transitions, but perform as well as controls 

when formant transitions are artificially increased (Tallal & Piercy, 1975). This speed 

of processing deficit has also been found in visual and sensory motor tasks (Farmer & 

Klein, 1995). However, no relationship between processing speed and severity of the 

disorder has been found (Lahey, Edwards, & Munson, 2001), which would be 

expected if they were causally related.  

Impaired phonological working memory has also been put forward as a cognitive-

level explanation for developmental language disorder, supported by findings of 

poorer performance on tests of non-word repetition in those with the disorder 
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(Dollaghan & Campbell, 1998). Non-word repetition is a good predictor of language 

impairments in older children with “resolved” developmental language disorder 

(Bishop, North, & Donlan, 1996) and has been documented as a better predictor of 

performance than auditory repetition across a wide range of attainment tests from 

receptive grammar to word finding (Bishop, Carlyon, Deeks, & Bishop, 1999). 

However, these studies used concurrent designs, so they are not able to attribute a 

causal direction to their findings. Longitudinal studies have not found any evidence 

that non-word repetition is a predictor of language difficulties. For example, no 

evidence was found of any influence of non-word repetition on vocabulary growth in 

children followed from the age of 4 to 7 (Melby-Lervag et al., 2012). Indeed, the 

opposite pattern has been suggested (Bowey, 2001; Metsala, 1999), with non-word 

repetition ability considered as a possible consequence of vocabulary improvements. 

Bishop (2006) suggests that searching for a single causative factor for 

developmental language disorder may be misguided. She cautions that developmental 

language disorder is better thought of as a disorder of multiple underlying deficits. 

This is not least the case because language acquisition appears to be a remarkably 

robust process and may well proceed unimpaired in the face of single deficits and only 

manifest when several deficits combine to block the developmental routes to normal 

language acquisition.  

1.10 Causal explanations of dyslexia 

Just as with developmental language disorder, there are a number of causal 

explanations for dyslexia.   

1.10.1 A core phonological deficit 

The most prominent theory of the cause of developmental dyslexia is that impaired 

processing of the sounds of language leads to both difficulties with oral language skills 

and later to problems with reading and writing (Bradley & Bryant, 1983; Ramus, 2004; 

Snowling, 1981, 2001; Vellutino et al., 2004). 
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Learning to read proceeds in stages from early visually driven associations 

between printed letters and word pronunciations to later more sophisticated use of 

phonological information to generate the letter-sound associations that drive efficient 

word recognition (Hulme & Snowling, 2009). It has been suggested that the process 

of learning to read consists of the creation of mappings between printed words, 

phonology and meanings, with both phonological and semantic skills interacting 

during the process (The triangle model of reading: Seidenberg & McClelland, 1989). 

It is the phonological pathways in this model that are impaired in dyslexia (Plaut, 

McClelland, Seidenberg, & Patterson, 1996), as a result of weakness in the 

phonological system. Certainly, the ability to attend to and manipulate the sounds of 

speech is a necessary prerequisite for the automization of the letter to sound 

correspondences that subserve accurate and fluent recognition of printed words. 

Children who go on to receive a diagnosis of dyslexia have been shown to have deficits 

on phonological tasks testing grapheme-phoneme knowledge prior to any reading 

instruction (Snowling, Gallagher, & Frith, 2003). However, not all children with pre-

school phonological deficits go on to be dyslexic, which suggests that a range of 

cognitive risk and protective factors may be at work. 

Successful results from randomized controlled trials offering remedial 

programmes that emphasize phonological training to children with dyslexia highlight 

the central role phonological awareness and processing plays in the disorder. Early, 

intensive and one-to-one or small group instruction in phoneme awareness, letter 

knowledge and the linkages between these two systems appears to be the best way to 

improve reading skill in children falling behind their peers (Hatcher, Hulme, & Ellis, 

1994; Hatcher, Hulme, & Snowling, 2004; Hatcher et al., 2006; Bowyer-Crane et al., 

2008). Such randomized controlled trials have shown promising results in closing the 

gap between those with reading disorders and typically developing children and 

evidence from imaging studies appears to support the efficacy of remedial 

intervention, e.g., normalized activity in the left hemisphere language networks of the 

brains of dyslexic children post intervention (Gabrieli, 2009). However, there is much 

that is still not known about how best to treat dyslexia. There are individual differences 

in how well children respond to intervention, as well as the length of time for which 
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they are able to maintain these gains (Petersen & Pennington, 2015). Those who do 

not respond tend to be at the more severe end of the impairment spectrum, with co-

occurring issues with poor attention (Snowling & Hulme, 2011). 

1.10.2 Phonological short-term memory 

Impaired phonological working memory has also been mooted as a separate 

explanation for dyslexia over and above the acknowledged phonological deficit 

(Adams & Gathercole, 2000; Gathercole & Baddeley, 1990). Children with dyslexia 

are less good at non-word repetition than age-matched controls, in the same way 

children with developmental language disorder are (Gathercole & Baddeley, 1990). 

They also display poorer verbal short-term memory, as measured by word span and 

verbal immediate serial recall tests, as well as verbal but not non-verbal paired-

associate learning tasks (Hulme & Snowling, 2009). Additionally, verbal short-term 

memory has been shown to predict reading ability in pre-schoolers (Melby-Lervag, 

Lyster, & Hulme, 2012).  

However, the extent to which non-word repetition and other verbal working 

memory and short-term memory tasks are an index of phonological working or short-

term memory, rather than simply a measure of phonological processing difficulties 

themselves is unclear (Snowling, Chiat, & Hulme, 1991; Snowling, 2006; Gathercole 

et al., 2005). Indeed, the range of deficits in dyslexia, from poor phonological short-

term memory, poor vocabulary, broader deficits in oral language skill and grapho-

motor processing speed, as well as difficulty in rapid automized naming tasks are all 

indicative of a phonological processing deficit (Petersen & Pennington, 2015).  

1.10.3 Other causal explanations of dyslexia 

There are a number of other causal explanations for dyslexia that, in the main, 

either seek to augment the phonological deficit explanation or provide an explanation 

at a more basic cognitive or neural level.  
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1.10.3.1 Processing Speed in Dyslexia 

Slower domain-general information processing has been suggested as a cause of 

dyslexia (Catts, Gillispie, Leonard, Kail, & Miller, 2002), as well as developmental 

language disorder. For example, dyslexic adults have shown speed of processing 

deficits on a range of auditory and visual tasks (Breznitz & Meyler, 2003), but the 

deficit is most pronounced for measures relating to phoneme awareness. However, the 

existence of a generalized processing speed impairment in dyslexia, separable from an 

impairment in phonological processing has been disputed (Mody, Studdert-Kennedy, 

& Brady, 1997), as has the existence of a specifically auditory processing impairment. 

For example, although dyslexic children performed worse than typically developing 

ones in discriminating between CVC syllables, stretching the synthesized stimuli to 

increase their duration did not improve dyslexic performance (McAnally & Stein, 

1997).  

The inconsistent results relating to processing speed (for both dyslexia and 

developmental language disorder) may be due to the variable age of children at testing, 

the heterogeneity of the disorders, as well as difficulty in sustaining attention across 

tasks (Hulme & Snowling, 2009). It has been suggested that processing impairments 

may be a contributory rather than the core risk factor in both disorders (Bishop, 

Carlyon, & Deeks, 1999) and while processing speed serves as a good explanation of 

general learning difficulties, it is less good at explaining the language-specific 

impairments in either dyslexia or in developmental language disorder (Hulme & 

Snowling, 2009). 

1.10.3.2 Magnocellular deficit hypothesis of dyslexia 

Another explanation for dyslexia attributes it to abnormalities in the magnocellular 

part of the visual system, which responds to changes in stimulation caused by 

movement in the visual field (Skottun, 2000; Stein, Talcott, & Walsh, 2000). Deficits 

in this system in dyslexics lead to poor suppression of visual sensitivity during the 

saccades that are an integral part of the reading process (Lovegrove, 1991). While the 

magnocellular deficit hypothesis is no longer thought of as the single factor underlying 

dyslexia, it is still considered as a possible contributory cause. A recent study showed 
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that motion detection is impaired in dyslexic children and that pre-reading visual 

motion perception is a predictor of later reading skill, independently of phonological 

skill (Gori, Seitz, Ronconi, Franceschini, & Facoetti, 2016). 

However, the symptoms attributed to the magnocellular deficit (problems with 

saccades in dyslexics, differences in timing, duration and steadiness of fixations during 

reading) has also been related to another general causal account of dyslexia and 

language disorder, the cerebellar deficit hypothesis (Stoodley & Stein, 2013). 

1.10.3.3 Cerebellar dysfunction  

Cerebellar dysfunction has been implicated in dyslexia with depressed cerebellar 

activation during phonological and reading tasks seen in adult dyslexics compared to 

controls (Brunswick, McCrory, Price, Frith, & Frith, 1999), as well as broader 

cerebellar activation in dyslexia that is more normally seen in younger readers (Marien 

et al., 2014). Similarly, dyslexic children and adults may perform more poorly on 

motor-related, eye-movement control and postural stability tasks that depend on 

cerebellar function than controls, in addition to the impaired implicit motor learning 

noted by some, but not all, researchers on the serial reaction time tasks. Nicolson and 

Fawcett (1999) cite cerebellar dysfunction as the root cause of dyslexia as a result of 

the disrupted automization of learned skills that leads to impaired phonological 

awareness. An alternative explanation for the diffuse cerebellar activation seen in 

dyslexia has been put forward by Baillieux et al. (2009), who suggest the dysfunction 

reflects an impairment in the processing and transfer of information within the 

cerebellar cortex. 

However, the relationship between cerebellar deficits and dyslexia is not clear-cut. 

For example, although cerebellar damage has been linked to acquired reading 

difficulties, not all patients with cerebellar damage have reading impairments 

(Stoodley & Stein, 2013). Similarly, not all studies assessing language-disordered 

groups on tasks indexing cerebellar function have found a link between them 

(Irannejad & Savage, 2012). Finally, while smaller grey matter volume in the right 

cerebellar lobule IV has been found to be a reliable biomarker for dyslexia (Pernet, 
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Andersson, Paulesu, & Demonet, 2009), it is not found in pre-readers at risk for the 

disorder, so could just as well be a result of reading difficulties rather than the cause 

(Bishop, 2002). 

In a recent review Stoodley and Stein (2012) concluded that cerebellar dysfunction 

is unlikely to be the primary cause of dyslexia, but is more likely to be an outcome of 

a more fundamental and general abnormality in the dyslexic brain. This theory, 

therefore, arguably serves as a precursor to the procedural deficit hypothesis (Nicolson 

& Fawcett, 2007; 2011; Ulman, 2004; Ullman & Pierpont, 2005) that will be 

considered in detail in Chapter 3.  

In summary, both developmental language disorder and dyslexia are relatively 

common developmental disorders of language learning. Dyslexia is most commonly 

linked to deficits in phonological processing, while the impairments seen in 

developmental language disorder are more wide-ranging and involve difficulties with 

semantics and syntax, as well as with phonological processing. Although they are 

distinct disorders, their dimensional nature, heterogeneity and frequent comorbidity 

with each other and with other developmental disorders renders diagnosis problematic, 

as well as making it difficult to classify language-disordered participants accurately 

into groups for research purposes. It also complicates any search for causal 

explanations, either those specific to a particular disorder or those that attempt to 

explain the pattern of impairments seen more generally across both disorders. A 

number of causal explanations have been put forward, ranging from language specific 

accounts of developmental language disorder to domain-general cognitive level 

explanations, such as processing speed. While these and other accounts are good at 

explaining aspects of the disorders, none of them adequately explain the full, complex 

and multi-factorial nature of the disorders. We will meet a causal explanation that 

attempts to do this in Chapter 3. 
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Chapter 2 Implicit and Explicit memory 

Before going on to describe the procedural deficit hypothesis in detail it is 

necessary to outline some key theories and research relating to the organization of 

human memory.  

2.1 Multiple Memory Systems 

Long-term memory as multiple parallel systems in the brain is an idea that has 

been explored by scientists for well over a hundred years. William James (1890) 

deliberated over the different processes underlying memory and habit over 120 years 

ago. Among many others exploring the organization of memory in the ensuing years, 

Ryle (1949) eloquently summed up the distinction between two kinds of memory as 

the difference between “knowing that” and “knowing how”. The advent of computers, 

led to further exploration of the idea of parallel and separate memory systems, which 

first introduced the terms procedural and declarative knowledge to differentiate 

between the results of these different processes in the brain (Winograd, 1975).   Cohen 

and Squire (1980) distinguished between declarative and procedural memory, while 

Graf and Schacter (1985) wrote about the distinction between what they termed 

explicit and implicit memory. 

2.1.1 Multiple Memory Systems Taxonomy  

With evidence of dissociations between different kinds of memory, increasingly 

researchers felt the need to develop more nuanced taxonomies, in order to 

accommodate their experimental data (e.g., Tulving, 1985; Tulving & Schacter, 1990). 

Accounts were put forward that partitioned memory into declarative and non-

declarative systems, but within non-declarative memory sat several additional memory 

systems (e.g., Shacter & Tulving, 1994).  

These classifications were developed further to fit the data coming in from 

biological studies of the brain. See Figure 2.1 for the taxonomy put forward by Squire 

(1987; 2004; Squire & Dede, 2015), which is representative of the multiple memory 

systems view. It allocates declarative learning for facts and events to the medial 
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temporal lobe and diencephalon, which includes the hippocampus. Under the umbrella 

of non-declarative learning, it aligns skills and habit learning with the basal ganglia 

(the striatum in particular); priming and perceptual learning is associated with the 

neocortex; classical conditioning with the amygdala (for emotional responses) and the 

cerebellum (for skeletal responses); and non-associative learning with the reflex 

pathways. Subsequent developments have added associations for procedural learning 

with the motor cortex and cerebellum (e.g., Bartsch & Butler, 2013).  

It should be noted that this taxonomy relates specifically to long-term memory. 

The other distinction of the multiple systems view distinguishes between short-term 

or working memory and long-term memory (see Chapter 3 for further detail on this 

distinction and how it relates to the debate surrounding the procedural deficit 

hypothesis).  

 

Figure 2.1 The hypothesized taxonomy of long-term memory systems and associated brain 
structures. Taken from Squire and Dede (2015). 
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2.1.2 Declarative memory and learning 

Declarative memory is what is typically referred to as memory in everyday 

language. It refers to the ability to consciously recollect facts and events. Declarative 

memory uses deliberate strategies and is representational, allowing material to be 

compared and contrasted. This is what enables memories to be encoded in terms of 

their relationships with other items and events (Squire, 2004).  

Declarative memory can be divided into semantic memory for facts about the 

world, concepts, and meanings and episodic memory for events, which gives us the 

ability to re-experience an event in the context in which it originally occurred (Tulving, 

1985). Episodic memory is autobiographical, involving conscious recollection of past 

events. Semantic memory is knowledge of the world that we accrue without 

recollection of the context surrounding its learning and, as such, it is for the most part 

dissociated from episodic memory (Tulving, 2002). Crucially, information encoded 

into declarative memory can be expressed with language (Squire, 1987).   

2.1.2.1 The neural substrates of declarative learning 

The medial temporal lobe network underpins the declarative memory system. The 

hippocampus is at the centre of this system, receiving projections from most 

neocortical association regions either directly (linking to the CA1, CA2, CA3 areas of 

the medial temporal lobe and subiculum) or indirectly via the parahippocampal, 

perirhinal and entorhinal cortices (Bartsch & Butler, 2013). Such high levels of 

connectivity provide it with access to an enormous wealth of information. The 

hippocampus enables swift memory formation as a result of a particular form of long-

term potentiation that depends on N-methyl D-aspartate (NMDA) receptors (Martin, 

Grimwood, & Morris, 2000) to ensure rapid synaptic plasticity. This superior 

connectivity and plasticity results in memory formation in terms of associative 

representations, such that presentation of any part of the representation leads to 

retrieval of the whole (Treves & Rolls, 1994). This includes the rapid formation and 

retrieval of temporally sequential representations (Eichenbaum, 2004). The 

hippocampus is also connected to subcortical circuitry, in particular the thalamus and 
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this connection is particularly important for episodic memory and to facilitate 

interaction with other memory systems (Bartsch & Butler, 2013). 

2.1.3 Non-declarative memory and learning 

A definition of non-declarative learning is not straightforward, as different avenues 

of research define and use terminology in different ways. Firstly, the multiple memory 

systems account refers to the procedural memory system, which is the focus of this 

thesis, as only one type of implicit memory system. It is the system which regulates 

the acquisition, consolidation and automization of both motor and cognitive skills and 

habits (Squire, 2004) and that is required for performance of skilled motor actions, 

such as bike-riding and the perceptual-cognitive skills that make the fluent use of 

language possible (Ullman & Pierpont, 2005). Priming (as well as conditioning and 

non-associative implicit memory) is considered as a separate implicit memory system 

according to the multiple memory systems view. However, it is generally agreed that 

the terms procedural learning and implicit learning are largely synonymous (Shanks, 

2005; Berry & Dienes, 1993) or at least overlapping (Seger, 1994). A task is learned 

implicitly if procedural knowledge develops without, or at least before, any declarative 

knowledge and it is the procedural system which is necessary in order to perform 

implicit tasks (Berry & Dienes, 1991). In what follows implicit learning and 

procedural learning will be used interchangeably, as will explicit and declarative 

learning. 

Secondly, a distinction can be made between research into implicit memory and 

into implicit learning that echoes the distinction between the procedural and priming 

pathways of the multiple memory systems taxonomy. Berry and Dienes (1991) refer 

to how little cross-referencing there is between these two research traditions, leading 

to a frequent supposition that they refer to very different things. Implicit memory has 

traditionally been investigated using priming tasks, such as word stem completion, 

while implicit learning research uses paradigms that will be the focus of this thesis, 

such as the serial reaction time and Hebb serial order learning tasks, artificial grammar 

learning, probabilistic categorization and contextual cueing (see Chapter 3 for a 

detailed explanation of these paradigms). The two research traditions are separated by 
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their experimental approach. However it can be argued that both fields are 

investigating similar distinctions and that the same cognitive processes underlie 

performance on the paradigms in both traditions (Reber, 2008).  

Frensch & Runger (2003) refer to there being at least a dozen different definitions 

of implicit learning, most of which benefit from being given in relation to explicit 

learning. At the most surface level the distinction is made between implicit and explicit 

learning as learning without or with awareness respectively. Reber, Walkenfield and 

Hernstadt (1991) also focus on a dissociation from awareness as being the crucial 

factor in distinguishing between the two, such that implicit knowledge is acquired 

without awareness of both the learning process and the information learned. However, 

defining implicit learning only in terms of what it lacks does not give us a full 

understanding of how it differs from explicit learning (Reber, 2013). Other 

characteristic features of implicit learning distinguish it from explicit learning. The 

knowledge acquired in implicit learning is difficult to access; frequently combines 

with a subjective sense of intuition; is associated with incidental learning conditions; 

is robust to decay and interference; is rigid and is subject to considerable specificity of 

transfer, so it can typically only be applied within the specific circumstances in which 

it was learned (Berry & Dienes, 1993; Reber, 1993). In the case of procedural implicit 

learning it is also slow to develop, as it gradually extracts the common elements from 

strings of separate events (Reber, 2013). All these features are seen as in opposition to 

the characteristics of explicit learning, which uses deliberate strategies; is accessible 

to consciousness; is flexible and, once learned, can be applied in various ways; and 

can be expressed on demand. 

2.1.3.1 The neural substrates of implicit learning 

The procedural memory system is made up of a network of several interconnected 

brain structures – the cortico-striatal-pallidal-thalamo-cortical circuitry system (Seger 

& Miller, 2010; Squire, 2004). The basal ganglia are arguably the hub of this network 

and are a distributed set of sub-cortical structures that include the globus pallidus and 

the striatum (itself divided into the caudate nucleus and putamen), as well as the more 

distant, but connected subthalamic nucleus and sustantia nigra. Within the system the 
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caudate and putamen are the main input nuclei from the rest of the cortex (Grahn et 

al., 2009). The system is split into dorsal and ventral streams. The former is connected 

primarily via the caudate (Grahn et al., 2009) and is particularly implicated in learning 

and memory (Packard & Knowlton, 2002). The latter loop, connected to sensory and 

motor areas via the posterior putamen, appears to be more specialized for motor 

learning (Grahn et al., 2009). Neurobehavioural experiments in animals and humans 

have shown this area to mediate the learning of incrementally acquired stimulus-

response associations, probabilistic rule learning (Knowlton, Mangels, & Squire, 

1996; Packard, Hirsch, & White, 1989) and sequence learning (Doyon et al., 1997) 

and working memory (Wise, Murray, & Gerfen, 1996) among other processes.   

The cortico-striatal circuitry of the procedural memory system has been divided 

into four striatal loops with different cognitive specifications during learning, 

associated with different cortical connections (Seger, 2006). The executive loop links 

the anterior caudate and the prefrontal cortex; the visual loop links the posterior 

caudate and visual cortex; the motor loop links the putamen and motor cortex; and the 

motivational loop links the ventral striatum and ventromedial frontal cortex. These 

loops may be differentially involved depending on the nature of learning required. 

Seger (2006) suggested that the role of the striatum is to react to the learning context 

to modulate subsequent cortical processing and in support of this, striatal activation 

during learning has been demonstrated prior to cortical activity. However, alternative 

interaction processes have also been put forward (Packard & Knowlton, 2002).  

There are other important structures involved in the procedural learning system 

including the frontal cortex, the pre-motor cortex (which includes the supplementary 

motor cortex) and Broca’s area. In addition, research has also pointed to the 

involvement of the cerebellum in both motor and non-motor implicit learning. 

Sequence processing is at the heart of cerebellar function (Leggio et al., 2008) and it 

is suggested that the cerebellum is involved in the prediction of sequences based on 

the comparison of incoming sequences of stimuli across multiple cognitive domains. 

As such, it must work in tandem with working memory in order to maintain this 

information for comparison.  
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To recap, the multiple memory systems view divides memory into separate 

systems. The conscious, declarative memory system is associated with the medio-

temporal lobe, incuding the hippocampus, and is responsible for the encoding and 

storage of semantic facts and memory for events. The procedural memory system 

operates without consciousness and is involved in the learning of motor and cognitive 

skills and habits. The neural substrate of procedural memory is the cortico-striatal 

system, which includes the basal ganglia and cerebellum. 

2.2 Evidence for multiple memory systems 

Much of the evidence for separate declarative and procedural memory systems 

comes from dissociations in learning found in patients following brain damage. In one 

of the earliest mentions of a dissociation between memory processes, Korsakoff (1889) 

wrote about an amnesiac patient who identified the purpose of an electric shock 

appliance that had been used on him previously, in spite of having no conscious 

recollection of earlier shock treatment. Experimental exploration of dissociations 

between implicit and explicit memory began in earnest with Milner’s (1968) discovery 

that a severely amnesiac patient, HM, was able to “learn”, improving in skill at mirror 

drawing over time, while simultaneously being unable to explicitly recall any of the 

training sessions. The earlier bi-lateral removal of HM’s hippocampi had resulted in 

his complete loss of ability to form any new declarative memories, yet his ability to 

learn procedurally was still, at least partially, intact. HM and other amnesiacs with 

medial temporal lobe damage (e.g., Zola-Morgan, Squire, & Amaral, 1986) also 

suffered from retrograde amnesia that extended back several years, but displayed 

ongoing intact short-term memory. This supported the theory that the hippocampus is 

responsible for the formation of new long-term memories, a process that happens over 

time, but gradually becomes less and less involved with retrieval of consolidated 

declarative memories (Squire, Cohen, & Nadel, 1984), although some recent research 

points to a role for the hippocampus in retrieval too (Rekkas & Constable, 2005; 

Wincour & Moscovitch, 2011). 

Dissociations between memory systems in global amnesia have also been shown 

using many other tasks such as visual motor tracking using the pursuit rotor task, where 
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participants try to follow a small disc on a rotating turntable (Cermak, Lewis, Butters, 

& Goodglass, 1973) and the reading of mirror writing. For example, amnesiacs 

perform as accurately as controls on the pursuit rotor task, in the face of poorer verbal 

long-term memory (Brooks & Baddeley, 1976) and improve their mirror reading at the 

same rate as controls, despite being less able to remember the words they read (Cohen 

& Squire, 1980). Over the last 35 years, investigations of visuo-motor implicit 

sequence learning using many variations of the serial reaction time task have more 

often than not shown that amnesiacs can learn about the sequential structure in the task 

without intention and that they very often do so without any explicit knowledge of the 

learning they have accomplished in order to perform the task. For example, patients 

with Korsakoff’s syndrome (which involves bilateral hippocampal damage) performed 

as well on the serial reaction time task as a normal control group (Nissen & Bullemer, 

1987), with equivalent levels of consolidation on a repeat of the task one week later 

(Nissen, Willingham, & Hartman, 1989). Hebb sequence learning is also intact in 

amnesic patients with hippocampal lesions across both visuospatial and verbal 

modalities (Gagnon, Foster, Turcotte, & Jongenelis 2004). Amnesic patients also 

achieve above chance performance on tasks assessing their implicit learning of the 

grammatical rules required to perform artificial grammar tasks (Knowlton, Ramus, & 

Squire, 1992), but are less able than controls to recognize exemplars from the learning 

phase of the experiment afterwards. 

Evidence from amnesic patients on two other implicit learning paradigms is less 

clear-cut. Normal learning rates have been found in amnesiacs on the weather 

prediction task, a measure of probabilistic category learning (Knowlton, Squire, & 

Gluck, 1994; Knowlton, Mangels et al., 1996). However, closer inspection has shown 

intact learning early in training, but impaired performance later in the task. Knowlton 

et al. (1994) postulated that implicit associative learning supported amnesics’ early 

performance, but that later in the task hippocampus-dependent declarative processes 

may have aided the performance of the control group. Impaired contextual cueing, a 

task that assesses the implicit learning processes involved in the development of visual 

search efficiency, has also been found in some amnesic patients (Chun & Phelps, 1999; 

Manns & Squire, 2001). Although this can be seen as indicative of impairments in 
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perceptual priming, it has been suggested that performance in the task also benefits 

from explicit memory processes that involve the medial temporal lobe (Westerberg, 

Miller, Reber, Cohen, & Paller, 2011). 

Studies of priming effects have demonstrated the functional, as well as stochastic, 

independence of implicit memory. Amnesic patients have shown impaired free recall 

and recognition for previously presented list of words, while at the same time 

demonstrating unimpaired retention when prompted using implicit word stem or 

fragment completion primes (Warrington & Weisenkrantz, 1968; 1970; 1974). 

Furthermore, the strategy patients were asked to use in order to complete the tasks led 

to differences in performance (Graf, Squire, & Mandler, 1984). When amnesiacs were 

asked to use word stem prompts to aid recall, they were impaired compared to controls, 

but they performed at an equivalent level when asked to write down the first word that 

came to mind upon hearing the word stem prompts.    

However, inferences arising from demonstrations of the stochastic independence 

of implicit and explicit memory have been subject to a variety of criticisms. One 

criticism hinges on the fact that some studies demonstrating stochastic independence 

of implicit and explicit memory are demonstrably underpowered (Poldrack, 1996). 

Sample sizes in these studies are too small and the number of test items too few to find 

statistical dependence of implicit and explicit measures, which in turn undermines any 

resulting conclusions about their statistical independence. Additionally, the changes in 

performance that relate to memory are small compared to baseline performance on 

such tasks (Ostergaard, 1992) and this means that statistical dependence in the portion 

of the task that relates to memory can be masked by the statistical independence on the 

greater portion of performance that is unrelated to memory. In this way such tests may 

be biased towards independence (Poldrack, 1996). 

2.2.1 Evidence from Alzheimer’s disease and schizophrenia 

Intact implicit learning has been found across a wide range of other 

neuropsychological disorders acknowledged to affect explicit learning. Patients with 

Alzheimer’s disease display gains in mirror drawing similar to those made by 
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amnesiacs, without the recollection of the activity to go with it (Gabrieli, Corkin, 

Mickel, & Growdon, 1993). Intact implicit learning on serial reaction time tasks as 

well as contextual cueing effects have also been found in schizophrenia (Dominey & 

Georgieff, 1997; Lamy, Goshen-Kosover, Aviani, Harari, & Levkovitz, 2008).  

2.2.2 Evidence from diseases of the basal ganglia 

Evidence for a dissociation between declarative and procedural memory systems 

is also found in patients with disorders of the basal ganglia. For example, impaired 

procedural visuo-motor learning using the serial reaction time task has been found in 

patients with Parkinson’s and Huntington’s disease, both diseases affecting the 

striatum. Huntington’s patients reliably show impaired learning on the serial reaction 

time task (Knopfman & Nissen, 1991). Impaired implicit learning has also been found 

in Parkinson’s disease, with two meta-analyses of serial reaction time task 

performance in Parkinson’s patients finding a moderate overall effect size reflecting 

impaired performance, albeit with significant heterogeneity between studies (Siegert, 

Taylor, Weatherall, & Abernathy, 2006; Clark, Lum, & Ullman, 2014). However, not 

all behavioural investigations of implicit sequence learning in Parkinson’s patients are 

consistent with the above and it is suggested that disease severity may be one 

moderating factor on performance (Grahn et al., 2009). Corkin (2013) reported 

experiments that demonstrated intact learning on the serial reaction time task in 

Parkinson’s patients, including consolidation of such learning, although they did show 

less improvement than controls on HM’s mirror tracing task. There is a difference in 

how the striatum is affected in Parkinson and Huntington disease. Parkinson disease 

initially affects the putamen as a result of decreased dopamine transfer from the 

substantia nigra (Dauer & Przedborski, 2003), while Huntington disease initially 

causes neuronal death in the caudate nucleus (Lawrence et al., 1998). Corkin 

interpreted her findings as evidence for a specific role for the caudate nucleus in 

implicit sequence learning.  

Both Parkinson and Huntington disease patients have shown impairments on other 

implicit learning paradigms that involve less of a motor learning component, such as 

artificial grammar learning (Smith, Siegert, McDowell, & Abernathy, 2001) and the 
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weather prediction task (Knowlton, Mangels & Squire, 1996; Knowlton, Squire et al., 

1996; Poldrack et al., 2001).  

2.2.3 Demonstrations in normal participants 

There is evidence of memory system independence in normal participants too. For 

example, Willingham et al. (1989) showed that implicit and explicit learning of a 

sequence on a serial reaction time task developed independently of one another. 

Similarly, in several fragment completion tasks priming effects were uncorrelated with 

recognition performance (Hayman & Tulving, 1989a), with priming effects enduring 

for months, while recognition memory degraded substantially over the same time 

period (Tulving et al., 1982). Neuro-imaging also points to differential recruitment of 

brain areas associated with declarative or procedural learning dependent on the mode 

of learning used to perform artificial grammar tasks (Yang & Li, 2012) categorization 

tasks (Reber, Gitelman, Parrish, & Mesulam, 2003) and the serial reaction time task 

(Destrebecqz et al., 2005).  

However, not all research is consistent with these findings, as medial temporal lobe 

activation has been found on both implicit and explicit versions of a serial reaction 

time task (Schendan, Searl, Melrose, & Stern, 2003). Additionally, demonstrations of 

the functional independence of implicit and explicit learning on the serial reaction time 

task in normal adults have been criticized. For example, development of implicit 

learning of a sequence prior to explicit learning in serial reaction time tasks is claimed 

as evidence to support the multiple memory systems view. Perruchet and Amorim 

(1992) found a difference in RTs between performance on repeated and random 

transitions in normal adults within only 60 trials, which at first glance is consistent 

with this interpretation, yet they were able to demonstrate that this corresponded with 

explicit awareness of the sequence within the same time frame. The portions of the 

sequence that led to faster RTs in the implicit learning measure were the same chunks 

that were available to declarative memory in a post-task free generation test. Similarly, 

Perruchet, Gallego, and Savy (1990) provided an alternative explanation for the faster 

RTs to transitions that conformed to a complex second order conditional sequence on 

a serial reaction time task (Lewicki, Hill, & Bizot, 1988), since participants were 
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shown to have explicit knowledge that the target in this task moved through all 

possible locations before returning to previous ones. This knowledge was sufficient to 

explain the improvement in RTs that had previously been ascribed to implicit learning 

of the complex sequence.  

2.2.4 Age and IQ independence 

Support for a multiple systems view comes also from a developmental perspective. 

It is suggested that declarative learning develops with age, while intact implicit 

learning has been demonstrated from early infancy and appears to be age-independent 

(Kirkham, Slemmer, & Johnson, 2002; Moscovitch, 1985; Nelson, 1995; Ofen et al., 

2007). Intact implicit learning on the task has been shown in children, with no age-

related differences in performance between adults and children. (Meulemans, Van Der 

Linden, & Perruchet, 1998; Thomas & Nelson, 2001). For example, Meulemans et al. 

(op cit) demonstrated equivalent levels and patterns of implicit learning on a serial 

reaction time task in six year olds and adults. Intact Hebb sequence learning has also 

been found in typically developing children (Mosse and Jarrold, 2008). Evidence is 

less clear-cut in research using non-sequential implicit learning tasks though. 

Contextual cueing effects have been found in typically developing children as young 

as five years old (Dixon, Zelazo, & De Rosa, 2010; Merrill, Conners, Roskos, Klinger, 

& Klinger 2013). However, the degree to which contextual cueing is present in 

childhood is disputed, with ten year olds (Couperus, Hunt, Nelson, & Thomas, 2011) 

and six to thirteen year olds (Vaidya, Huger, Howard, & Howard, 2007) not exhibiting 

the cueing effects shown in adults.  

Such implicit learning is thought to play a large part in early development 

(Karmiloff-Smith (1992). Even one year-old children have been shown to listen 

preferentially to legal generalizations from an artificial grammar (Gomez & Gerken, 

1998), suggesting not just the existence of intact learning at an early age, but also the 

likelihood that these processes are involved in language acquisition. Indeed, Bulf, 

Johnson, and Valenza (2011) have even demonstrated evidence of visual statistical 

learning for sequences of black and white shapes in babies as young as one to three 

days old, using a habituation procedure. 
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Reber (1993; 2013) suggests an evolutionary justification for this apparent lack of 

a developmental trajectory for implicit learning: that it is supported by primitive 

learning mechanisms that mature early to aid survival. This is consistent with the 

finding of implicit learning in other species, from contextual cueing in baboons 

(Goujon & Fagot, 2013) and pigeons (Wasserman et al, 2014) to rule-abstraction in 

rats (Murphy, Mondaragon, & Murphy, 2008) and statistical learning of some types of 

non-adjacent regularities in primates (Newport, Hauser, Spaepen, & Aslin, 2004). 

Cotton-top tamarins have even been shown to use statistical information to segment 

artificial words from a speech stream in a similar way to human babies (Hauser, 

Newport, & Aslin, 2001; for a review, see Conway & Christiansen, 2001). Results are 

similar at the other end of the age scale too, with the same level of implicit learning in 

undergraduates and over-65’s, combined with poorer declarative learning in the older 

group (Howard & Howard, 1992). 

In addition, it is suggested that implicit memory is insensitive to IQ (Reber et al., 

1991). Procedural learning on the serial reaction time task has been shown to be 

independent of measures of IQ, but correlated to declarative learning performance 

(Feldman, Kerr, & Streissguth, 1995). Similarly, contextual cueing effects have been 

found in participants with learning difficulties (Merrill, Conners, Yang, & 

Weathington, 2014). While results in this area are once again inconsistent, this could 

be ascribed to contamination by explicit knowledge, which is both age- and IQ-

dependent (Vintner & Perruchet, 2000; Shanks & John, 1994). 

2.3 Interaction and Competition 

Although the multiple systems view of memory sees declarative and procedural 

memory as separate systems, it is thought that there is some interaction between them 

(Brown & Robertson, 2007). Research has shown that consolidation of procedural 

learning can be blocked by subsequent declarative learning and vice versa. This 

suggests a dynamic relationship between the two systems. Procedural dorsal stream 

basal ganglia circuits and declarative medial temporal lobe mechanisms may compete 

with each other during learning (Poldrack & Packard 2003), such that once 

automaticity is acquired conscious knowledge can interfere with performance. For 
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example, activation of the caudate nucleus within the basal ganglia and concurrent 

deactivation of the medial temporal lobe has been shown in participants undertaking 

the probabilistic categorization “Weather Prediction” task, such that activity in the two 

brain regions is negatively correlated (Poldrack, Prabakharan, Seger, & Gabrieli, 

1999).  

In summary, there is much research to suggest a dissociation between declarative 

and implicit memory processes, along with evidence from lesion studies and brain 

imaging that suggests these processes are served by different systems in the brain: 

declarative learning, by the cortico-hippocampal system and procedural learning by 

the corticostriatal system. However, some of this research has been subject to criticism 

on methodological grounds. Although evidence for separable memory systems in the 

brain is strong, there is not universal agreement that the multiple systems view is 

correct. 

2.4 Other accounts of the organization of memory 

Alternative views of the organization of memory in the brain exist. At the extreme, 

the very existence of implicit memory is disputed, with implicit learning performance 

on tasks accounted for by fragmentary knowledge of specific events (Perruchet & 

Pacteau, 1990). Connectionist networks have been able to simulate many of the 

findings in the implicit learning literature using network models that assume no more 

than stimulus representations and the associations between them, which would make 

implicit learning the incremental, distributed change in an associative pattern that is 

sensitive to the underlying statistical structure of the task (Cleeremans & McClelland, 

1991; Stark & McClelland, 2000; Perruchet & Vinter, 1998). 

For example, Cleeremans and McClelland (1991) showed how an apparently 

simple connectionist information processing model was able to account for the 

procedural learning of sequential patterns found in several noisy probabilistically 

structured artificial grammar tasks. Their recurrent network simply allowed for back-

propagation, such that processing at time t – 1 was able to influence processing at time 

t. This enabled all the forward-going connections in the model to be modified by back 
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propagation, even though the model’s processing resources were extremely limited. 

Once it incorporated some simple factors related to short-term priming effects that 

were evident from analysis of their experimental work, it yielded a good fit to the data. 

On a theoretical level the model shared many of the characteristics of implicit learning: 

the representations it learned associatively could only be expressed through 

performance, yet learning resulted in complex and highly structured knowledge of the 

optimal conditional probabilities of the task.  

An alternative connectionist explanation for the learning evident in implicit tasks 

uses a connectionist model (PARSER: Perruchet & Vinter, 1998) that initially forms 

chunks randomly as a natural consequence of attentional processing. These are then 

strengthened or weakened dependent on subsequent input. The components of 

repeated chunks are associated to form new representational units and the process 

repeats, while those that are not repeated rapidly decay. The model uses forward 

interference to make chunk strengths sensitive to the transitional probabilities of the 

implicit learning tasks or language input, but once again does so with minimal memory 

demands and no requirement for separate memory systems. The authors suggest these 

same processes are at work during word segmentation in infants. 

In support of these models Berry, Shanks, Speekenbrink, & Henson (2012) point 

out that the existence of just one memory system can be seen as a more parsimonious 

explanation of learning and memory and that connectionist models such as those above 

should be preferred if for that reason alone.   

Others also dispute the existence of a separate system dedicated to implicit 

learning. Marsolek and Bowers (2003) claim instead that implicit learning is the by-

product of the activity of brain systems that engage in perceptual pattern recognition, 

conceptual processing and motor behavior. In other words it is simply the physical 

structure of the brain that enables it to retain traces of stimulation. This does not require 

an implicit learning system per se. Marsolek and Bowers (2003) specifically focus on 

implicit memory and priming, but similar views are also seen in the implicit learning 

literature. Reber (2013) suggests that implicit learning should be viewed as a highly 
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adaptive, emergent property of the plasticity of the information processing circuits of 

the brain. It is, therefore, involved to an extent in every form of adaptive behavior 

change and is what enables people to extract the statistical relationships in the 

environment to their advantage in as efficient a manner as possible. He labels this 

“pervasive plasticity” (p2028). Where these plastic changes occur outside the medial 

temporal lobe brain area allied to explicit memory and learning, the result is simply 

dissociated from awareness. Reber’s view provides a shared universal mechanism for 

all implicit learning, seeing implicit learning as a unitary phenomenon, but at the same 

time denies there is such thing as an implicit learning system in the brain that exists as 

a separate entity from a declarative learning system. 

Other single system views see the difference between implicit and explicit learning 

as a difference in processing, rather than systems. Processing views in the 1980s and 

1990s provided an alternative to the multiple memory systems account, ascribing the 

apparent differences between implicit and explicit memory to the level of processing 

applied to the learning episode. Mandler’s activation view (1980) held that implicit 

and explicit “memory” represented the difference between automatic processing and 

integration of existing knowledge and effortful processing and elaboration that 

integrated new knowledge, all within the same memory system. However, this view 

did not convincingly explain why implicit learning is so robust over time. Roediger’s 

transfer-appropriate processing account (Roediger & McDermott, 1993) claimed that 

the apparent dissociations between implicit and explicit memory are the result of 

different processing requirements of the information learned. Implicit memory uses 

bottom up, data-driven processing, while explicit memory uses conceptually driven, 

top-down processing. Jacoby’s (1991) process dissociation framework similarly 

viewed explicit memory to be the result of effortful, controlled and deliberate 

processing and compared this to the effortless, automatic and involuntary processing 

that results in unconscious implicit memory. Experimental evidence of an apparent 

dissociation between implicit (perceptual learning) and explicit (recognition) learning 

dependent on the level of processing required supports this view (Jacoby & Dallas, 

1981). Participants demonstrated better recognition of previously presented words 

when they had been asked to think about them in terms of meanings (elaborative 
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processing), than when they had simply been asked to count letters (superficial 

processing). However, when words were primed by flashing them briefly on a screen 

the level of processing had no effect on performance. However, coming seemingly full 

circle, this dissociation can also be explained by the multiple memory systems view 

(Tulving & Schacter, 1990), as different memory systems are likely to be associated 

with different processes (Berry & Dienes, 1991).  

Arguments against processing views cite the considerable body of biological 

evidence mentioned above that would seem to support the existence of multiple 

memory systems. However, a final neural-based processing view worthy of mention 

does support the existence of separate memory systems, but not based on the criterion 

of consciousness (Henke, 2010). This view is consistent with the neurophysiological 

evidence of brain-based dissociations. It proposes that the medial temporal lobe is 

involved in the formation of both conscious and unconscious memory, but what 

distinguishes memory involving the medial temporal lobe is the flexible, associative 

nature of the encoding it provides. Such memory can be reactivated in many different 

ways because it is compositional. The account implicates the CA3 area of the medial 

temporal lobe system in particular as the source of the associative binding of memories 

that enables storage both as many individual elements and as their associations 

separately. This is contrasted with the rigid formations of unitized procedural memory 

that occurs without recruitment of this part of the medial temporal lobe. Formation of 

this type of procedural memory happens in the basal ganglia, cerebellum, 

parahippocampal gyrus and neocortex and is characterized by slow encoding over 

multiple trials. The result of this rigidity is that this type of memory is modality 

dependent, requiring the same cues that were present during learning for retrieval. 

Priming is similarly stored as a single inflexible unit with the same restrictions on 

retrieval, but is rapidly encoded as a single item. It is these differences in how 

memories are processed, stored and retrieved that combine to give the impression of 

memory that exists above and below the criterion of consciousness. 

The above processing views are compatible with findings that the hippocampus is 

also involved in the statistical learning of sequential and probabilistic regularities 



56 

 

(Shapiro, Gregory, Landau, McCloskey, & Turk-Brown, 2014; Shapiro, Turk-

Browne, Bovinick, & Norman, 2016). For example, an fMRI study of serial reaction 

time learning under both implicit and explicit conditions (Schendan, et al., 2003) did 

show activation of the striatum during implicit learning, but also activation of the 

medial temporal lobe under both conditions, perhaps pointing to the recruitment of this 

brain area for the learning of higher order associations, regardless of conscious 

knowledge of the sequence. Additionally, implicit visual associative learning has also 

been found to recruit the medial temporal lobe (Degonda et al., 2005). While medial 

temporal lobe involvement during implicit learning is difficult to reconcile with 

multiple memory systems accounts, Henke (2010) suggests that it may be recruited in 

conditions that benefit from flexibility to increase the efficiency of learning, such as 

conditions that require both contextual and temporal bindings.  

In summary, the multiple systems view of memory divides long-term memory into 

two separate systems of conscious declarative memory and non-declarative implicit 

memory. Non-declarative memory operates without consciousness. Procedural 

memory for motor and cognitive skills and habits is one of the components of this non-

declarative memory system. Evidence to support the multiple systems view consists 

mainly of dissociations between implicit and explicit declarative learning in patients 

with brain damage: either intact procedural learning and impaired declarative learning 

in patients with hippocampal damage or the opposite pattern in patients with diseases 

of the basal ganglia. Dissociations are also demonstrated in the absence of brain 

damage too, with implicit learning showing evidence of both age and IQ invariance, 

which is not seen in declarative learning. Although separate, these systems are thought 

to interact competitively with one another, in order to support optimal learning. 

However, although evidence for separable memory systems is strong, the multiple 

systems view is not universally supported. Alternative unitary accounts of memory 

exist that explain the apparent difference between the two types of learning in different 

ways: implicit learning may be the inevitable outcome of neuronal plasticity; or the 

result of limited processing resources like those required by a connectionist model; or 

it may reflect a difference in the type processing used in its formation, e.g., bottom-
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up, rather than top-down processing or the creation of rigid, rather than flexible, 

memory representations.  

With an understanding of the main positions in the ongoing debate surrounding the 

organization of memory in the brain, we now return to the exploration of the 

underlying causes of developmental disorders of language.  
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Chapter 3 The Procedural Deficit Hypothesis 

3.1 Summary of the hypothesis 

This chapter focuses on a recent cognitive-level, memory-based explanation for 

both developmental language disorder and dyslexia, which relates the impairments 

found in these disorders to an underlying deficit in the procedural memory system 

(Nicolson & Fawcett, 2007; 2011; Nicolson, Fawcett, & Dean, 2001; Ullman & 

Pierpont, 2005). Such a deficit may represent the cause of the grammatical and 

phonological processing impairments seen in developmental language disorder 

(Ullman & Pierpont, 2005) and the phonological processing impairments in dyslexia 

(Nicolson & Fawcett, 2007).  

The procedural deficit hypothesis is rooted in the multiple memory systems model 

considered in Chapter 2. It takes a dual route view of language processing as its starting 

point (Pinker, 1994, Squire, 2004). The procedural memory system is required for the 

learning of motor and cognitive skills, which include the perceptual-cognitive skills 

that make the fluent use of language possible (Ullman & Pierpont, 2005). Specifically, 

it is responsible for the learning of context-dependent sequential or probabilistically 

structured information. In language, the procedural system subserves the “mental 

Grammar”, which is concerned with the rule-based procedures that govern the 

regularities of language (Ullman, 2004), combining temporally and hierarchically 

sequential or probabilistically structured information into complex representations 

(Christiansen & Chater, 2015) and is involved in the learning, storage and retrieval of 

the statistically regular, rule-based features of grammar and phonology. Procedural 

learning happens slowly and below the level of consciousness, as has been outlined in 

Chapter 2, but repetition over time leads to rapid, automatic processing and would 

account for the seemingly effortless retrieval of rule-based, grammar-related and 

phonological information required for fluency in language and reading. The hypothesis 

states that it is sequence-based implicit learning in particular that is implicated in 

language disorder (Nicolson & Fawcett, 2010).  
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By contrast (as outlined in Chapter 2), the declarative memory system is involved 

in the acquisition, storage and use of facts and events (Squire et al., 2004). In language, 

declarative learning occurs via associative binding of phonological or orthographical 

representations and meanings (Ullman, 2004). The procedural deficit hypothesis 

proposes that the relatively unimpaired lexical knowledge seen in these disorders 

suggests that declarative memory systems remain intact. Indeed, Ullman and Pierpont 

(2005) propose that over time the declarative memory system may compensate for 

procedural weakness (for a review, see Ullman & Pullman, 2015), since in normal 

learning both systems are brought to bear in order to learn (Poldrack & Packard, 2003), 

and work in competition in order to ensure learning is optimized (Foerde, Knowlton, 

& Poldrack (2007). 

3.2 The neural basis for the procedural deficit hypothesis 

There are a number of brain regions allocated to the procedural memory system 

that have been implicated in both language processing and language disorder. 

3.2.1 The basal ganglia   

There is evidence that the basal ganglia are involved in language processing, at 

phonological, morphological and syntactic levels, also in lexical selection and 

retrieval, as well as in higher-order language processing (Ullman, 2004). Evidence for 

basal ganglia involvement in language impairment comes from different avenues of 

research. For example, Parkinson’s disease patients display more difficulty in marking 

regular versus irregular past tenses (Ullman & Pierpont, 2005). This is consistent with 

the claim that implicit memory is involved in the former, while declarative memory 

and the mental lexicon subserves the latter. However, it is also found in brain-imaging 

research showing differential activation of dyslexic participants and controls during 

implicit learning (Menghini, Hagberg, Caltagirone, Petrosini, & Vicari, 2006), as well 

as structural differences in the brain areas recruited to perform the implicit learning 

tasks (Menghini et al., 2008). Reduced overall volume of the basal ganglia is also 

found in developmental language disorder populations, as well as reduced grey matter 

mainly within the thalamus (Jernigan et al., 1991). Additionally, research into brain 
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functionality within the KE family, who display a range of symptoms associated with 

developmental language disorder, has shown both over-activation of the caudate 

nucleus (Vargha-Khadem et al., 1998), alongside under-activation of the putamen 

(Liégeois et al., 2002).  

3.2.2 Broca’s area  

The basal ganglia project into the posterior Broca’s area within the frontal cortex. 

Broca’s area is also thought to be involved in the learning and manipulation of 

sequential information, which is a fundamental requirement of mastering language 

(Conway & Christiansen, 2001; Dominey, Hoen, Blanc, & Lelekov-Boissard, 2003) 

and maintaining verbal information, such as phonological sequences, in working 

memory (Smith & Jonides, 1999). It has been hypothesized that these two areas play 

somewhat different roles within the umbrella of procedural learning. While the basal 

ganglia play an important part in acquiring procedural and grammatical knowledge, 

Broca’s area is involved in the use of such knowledge (Ullman, 2006). Although long-

suspected, a recent imaging study has found evidence of connections between the 

anterior putamen (part of the dorsal striatum within the basal ganglia), the thalamus 

and both the anterior portion of Broca’s area, which is involved in semantic processing 

and the posterior portion which is involved in phonology and syntax (Ford et al., 2013). 

Once again, the KE family display atypical structure and function of this area (for a 

review of studies of the KE family, see Ullman & Pierpont, 2005). Atypical 

connectivity between Broca’s area and other brain areas has been shown in dyslexia. 

Brain-imaging in normal participants during phonological processing tasks showed 

activation of Broca’s area alongside the temporo parietal cortex and insula, while in 

dyslexics, these tasks showed activation of Broca’s area alone (Paulesu et al., 1996). 

Disconnection between Broca’s area and the angular gyrus in dyslexia has also been 

mooted (Hampson et al., 2006), as well as greater symmetricality of both these areas 

in dyslexia (Habib, 2000). 
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3.2.3 The cerebellum 

The role of the cerebellum in motor control is well-known (for a review, see Manto 

et al., 2012), but sequence-based cerebellar mechanisms are also crucial for the broad 

range of cognitive processes that subserve language (Marien et al., 2014), from 

processing the timing-dependent phonetic features required for speech perception 

(Keele & Ivry, 1990), to involvement in the articulatory processes needed for speech 

production, as well as for verbal working memory (as referred to in Chapter 1 as 

support for a cerebellar deficit as a cause of language disorder). It is involved in the 

processing of both receptive and expressive grammar (Justus, 2006), via the retrieval 

of implicitly learnt grammar rules (Ullman, 2001). It coordinates the many processes 

required for efficient word identification in reading from phonologic assembly to 

lexical-semantic processing (Vlachos, Papathanasiou, & Andreou, 2007), as well as 

being involved in the planning as well as the execution of writing.  

Dysfunction of the cerebellum has also been suggested as a cause of both dyslexia 

and developmental language disorder (Nicolson, Fawcett, & Dean, 2001; Stoodley & 

Stein, 2013). The cerebellum is implicated in a number of processes that are involved 

in language (Marien, Engelborghs, Fabbro, & De Deyn, 2001) and especially in 

reading, from the direction of attention to error detection. At a physiological level, 

right-sided asymmetry of the cerebellum has been shown in typical readers, along with 

decreased right side volume in dyslexics (Leonard, et al., 2001) and overall decreased 

cerebellar volume related to oral and written language comprehension skills. 

Additionally, lesion studies have linked phonological processing deficits on a visual 

rhyme judgement task, as well as more variable performance on a non-word repetition 

task indexing phonological working memory, to the cerebellum (Ben-Yehudah & Fiez, 

2008). 

In summary, the procedural deficit hypothesis claims that the underlying cause of 

the deficits seen in developmental language disorder and dyslexia is an impairment of 

the procedural memory system, while declarative memory remains intact. At a neural 

level the hypothesis is persuasive, since brain structures allocated to the procedural 

memory system are involved in both language and literacy and atypical structure and 
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activation of these brain regions have been found in both disorders. As we shall now 

see, the procedural deficit hypothesis has also generated a substantial body of 

behavioural research using a variety of different implicit learning tasks. However, 

results of these behavioural investigations to date have been inconsistent. 

3.3 Measures of implicit learning 

Research has used a variety of tasks ranging from artificial grammar learning 

(Reber, 1967) to mirror-drawing (Vicari et al., 2005) with both child and adult 

samples. The wide range of implicit learning tasks used, as well as variations in the 

age, diagnosis and classification of participants make generalizing about the nature of 

procedural learning and its relationship with language and language disorder difficult. 

The following figure (Figure 3.1) from Krishnan, Watkins, and Bishop (2017) 

illustrates the general pattern of findings for implicit learning paradigms used to 

investigate the procedural deficit hypothesis, with impaired learning found in 

disordered groups in the tasks used to test sequential procedural learning and 

probabilistic category learning. However, these results are far from consistent or 

conclusive. We shall now consider each of the main behavioural paradigms in more 

detail. 
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Figure 3.1 The contribution of learning and memory systems to language learning difficulties. 
Reprinted from Krishnan, Watkins, and Bishop (2017). The boxes below each memory system show 
the tasks that have most frequently been used to assess learning in children with developmental 
language disorder and dyslexia. The bottom panel highlights the hypothesized contribution of each 
learning system to language learning. 

 

3.3.1 The serial reaction time task (SRT) 

Support for the procedural deficit view comes, in the main, from impaired 

performance of language-disordered participants on implicit serial learning tasks, such 

as the serial reaction time task (Nissen & Bullemer, 1987). In the serial reaction time 

task participants respond to a stimulus appearing in 1 of 4 locations as fast as possible. 

Faster response times to trials that follow a covert sequence compared to random trials 

are taken as evidence of implicit learning (Seger, 1994). Successful implicit learning 

performance on the serial reaction time task has been shown to recruit the prefrontal 
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cortex, striatum and cerebellum, all structures implicated in the implicit learning 

circuitry of the brain (Pascual-Leone, 1993; Keele, Ivry, Mayr, Hazeltine, & Heuer, 

2003; Laforce & Doyon, 2001). 

The original deterministically structured serial reaction time task has been 

criticized for not fully dissociating implicit and explicit learning (Shanks & Johnstone, 

1998; Shanks & St John, 1994). Shanks, Green & Kolodny (1994) demonstrated that 

unaware subjects performed above chance in post-task “generate” tests that tested 

awareness of the sequence by asking participants to predict future locations. Therefore, 

they could not be said to be properly unaware. More complex, probabilistically 

structured (Schvaneveldt & Gomez, 1998) or alternating versions (Howard & Howard, 

1997) that render the sequence indiscernible have since been developed to minimize 

the risk of explicit learning. The proportion of unaware participants on these tasks is 

far higher, yet they still show significant implicit learning. For example, participants 

on a complex probabilistic serial reaction time task (Cleeremans & McClelland, 1991) 

spanning 60,000 trials over 20 sessions were shown to develop progressive sensitivity 

to the sequential dependencies within the task up to and including three elements of 

context, but developed limited reportable knowledge of the sequences. Although they 

were significantly better able to predict strings that followed the sequential structure 

of the task than those that did not during a post-task generation test, this effect was 

small.   

Most research using the serial reaction time task to investigate the procedural 

deficit hypothesis uses extreme group designs of language-disordered and control 

participants. In these studies, language-disordered children have been shown to 

perform poorly both on deterministic serial reaction time tasks (developmental 

language disorder: Conti-Ramsden, Ullman, & Lum, 2015; Gabriel, Maillart, 

Stefaniak, Lejeune, Demottes, & Meulemans, 2013; Hsu & Bishop, 2014; Lum, Conti-

Ramsden, Page, & Ullman, 2012; Lum, Gelgic, & Conti-Ramsden, 2010; Lukacs & 

Kemeny, 2014; Sengottuvel & Rao, 2013; 2014; Sengottuvel, Rao, & Bishop, 2016; 

Jiménez-Fernández, Vaquero, Jiménez, & Defior, 2011; dyslexia: Stoodley, Ray, Jack, 

& Stein, 2008; Vicari et al., 2005; Vicari, Marotta, Menghini, Molinari, & Petrosini, 
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2003) and on more complex alternating task versions (Desmottes, Meulemans, & 

Maillart, 2016a; 2016b; Hedenius, 2013; Howard, Howard, Japikse, & Eden, 2006). 

However, other papers do not support these results with null findings on deterministic 

tasks  in children with developmental language disorder (Gabriel, Maillart, Guillaume, 

Stefaniak, & Meulemans, 2011; Gabriel, Meulemans, Parisse, & Maillart, 2015; 

Gabriel, Stefaniak, Maillart, Schmitz, & Meulemans, 2012; Lum & Bleses, 2012; 

Mayor-Dubois, Zesiger, Van der Linden, & Roulet-Perez, 2014); and in children with 

dyslexia (Menghini et al., 2010; Vakil, Lowe, & Goldfus, 2015; Yang & Hong-Yan, 

2011). 

In adults with dyslexia the story is similarly inconsistent, with null findings on 

several deterministic tasks (Rüsseler, Gerth, & Münte, 2006; Kelly, Griffiths, & Frith, 

2002; Laasonen et al., 2014), as well as a recent study using an alternating version of 

the serial reaction time task (Henderson & Warmington, 2017). However, several 

studies do find poorer implicit learning in dyslexic adults on deterministic tasks 

(Gabay et al., 2012a; Menghini et al., 2006; 2008; Stoodley, Harrison, & Stein, 2006) 

and on complex alternating versions (Howard, Howard, Japikse, & Eden, 2006). Only 

two studies examine procedural learning deficits in adults with developmental 

language disorder and both report null results (Lee & Tomblin, 2015; Lee, Mueller, & 

Tomblin, 2016). 

Few correlational studies examining serial reaction time learning and language 

ability exist. Those that do are in children and all report a predominantly null result for 

the relationship, either between implicit learning and knowledge of past tense 

morphology or with receptive vocabulary on either the BPVS-II or the  PPVT (Lum 

& Kidd, 2012; Kidd & Kirjavainen, 2011), as well as with reading ability (Waber et 

al., 2003).  The lack of significant findings in large-scale correlational studies raises a 

red-flag about the legitimacy of significant findings in the extreme group studies, 

which will be explored further in Chapter 4. 
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3.3.1.1 Noise within the data 

There are a number of possible explanations for the inconsistent results in the 

literature. Mayor-Dubois et al. (2014) found implicit learning impaired in children 

with developmental language disorder who were comorbid for developmental 

coordination disorder, but not for children with developmental language disorder 

alone. This suggests that impairments on the task may not be related to language 

difficulties, but to motor deficits instead. In line with this suggestion, Gabriel et al. 

(2012) reported that children with developmental language disorder made more 

learning-related errors than typically developing children when using a keyboard, but 

not a touch-screen, suggesting that implicit learning measures may be affected by task-

specific response mechanisms.  

3.3.1.2 Sequence complexity 

  It is also possible that differences between groups may be related to sequence 

complexity. Learning of first order conditional (FOC) sequences can be based on 

knowledge of a single preceding location, while second order conditional (SOC) 

sequences are more complex, with learning requiring knowledge of the two preceding 

sequence locations. Robertson (2007) suggested that any differences in implicit 

learning would relate purely to the greater computational complexity of SOC 

sequences, not the type of learning they engender. However, it is possible that FOC 

sequences are easier to learn explicitly (Curran, 1997) and that SOC sequences, 

therefore, may provide a purer measure of implicit learning.  

In support of this, Kelly, Jahanshahi, & Dirnberger (2004) found Parkinson disease 

patients predominantly impaired for SOC not FOC sequence learning, concluding that 

FOC sequence learning is aided by declarative memory mechanisms. At a first glance 

the use of tasks with SOC sequences supports the procedural deficit hypothesis, with 

significant group differences found in dyslexic adults (Howard et al., 2006) and in 

children with developmental language disorder (Gabriel et al., 2013). However, 

studies that analyse FOC and SOC learning side by side are once again inconsistent. 

While Du & Kelly (2013) also found dyslexic adults impaired for higher order, not 

lower order, transitions within the same task, Clark & Lum (2017) found the opposite, 
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with children with developmental language disorder impaired on the FOC version 

only. Finally, Deroost et al. (2010) found dyslexic children unimpaired on both FOC 

and SOC versions of the same deterministic serial reaction time task.  

3.3.1.3 Consolidation 

The extent to which consolidation of implicit learning may explain the difference 

between language-disordered and control groups has also been examined. Two studies 

have suggested that the implicit learning impairment in developmental language 

disorder is confined to consolidation rather than acquisition of implicit learning 

(Desmottes, Meulemans, & Maillart, 2016a; Desmottes, Maillart, & Meulemans, 

2017). Initial procedural learning was intact for both children with developmental 

language disorder and controls, but the developmental language disorder group were 

impaired during a second attempt at the same task. Similar results were also reported 

on an alternating serial reaction time task in dyslexic children (Hedenius et al., 2013). 

However, Gabay et al. (2012a) found the opposite, with dyslexic adults performing 

comparably with controls during later learning stages, but showing impaired initial 

learning, while Henderson & Warmington (2017) found no implicit learning in either 

group across initial and consolidation sessions of their task. Once again, therefore, the 

answer is not clear-cut. 

3.3.2 Hebb serial order learning task 

The most widely used measure of verbal implicit learning is the Hebb serial order 

learning task (Hebb, 1961). In this task participants are asked to recall sequences of 

items in order. Unbeknownst to them a covert repeating sequence is introduced. Better 

recall for the repeated, as opposed to the random sequences, is considered evidence of 

implicit learning. Just as in the serial reaction time task, memory for serial order is 

critical for performance of this task. The cognitive processes required to demonstrate 

a Hebb learning effect have been compared to those involved in word-form learning 

(Page & Norris, 2008), reflecting the learning of sequences of phonemes or syllables 

as a single unit. Such processes are thought to underlie infants’ learning of new words, 

as they extract the statistical regularities from verbal input, in order to segment the 

speech stream going on around them (Saffran, Aslin, & Newport, 1996). Research in 
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typically developing participants has demonstrated Hebb learning of nonsense 

syllables, combined with inhibited rejection of non-words composed of sequences of 

these syllables, compared to randomly composed non-words in a subsequent lexical 

decision task (Szmalec, Duyck, Vandierendonck, Mata, & Page, 2009). The authors 

claimed that the Hebb repetition effect served as a laboratory analogue of naturalistic 

vocabulary acquisition, with nonsense syllables forming phonological lexical 

representations during the Hebb learning process.  

There is a question mark over the extent to which the Hebb repetition effect relies 

solely on implicit learning processes, as participants can become aware that a sequence 

is repeating. Although it has been claimed that being aware of the presence of a 

repetition does not influence the extent of the Hebb repetition learning (McKelvie, 

1987; Stadler, 1993), Weitz, O’Shea, Zook, and Needham (2011) found that 

participants who were aware of a repetition out-performed those who were not. 

Poor performance on verbal Hebb learning tasks has been found in children with 

developmental language disorder (Hsu & Bishop, 2014) and in dyslexic adults 

(Szmalec, Loncke, Page, & Duyck, 2011; Bogaerts, Szmalec, Hachmann, Page, & 

Duyck, 2015). Szmalec et al (2011) also found the same dyslexic adults to be impaired 

on a non-verbal visuo-spatial Hebb task using sequences of dot locations, suggestive 

of a domain-general impairment. The domain-general finding is in line with research 

by Page, Cumming, Norris, Hitch, and McNeil (2006) that the Hebb effect operates 

across modalities. However, Staels & Van den Broek (2015) found no evidence of 

impaired serial order learning on a verbal Hebb task in dyslexic adolescents or children 

and Majerus et al. (2008) found no link between developmental language disorder 

status in children and performance on a Hebb task using familiar digits. So, it can be 

seen that, just as with the serial reaction time task, the results of research investigating 

procedural learning in language disorder using the Hebb serial order learning paradigm 

is mixed and firm conclusions are difficult to draw. 
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3.3.3 Artificial grammar and statistical learning 

A detailed review of artificial grammar and statistical learning tasks is beyond the 

scope of this thesis as these tasks will not be used in the experimental studies reported 

in later chapters. Nevertheless a brief overview is important, as the results of previous 

research has a direct bearing on the claims of the procedural deficit hypothesis.  

Reber developed artificial grammar learning (AGL: Reber, 1967) to examine the 

implicit learning processes that underpin language learning. He was the first to coin 

the term “implicit learning” and his focus was on the cognitive processes underlying 

predominantly verbal statistical learning, rather than the visuo-motor learning targeted 

by the serial reaction time task. The artificial grammar learning paradigm is a 

predominantly verbal task. It first presents participants with strings of stimuli that 

conform to an undisclosed set of combinatory rules (a finite state grammar). During a 

subsequent testing session participants are asked to judge whether new strings conform 

to or violate this grammar. The measure of implicit learning is the number of correct 

judgements made, with higher than chance performance related to the presence of 

implicit learning. Normal participants perform above chance (Reber, 1967) and 

artificial grammar learning has been shown to endure over time periods of up to two 

years (Allen & Reber, 1980), which is representative of the lasting nature of implicit 

knowledge. In one case performance on an artificial grammar task was still above 

chance (68%) two years after participants had been given only 10 – 15 minutes 

exposure (Allen & Reber, 1980). 

The rules governing the grammars in artificial grammar tasks are usually complex 

and they are infrequently attempted with children. However, the statistical learning 

paradigm (Arciuli & Simpson, 2011) provides a less complex version of artificial 

grammar-type learning. Learning and testing phases are structured in the same way as 

in artificial grammar learning tasks, but the strings of stimuli conform to a simpler 

base triplet structure. Even babies have been shown to attend preferentially to legal 

sequences in this task (Saffran, Aslin & Newport, 1996) 
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However, not everyone agrees that above chance performance represents implicit 

learning of the grammatical rules of the task (Perruchet & Pacteau, 1990; Pothos, 

2007). Johnstone, Shanks, Neely, and James (1999) have pointed out that learning on 

many artificial grammar learning tasks in humans can be attributed to the learning of 

surface features of the strings rather than underlying rules. A recent review of artificial 

grammar learning in animals has also shown grammatical test strings in auditory tasks 

are more acoustically similar to strings heard during the training phase than non-

grammatical test strings, with the training string either completely contained within 

the test string, sharing chunks or the same beginning or simply more similar in 

sequence to the training strings (Beckers, Berwick, Okanoya, & Bolhuis, 2017). Since 

these studies typically use the same grammars that are used in studies with human 

participants, acoustic similarity should be considered a possible alternative 

explanation for implicit learning in auditory artificial grammar learning tasks in 

humans too. Chan (1992, unpublished thesis, as cited in Berry & Dienes, 1993) 

postulated that implicit learning happened to a greater degree when the stimuli in 

artificial grammar learning tasks were “unnameable” symbols, rather than ones that 

could be verbally labelled, such as letters, since verbal stimuli encouraged explicit 

learning. In the same vein, Andrade and Baddeley (2011) demonstrated that allowing 

verbal rehearsal during the encoding phase in artificial grammar learning improved 

legality judgements, as it engaged phonological short-term memory processes (which 

depend on language) to aid performance. Even if explicit learning in artificial grammar 

learning tasks is limited, it may be enough to support legality discrimination (Perruchet 

& Pacteau, 1990). 

The majority of published research using artificial grammar and statistical learning 

tasks to investigate implicit learning in language disorders have found such learning 

to be impaired in both developmental language disorder and dyslexia. Artificial 

grammar learning and statistical learning tasks in language-disordered group designs 

are a mixture of verbal (mainly auditory) and non-verbal (mainly visual) tasks. 

Impaired artificial grammar learning has been demonstrated in children on auditory 

verbal tasks (Lukacs & Kemeny, 2014) and on non-verbal visual tasks using geometric 

shapes (Pavlidou, et al., 2009; 2010; Pavlidou & Williams, 2010). Although, Nigro, 
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Jiménez-Fernández, Simpson, & Defior (2016) found learning on a visual verbal and 

a non-verbal task to be equivalent for dyslexic and control participants, a more fine-

grained analysis showed that the dyslexic participants did not perform as well as 

controls on transfer measures that required the learning of the abstract rules governing 

the task. Only one study in children found equivalent levels of learning in both groups 

(Plante, Bahl, Vance, & Gerken, 2010). This study examined the implicit learning of 

word-level stress patterns in children with and without developmental language 

disorder. However, it should be noted that normal adults were better at the same stress 

pattern task compared to adults with language disorder (Bahl, Plante, & Gerken, 2009). 

Studies using artificial grammar learning tasks in adults are more mixed. Significant 

impairment on visual verbal tasks have been found in language disorder (Plante, 

Gomez, & Gerken, 2002) and in dyslexia (Kahta & Schiff, 2016). However, it should 

be noted that dyslexic participants may struggle with verbal stimuli presented in a 

visual format, which adds a possible confound to visual tasks presenting letter strings. 

Even so, two other studies found equivalent learning for visually presented symbol 

strings, using a simple CVC grammar structure in adults with language disorder 

(Aguilar & Plante, 2014) and a more complex finite state Markovian rule system in 

adults with dyslexia (Rüsseler et al., 2006). Pothos and Kirk (2004) also found no 

difference between dyslexic and normal adults, using an embedded shapes artificial 

grammar that encouraged perception of the stimuli as a whole, but they did find a small 

difference on a task that presented symbols sequentially. They interpreted this as 

evidence for an implicit serial order learning impairment in dyslexia.  

Results using statistical learning tasks predominantly find a significant impairment 

for groups with developmental language disorder or dyslexia. Evans, Saffran, and 

Robe-Torres (2009) have shown impaired statistical learning in children with 

developmental language disorder on a statistical learning task using the tri-syllabic 

speech stream stimuli from Saffran, Newport, Aslin, Tunick, and Barrueco (1997), as 

well as on a non-verbal version of the task using tone triads. Impaired statistical 

learning in children with developmental language disorder in tasks using tri-syllabic 

speech stream stimuli has also been found by others (Mainela-Arnold & Evans, 2014; 
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Mayor-Dubois et al., 2014), as well as impaired learning in dyslexic adults using both 

verbal and non-verbal stimuli (Gabay, Theissen, & Holt, 2015). 

Correlational studies also point to a relationship between statistical learning and 

language. While Saffran, Aslin, & Newport’s (1996) study of statistical learning in 

infants showed that babies as young as 8 months use transitional properties to segment 

speech, relatively few correlational studies use traditional artificial grammar or 

statistical learning tasks to examine the relationship between statistical learning and 

language ability in older participants. Those that do are in children and use statistical 

learning tasks, rather than artificial grammar tasks. These studies concluded that there 

was evidence of a relationship between statistical learning and syntax acquisition 

(Kidd & Arciuli, 2016); reading ability (Arciuli & Simpson, 2012) and language 

comprehension (Misyak & Christiansen, 2012). It should be noted that other studies 

exist that examine statistical learning using novel tasks that are based on sequences 

that use an artificial grammar structure. For example, see Spencer, Kashak, Jones, & 

Lonigen (2015) for a significant relationship in children between statistical learning 

and language using the Simon task or Misyak, Christiansen, & Tomblin (2010) for 

similar findings in adults using a novel combined serial reaction time and artificial 

grammar task. 

In conclusion, evidence for impaired performance on statistical learning tasks in 

both children and adults with language disorder seems more clear-cut than for studies 

using the serial reaction time task. The picture is similar in studies using more complex 

artificial grammar in children, but is more mixed in adults. However, the general 

pattern in the published literature does seem to point to a domain-general implicit 

learning deficit for sequentially presented information in groups with both 

developmental language disorder and dyslexia. 

3.3.4 Probabilistic category learning 

Probabilistic category learning is evident during language acquisition, for 

example, as infants track statistical regularities in a continuous speech stream and 

discover words (Saffran, 2003). The most frequently used task of this genre is the 
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dichotic, decision-making weather prediction task (Knowlton, Squire, & Gluck, 1994), 

in which participants classify combinations of stimuli into one of two possible 

outcomes. Each stimulus is given a fixed probability of a certain outcome. Although 

participants are unaware of the probabilistic nature of the task, feedback on the 

accuracy of their judgment after each trial enables incremental implicit learning of the 

probabilities over time. A trial is scored correct if it accords with the conditional 

probabilities of the stimuli shown, regardless of the feedback given and above chance 

performance is taken as evidence of implicit learning. 

Research using fMRI has shown that the task recruits the striatum, the caudate 

nucleus in particular (Poldrack et al., 1999). Other evidence for the implicit nature of 

learning on this task is that post-task self-report of even simple strategies for 

performance correspond poorly with actual performance (Gluck, Shohamy, & Myers, 

2002), which suggests that probabilistic information is acquired in an unconscious way 

that is difficult to verbalize. However, others have claimed that the task requires 

explicit learning as participants test hypotheses about outcomes (Fotiadis, 2013). 

Certainly experimental manipulations of the weather prediction task that would favour 

explicit processing result in higher accuracy. 

Reber (2013) suggests this type of task might pit implicit and explicit learning 

mechanisms against one another, as the task requires “aggregation of outcomes over 

multiple trials” (p.2032). The probabilistic nature of the task means that occasionally 

the outcome is the opposite of the one predicted by the stimuli and over-reliance on 

explicit memory could mean that these outcomes are over-weighted thus impairing 

performance overall (Shoshamy, Myers, Kalnithi, & Gluck, 2008) 

There is a small body of research into the procedural deficit hypothesis using this 

task, which has shown that children with developmental language disorder are less 

accurate and learning develops later compared to controls (Kemény & Lukács, 2010; 

Lee et al., 2016). The same pattern has been found in adults with dyslexia (Gabay et 

al., 2015). 
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3.3.5 Contextual cueing  

While research into the relationship between implicit serial order learning and 

language is comparatively plentiful, there is little research investigating how language 

ability relates to other aspects of implicit learning, such as visual search efficiency. 

Although dyslexia is a linguistic, not a visual impairment (Ramus, Pidgeon, & Frith,  

2003; Vellutino, 1979), impaired visuo-spatial attention has been posited as a potential 

cause of the reading deficits seen in dyslexia (Vidyasagar & Pammer, 2010), has been 

found in pre-schoolers at risk of dyslexia (Facoetti et al., 2010) and impaired serial 

visual search and spatial cueing facilitation have been found in preschoolers who went 

on be poor readers (Franceschini, Gori, Ruffino, Pedrolli, & Facoetti, 2012).  

Moving away from the implicit learning of sequenced or probabilistically 

structured information, the contextual cueing paradigm (Chun & Jiang, 1998) 

investigates the implicit statistical learning that develops to detect contextual 

regularities during visual search (Goujon, Didierjean, & Thorpe, 2015). Participants 

identify the location of a target stimulus within matrices of distractor stimuli. 

Unbeknownst to participants the target position in some matrices is predictable and 

faster response times to these compared to unpredictable matrices is considered 

evidence of implicit learning.  

There are several explanations for the mechanisms involved in contextual cueing. 

One limits the learning in contextual cueing to the extraction and formation of small 

chunks of information as perceptual units (Chase & Simon, 1973). Certainly the same 

learning on contextual cueing tasks has been found when matrices repeat only the 

locations surrounding the target, as when the entire matrix is repeated (Brady & Chun, 

2007). Another explanation claims contextual cueing relies on the learning of repeated 

global configurations of all items. This would imply associative learning between the 

configurations and target location to create an integrated representation to guide 

attention in a top-down fashion (Goujon, 2015). In support of this explanation, search 

efficiency improves when the task is made more difficult (Kunar, Flusberg, & Wolfe, 

2006). It is thought entirely possible that both mechanisms are at work in contextual 

cueing (Goujon, 2015). 
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Much of the performance on contextual cueing appears to be under an objective 

level of awareness (Chun & Jiang, 2003). Indeed, giving participants explicit 

instructions to try to learn the regularities within the task does not tend to help 

performance. Additionally, the learning has also been shown to be extremely robust 

(Zellin, von Mühlenen, Müller, & Conci, 2014). It is, therefore, broadly agreed that 

learning on contextual cueing tasks is implicit learning. However, “contamination” by 

explicit knowledge has also been shown to occur (Smyth & Shanks, 2008), while 

damage to the medial temporal lobe system has been found to impair contextual cueing 

performance (Chun & Phelps, 1999; Manns & Squire, 2001), so once again, it seems 

likely that implicit learning on the task is not process pure.  

 Studies using contextual cueing to investigate the procedural deficit hypothesis 

have so far not found impaired performance in dyslexic adults (Howard et al., 2006; 

Bennett, Romano, Howard, & Howard, 2008) or children (Jiménez-Fernández et al., 

2011), although impaired implicit sequence learning using the serial reaction time task 

was found in these same participants. 

To sum up, there does seem to be evidence of an implicit sequence learning deficit 

in participants with language disorders. This impairment appears to be found across 

tasks that index non-verbal learning (mainly serial reaction time tasks and some 

statistical learning and artificial grammar learning tasks) and in verbal tasks (mainly 

Hebb serial order learning and auditory statistical learning and artificial grammar 

tasks), which would suggest it is domain-general in nature. This impairment is also 

found in probabilistic categorization tasks, but does not seem to extend beyond 

sequence specific or probabilistically structured tasks, as reflected by non-significant 

findings in contextual cueing, as well as in an embedded shapes version of an artificial 

grammar task. However, by no means all studies find a significant difference in 

performance between disordered and normal participants. Inconsistent results seem to 

be a particular problem in studies using the serial reaction time task, but it is not known 

whether this points to specific issues with this task or other factors such as perhaps 

publication bias for studies using the other paradigms. 
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3.3.6 Different metrics to measure implicit learning 

Different paradigms measure implicit learning in different ways and these 

measurements may shape the conclusions that are drawn about the nature of implicit 

learning. Each task discussed above is associated with its own set of methodological 

limitations and two such limitations are briefly discussed here. Firstly, use of an 

explicit offline “testing phase” measure of implicit learning, such as that used by 

artificial grammar and statistical learning tasks requires a level of meta-cognitive 

awareness to index prior implicit learning. This introduces the possibility that 

declarative processes are included within the learning measure. Additionally, the 

offline nature of the test phase (ie: it takes place after learning) may have an effect on 

the learning itself, as well as making it impossible to measure the temporal trajectory 

of the learning over the course of the task. The matrix below (Figure 3.2) arranges the 

tasks by implicit or explicit, as well as online or offline measure of learning with the 

arguably preferable measurement (implicit and online) in the top left hand quadrant. 

As a final note about the offline measure for artificial grammar and statistical learning 

tasks in particular, the two alternate forced choice test (2AFC) that provides the 

learning measure for these tasks has been criticized as being potentially insensitive to 

individual differences (Siegelman, Bogaerts, & Frost, 2017). 
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Figure 3.2 Categorisation of tasks based on methodology: Online and offline testing 

 

The second potential limitation relates to the way the implicit learning is 

represented, either as a direct or an indirect measure. The former measures are total 

correct scores, such as the correct or incorrect judgment of outcome accorded to each 

trial in the weather prediction task, but the latter type of task uses a difference score 

between performance on two conditions as the measure of implicit learning. The first 

condition does not require implicit learning and serves as a baseline score. 

Performance on the second condition arguably does benefit from implicit learning. 

The difference between the conditions is, therefore, taken as a representation of 

implicit learning. However, difference scores are known to be unreliable (Lord, 1958). 

                                                 
1 Learning in the contextual cueing task can be measured continuously or can use a separate testing 

phase. The latter format was selected in the first study (Chapter 5), which would site the contextual 

cueing task in this thesis in the bottom left, rather than the top left, quadrant of the matrix. 
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This concern will be re-visited in later experimental chapters. The matrix below 

(Figure 3.3) arranges the paradigms according to this methodological limitation. 
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Figure 3.3 Categorisation of tasks based on methodology: Scoring methods 

 

It can be noted that both matrices site artificial grammar learning and statistical 

learning tasks on the right hand side of the matrices, as a result of the explicit nature 

of the implicit learning testing phase. In this thesis paradigms that assess implicit 

learning without the use of explicit recognition measures are preferred for the reasons 

cited above. 

To reiterate, there is a growing body of behavioural research that suggests that 

impaired procedural learning may be an underlying cognitive cause of the symptoms 

seen in both developmental language disorder and dyslexia. These studies employ a 

range of implicit learning paradigms from the serial reaction time task to the weather 
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prediction task. However, the results of this literature are inconsistent, with a 

substantial number of studies finding no link between procedural learning and 

performance on these tasks. Methodological differences between studies, such as 

sequence complexity, for example, may explain some of this inconsistency. 

3.4 Declarative memory and the distinction between short-term and long-term 

memory 

It is also important to examine the other main claim made by the procedural deficit 

hypothesis that declarative memory remains intact in the disorders. To recap, 

declarative memory is the recollection for personal events or for facts that can be 

intentionally retrieved (Baddeley, Eysenck, & Anderson, 2009). Declarative learning 

in language-related research has frequently been measured using free recall and serial 

recall tasks (Baddeley, 2003; Vellutino & Scanlon, 1985). Impaired free recall 

performance has been found in dyslexia (e.g., Vellutino & Scanlon, 1985; Menghini, 

Carlesimo, Marotta, Finzi, & Vicari, 2010; Kibby & Cohen, 2008), as well as impaired 

explicit serial recall performance in dyslexic adults and children (Brosnan et al., 2002; 

Perez et al., 2012). Menghini et al. and Kibby & Cohen (op cit) further distinguish 

between worse verbal, but not non-verbal free recall performance in poor readers 

compared to controls, while Kibby (2009) distinguishes between impaired verbal 

short-term, but not long-term memory in dyslexia. Lum et al. (2012) argue that many 

of the findings of impaired explicit learning in language-disordered children may be 

due to their phonological processing problems and the verbal nature of the tasks 

themselves, rather than explicit memory per se. A meta-analysis of 53 studies 

investigating verbal short-term memory in children with dyslexia (Melby-Lervag, 

Lyster, & Hulme, 2012) found a large significant mean effect size (d = -0.71, 95% CI 

[-0.83, -0.60]), with dyslexic children performing more poorly on tasks than typically 

developing age-matched children. Oral language and phonemic awareness accounted 

for 48% of this difference. The meta-analysis also included 24 studies comparing 

dyslexic children with reading-level control groups, showing a non-significant overall 

mean effect size (d = -0.09, 95% CI [-0.28, 0.10]). The review concluded that verbal 

short-term memory and efficient reading both depend on establishing phonemically 

structured phonological representations. In other words, verbal short-term memory 
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correlates with reading ability, because they both rely on access to the same kind of 

phonological information (McDougall, Hulme, Ellis, & Monk, 1994; Hulme & 

Roodenrys, 1995). 

The picture is similar in studies of short-term memory and developmental language 

disorder. Archibald and Gathercole (2006) report impaired verbal, but not non-verbal 

short-term memory in children with developmental language disorder. Much of the 

evidence for poor verbal short-term memory comes from tasks using non-word 

repetition (e.g., Gray, 2003; Conti-Ramsden, Botting, & Faragher, 2001; Norbury, 

Bishop, & Briscoe, 2002), but recall and serial recall tasks have also been used. 

Children with developmental language disorder perform more poorly than controls on 

verbal serial recall tasks (e.g., Hick, Botting, & Conti-Ramsden, 2005; Mainela-

Arnold & Evans, 2005), and similar results have also been found on verbal free recall 

tasks (e.g., Kail, Hale, Leonard, & Nippold, 1984; Kirchner & Klatzky, 1985; Nichols 

et al., 2004) Results for non-verbal short-term memory in developmental language 

disorder are scarce, but significant impairment in developmental language disorder on 

non-verbal free recall tasks for patterns have been found (e.g., Hick, Botting, & Conti-

Ramsden, 2005). Mainela-Arnold and Evans (2005) related the poorer performance on 

the complex verbal serial order recall task in their study (CLPT: Gaulin & Campbell, 

1994) to degraded linguistic representations in developmental language disorder. 

Avoiding possible task-related confounds, several studies have shown intact 

performance on explicit versions, but impaired performance on implicit versions of 

the same sequence learning tasks in dyslexic participants (Jiminez-Fernández et al., 

2011; Vicari et al., 2003). However, Staels and Van den Broek (2017) did find their 

dyslexic children performed worse on an explicit version of the serial reaction time 

task, while learning on an implicit version was only poorer for the dyslexic group 

during the initial learning on the task and was equivalent for the principal measures of 

implicit learning on the task (an RT increase on transfer to a random sequence or an 

RT rebound on returning to the sequence). As such, the role explicit memory skills 

play in language disorder is still under debate, although the bulk of evidence does 

suggest poorer declarative learning in the disorders. 
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The procedural deficit hypothesis explains findings of impaired verbal declarative 

memory in the disorders using traditional declarative memory tasks, by relating verbal 

declarative deficits to impaired verbal working memory, which they distinguish from 

declarative memory and site within the procedural memory system (Ullman, 2004; 

Lum et al., 2012; Conti-Ramsden, Ullman & Lum, 2015). For example, in Conti-

Ramsden et al’s (2015) study, children with developmental language disorder 

displayed poorer performance on verbal declarative tasks from the Children’s Memory 

Scale (Cohen, 1997: subtests indexing recall and recognition of semantically unrelated 

word pairs) than a typically developing group. However, once their verbal working 

memory capacity had been controlled for, using listening, counting and backwards 

digits recall scores, this difference disappeared.  

The division of memory along temporal lines is another aspect of the multiple 

memory systems view, which partitions working memory separately from declarative 

memory and sites it outside of the medial temporal lobe in their taxonomy. Working 

memory is the ability to maintain and manipulate information in the mind to support 

other cognitive functions such as learning and reasoning (Baddeley, 2003). Visual 

working memory is very limited, typically limited to maintenance of three or four 

visual objects at a time (Fukuda, Awh, & Vogel, 2010). Verbal working memory is a 

little more expansive, possibly due to the potential for verbal rehearsal to maintain 

items (Squire & Dede, 2015). However, it is debatable whether the short-term memory 

recall and recognition measures from the Children’s Memory Scale and the digit recall 

scores used to control for working memory in Conti-Ramsden et al. (2015) actually 

index separable memory mechanisms and using one to control for the other is a 

controversial practice at the least.  

3.4.1 Neural evidence 

There is evidence that areas of the brain active during procedural learning are also 

active during tasks designed to index working memory. Cabeza and Nyberg’s (2000a) 

extensive review of the PET and fMRI literature implicates prefrontal and parietal 

areas of the brain as important for performance on working memory tasks. Links to 

the cerebellum have been suggested in some research, showing activation in the 
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cerebellum on phonological processing tasks that also recruit Broca’s area, while 

working memory for sequences involves basal ganglia, thalamic and cerebellar regions 

among others. However, brain imaging studies have also shown that working memory 

tasks cause activation in medial temporal lobe (for reviews, see Graham, Barense, & 

Lee, 2010; Ranganath & Blumenfeld, 2005). For example, Olson, Page, Moore, 

Chatterjee, and Verfaellie (2006) demonstrated the hippocampus was required for 

working memory of object-location conjunctions, just as it is for long-term memory. 

Brain imaging has also revealed a shared neural substrate for both episodic and 

working memory in the fronto-parietal-cerebellar network (Cabeza & Nyberg, 2000b), 

with differential activity during working memory tasks in two parietal subregions: 

Broca’s area in the left hemisphere and posterior/ventral parietal areas bilaterally. 

These authors speculated that the former reflected phonological aspects of working 

memory operations specifically, with the latter allocated to more general working 

memory operations.  

3.4.2 Behavioural evidence 

At a behavioural level, although there is evidence that a better working memory 

capacity may make implicit sequence learning easier (Howard & Howard, 1997) most 

studies have not found a link between working memory and implicit sequence learning 

(Janacsek & Nemeth, 2013). For example, they found no correlation between working 

memory and serial reaction time task performance (Bo, Jennett, & Seidler, 2012; 

Feldman et al., 1995), while Kaufman et al. (2010) went a step further, using a 

correlational design and structural equation modelling to demonstrate no link between 

procedural learning on a probabilistic serial reaction time task and working memory. 

Working memory has been linked to performance on explicit tasks, however, possibly 

acting to guide attentional focus and cognitive control (Jiménez, 2003; Kaufman et al., 

2010). This would suggest that verbal working memory is more closely aligned with 

declarative than procedural learning processes. 
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3.4.3 The processing view of short-term and long-term memory 

The debate surrounding the nature of working memory goes a step further than 

this, arguing that verbal working memory and verbal declarative memory are not 

distinct constructs and there is no justification for allocating them to neurally distinct 

stores in the brain. By extension, tasks reputed to index verbal working memory and 

verbal declarative memory respectively do not index distinct and different processes 

in the brain (Belleville, Caza, & Peretz, 2003). These arguments mirror the processing-

based positions in the debate surrounding the nature of declarative and procedural 

learning reviewed in Chapter 2. For example, Belleville, Caza, and Peretz (2003) 

provide a process-based explanation for the apparent dissociations between working 

memory and declarative memory found in brain-damaged patients that relies instead 

on a distinction between the processing of verbal and non-verbal modalities. They 

studied a patient with extensive neural damage that appeared to cause an isolated short-

term memory deficit, leaving long-term memory intact. Memory testing with 

traditional verbal and non-verbal short-term immediate serial recall and long-term 

supraspan tasks supported this conventional interpretation. However, closer 

examination revealed an alternative interpretation of the impairment was possible. 

This more fine-grained investigation linked the apparent short-term memory 

impairment to a deficit in phonological coding that was evident for both short-term 

and long-term memory, alongside preserved non-phonological semantic processing, 

again evident in both short- and long-term memory. The impairment was, therefore, 

better described by a distinction between the type of processing required for 

phonological and non-phonological semantic information respectively, rather than by 

the traditional short-term long-term memory system distinction. The apparent 

dissociations between short- and long-term memory, therefore, could be explained by 

the task demands of the different tasks used for each type of memory. This 

interpretation is consistent with claims that verbal short-term memory and language 

(perception and production) representations are closely related (Allen & Hulme, 2006; 

Hulme et al., 1997; Martin & Saffran, 1997; Walker & Hulme 1999) and this is the 

reason that deficits in short-term memory parallel deficits in language processing. 
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In summary, the first claim of the procedural deficit hypothesis is that deficits in 

the procedural memory system are behind the pattern of impairments seen in both 

developmental language disorder and dyslexia. As we have seen, research 

investigating this claim has reported inconsistent results to date. The other main claim 

of the hypothesis is that declarative learning in developmental language disorder and 

dyslexia remains intact. However, there is much previous research that demonstrates 

impaired declarative learning in these disorders, which is found on free recall and 

serial recall tasks, as well as on non-word repetition tasks. These impairments are 

found predominantly on verbal declarative learning tasks. The procedural deficit 

hypothesis explains this apparent contradiction by linking deficits on declarative 

learning tasks to impaired domain-general working memory, which it separates from 

declarative memory, and sites within the procedural memory system. However, it is 

not clear to what extent working memory processes can be separated from short-term 

declarative memory processes; or to what extent working memory can be allocated to 

either declarative or procedural circuits in the brain. Importantly, there is also a 

question about the extent to which short-term verbal declarative processes can be 

separated from language itself. 

The range of populations sampled and paradigms employed, as well as 

methodological differences across studies makes it difficult to draw any definitive 

conclusions about the veracity of the procedural deficit hypothesis. We shall now 

proceed to a more data-driven analysis of the existing literature, using meta-analysis 

to shed light on the claim that impaired procedural learning is the underlying cause of 

developmental disorders of language learning.   
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Chapter 4 Meta-analyses  

4.1 Previous reviews of the procedural deficit hypothesis 

The following chapter reports the results of a series of meta-analyses of previous 

studies of the procedural deficit hypothesis of language learning disorders. Five 

relevant meta-analyses currently exist. All limit their purview to a single language 

disorder and exclude paradigms that are relevant to the debate. Lum and Conti-

Ramsden (2013) conducted a meta-analysis on studies of both declarative and 

procedural learning in children with developmental language disorder, including 

published peer-reviewed studies up to December 2012. Procedural learning was 

assessed with two studies of auditory statistical learning and two studies of 

probabilistic category learning. The review concluded that there was robust evidence 

for a deficit in children with developmental language disorder compared to age-

matched controls on statistical learning tasks (mean effect size d = .834, 95% CI [.42, 

1.25], p < .001), but less conclusive, evidence for a deficit on probabilistic category 

learning (mean effect size d = .502, 95% CI [.08, .93], p = .02). However, given the 

small number of implicit learning studies (n = 4) included in the analysis, these results 

must be interpreted with caution. 

Two subsequent meta-analyses by the same research group focused only on the 

most frequently used paradigm in the literature, the serial reaction time task. Each of 

the analyses restricted itself to papers with participants categorized as having one 

specific language disorder diagnosis only, either dyslexia (Lum, Ullman, & Conti-

Ramsden, 2013) or developmental language disorder (Lum, Conti-Ramsden, Morgan, 

& Ullman, 2014). Only papers using independent group designs were included. The 

first of these meta-analyses (Lum, Ullman, & Conti-Ramsden, 2013) included 14 

studies investigating implicit learning in serial reaction time tasks in developmental 

dyslexia, finding significantly impaired performance in dyslexic compared to age-

matched control groups (mean effect size d = .449, 95% CI [.204, .693], p < .001). The 

analysis examined the effect of sequence complexity (ie: use of first order conditional 

or second order conditional sequences), number of sequence repetitions on the serial 

reaction time task and age. It found smaller effect sizes with complex sequences or 
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more repetitions in studies with adults, but not with children. The second meta-analysis 

of eight serial reaction time studies (Lum, Conti-Ramsden, Morgan, & Ullman, 2014) 

also found implicit learning deficits in children with developmental language disorder 

(mean effect size d = .328, 95% CI [.071, .584], p = .01). Once again there were smaller 

effect sizes for more complex or longer tasks, but only in older children. However, 

both meta-analyses only quantified sequences as second order conditional if every first 

order transition occurred equally often (1,2; 1,3; 1,4; 2,1; 2,3; 2,4; 3,1; 3,2; 3,4; 4,1; 

4,2; 4,3). Ten item sequences that inevitably contained two locations that could only 

be followed by two out of the three remaining locations did not qualify for a second 

order conditional label.  

A recent meta-analysis (Obeid, Brooks, Powers, Gillespie-Lynch, & Lum, 2016) 

examined procedural learning across several implicit learning paradigms in 

participants with developmental language disorder, as well as those with autism. In the 

developmental language disorder meta-analysis eleven serial reaction time tasks, two 

artificial grammar and statistical learning tasks and two probabilistic category learning 

tasks were included in a single meta-analysis, in spite of many task differences. No 

Hebb serial learning paradigms were included. The meta-analysis concluded that 

procedural learning is significantly impaired in developmental language disorder 

compared to age-matched controls (mean effect size d = .498, 95% CI [0.28, 0.72], p 

< .001), but not autism. It also found that procedural learning impairments in 

developmental language disorder were not age-dependent, contrary to the findings of 

the previous meta-analysis of developmental language disorder and procedural 

learning in serial reaction time tasks (Lum et al., 2014).  

A final meta-analysis by Schmalz, Altoe, and Mulatti (2016) examined statistical 

learning in dyslexia, including studies using artificial grammar learning tasks. They 

included eight studies in the full analysis, but expressed concern about lab effects in 

the four studies with children and about under-powered studies generally. Although 

the effect size for this meta-analysis was d = .47, 95% CI [.04, .90], they concluded 

that the true effect size was likely to be small. An attempted meta-analysis for studies 

using SRT tasks was abandoned, owing to the variety of dependent variables used in 
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different studies and the scarcity of reported condition averages from which to gauge 

effect sizes.  

The series of meta-analyses reported here takes a wider view of implicit learning 

and language than has been attempted in previous meta-analyses. In particular, each 

meta-analysis in the series includes studies of participants with developmental 

language disorder, as well as those with dyslexia. While previous meta-analyses have 

confined themselves to a single disorder, this exclusivity is questionable, given the 

heterogeneity of symptoms in language disorders, their frequent comorbidity, the fluid 

nature of language development itself and the range of diagnostic tests employed to 

classify participants into groups of either disorder for experimental purposes (see 

Chapter 1). For example, in one study (Hedenius et al., 2013) participants categorized 

as dyslexic, displayed scores on a test of receptive grammar (TROG: Bishop, 1982) 

that were on average 17 points lower than the typically developing group. The TROG 

test is frequently used diagnostically for developmental language disorder. 

Importantly, the procedural deficit hypothesis claims that deficits in the procedural 

memory system are the basis of the impairments seen in both disorders. Examining the 

moderating influence of disorder type would help to clarify the extent to which the 

symptoms of dyslexia and developmental language disorder may emerge from 

common procedural mechanisms.  

The series of meta-analyses include the full range of implicit learning tasks most 

commonly used in this area of research: serial reaction time tasks, Hebb serial order 

learning tasks, artificial grammar and statistical learning tasks and probabilistic 

category learning tasks. Unfortunately, there were not enough studies with contextual 

cueing tasks (n = 3) to warrant a meta-analysis. However, no differences between 

language-disordered and control participants have been found on contextual cueing 

tasks in any of the studies. Each paradigm is allocated to a separate meta-analysis to 

take account of the variability arising from the use of different tasks. Where possible, 

the analyses systematically examine the effect of moderating factors, ranging from 

participant variables, such as age, to task variables such as stimuli modality. The aim 

of this process is to gain a more accurate picture of any relationship between a 
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procedural learning system and language disorder, within one consistently conducted 

review.  

In particular, the series of meta-analyses aims to address the following questions: 

 Whether there is evidence for a group deficit on procedural learning tasks in 

groups with developmental language disorder and groups with developmental 

dyslexia 

 Whether any procedural learning deficit is domain-general, as has been asserted. 

 To what extent the relationship between implicit learning and language disorders 

might be moderated by age. 

 Whether developmental language disorder and dyslexia appear to be 

differentially impaired on measures of procedural learning  

 Whether there is any variability in the severity of the impairment in language 

disordered groups across studies and, if so, whether moderators of the size of the 

deficit can be identified  

 To what extent any relationship between procedural learning and language 

learning disorders is confined to tasks that measure implicit sequence learning, 

rather than, for example, probabilistic categorisation. 

 To examine the effect that within-paradigm differences, such as task length, may 

have on experimental results. 

4.2 Methodology and inclusion criteria 

To be included in the meta-analyses reported here, studies needed to be primary 

studies reporting on either group or correlational experimental designs and published 

in a peer reviewed journal. Group designs needed to compare implicit learning 

performance of children or adults with developmental language disorder or dyslexia 

with performance of a control group(s). Correlational designs needed to measure the 

relationship between performance on implicit learning tasks and language measures in 

individual participants. Given the differences inherent between group and correlational 

designs, these two types of study were entered into separate analyses. 
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Eligible studies needed to report data on at least one implicit learning task (serial 

reaction time; Hebb serial order learning; artificial grammar or statistical learning; 

probabilistic categorization; contextual cueing). Group studies needed to include 

means and standard deviations for performance on the tasks to enable a measure of 

difference between groups to be calculated. Alternatively, correlational studies had to 

include a measure of effect size (r) for the relationship between implicit learning and 

language. However, in practice many of the eligible studies did not include sufficient 

information. For serial reaction time tasks, for example, means and standard deviations 

for the task were usually reported in figure format only. Whenever the relevant 

information was implied but not reported, the study was considered eligible in the first 

instance and the authors were contacted and additional data requested. Tables in each 

meta-analysis include all eligible studies, although only studies for which sufficient 

data for an effect size was forthcoming were included in the final meta-analyses and 

this is indicated in the table that accompanies each meta-analysis. 

4.3 Search Strategy 

Studies were collected using a variety of approaches (see flow diagram in Figure 

4.1 for the search criteria). Primarily, studies were located using the following 

electronic bibliographic databases: Medline, PsychInfo, Web of Science, ERIC 

ProQuest and Google Scholar. The search strategy combined terms relating to implicit 

learning with terms relating to language and language disorder and was developed in 

collaboration with subject specialist librarians at UCL, London. The search terms for 

Medline and PsychInfo is available in Appendix A. This search was adapted for use 

with the other bibliographic databases as necessary, but the search terms themselves 

were the same across all databases. Additional measures were taken to ensure all 

eligible studies were found. All previous reviews were checked (Lum et al., 2013; Lum 

et al., 2014; Obeid et al., 2016; Schmalz et al., 2016). A manual review of the table of 

contents for four key journals was conducted (Developmental Science; Journal of 

Experimental Psychology: Learning, Memory & Cognition; Research in 

Developmental Disabilities; Annals of Dyslexia). Finally, reference lists in short-listed 

papers were also checked. 
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Results were imported from their respective databases to Endnote. Duplicate 

references were detected and removed using Endnote’s de-duplication search. An 

initial screening of titles and abstracts of the remaining references checked that the 

study was a primary experimental study; that it included measurement of participants 

on one of the candidate implicit learning tasks; and that it included an experimental 

group of language-disordered participants or related task performance to measures of 

language ability. A second stage screening evaluated the relevance of the full texts 

according to the inclusion criteria. The electronic database searches were re-run just 

before the final analyses (1st April, 2017) and three further studies published in the 

interim were retrieved for inclusion. 
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Figure 4.1 Flow diagram for the search and inclusion criteria for studies in this series or meta-
analyses. Adapted from “Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The 
PRISMA Statement”, by Moher, Liberati, Tetzlaff, Altman, and the PRISMA Group (2009). 
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 Search of prior systematic reviews and meta-analyses 
 Scanning of reference lists 
 Citation search of authors’ names 
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Records after duplicates removed: (n = 1374) 

Studies must include: 
 One or more of the following implicit learning paradigms: Serial reaction 

time; Hebb serial learning; artificial grammar learning; statistical learning; 
contextual cueing; probabilistic category learning. 

 Measures of language ability (language and / or literacy) 
 Either child or adult participants. 
 Data that enables an effect size to be calculated for the relationship 

between implicit learning and language. 

Abstracts screened:  
(n = 1374)  

Full text articles 
assessed for 

eligibility: (n = 86) 

 

Studies included in meta-

analyses (n = 82*) 

*Some group design studies include 

more than 1 independent group 

comparison and multiple paradigms 

 

Abstracts excluded for not meeting 
research criteria: (n = 1287) 

 Focus on different disorders (eg: 
aphasia; autism; dementia; 
depression; Down syndrome; 
Parkinson’s disease; schizophrenia) 

 Focus on 2nd language learning 
 Case studies 
 Different implicit learning tasks (eg: 

lexical decision; fast mapping; grapho-
motor symbol acquisition) 

 

Full text articles excluded (n = 7) 
 Wrong participant groups (Cherry & 

Stadler, 1995; De Visscher et al., 2015; 
Folia et al., 2008; Ise et al., 2012) 

 Paradigm sufficiently different to 
warrant exclusion (eg: Roodenrys & 
Dunn, 2008; Sperling et al., 2004) 

 Focus on IQ, not language ability (eg: 
Gebauer et al., 2007) 

  

Screening re-run before 

final analysis  

(n = 3) 
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4.4 Procedure 

Six separate meta-analyses were conducted (Table 4.1). Data for meta-analyses on 

each of the main implicit learning paradigms were coded and analysed using the 

Comprehensive Meta-Analysis programme (CMA: Borenstein, Hedge, Higgins, & 

Rothstein, 2005). Unless otherwise highlighted other meta-analyses followed the same 

procedures. The standardised mean difference between groups was coded for group 

designs and the correlation between implicit learning and language measures was 

coded for correlational studies. These were entered in random effects models.  

Studies that shared authors, had equal number of participants, reported the same 

results or use the identical task measures were further investigated to limit the risk of 

coding the same data twice. Duplicate reports of the same study were treated as one 

collective report. 

Table 4.1 Series of meta-analyses with numbers of eligible studies and final inclusion numbers 

Meta-analysis Experimental Design Eligible studies* 

Serial reaction time task Group 46 (21) 

Serial reaction time task Correlational 6 (5) 

Artificial grammar learning and 

statistical learning tasks 

Group 17 (14) 

Artificial grammar learning and 

statistical learning tasks 

Correlational 4 (3) 

Hebb serial learning task Group 9 (8) 

Probabilistic category learning tasks Group 6 (5) 

Contextual cueing task Group Insufficient studies1 

*Number of studies considered eligible. The final number included in the meta-analysis is noted in brackets. 
1
Three 

studies were eligible, but only two contained sufficient data for inclusion. 

 

4.4.1.1 Effect size calculation for meta-analyses of group design studies  

The standardised mean difference in procedural learning between groups was 

coded for group designs, using Hedges’ g (Hedges, 1981). When Hedge’s g is 
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negative, the language disordered group is performing more poorly than the control 

group. 

Effect sizes for the group difference in procedural learning on serial reaction time 

and Hebb task meta-analyses were calculated from the means and standard deviations 

of the component conditions on the tasks (SRT task: means and standard deviations in 

millisecond for sequenced trials and for random trials; Hebb task: means and standard 

deviations as a percentage score for repeated and for non-repeated trials). This method 

of calculating an effect size is directly analogous to the way effect sizes are calculated 

for randomised control trials, otherwise known as pre- post-test control group designs 

(Lund, 1988; Morris, 2008; Ray & Shadish, 1996). This is the experimental design 

that these extreme groups studies most closely resemble structurally (see Figure 4.2).  

 

Figure 4.2 Analagous design structure for randomised control trials and implicit learning tasks 
based on difference scores. 

Effect sizes were calculated using standard deviations for the random trial 

condition for serial reaction time tasks and the unrepeated sequence condition for the 

Hebb tasks, as this is equivalent to using the pre-test standard deviations recommended 

by Morris (2008).  The standard deviation for the control group only was used to 

standardize effect sizes, as this gives a change score that relates directly to the size of 

the improvement seen, compared to control group performance; this decision will tend 

to increase the effect sizes obtained slightly compared to using the random (or 

unrepeated) condition standard deviations for both groups, as the clinical group 

standard deviations tend to be larger than those in the control group. For this reason, 

it should be noted that study effect sizes are more likely to reflect an upwards bias, 

rather than a downwards one. 
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These Cohen’s d estimates were then entered into CMA using inverse variance 

weights to calculate effect sizes. In cases where a single effect size was calculated 

from condition means for each group across several blocks of a task, a pooled standard 

deviation for each group condition mean was calculated using the following formula 

(see Equation 1) in order to take account of the variance between the block means, as 

well as the variance within them. 

𝑆𝑝𝐺𝐶  = √𝑛𝐵1( 𝜎𝐵1 
2 + 𝛿𝐵1

2 ) + 𝑛𝐵2(𝜎𝐵2 
2 + 𝛿𝐵2

2 ) … + 𝑛𝐵𝑛(𝜎𝐵𝑛 
2 + 𝛿𝐵𝑛

2 )  ÷  (𝑛𝐵1 + 𝑛𝐵2 … +  𝑛𝐵𝑛)   (1) 

Where 𝑆𝑝𝐺𝐶 is the pooled standard deviation for a group condition mean, 𝛿 is the 

difference when subtracting the Grand mean from the Block mean for the group 

condition, 𝜎  denotes the block standard deviation for the group condition and B 

denotes the task block (1 to n). 

The correlation between random and sequenced conditions for serial reaction time 

tasks and unrepeated and Hebb sequences for Hebb serial order learning tasks were 

not reported in any of the papers included in the meta-analyses. The meta-analyses 

were, therefore, estimated including this correlation at varying levels (0.0, 0.5, 0.7, 

0.9) to assess the impact this might have on results. Inclusion of any of these 

correlations did not change the effect size, nor did it impact on the between study 

variance estimates. Therefore, since actual correlations for each study were unknown, 

the final meta-analyses were based on a zero correlation between conditions.  

For artificial grammar and statistical learning tasks, group scores for statistical 

learning on the tasks (both correctly-identified recognition and generalization 

measures, as well as any scores for violations) were entered directly into CMA taking 

account of the direction of the effect. The mean of these estimates formed the effect 

size for the comparison. Where only one overall score per group was reported this 

formed the effect size for the comparison. 

For weather prediction tasks, the proportion of correct responses per group was 

entered directly into CMA per task total or per block. In studies that reported 
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proportions per block, the mean of all block estimates formed the effect size for the 

comparison. 

Several studies in the artificial grammar and statistical learning and weather 

prediction meta-analyses did not report scores by group, but reported t-tests statistics 

or F ratios that enabled an effect size to be calculated using the effect size calculator 

on the Campbell Collaboration website 

(http://www.campbellcollaboration.org/escalc/html/EffectSizeCalculator-Home.php). 

These studies are identified in the tables accompanying each meta-analysis. 

4.4.1.2 Effect size calculation for meta-analyses of correlational studies 

The correlations between procedural learning and language and /or decoding 

measures (Pearson’s r) were coded directly into CMA where the calculations are done 

with Fishers z and then transferred back to Pearson’s r to ease interpretation.  

4.4.1.3 Mean effect size and heterogeneity 

For all meta-analyses, random effects models in CMA were then used to calculate 

weighted averages of individual comparison effect sizes, in order to estimate an overall 

effect size for each meta-analysis. 95% confidence intervals are given for each pooled 

effect size. The impact of any potential outliers was examined using sensitivity 

analyses, which give an adjusted overall effect size after removing studies one at a 

time. The variation in effects sizes between studies was examined, using the Q-test of 

homogeneity (Hedges & Olkin, 1985) and I2 was used to examine the degree of any 

true heterogeneity that was not attributable to random error (Borenstein et al., 2009). 

4.4.1.4 Moderator Coding 

Where possible, moderator analyses were performed to examine the extent to 

which certain variables were able to explain any heterogeneity between study effect 

sizes. In this way, the moderator variables attempted to account for potential sources 

of systematic difference.  

http://www.campbellcollaboration.org/escalc/html/EffectSizeCalculator-Home.php
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Potential moderators are detailed in the tables accompanying each meta-analysis. 

They included implicit learning task features. For the serial reaction time task, the 

following moderators were coded: task type (deterministic, alternating or 

probabilistic); sequence type (first or second order conditional structure); sequence 

length, as well as the number of sequence repetitions prior to the introduction of the 

random sequence (deterministic tasks) or repetitions of the sequence across the task 

(alternating and probabilistic versions). For the Hebb serial order learning tasks, the 

following moderators were coded: modality (verbal or non-verbal) and number of 

repetitions of the Hebb sequence. In addition verbal tasks were further subdivided into 

auditory-verbal or visual-verbal tasks, although insufficient numbers of studies meant 

this could not be examined as a moderator. For artificial grammar and statistical 

learning tasks, modality (verbal or non-verbal, including a further distinction between 

visual-verbal and auditory-verbal tasks) and complexity (finite artificial grammar or 

simple triplet structure) were coded. For probabilistic classification tasks, modality 

(verbal or non-verbal), number of trials and variations in cue probabilities were coded. 

Information on relevant participant features was also coded, including age (adults 

or children) and language disorder classification (developmental language disorder or 

dyslexic). The moderating effect of the severity of language disorder in group designs 

was also examined. This involved coding the scores for the language measures that 

studies used to classify participants into groups or to support a prior diagnosis of 

language disorder. Group designs were, therefore, preferably supported by at least one 

language measure related to either (1) language ability or (2) literacy or (3) both. Tests 

of language ability were limited to those that indexed grammar (e.g., TROG-2) and / 

or vocabulary knowledge (e.g., BPVT). Literacy measures were confined to 

standardized tests that indexed reading ability (e.g., TOWRE). However, group design 

studies were still included in the meta-analyses in cases where language data was 

unavailable. Data for equivalent language measures had to be available for 

correlational studies. 

The majority of group design studies, but not all, reported no significant 

differences between groups in NVIQ. However, this was not the case across all studies 
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and varying small differences between groups remained in others. For this reason the 

extent to which variation in the difference in NVIQ between groups reflected variation 

in the effect size for implicit learning was also investigated, as was the relationship 

between NVIQ and implicit learning in correlational studies. 

4.5 Serial reaction time task: Meta-analysis of comparisons of language-

disordered groups and age-matched controls 

The serial reaction time task measures procedural learning by examining the speed 

with which participants are able to press buttons that correspond to four possible 

locations shown on a screen. The locations are either random or conform to a covert 

sequence. Faster RTs to trials that follow the sequence compared to random trials is 

taken as evidence of implicit learning. This measure of procedural learning is, 

therefore, instantiated in the difference between response times to random and 

sequenced trials.  

Forty six eligible studies were found for the meta-analysis of group design studies 

including deterministic, alternating and probabilistic serial reaction time tasks (see 

Table 4.2). A triplet frequency learning task (Bennett et al., 2008), similar to the 

alternating serial reaction time task, was also included, as were two studies that used 

deterministic serial search tasks (Desmottes et al., 2016b; Gabay et al., 2012b), where 

participants pressed keys corresponding to an auditory signal (tones, letters or words 

dependent on the task) that followed a covert sequence. Although most tasks reported 

results for accuracy as well as response time, analysis was confined to the latter, as 

this is the principal indicator of implicit learning on serial reaction time tasks. 
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Table 4.2 Characteristics of the 46 group design studies eligible for the meta-analysis using the SRT task 

Study Task Diagnosis Age 
Sample 

Size* 

Sequence 

Complexity 

Sequence 

Length 

Sequence 

Repetitions 

Additional 

information 

Bennett, Romano, Howard Jr, & Howard, 20081 Alt. DD Adult 16; 18 SOC 3 - 
high vs low frequency 

triplets 

Bussy, Krifi-Papoz, Vieville, Frenay, Curie, Rouselle, 

Rougeot, Des Portes, & Herbillon, 20113 
Det. DD Child 24; 18 SOC5 10 36  

Clark & Lum, 20178 Det. DLD Child 25; 25 FOC/SOC 10 18 FOC & SOC tasks 

Conti-Ramsden, Ullman & Lum, 20152 Det. DLD Adult 45; 46 Not stated 10 36  

Deroost, Zeischka, Coomans, Bouazza, Depessemier, 

& Soetens, 20101,2 
Det. DD Child 28; 28 FOC/SOC 12 108 FOC & SOC tasks 

Desmottes, Meulemans, & Maillart, 2016a2 Alt. DLD Child 21; 21 SOC 10 50  

Desmottes, Meulemans, & Maillart, 2016b2 
Det. 

(SST) 
DLD Child 24; 24 - 6 40 Motor & verbal tasks 

Desmottes, Maillart  & Meulemans, 20172 Alt. DLD Child 
18; 17 & 

17; 17 
SOC 10 50 2 comparisons 

Du & Kelly, 20134 Det. DD Adult 12; 12 FOC/SOC6 12 64  

Gabay, Schiff, & Vakil, 2012b1 
Det. 

(SST) 
DD Adult 14; 14 SOC 8 60 Motor & verbal tasks 

Gabay, Schiff, & Vakil, 2012a1 Det. DD Adult 12; 12 SOC 12 36  

Gabriel, Maillart, Guillaume, Stefaniak, & Meulemans, 

20112 
Prob. DLD Child 16; 16 SOC 8 96  

Gabriel,  Maillart, Stefaniak, Lejeune, Desmottes, & 

Meulemans, 20131,2 
Det. DLD Child 21; 25 SOC 12 48  
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Gabriel, Meulemans, Parisse, & Maillart, 20152 Det. DLD Child 14; 14 SOC 8 48 
Visual & auditory 

tasks 

Gabriel, Stefaniak, Maillart, Schmitz, & Meulemans, 

20121,2 
Det. DLD Child 15; 15 SOC 8 48 2 tasks 

Hedenius, Persson, Alm, Ullman, Howard, Howard, & 

Jennische, 20132 
Alt. DD Child 12; 17 FOC 8 250 Across 3 sessions 

Hedenius, Persson, Tremblay, Adi-Japha, Verissimo, 

Dye, Alm, Jennische, Tomblin, and Ullman, 20112 
Alt. DLD Child 19; 29 FOC 8 250 Across 3 sessions 

Henderson & Warmington, 20171,2 Alt. DD Adult 30; 29 FOC 8 45 Across 3 sessions 

Howard, Howard, Japikse, & Eden, 20067 Alt DD Adult 23,23  8 400  

Hsu & Bishop, 20141 Det. DLD Child 48; 20 FOC 10 20  

Jiménez-Fernández, Vaquero, Jiménez, & Defior, 20113 Det. DD Child 14; 14 SOC 6 74  

Kelly, Griffiths, & Frith, 20023 Det. DD Adult 14; 14 SOC5 9 64  

Laasonen, Vare, Oksanen-Hennah, Leppamaki, Tani, 

Harno, Hokkanen, Pothos, & Cleeremans, 20148 
AG. DD Adult 36; 35 - - - 

Sequence follows an 

AGL-type grammar 

Lee & Tomblin, 20151 Det. DLD Adult 23; 25 SOC 12 18 
Alternating sequence 

& random blocks 

Lee, Mueller, & Tomblin, 20162 Det. DLD Adult 22; 19 SOC 12 18  

Lukacs & Kemeny, 20141,2 Det. DLD Child 28; 87 SOC 12 55  

Lum & Bleses, 20123 Det. DLD Child 13; 20 SOC 10 24  

Lum, Conti-Ramsden, Page, & Ullman, 20123 Det. DLD Child 51; 51 - 10 36  

Lum, Gelgic, & Conti-Ramsden, 20102 Det. DLD Child 15;15 SOC 10 36  

Mayor-Dubois, Zesiger, Van der Linden, & Roulet-

Perez, 20143 
Det. DLD Child 18; 65 SOC 10 20  

Menghini, Finzi, Benassi, Bolzani, Facoetti, Giovagnoli, 

Ruffino, & Vicari, 20102 
Det. DD Child 60; 65 FOC 9 30  
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Menghini, Hagberg, Caltagirone, Petrosini, & Vicari, 

20061 
Det. DD Adult 14;14 SOC5 9 30  

Menghini, Hagberg, Petrosini, Bozzali, Macaluso, 

Caltagirone, & Vicari, 20081 
Det. DD Adult 10; 10 SOC 9 30  

Perlant & Largy, 20114 Det. DD Child 25; 20 - 6 25  

Rüsseler, Gerth, & Munte, 20062 Det. DD Adult 12; 12 SOC 12 80  

Sengottuvel & Rao, 20131,2 Det. DLD Child 17; 23 SOC 10 20 SLavg1, 2 & 3 incl. 

Sengottuvel & Rao, 20141,2 Det. DLD Child 22; 34 SOC 10 20 SLavg1, 2 & 3 incl. 

Sengottuvel, Rao, & Bishop, 20161,2 Det. DLD Child 30; 30 FOC 12 40 Only 2nd half measure 

Stoodley, Harrison, & Stein, 20061 Det. DD Adult 19; 21 SOC5 10 10  

Stoodley, Ray, Jack, & Stein, 20081 Det. DD Child 45; 44 SOC5 6 14  

Tomblin, Mainela-Arnold & Zhang, 20073 Det. DLD Child 38; 47 SOC 10 20  

Vakil, Lowe, & Goldfus, 20154 Det. DD Child 23; 30 SOC5 12 54  

Vicari, Finzi, Menghini, Marotta, Baldi, & Petrosini, 

20053 
Det. DD Child 16; 16 SOC5 5 60  

Vicari, Marotta, Menghini, Molinari, & Petrosini, 20033 Det. DD Child 18; 18 FOC 9 24  

Yang, Bi, Long, & Tao, 20131 Det. DD Child 9; 12 SOC5 8 18  

Yang & Hong-Yan, 20111 Det. DD Child 27; 27 SOC 6 20 2 tasks (each  hand) 

Comparisons in bold are included in final meta-analysis; * = Disordered group first; 1 = Means and SDs for both sequenced and random trials per group; 2 = Means and SDs 

for difference between sequenced and random trials only; 3 = Effect size from previous meta-analysis based on difference scores; 4 = insufficient data for any effect size 

measure; 5 = Categorized differently in Lum et al’s meta-analysis; 6 = Both conditional properties within one sequence; 7 = Sufficient data reported for correlational analysis 

only; 8 = Data normalized with z-score transformation, removing between subjects variance; Det. = Deterministic SRT sequence structure; Alt. = Alternating SRT sequence 

structure; SST = Serial Search Task; Prob. = Probabilistic SRT sequence structure; AG. = Artificial Grammar SRT sequence structure 
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Although 46 studies were eligible for the meta-analysis, only 21 of these reported 

or were able to supply data as means and standard deviations by group for each of the 

sequence types separately. Two of these were excluded, as means and standard 

deviations had been normalized using a Z-score transformation referenced to the 

median to control for individual differences (Clark & Lum, 2017; Laasonen et al. 

2014). Transforming data in this way reduces between subjects variance, artificially 

inflating any effect size estimates.  

For this reason only the 19 independent comparisons of serial reaction time with 

language-disordered groups and age-matched controls studies that reported or were 

able to supply untransformed data per sequence type and group were included in the 

final meta-analysis (see Figure 4.3). In total these studies included 428 participants 

with language disorder (mean sample size = 22.53, SD = 10.77, range 9 to 48) and 488 

control participants (mean sample size = 25.68, SD = 17.21, range 10 to 87). The 

overall mean effect size was small, but significant, g = -0.28, 95% CI [-0.42, -0.15]. 

However the variation in effect sizes was not significant sizes, Q (18) = 17.89, p = .46, 

12 = 0.00%, k = 19, Tau2 = .00. With an I2 of zero, it was not possible to examine the 

effect of age, diagnosis and severity of language or decoding impairment in the 

disordered group, or the task variables of sequence length and number of repetitions.  
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Figure 4.3 Forest plot showing effect sizes for the group difference in performance on the SRT task in 19 studies, with the effect sizes calculated using the control group’s 
standard deviations for random trials. Although Lukács & Kemény (2012) reported z-transformed scores in their paper, means and SDs supplied in milliseconds were used 
in the meta-analysis for consistency with the majority of other studies included. 

 

Outcome Comparison Study name Statistics for each study Hedges's g and 95%  CI

Hedges's Standard Lower Upper 
g error limit limit p-Value

Combined SLI and Control Sengottuvel & Rao, 2013 -1.262 0.346 -1.940 -0.583 0.000

Combined DD and Control Gabay et al., 2012b -0.643 0.387 -1.402 0.116 0.097

Combined SLI and Control Sengottuvel & Rao, 2014 -0.615 0.276 -1.157 -0.074 0.026

SRTRCont2 Second half DD and Control Stoodley et al., 2006 -0.572 0.317 -1.193 0.049 0.071

Combined DD and Control Gabay et al., 2012a -0.557 0.403 -1.347 0.234 0.168

SRTRCont1 DD and Control Menghini et al., 2006 -0.453 0.372 -1.182 0.276 0.223

SRTRCont2 Second half SLI and Control Hsu & Bishop, 2014 -0.421 0.267 -0.945 0.102 0.115

SRTRCont1 DD and Control Yang et al., 2013 -0.406 0.459 -1.306 0.493 0.376

SRTRCont1 SLI and Control Gabriel et al., 2013 -0.360 0.293 -0.935 0.215 0.220

SRTRCont1 DD and Control Menghini et al., 2008 -0.314 0.431 -1.159 0.531 0.467

Combined SLI and Control Gabriel et al., 2012 -0.234 0.358 -0.936 0.467 0.513

Combined DD and Control Yang & Hong-Yan, 2011 -0.194 0.269 -0.721 0.333 0.471

SRTRCont2 Second half SLI and Control Sengottuvel et al., 2016 -0.180 0.255 -0.681 0.320 0.480

SRTRCont1 SLI and Control Lukacs & Kemeny, 2014 -0.124 0.216 -0.547 0.300 0.567

SRTRCont2 Second half DD and Control Stoodley et al., 2008 -0.116 0.210 -0.528 0.296 0.581

SRTRCont1 SLI and Control Lee & Tomblin, 2015 -0.105 0.284 -0.663 0.452 0.712

Combined DD and Control Deroost et al., 2010 -0.046 0.264 -0.562 0.471 0.863

Combined DD and Control Henderson & Warmington, 2017 0.020 0.257 -0.483 0.523 0.938

SRTRCont1 DD and Control Bennett et al., 2008 0.144 0.336 -0.514 0.802 0.668

-0.283 0.068 -0.415 -0.150 0.000

-2.00 -1.00 0.00 1.00 2.00

Favours A Favours B

Random effects meta-analysis
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4.5.1 Comparing methods of calculating effect sizes 

It should be noted that the method used to calculate effect sizes in this meta-

analysis is different to the method used in the previous meta-analyses of serial reaction 

time tasks discussed earlier (Lum et al., 2013; 2014; Obeid et al., 2016). These 

previous meta-analyses base their effect size calculations on a method set out in an 

early meta-analysis of serial reaction time tasks in Parkinson’s disease patients by 

Siegert, Taylor, Weatherall, and Abernethy (2006). At first glance this method looks 

identical to the one we have used (see Equation 2), but the pooled standard deviation 

that forms the denominator of the equation in Siegert et al.’s method only uses a single 

standard deviation for each group for the difference between the conditions (see 

Equation 3), rather than standard deviations for raw scores. 

𝑑 = (𝑀𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑔𝑟𝑜𝑢𝑝 − 𝑀𝐿𝐷 𝑔𝑟𝑜𝑢𝑝) ÷ 𝑆𝑝      (2) 

 Where 𝑆𝑝 is calculated as follows: 

𝑆𝑝 =  √(𝑆𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑚𝑒𝑎𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒
2 + 𝑆𝐿𝐷 𝑚𝑒𝑎𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

2 )  ÷ 2    (3) 

This method is questionable, since the denominator that represents variance in the 

effect size equation will be underestimated as a result of using only variance of 

difference scores (not the variance of component raw scores). This will inflate the 

estimate of effect size obtained (Morris & Deshon, 2002), as has been previously 

demonstrated (Lund, 1988; Ray & Schadish, 1996).  

In order to illustrate the important point about the impact of different methods of 

effect size calculation, the above effect size can be compared to the moderate and 

significant overall effect size (see Figure 4.4) that resulted from an analysis of the 22 

comparisons reporting or supplying data as the difference between sequences, g = -0. 

44, 95% CI [-0.60, -0.27]. This analysis calculated the effect sizes using only the 

standard deviations of the difference between sequences in the same way as previous 

meta-analyses in this literature. The overall effect size showed significant variation in 
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effect sizes Q (21) = 39.19, p = .01, 12 = 46.41%, k = 22, Tau2 = .07. This result is 

similar to those in the meta-analyses by Lum et al. (2013; 2014), but will not be 

considered further for the reasons outlined above. 
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Figure 4.4  Forest plot showing effect sizes for the group difference in performance on the SRT task in 22 studies using the mean and standard deviation for the difference 
between sequenced and random blocks per group. The analysis included 22 separate comparisons in total. 

 

Outcome Comparison Study name Statistics for each study Hedges's g and 95% CI

Hedges's Standard Lower Upper 
g error limit limit p-Value

SRT Diff SLI and Control Sengottuvel & Rao, 2013 -1.706 0.367 -2.425 -0.987 0.000

SRT Diff SLI and Control Lum et al., 2010 -0.938 0.375 -1.673 -0.202 0.012

SRT Diff DD and Control Russeler et al., 2006 -0.924 0.416 -1.740 -0.109 0.026

SRT Diff SLI and Control Sengottuvel & Rao, 2014 -0.904 0.283 -1.458 -0.349 0.001

SRT Diff SLI and Control Conti-Ramsden et al., 2015 -0.681 0.214 -1.101 -0.262 0.001

SRT Diff SLI and Control Gabriel et al., 2013 -0.652 0.299 -1.237 -0.066 0.029

Combined SLI and Control Desmottes et al., 2016b -0.605 0.291 -1.174 -0.035 0.037

SRT Diff SLI and Control Sengottuvel et al., 2016 -0.602 0.261 -1.113 -0.091 0.021

SRT Diff SLI and Control Desmottes et al., 2017 - Exp 1 -0.559 0.337 -1.220 0.101 0.097

SRT Diff SLI and Control Lukacs & Kemeny, 2014 -0.524 0.219 -0.952 -0.095 0.017

Combined DD and Control Hedenius et al., 2013 -0.519 0.379 -1.262 0.224 0.171

SRT Diff SLI and Control Desmottes et al., 2016a -0.488 0.307 -1.091 0.114 0.112

Combined SLI and Control Clark & Lum, 2017 -0.412 0.282 -0.965 0.141 0.144

SRT Diff SLI and Control Desmottes et al., 2017 - Exp 2 -0.393 0.338 -1.056 0.270 0.246

Combined SLI and Control Gabriel et al., 2012 -0.277 0.359 -0.980 0.427 0.441

SRT Diff DD and Control Menghini et al., 2010 -0.162 0.178 -0.511 0.188 0.364

Combined DD and Control Deroost et al., 2010 -0.092 0.264 -0.608 0.425 0.728

SRT1 Diff SLI and Control Gabriel et al.,  2011 -0.050 0.345 -0.725 0.626 0.886

SRT Diff SLI and Control Lee et al., 2016 -0.040 0.300 -0.629 0.549 0.893

SRT Diff SLI and Control Hedenius et al., 2011 0.017 0.290 -0.552 0.586 0.953

SRT1 Diff DD and Control Henderson & Warmington, 2017 0.132 0.255 -0.368 0.632 0.605

SRT1 Diff SLI and Control Gabriel et al., 2015 0.236 0.346 -0.442 0.914 0.495

-0.437 0.085 -0.604 -0.269 0.000

-2.00 -1.00 0.00 1.00 2.00

Favours A Favours B

Random effects meta-analysis
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To further emphasise the very real impact of the different calculation methods, 

effect sizes were calculated using both methods (see Figure 4.5) for all studies that 

were able to provide information in both formats (n = 8). Using the difference score 

methodology, followed by the previous meta-analyses in the literature, the effect size 

was moderate and significant, g = -0. 55, 95% CI [-0.90, -0.21], showing language 

disordered groups performing more poorly on serial reaction time tasks compared to 

age-matched controls. This method also showed significant variation in effect sizes 

too Q (7) = 22.18, p = .002, 12 = 68.44%, k = 8, Tau2 = .17.  

However, since the variance in these effect sizes was under-estimated, the pooled 

effect size was larger than it should have been. The preferred raw score methodology, 

using the standard deviations for the control group’s random trials, gave a different 

picture of the data. The effect size for the eight studies was lower, g = -0.31, 95% CI 

[-0.57, -0.05], as was the heterogeneity estimate Q (7) = 12.43, p = 0.09, 12 = 43.69%, 

k = 8, Tau2 = 0.06. This comparison of methods demonstrates the importance of using 

the optimal raw score method of calculating effect sizes in group design studies using 

tasks that rely on the difference between experimental conditions as their dependent 

variable.  



107 

 

 

 
 
Figure 4.5 Meta-analysis of 8 studies: The top forest plot uses the mean and SDs in milliseconds for the difference between sequenced and random blocks per group. 
The bottom forest plot uses means and SDs in milliseconds for both sequenced and random blocks per group. 

Comparison Study name Statistics for each study Hedges's g and 95%  CI

Hedges's Standard Lower Upper 
g error limit limit p-Value

SRT Diff SLI and Control Sengottuvel & Rao, 2013 -1.706 0.367 -2.425 -0.987 0.000

SRT Diff SLI and Control Sengottuvel & Rao, 2014 -0.904 0.283 -1.458 -0.349 0.001

SRT Diff SLI and Control Gabriel et al., 2013 -0.652 0.299 -1.237 -0.066 0.029

SRT Diff SLI and Control Sengottuvel et al., 2016 -0.602 0.261 -1.113 -0.091 0.021

SRT Diff SLI and Control Lukacs & Kemeny, 2014 -0.524 0.219 -0.952 -0.095 0.017

Combined SLI and Control Gabriel et al., 2012 -0.277 0.359 -0.980 0.427 0.441

Combined DD and Control Deroost et al., 2010 -0.092 0.264 -0.608 0.425 0.728

SRT1 Diff DD and Control Henderson & Warmington, 2017 0.132 0.255 -0.368 0.632 0.605

-0.549 0.177 -0.896 -0.202 0.002

-2.00 -1.00 0.00 1.00 2.00

Favours A Favours B

Pre Post correlation at .9

Random effects meta-analysis

Outcome Comparison Study name Statistics for each study Hedges's g and 95%  CI

Hedges's Standard Lower Upper 
g error limit limit p-Value

Combined SLI and Control Sengottuvel & Rao, 2013 -1.262 0.346 -1.940 -0.583 0.000

Combined SLI and Control Sengottuvel & Rao, 2014 -0.615 0.276 -1.157 -0.074 0.026

SRTRCont1 SLI and Control Gabriel et al., 2013 -0.360 0.293 -0.935 0.215 0.220

Combined SLI and Control Gabriel et al., 2012 -0.234 0.358 -0.936 0.467 0.513

SRTRCont2 Second half SLI and Control Sengottuvel et al., 2016 -0.180 0.255 -0.681 0.320 0.480

SRTRCont1 SLI and Control Lukacs & Kemeny, 2014 -0.124 0.216 -0.547 0.300 0.567

Combined DD and Control Deroost et al., 2010 -0.046 0.264 -0.562 0.471 0.863

Combined DD and Control Henderson & Warmington, 2017 0.020 0.257 -0.483 0.523 0.938

-0.310 0.131 -0.566 -0.054 0.018

-2.00 -1.00 0.00 1.00 2.00

Favours A Favours B

Random effects meta-analysis
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4.5.2 Examining variability in group differences in severity of language 

disorder and NVIQ 

In spite of the nonsignificant heterogeneity estimate in the meta-analysis of 19 

studies using the serial reaction time task, variability in group differences in language 

skills and decoding in all eligible studies was also analysed, as a possible explanation 

for the inconsistency in the literature. Studies using decoding measures all investigated 

the procedural deficit hypothesis in dyslexia (n = 20). There was a large variation 

between the degree of difference between the disordered and comparison groups, mean 

difference was g = -2.30, 95% CI [-2.73, -1.87], ranging from g = -7.48 to g = -0.63, 

showing significant heterogeneity between these studies Q (19) = 114.68, p < .001, I² 

= 83.43%, k = 20, Tau2 = 0.74. One study (Jiménez-Fernández et al., 2011) reported a 

very large difference between groups with an effect size of g = -7.48. A sensitivity 

analysis showed that after removing outliers, the overall effect size was in the range 

of g = -2.14, 95% CI [-2.73, -1.87] to g = -2.38, 95% CI [-2.79, -1.97].  

Twenty four studies reported language measures (grammar and / or vocabulary) 

by group, of which 21 were studies investigating the procedural deficit hypothesis in 

developmental language disorder. Once again, there was a large amount of variability 

in the level of language ability in the language-disordered groups, mean difference was 

g = -1.81, 95% CI [-2.16, -1.45], ranging from g = -4.29 to d = -0.27, showing 

significant heterogeneity between the studies Q (23) = 139.56, p < .01, I² = 83.52%, k 

= 23, Tau2 = 0.63.  

Many studies endeavoured to match groups for NVIQ. However, the extent of the 

difference between groups still differed widely across studies. NVIQ scores for groups 

were, therefore, coded where possible (n = 31) and this showed significant variation 

across studies, mean difference was g = -0.35, 95% CI [-0.51, -0.20], ranging from g 

= 0.51 to g = -.66. This variation in effect sizes between studies was significant, Q (30) 

= 61.46, p = .001, I² = 51.19%, k = 31, Tau2 = 0.09.  
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It is, therefore possible that, inspite of the nonsignificant heterogeneity estimate 

for the group deficit in procedural learning on the serial reaction time task, variation 

in the severity of decoding or language impairment or level of NVIQ in the disordered 

groups across the literature is involved in the pattern of inconsistent results.  

4.5.3 Publication bias 

A funnel plot was not considered as a measure of publication bias, given the subset 

of studies contained in the meta-analysis. Instead, a p-curve (Simonsohn et al., 2013; 

2014) was estimated in order to identify whether the body of published work (all 46 

eligible studies) was subject to publication bias. Publication bias occurs when studies 

with significant findings are published while those with null findings are not. This can 

lead to results that appear to be replicated in press being treated as true effects, when 

no such trust is warranted. The p-curve examines the distribution of significant results, 

with the shape of the curve determining the evidential value of the studies it contains. 

It does this by calculating the probability of observing a p-value as extreme if the null 

were true for each significant p-value. It then aggregates these to give a chi square test 

for skew, such that only right-skewed curves with more low than high p values show 

evidential value. The gradient of right-skewed curves increases as power increases, so 

steeper curves are suggestive of higher powered findings. This is the case even when 

findings are highly heterogenous. By contrast, a left-skewed curve indicates possible 

p-hacking, where any combination of decisions on data collection, screening, 

transformation, introduction of covariates, etc. may have been taken, in order to obtain 

a significant result. Such a curve would contain a disproportionate number of high p 

values (close to the alpha of .05), which points to authors stopping analysis once they 

obtain a significant result. It should be noted that p-hacking for evidence of true effects 

happens too and this is particularly the case when studies are underpowered with small 

sample sizes. In these cases the curve will incorporate the right skew from the true 

effect and the left skew from the p-hacking. Finally, p-curves with a uniform horizontal 

line suggests the studied effect does not exist (ie: every p-value below .05 should 

appear equally often) or at the least that there are not enough p-values to infer 

evidential value. 
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The procedural deficit hypothesis at the centre of these meta-analyses, claims that 

language-disordered groups will display poorer implicit learning on the implicit 

memory tasks than control groups with normal language. Therefore, a single statistic 

that related to the principal measure of implicit learning on the serial reaction time task 

was coded for each study (see Table 4.3). This was the statistic that referred to the 

difference in RTs between sequenced and random trials. For deterministic tasks, the 

statistic typically related to the difference between the last sequenced block and a 

subsequent block of random trials. For alternating or probabilistic tasks, this measure 

was sometimes taken across the whole of the task. For the majority of the 46 studies 

eligible for the meta-analysis, this principal measure of implicit learning was the 

ANOVA interaction between group x sequence x block. Where studies used an 

alternative analysis, the equivalent statistic was selected. Where studies contained two 

comparisons, a statistic was coded for each one and p-curves were run twice, each time 

including only the first or the second comparisons from the study, as recommended by 

Simonsohn et al. (2013). The results for the two p-curves were equivalent, so only the 

first one is reported here. 

Of the 46 studies, 23 reported significant results for a difference between groups 

on the principal measures of implicit learning and 23 studies reported null results (see 

Table 4.3), underlining the inconsistency of results in the field. Several of these null 

results came from studies claiming support for the procedural deficit hypothesis, in the 

light of significant secondary findings, so the full extent of non-significant findings on 

the principal implicit learning measure for the serial reaction time task were not 

immediately apparent from the literature. For example, Bennett et al. (2008) reported 

a null result, but claimed support for the procedural deficit hypothesis in light of a 

positive correlation between implicit learning scores and reading ability. Desmottes et 

al. (2016a; 2017) reported initial null results, but impaired consolidation of procedural 

learning in children with developmental language disorder, with poorer performance 

during a second attempt at the task. Similar results were also reported on an alternating 
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serial reaction time task in dyslexic children (Hedenius et al., 2013)2. Implicit learning 

impairments in language disorder have also been linked to task-specific differences 

too. Gabriel et al. (2014) reported equivalent learning for groups with regards to 

response times, but suggested that children with developmental language disorder 

might be more error prone than typically developing children during an auditory, but 

not a motor, version of the serial reaction time task. Only seven studies (Bussy et al., 

2011; Gabriel et al., 2011; Kelly et al., 2002; Laasonen et al., 2014; Lum & Bleses, 

2012; Rüsseler et al., 2006; Vakil et al., 2015) stood firmly behind their null result on 

the serial reaction time task. 

Three of the 23 studies with significant results reported statistics in a format that 

could not be included in the p-curve, failing to report the F-ratio and including only 

the p value (Menghini et al., 2008; Stoodley et al., 2006; 2008). One study reported no 

between group difference during a first training session, but a significant difference 

over subsequent sessions in two separate experiments (Desmottes et al., 2017). Only 

one experiment was included in each analysis, with no significant difference to results. 

In addition, three studies reported results that approximated the test of interest 

(significant group differences in the difference in RTs between random and sequenced 

trials), but with minor variations. The first of these reported significant results for 

differences in the growth curve of the sequenced phase of the task, without reference 

to the random phases (Tomblin et al., 2007). Two others reported the group x block 

difference across all blocks in the task, sequenced and random (Vicari et al., 2003; 

2005). As recommended by Simonsohn et al. (2013) the p-curve analysis was run with 

and without these three studies, but found equivalent results both times. Therefore, p-

curve results are reported for all 20 studies with significant results. Figure 4.6 shows 

a right-skewed p-curve which demonstrates evidential value for the 46 studies eligible 

for the serial reaction time task extreme groups meta-analysis (Z = 4.11, p < .001). 

                                                 
2 A finding of impaired consolidation of implicit learning should be put in context at this point as 

contradictory results have also been reported. Gabay et al. (2012a) found the opposite, with dyslexic 

adults performing comparably with controls during later learning stages, while showing impaired 

learning during initial acquisition. 
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There is also no reliable evidence that the studies’ evidential value is inadequate due 

to low power (power estimate = 53%, 90% CI: [27%, 75%].  

  

 
 

Figure 4.6 P-curve examining publishing bias in extreme groups studies using the serial reaction 
time task to investigate the procedural deficit hypothesis.  
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Table 4.3 Disclosure table for 46 group design studies eligible for the meta-analysis using the SRT task. 

Study name Analysis Quoted test from paper with statistical results Significance* 

Bennett, Romano, 

Howard Jr, & Howard, 

2008 

RT difference between high and low 

frequency triplets by group 

“Group x triplet type and Group x triplet type x epoch interactions were not 

significant, P's > .10, indicating that we did not detect group differences in 

sequence learning.” (p. 190) 

Null 

Bussy et al., 2011 
2 (group) x 2 (sequence) x 6 (blocks) 

ANOVA. 

“Premierement, L'effet principal du facteur groupe n'est pas significatif 

(F(2,40) = 1.43; p > 0.10) [...].La difference de temps de reaction entre le 

dernier bloc sequential et le dernier bloc aleatoire (le cinqieme bloc) est 

egalement significative pour CG (F(2,40) = 32.55, p < .001), pour DP 

(F(2,40) = 14.26, p < .001), et pour DS (F(2,40)= 20.39, p < .001).” (p. 144) 

Null 

Clark & Lum, 2017 

FOC: RTs for random block were compared 

to mean RT for sequenced blocks 3 & 5. A 2 

(group) x 2 sequence type: Block 4 vs mean 

of Blocks 3 & 5) 

“However, a significant Group x Block interaction with a medium to large 

effect size was observed, F(1,50) = 4.785, p = .033,  π2p = .087.” (p. 154) 
Significant 

Clark & Lum, 2017 

SOC: RTs for random block were compared 

to mean RT for sequenced blocks 3 & 5. A 2 

(group) x 2 sequence type: Block 4 vs mean 

of Blocks 3 & 5) 

“Neither the main effect of group [...], nor the interaction between block and 

group was significant, F(1,50) = .725, p = .399, π2p = .014.” (p. 154) 
Null 

Conti-Ramsden, Ullman 

& Lum, 2015 

Difference Z score between block 4 and 5. 

T-test difference between groups. 

“Children with DLD had significantly lower scores on all predictor 

variables.” (p. 6).  t (89) = 3.00, p = .003 (Table 2, p.7) 
Significant 

Deroost, Zeischka, 

Coomans, Bouazza, 

Depessemier, & Soetens, 

2010 

RT difference between B14 (random) and 

mean of Sequence blocks 13 & 15. A 2 

(Group) x 2 (task) x 2(sequence type). NB: P 

therefore includes 2 tasks (FOC & SOC) 

“Critically, no interaction of Group x Sequence learning, nor an interactio of 

Group x Sequence x Sequence Learning could be observed, both F < 1.” (p. 

566) 

Null 
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Desmottes, Meulemans, 

& Maillart, 2016a 

Effect of group overall on RT difference, as 

part of a 2 (Group) x 4 (Difference score on 

Epoch 1, 5, 6, 7) ANOVA. NB: Epoch 1 and 

5 are start and end of Day 1, Epoch 6 is 24 

hrs later and Epoch 7 is 1 week later. Single 

mean is for overall difference over epochs. 

“This analysis showed a marginal effect of Group (F(1,40) = 3.46, p = .066, 

π2p = .08), indicating a (slightly) better sequence knowledge in children with 

TD (M = 0.14, SD = 0.11) than in children with DLD (M = 0.09, SD = 

0.09).” (p. 60) 

Null 

Desmottes, Meulemans, 

& Maillart, 2016b 

RT difference between B5 (random) and 

mean of Sequence blocks 4 & 6. A 2 

(Group) x 2 (task) x 3 (Block 4-6) 

“Interestingly, the interaction between block and group showed that these 

differences in RT's differed between groups (F(2,92) = 3.22, p = .044) […] 

Indeed the difference between the random and both surrounding sequence 

blocks was significant in TD children (F(1,46) = 23.197, p < .001), but not 

for children with DLD (F(1,46) = 2.525, p = .140)”. (p 525) 

Significant 

Desmottes, Maillart, & 

Meulemans, 2017 - 

Experiment 1 

RT difference between B5 (random) and 

mean of Sequence blocks 4 & 6. A 2 

(Group) x 3 (Epoch 1 - 3 difference scores) 

“Finally, there was no interaction between group and epoch, F( 2,66) = .237, 

p = .789, π2p = .007, indicating that a similar improvement in sequence 

knowledge with practice could be observed in both DLD and TD groups” (p. 

8) 

Null 

Desmottes, Maillart, & 

Meulemans, 2017 - 

Experiment 2 

RT difference between B5 (random) and 

mean of Sequence blocks 4 & 6. A 2 

(Group) x 3 (Epoch 3 - 5 difference scores). 

[The ANOVA] “…showed no main effect of group...or 

epoch…Nevertheless, the interaction between the two variables was 

statistically significant, F(2,64) = 5.85, p = .004, π2p = .155. This indicated 

that the evolution of the sequence knowledge differed between the groups 

over the post-training sessions.” (p. 12) 

Significant 

over several 

sessions 

Du & Kelly, 2013 

The difference between block 9 (random) 

and mean of blocks 8 & 10 (sequence). 2 

(Group) x 2 (Block 9 vs mean of Blocks 8 & 

10) 

“…no significant effect of group […] and no significant interaction of group 

x block, F(1,22) < 1. These results indicate that both dyslexic and control 

groups demonstrated significant and comparable learning.” (p. 162) 

Null 

Gabay, Schiff, & Vakil, 

2012a 

Transfer measure of difference between 

Block 4 & 5. 2 (Group) x 2 (Block 4 

(Sequence) to 5 (Random)) ANOVA 

“The interaction between these variables did not reach significance, F(1,22) 

= 1.648, MSE = 682, p > .05.” (p. 284) 
Null 
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Gabay, Schiff, & Vakil, 

2012a 

Recovery measure of difference between 

Block 5 & 6. 2 (Group) x 2 (Block 6 

(Sequence) to 5 (Random)) ANOVA 

“The interaction between those variables was also significant, F(1,22) = 

7.458, MSE = 680, p < .05, π2p = .25. This pattern indicates that the DD 

group needs a longer time in order to recover from learning of a different 

sequence than does the control group.” (p. 284) 

Significant 

Gabay, Schiff, & Vakil, 

2012b 

For 1st ratio: 2 (Group) x 2 (sequence 

transfer - Block 3 to 4) x  2 (task: motor vs 

letters); second ratio is the same but task 

specific 

“The group by transfer interaction was marginally significant, F(1,26) = 

3.53, p = .07 [….] In order to analyse this interaction, separate 2 (transfer) x 

2 (group) ANOVAs were computed for each sequence type. For the motor 

sequence, the group by transfer interaction was far from significance F<1, 

suggesting that both groups learned the specific motor sequence [...] For the 

letter names sequence, the group by transfer interaction was significant, 

F(1,26) = 7.89, p < .01.”  (p. 2438) (NB:  F-ratio for Letters SST is entered 

into p-curve.) 

Significant 

Gabriel,  Maillart, 

Stefaniak, Lejeune, 

Demottes, & 

Meulemans, 2013 

Difference in RTs between last sequenced 

and random block. 2 (Group) x 2 (Block 6S 

vs 7R) ANOVA 

“However, the Group by Block interaction was not significant F(1,40) = 

2.87, MSE = 1642, p = .09, π2p = .06, [...] suggesting that the magnitude of 

the RT difference between blocks 6 and 7 does not differ significantly 

between groups.” (p. 268) 

Null 

Gabriel, Maillart, 

Guillaume, Stefaniak & 

Meulemans,  2011 

Probability by Group interaction on last 

block 

“…the Probability by Group interaction was non-significant, F(1,28) = .039, 

MSE = 2970, p = .84, π2p = .0014, p = .84, suggesting that all children 

(DLD vs. NL) responded faster for probable than improbable locations.” (p. 

340) 

Null 

Gabriel, Meulemans, 

Parisse, & Maillart, 2015 

Auditory modality: Difference in RTs 

between last sequenced and random block. 2 

(Group) x 2 (Block 6S vs 7R) ANOVA 

“We first performed and ANOVA in the auditory modality […] The results 

showed no group effect…, a block effect..., and no interaction effect, 

F(1,26) = 1.05, p = .31, π2p = .039.” (p. 14) 

Null 

Gabriel, Meulemans, 

Parisse, & Maillart, 2015 

Visual modality: Difference in RTs between 

last sequenced and random block. 2 (Group) 

x 2 (Block 6S vs 7R) ANOVA 

“We then performed the same analysis in the viusal modality and found 

comparable results: no group effect… a Block effect… and no interaction 

effect, F(1,26) = 0.46, p = .503, π2p = .017)...” (p. 14) 

Null 
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Gabriel, Stefaniak, 

Maillart, Schmitz, & 

Meulemans, 2012 

2 (Group) x 2 (Block 6seq to block 7Rand & 

Group) ANOVA 

“However, the interaction was not significant, π2p (1,28) = .0005, MSE = 

12172, p = .98, π2p < .001, suggesting that both groups demonstrated a 

significant increase in their RTs from Block 6 to Block 7.” (p. 334) 

Null 

Gabriel, Stefaniak, 

Maillart, Schmitz, & 

Meulemans, 2012 

2 (Group) x 2 (Block 6seq to block 7Rand & 

Group) ANOVA 

“...the Block x Group interaction was nonsignificant, F(1,28) = 2.59. MSE = 

12172, p = .11, π2p < .08.” (p. 335) 
Null 

Hedenius, Persson, 

Tremblay, Adi-Japha, 

Verissimo, Dye, Alm, 

Jennische, Tomblin, and 

Ullman, 2011 

RT difference between high and low 

frequency triplets per group by epoch. A 2 

(Group) x 5 (Epoch difference score) 

ANCOVA controlling for NVIQ 

“…, though this was qualified by a significant Group x Epoch interaction, 

also with a medium to large effect size (F(1,45) = 6.56, p = .014, π2p = 

.127).” (p. 10) 

Significant 

Hedenius, Persson, Alm, 

Ullman, Howard, 

Howard, & Jennische, 

2013 

RT difference between high and low 

frequency triplets per group by epoch. 2 

(Group) x 2 (trial-type interaction) x 3 

(learning stage) 

“Of particular interest here, the two groups did not differ with respect to 

sequence learning effects on RT (group x trial type interaction: F(1, 27) < 1; 

group x trial type x learning stage interaction: F(2,54) = 1.51, p = .230, π2p 

= .053.” (p. 3928) 

Null 

Henderson & 

Warmington, 2017 

RT difference between sequenced and 

random trials across task. 2 (Group) x 2 

(sequence type) x 5 (Block). 

“There were no significant interactions: […] Condition x Block x Group F < 

1.” (p. 204) (NB: This is for Day 1 only, but results are also null for 

consolidation sessions too). 

Null 

Howard, Howard, 

Japikse, & Eden, 20061 
2 x 2 (Group x sequence) 

“Although both groups show sequence learning, the dyslexics show 

significantly less learning than controls on both measures. This is supported 

by significant Trial Type x Group interactions for [...] speed F(1,21) = 4.61, 

MSE = 226.58.” (p. 1135) 

Significant 

Hsu & Bishop, 2014 
Group diffs compared with growth curve 

analysis (as in Tomblin et al, 2007) 

“…we examined changes in the RTs when the task proceeded from the 

pattern phase to the subsequent random phase […] There was a significant 

effect of group (F(2,41.76) = 9.51, p < .0001), with a greater reboundin RTs 

in the age-matched group than the other two groups” (p. 359) 

Significant 

Jiménez-Fernández, 

Vaquero, Jiménez, & 

Defior, 2011 

2 (Group) x 2 (Sequence type) ANOVA 
The Group x Type of Block interaction also reached significance (F(1,26) = 

13.49, p = .002). (p 96) 
Significant 
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Kelly, Griffiths, & Frith, 

2002 
2 (Group) x 2 (Sequence type) ANOVA 

“F<1. The lack of significance for these interactions suggests that the 

amount of learning shown by the two groups is not significantly different 

from each other…” (p. 49) 

Null 

Laasonen, Vare, 

Oksanen-Hennah, 

Leppamaki, Tani, Harno, 

Hokkanen, Pothos, & 

Cleeremans, 2014 

Difference in RTs between last random 

block 12 and mean of sequence blocks 11 & 

13. 3 (Group: control, dyslexia, ADHD) x 2 

(sequence type). 

“The group x block type interaction did not reach significance, F(2,82) = 

.308, p = .736, π2p = .007, observed power = 0.097.” (p. 18) 
Null 

Lee & Tomblin, 2015 

RT difference between interleaved Random 

and Sequence blocks. 2 (Group) x 2 

(sequence type) ANOVA. 

“However, the interaction effect was not significant, F(1,46 = .39, p = .54, 

π2p = .01.” (p. 224) 
Null 

Lee, Mueller, & 

Tomblin, 2016 

RT difference between Random and 

Sequence blocks. T-test difference between 

groups for learning score. 

Independent samples t-test showed that the learning effect was not 

significantly different between the two groups in our study, t(39) = .13, p = 

.90. (p. 1105) 

Null 

Lukacs & Kemeny, 2014 

Difference between sequenced block 11 and 

random block 12. Univariate ANOVA 

(Group) on transformed difference scores to 

take account of participant variability. 

“Next, the difference between the mean of z-transformed Block 11 (the last 

sequence block) RTs were extracted from the mean of the z-transformed 

Block 12 (random block) RTs. This difference reflecting the size of 

sequence learning was compared by group, revealing a significant group 

main effect, F(1,113) = 5.888, p < .05, π2p = .050, with bigger learning 

effect in the control than in the SLI group.” (p.  478) 

Significant 
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Lum & Bleses, 2012 

Normalised RT difference between sequence 

block (Block 4) and random block (Block 5). 

Analysis on difference score conducted by 

group and difference in effect sizes 

compared for significance. 

“The first analysis revealed that the TD group had significantly slower RTs 

in Block 5 compared to Block 4 (F(1,19) = 42.194, p < .001, π2p = .690). 

The second analysis indicated that the SLI group also had significantly 

slower RTs in Block 5 compared to Block 4 (F(1,12) = 6.354, p = .027, π2p 

= .389). While both groups were found to have slower RTs in Block 5, it is 

interesting to note that th eff3ect size for the RD group is larger in 

comparison to the SLI group. However, the difference in effect sizes was not 

found to be statistically significant (z = 1.15, p = .25).” (p 54) 

Null 

Lum, Conti-Ramsden, 

Page, & Ullman, 2012 

Normalised RT difference between sequence 

block (Block 4) and random block (Block 5). 

One way ANOVA on this difference. 

“One-way repeated-measures ANOVA revealed a significant effect of group 

[F(1,102) = 5.17, p = .026, π2p = .58], with an approximately medium effect 

size, indicating a larger RT difference between blocks 4 and 5 for the TD 

children than the children with SLI.” (p.  1148) 

Significant 

Lum, Gelgic, & Conti-

Ramsden, 2010 

Normalized RT difference between sequence 

block (Block 4) and random block (Block 5). 

T test of this difference between groups, 

controlling for motor speed. 

“Analysis of these standardised residuals indicated the magnitude of 

difference between the fourth and fifth Blocks was significantly larger for 

the TD than the SLI group (t(27) = 2.545, p = .017, r2 = .193).” (p. 104) 

Significant 

Mayor-Dubois, Zesiger, 

Van der Linden, & 

Roulet-Perez, 2014 

2 (Groups) x 2 (Sequence type) x 5 (Block) 

“The groups (SLI versus C) differed in their performance in the Blocks, 

Groups x blocks,... but not in the sequence, Groups x sequence, F(1,80) = 

.614, ns. No triple interaction, Blocks x sequences x Group, F(4,77) = .369, 

ns), indicating an absence of statistical differences in motor learning 

between both groups.” (p. 18) 

Null 

Menghini, Finzi, 

Benassi, Bolzani, 

Facoetti, Giovagnoli, 

Ruffino, & Vicari, 2010 

Difference in RTs between last sequenced 

(Block 6) and random block (Block 7) as z 

scores, with controls at mean = 0 (SD = 1) . 

MANCOVA with Age as covariate, Group 

as between subjects factor and cognitive task 

measures as DVs. 

“Finally, in the GLM procedure, no significant difference was found in the 

SRTT between children with DD and NR children, considering the 

difference between RTs of the last pseudo-random block (R2) and the last 

sequenced block (S4) as an index of viusal-motor sequence learning (in DD 

mean z-score +/- SD: SRTT: -.17 +/- 1.09).” (p. 867) 

Null 
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Menghini, Hagberg, 

Caltagirone, Petrosini, & 

Vicari, 2006 

Difference in RTs between last sequenced 

(Block 6) and random block (Block 7). 2 

(Groups) x 2 (Sequence type) ANOVA. 

“The block effect […] and the group by block interaction (F(1,26) = 6.5, p < 

.05) were significant, while the group effect […] did not reach significance.” 

(p. 4) 

Significant 

Menghini, Hagberg, 

Petrosini, Bozzali, 

Macaluso, Caltagirone, 

& Vicari, 2008 

Difference in RTs between last sequenced 

(Block 6) and random block (Block 7). One 

way ANOVA in the two groups comparing 

RTs in the two relevant blocks. 

…the group of 10 subjects with DD selected for the current study were 

impaired in IL, showing no SRTT changes between S5 and R2 (DD means; 

one-way ANOVA: p >.1). In contrast, the subgroup of NRs showed an IL 

effect (NR means; one way ANOVA: p > .05. (p. 216) (NB: No F-ratio 

given) 

Significant 

Perlant & Largy, 2011 

Experiment 2 only: Difference between 

interleaved sequenced and random trials 

over blocks. A (Group) x 2 Sequence type) x 

5 (/block) x 2 (item: linguistic and 

nonlinguistic) was done and no Group 

interactions were reported. Separate analyses 

for each group were then done. 

“In typical readers […] analysis also shows the significance of condition x 

block interaction, principal indicator of sequence learning, F(4,76) = 4.03, p 

<.001 [...] In children with dyslexia […] The analysis also reaveals  the 

presence of significant condition x block interaction, principal indicator of 

sequence learning (F(4,96) = 4.49, p <.01).” (p. 309) (NB: No Group 

interactions for main ANOVA were reported, indicating a null result. Both 

groups separately show a significant learning effect. However, the three way 

interaction result in each of these is different and this is claimed as a 

difference between groups.) 

Null 

Rüsseler, Gerth, & 

Munte, 2006 

Difference in RTs between Block 10 

(random) and mean of Blocks 9 and 11 

(sequence). A 2 (Group) x 2 (sequence) 

ANOVA. 

“A post-hoc F test indicates that the amount of learning did not differ 

reliably between the two groups (GROUP by BLOCK: F(1,22) = 2.8, p < 

.1085).” (p. 817) 

Null 

Sengottuvel & Rao, 2013 
ISL  = mean of final 30 trials of random - 

mean of  final 30 trials of sequence 

“Children with DSLI performed significantly poorer compared to TD 

children on sequence learning skill (see Table 3).” F(1,40) = 29.61, p < .001 

(p. 3323) 

Significant 
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Sengottuvel & Rao, 2014 
Difference between sequenced and random 

RTs. ANOVA structure unclear. 

“Even though, the SLavg1 of SLI was not significantly lower than TD, ISL 

value of the SLI group (ie: RLavg - SLavg1) was significantly lower than 

that of the TD group, thereby suggesting obvious slow RTs for the SLI 

group even in initial learning trials (see Table 2).” F(1,54) = 10.72, p < .001 

(p. 58) 

Significant 

Sengottuvel, Rao, & 

Bishop, 2016 

Mean untransformed difference btw random 

and sequence blocks. ANCOVA controls for 

NVIQ and age. 

“This showed that children with SLI were significantly poorer than TD 

children, F(1,52) = 5.76, p = .02.” (p. 10) 
Significant 

Stoodley, Harrison, & 

Stein, 2006 

Difference between RTs on random and 

repeated blocks (split into 1st and 2nd half 

of task in paper). 

“A repeated measures ANOVA showed a significatn group by condition 

interaction during the random and repeated sequence blocks (p = .03).” (p. 

796) (NB: No F-ratio given). 

Significant 

Stoodley, Ray, Jack, & 

Stein, 2008 

Percent decrease in RTs during the sequence 

condition compared to 1st random condition 

“In the repeated measures analysis, there was a significant effect of block 

type […] and a significant block by group interaction (p = .001).” (p. 178) 

(NB: No F-ratio given) 

Significant 

Tomblin, Mainela-

Arnold & Zhang, 2007 

Difference between groups on the 2 types of 

sequence given separately as Group 

differences in intercept for Pattern and for 

Random 2 trials as part of several growth 

curve models. The growth curve analysis 

measure of highlighted as the measure of 

interest in the paper is for pattern trials, so 

this is the F ratio we have selected. 

Pattern Phases: […] This model showed that the SLI group was significantly 

slower than the NL group at the third trial block which represents the 

intercept [group difference in intercept = -39.94 (SD = 14.49), F( 1,602) = 

7.59, p = .018].  (p. 281) 

Significant 

Vakil, Lowe, & Goldfus, 

2015 

Difference between last sequenced (Block 6) 

and final random block (Block 7). 2 (Group) 

x 2 (Sequence) ANOVA 

In this case as well, an interaction effect was not found between the group 

and the influence of training, F(1,50) = .432, p > .05, as no significant 

difference was identified between individuals with or without DD in the 

increase in RT to the random sequence. (p. 475) 

Null 
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Vicari, Finzi, Menghini, 

Marotta, Baldi, & 

Petrosini, 2005 

Although implicit learning is the difference 

between the last sequence and final random 

block, the ANOVA is a 2 (Group) x 6 

(block) model, so the interaction F ratio does 

not specifically reference implicit learning, 

so much as group differences over the whole 

task. 

“…the group x block interaction (F(5,150) = 2.8, p = .02) were significant, 

demonstrating a different patterns of RT changes in the two groups across 

blocks. Critcally, for the aims of this study, the two groups RTs differed 

significantly (Tukey's test) passing from the fifth to the sixth block [...] 

controls (p = .0002) [...] dyslexic children (p = 1).” (p. 1394) 

Significant 

Vicari, Marotta, 

Menghini, Molinari, & 

Petrosini, 2003 

The ANOVA is a 2 (Group) x 6 (block) 

model, so the interaction F ratio does not 

specifically reference implicit learning, so 

much as group differences over the whole 

task. Control group differed significantly on 

difference between 5th and 6th block (p < 

.001), but the dyslexics did not (ns). 

The group x block interaction was also significant  F(5,170) = 5.95, p < 

.0001, thus demosntrating a different pattern of RT changes in the two 

groups across blocks…Critically, for the aims of the study, the RTs of the 

two groups strongly differed passing from the fifth to the sixth block. (p. 

110) 

Significant 

Yang & Hong-Yan, 2011 

Left and right hand tasks. Measures are the 

difference between sequenced block 3 and 

random block 4. 2 (group) x 5 (block) 

ANOVA, so the interaction F ratio does not 

specifically reference implicit learning, so 

much as group differences over the whole 

task. Left hand: control group differed 

significantly on difference between 3rd and 

4th block (p < .05), but the dyslexics did not 

(ns). Right hand: both groups showed 

significant differences (p < .05) 

Left hand: “The interaction between block and group was not significant, 

F(4,49) = 1.16, p = .34.” (p. 4). Right Hand: “The interaction between block 

and group was not significant, F(4,49) = .21, p = .93.” (p.  5) 

Null 
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Yang, Bi, Long, & Tao, 

2013 

Difference between sequenced block 4 and 

random block 5. 2 (group) x 5 (block) 

ANOVA, so the interaction F ratio does not 

specifically reference implicit learning, so 

much as group differences over the whole 

task. The differnce in learning rate between 

groups is quantified with a t test statistic, 

however, and this is used here. 

“… the interaction of group and block were not significant, […] F(1,14) = 

1.222, p = 0.345, ES = 0.259 [...]The mean learning rate of RT of dyslexic 

group ([Block 5 - Block 4] / [Block 4 + Block 5]...) was 0.06 and control 

group was 0,095. But, the difference of learning rate did not reach statistic 

significance [t(18) = -1.188, p = 0.25]” (p. 303) 

Null 

*Significance of principal indicator of implicit learning; 1Study is a group design study, but provides sufficient data for inclusion in correlational analysis only. 
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4.6 Serial reaction time tasks: Meta-analysis of correlational studies 

Five studies examined the relationship between serial reaction time performance 

and language ability using correlational designs (see Table 4.4). Only one of these 

studies (Waber et al., 2003) did not include sufficient information to enable calculation 

of an effect size between serial reaction time task performance and language ability. 

This study of 422 children found no evidence of a relationship between impaired 

sequential procedural learning and reading. The remaining five studies, including 376 

participants (mean sample size = 94, SD = 22.49, range = 58 to 120), were entered into 

a meta-analysis that calculated the effect size (r) for the relationship between implicit 

learning on the serial reaction time task and measures of language and decoding (see 

Figure 4.7). The pooled effect size in this meta-analysis was very small and non-

significant (r = 0.07, 95% CI [-0.03, 0.17]), with nonsignificant variability between 

samples (Q (3) = 2.66, p = 0.45, I2 = 0.00%, Tau = 0.00) (r = .08, 95% CI [-0.02, 

0.18]).  

Three of these studies also contained sufficient information to calculate an effect 

size for the relationship between NVIQ and serial reaction time task implicit learning 

performance (see Figure 4.8). The overall effect size was also small, but it was 

significant (r = .12, 95% CI [0.004, 0.22], p = .04), with non-significant variability 

between samples (Q (2) = 97, p = 0.62). This indicated that lower NVIQ did reduce 

the level of learning on the serial reaction time task, but this factor did not account for 

any systematic variation in effect size between studies.  
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Table 4.4 Characteristics of the 6 studies eligible for the meta-analysis investigating correlational studies using the SRT task. 

Study Task(s) Diagnosis Age Sample 

Size 

Sequence 

length 

Sequence 

Repetitions 

Kidd, 2012 Det.  Child 100 10 24 

Kidd & Kirjavainen, 2011 Det.  Child 120 10 24 

Lum & Kidd, 2012 Det.  Child 58 10 24 

Waber, Marcus, Forbes, Bellinger, Weiler, Sorensen, & 

Curran, 2003 

Det. Incl. DD Child 422 6 50 

West, Vadillo, Shanks, & Hulme, 2017 Prob.  Child 98 12 c.45 
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Figure 4.7 Forest plot showing effect sizes for the correlation between implicit learning on the serial reaction time task and language and decoding measure scores. 

 

 

Figure 4.8 Forest plot showing effect sizes for the correlation between implicit learning on the serial reaction time task and NVIQ. 

Outcome Study name Statistics for each study Correlation and 95% CI

Lower Upper 
Correlation limit limit Z-Value p-Value

IL/Language Kidd & Kirjavainen, 2011 -0.035 -0.213 0.145 -0.379 0.705

Combined Lum & Kidd, 2012 0.050 -0.211 0.305 0.375 0.708

Combined West, Vadillo, Shanks & Hulme, 2017 0.098 -0.107 0.295 0.933 0.351

IL/Language Kidd, 2012 0.183 -0.014 0.366 1.823 0.068

0.071 -0.032 0.173 1.346 0.178

-0.50 -0.25 0.00 0.25 0.50

Favours A Favours B

Random effects meta-analysis
Outcome Study name Statistics for each study Correlation and 95% CI

Lower Upper 
Correlation limit limit Z-Value p-Value

IL/NVIQ Kidd & Kirjavainen, 2011 0.069 -0.109 0.242 0.760 0.447

Combined West, Vadillo, Shanks & Hulme, 2017 0.091 -0.114 0.288 0.865 0.387

IL/NVIQ Kidd, 2012 0.195 -0.001 0.377 1.945 0.052

0.115 0.004 0.224 2.035 0.042

-0.50 -0.25 0.00 0.25 0.50

Favours A Favours B

Random effects meta-analysis
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4.7 Discussion: Meta-analyses of serial reaction time task group and 

correlational designs 

The meta-analysis of 19 comparisons of performance on serial reaction time tasks 

between language-disordered and age-matched control groups found a small but 

significant difference between groups. However, with nonsignificant variation in 

effect sizes and less than half of the eligible studies included in the meta-analysis, it 

was not possible to answer any questions about the extent of the relationship between 

procedural learning and language disorder. In spite of this, the meta-analysis has 

highlighted some important points. 

The significant effect sizes in support of the procedural deficit hypothesis reported 

in previous meta-analyses are likely to be too high. Previous meta-analyses examining 

procedural learning on serial reaction time tasks by language-disordered and control 

groups by Lum et al. (2013; 2014) and Obeid et al. (2016) calculated their effect sizes 

using a single standard deviation for each group for the difference between sequenced 

and random trials, as set out in the method used by Siegert et al. (2006). The current 

results showed that using Siegert et al’s (2006) method resulted in an overall effect 

size in line with previous findings. However, this calculation method is problematic 

for the reasons set out in the results section. Serial reaction time task group design 

studies most closely resemble pre- and post-test control group designs. Each group 

undertaking a serial reaction time task is measured on their response times to two types 

of trial (sequenced and random). These two trial types can be regarded in the same 

way as the two measures per group (pre- and post-test) in randomized controlled trials. 

The optimal method for calculating effect sizes for this experimental design divides 

the numerator of the effect size equation by the pooled standard deviations for the raw 

trials themselves not the pooled standard deviations for the difference between trial 

types (Morris, 2008), either pooling the pre-test standard deviations for the groups or 

both the pre- and post-test standard deviations (ie: either the sequenced trial standard 

deviations or the random and sequenced trial standard deviations for both groups).   
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1) Support for the selection of this method is convincing. Two papers caution 

against using standard deviations of differences to calculate effect sizes for pre- and 

post-test control group designs (Lund, 1988; Ray & Shadish, 1996), both 

demonstrating that it results in an overly small and underestimated denominator and 

an overestimated final effect size, as a result. Lund (1988) illustrated this by 

calculating effect sizes for several datasets using both methods (the pooled standard 

deviations for the within group difference and pooled ‘post-test’ standard deviations). 

The resulting effect sizes were very different and were far larger for the method using 

the difference standard deviations. Ray and Shadish (1996) also found that effect size 

calculations using difference standard deviations performed poorly, even when they 

incorporated pre- and post-test correlations. They substantially overestimated effect 

size, compared to using pooled standard deviations for raw scores. This was 

particularly the case when the two scores forming the difference standard deviation 

were highly correlated, as is the case in experiments using serial reaction time tasks. 

These findings were replicated by the two current meta-analyses of eight extreme 

group studies, each using data supplied in one of the above formats.  

2) The moderating effects of variables such as participant age, diagnosis or task 

differences remains unclear. Although the final group design meta-analysis did not 

show any heterogeneity in effect sizes, this cannot be accepted at face value. The large 

variance estimates that formed part of the effect size calculation may serve to mask 

underlying true heterogeneity between the effect sizes in the model. The review table 

which shows the result of the principal measure of implicit learning for serial reaction 

time tasks for each of the 46 eligible extreme groups studies may be more useful than 

the meta-analysis in sign-posting the possible influence of moderators. For example, 

twenty three studies report a null result, but twenty three did not. Of those twenty three 

significant results seventeen were studies of children, which represents 55% of the 

total number of 31 studies with children and only 5 are studies of adults, representing 

33% of the 15 studies in adults. An interesting question is whether the higher 

proportion of significant results in studies with children reflects a real underlying 

difference in procedural learning or whether it simply reflects lower reliability of the 
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tasks in this young age group and the confounding effect of noise in the data. It is also 

still possible that the significant variability in level of NVIQ and severity of language 

disorder between studies may explain some of the inconsistency in results.  

Additionally, task differences may also explain some of the inconsistency in 

results. The majority of tasks used to examine the procedural deficit hypothesis are 

deterministic tasks (n = 34), with just a few studies selecting alternating versions 

(Desmottes et al., 2016a; 2016b; 2017; Hedenius et al., 2011; 2013; Henderson & 

Warmington, 2017; Howard et al., 2006);  or probabilistic ones (Gabriel et al., 2011) 

in an effort to minimize explicit learning of the sequence. Deterministic tasks may be 

more open to explicit learning of the sequence (Shanks & Johnstone, 1999). The length 

of sequence used may also influence the extent of explicit learning on the tasks. 

Sequence length ranged from 5 to 12 items on deterministic serial reaction time tasks 

used to examine the procedural deficit hypothesis, although over half included 

sequences of 10 or 12 items and only 5 studies contained sequences of 6 items or less 

(Desmottes et al., 2016b; Jiménez-Fernández et al., 2011; Perlant & Largy, 2011; 

Stoodley et al., 2008; Vicari et al., 2003; Yang & Hong-Yan, 2011). However, all short 

sequences were in studies of children. Another factor that might affect the extent of 

implicit sequence learning in deterministic tasks is the number of repetitions of the 

sequence before the introduction of the random sequence that forms the baseline 

against which to measure the difference in response times. These ranged hugely from 

10 (Stoodley et al., 2006) to 108 repetitions (Deroost et al., 2010). Although the mean 

number of repetitions was 40 (SD = 22), 11 of the studies included 20 or fewer 

repetitions of the sequence, with the vast majority of these administered to children (n 

= 9).  

Finally, significant variability between studies was found in the severity of 

language disorder, as well as NVIQ discrepancy between groups. Once again, the 

influence of these differences could not be investigated, but it is still possible that they 

contribute to an explanation of the pattern of significant and non-significant results in 

the literature. 
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3) The failure to replicate group deficits in procedural learning on the serial 

reaction time task in correlational designs undermines the claims of the procedural 

deficit hypothesis, demonstrating that procedural learning is not a reliable correlate of 

language-related ability in unselected samples. Taken together, the results of both the 

group design and correlational meta-analyses suggest that studies using the serial 

reaction time task may not provide strong evidence for a procedural learning deficit in 

developmental disorders of language. 

To conclude, despite the inclusion of only half of the eligible studies, the meta-

analysis of group design studies should still be considered a valuable exercise. It 

indicates that the effect size estimates in previous meta-analyses are likely to be too 

high, as well as highlighting possible methodological issues with the task in a group 

design setting. 

4.8 Artifical grammar and statistical learning tasks: Meta-analysis of 

comparisons of language-disordered groups and age-matched controls 

Artificial grammar learning and statistical learning tasks present participants with 

strings of stimuli that conform to an undisclosed set of combinatory rules. Participants 

are subsequently asked to judge whether new strings conform to or violate these rules. 

The measure of implicit learning is the number of correct judgments made. Better than 

chance performance is taken to reflect implicit learning of the underlying combinatory 

rules. 

Nineteen group design studies were eligible for this meta-analysis (see Table 4.5).  

Two studies were excluded as insufficient data were available to calculate an effect 

size for the tasks (Bahl et al., 2009; Plante et al., 2010). Results from two comparisons 

in Pavlidou and Williams (2014) were excluded as a duplicate of results in Pavlidou 

and Williams (2010). This meant that 16 out of 19 eligible studies were entered into 

the meta-analysis, which included 21 independent comparisons of artificial grammar 

learning and statistical learning tasks with language-disordered groups and age-

matched controls. The studies included 477 participants with language disorder (mean 
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sample size 222.71, SD = 14.10, range = 12 to 77) and 695 control participants (mean 

sample size 33.10, SD = 33.69 range = 12 to 146).  

The studies all used a separate offline testing phase to measure implicit learning in 

one of two ways. The first type of measure asked participants to judge whether they 

recognized sequences of items that they had seen during an earlier learning phase (seen 

items). The other type of measure asked them to judge whether sequences of items 

they had not seen before were consistent with the sequential rules followed during the 

learning phase (transfer items). The offline format for both types of test either used a 

two alternate forced choice (2AFC) structure, or presented test stimuli that were either 

correct or incorrect one at a time (50% of each type). Where overall group differences 

on the test phase of the artificial grammar or statistical learning task were reported, 

these were coded as a single measure for the study in CMA. Where several measures 

relating to different types of grammaticality performance on the test phase were 

reported separately, these were all coded and the mean effect size for all of them was 

taken. 

Effect sizes with confidence intervals for the different studies are shown in Figure 

4.9. The overall mean effect size was moderate and significant, g = -0.534, 95% CI [-

0.79, -0.28] confirming that overall language disordered groups performed more 

poorly on artificial grammar learning and statistical learning tasks than age-matched 

controls without difficulties. The variation in effect sizes between studies was large 

and significant, Q (20) = 84.25, p < .001, I² = 76.26%, k = 21, Tau2 = 0.26. A sensitivity 

analysis showed that after removing outliers, the overall effect size was in the range 

of g = -0.50, 95% CI [-0.77, -0.24] to g = -0.55, 95% CI [-.82, -0.28].  
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Table 4.5 Characteristics of the 19 group design studies eligible for the meta-analysis using artificial grammar and statistical learning tasks. 

Study Task Domain Modality Diagnosis Age Sample Sizes* 
Additional 

Information 

Aguilar & Plante, 20141 SL Verbal Visual DLD Adult 12; 12 & 28; 28 
2 separate 

comparisons 

Bahl, Plante, & Gerken, 20092 SL Non-verbal Auditory DLD Adult 15; 15 & 13; 13 
2 separate 

comparisons 

Evans, Saffran, & Robe-Torres, 20091 SL 

Experiment 1: Verbal; 

Experiment 2: Verbal & 

non-verbal 

Auditory DLD Child 35; 78 & 15; 15 
2 separate 

comparisons 

Gabay, Theissen & Holt, 20151 SL Verbal & non-verbal Auditory DD Adult 16; 16  

Hsu, Tomblin, & Christiansen, 20141 SL Verbal Auditory DLD Child 
20; 20 (in each 

comparison) 

3 separate 

comparisons 

Kahta & Schiff, 20161 AGL Verbal Visual DD Adult 14; 15  

Laasonen, Vare, Oksanen-Hennah, Leppamaki, Tani, 

Harno, Hokkanen, Pothos, & Cleeremans, 20141 
AGL Non-verbal Visual DD Adult 36; 35  

Lukacs & Kemeny, 20141 AGL Verbal Auditory DLD Child 28; 87  

Mainela-Arnold & Evans, 20141 SL Verbal Auditory DLD Child 20; 20  

Mayor-Dubois, Zesiger, Van der Linden, & Roulet-

Perez, 20141 
SL Verbal Auditory DLD Child 18; 65  

Nigro, Jiminez-Fernández, Simpson, & Defior, 20161 AGL 
Experiment 1: Non-verbal; 

Experiment 2: Verbal 
Visual DD Child 21; 21 & 21; 21 

2 separate 

comparisons 

Pavlidou, Kelly, & Williams, 20101 AGL Non-verbal Visual DD Child 16; 16  

Pavlidou & Williams, 20101 AGL Non-verbal Visual DD Child 16; 16  

Pavlidou & Williams, 20143 AGL Non-verbal Visual DD Child 16; 16  
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Pavlidou, Williams, & Kelly, 20091 AGL Non-verbal Visual DD Child 16; 16  

Plante, Bahl, Vance, & Gerken, 20102 AGL Non-verbal Auditory DLD Child 29; 29 & 16; 16 
2 separate 

comparisons 

Plante, Gomez, & Gerken, 20021 SL Verbal Auditory 
DD / 

DLD 
Adult 16; 16  

Pothos & Kirk, 20041 AGL Non-verbal Visual DD Adult 77; 146  

Rüsseler, Gerth, & Munte, 20061 AGL Verbal Visual DD Adult 12; 12  

*Sample size, disordered group first;1 = included in meta-analysis; 2 = insufficient data for inclusion in meta-analysis; 3  = Duplicate data 
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Figure 4.9 Forest plot showing effect sizes for group difference in performance on artificial grammar learning and statistical learning tasks (displayed by ♦) with 95% 
confidence interval for each study. 

 

Outcome Comparison Study name Statistics for each study Hedges's g and 95% CI

Hedges's Standard Lower Upper 
g error limit limit p-Value

Combined DD and Control Pavlidou & Williams, 2010 -1.338 0.383 -2.088 -0.587 0.000

AGL DD and Control Kahta & Schiff, 2016 -1.246 0.397 -2.023 -0.469 0.002

SL SLI and Control Mainela-Arnold & Evans, 2014 -1.126 0.335 -1.782 -0.471 0.001

Combined SLI and Control Evans et al., 2009 (Expt 2) -0.979 0.380 -1.723 -0.234 0.010

AGL L/LI and Control Plante et al., 2002 -0.929 0.364 -1.642 -0.216 0.011

AGL DD and Control Pavlidou et al., 2009 -0.855 0.361 -1.562 -0.148 0.018

SL SLI and Control Mayor-Dubois et al., 2014 -0.828 0.268 -1.352 -0.303 0.002

Combined DD and Control Gabay et al., 2015 -0.809 0.359 -1.513 -0.105 0.024

AGL DD and Control Pavlidou et al., 2010 -0.681 0.355 -1.376 0.015 0.055

Combined L/LI and Control Aguilar & Plante, 2014 (Expt 1) -0.601 0.405 -1.395 0.192 0.137

Combined L/LI and Control Aguilar & Plante, 2014 (Expt 2) -0.558 0.269 -1.086 -0.030 0.038

AGL SLI and Control Lukacs & Kemeny, 2014 -0.556 0.219 -0.985 -0.127 0.011

SL SLI and Control Evans et al., 2009 (Expt 1) -0.480 0.205 -0.881 -0.079 0.019

AGL DD and Control Nigro et al., 2016 (Expt 2) -0.439 0.307 -1.039 0.162 0.153

AGL DD and Control Laasonen et al.,  2014 -0.425 0.236 -0.887 0.036 0.071

AGL DD and Control Russeler et al., 2006 -0.237 0.396 -1.012 0.539 0.549

AGL DD and Control Nigro et al., 2016 (Expt 1) -0.204 0.304 -0.799 0.391 0.502

Combined SLI and Control Hsu et al., 2014 - LV task -0.196 0.311 -0.806 0.414 0.529

Combined SLI and Control Hsu et al., 2014 - HV task -0.093 0.315 -0.710 0.525 0.769

Combined SLI and Control Hsu et al., 2014 - MV task 0.044 0.310 -0.564 0.652 0.887

AGL DD and Control Pothos & Kirk, 2004 0.658 0.144 0.375 0.940 0.000

-0.534 0.131 -0.792 -0.277 0.000

-2.00 -1.00 0.00 1.00 2.00

Favours A Favours B

Random effects meta-analysis
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The analysis of categorical moderator variables (see Table 4.5) showed that the 

difference between samples with dyslexia and samples with developmental language 

disorder was not significant, Q (1) = 0.07, p = .80, g (dyslexia) = -0.498, k = 10, 95% 

CI [-0.86, -0.13], g (language disorder) = -0.563, k = 11, 95% CI [-0.91. -0.22]. 

Although studies with adults showed a smaller effect size than studies with children, 

this moderator was not significant either, Q (1) = 0.23, p = .63, g (Adults) = -0.453, k 

= 8, 95% CI [-0.85, -0.05], g (Children) = -0.578, k = 13, 95% CI [-0.89, -0. 27]. The 

difference between studies using artificial grammar learning or statistical learning 

tasks was also not significant, Q (1) = 0.056, p = .81, g (AGL tasks) = -0.565, k = 11, 

95% CI [-0.93, -0.20], g (SL tasks) = -0.502, k = 10, 95% CI [-0.88, -0. 13]. Finally, 

the difference between studies using verbal or non-verbal stimuli was examined. This 

required the exclusion of two studies that had administered tasks of more than one 

modality to the same participants (Evans et al., 2009; Gabay et al., 2015). Once again, 

the difference was not significant Q (1) = 0.298, p = .59, g (verbal) = -0.556, k = 12, 

95% CI [-0.89, -0.22], g (non-verbal) = -0.395, k = 6, 95% CI [-0.86, -0. 07]. 

The extent to which group differences in language skills and decoding, 

respectively, related to the group difference in artificial grammar or statistical learning 

task performance was also analysed.  For language skills, there was variation between 

the degree of difference between the language-disordered groups and the comparison 

group. The mean difference was g = -2.146, ranging from g = -2.46 to g = -1.306, but 

heterogeneity between the studies was not significant Q (7) = 6.90, p = .44.  

For decoding there was a large variation between the degree of difference between 

the disordered and comparison group (these were predominantly studies investigating 

dyslexia), mean difference was g = -2.37, ranging from g = -7.85 to g = -0.63. For 

decoding ability there was significantly heterogeneity between the studies Q (9) = 

88.76, p < .01, I² = 89.86%, k = 10, Tau2 = 1.53. However, a meta-regression showed 

that the degree of severity of disorder in the disordered group did not explain 

significant variation in the relationship between decoding ability and implicit learning 

on the task, ß = -.581, p = .77, k = 9, R² = 0.00. One comparison (Nigro et al., 2016: 
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Experiment 2) contained extremely large effect sizes for the difference between groups 

on measures of word and non-word reading accuracy (g = -7.85). However, excluding 

this study did not significantly change the results of the meta-regression. 

Finally, there was variation between the disordered and comparison groups for the 

measures of NVIQ used in the studies, mean difference was g = -0.387, ranging from 

g = -1.26 to g = -0.35. This variation in effect sizes between studies was significant, Q 

(12) = 24.69, p = 0.02, I² = 51.40%, k = 13, Tau2 = 0.10. Once again, in spite of this 

variation, a meta-regression showed that the degree of disparity in NVIQ between 

groups did not explain significant variation in the relationship between decoding 

ability and implicit learning on the task, ß = 0.468, p = .20, k = 13, R² = 0.11.   

4.8.1 Publication bias 

A funnel plot was used to determine the presence of publication bias in the studies 

included in the meta-analysis (see Figure 4.10). The x-axis of a funnel plot represents 

the magnitiude of the effect size, while the y-axis plots the dependent statistic from the 

meta-analysis. In the absence of publication bias the plot should form an inverted 

symmetrical funnel, while lack of symetricality denotes publication bias. The strength 

of this procedure is that it uses the identical data in the meta-analysis in order to 

investigate publication bias and is, therefore, entirely representative of the result of the 

meta-analysis itself. However, funnel plots for random effects models can be difficult 

to interpret visually (Lau, Ioannidis, Terrin, Schmid, & Olkin, 2006). For this reason 

a trim and fill analysis (Duval & Tweedie, 2000) was used, which estimates the impact 

of publication bias, imputing the missing values that are needed in order to make the 

funnel plot symmetrical. In addition, this procedure calculates an adjusted overall 

effect size based on inclusion of these imputed studies. This indicated the presence of 

publication bias, suggesting that the true effect size in the meta-analysis should be 

much lower, adjusted point estimate g = -.24, 95% CI [-0.58, -0.11]. 
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Figure 4.10 Funnel Plot showing evidence of publishing bias for artificial grammar and statistical 
learning studies in the meta-analysis. Open circles and diamond correspond to observed studies and 
point estimate. Filled circles and diamond correspond to imputed missing studies and adjusted point 
estimate, following Duval and Tweedie’s (2000) Trim and Fill procedure. 

 

A p-curve analysis was also undertaken to investigate whether the complete body 

of eligible studies was subject to publication bias. The p-curve focused only on overall 

group differences, since this is the effect size of interest in the meta-analysis. All 19 

studies eligible for the meta-analysis were examined and a p-value for each study was 

coded that related specifically to this group difference (see Table 4.6). For the majority 

of studies this was an ANOVA main effect of group.  

Three studies were categorized as non-significant for the purposes of the p-curve. 

These reported a non-significant main effect of group, but highlighted significant 

secondary group interactions: Aguilar and Plante (2014) reported differences in scores 

for correct and incorrect items; Kahta and Schiff (2016) reported similar differences; 

Nigro et al. (2016) reported differences in scores for transfer to unseen items. One 

study with significantly different group means was excluded because p-values related 

only to multiple regression analyses (Mainela-Arnold & Evans, 2014). Another study 

reported a significant effect, but in the opposite direction, with the dyslexic group 

performing better than controls (Pothos & Kirk, 2004). This study was, therefore, 
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categorized as a null result for the purposes of the p-curve analysis. Finally, two studies 

contained results on more than one task. Pavlidou and Williams (2010) reported a 

significant main effect for each of two tasks taken by the same participants. Evans et 

al. (2009) gave a second task to a subset of the same participants. As recommended by 

Simonsohn et al. (2013), a p-curve was run for the values from the first tasks and a 

second analysis was run that included the values for the second tasks. The results for 

the two p-curves were equivalent, so only the first one is reported here.   

There were 11 significant values for the 19 studies eligible for the meta-analysis 

that could be entered into the p-curve. Figure 4.11 shows a right-skewed p-curve, 

demonstrating evidential value (Z = 3.16, p = .0008) and no reliable evidence that the 

studies’ evidential value is inadequate due to low power (power estimate = 57%, 90% 

CI [21%, 83%].  
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Figure 4.11 P-curve examining p-hacking in extreme groups studies using artificial grammar learning 
or statistical learning tasks to investigate the procedural deficit hypothesis  
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Table 4.6 Disclosure table for the 19 group design studies eligible for the meta-analysis using artifical grammar and statistical learning tasks. 

Study name Model Quoted test from paper with statistical results Significance of main effect 

Aguilar & Plante, 2014 

(Expt 1) 

Mixed ANOVA: 2 (Group) x 4 (item 

type: correct seen, correct generalization, 

co-occurence violation; linear order 

violation) 

“The main effect for Group was not significant, F(1,22) = .43, p 

= .5186, π2p = .02, nor was the Group x Item Type interaction.” 

(p. 1398) 

Null. 

Aguilar & Plante, 2014 

(Expt 2) 

Mixed ANOVA: 2 (Group) x 4 (item 

type: correct seen, correct generalization, 

co-occurence violation; linear order 

violation) 

“The main effect of group was not significant, F(1,54) = 2.49, p 

= .12, π2p = .04. […] This was qualified by a significant Group 

x Item Type interaction, Wilk's F(1,162) = 69.03, p = .0116, π2p 

= .07. […] this reflected a general pattern for the NL group to 

accept more correct items than the LLD group, whereas the 

LLD group tended to accept more incorrect items than their NL 

counterpart.” (p. 1400) 

Null for main effect of 

group, significant for Group 

x item type interaction. 

Bahl, Plante, & Gerken, 

2009 (Expt 1)1 

Mixed ANOVA: 2 (Group) x 2 

(language A vs B) x  2 (item type 

(correct vs incorrect) x 2 (generalization 

type - pattern or principle) x 2 (item type 

- correct &  incorrect) 

“The ANOVA revealed a significant main effect of group, 

F(1,25) = 9.16, p < .005, π2p = .276, with hLLD group 

accepting more items overall than the NL group.” (p. 317) 

Significant. Insufficient data 

for meta-analysis. 

Bahl, Plante, & Gerken, 

2009 (Expt 2) 

Mixed ANOVA: 2 (Group) x 2 (item 

type (correct vs incorrect) x 2 

(generalization type: pattern or principle) 

x 2 (item type - correct &  incorrect) 

“There was no significant main effect for group, F(1,24) = 1.39, 

p < .25, or generalization type.” (p. 319) 

Null. Insufficient data for 

meta-analysis. 
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Evans, Saffran, & Robe-

Torres, 2009 (Expt 1) 1 

ANCOVA: 2 (Group) with Age & NVIQ 

as covariates 

“An analysis of covariance with age and nonverbal IQ as 

covariates revealed that the SLI group's ability to attend to 

transitional probabilities in the speech stream was significantly 

poorer than the NL group's, F(1,109) = 5.6, p < .01, π2p = .05.” 

(p. 7) 

Significant 

Evans, Saffran, & Robe-

Torres, 2009 (Expt 2) 

Mixed ANCOVA: 2 (Group) x 2 (Task 

variant - Speech or Tone) with Age and 

NVIQ as covariates 

“A repeated measures ANCOVA with age and nonverbal IQ as 

covariates revealed a main effect for group, F(1,26) = 7.4, p = 

.003, π2p = .37, across the speech and tone conditions, with 

overall performance for the children with SLI being poorer than 

that of their typical language peers. (p 9) 

Significant 

Gabay, Theissen & Holt, 

20151 

Mixed ANOVA: 2 (Group) x 2(SL task 

variant) 

There was a main effect of group, F(1,30) = 10.366, p = .003, 

π2p = .256), indicating that the DD group performed 

significantly less accurately (M = 69%) than the control group 

(M = 85%). (p. 939) 

Significant 

Hsu, Tomblin, & 

Christiansen, 20141 

Mixed ANOVA: 2 (Group) x 3 

(variability condition) x 2 

(grammaticality) 

“There was a significant main effect of grammaticality […] and 

Grammaticality x Language Group interaction, F(1,114) = 6.34, 

p = 0.01, π2p = .05.” (p. 4) 

Significant 

Kahta & Schiff, 2016 
Mixed ANOVA: 2 (Group) x 2 

(grammaticality score (G vs NG) 

“No significant main effect was found for group (F 1<). 

However, there was a significant interaction for grammaticality 

x group, F(1, 27) = 11.86, p = .002, π2p = .3.” (p. 241) 

Null for main effect of 

group. Significant for Group 

x Grammaticality 

interaction. 

Laasonen, Vare et al.,  2014 
Mixed ANCOVA: 3 (Group) x 2 (answer 

type: Accuracy vs Similarity) 

“A 3 x 2 mixed ANCOVA with Group as a between subjects 

factor, answer type as a within subjects factor and proportion of 

correct responses as the dependent variable resulted in a non-

significant main effect of group (F(2,84) = 2.416, p = .095, π2p 

= .054...” (p. 22) 

Null. 
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Lukacs & Kemeny, 20141 
Univariate ANOVA (Group on 

performance difference  score) 

“The control group outperformed the clinical group, as revealed 

by a significant main effect of group, F(1,113) = 6.645, p < .05, 

π2p = 0.056.” (p. 478) 

Significant 

Mainela-Arnold & Evans, 

2014 

Analyses relate to whether SL ability 

predicts performance on lexical gating 

and definition tasks: Multiple regression 

with age, NVIQ, SL, Group , Group x SL 

interaction 

From table: predicting lexical phonology: Group x statistical 

learning interaction: ß = -.08, R²  = .27, R²  change = .01, F 

change = .52; predicting lexical-semantics:  Group x statistical 

learning interaction: ß = .36, R²  = .46, R²  change = .00, F 

change = .15 

N/A 

Mayor-Dubois, Zesiger et 

al., 20141 
T-test for Group difference 

“Significant difference in scores between the SLI and the 

Control groups, t(77) = 3.137, p < .01. The performance of the 

SLI group did not differ from chance level […], contrary to the 

Control Group who obtained scores above the chance level...” 

(p. 18) 

Significant 

Nigro, Jiminez-Fernández et 

al., 2016 (Expt 1) 
T-test by Group against chance 

“...participants from the TD group performed above chance 

level in all three cases […] t(20) = 3.85, p = .001, r = .65 […] 

Participants with DD also performed above chance level in the 

overall task […] t(20) = 3.20, p = .005, r = .58.” (p. 208) 

Null for overall difference, 

but significant difference 

with transfer to unseen 

items. 

Nigro, Jiminez-Fernández et 

al., 2016 (Expt 2) 
T-test by Group against chance 

“Results from single-sample t-tests showed that participants 

from the TD group again performed above chance level in all 

three cases (overall […]: t(20) = 4.06, p = .001, r = .67). […] 

Participants with DD also performed above chance level in the 

overall task (…t(20) = 3.07, p = .006, r = .57).” (p. 211) 

Null for overall difference, 

but significant difference 

with transfer to unseen 

items. 
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Pavlidou, Kelly, & 

Williams, 20101 

Mixed ANOVA: 2 (Group) x 2 

(Grammaticality) x 2 (Chunk strength) 

“The between subjects ANOVA revealed a main effect of 

Participant type (F(1,30) = 4.521, p < .05, p-value reported two-

tailed): the two types of children were performing significantly 

different…” (p. 152) 

Significant 

Pavlidou & Williams, 20101 

Both models: Mixed ANOVA: 2 (group) 

x 2( grammaticality) x 2 (chunk strength) 

 

Non transfer task: “Between subjects ANOVA revealed an 

effect of group (F(1,30) = 14.46, p = .001): The typical group 

outperformed the dyslexic group.” (p . 3292) 

 

Transfer task: “Between subjects tests showed a group effect 

(F(1,30) = 4.63, p < .05). The two groups of children were 

performing significantly different during the testing phase…” 

(p. 3294) 

Both significant 

Pavlidou & Williams, 2014 
Mixed ANOVA: 2 (Group) x 2 

(Grammaticality) x 2 (Chunk strength) 

“A main effect of reader Group was obtained (F(1,30) = 14.46, p 

= .0001), with higher number correct for typically developing 

children […] than dyslexic children...” (p. 1462) 

 

Transfer task: “A main effect of reader Group was obtained 

(F(1,30) = 4.63, p < .05), such that grammaticality-decisions for 

the test items were more accurate for TD […] than DD 

children...” (p. 1465) 

Both significant (Same 

experiment as Pavlidou and 

Williams (2010), so not 

included) 

Pavlidou, Williams, & 

Kelly, 20091 

Mixed ANOVA: 2 (Group) x 2 

(Grammaticality) x 2 (Chunk strength) 

“The ANOVA revealed a main effect of group (F(1.30) = 8.18, 

p < .01).” (p. 63) 
Significant 

Plante, Bahl, Vance, & 

Gerken, 2010 (Expt 1) 

Mixed ANOVA: 2 (Group) x 2 

(generalization type - pattern or 

principle) x 2 (item type - correct &  

incorrect) 

“No other main effect or interaction effect was significant.” 

Significant effect were not considered relevant to implicit 

learning by authors (see p. 402) 

Null. Not in meta-analysis. 
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Plante, Bahl, Vance, & 

Gerken, 2010 (Expt 2) 

Mixed ANOVA: 2 (Group) x 2 

(generalization type - pattern or 

principle) x 2 (item type - correct &  

incorrect) 

“No other effect was significant […] the variance that 

contributed to the the three-way interaction occurred only 

because incorrect items were accepted more frequently than 

correct items under certain conditions. (p. 403) 

Null. Not in meta-analysis. 

Plante, Gomez, & Gerken, 

20021 
T-Test for Group difference 

“In contrast, the NLD average [...] was both above chance levels 

and significantly greater than the mean of the L/LD group (t(30) 

= 2.75, p = .01).” (p. 458) 

Significant 

Pothos & Kirk, 2004 
Mixed ANOVA: 2 (Group) x 2 (Task 

variant) 

“There was a main effect for the factor Dyslexia (F(1,210) = 

4.39, p = .04), showing that dyslexic participants performed 

better than non-dylexic ones…” (p. 71) 

Effect in opposite direction 

Rüsseler, Gerth, & Munte, 

20061 

3 (Group) ANOVA on grammaticality 

judgements 

“…both the normal and the dyslexic readers' classification 

scores exceeded that of the random comparison group [...] main 

effect GROUP: F(2,33) = 23.94, p < .0001…” (p. 819) 

Significant 

1 = Included in p-curve 
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4.9 Statistical learning: Meta-analysis of correlational studies 

Three studies examined the relationship between performance on statistical 

learning tasks and language ability using correlational designs, with a total of five 

independent samples (see Table 4.7). No eligible correlational studies using artificial 

grammar tasks were found. 

The three studies, including 177 participants (mean sample size = 44.25, SD = 

16.58, range = 30 to 68) were entered into a meta-analysis that calculated the effect 

size (r) for the relationship between implicit learning on the statistical learning task 

and measures of language and decoding (see Figure 4.12). The overall effect size in 

this meta-analysis was moderate and significant (r = .311, 95% CI [0.17, 0.44]). The 

variability across samples was not significant (Q (3) = 0.087, p = 0.99), indicating that 

there was no case for examining the relationship separately for language or decoding. 

Two of these studies also contained sufficient information to calculate an effect 

size for the relationship between NVIQ and statistical learning task performance. The 

overall effect size was also was not significant (r = .157, 95% CI [-0.05, 0.35], p = 

.13). This indicated that NVIQ did not significantly relate to the level of learning on 

the statistical learning task.  
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Table 4.7 Characteristics of the 3 correlational studies eligible for the meta-analysis using the statistical learning task. 

Study Task Domain Modality Age Sample Size Additional Information 

Arciuli & Simpson, 2012 SL Non-verbal Visual 
Expt 1: Child 

Expt 2: Adult 

Expt 1: 42 

Expt 2: 37 
2 separate comparisons 

Kidd & Arciuli, 2016 SL Non-verbal Visual Child 68  

Misyak & Christiansen, 2012 SL Verbal Auditory Adult 30 
2 tasks (adjacent & non-

adjacent dependencies) 

 

 

 

Figure 4.12 Forest plot showing effect sizes for the correlation between statistical learning tasks performance and language and decoding measure. 

Outcome Study name Statistics for each study Correlation and 95% CI

Lower Upper 
Correlation limit limit p-Value

Combined Misyak & Christiansen, 2012 0.278 -0.091 0.580 0.137

Combined Kidd & Arciuli, 2016 0.300 0.066 0.502 0.013

IL/Decoding1 Arciuli & Simpson, 2012 (Experiment 1) 0.327 0.026 0.574 0.034

IL/Decoding2 Arciuli & Simpson, 2012 (Experiment 2) 0.338 0.016 0.597 0.040

0.311 0.167 0.441 0.000

-1.00 -0.50 0.00 0.50 1.00

Favours A Favours B

Random effects meta-analysis
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4.10 Discussion: Artificial grammar and statistical learning meta-analyses  

The meta-analysis of group design tasks using artificial grammar or statistical 

learning tasks returned a significant moderate overall effect size. The results also 

indicate that the moderate effect size in the group design meta-analysis may be the 

result of publication bias. Although the p-curve that examined publishing bias across 

all eligible studies suggested there was no evidence of bias in the data, the funnel plot 

did indicate publication bias and suggested that a far smaller overall effect size may 

be closer to reality. The funnel plot is based on the actual measures entered into the 

meta-analysis, rather than on the single reported statistic that best represents learning 

(such as a F ratio or t statistic), so while the p-curve suggests that the 20 studies 

accurately report a balanced and fully representative view, the funnel plot suggests 

that studies with non-significant results are likely to exist, but are missing from the 

published literature. This concurs with the recent meta-analysis by Schmalz et al. 

(2016), who conjectured that the true effect size in artificial grammar tasks was likely 

to be small. The result of the small meta-analysis of three correlational studies, 

showing a low to moderate overall effect size, lends further support to this suggestion. 

It is far closer to the estimate suggested by the funnel plot analysis than to the higher 

overall effect size in the group design analysis. 

Why should the pooled effect size for this meta-analysis be so much larger than 

the pooled effect size from the meta-analysis of serial reaction time tasks? One 

possibility is that offline measures that do not require the derivation of a difference 

score are far less noisy and, therefore, allow a more precise estimation of effect size. 

An alternative view is that the tasks index an aspect of implicit statistical learning that 

is indeed impaired in language disorder, while the serial reaction time tasks do not. 

However, it is also possible that the significant results reflect the artifacts of a third 

variable, such as, attention (de Diego-Balaguer, Martinez-Alvarez, & Pons, 2016). 

Additionally, these meta-analyses included results for both seen and transfer items on 

the tasks. It could be argued that scores for recognition of seen items are at least 

partially declarative measures and that only transfer items represent the implicit 
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statistical learning of abstract grammatical rules. If this is the case, then the overall 

mean effect size includes elements of both declarative and statistical learning. 

4.11 Hebb serial order learning: Meta-analysis of language-disordered groups 

and age-matched controls 

The Hebb serial order learning task asks participants to recall sequences of items 

in order. The task then introduces a covert repeated sequence. Better recall for the 

repeated as opposed to random sequences is considered evidence of implicit learning.  

There were nine eligible studies for this meta-analysis. These studies analysed 

implicit learning on Hebb tasks in two different ways. The first method compared the 

gradient of the regression line for performance on Hebb trials to the gradient for 

random trials, while other studies chose to compare overall accuracy rates for the Hebb 

and random sequences. In order to include as many studies investigating Hebb 

performance and language disorder as possible using a consistent measure, the meta-

analysis compared overall accuracy rates, rather than regression-based accuracy 

measures. Analysing data in this way meant excluding the reported measures for two 

experiments (Bogaerts et al., 2015), that administered tasks of differing lengths to 

participants dependent on the length of time taken to reach a criterion of two correct 

repetitions of the Hebb sequence. Instead, data kindly supplied by the study’s authors 

was used, which gave a measure for the length of the tasks completed by all 

participants. Only one paper, which predated the procedural deficit hypothesis by 15 

years, was excluded from the meta-analysis because it contained insufficient 

information to calculate an effect size (Gould & Glencross, 1990). This paper reported 

no significant differences in Hebb learning between groups of normal and poor 

readers. In this study differences in mean scores for Hebb and filler trials for groups 

of normal and poor readers were equivalent on a visuospatial Corsi blocks Hebb task, 

as were scores on the second half of verbal-visual Digits Hebb task. The only 

difference in performance between groups was on the first half of the Digits task, 

where normal readers showed better performance on early Hebb trials while poor 

readers did not. 
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The meta-analysis, therefore, included eight studies of Hebb serial order learning 

tasks with language-disordered groups and age-matched controls, which contained ten 

independent comparisons in total (see Table 4.8). All 10 comparisons calculated effect 

sizes using the standard deviation for the control group of the unrepeated condition, 

not standard deviations for the differences between conditions.  

The studies included 200 participants with a diagnosis of language disorder (mean 

sample size = 22.22, SD = 5.74, range = 12 to 29) and 201 control participants (mean 

sample size = 22.33, SD = 6.58, range = 12 to 32). Effect sizes with confidence 

intervals for the different studies are shown in Figure 4.13. The overall mean effect 

size g = -0.32, 95% CI [-0.52, -0.12], p < .01, with language disordered groups in these 

studies showing less facilitation on repeated lists compared to age-matched controls 

without language difficulties. The variation in effect sizes between studies was not 

significant Q (9) = 10.36, p = .32, I2 = 13.10%, Tau2 = 0.01.  
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Table 4.8 Characteristics of the 9 group design studies eligible for the meta-analysis using the Hebb serial order learning task. 

Study Diagnosis Age Sample Size* Modality 
Total trials 

(Hebb trials) 

Additional 

Information 

Archibald & Joanisse, 2013 DLD Child 23; 27 
Verbal (visual 

& auditory) 
84 (42) 3 sessions 

Bogaerts, Szmalec, Hachmann, Page & Duyck, 2015 DD Adult 
Expt 1: 25; 23 

Expt 2: 18; 18 
Verbal-visual 

Expt 1: 9 (3)** 

Expt 2: 18 (6)** 

2 separate 

comparisons 

Bogaerts, Szmalec, De Maeyer, Page & Duyck, 2016 DD Child 23; 23 
Verbal-visual; 

visuospatial 
  

Gould & Glencross, 1990 DD Child 18; 18 
Verbal–visual; 

Visuospatial 
32 (10) 2 tasks 

Henderson & Warmington, 2017 DD Adult 29; 30 Verbal-auditory 26 (8)** 
Main testing session 

only 

Hsu & Bishop, 2014 DLD Child 28; 20 Verbal-visual 13 (5)  

Majerus, Leclercq, Grossmann, Billard, Touzin, Van 

der Linden, & Poncelet, 2009 
DLD Child 12; 12 Verbal-auditory 24 (8) Expt 2 only 

Staels, Van der Broek, 2015 DD 
Expt 1: Adult 

Expt 2: Child 
26; 32 

Verbal-visual; 

Verbal-auditory; 

Visuospatial 

30 (10) 
2 comparisons. 3 

tasks in each 

Szmalec, Loncke, Page, & Duyck, 2011 DD Adult 16; 16 

Verbal- visual; 

Verbal-auditory; 

Visuospatial 

30 (10) 3 tasks 

* = Sample size disordered group first; ** = Length of task taken by all participants 
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Figure 4.13 Overall average effect size for the group difference in performance on Hebb tasks (displayed by ♦) with 95% confidence interval for each study. 

Comparison Study name Statistics for each study Hedges's g and 95%  CI

Hedges's Standard Lower Upper 
g error limit limit p-Value

SLI and Control HebbRC1 Hsu & Bishop, 2014 -0.865 0.301 -1.455 -0.274 0.004

DD and Control Combined Szmalec et al., 2011 -0.715 0.357 -1.414 -0.016 0.045

DD and Control HebbRC1 Bogaerts et al., 2015 (Expt 2) -0.568 0.337 -1.229 0.093 0.092

DD and Control Combined Bogaerts et al., 2016 -0.524 0.299 -1.111 0.062 0.080

DD and Control Combined Staels, & Van den Broeck, 2015 (Expt 1) -0.327 0.262 -0.841 0.186 0.211

DD and Control HebbRC1 Bogaerts et al., 2015 (Expt 1) -0.262 0.285 -0.821 0.298 0.359

SLI and Control Combined Archibald & Joanisse, 2013 -0.135 0.280 -0.684 0.414 0.630

DD and Control Combined Henderson & Warmington, 2017 -0.129 0.259 -0.636 0.378 0.617

DD and Control Combined Staels, & Van den Broeck, 2015 (Expt 2) -0.048 0.263 -0.565 0.468 0.854

SLI and Control HebbRC1 Majerus et al., 2009 0.341 0.397 -0.438 1.119 0.391

-0.319 0.101 -0.517 -0.122 0.002

-2.00 -1.00 0.00 1.00 2.00

Favours A Favours B

Random effects meta-analysis
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4.11.1 Publication bias 

A funnel plot for the random effects model of the 10 comparisons was used to 

examine whether there was evidence for the existence of publication bias in extreme 

groups studies of Hebb learning (see Figure 4.14). The Trim and Fill procedure (Duval 

& Tweedie, 2000) did not find evidence of publication bias. However, given the low 

number of studies entered into the plot it should be interpreted with caution. Lau, 

Ionnidis, Terrin, Schmid, and Olkin (2006) do not recommend the use of funnel plots 

in meta-analyses with less than 10 comparisons. 

 

Figure 4.14 Funnel plot for the Hebb learning group design random effects model. Open circles and 
diamond correspond to observed studies and point estimate. Duval and Tweedie’s Trim and Fill 
procedure shows no evidence of publication bias. 

 

The p-curve for this set of studies coded the principal measure of learning on the 

Hebb task, according to each study (see Table 4.9). This included several regression-

based measures that indicate improving recall for the Hebb sequence over time, as well 

as measures that related to an overall group difference in performance across the task. 

This enabled the includion of studies that only reported regression-based inferential 

statistics. However, the inclusion of both types of measure should be kept in mind 

when interpreting the result of the p-curve. The low number of studies is also a 
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concern. Eight studies contained sufficient data for the analysis, with three studies 

providing a significant statistic that represented a different gradient of improvement in 

implicit learning over the course of the task for the two groups and two studies 

indicating an overall difference in improvement. Figure 4.15 shows a right-skewed p-

curve, demonstrating evidential value (Z = - 4.47, p = .0001) and no reliable evidence 

that the studies’ evidential value is inadequate due to low power (power estimate = 

93%, 90% CI [68%, 99%]. 

 

Figure 4.15 P-curve examining publishing bias in extreme groups studies using Hebb tasks to 
investigate the procedural deficit hypothesis. 

 

http://www.p-curve.com/R_temp/1492088612.png
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Table 4.9 Disclosure table for the 9 group design studies eligible for the meta-analysis using Hebb serial learning tasks 

Study name Analysis Quoted test from paper with statistical results Significance 

Archibald & Joanisse, 20131 

ANCOVA: 2 (Group) x 2 

(task modality) x 2 (sequence 

type) x 2 (Task half), with 

WM and  NVIQ as covariates 

“The results revealed two significant interactions with group: the 

interaction between modality and group […] .all remaining effects and 

interactions involving group were not significant […] Importantly this 

interaction was not differentiated by list types, indicating a general 

auditory retention difficulty rather than a specific deficit in carryover 

learning on the Hebb lists.” (p. 274) 

Null  

Bogaerts et al., 2015 (Expt 1) 2 
Mixed ANOVA: 2 (Group) x 

3 (Task) x 2 (Sequence type)  

“Crucially, we found a significant interaction between Sequence type 

and Group, F(1,46) = 4.73, p < .05, π2p = .09. Planned comparisons 

indicate a HRL effect in both groups, however, HRL was significantly 

stronger for controls.” (p. 111) 

Significant for development 

of implicit learning over task  

Bogaerts et al., 2015 (Expt 2) 2 
Mixed ANOVA: 2 (Group) x 

3 (Task) x 2 (Sequence type)  

“… a significant interaction was found between Sequence type and 

Group, F(1,34) = 5.52, π2p = 0.14, p < .05.” (p. 115) 

Significant for development 

of implicit learning over task 

Bogaerts et al., 2016 

Mixed logit models (Jaeger, 

2008): Fixed vs = Group, 

Sequence type, task, block, 

NVIQ as control variable 

“A group difference in the disadvantage of the poor readers would 

surface as a threeway interaction, Type x Presentation x Group, with a 

negative coefficient…A simple slopes analysis...suggesting that Hebb 

learning is present in both groups but to a lesser extent for the poor 

readers, chi2(2) = 56.04, p < .001.” (p. 146) 

Significant for development 

of implicit learning over task  
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Gould & Glencross, 19901 

Verbal task Mixed ANOVA: 

2 (Group) x 2 (sequence 

type)  x 2 (early vs late trials)  

“Table 2 shows that Normal Readers were more accurate on the 

repeated sequences in both the Early and Late Trials whereas the 

Disabled Readers did not show greater accuracy until the Late Trials.” 

Table 2: Group x sequence interaction effect = ns; Group x sequence x 

trials: F(1,18) = 8.6, p < .009 (p. 275) 

Null for consistent measure 

Visuospatial task Mixed 

ANOVA: 2 (Group) x 2 

(sequence type)  x 2 (early vs 

late trials)  

“Table 3 shows that the pattern of results was very similar for both 

groups.” (p. 275) 
Null 

Henderson & Warmington, 

20171 

Mixed ANOVA: 2 (Group) x 

2 (sequence type)  x 2 (1st 

half vs 2nd half)  

“…a marginally significant List x Half x Group interaction (F(1,57) = 

3.99, p = .051, π2p = .07.” NB: Group x sequence type = ns (p. 202) 
Null for consistent measure 

Hsu & Bishop, 20142 
3 (Group) ANCOVA, with 

Random gradient as covariate 

“There was a significant effect of group, F(2,76) = 3.68, p = .03, π2p = 

.09. Pair-wise comparisons indicated that the age-matched group 

showed a steeper learning rate of word sequences than the SLI and the 

grammar-matched group.” (pp. 357, 358) 

Significant for development 

of implicit learning over task  

Majerus et al., 20091 
Mixed ANOVA: 3 (Group)  

x 2 (Sequence type)  

“This analysis revealed no significant group effect, F(2,33) = 1.14, ns 

[....] and no interaction effect, : F(2,33) < 1, ns.” (p. 714) 
Null  

Staels, & Van der Broek, 2015 

(Expt 1) 2 

Mixed ANOVA: 2 (Group) x 

3 (Task) x 2 (Sequence type)  

“Unlike Szmalec et al. (2011), however, the crucial Group x Sequence 

type interaction effect was not significant, F(1,57) = .128, p = .722, π2p 

= .002, indicating a similar Hebb effect for the control and the dyslexic 

group. Planned comparisons [...] confirmed the absence of a differential 

Hebb effect for [all 3 tasks].” (p. 6) 

Null  

Staels, & Van der Broek, 2015 

(Expt 2) 2 

Mixed ANOVA: 2 (Group) x 

3 (Task) x 2 (Sequence type)  

The crucial Group x Sequence type interaction effect was also not 

significant, F(1,55) = .087, p = .769, π2p = .002, indicating a similar 

Hebb effect for the control and dyslexic group. (p. 13) 

Null 
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Szmalec et al., 20112 
Mixed ANOVA: 2 (Group) x 

3 (Task) x 2 (Sequence type)  

“The crucial interaction effect between Group and Sequence Type was 

significant, F(1,30) = 23.22, p < .001, π2p = .44, indicating a stronger 

Hebb effect for the control group. Further planned comparisons [...] 

demonstrate that the persons with dyslexia showed reduced Hebb 

learning for all stimulus and presentation modalities.” (p. 12) 

Significant for development 

of implicit learning over task  

1 = Mean proportion of correct  responses for Hebb vs Random; 2 = Repeated regression line compared to random one 
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4.12 Discussion 

The pooled effect size for this meta-analysis was small but significant and was a 

similar size to the pooled effect size estimate from the meta-analysis of serial reaction 

time group design studies. Additionally, neither the funnel plot nor the p-curve 

analysis indicated any evidence of publishing bias in the literature. It would be useful 

to be able to compare the results of this meta-analysis with one that contains studies 

using correlational designs, as agreement between them would lend further support to 

this finding. However, such studies do not currently exist.  

4.13 Weather prediction task: Meta-analysis of comparisons of language-

disordered groups and age-matched controls 

The weather prediction task asks participants to classify combinations of four 

possible stimuli into one of two possible outcomes. The stimuli each have a fixed 

probability of a certain outcome. A trial is scored correct if it accords with the 

conditional probabilities of the stimuli shown. Above chance performance is taken as 

evidence of implicit learning. 

Five out of six eligible studies (see Table 4.10) were entered into this meta-

analysis, resulting in 5 independent comparisons of weather prediction task 

performance with language-disordered groups and age-matched controls. One study 

was excluded, as there was not sufficient data to calculate an effect size (Lee, Mueller, 

& Tomblin, 2016). This study reported significantly poorer performance on the task 

for the language-disordered group compared to the control group. The studies in the 

meta-analysis included 101 participants with language disorder (mean sample size = 

20.02, SD = 5.81, range = 15 to 29) and 208 control participants (mean sample size = 

41.60, SD = 32.58, range = 15 to 87). Effect sizes with confidence intervals for the 

different studies are shown in Figure 4.16. The overall mean effect size was 

significant, g = -0.629, 95% CI [-1.07, -0.19] indicating that overall language 

disordered groups perform poorly on weather prediction tasks compared to age-
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matched controls without language difficulties. The variation in effect sizes between 

studies was also significant, Q (4) = 11.79, p < .02, I² = 66.09%, k = 5, Tau2 = 016.  

Only one study (Gabay et al., 2015) tested dyslexic participants, so participant 

diagnosis was not examined as a moderator variable. The moderating effect of 

participant age was examined, even though power in this analysis was low (Adults k 

= 2, Children k = 3). The difference between studies with adults and with children was 

not significant, Q (1) = 0.219, p = .64, g (Adults) = -0.79, 95% CI [-1.59, 0.01], g 

(Children) = -0.55 95% CI [-1.17, 0.07].  

Only two studies reported data for language tests to accompany measures of effect 

size for the weather prediction task (with only one of these including decoding 

measures), so the relationship between the severity of language disorder and weather 

prediction task performance could not be examined. Three studies reported data for 

NVIQ measures, which showed that there was a large variation between the disordered 

and comparison groups for the measures of NVIQ used in the studies, the mean 

difference was g =  -1.159, 95% CI [-1.99, -.33], ranging from g = -0.36, 95% CI [-

1.06, 0.35] to g = -1.27, CI [-1.93, -0.61]. This variation in effect sizes between studies 

was significant, Q (2) = 9.07, p = .01, I² = 77.94%, k = 3, Tau2 = 0.42. However, there 

were not enough studies in the analysis to be able to examine the effect of this 

difference in NVIQ group disparity on weather prediction task performance in a meta-

regression. There were also too few studies to investigate the moderating influence of 

any task related variables.
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Table 4.10 Characteristics of the 9 group design studies eligible for the meta-analysis using the weather prediction task 

Study name Diagnosis Age 
Sample 

Size* 
Task variant 

Trial 

Total 
Combinations Stimuli Probabilities (of Sun) 

Gabay, Vakil, Schiff & 

Holt, 20151,3 
DD Adult 15; 15 

Holl et al. 

(2012) 
150 14 Geometric 89%; 78%; 22%; 11% 

Kemeny & Lucaks, 20101 DLD Child 16; 164 Not stated 150 Not stated Geometric 90%; 70%; 30%; 10% 

Lee & Tomblin, 20151 DLD Adult 23; 25 
Knowlton et al. 

(1994) 
50 14 Not stated 75%; 57%; 43%; 25% 

Lee, Mueller, & Tomblin, 

20162 
DLD Adult 22; 19 

Knowlton et al. 

(1994) 
50 14 Not stated 75%; 57%; 43%; 25% 

Lukacs & Kemeny, 20141 DLD Child 29; 87 
Knowlton et al. 

(1994) 
200 13 Geometric 85.7%; 70%; 30%; 14.3% 

Mayor-Dubois, Zesiger, 

Van der Linden, & Roulet-

Perez, 20141 

DLD Child 18; 65 
Shohamy et al. 

(2004) 
200 14 

Mr Potato 

Head 
20%; 40%; 60%; 80% 

1included in meta-analysis; 2insufficient data for inclusion in meta-analysis; 3included feedback and paired associate versions of the task; 43 groups took 

this task (16 DLD & 16 TD children & 16 normal adults - only age-matched groups are coded); *Language-disordered group first 
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Figure 4.16 Overall average effect size for the group difference in performance on weather prediction tasks (displayed by ♦) with 95% confidence interval for each study. 

 

Comparison Study name Hedges's g and 95%  CI

Hedges's 
g p-Value

WPT DD and Control Gabay, Vakil, Schiff & Holt, 2015 -1.271 0.001

Combined SLI and Control Kemeny & Lucaks, 2010 -0.918 0.012

WPT SLI and Control Mayor-Dubois et al., 2014 -0.824 0.002

WPT SLI and Control Lee & Tomblin, 2015 -0.404 0.149

Combined SLI and Control Lukacs & Kemeny, 2014 -0.023 0.916

-0.629 0.005

-2.00 -1.00 0.00 1.00 2.00

Favours A Favours B

Random effects meta-analysis
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4.13.1 Publication bias 

A funnel plot was estimated for the studies entered into the weather prediction task 

group design studies meta-analysis, which suggested there was some evidence of 

publication bias (Figure 4.17). However, with so few studies in the meta-analysis, the 

funnel plot is not a reliable indicator of publication bias (Lau et al., 2006).  

 

Figure 4.17 Funnel plot showing evidence of publishing bias for the weather prediction group design 
random effects model. Open circles and diamond correspond to observed studies and point 
estimate. Filled circles and diamond correspond to imputed missing studies and adjusted point 
estimate of d = 0.51, 95% CI [-0.08, 15.50], following Duval and Tweedie’s Trim and Fill procedure. 

 

A P-curve was also estimated for the six eligible studies, using the quoted test 

statistic for the principal measure of implicit learning in the studies (see Table 4.11). 

These test statistics related to the overall difference in learning between groups and 

were typically the main effect of group in a Group x Block ANOVA. Although there 

were four significant values for this statistic, it should be noted that no papers reported 

significant results for the difference in the rate of learning between groups over the 

task. Figure 4.18 shows a right-skewed p-curve, demonstrating evidential value (Z = - 

3.48, p = .0003) and no reliable evidence that the studies’ evidential value is inadequate 

due to low power (power estimate = 87%, 90% CI [46%, 98%]. 
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Figure 4.18 P-curve examining publishing bias in the six group design extreme group studies using 
weather prediction task tasks to investigate the procedural deficit hypothesis. 

 

http://www.p-curve.com/R_temp/1492079729.png
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Table 4.11 Disclosure table for the 6 group design studies eligible for the meta-analysis using weather prediction tasks 

Study name Analysis Quoted test from paper with statistical results Significance 

Gabay, Vakil, Schiff & 

Holt, 2015 

Mixed ANOVA:   

2 (Group) x 2 (Task: 

FB vs PA)  

“The main effect of Group was significant, F(1, 28) = 7.51, p = .011, π2p = .204, 

indicating that test-phase accuracy of the dyslexia group […] was poorer than 

that of the control group.” (p. 6) 

Significant for overall 

difference for 2 tasks. 

Kemeny & Lucaks, 2010 
Mixed ANOVA:  

3 (Group) x 3 (Block) 

“There was a significant main effect of group (F(2,46) = 15.584, p < 0.001, π2p 

= .409) showing that there is a significant difference between the groups with 

adults giving the most correct answers, followed by typically developing 

children, and children with LI giving the least […] The group block interaction 

did not appear to be significant (F(4,46) = .882, p = .478, π2p = .409)…” (p. 18) 

Significant for overall 

difference (P-curve 1); 

Null for performance over 

time. 

Lee & Tomblin, 2015 
Mixed ANOVA:  

2 (Group) x 5 (Block)  

“Figure 1 (d) shows the results of a significant main effect of Group, F(1,46) = 

6.72, p = .01, π2p = .13 […] The interaction effect was not significant, F(4,184) 

= .75, p = .56, π2p = .02.” (pp. 225, 226) 

Significant for overall 

difference (P-curve 1); 

Null for performance over 

time. 

Lee, Mueller, & Tomblin, 

2016 

Mixed ANOVA:  

2 (Group) x 5 (Block) 

“Results showed a significant Group effect, F(1,39) = 11.54, p = .0021 […] The 

interaction effect was not significant, F(4,156) = .85, p = .50.” (p. 1106) 

Significant for overall 

difference (P-curve); Null 

for performance over time.  

Lukacs & Kemeny, 2014 
Mixed ANOVA:  

2 (Group) x 4 (Block)  

“The Huyhh-Feldt corrected ANOVA revealed that neither the main effect of 

block (p = .196) nor the main effect of group (p = .814) was significant. The 

Block x Group interaction approached, but did not reach significance, F(2.502, 

285.197) = 2.302, p = .089.” (p. 478) NB: Main effect of Group supplied by 

authors: F(1,114) = .56, p = .814. 

Null. 

Mayor-Dubois, Zesiger, 

Van der Linden, & Roulet-

Perez, 2014 

Mixed ANOVA:  

2 (Group) x 4 (Block) 

“...but no interaction between Blocks and Groups, F(3,85) = 1.072, ns, 

indicating a similar improvement of cognitive learning in both groups.” (p. 19) 

NB: Effect of group not reported. 

Null.  
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4.14 Discussion: Weather prediction task meta-analysis 

The overall effect size in this meta-analysis is the largest in the series. 

Unfortunately, study numbers were too low to investigate reliably whether this 

reflected publication bias in the literature. Once again, the results are contradictory for 

the p-curve and the funnel plot. However, in spite of the substantial significant effect 

size in the meta-analysis for the group difference, none of the studies reported a 

significant effect for the Group x Block interaction that would have suggested different 

implicit learning trajectories for the groups across the tasks. This suggests that the 

language-disordered group were simply less good overall at learning the conditional 

probabilities of the task than the control groups. It is possible that lower NVIQ of 

language-disordered groups accounts for this difference, rather than differences in 

procedural learning. However, although three of the six studies did not have groups 

equated for NVIQ, only two of the three were included in the meta-analysis, which 

meant there were insufficient study numbers to conduct a meta-regression to address 

this question. It is also possible that poorer learning of language-disordered groups on 

the task reflected deficits in declarative learning, rather than procedural learning, but 

again there was insufficient reported data in the studies to investigate this. 

4.15 Procedural learning impairment: Domain general or task-specific 

Although impaired procedural learning in language disorders is found on both 

verbal and non-verbal tasks, a question still remains over the domain-generality of any 

implicit learning impairment. The procedural deficit hypothesis is embedded in the 

classic multiple systems model of memory. As such, it would reasonably expect 

implicit procedural memory to be domain-general, reflecting the common reliance of 

different procedural paradigms on a specific memory system in the brain. Impairments 

in procedural learning in language disorders would, therefore, also be domain-general. 

Impaired learning on verbal procedural tasks should then be found, not only on non-

verbal analogue tasks, but across other procedural learning paradigms too. However, 

other memory accounts would not necessarily expect results from different 

experimental paradigms to relate to one another, as each task would lead to a different 
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manifestation of changes in the brain, depending on the associated brain areas involved 

in the performance of each specific task.  

Most studies examining the procedural deficit hypothesis have used a single 

implicit learning task and are, therefore, unable to deliberate on the extent to which 

any impairments in a language-disordered group may generalize to other tasks. 

However, fourteen studies (see Table 4.12) have used multiple tasks and evidence to 

date suggests considerable task specificity, with impaired learning at a group level 

confined to a single task. One of these studies (Gebauer & Mackintosh, 2007) was not 

eligible for the meta-analyses, as it did not investigate language ability. 

With the exception of Gebauer and Mackintosh (2007) these studies all use group 

designs and do not report on whether the different implicit tasks correlate with one 

another. This question can, therefore, not be looked at using meta-analytic techniques. 

However, Gebauer and Mackintosh (2007) demonstrated no relationship at all between 

performance on a serial reaction time task, an artificial grammar learning task and a 

complex systems process control task, using an individual differences approach. 

Lending some support to this finding within the group design studies, many find 

impaired learning in language-disordered participants is confined to a single task. 

Table 4.12 indicates whether performance of the language-disordered group was 

impaired compared to controls or not. Only Vicari et al. (2005) found impaired 

learning on all tasks (although there were only two). Hsu & Bishop (2014) found a 

significant correlation between Hebb learning and deterministic serial reaction time 

task performance, such that better Hebb learning correlated with faster decrease in RTs 

to portions of the serial reaction time task exhibiting a predictable sequence. They 

concluded that this correlation may have related to individual differences in sequence 

learning.  Lukács & Kemény (2014) also noted impaired learning on two sequence-

based tasks, but not a task of probabilistic category learning. 
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Table 4.12 Studies testing participants on more than one procedural task, highlighting the tasks that report significant implicit learning differences between groups. 

 
DLD / 

DD 
Age Correlation between implicit tasks SRT Hebb 

AGL / 

SL 
WPT CC Other 

Bennett et al., 2008 DD Adult Not reported     x  

Gebauer & Mackintosh, 2007* - Teen Non-significant x  x   x1 

Henderson & Warmington, 

2017 
DD Adult Non-significant x      

Howard et al., 2006 DD Adult Not reported     x  

Hsu & Bishop, 2014 DLD Child SRT and Hebb (r = .23, p = .09)      x2 

Jiménez-Fernández et al., 2011 DD Child Different children     x  

Laasonen et al., 2014 DD Adult Not reported x  x    

Lee, 20126 DLD Adult Not reported x      

Lee & Tomblin, 2015 DLD Adult 
Non-significant, except WPT and 

repetition priming (r = .35, p = .01) 
x     

2,3 

Lukacs & Kemeny, 2014 DLD Child Non-significant    x   

Mayor-Dubois et al., 2014 DLD Child Not reported x   x   

Rüsseler et al., 2006 DD Adult Not reported x  x    

Vakil et al., 2015 DD Child Not reported x     x4 

Vicari et al., 2005 DD Child Not reported      
5 

*Correlational study & tasks related to intelligence, including verbal IQ, but not language-ability specifically; 
 = significant implicit learning-related differences between 

groups; x = no significant difference between groups; 1 = Process control; 2 = Pursuit Rotor; 3 = Repetition priming; 4 = Tower of Hanoi; 5 = Mirror Drawing; 6 = unpublished 

thesis. 
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Finally, the paradigms measure procedural learning in different ways and these 

methodological differences may have down-stream consequences for their ability to 

index both a reliable and a valid measure of procedural learning. It should be noted 

that these methodological differences do not seem to explain the pattern of findings 

across the literature. 

4.16 Overall summary of review and meta-analysis 

Even after this series of meta-analyses, the extent to which procedural learning 

deficits may be considered a risk factor for developmental language disorder and 

dyslexia is not clear. The serial reaction time and Hebb analyses both reported 

significant, but small pooled, effect sizes. However, the effect size for the serial 

reaction time task meta-analysis was not corroborated by the results of the small meta-

analysis of serial reaction time studies using a correlational approach with far larger 

sample sizes. This analysis found no evidence of a relationship between implicit 

learning on serial reaction time tasks and language disorder. Failure to replicate the 

effect size in group design studies in studies using a correlational design undermines 

the claims of the procedural deficit hypothesis, suggesting that procedural learning as 

evidenced by these tasks is not a reliable correlate of language-related ability in 

unselected samples. 

The moderate pooled effect size yielded by the group design meta-analysis of 

artificial grammar and statistical learning tasks suggested that there may be a 

relationship between statistical learning and language disorder. The result from the 

corresponding meta-analysis of correlational studies was also broadly in alignment. 

However, the lower overall effect size suggested by the funnel plot for the group 

design analysis suggests that this moderate effect size for the group design meta-

analysis is likely to be too high. This is in line with the recommendation of a previous 

meta-analysis (Schmalz et al., 2016). Finally, the significant overall mean difference 

in the weather prediction task meta-analysis was large and suggested that genuine 

differences on this task exist between children with language learning disorders and 

age-matched controls. However, the low number of studies in this meta-analysis raise 
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a question mark over the result. Additionally, there is much discussion about the extent 

of declarative learning in the task, with initial learning thought to represent a purer 

measure of implicit learning. The meta-analysis included measures that related to 

learning over the whole task and a question remains over what proportion of the overall 

significant effect size can be justifiably apportioned to implicit rather than explicit 

learning. Together, these results raise a number of issues. 

4.16.1 Methodological issues with task design 

The small effect sizes in both the serial reaction time and the Hebb learning meta-

analyses may reflect their reliance on difference scores to represent procedural 

learning. It may be unwise, therefore, to draw any firm conclusions about the 

relationship between implicit learning and language ability using these tasks, as a 

result of the noise in the data. By contrast, the artificial grammar, statistical learning 

and weather prediction tasks do not use difference scores as the measure of implicit 

learning. This benefit should be weighed against other methodological limitations of 

their measures of implicit learning, such as the explicit testing phase structure of 

artificial grammar and statistical learning tasks and the possible contribution of 

declarative learning to performance on the weather prediction task, however. This 

issue refers us back to the earlier discussion of the relative merits of different measures 

of implicit learning at the end of Chapter 3.  

4.16.2 Moderator influence 

A number of participant and task related moderators were considered that might 

explain the pattern of inconsistent results in the literature. However, no moderator 

analyses were undertaken for the serial reaction time and Hebb meta-analyses, given 

the non-significant variation in effect sizes. This is ultimately unsatisfactory. For 

example, variations in the severity of impairment in the language-disordered groups 

as well as variations in between group differences in NVIQ were found, but could not 

be examined as moderators.  
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A range of moderator analyses were undertaken for the artificial grammar and 

statistical learning and weather prediction meta-analyses, since there was 

heterogeneity in the effect sizes for different studies in the analysis. However, not one 

single moderator was found to explain any of this heterogeneity. The lack of influence 

of some moderator variables, such as participant diagnosis was expected. Although 

developmental language disorder and dyslexia themselves are distinct disorders, the 

practice of attaching labels for one or other disorder to individuals for research 

purposes is less than perfect. The narrow focus on one or other developmental 

language disorder in investigations of the procedural deficit hypothesis echoes the 

separate research traditions behind the study of developmental language disorder and 

dyslexia by speech and language therapists and educational psychologists respectively. 

McArthur, Hogben, Edwards, Heath, and Mengler (2000) tested 110 children with 

dyslexia on the Clinical Evaluation of Language Fundamentals – Revised (CELF-R: 

Semel, Wiig, & Secord, 1987) a battery of tasks tapping oral language skills, usually 

used to diagnose developmental language disorder. They also tested the reading ability 

of 102 children with a diagnosis of developmental language disorder using the Neale 

Analysis of Reading Ability – Revised (NARA-R: Neale, 1988). They found that 55% 

of the dyslexic sample scored one standard deviation or more below the mean on the 

tests used to diagnose developmental language disorder, while 51% of the 

developmental language disorder sample qualified for a reading impairment. 

Therefore, just over half of the two samples would have qualified for the alternative 

diagnosis simply dependent on which tests were administered. 

Additionally, although developmental language disorder is frequently diagnosed 

at an earlier age than dyslexia (Snowling, Bishop, & Stothard, 2000), the age of 

participants in studies of children in these meta-analyses was very similar, regardless 

of disorder diagnosis (mean age in studies with children: developmental language 

disorder = 121 months, SD = 18 months; Dyslexia = 130 months, SD = 18 months).  

However, the lack of explanatory value of other moderators is more confusing. For 

example, the disorders are both dimensional and one could, therefore, expect that any 
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procedural learning impairment would also be correspondingly dimensional in nature. 

However, in spite of significant variation in severity of language impairment in the 

disordered groups, it did not explain any of the heterogeneity in the effect sizes of the 

artificial grammar and statistical learning meta-analysis. This raises the possibility 

that, other participant or task-related factors not accounted for in the studies (such as 

perhaps attention, motivation, or sequence-specific details of the grammars 

themselves) may be responsible for this variation. This leads to questions about the 

optimal choice of experimental design to investigate the procedural deficit hypothesis 

and this will be explored in more detail in the following chapter as part of the rationale 

for the experimental design used in this thesis. 

4.16.3 Issues of task validity 

The pattern of results within the series of meta-analyses also raises the question of 

whether the tasks specifically index procedural learning and procedural learning alone. 

The larger effect sizes in some of the meta-analyses may indeed demonstrate that tasks 

are measuring a true underlying difference between groups, but that this difference 

does not relate to procedural learning ability. Implicit learning tasks are not process 

pure and the extent to which they index factors such as declarative learning is not clear 

(Shanks & John, 1994), while other participant cognitive factors such as endogenous 

attention (de Diego-Balaguer, Martinez-Alvarez, & Pons, 2016) may also play a role. 

These potential issues with task validity will be revisited in the following experimental 

chapters. 

4.16.4 Publication bias 

Funnel plots are the most commonly used device to measure publication bias, but 

have recently been criticized, particularly when used to determine bias in analyses with 

a small number of studies. This has led to the introduction of the p-curve method to 

measure publication bias (Simonsohn et al., 2013; 2014). There is an important 

difference between the p-curve and funnel plot analyses of publication bias in this 

series of analyses, however. The p-curve analyses as used here relate to whether there 
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is likely to be bias across the literature as a whole, while the funnel plots relate to 

whether the effect size in the meta-analysis itself is likely to be inflated as a result of 

publishing bias. The results from funnel plots and p-curves were mainly contradictory. 

Given that they do not necessarily measure exactly the same thing in each case, the 

decision was taken to report both. 

4.16.5 Conclusion 

Finally, the meta-analysis for the extreme groups serial reaction time task studies 

had the largest number of eligible studies, yet ultimately less than half of that number 

of studies could be included in the final meta-analysis. This is unfortunate, since this 

is the definitive task used to investigate the procedural hypothesis. The meta-analysis 

of serial reaction time and artificial grammar learning tasks by Schmalz et al. (2016) 

concluded that the quality of the data reported in serial reaction time tasks was of 

insufficient quality to warrant a meta-analysis and I would reluctantly have to agree 

with this view. The main reason for the lack of quantitative data in eligible studies is 

the convention of reporting performance on the task in figure format only. The 

majority of tasks in the serial reaction time task group design meta-analysis did not 

report means and standard deviations for group performance numerically, either as 

difference scores or scores per sequence type. This has down-stream consequences for 

any attempt at meta-analysis. For example, Siegert et al’s (2006) meta-analysis of 

procedural learning in serial reaction time tasks in Parkinson’s disease served as the 

model for previous meta-analyses of procedural learning and language disorders. It 

contained thirteen studies, nine of which did not report means and / or standard 

deviations in numerical form. This led the authors to estimate the means and / or 

standard deviations used to calculate the effect size from the plotted lines for each 

group in the relevant figure published in the papers. With the growing popularity of 

meta-analysis and its great utility in exploring the underlying relationships between 

variables in literatures with inconsistent results, this issue should be addressed in  

future research.  
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To conclude, we return to the questions posed at the start of this chapter. 

Insufficient data in many studies, group deficits of varying sizes across paradigms, as 

well as a contradictory result from serial reaction time studies using a correlational 

approach, meant that it was not possible to conclude definitively whether a relationship 

exists between procedural learning ability and language disorder on the basis of 

literature to date. Additionally, nonsignificant variation in effect sizes in two of the 

meta-analyses precluded the investigation of moderators to answer questions about the 

possible effects of participant variables, such as age or diagnosis, and task variables 

such as complexity or length. Moderator analyses were only possible in the artificial 

grammar and statistical learning group design meta-analysis, but in this case not one 

of the possible moderators explained any of the variability in the studies. The questions 

about the extent of any procedural learning impairment in language disorder and about 

the moderating influence of a range of factors across the literature, therefore, remain 

largely unanswered. We now turn to the next section of the thesis, which takes a 

different approach to the existing literature in an attempt to shed light on these 

questions.   
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Chapter 5 Study 1: Procedural and declarative learning and 

language-related attainment in children 

5.1 Introduction 

According to the procedural deficit hypothesis (Nicolson & Fawcett, 2007; 2011; 

Ullman, 2004; Ullman & Pierpont, 2005) a key risk factor for language learning 

disorders such as developmental dyslexia and developmental language disorder is 

impaired procedural learning. However, as has been documented in the preceding 

chapters, studies evaluating this hypothesis have produced highly inconsistent results.  

Such inconsistencies may reflect a reliance on measures with low reliability and the 

use of extreme group designs with small group sizes. The current study takes a 

different approach to this issue: it assesses the relationships between measures of 

language and attainment and a wide range of measures of both procedural and 

declarative learning in a large unselected sample of children. It also takes care to assess 

the reliabilities of all measures used.     

The hypothesis also suggests that it is procedural sequence learning that is a critical 

cognitive risk factor for developmental language disorder and dyslexia, while 

declarative learning mechanisms remain relatively intact (Nicolson & Fawcett, 2007; 

Ullman & Pierpont, 2005). However, investigations into procedural learning and 

language disorder do not often include declarative learning measures. Research on the 

relationship between language skills and explicit memory skills has frequently used 

free recall and serial recall tasks. Impaired free recall (Menghini, Carlesimo, Marotta, 

Finzi, & Vicari, 2010, Vellutino & Scanlon, 1985) and serial recall (Di Betta & 

Romani, 2006; Perez, Majerus, Mahot, & Poncelet, 2012) have been found in adults 

and children with language-learning disorders.  

The theory also suggests that problems in a procedural learning system should be 

found in different modalities (Ullman, 2004), affecting both non-verbal and verbal 

stimuli, yet studies do not often include measures of both verbal and non-verbal 

implicit learning to test this. It is also relatively rare for investigations into implicit 
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learning impairments and language to select more than one or two implicit learning 

paradigms on which to test participants. The extent to which children might perform 

consistently across a range of tasks, involving both verbal and non-verbal and both 

implicit and explicit learning, is not clear. One of the few studies examining the same 

participants on more than one kind of implicit sequence learning task found children 

with developmental language disorder performed with some consistency across Hebb 

and serial reaction time tasks (Hsu & Bishop, 2014). However, any consistency in 

performance across sequence learning paradigms has so far not been found to extend 

to implicit learning tasks such as contextual cueing, which index other cognitive 

domains (Jiménez-Fernández et al., 2011; Howard et al., 2006). It is thought possible 

that separate mechanisms may mediate performance for implicit learning of 

information with a spatial or temporally sequential structure (Seger, 1994). This study 

will, therefore, include a range of tasks, both sequence-related and more broadly 

implicit to test these claims.   

A brief re-cap of the implicit learning tasks that will be used to investigate the 

procedural deficit hypothesis in this study follows, but for more detail, see Chapter 3. 

The implicit learning task most frequently used to investigate the procedural deficit 

hypothesis is the non-verbal serial reaction time task (SRT: Nissen & Bullemer, 1987). 

In this task participants respond as quickly as possible to a visual stimulus appearing 

in 1 of 4 locations on a screen. Faster responses to trials that follow a covert sequence 

compared to random trials is taken as evidence of implicit learning (Seger, 1994). The 

original deterministic serial reaction time task may not fully dissociate implicit and 

explicit learning (Shanks & Johnstone, 1999), but more complex, probabilistically 

structured (Schvaneveldt & Gomez, 1998) or alternating versions (Howard & Howard, 

1997) are thought to minimize the risk of explicit learning. Language-disordered 

children and adults have been reported to perform poorly both on deterministic serial 

reaction time tasks (Lum et al., 2010; Lum, Ullman, & Conti-Ramsden, 2013; Vicari 

et al., 2005; Jiménez-Fernández, Vaquero, Jiménez & Defior, 2011) and more complex 

alternating versions of the task (Hedenius, 2013; Howard, Howard, Japikse, & Eden, 

2006). However, findings are mixed with null results in some other studies of adults 
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(e.g., Rüsseler, Gerth, & Munthe, 2006; Kelly, Griffiths, & Frith, 2002), and children 

(Gabriel, Maillart, Guillaume, Stefaniak, & Meulemans, 2011; Lum & Bleses, 2012).   

The contextual cueing task (Chun & Jiang, 1998) is another non-verbal measure 

of implicit learning (Goujon, Didierjean, & Thorpe, 2015), although this task does not 

involve the learning of sequences. In this task, participants are instructed to find the 

location of a target stimulus within matrices of distractor stimuli. The position of the 

target in some matrices is predictable and faster responses to these compared to 

random unpredictable matrices is considered evidence of implicit learning. So far, 

studies have not found impaired performance in dyslexic adults (Howard et al., 2006; 

Bennett, Romano, Howard, & Howard, 2008) or children (Jiménez-Fernández et al., 

2011), although impaired implicit sequence learning was found in these same 

participants. 

The most widely used measure of verbal implicit learning is the Hebb serial order 

learning task (Hebb, 1961), which asks participants to recall lists of stimuli in the order 

of presentation. At regular intervals during the task a covert repeating sequence is 

introduced. Better recall of the repeated, compared to non-repeated, sequences 

provides evidence of implicit learning. Once again findings from this task are 

inconsistent. Poor implicit learning has been found in children with developmental 

language disorder (Hsu & Bishop, 2014) and in dyslexic adults (Szmalec, Loncke, 

Page, & Duyck, 2011; Bogaerts, Szmalec, Hachmann, Page, & Duyck, 2015). 

However, null results have also been found in both disorders (Staels & Van den Broek, 

2015; Majerus et al., 2009). 

There are a number of possible reasons for the inconsistent results from studies of 

the relationship between implicit learning and language learning disorders. The vast 

majority of studies use extreme group designs. Yet, dyslexia and specific language 

impairment are dimensional, heterogenous, often co-morbid, neuro-developmental 

disorders (Bishop & Snowling, 2004; Peterson & Pennington, 2015). Language-

disordered groups from different studies may not, therefore, reflect the same 

behavioural symptoms or underlying cognitive impairments. Extreme group designs 
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also tend to overestimate the size of any linear association between variables 

(Preacher, 2015; Preacher, Rucker, MacCallum, & Nicewander, 2005) and potentially 

produce measures that may be lower in reliability (Preacher, 2015). Additionally, 

given the difficulties inherent in recruitment and testing of language-disordered 

participants, sample sizes in these studies are typically small, further reducing 

confidence in results.  

Finally, there are reasons to suspect that the implicit memory tasks themselves may 

not be reliable (Buchner & Wippich, 2000; Salthouse, McGuthry, & Hambrick, 1999; 

Reber, Walkenfeld, & Hernstadt, 1991) and tasks with poor reliability produce large 

errors of measurement and are inherently insensitive to individual differences 

(Nunnally & Bernstein, 1994). However, previous studies have not reported the 

reliability of the tasks used to measure implicit learning. 

In summary, it has been suggested that language learning impairments 

(developmental language disorder and dyslexia) may reflect a procedural learning 

deficit. A variety of different tasks, involving both verbal and non-verbal stimuli, have 

been used to assess implicit learning in groups with language learning impairments 

with inconsistent results. An important question is whether the different measures of 

implicit learning used to investigate procedural learning really do measure a common 

underlying procedural learning system, which is distinct from a declarative memory 

system. Another important question is whether the tasks currently used to assess 

implicit learning are reliable. 

The current study uses a large sample of children unselected for ability. This has 

the advantage that it will not overestimate the size of any association between 

measures of attainment and memory performance, as an extreme groups design might. 

It also uses multiple measures of implicit memory (the serial reaction time, Hebb serial 

learning and contextual cueing tasks) and explicit memory (immediate serial recall and 

free recall tasks), using both verbal and non-verbal stimuli. Using this wide range of 

tasks in a concurrent correlational design makes it possible to assess the factor 

structure of the tasks and explore whether there are separable implicit and explicit 
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memory systems. It will then also be possible to assess the extent to which variations 

in language and reading skills are correlated with variations in implicit or explicit 

memory skills, should these be dissociable. The reliability of the different measures 

can also be determined, which is imperative when investigating individual differences.   

5.2 Method 

This is a concurrent correlational study investigating the possible associations 

between language attainment and explicit and implicit memory skills in 7- and 8-year-

old children. 

5.2.1 Participants   

One hundred and one Year 3 children (64 girls, 37 boys) from three London 

primary schools took part. Children’s ages ranged from 7 years 5 months to 8 years 7 

months (mean = 8 years and 1 month; SD = 3.82 months). Fifty two of the participating 

children used English as an additional language but were judged by their class teachers 

to be fluent in English. Ethical clearance for the study was provided by the UCL 

Research Ethics committee.   

5.2.2 Tasks and testing procedures 

All children completed a battery of attainment measures that was administered in 

a single session to whole classes. Subsequently, children completed three further 

individual testing sessions. The final session comprised four tasks the children had 

completed before (verbal and non-verbal versions of declarative and implicit memory 

tasks) in order to measure memory consolidation. Tasks were administered in a fixed 

order to all children.  

5.2.2.1 Attainment Tasks 

Test of Reception of Grammar (TROG-2: Bishop, 2003). Children’s receptive 

grammar skills were assessed using this 80 item test, which was adapted for group 
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administration. Children were asked to match spoken sentences to pictures, following 

a four picture multiple choice format.  

Wide Range Achievement spelling subtest (WRAT-3: Wilkinson, 1993). 

Children were asked to spell the first 15 words of the WRAT Tan spelling test (go, cat, 

boy, run, will, cut, arm, dress, train, shout, watch, grown, kitchen, result, heaven) that 

were dictated by the experimenter. 

Picture Word Matching (PWM: Caravolas et al., 2012). This timed single word 

reading test consisted of 63 items, each of which showed a picture of an object or scene 

with 4 printed words (the correct word and 3 distractor words). Children were given 3 

minutes to select the correct word for as many items as possible.  

Test of word and non-word reading efficiency (TOWRE-2: Torgesen, 

Wagner, & Rashotte, 1999).  These individually administered tests required children 

to read aloud as many words (or non-words) as they could in 45 seconds.  

Test of basic arithmetic and number skills (TOBANS: Hulme, Brigstocke, & 

Moll, 2016). These timed tests were designed to assess fluency in addition, 

subtraction, and multiplication, giving a composite arithmetic score. In addition, dot 

and digit comparison tasks required children to circle the larger of 2 groups of dots or 

the larger of 2 Arabic numerals respectively. Finally, a test assessed the speed and 

accuracy of counting random arrays of dots. The TOBANS subtests had no reading 

requirement, with all instructions read aloud to the children. 

WASI (Wechsler, 1999). The 28 item WASI matrix reasoning subtest (Wechsler, 

1999) was used to assess non-verbal ability.  

5.2.2.2 Declarative memory tasks 

Word Lists (Cohen, 1997). This free recall test from the Children’s Memory Scale 

assessed children’s ability to learn a list of 10 unrelated words over 4 learning trials. 

Children were asked to recall as many words as possible in any order from a list of 10 
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unrelated words read out by the experimenter (Trial 1). After the first trial only words 

that had been omitted were read out to children for each of the following 3 trials (Trials 

2 – 4). Children were then asked to recall a distractor list of 10 different words spoken 

by the examiner. A final trial on the first list (without representation of the list) was 

then attempted (Trial 5). The score for the first 5 trials formed the child’s Learning 

Score. A measure of delayed recall was taken by asking the child to recall the list once 

more at the end of the testing session (Trial 6). A final memory consolidation measure 

was taken during the last testing session several days later, asking children to recall as 

many words as possible from the 10 item list (Trial 7). Scheduling constraints meant 

the time lapse between Trial 6 and 7 was not the same for all children, but restricting 

inclusion to the majority of participants with a 2 day lapse did not significantly alter 

results.  

Dot Locations (Cohen, 1997). The Dot Locations task from the Children’s Memory 

Scale was used as a non-verbal analogue of the Word Lists free recall task. It tested 

recall of a static dot pattern configuration, giving a measure of declarative, non-verbal 

spatial memory. Children were shown a 4 x 3 grid with a pattern of 6 red dots for 5 

seconds. Children were then asked to recreate it on an empty grid, using red plastic 

discs (Trial 1). This was repeated twice (Trial 2-3).  A distractor pattern of yellow dots 

was then shown and the children asked to reproduce it. Without re-presenting the first 

pattern, children were then asked to reproduce it once again (Trial 4). A point was 

scored for each correct location on each attempt. The mean of the scores for these 4 

trials formed the child’s learning score. Delayed recall was tested by asking the 

children to reproduce the initial configuration at the end of the testing session (Trial 

5). A memory consolidation measure was taken during the final session (Trial 6), 

asking the children to reproduce the pattern once more. Again, the time lapse between 

Trial 5 and 6 was not the same for all children, but all were included in analysis, as 

differences in the time lapse did not significantly alter the results. 
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Immediate serial recall (ISR). These tasks were developed to give declarative 

verbal and non-verbal measures that specifically targeted memory for sequences. They 

formed the beginning of the implicit memory Hebb sequence learning tasks. 

Two versions of the task were created: a verbal task that used nameable pictures 

as stimuli and a non-verbal task that used abstract symbols. A total of 8 stimuli were 

used for each version of the task. The non-verbal and verbal stimuli used are shown in 

Figure 5.1. 

 

 
Figure 5.1 Immediate serial recall and Hebb task verbal and non-verbal stimuli. 

 

Eight pictures with dissimilar names were selected that 7 - 8 year-old children 

would be familiar with (fish, car, egg, shoe, pig, hat, leaf, ball). Symbols for the non-

verbal condition were selected that were judged to be difficult to name but were easily 

discriminable from each other (http://www.dudeman.net/siriusly/cc/phenom.html). 

Verbal and non-verbal versions were administered as separate tasks during different 

testing sessions.  

On each trial a sequence of stimuli was presented across the top of a computer 

screen. All 8 possible stimuli then appeared across the middle of the screen in a random 

order. Children were instructed to use the computer mouse to click on these stimuli to 

reconstruct the sequence they had just seen. Each item the child clicked on disappeared 

from the central display, reappearing in the order of selection in the child’s 

reconstructed list at the bottom of the screen. Once an item was selected it could not 

be changed. All trial sequences were randomly generated.  

http://www.dudeman.net/siriusly/cc/phenom.html
http://www.dudeman.net/siriusly/cc/phenom.html
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The task began with an 8 trial practice round with each trial presenting a single 

stimulus. The recorded portion of the task began with 4 trials at sequence length 2. If 

the child reconstructed one or more of these sequences correctly they proceeded to the 

next level (3 item sequences). Each subsequent level contained 4 trials, at a sequence 

length one item longer than the preceding level up to a maximum of 7 items. Trials 

continued until all 4 trials at a given sequence length were incorrectly reconstructed, 

at which point testing stopped. At each increase in sequence length the test sequence 

remained on the screen for an additional one second, starting at 3 seconds for 2 item 

sequences. The number of trials correctly reconstructed at each sequence length was 

recorded. This information was used to calculate a span score, consisting of the longest 

sequence length recalled correctly on all 4 trials, plus .25 for each longer sequence 

correctly recalled (see Conway et al., 2005; Hulme, Maughan, & Brown, 1991). 

5.2.2.3 Implicit memory tasks   

All implicit memory tasks were presented on a Dell laptop with a 15 inch screen 

with resolution set at 1366 x 768 dpi. 

Serial Reaction Time Task (SRT). An SRT task (Nissen & Bullemer, 1987) with 

a probabilistic sequence structure based on Schvaneveldt and Gomez (1998) was used 

to investigate non-verbal implicit spatial sequence learning. A verbal analogue of the 

SRT task adapted from Hartman, Knopman, and Nissen (1989) was devised to test 

verbal implicit sequence learning.  

For the non-verbal SRT task (NV-SRT) two 12-item sequences were taken from 

Shanks, Wilkinson, and Channon (2003): sequence A – 314324213412; sequence B – 

431241321423. In both sequences, each location repeated 3 times, each time being 

preceded by a different location; each sequence contained one reversal (121 or 343) 

and no repeated locations. They differed only in their second order conditional 

structure. Each block started with a randomly chosen bigram, e.g.: 3 2. The next 

location selected was either the location that followed that bigram in sequence A (with 

a probability of .9, i.e.: 4), or was the location that followed the bigram in Sequence B 

(with a probability of .1, i.e.: 1). This process then repeated with the new most recent 
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bigram, either 2 4, if the transition had been a probable one, or 2 1 if the transition had 

been improbable. The task continued in this way until the end of the block.  

Children were seated in front of a laptop connected to an Xbox Gamepad 

controller. For each trial a stimulus of a smiley yellow face appeared on the screen in 

1 of 4 locations. The locations formed a diamond pattern that corresponded to the 

pattern of buttons on the Gamepad controller (see Figure 5.2). The children were told 

to press the button that corresponded to the position of each stimulus as quickly as 

possible. There were 500 trials. Ten practice trials began, with equal probabilities of 

each sequence occurring. There were then 5 blocks of 100 trials that followed the 

sequence probabilities outlined above.  

The program recorded the RT and the button pressed, whether correct or incorrect, 

but required the child to press the correct button before going on to the next trial. There 

was a 250 ms interval between trials. A pause between blocks allowed the child a short 

break if needed, with the experimenter manually starting each new block as soon as 

the child was ready to continue. The task took approximately 15 minutes to complete. 

Faster RTs for probable compared to improbable transitions were taken as evidence of 

implicit learning.  

 

 
 
Figure 5.2 Non-verbal serial reaction time task. Children pressed the button on the controller that 
matched the location of the stimulus. 
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The verbal SRT task (V-SRT) was adapted from experiments by Hartman, 

Knopman, & Nissen (1989). The sequences were the same as those used by 

Schwaneveldt and Gomez (1998: Probable sequence A: 121342314324; Improbable 

sequence B: 123413214243). The probabilistic structure of the task was otherwise 

identical to the NV-SRT. This task used 4 nameable pictures as stimuli (bird, hammer, 

fish, tree) from an online directory of Snodgrass & Vanderwart-like images (Rossion 

& Pourtois, 2004, see Figure 5.3).   

  

Figure 5.3 Nameable picture stimuli used in the verbal serial reaction time task (V-SRT) 

 

The pictures were approximately 10cm square and were presented one at a time on 

the left half of the computer screen. Each picture was associated with a particular 

button on a Gamepad controller. A visual key to this pairing was displayed at all times 

on the right side of the computer screen, so that the pairings did not need to be 

memorized. As each picture appeared, the child had to press the button on the 

GamePad controller that corresponded to the picture as quickly as possible. Although 

pictures in this task were presented one at a time, requiring the participant to make an 

additional cognitive step by matching the picture to the spatial location displayed on 

the on-screen key, in all other ways the task was identical to the NV-SRT. 

Hebb serial order learning task (Hebb). Following on seamlessly from the 

earlier immediate serial recall portion of the task, the implicit Hebb task introduced a 

covert repeated sequence in order to measure implicit learning of repeated sequences. 

There were 18 trials. Children were not told that the 6th, 9th, 12th, 15th and 18th trials 

were repetitions of the 3rd trial sequence. All 18 trials were the same sequence length, 

with the length of the sequence used for each child determined by their performance 
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on the immediate serial recall task; the Hebb task sequence length was 1-item longer 

than the longest sequence the child had correctly recalled 2 or more times in the 

immediate serial recall task. The stimuli selected and their order of presentation were 

determined randomly. No stimulus appeared more than once in any sequence.  Only 

items correctly recalled in the correct position were scored as correct (Conway et al., 

2005). Points awarded per trial were, therefore, up to a maximum of the length of the 

list. Proportional scores for the blocks for the repeated and random sequences were 

calculated by dividing the raw score by the allocated list length. Higher proportional 

scores for repeated trials compared to random sequence trials were taken as evidence 

of implicit learning. 

Contextual Cueing Task. A dual condition contextual cueing task was used to 

measure visual search efficiency in both non-verbal and verbal modalities 

simultaneously. Children were required to search for a target in matrices of distractor 

stimuli. They then had to indicate the quadrant of the matrix that the target appeared 

in as fast and accurately as possible, by pressing the key on the laptop keyboard that 

was associated with that quadrant, (A, Z, K or M; for a similar procedure, see Merrill 

et al., 2013). Five stimuli were chosen for each condition (verbal and non-verbal): four 

distractor stimuli and one target stimulus. The verbal condition used line drawings of 

nameable pictures of familiar animals (frog, cow, rabbit, snail and lion). The non-

verbal condition required participants to discriminate between a simplified Chinese 

symbol and four other simplified Chinese symbols (see Figure 5.4). Both the symbols 

and the nameable pictures could appear in any of four colours (red, yellow, blue or 

green). All stimuli were 15 mm square. 
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Figure 5.4 Example matrices for the non-verbal and verbal conditions. 

 

All matrices displayed stimuli on invisible 12 x 12 grids divided into 4 easily 

identifiable quadrants. Three distractor stimuli appeared in each quadrant, such that 12 

distractors and the target appeared in every matrix. For each participant the programme 

randomly selected 8 different locations to contain the target. Half of them were used 

in the verbal and half in the non-verbal condition. These target locations were sampled 

from a set of five locations within each quadrant that were all approximately the same 

distance from the centre of the screen, such that one location was selected in each 

quadrant per condition. Distractors never appeared in the locations reserved for targets. 

Each target was used for a different predictable matrix, resulting in 4 different 

predictable matrices for each condition. Target locations were selected in the same 

way for unpredictable matrices, but the arrangement of the distractors in each 

unpredictable matrix was always random and never repeated, so that the positions of 

distractors in these matrices could not aid visual search. 

The experiment was divided into 2 phases. A learning phase of 80 trials included 

only predictable matrices, with each predictable matrix appearing once in each of 10 

blocks. A testing phase of 128 trials subsequently compared speed of response on the 

“learned” predictable matrices with an equal number of random unrepeated matrices 

where the position of the target was not predictable. There were 8 blocks in the testing 

phase, with each block including the 8 predictable matrices plus 8 unpredictable 
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matrices in random order. Each trial began with a 500 ms fixation cross in the centre 

of the screen and children were instructed to focus on the cross each time it appeared. 

There was a 500 ms inter-stimulus interval between trials. To keep accuracy 

throughout the task high all errors were flagged. A single break was scheduled after 

80 trials.  The task took most children between 15 and 20 minutes to complete. 

5.3 Results 

One hundred and one children were tested. Results were available for 86 and 88 

children respectively for the non-verbal and verbal ISR and Hebb task, due to 

computer malfunction. The means, standard deviations and reliabilities for all tasks 

are shown in Table 5.1. 

Table 5.1  Means, standard deviations, reliabilites and sample sizes for the attainment and 
memory measures. 

 N Mean  SD Reliability 

Age in months 101 98.31  3.84 - 

Gender (f/m) 101 63/37 - - 

Handedness (right) 90 - - - 

TROG-2 (Blocks passed) 100 15.25  3.24 .88s 

TROG-2 (Total correct) 100 71.57  6.53 .88 s 

Literacy composite 101 .0006 .88  

     WRAT-3 100 12.11 2.84 .96 s 

     PWM 100 37.76 10.89  

     TOWRE-2 Words 101 58.83 13.50 .90r 

     TOWRE-2 Nonwords 101 33.93 12.67 .90 r 

Arithmetic composite 100 52.53 23.77 .97 r 

     Addition 100 18.08 7.44 .92 r 

     Addition plus carry 100 8.42 4.7 .89 r 

     Subtraction 100 11.41 5.01 .88 r 

     Subtraction plus carry 100 5.2  3.73 .85 r 

     Multiplication 100 9.52 6.4 .93 r 

Dot comparison 100 13.14 5.53 .72 r 
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Digit comparison 100 21.3  5.73 .80 r 

Dot count 100 11.03 2.78 .79 r 

WASI 100 17.93 5 .94 s 

Dot Locations (DL)    .76 s /.57 r 

     Learning 101 21.02 3.44  

     Delay 100 5.29 1.17  

     Consolidation 80 4.91 1.23  

Word Lists (WL)    .84 s 

     Learning 98 32.81 5.64  

     Delay 97 6.18 1.61  

     Consolidation 76 5.72 1.73  

ISR (NV) 84 1.66 .397 .49 s 

ISR (V) 87 3.67 .78 .68 s /.71 r 

NV-SRT1 RT difference 98 58.57 48.49 .75 s /.21 r 

NV-SRT2 RT difference 90 89.4 48.47 .49 s /.21 r 

V-SRT1 RT difference 92 40.32 85.58 .17 s /-.001 r 

V-SRT2  RT difference 86 39.51 87.59 .27 s /-.001 r 

NV-SRT1 Error difference* 98 2.23 2.73 .18 r 

NV-SRT2 Error difference* 90 4.49 4.62 .18 r 

V-SRT1 Error difference* 92 .69 2.27 -.08 r 

V-SRT2  Error difference* 86 1.03 2.58 -.08 r 

Hebb NV 86 .062 .205 .5 s 

Hebb V 88 .088 .233 .58 s /.29 r 

Contextual Cueing NV 100 .313 .415 -.03 s 

Contextual Cueing V 100 .248 .483 -.05 s 

s = split-half reliability / r = test-retest reliability; *Proportional difference in error frequency 

by sequence 

 

Attainment means were in line with test norms, where applicable.  However, 

performance on the 15 words from the WRAT spelling test approached ceiling, with 

approximately 20% of the sample getting the maximum score. TROG-2 performance 

was also high with 75% of the sample scoring over 70 out of 80 items correct.  

Performance on the non-verbal Dot Locations task was also high. However, there was 
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sufficient variability on all measures to allow correlations to be meaningfully 

examined. 

5.3.1 Learning on the implicit tasks  

There was clear evidence of implicit learning on all tasks (see figure 4).  Mixed 

effects models, treating items and subjects as crossed random effects (Rabe-Hesketh 

& Skrondal, 2012) in Stata (13.0) were chosen to analyse response times (RTs) and 

recall scores for all implicit tasks in order to take account of item and participant 

variability. A secondary analysis of error frequencies on the SRT tasks was also 

undertaken. 

5.3.1.1 SRT tasks  

Response Times (RTs). For both attempts at both tasks all inaccurate trials and 

trials over 5,000 ms were removed. Given the unequal number of trials for sequence 

A and B, a moving criterion, based on sample size (Miller, 1991 as cited in Selst & 

Jolicoeur, 1994; Cousineau & Chartier, 2010) was used to remove remaining outlying 

RT observations. This manipulated the parameter applied to the cutoff criterion for 

each Block by sequence, dependent on sample size, in order to mimic the bias of 

applying a criterion of 2.5 SDs to a sample size of 100. Probable sequence A samples 

were allocated the default cutoff criterion of 2.5 SDs, as they were approaching a 

sample size of 100 and were, therefore, considered relatively immune to sample bias. 

Mean RTs and standard deviations for all SRT tasks are in Table 5.2. RTs for the 

improbable sequence were slower than for the probable sequence for all SRT attempts 

in every block. However, whereas RTs decreased over time on NV-SRT, they 

increased over time on the verbal analogue, flagging up possible issues with attention 

and motivation on this task. 
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Table 5.2  RT means and standard deviations for all SRT tasks by block 

 

RT means (SDs) for NV-SRT and V-SRT at time 1 & 2 

Block NV-SRT1 NV-SRT2 V-SRT1 V-SRT2 

 Prob Improb Prob Improb Prob Improb Prob Improb 

 1 603.97 

(262.24) 

638.81 

(268.42) 

482.28 

(191.65) 

540.61 

(169.67) 

962.46 

(439.87) 

985.68 

(463.14) 

859.87 

(408.27) 

892.25 

(399.51) 

2 579.74 

(262.44) 

629.19 

(287.76) 

467.38 

(189.41) 

548.40 

(205.95) 

994.19 

(484.06) 

1052.55 

(536.54) 

895.68 

(453.37) 

925.35 

(450.87) 

3 573.73 

(274.74) 

623.66 

(283.19) 

465.55 

(190.35) 

558.44 

(190.35) 

1018.34 

(509.32) 

1049.74 

(482.26) 

917.37 

(481.08) 

986.91 

(567.49) 

4 547.07 

(258.72) 

632.39 

(276.71) 

452.91 

(188.28) 

562.53 

(201.97) 

1013.31 

(527.82) 

1043.0 

(591.086) 

923.4 

(522.74) 

981.69 

(532.21) 

5 541.62 

(252.78) 

613.39 

(233.29) 

445.86 

(207.39) 

580.91 

(302.38) 

998.18 

(498.02) 

1064.49 

(585.77) 

951.54 

(542.17) 

984.09 

(508.23) 

 

For all SRT tasks sequence type (Probable or Improbable), block (1 - 5) and the 

interaction between them were entered as fixed effects and items and participants as 

crossed random effects. For both non-verbal SRT attempts, RTs for the probable 

sequence were significantly faster than for the improbable sequence (NV-SRT1: 

unstandardised regression coefficient = 34.766, z = 4.41, p < .001, 95% CI [19.31, 

30.22]; NV-SRT2: unstandardised regression coefficient = 54.072, z = 8.69, p < 0.001, 

95% CI [41.88, 66.27]). On the first task attempt the interaction between block and 

sequence was significant for the last 2 blocks of the task, providing evidence of 

implicit learning (Block 4 unstandardised regression coefficient = 48.923, z = 4.34, p 

< .001, 95% CI [26.84, 71.01]; Block 5 unstandardised regression coefficient = 34.751, 

z = 3.06, p = .002, 95% CI [12.52, 56.98]). By the second attempt, this interaction was 

significant in every block (Block 2 unstandardised regression coefficient = 22.582, z 

= 2.54, p = .011, 95% CI [5.15, 40.01]; Block 3 unstandardised regression coefficient 

= 33.026, z = 3.69, p < .001, 95% CI [15.50, 50.55]; Block 4 unstandardised regression 

coefficient = 48.910, z = 5.45, p < .001, 95% CI [31.32, 66.49]; Block 5 unstandardised 

regression coefficient = 69.673, z = 7.61, p < .001, 95% CI [51.73, 87.61]). For the 



189 

 

verbal SRT task, probable transitions were only significantly faster than improbable 

transitions on the second attempt (unstandardised regression coefficient = 33.02, z = 

20, p < 0.046, 95% CI [.61, 65.43]). The interaction between sequence and block was 

not significant at any point in either verbal task. See Figure 5.5 for performance on all 

tasks. 

 

 

Figure 5.5 RTs per sequence and block for all SRT tasks. Error bars are 95% confidence intervals. 

 

Error frequencies. Error frequencies on probabilistic SRT tasks are considered to 

be a meaningful index of how much participants are anticipating the sequence 

(Schwaneveldt & Gomez, 1998). This is in contrast to error rates on deterministic SRT 

tasks, which are generally low and covary with overall RTs. On probabilistic SRT 

tasks implicit learning can be inferred from more frequent errors on the improbable 

compared to the probable sequence. Similarly, the type of error on the improbable 
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sequence can also reflect implicit learning, with more errors that anticipate the 

probable sequence than random errors indicative of implicit learning. Two analyses 

were conducted to assess implicit learning from the pattern of errors on all four serial 

reaction time tasks. Means, standard deviations and reliabilities for relevant error 

frequencies by sequence and and error type, as well as for the derived difference score 

measures are shown in Table 5.3. 
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Table 5.3  Means, standard deviations and test-retest reliabilities for error frequencies for component measures and difference scores. 

  Non-verbal SRT tasks  Verbal SRT tasks 

  NV-SRT1 NV-SRT2 Reliability (r)  V-SRT1 V-SRT2 Reliability (r) 

Sequence errors analysis        

 Probable Errors* 27.44 (20.97) 24.07 (23.30) .64  43.26 (32.69) 45.92 (44.06) .81 

 Improbable Errors 5.28 (4.26) 7.17 (6.53) .49  5.49 (3.80) 6.13 (5.63) .89 

 Proportional sequence errors difference 

score1 
2.23 (2.73) 4.49 (4.62) .18 

 .69 (2.27) 1.03 (2.58) -.08 

Error type analysis        

 Anticipatory errors on improbable sequence 4.12 (3.53) 6.27 (5.84) .49  3.97 (2.93) 4.66 (4.52) .41 

 Random errors on improbable sequence* 1.15 (1.36) 0.90 (1.10) .29  1.53 (1.42) 1.47 (1.73) .30 

 Proportional error type difference score 3.55 (3.32) 5.82 (5.55) .47  3.20 (2.68) 3.92 (4.12) .34 

 *Before proportional adjustment; 1this measure is included main table of study means. 
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The first set of analyses investigated whether participants made proportionally 

more errors on the improbable compared to the probable sequence, with an increasing 

divergence over the course of the task, as participants progressively anticipated 

probable locations on improbable sequence trials. In order to compare the frequency 

of errors, the measure for probable errors was adjusted proportionally, by dividing by 

9, as the ratio for probable to improbable trials was 9:1.  

For these analyses, sequence, block and the interaction between them were entered 

into mixed effects models as fixed effects and items and participants as crossed random 

effects. For the non-verbal tasks Figure 5.6 shows that proportionally there are more 

errors on the improbable sequence than on the probable sequence (NV-SRT1: 

unstandardized regression coefficient = .349, z = 20.08, p < .001, 95% CI [.32, .38]; 

NV-SRT2: unstandardized regression coefficient = .462, z = 25.98, p < .001, 95% CI 

[.43, .50]). On both attempts there was an interaction such that errors increased at a 

greater rate on the improbable sequence than on the probable sequence over the course 

of the task (NV-SRT1: unstandardized regression coefficient = .383, z = 15.58, p < 

.001, 95% CI [.34, .43]; NV-SRT2: unstandardized regression coefficient = 1.017, z = 

40.47, p < .001, 95% CI [.97, 1.07]). These results are consistent with implicit learning, 

which is particularly evident on the second attempt on the task. 

Equivalent analyses on the verbal analogue tasks did not yield such clear results 

(also see Figure 5.6), although the data was still suggestive of implicit learning. There 

were proportionally more errors on the improbable than on the probable sequence (V-

SRT1: unstandardized regression coefficient = .220, z = 12.29, p < .001, 95% CI [.18, 

.25]; V-SRT2: unstandardized regression coefficient = .087, z = 4.37, p < .001, 95% 

CI [.05, .13]). On both attempts there was an interaction. However, the difference 

between the sequences decreased on the first attempt at the task, which cannot be 

related to implicit learning, only increasing on the second attempt at the task 

(Interaction Block 1 – 5 V-SRT1: unstandardized regression coefficient = -.066, z = -

2.63, p =.009, 95% CI [-.12, -.02]; V-SRT2: unstandardized regression coefficient = 

.185, z = 6.59, p < .001, 95% CI [.13, .24]).  
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Figure 5.6 Error frequencies for the non-verbal and verbal SRT tasks per sequence. Error bars are 
95% confidence intervals 

 

The second set of analyses explored the extent to which the errors that participants 

made on the improbable sequence were anticipatory of the probable sequence. More 

anticipatory errors compared to random ones, as well as an increase in the difference 

between these error types over the course of the task would reflect implicit learning on 

the task.  

Once again, error frequencies were proportionalized, in order to be directly 

comparable. This was because on each location only one button was associated with 

an anticipatory response, while two buttons were associated with random responses. 

The random measure was, therefore, divided by two (NB: since one of the two possible 

random responses inevitably necessitated a repeated button press, it should be noted 
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that the pattern of significance detailed below was equivalent for analyses where the 

random frequency was not proportionately adjusted). 

For these analyses, error type (anticipatory & random), block and the interaction 

between them were entered into mixed effects models as fixed effects and items and 

participants as crossed random effects (see Figure 5.7). The non-verbal tasks showed 

that the frequency of anticipatory and random errors were equivalent on both task 

attempts (NV-SRT1: unstandardized regression coefficient = -.172, z = -1.71, p = .08, 

95% CI [-.37, .03]; NV-SRT2: unstandardized regression coefficient = -.348, z = -.180, 

p = .07, 95% CI [-.73, .03]). None of the interactions were significant, such that 

anticipatory and random errors did not increase at different rates across the task.  

There were proportionally more anticipatory than random errors on the improbable 

sequence on the first attempt on the verbal SRT task (V-SRT1: unstandardized 

regression coefficient = -.195, z = -3.98, p < .001, 95% CI [-.29, -.10], but this effect 

was clearly driven by the large difference on the first epoch and the frequencies of the 

two types of error were equivalent on the second attempt. Random and anticipatory 

errors did not behave in a significantly different manner from each other across the 

blocks of the task.  
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Figure 5.7 Error frequencies for anticipatory and random errors on the improbable sequence of the 
non-verbal and verbal SRT tasks. Error bars are 95% confidence intervals. 

 

To summarize, the results of the error analyses provide evidence of implicit 

learning on the SRT tasks. The sequence error measures in particular echoed the 

pattern of learning seen in the RT measures. Just as RTs on the improbable trials 

slowed down over the course of the task, as participants anticipated probable sequence 

locations, the frequency of errors on the improbable sequence also increased. 

However, as with the RT analyses, results were less conclusive for the verbal tasks. 

5.3.1.2 Hebb tasks 

For both Hebb tasks, sequence type (repeating or non-repeating), block (1 – 6) and 

the interaction between them were entered as fixed effects and items and participants 

as crossed random effects. Proportional recall scores by sequence and block for the 

non-verbal and verbal tasks are graphed in Figure 5.8. The random score for each block 
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was the random trial mean. Mean recall for the repeating Hebb sequence was greater 

than for random sequences in both the non-verbal and verbal versions on all blocks. 

The non-verbal Hebb task did not show significant evidence of implicit learning, 

suggesting the task demands with unnameable stimuli were too high. However, on the 

verbal task repeated Hebb sequences were recalled significantly better than random 

sequences (unstandardised regression coefficient = .115, z = 3.21, p = 0.001, 95% CI 

[.045, .18]). The interactions were not significant, such that recall for the two types of 

sequence did not develop at different rates across the task.   

 

Figure 5.8 Proportional recall scores per sequence and block for Hebb tasks. Error bars are 95% 
confidence intervals. 

 

5.3.1.3 Contextual cueing task  

Verbal and non-verbal conditions of the contextual cueing task were analysed 

separately. Matrix type (Predictable and Unpredictable) and epoch (6 – 9) and the 

interaction between them were entered as fixed effects and items and participants as 

crossed random effects. Only RTs in the testing phase were analysed (128 trials, 

divided into 4 epochs). All inaccurate responses, responses over 10,000 ms and RTs 

three test phase standard deviations above or below each participant’s epoch mean 

were excluded from analysis, removing 647 trials from analysis across all participants. 

RTs were positively skewed for both conditions, so analysis was conducted on log 

transformed RTs. The verbal and non-verbal conditions of the task were analysed 

separately. Children reported that the verbal condition was more difficult and this was 
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reflected in slower RTs for the verbal compared to the non-verbal condition. Figure 

5.9 graphs RTs across both the learning and testing phase of the experiment for both 

conditions by matrix type and epoch. Targets were identified significantly faster in 

predictable matrices than in random ones for both non-verbal and verbal conditions, 

suggestive of implicit learning (Non-verbal: unstandardized regression coefficient = -

.072, z = -3.69, p < .001, 95% CI [-.110, -.034]; Verbal: unstandardized regression 

coefficient = -.0067, z = -3.00, p = .003, 95% CI [-.11, -.023]). No other effects were 

significant. 

 

Figure 5.9 RTs for contextual cueing tasks by matrix type (log transformed). Error bars are 95% 
confidence intervals. 

 

5.3.2 Task measures and reliabilities   

Reliabilities for all tasks are shown in Table 5.1. The scores for all declarative tasks 

were based on the number of items correct. Reliabilities for the declarative tasks were 

generally good. Reliability estimates for CMS Dot Locations and Word Lists subtests 

for 7 year olds, as supplied by the CMS manual, depended on the length of delay. The 

correlation between Delay and Consolidation measures can be regarded as lower 

bound estimate of the test-retest reliabilities in the current sample. A split-half 

reliability analysis of 40 of the children in the study (10 children from each class) 

showed verbal ISR to be more reliable than non-verbal ISR. Children reported that 

they found the non-verbal ISR difficult and were typically timed out after only 2 or 3 
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levels compared to 5 or 6 levels for the verbal task and this may be behind its lower 

reliability. Task difficulty was also reflected in the higher mean span score for the 

verbal rather than non-verbal ISR. There was no way to establish test-retest reliability 

for the ISR tasks in the main study, so a separate sample of 27 Year 3 children were 

tested on the verbal ISR/Hebb task on two occasions 3 days apart, yielding a test-retest 

reliability for the verbal ISR of (r = .71). 

Implicit learning tasks required the calculation of derived measures for each 

participant. As a result of the additive nature of measurement error, the difference 

between two cognitive test scores is less reliable than either of the scores it is derived 

from (Lord, 1958; Overall & Woodward 1975). This is particularly the case when their 

parent scores are unreliable and / or when they are positively correlated (Tisak & 

Smith, 1994; Johns, 1981; Edwards, 1994). Some researchers have rejected difference 

scores entirely in favour of regression-based residualised measures (Cronbach & 

Furby, 1970); others have questioned these too (Griffin, Murray, & Gonzalez, 1999); 

and yet others have accepted difference scores, as long as they are systematically 

approached and individual circumstances considered (Rogosa, Brandt & Zimowski, 

1982; Rogosa & Willet, 1983). It was, therefore, important in the current study to 

consider the merits of different scoring methods for implicit learning on a case-by-

case basis.  

5.3.2.1 Serial reaction time RT measures 

The reliability of both difference scores and regression-based residual RT 

measures were investigated for the serial reaction time tasks. Difference scores were 

calculated by subtracting the task mean for probable transitions from the task mean for 

improbable transitions to give a measure that took account of the ratio between 

probable and improbable trials. Residual measures reflected the degree of deviation 

from the regression slope for probable transitions that occurred on improbable 

transitions. For the serial reaction time tasks, the proportional mean difference in RT 

between sequence types across all trials was preferred, as there was relatively little 

evidence of an interaction between the sequences on the majority of the serial reaction 
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time tasks. Split-half reliability was then calculated by sequentially numbering the 

trials for each sequence and calculating a proportional difference score measure for 

odd and evenly numbered trials separately. Test-retest reliability was established by 

correlating children’s difference scores on the first and second time of taking the task.  

Although the test-retest reliability for RTs by each individual sequence was good (see 

table showing correlations for component scores for all implicit learning tasks in 

Appendix B), the reliability of the difference scores was poor. It should be noted that 

the residual measures demonstrated similar levels of unreliability and an equally 

nonsignificant relationship with language-related attainment.   

Additionally, as test-retest reliability for the difference scores was poor, an 

alternative, coarser-grained, binary measure of difference was also considered. This 

method was first recommended by Lord (1958) and has been used for serial reaction 

time tasks with reported success in studies of individual differences in implicit learning 

(Kaufman et al., 2010; Pretz, Totz, & Kaufman, 2010). The method first calculated the 

effect size for the difference between the probable and improbable RT means for the 

sample (Cohen’s d for NV-SRT1 = .22; NV-SRT2 = .48; V-SRT1 = .08; V-SRT2 = 

.09) and allocated a point for each block a participant’s learning on the probable trials 

was as high or higher than this sample effect size. A maximum score of 5 was 

achievable, which would indicate implicit learning on every block in the task. Test-

retest reliability was once more calculated, this time using the binary scores. Although 

reliability had improved, it was still unacceptably low (NV-SRT r = .28; V-SRT r = 

.20). Nevertheless, relationships with both language-related and declarative measures 

were examined. There were no relationships with Language (TROG-2). The non-

verbal NV-SRT2 task correlated with Literacy (r = .28), Arithmetic (r = .26), digit 

comparison (r = .24) and non-verbal long-term memory (DL Consolidation r = .33). 

The verbal V-SRT1 task correlated with the verbal long-term memory measure (WL 

Consolidation r = .28). However, all these correlations were low and none of the 

relationships remained significant once a Bonferroni adjustment has been made. It is 

interesting to note, however, that the strongest relationship was between the second 

attempt at the serial reaction time task, which would have taken account of any 
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consolidation of implicit learning from the first attempt, and a measure of declarative 

non-verbal memory that also related to long-term memory. 

5.3.2.2 SRT error measures 

Although the test-retest reliability for the frequency of errors for each individual 

sequence was generally good, the reliability for the derived measures that represented 

the proportional difference in the total amount of errors on the probable compared to 

the improbable sequence was very poor (test retest reliability: NV-SRT r = .16; V-SRT 

r = -.08). The test retest reliability for the proportional difference between anticipatory 

and random types of error on the improbable sequence, was a little better (test-retest 

reliability: NV-SRT r = .42; VSRT r = .34). However, floor effects accounted for the 

better reliability of this measure. To take the NV-SRT tasks as an example, 

approximately 37 participants on NV-SRT1 and 40 participants on NV-SRT2 made 

no random errors on the improbable sequence at all and derived measures for these 

participants were consequently simply raw score measures of anticipatory errors on 

the sequence. Similarly, eight participants made no anticipatory errors on the 

improbable sequence and their derived measures were a raw score measure of random 

errors. As a result, the derived procedural learning scores on the NV-SRT tasks were 

effectively not difference scores in approximately half of the participants. This pattern 

of low or no errors of one or other type on the improbable sequence was similar in the 

V-SRT tasks too. Importantly, the error measures showed only low and non-significant 

correlations with the derived RT measures, as well as no significant correlation with 

any implicit, declarative or attainment variables in the study at all. As a result of the 

extremely low reliability of the sequence errors measure and the low frequencies on 

the error type measure, they were not considered further.  

5.3.2.3 Hebb serial order implicit learning measures 

Recall scores were divided by list length, in order to control for variability in 

participant recall ability. Although the gradient of improvement on repeated trials 

compared to random trials has frequently been used to give an index of Hebb sequence 

learning (Guérard, Saint-Aubin, Boucher, & Tremblay, 2011; Hitch, Flude, & Burgess, 
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2009; Hsu & Bishop, 2014; Page, Cumming, Norris, McNeil, & Hitch, 2013; Szmalec 

et al., 2011), this is an effective way of capturing implicit learning only if participants 

show stable recall on random trials and improved recall for the repeated sequence over 

time (Hebb, 1961).  This is usually the case with adult participants, but children have 

been shown to exhibit a different pattern of Hebb learning to adults (Archibald & 

Joannise, 2008; Mosse & Jarrold, 2008), with inconsistent recall on random trials, 

combined with more consistent, rather than improved, recall of the repeated sequence.  

This pattern was evident in the current study and a more suitable difference score 

measure was selected, which summed the difference in proportional recall across 

blocks 4 to 6, by which time any Hebb learning should have been established.  

Split-half reliability could only be calculated for the random trials, correlating the 

first and second random trial per block, as the Hebb trials were not independent. The 

random trials form the supposedly stable baseline against which improvement on the 

Hebb sequence is measured (Hebb, 1961). Split half reliability was moderate for both 

tasks (Hebb NV r = .5; Hebb V r = .58), indicating considerable variability in recall of 

random sequences. Children in this study took each Hebb task once, so test-retest 

reliability was established in a separate sample of 27 children. 

5.3.2.4 Test-retest reliability of verbal Hebb serial order learning task 

In order to examine the test-retest reliability of the Hebb learning tasks a separate 

sample of twenty seven children (13 girls and 14 boys) from two Year 3 classes were 

tested on the verbal ISR and Hebb learning task on two occasions 3 days apart. Mean 

age was 7 years and 7 months (SD = 3.97 months). The data from one child was not 

included in the analysis, as he was unable to maintain attention during the retest 

session. As stimuli selection was randomised, children were presented with different 

Hebb, as well as random, sequences on each occasion. Administration of the tasks was 

identical on both occasions. 

Both test and retest verbal Hebb tasks showed evidence of significant implicit 

learning. Means and standard deviations are in Table 5.4. Mixed effects models with 

block and sequence as fixed effects and items and participants as crossed random 
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effects found recall for the Hebb trials to be significantly better than recall for random 

trials both times (Time 1: unstandardized regression coefficient = .143, z = 2.20, p = 

.028, 95% CIs [.016, .271]; Time 2: unstandardized regression coefficient = .225, z = 

3.48, p = .001, 95% CIs [.098, .352]).  The implicit learning score for each child’s test 

and retest attempt was the proportional difference across the last 3 blocks of the task.  

However, the test retest reliability of this score was poor (r = .29),  suggesting that 

implicit learning as shown on Hebb learning tasks is not a stable characteristic in 

children. By comparison, test retest reliability for the preliminary ISR portion of the 

task was estimated at r = .71 (ISR mean recall score at time 1 was 3.79 (SD = .68) and 

time 2 it was 3.98 (SD = .67)).  

Table 5.4 Means and standard deviations for Hebb and random trials per block and implicit 
learning difference score. 

  Time 1  Time 2 

Block  Hebb  Random  Hebb  Random 

  Mean SD  Mean SD  Mean SD  Mean SD 

Block 1  - -  .66 .31  - -  .58 .30 

Block 2  .67 .31  .64 .28  .57 .33  .57 .31 

Block 3  .69 .33  .63 .31  .71 .32  .61 .29 

Block 4  .69 .30  .61 .33  .61 .33  .60 .32 

Block 5  .82 .24  .61 .30  .71 .25  .58 .30 

Block 6  .75 .30  .60 .28  .73 .29  .51 .34 

Difference Score  .75 .22  .61 .17  .69 .22  .56 .17 

 

5.3.2.5 Contextual Cueing implicit learning measures 

 

RT variability was controlled in the same way as in the serial reaction time tasks. 

A single overall facilitation measure was created for each condition (NV & V) that 

was the mean difference between predictable and unpredictable matrices across the 

entire testing phase.  Similar difference scores have been used in published research 

(Dixon, Zelazo, & De Rosa, 2010; Brown, Aczel, Jiménez, Kaufman, & Grant, 2010).  

A measure that attempted to remove noise from the data by dividing each participant’s 
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mean RT by their testing phase standard deviation, was also investigated. This method 

of reducing participant level variability is frequently used in analysis of implicit 

association tasks (Greenwald, Nosek, & Banaji, 2013), although it is not commonly 

used within the contextual cueing paradigm. However, it did not improve reliability 

and the simpler difference score was, therefore, preferred.  

Split-half reliability for raw RTs (on accurate odd and evenly generated trials in 

the second half of the learning phase) was good for both conditions. However, split-

half reliability for the testing phase difference scores, estimated by correlating odd and 

even positioned difference scores for the 4 epochs of the testing phase for each 

condition, was negligible (non-verbal r = -.03; verbal r = -.05). This suggested that the 

contextual cueing difference scores did not reliably capture the degree of implicit 

learning shown by participants on this task.  

5.3.3 Correlations  

Correlations between all literacy measures were high (WRAT spelling, PWM 

reading test and TOWRE word and non-word reading r’s from .62 to .81).  Z-scores 

for these measures were summed to create a composite literacy measure. Correlations 

between all measures are shown in Table 5.5. Measures of literacy, language, counting 

and NVIQ showed moderate to strong correlations with each other as expected.  

Measures of declarative memory showed moderate correlations with literacy, and 

somewhat lower correlations with language (TROG-2) and arithmetic.  The declarative 

memory tasks correlated with each other broadly as expected, with the dot location 

memory measures correlating strongly with each other, as did the word list learning 

measures.  Measures of immediate serial recall (both verbal and nonverbal) showed 

moderate correlations with most of the other memory tasks, and with each other.  

Finally, the measures of procedural memory correlated weakly and non-significantly 

with measures of attainment (language, literacy, and arithmetic) and poorly with each 

other, reflecting the poor reliability of these measures. 
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Table 5.5 Correlations between all attainment and memory measures. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

1. Age (months)                      

2. TROG-2 .14                     

3. Literacy composite .26** .49**                    

4. Arithmetic composite .15 .38** .50**                   

5. Non-verbal IQ .04 .36** .25* .12                  

6. DL Learning .11 .36** .18 .13 .34**                 

7. DL Delay .09 .32** .13 .17 .34** .77**                

8. DL Consolidation .04 .37** .21 .2 .38** .68** .62**               

9. WL Learning .23* .48** .26** .33** .20 .29** .22* .25*              

10. WL Delay .15 .30** .24* .25* -.00 .10 .08 .16 .60**             

11. WL Consolidation .22 .25* .19 .24* .14 .17 .17 .17 .59** .79**            

12. ISR (NV) -.18 .33* .15 .14 .46** .40** .28** .40** .23* .05 -.03           

13. ISR (V) .18 .52* .28* .31** .33** .33** .24* .40** .49** .35** .27* .36**          

14. Contextual Cueing NV .12 .11 .10 .20 -.02 -.07 -.11 -.02 .06 .02 .04 -.02 .02         

15. Contextual Cueing V .09 -.02 .05 .11 -.01 .06 .08 -.02 -.04 .02 .22 .11 -.07 -.10        

16. NV-SRT1 RT -.03 -.03 -.20* -.06 -.05 -.07 -.09 -.18 .10 -.03 -.04 -.25* .08 -.03 -.12       

17. NV-SRT2 RT .03 .03 .16 .01 .13 .07 .10 -.01 .15 .19 .26* -.01 -.01 -.18 .15 .21      

18. V-SRT1 RT -.01 .01 .06 -.02 .15 -.09 -.05 -.17 .14 .28** .38** -.15 -.01 .06 .12 -.08 .24*     

19. V-SRT2 RT .04 .01 -.04 -.03 .09 .06 .11 .10 -.10 -.12 -.09 .02 .07 -.10 -.12 .11 .20 -.00    

20. Hebb NV .06 .05 -.01 .12 .03 .07 .03 -.04 .14 .04 .10 .10 -.04 .12 -.05 -.02 .03 -.12 -.14   

21. Hebb V -.08 .13 .04 .10 .14 .07 .10 .14 .09 -.03 -.02 .23* .14 -.08 .01 .09 .03 .14 -.00 -.15  

*p < .05; **p  < .01 
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5.3.4 Effects of children’s language background   

It was important to check that the pattern of results obtained was not influenced by 

differences between monolingual children and those with English as an additional 

language (EAL). As shown in Table 5.6 there were no statistically significant 

differences in language attainment between the EAL and monolingual children after 

Bonferroni corrections for multiple comparisons were made; and the EAL children 

actually performed slightly but non-significantly better than the monolingual children 

on tests of word reading. Effect sizes for the TROG-2 show that the level of 

grammatical proficiency demonstrated by the EAL children was lower than their 

English mother-tongue counterparts. Twenty of the monolingual children scored over 

75 out of 80 on the TROG-2 task, compared to eleven of EAL children, who showed 

a greater range of scores.   

Table 5.6 Language attainment means and standard deviations by monolingual and EAL subgroups 
and t-test comparisons. 

Attainment test Mean (SD) t(df = 98) p Cohen’s d 

 Monolingual 

(n = 49) 

EAL 

(n = 52) 

   

TROG-2 (Blocks passed) 15.85 (3.21) 14.69 (3.18) 1.81 .07 .36 

Trog-2 (Total correct) 73.02 (6.18) 70.23 (6.62) 2.17 .03 .43 

WRAT-3 12.12 (3.21) 12.10 (2.47) .05 .96 .01 

PWM 36.77 (11.73) 38.67 (10.07) -.87 .38 -.17 

TOWRE-2 Words 57.65 (16.45) 60.04 (9.85) -.81 .38 -.18 

 

Crucially, correlations that included only the monolingual children showed the 

same pattern as those for the overall sample (see Table 5.7). The relationship between 

outcome measures and predictors showed no evidence of meaningful group 

differences between the EAL fluent English speakers and monolingual (EMT) 

children, other than the monolingual group exhibited even stronger relationships 

between verbal declarative memory and language (TROG-2) than the sample as a 

whole (verbal free recall score: monolingual r = .52; overall r = .48; verbal ISR 



206 

 

learning score: monolingual r = .71; overall r = .52), while the correlations with non-

verbal declarative free recall scores ceased to be significant. The implicit learning 

measures for the monolingual group still failed to correlate significantly with language 

or with each other. This is consistent with the study’s findings that it is specifically 

verbal declarative memory that relates to language, demonstrating that the pattern of 

results in the main study is not an artefact of having EAL fluent English speakers in 

the sample.   
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Table 5.7 Correlations between language (TROG-2) and other measures by subgroup and overall 
sample. 

Measures TROG-2 

 Complete Sample 

(n = 101) 

EMT 

(n = 49) 

EAL 

(n = 52) 

Literacy composite .49** .58** .46 

Arithmetic composite .38** .38 .44 

WASI .36** .53* .26 

Dot Locations (DL)    

     Learning .36** .33 .44 

     Delay .32** .23 .39 

     Consolidation .37** .41 .39 

Word Lists (WL)    

     Learning .48** .52* .51* 

     Delay .30** .39 .24 

     Consolidation .25* .41 .13 

ISR (NV) .33* .41 .31 

ISR (V) .52* .71** .36 

NV-SRT1 RT difference -.03 -.29 .14 

NV-SRT2 RT difference .03 -.05 .12 

V-SRT1 RT difference .01 .04 -.06 

V-SRT2  RT difference .01 -.11 -05 

Hebb NV .05 -.12 .20 

Hebb V .13 -.13 .28 

Contextual Cueing NV .11 .21 .06 

Contextual Cueing V -.02 .12 -.07 

*p < .05; **p < .01; Bonferroni corrections applied; EMT = English mother tongue; EAL = 

English as an additional language 

 

5.3.5 Confirmatory Factor Analysis  

Given the low reliabilities of the measures of implicit learning, and the low 

correlations between these measures, they were not considered further.  A 

confirmatory factor analysis model for the eight declarative memory measures and 
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measures of attainment for the complete sample of children was estimated in Mplus 

7.4 (Muthén & Muthén, 1998-2016) with missing values being handled with Full 

Information Maximum Likelihood estimation. The model used is shown in Figure 5.10 

and provides an excellent fit to the data (χ2 (38) = 40.60, p = .356; RMSEA = .026 

[90% CI .000 -.076]; CFI = .99; TLI = .99). In this model the verbal and non-verbal 

declarative memory measures defined two separable factors which correlated 

moderately with each other (r = .29). The verbal factor correlated moderately with 

measures of attainment (language (TROG-2) r = .54; literacy r = .28; arithmetic r = 

.34). The non-verbal factor did not correlate significantly with literacy or arithmetic, 

but did correlate with language as measured by TROG-2 (r = .32).

 

Figure 5.10 Confirmatory factor analysis showing relationship of memory and attainment tasks to 
latent variables of verbal and non-verbal memory. WL-L = Word Lists learning score; WL-D = Word 
Lists delay score; WL-C = Word Lists consolidation score; DL-L = Dot Locations learning score; DL-D = 
Dot Locations delay score; DL-C = Dot Locations consolidation score: ISR(V) = verbal immediate serial 
recall; ISR(NV) = non-verbal immediate serial recall; Language = TROG-2 total score; Literacy = 
Literacy composite of WRAT spelling, TOWRE word and non-word reading and Picture Word 
Matching; Arithmetic  = composite of TOBANS addition, subtraction and multiplication subtests. 

 

5.3.6 Investigating attainment using an ability groups design 

The relationship between implicit memory and language in children has been most 

frequently investigated using extreme groups designs that enter performance on 



209 

 

different types of sequence in the serial reaction time task, matrices in contextual 

cueing or repeated and random sequences in Hebb learning directly into mixed 

ANOVAs or ANCOVAs, obviating the need to calculate difference scores first (e.g., 

Majerus et al., 2009; Archibald & Joanisse, 2013; Lum et al., 2010; Hedenius et al., 

2013; Stoodley, Harrison, & Stein, 2006; Jiménez-Fernández et al., 2011). While the 

use of a group design in this study was rejected on methodological grounds, mixed 

ANOVAs that allocated children to groups based on a median split of the language 

factor were nevertheless run for all tasks to exclude the possibility of a relationship 

between implicit memory and language existing when data was analysed in this 

fashion. This analysis was done simply to facilitate comparison with previous studies. 

The between subjects factor of language attainment was not significant for all but two 

of the implicit learning tasks (see Table 5.8). It was a significant factor for the non-

verbal contextual cueing condition and the non-verbal Hebb task, but only in so far as 

children scoring below the median for language ability were slower for both matrix 

types on the cueing task and recalled fewer stimuli for both repeated and random 

sequences on the Hebb task than children above the median. Neither of these 

differences related to implicit learning. Given the range of methodological problems 

with analyzing data in this fashion (MacCallum, Zhang, Preacher, & Rucker, 2002; 

Irwin & MacClelland, 2003), these results were not considered further. 

Table 5.8 Mixed ANOVA results for implicit tasks. 

Task F p 2

p  

NV-SRT1 F(1,96) = .48 .492  

NV-SRT2 F(1,87) = 1.11 .294  

V-SRT1 F(1,90) = .215 .644  

V-SRT2 F(1,84) = 1.33 .252  

Contextual Cueing NV F(1,98) = 8.28* .005 .078 

Contextual Cueing V F(1,98) = 2.89 .093  

Hebb NV F(1,84) = 5.00* .028 .056 

Hebb V F(1,86) = 1.98 .163  
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5.4 Discussion 

This study assessed the claims of the procedural deficit hypothesis that 

impairments in a procedural learning system are a causal risk factor for language 

learning deficits in children with developmental language disorder and dyslexia 

(Nicolson & Fawcett, 2007; Ullman & Pierpont, 2005). The study examined the 

relationship between both implicit and explicit memory skills and language-related 

attainment in a large sample of children aged 7 – 8, using verbal and non-verbal 

versions of all tasks. Results showed that verbal declarative memory skills related to 

language attainment, supporting much previous research in this area. The implicit 

memory tasks, on the other hand, did not correlate with language at all. Additionally, 

although aggregated mean response times for the implicit memory tasks showed 

considerable evidence of implicit learning, none of the implicit tasks proved to be 

reliable indicators at an individual level. This has clear implications for research 

seeking to establish a causal relationship between procedural learning and language. 

As documented in Chapters 3 and 4 many studies have reported deficits on a range 

of implicit learning measures in children with language disorder (Hedenius, 2013; Hsu 

& Bishop, 2014; Lum et al., 2010) or dyslexia (Vicari et al., 2005; Howard et al., 

2006). However, the findings from previous studies are distinctly mixed, with many 

null results (Gabriel et al., 2011; Lum & Bleses, 2012; Staels & Van den Broeck, 2015; 

Majerus et al., 2009). Methodologically, most studies in this area share a number of 

undesirable characteristics:  1.  The studies use extreme group designs.  2.  Sample 

sizes are small, giving low statistical power.  3.  Only a single measure, or a limited 

range of measures of learning and memory are used in any one study.  4.  The studies 

do not report reliability estimates for the measures of learning. 

Extreme group designs will tend to overestimate the extent of any true linear 

relationship between two variables in the population as a whole.  Decreased reliability, 

inflated effect size estimates, misclassification of participants into groups and 

problems related to regression to the mean for extreme scores are all potential issues 

for this design (Preacher et al., 2005; DeCoster, Iselin, & Gallucci, 2009). 
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Additionally, studies with low statistical power suffer from both type 1 and type 2 

errors to a far greater extent than high-powered studies (Button et al., 2013) and are 

likely to yield many false positive results as a result. They are also more likely to suffer 

from vibration effects, whereby the significance or not of the results depends as much 

on the methods of analysis used, as on any underlying true effects (Ioannidis, 2008). 

This is an important point given the variety of different methods that are recruited for 

screening, confound control and analysis across the range of procedural learning and 

language studies. 

The solution to these problems taken by the current study was to administer a wide 

range of measures of procedural and declarative learning and language and attainment 

to a large and representative sample of children. Clear evidence of learning was found 

in the procedural memory tasks, but such measures proved to have extremely low 

reliabilities, consistent with some previous evidence (Buchner & Wippich, 2000; 

Salthouse, McGuthry, & Hambrick, 1999; Reber et al., 1991. 

One potentially important determinant of the reliability of any task is the number 

of trials used (Nunnally & Bernstein, 1994). The length of implicit learning tasks used 

in this study was similar to the length of tasks used by many others in the field. Serial 

reaction time tasks have occasionally used over 1000 trials (Rüsseler et al., 2011; Kelly 

et al., 2002), but they have often been much shorter, with some including as few as 

around 300 trials (Lum & Bleses, 2012; Vicari et al., 2005; Stoodley, Harrison, & 

Stein, 2006; Menghini et al., 2006). The length of contextual cueing tasks varies across 

studies, but evidence of cueing in children has been shown in tasks containing as few 

as 80 trials in total (Dixon et al., 2010). The number of Hebb repetitions used here was 

the same as in Hsu and Bishop (2014). The reliability of the implicit learning tasks in 

this study is, therefore, likely to be broadly comparable to the reliabilities of measures 

used in previous studies in this area. Further research will investigate whether 

increases in the number of trials used in procedural learning tasks such as those used 

here will result in estimates of learning with adequate reliability.   
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In addition, although children over the age of six are able to cope with the demands 

of cognitive testing across multiple tasks, they are more prone to boredom and fatigue 

than adults (Luciana & Nelson, 2002), with resultant down-stream effects on the 

quality of data they produce. For example, it has been demonstrated that children can 

be inconsistent performers on tasks such as Hebb learning compared to adults (Mosse 

& Jarrold, 2008; Archibald & Joanisse, 2013), which may explain the unreliable results 

on this task in particular.  

Evidence from the current study seriously questions the viability of the procedural 

deficit hypothesis. It is clear, however, that in order to adequately test such a 

hypothesis more work will be required to develop measures of procedural learning 

with adequate reliabilities. If reliable measures can be developed, only then can the 

procedural learning hypothesis be adequately assessed. The mixed evidence to date for 

this hypothesis likely reflects the low statistical power (and unreliable measures) of 

studies in this area. 

In contrast to the findings for procedural learning, measures of declarative memory 

showed reasonable reliabilities and moderate correlations with measures of language 

skills and academic attainment. The correlation found here between the measure of 

verbal serial recall and measures of attainment are in line with many earlier findings.  

For example, Melby-Lervåg, Lyster, and Hulme (2012) reported a robust correlation 

between measures of immediate verbal memory span and reading ability (pooled effect 

size estimate (r = .34)). Similarly, verbal free recall performance is typically poor in 

children with dyslexia or developmental language disorder (Kramer, Knee, & Delis, 

2000; Baird, Dworzynski, Slonims, & Simonoff, 2010). Finally, the correlation 

between arithmetic performance and verbal declarative memory, as well as with both 

language and literacy measures, is consistent with research that language, in particular 

the manipulation of verbal codes, is integral to arithmetical fluency (Durand, Hulme, 

& Larkin, 2005; Simmons & Singleton, 2007).  

The above correlations may or may not reflect causal effects of declarative memory 

on the development of reading and language skills, since some have argued that 
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phonological processing deficits and verbal memory impairments in dyslexia are two 

expressions of the same underlying problem (Tijms, 2004) and that verbal short-term 

memory skills may be a by-product of the mechanisms that subserve language itself 

(Hulme & Snowling, 2009; Acheson, Hamidi, Binder, & Postle, 2011; Allen & Hulme, 

2006).  

The results of the current study also showed that non-verbal declarative memory 

shared a relationship with language attainment to a degree, as well as being moderately 

correlated with verbal declarative memory. Some previous research has found non-

verbal memory performance to relate to language impairments in dyslexia and 

developmental language disorder (Menghini et al., 2010; Bavin, Wilson, Maruff, & 

Sleeman, 2005), but others have found no link with language disorder (Vellutino, 

1979; Alloway & Archibald, 2008; Nation, Adams, Bowyer-Crane, & Snowling, 1999. 

However, it is possible that the non-verbal tasks were not entirely modality-pure, with 

children using verbal cues to aid recall. Equally, the relationship between non-verbal 

declarative memory skills and the language attainment measure of receptive grammar, 

in particular, may have been bolstered by shared domain-general memory demands of 

the tasks. The lack of a relationship between non-verbal declarative memory and the 

less memory-intensive literacy measures is consistent with this explanation.  

In summary, this study has shown that verbal declarative measures correlate with 

language attainment, yet in spite of considerable evidence of implicit learning on most 

implicit tasks, no relationship between implicit learning and language attainment was 

found. Crucially, the derived measures representing implicit learning displayed very 

low reliability. The development of implicit tasks with demonstrable reliability is 

needed, before any questions about the relationship between implicit procedural 

learning and language can be answered definitively.  
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Chapter 6 Study 2: Test-retest reliability of an extended serial 

reaction time task in adults 

6.1 Introduction 

The serial reaction time task administered to children in the study reported in 

Chapter 5 contained 500 trials, which is a fairly typical within the field. However, in 

spite of acceptable levels of internal consistency, this task proved to have low test-

retest reliability. Task length in cognitive testing has been found to be a determinant 

of reliability (Nunnally & Bernstein, 1994; Charter, 2003). For this reason a longer 

task was trialed in healthy adults to investigate whether increasing the length of the 

task would serve to improve its reliability. Measures of reading fluency were also 

taken, in order to examine whether any relationship with procedural learning on the 

serial reaction time task existed in adults. 

6.2 Method 

This was a correlational study assessing the test-retest reliability of a serial reaction 

time task with 1500 trials in a sample of healthy adults.  

Ethical clearance for the study was given by the UCL Language and Cognition 

Department’s ethics committee. An opportunity sample of forty six healthy adult 

participants were recruited to take part. Ages ranged from 18 to 61 (mean = 25 years 

and 4 months; SD = 10 years and 4 months). Thirty two were female and fourteen were 

male. Forty four of the participants were right handed. Sixteen spoke English as an 

additional language, but only five of these rated themselves as not fluent in English.  

6.2.1.1 Tasks and testing procedures 

Two extended probabilistic SRT tasks were developed with an identical 

probabilistic sequence structure to the SRT tasks in the first study reported in Chapter 

5. The length of the tasks was increased from 500 trials to 1,500 trials. The first task 

used the sequences from NV-SRT, taken from Shanks et al. (2003). The second task 

used the sequences from the verbal analogue task in the first study, taken from 
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Schvaneveldt & Gomez (1998). Just as in the first study, five breaks were scheduled 

during the tasks, occurring every 300 trials (compared to every 100 trials in the first 

study). Participants completed both tasks on different occasions, two or three days 

apart. 

Reading fluency of words and non-words was also assessed using the TOWRE-2 

word and non-word reading tests (Torgesen, Wagner & Rashotte, 1999). TOWRE test 

scores for the five participants who were not fluent in English were not included in 

analysis. Tasks were administered in fixed order for all participants. Both short 

TOWRE reading tests were administered at the beginning of the first testing session. 

6.3 Results 

All but 7 participants took the serial reaction time tasks 2 or 3 days apart. However, 

scheduling constraints meant that three participants took the tasks on consecutive days 

and four had a 4 day gap. Data was screened in an identical fashion to Study 1, with 

all inaccurate trials and trials over 5000 ms removed and a subsequent moving criterion 

based on sample size (Selst & Jolcoeur, 1994) applied to remove the remaining 

outlying observations. RTs for the first two trials in each block were excluded, because 

their locations were not predictable. 

6.3.1 Analysis of Response Times (RTs)  

For analysis, blocks were consolidated into epochs of 300 trials. Means and 

standard deviations for RTs per sequence and epoch for both task attempts are shown 

in Table 6.1. RTs for the probable trials remained fairly constant throughout the first 

task attempt, but increased in the last epochs of the second attempt, suggestive of 

fatigue. RTs for the improbable sequences increased in every epoch on both task 

attempts.  
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Table 6.1 Means and standard deviations for SRT task RTs in milliseconds by sequence. 

 SRT Time 1 sequence means (SDs)  SRT Time 2 sequence means (SDs) 

 Probable Improbable  Probable Improbable 

Epoch 1 388.91 (129.37) 470.54 (130.01)  374.78 (114.08) 457.22 (112.61) 

Epoch 2 379.97 (137.26) 484.25 (118.03)  378.06 (123.63) 481.09 (118.65) 

Epoch 3 380.24 (142.37) 494.89 (133.06)  382.62 (123.54) 507.65 (156.05) 

Epoch 4 377.81 (136.16) 500.15 (125.05)  398.72 (128.09) 519.34 (140.32) 

Epoch 5 383.10 (137.79) 518.49 (124.69)  405.04 (131.38) 529.97 (126.38) 

 

Mixed effect models (Rabe-Hesketh & Skrodal, 2012) in Stata (13.0) were chosen 

to analyse response times for both attempts at the extended serial reaction time tasks 

(see Figure 6.1). The tasks were analysed separately. Sequence, epoch and the 

interaction between them were entered as fixed effects and items and participants as 

crossed random effects. 

Sequence was a significant predictor of RT at both Time 1 (unstandardized 

regression coefficient = 68.642, z = 21.33, p < .0001, 95% CIs [62.33, 74.95]) and at 

Time 2 (unstandardized regression coefficient = 72.71, z = 22.39, p < .0001, 95% CIs 

[66.34, 79.07]). The interaction between the sequence and epoch was also significant 

for both tasks (Time 1 Epoch 1 – 5 unstandardized regression coefficient = 45.47, z = 

9.47, p < .0001, 95% CIs [36.06, 54.89]; Time 2 Epoch 1 – 5 unstandardized regression 

coefficient = 36.79, z = 7.73, p < .0001, 95% CIs [27.46, 46.11]), with the difference 

between sequences at Time 1 increasing throughout the task from 81.63 ms in Epoch 

1 to 135.39 ms in Epoch 5. This was due to the ever-increasing RTs in the improbable 

sequence. The increase in difference between the sequences followed a similar pattern 

at Time 2 rising from 82.44 ms in Epoch 1 to 124.93 ms in Epoch 5. Notably, RTs for 

both sequence types slowed over the course of the task at Time 2, with the improbable 

sequence RTs slowing at a greater rate than the probable sequence RTs. 

The effect of epoch was also significant on both occasions, but in opposite 

directions. At Time 1 RTs decreased over the course of the task (Epoch 1 – 5 
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unstandardized regression coefficient = -6.58, z = -4.80, p < .0001, 95% CIs [-9.27, -

3.89]), while Time 2 RTs increased in every epoch (Epoch 1 – 5 unstandardized 

regression coefficient = 30.00, z = 22.21, p < .0001, 95% CIs [27.35, 32.65]), 

suggesting fatigue and / or lack of motivation played an increasing role during Time 

2. 

 

Figure 6.1 Graph showing RTs per sequence and epoch for both task attempts, with 95% confidence 
intervals. 

 

6.3.2 Analysis of error frequencies 

The same error analyses used in the first study were again undertaken to examine 

implicit learning on the adult pilot tasks. Means, standard deviations and reliabilities 

for error measures (both component error frequencies and difference score measures) 

are in Table 6.2. 
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Table 6.2 Means (SDs) and test-retest reliabilities for component error measures and difference 
scores 

  SRT1 SRT2 Reliability (r) 

Sequence errors analysis    

 Probable errors* 43.93 (35.82) 61.46 (44.45) .78 

 Improbable errors 33.83 (32.58) 38.26 (30.07) .82 

 Proportional sequence 

errors difference score 
28.94 (30.07) 31.43 (26.43) .81 

Error type analysis    

 Anticipatory errors on 

improbable sequence 
32.02(32.20) 36.20 (30.42) .82 

 Random errors on  

improbable sequence* 
1.80 (1.78) 2.07 (1.74) .14 

 Proportional error type 

difference score 
31.12 (32.05) 35.16 (30.63) .82 

*Before proportional adjustment. 

 

The sequence errors analysis showed that there were proportionately more errors 

on the probable sequence than on the improbable sequence on both tasks (SRT1: 

unstandardized regression coefficient = 3.331, z = 57.71, p < .001, 95% CI [3.22, 3.44]; 

SRT2: unstandardized regression coefficient = 4.437, z = 86.86, p < .001, 95% CI 

[4.34, 4.54]) and that errors increased at a greater rate on the improbable sequence than 

on the probable sequence over the course of the task (SRT1: unstandardized regression 

coefficient = 4.193, z = 51.37, p < .001, 95% CI [4.03, 4.35]; SRT2: : unstandardized 

regression coefficient = 2.701, z = 37.37, p < .001, 95% CI [2.56, 2.84]). These results 

are highly suggestive of implicit learning of the probable sequence that continues to 

develop over the course of the tasks (see Figure 6.2). 
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Figure 6.2 Error frequencies for the extended 1500 trial SRT tasks per sequence. Error bars are 95% 
confidence intervals. 

 

The second analysis investigated whether there were more anticipatory than 

random errors on the improbable sequence compared to the probable one. Figure 6.3 

shows that there were proportionately significantly more anticipatory than random 

errors on both task attempts (SRT1: unstandardized regression coefficient = -4.201, z 

= -4.79, p < .001, 95% CI [-5.92, -2.48]; SRT2: unstandardized regression coefficient 

= -2.933, z = -4.41, p < .001, 95% CI [-4.23, -1.63]). Indeed, this was the case 

regardless of any proportional adjustment of random errors. However, the interactions 

between error type and epoch were not significant, as the ratio of anticipatory to 

random errors stayed at similar levels across the task. 

 

Figure 6.3 Error frequencies for anticipatory and random errors on the improbable sequence of the 
verbal SRT tasks. Error bars are 95% confidence intervals. 
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6.3.3 Task measures and reliabilities 

RT measures. Split half and test-retest reliability was established for response 

times. An overall difference score per task for implicit learning was calculated by 

subtracting the participant’s mean probable RT across the whole task from their mean 

improbable RT. Subsequently, similar measures were calculated for the 1st 500 trials 

and the 1st 1000 trials of the task, in order to examine reliability at different lengths of 

the task. Means, standard deviations and reliabilities for these difference scores are in 

Table 6.3. 

Table 6.3 Response Times difference score means, standard deviations and reliabilities 

Task Difference 

Score 

N Mean  SD Reliability 

SRT1 Total 46 107.04 (70.05) .95s / .68r 

 1st 500 trials 46 83.82 (67.48) .95 s / .53 r 

 1st 1000 trials 46 96.06 (69.73) .92 s / .66 r 

SRT2 Total 46 108.50 (54.49) .88 s / .68 r 

 1st 500 trials 46 87.69 (54.15) .71 s / .52 r 

 1st 1000 trials 46 103.33 (55.02) .84 s / .66 r 

S = split-half reliability; r = test-retest reliability 

 

Split-half reliability for the overall mean difference in RTs was calculated by 

correlating odd and even numbered trials per sequence and was good for both Time 1 

(r = .95) and Time 2 (r = .88). Internal consistency for the first 500 trials was also 

calculated to give a measure that could be more directly compared to the internal 

consistency of the 500 trial SRT task in Study 1. It was also good at Time 1 (r = .95), 

but dropped at Time 2 (r = .71). Split-half reliability for the first 1000 trials at Time 1 

was (r = .92) and at Time 2 was (r = .84), which approached the level of correlations 

for the overall tasks containing 1,500 trials.  
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Test-retest reliability for the tasks using the overall mean difference between 

response times for the sequences for each task was moderate to good (r = .68). There 

was evidence that the length of the task improved test-retest reliability, as the 

correlation between the mean differences per block increased over the course of the 

task from a low starting point for the first 100 trials (r = .28). Test-retest reliability for 

the first 500 trials (the length of the SRT tasks in Study 1) was (r = .53), increasing to 

(r = .66) for the first 1000 trials. Test-retest reliability improved only slightly (by .02) 

when the difference scores from the final 500 trials were added to the analysis.  

Additionally, when variability in participants’ baseline speed of response was 

controlled by dividing the difference between sequences by participants’ overall speed 

of response (improbable sequence – probable sequence) / ((improbable sequence + 

probable sequence)/2) test retest reliability for the task improved further (1st 1000 

trials r = .71; 1500 trials r = .70). 

This suggests that cutting the task to 1000 trials would not have a large effect on 

the internal consistency or test-retest reliability of the task. Importantly, fatigue effects 

in children may be less of an issue with a 1000 trial task than a 1500 task.  

Error measures. These were calculated in the same way as in Chapter 5 (see Table 

6.2). Test-retest reliability for the difference between the frequency of errors on the 

two sequences and for the difference between anticipatory errors on the improbable 

sequence were good (Sequence errors test-retest r = .81; Error type test-retest r = .82), 

but once again the frequency of random errors on the improbable sequence were low, 

with 11 of the 46 participants making no random errors on SRT1 and the same number 

making no random errors on SRT2. More importantly, once the baseline frequency of 

errors made by participants on the task was controlled [sequence errors: (Improbable 

errors – Proportional probable errors) / (Improbable errors + Proportional probable 

errors); Error type on the improbable sequence: (anticipatory improbable errors – 

proportional random improbable errors) / (anticipatory improbable errors – 

proportional random improbable errors)] the reliability of the measures was much 

reduced (Sequence errors test retest r = .14; Error type test retest r  = .44), suggesting 
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that much of the reliability of the sequence errors measure was a result of the variability 

in the overall level of errors by participants across both sequences.  

These reliabilities suggest that implicit learning measures derived from error 

frequencies are either not reliable once variability in baseline frequency of errors is 

controlled (Sequence errors) or are subject to floor effects (Error type on the 

improbable sequence) in adults just as they are in children.  

6.3.4 The relationship with reading fluency 

There was no relationship at all between TOWRE word or TOWRE non-word 

reading and any of the RT or error-based implicit learning measures on either SRT 

task (r’s from -.06 to -.11). TOWRE word and non-word reading correlated with one 

another at (r = .65) 

6.3.5 The effect of motivation and boredom on task performance 

At the end of the second testing session participants were asked to rate their 

enjoyment of the serial reaction time task on a scale of 1 to 10, with 1 equal to “not 

enjoyable at all” and 10 equal to “very enjoyable”. The mean rating was 3.74, with 

48% of the sample rating the tasks at 3 or lower, suggesting the experience of 

completing two serial reaction time tasks of this length was not a pleasant one. 

Counter-intuitively, self-rated task enjoyment was negatively correlated to the 

implicit learning response time measure, such that enjoying the tasks less correlated 

with better implicit learning (Time 1 r = -.32; Time 2 r = -.40). When task enjoyment 

was correlated to the 1st, 2nd and last thirds of the tasks, the negative relationship was 

most pronounced during the last third of the first task (r = -.44). Correlations between 

task enjoyment and error rate measures of implicit learning were not significant. 

6.4 Discussion 

Implicit learning and test-retest reliability of an extended version of the 

probabilistic serial reaction time task was examined in an opportunistic sample of 46 
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healthy adults. Identical tasks with differently numbered sequences, were administered 

twice on separate occasions. Measures of reading fluency were also taken. Results 

showed robust levels of implicit learning on both occasions and moderate to good test-

retest reliability for the majority of RT-based implicit learning measures. No 

relationship between implicit learning and reading fluency was found. These results 

show that the length of a serial reaction time task influences its reliability as expected 

from classical test theory (Nunnally & Bernstein, 1994).  

These results are in line with recent findings by Siegelman & Frost (2015), who 

established test retest reliability of a probabilistic serial reaction time task with 960 

trials with a sample of 76 adults. The probabilities associated with the probable and 

improbable sequences for their task were .85 and .15 respectively (as opposed to .9 

and .1 in the current task) and it was taken on two occasions approximately 3 months 

apart, using the same sequences on both occasions. The corresponding test-retest 

reliability was r = .47. The reliability of the current task is better than this, but the 

testing lag was only one week. 

The results of the current study also suggest that controlling for overall speed of 

response delivers measureable improvement in reliability for RT implicit learning 

measures. The reduction in reliability for the error frequency measures as a result of 

controlling for baseline frequency could be interpreted as further evidence that these 

measures are not reliable indicators of implicit learning.  

However, split-half and test-retest reliability of the first 500 trials of the extended 

tasks in adults in the current study were already considerably higher than in the 500 

trial task with children in Chapter 5, suggesting that participant age may also be a 

factor in the reliability of the serial reaction time tasks and that improvements in 

reliability in the current study should not be attributed to task length alone. 

There was an obvious rationale for piloting the extended serial reaction time task 

in adults: that of practicality. However, if implicit learning is age-independent, as has 

been claimed (eg, Kirkham et al., 2007), then the reliability of an implicit learning 
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measure in adults should be no different in children. That is, as long as the measure of 

implicit learning is accurately indexing implicit learning and is not confounded by 

variables that are age-dependent, such as for example, executive function or attention. 

It is, therefore, possible that adults may perform more reliably on the SRT tasks 

because they are both more motivated and are better able to sustain attention across 

the task than are children.  

The finding that levels of implicit learning in adults were negatively correlated 

with self-rated enjoyment could be tentatively linked to this interpretation. Sustaining 

attention across a lengthy cognitive task requires effort, which may correspond to 

decreased enjoyment. Children may find it harder than adults to sustain their attention 

throughout both attempts at such a demanding task (Betts, Mckay, Maruff, & 

Anderson, 2006). The increase in RTs towards the end of the second attempt at the 

task in this study suggests that fatigue may become a confounding factor in lengthy 

tasks, even in adult participants. It is therefore, important to identify the optimum task 

length to balance reliability with participant motivation. 

Finally, no relationship between implicit learning and reading fluency was found, 

but this result should not be given undue weight. The sample was relatively small; 

included English as an additional language speakers whose fluency was self-rated; and 

since the majority of participants were university students, there may not have been 

sufficient variation in reading fluency scores to reveal a relationship with implicit 

learning. 

To conclude, the results of this extended serial reaction time task in adults suggests 

that task length is a determinant of reliability. Investigation of the reliability and 

relationship to attainment of an extended SRT task in children therefore seems an 

obvious next step. However, participant age may also influence test-retest reliability 

to an, as yet unknown, degree. For this reason it is recommended that sustained 

attention and task engagement is monitored to explore whether this is a factor in the 

reliability of implicit learning in this younger age group.   
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Chapter 7 Study 3: An extended serial reaction time task in 

children 

Following on from the results of the studies in Chapters 5 and 6, this study 

investigated the claims of the procedural deficit hypothesis by examining the 

relationships between measures of procedural and declarative memory and measures 

of attainment in a large sample of 7 and 8 year-old children unselected for ability.  

The most widely used measure of procedural learning in studies of the procedural 

deficit hypothesis is the serial reaction time task (SRT: Nissen & Bullemer, 1987). As 

shown in Chapters 3 and 4, results from studies using the serial reaction time task with 

children are mixed, with some studies finding evidence of implicit learning on the task 

in children with dyslexia and developmental language disorder and others finding no 

evidence of such impairments (for reviews see: Lum, Ullman, & Conti-Ramsden, 

2013; Lum, Conti-Ramsden, Morgan, & Ullman, 2014; Schmalz, Altoè, & Mulatti, 

2016).  

There are a number of possible reasons why the results from studies investigating 

the relationship between the serial reaction time task and measures of language and 

reading skills are so mixed.  

1. The majority of studies use extreme groups designs, comparing children with 

dyslexia or language impairment with an age-matched control group with normal 

language skills.  Extreme groups designs are subject to a number of methodological 

limitations (Preacher, Rucker, MacCallum, & Nicewander, 2005), such as regression 

to the mean for extreme scores, misclassification into groups, inflated effect sizes and 

decreased reliability. Sample sizes are also typically small, further compounding these 

issues.  

2. Reliability for the serial reaction time task may be poor. Difference scores, such 

as those used to measure procedural learning on the serial reaction time task, are 

frequently unreliable (Lord, 1958; Overall & Woodward, 1975).  Previous studies have 
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not reported the reliability of serial reaction time tasks used, but the reliability of the 

task used in the Chapter 5 study was extremely low (test-retest reliability r = .21).  

3. The putative poor reliability of the serial reaction time tasks typically used in 

studies of language learning disorders in children may, in part, be due to their length.  

Procedural learning tasks in children are typically kept short in an effort to maintain 

motivation and avoid fatigue (e.g., Perlant & Largy, 2011). However, task length is 

usually an important determinant of reliability (Nunally & Bernstein, 1994) and an 

extended serial reaction time task with 1500 trials piloted in adults in Chapter 6 

demonstrated moderate to good reliability. The small number of trials used in many 

serial reaction time tasks with children is, therefore, a cause for concern.  

4. Finally, self-regulatory mechanisms develop with age (Putzke, Williams, 

Adams, & Boll, 1998), so unreliable procedural learning scores may be a particular 

issue in children, where levels of sustained attention vary and may influence learning. 

This may be a particular complication for children with language learning disorders, 

since a variety of developmental cognitive disorders, including language disorders, are 

frequently comorbid with attentional difficulties (Finneran, Francis, & Leonard, 2009; 

Rabiner, Coie, & The Conduct Problems Prevention Research Group, 2000). 

In summary, the current study uses a concurrent correlational design with a large 

sample of children unselected for ability. Procedural learning is assessed using a serial 

reaction time task with a large number of trials in an attempt to ensure that the task is 

reliable. By testing all participants on two separate occasions, test-retest reliability can 

be assessed. In addition, a novel procedure of rating the child’s level of attentional 

engagement with the serial reaction time task on both occasions is used. Measures of 

attainment (reading, language [grammar] and arithmetic) are related to performance 

on the serial reaction time task as well as to measures of verbal declarative memory.  
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7.1 Method 

A concurrent correlational design was used to explore the relationships between 

procedural and declarative memory skills, attention and attainment in 7 and 8 year-old 

children. Ethical approval for the study was granted by the UCL Research Ethics 

committee. 

7.1.1 Participants   

One hundred and twelve primary school children (mean age = 92. 11 months; SD 

= 5.71; range 83 – 105 months) unselected for ability took part in the study (53 girls 

and 59 boys). Children in participating schools were enrolled on an opt-out basis. 

Children registered as speaking English as an additional language were excluded, 

unless they were born in the UK; had attended a UK primary school since the 

beginning of Reception (age 4-5) or earlier; confirmed that they spoke English to at 

least one parent at home; and were judged to be completely fluent English speakers by 

their class teachers. Seventeen children fitted this description and were included in the 

study.   

7.1.2 Tasks and testing procedures 

Testing took place across three sessions. Children first completed a battery of 

attainment measures during a whole-class testing session. Two individual sessions for 

each child were then scheduled a week apart to complete the memory measures. Tasks 

were administered in the same fixed order to all children.  

7.1.2.1 Attainment Tasks 

A battery of the same language-related attainment tasks used in the initial study 

with children in Chapter 5 were used: 

 Test of Reception of Grammar (TROG-2: Bishop, 2003).     

 Test of word and non-word reading efficiency (TOWRE-2: Torgesen, Wagner, 

& Rashotte, 1999).   
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 Test of basic arithmetic and number skills (TOBANS: Brigstocke, Moll, & 

Hulme, 2016).   

 Wechsler Abbreviated Scale of Intelligence (WASI: Wechsler, 1999).   

7.1.2.2 Verbal Declarative Memory tasks 

Word Lists (Cohen, 1997). This measure of verbal free recall from the Children’s 

Memory Scale was also used in the initial study in Chapter 5. It required children to 

recall as many words as possible in any order from a list of 10 spoken words (Trial 1). 

After the first presentation only words omitted by the children were re-presented 

(Trials 2 – 4). After a distractor list children were asked to recall the initial list again 

without re-presentation (Trial 5). These trials were summed to form the child’s 

Learning Score. Recall was requested once more at the end of the testing session (Trial 

6: Delayed Recall) and during the second individual testing session a week later (Trial 

7: Consolidation). The testing lapse for the consolidation measure was not the same 

for all children owing to scheduling constraints (93% of children were assessed with a 

lag of between 6 and 8 days and 7% of children with a lag of 2 or 5 days), but there 

was no significant difference in consolidation scores for those with a smaller or greater 

testing interval.  

7.1.2.3 Procedural Learning task 

Serial Reaction Time Task (SRT: Nissen & Bullemer, 1987). The two versions 

of the probabilistic serial reaction time task used in the pilot study in Chapter 6 were 

adjusted to a length of 1000 trials, since test-retest reliability for the first 1000 trials of 

the pilot task was moderate to high (r = .66, increasing to .71 once baseline RT was 

controlled) and showed little improvement when computed over all 1500 trials. The 

task began with 10 practice trials, with equal probabilities of each sequence occurring. 

There were then 10 blocks of 100 trials divided into 5 epochs. The task took 20-25 

minutes to complete.   

7.1.2.4 Attention Measure 

 In order to quantify the attention paid by each child to the serial reaction time tasks 

a 9 point rating scale was devised.   
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1 = Did not complete Epoch 

2 = Poor attention throughout; continual stopping, talking, difficulty with restarting 

3 = Distracted multiple times throughout with talking and short pauses (7 or more) 

4 = Some talking and short pauses throughout, getting worse towards end (4 – 6) 

5 = Occasional chatting and short pauses (3 or less) 

6 = Good attention, fading slightly towards the end (2 or fewer short pauses towards 

the end) 

7 = Good attention throughout with occasional comments and no real pauses 

8 = Good attention throughout 

9 = Fast, accurate, highly focussed on the task 

An attention score based on this scale was allocated to each epoch of both tasks by 

the experimenter during testing and averaged for each task. 

7.2 Results 

7.2.1 Learning on the SRT task 

RT analyses. Results for two children were missing for SRT1 due to computer 

malfunction and one for SRT2 due to absence. Inaccurate trials, RTs for the first 

bigram in each block, and those over 5000 ms were removed and a moving criterion 

based on sample size (Selst & Jolicoeur, 1994) was used to remove outlying RTs. RTs 

for the first two trials in each block were excluded, since they could not be predicted. 

Remaining response times for each task were analysed using mixed effects models 

(Rabe-Hesketh & Skrondal, 2012) in Stata 13.0 to take account of variability across 

participants and trials. Sequence type (probable or improbable), epoch and the 

interaction between the two were entered as fixed effects and participants and trials as 

crossed random effects. Mean RTs for each sequence type (probable vs. improbable) 

and epoch are shown in Figure 7.1. RTs for improbable trials were slower than for 

probable trials in all epochs of both tasks. 
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Figure 7.1 Graphs showing RTs per sequence and epoch for both SRT tasks, with 95% confidence 
intervals. 

 

For both tasks RTs were slower on improbable trials (SRT1: marginal mean 

difference = 54.105 [95% CI 42.85, 65.36], z = 9.42, p < .001, SRT2: marginal mean 

difference = 53.170 [95% CI 44.46, 61.88], z = 11.96, p < .001). RTs became faster 

across epochs (SRT1 Epoch 1 - 5: unstandardized slope = -141.203 [95% CI -146.26, 

-136.15], z = -54.76, p < .001; SRT2 Epoch 1 - 5: unstandardized slope = -20.578 [95% 

CI -24.44, -16.71], z = -10.43, p < .001). Crucially, the interaction between sequence 

type and epoch was also significant on all blocks of SRT1 and the last three blocks of 

SRT2. These interactions confirm what can be seen in Figure 7.1: the difference in 

reaction time between the probable and improbable trials tends to increase from earlier 

to later epochs of both tasks. This difference in RT provides evidence that the children 

are learning the task structure of the probable trials. 

Error Analyses. Once again the same error analyses that were used in the first 

study and the piloted extended task in adults were used to examine implicit learning in 

children on the extended SRT task. Figure 7.2 shows that children made proportionally 

more errors on the improbable sequence than on the probable sequence on both tasks 

(SRT1: unstandardized regression coefficient = .267, z = 16.17, p < .001, 95% CI [.23, 

.30]; SRT2: unstandardized regression coefficient = .701, z = 43.60, p < .001, 95% CI 

[.67, .22]) and errors increased at a greater rate on the improbable sequence than on 

the probable sequence over the course of the task (SRT1: unstandardized regression 

coefficient = 1.256, z = 53.83, p < .001, 95% CI [1.21, 1.30]; SRT2: unstandardized 
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regression coefficient = .850, z = 37.39, p < .001, 95% CI [.81, .89]). These results are 

highly suggestive of implicit learning of the probable sequence that develops over the 

course of the tasks. 

 

Figure 7.2 Error frequencies for the probabilistic non-verbal SRT tasks per sequence. Error bars are 
95% confidence intervals. 

 

Figure 7.3 shows that the frequency of anticipatory and random errors were not 

significantly different on both task attempts (SRT1: unstandardized regression 

coefficient = -.128, z = -1.43, p = .15, 95% CI [-.31, .05]; SRT2: unstandardized 

regression coefficient = -.260, z = -1.76, p < .08, 95% CI [-.55, .03]). However, the 

increase in anticipatory errors in the last epoch of SRT1 and over the last two blocks 

of SRT2 meant that the interaction between error type and epoch was significant 

(SRT1: unstandardized regression coefficient = -.35, z = -2.68, p = .01, 95% CI [-.61, 

-.09]; SRT2: unstandardized regression coefficient = -.43, z = -2.23, p = .03, 95% CI 

[-.82, -.05]. These results show that the pattern of errors on the SRT tasks reflected 

implicit learning of the probable sequence. 
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Figure 7.3 Error frequencies for anticipatory and random errors on the improbable sequence of the 
non-verbal SRT tasks. Error bars are 95% confidence intervals. 

 

7.2.2 Task measures, reliability and correlations 

Implicit learning scores for each child were derived from performance on the two 

serial reaction time tasks. The principal measure chosen to represent this learning was 

the overall proportional mean difference in RT between the probable and improbable 

sequences. Children’s baseline speed of response was further controlled for by 

dividing this learning score by their overall response speed (improbable sequence RT 

– proportional probable sequence RT) / ((improbable sequence RT + proportional 

probable sequence RT)/2)). A positive score, therefore, reflected implicit learning (108 

children had positive scores on the first task and 110 on the second task).  Split-half 

reliability for the procedural learning RT score was moderate (SRT1 r = .51; SRT2 r 

= .62) though test-retest reliability was much lower (r = .26).  

Implicit learning scores derived from error frequencies were also calculated. Test-

retest for these was a little better than in the first study using the 500 trial SRT task 

(Sequence Errors test-retest reliability r = .38; Error Type test-retest reliability r = .62). 

However, once again the apparent reliability of the Error Type measure on the 

improbable sequence was deceptive. A substantial number of participants did not make 

any random errors on the improbable sequence (SRT1 n = 26; SRT2 n = 41) and their 

resulting derived measure was simply a measure of anticipatory errors as a result. 

Additionally, once baseline error frequency was controlled, reliability was very poor 
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for both measures (Sequence Errors test-retest reliability r = -.07; Error Type test-retest 

reliability r = .12). As a result neither measure was considered further. 

Means, standard deviations and reliabilities for all measures are given in Table 7.1 

and correlations between all measures in Table 7.2. 
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Table 7.1 Performance on attainment and memory measures. 

 N Mean  SD Reliability 

Age in months 112 92.11 5.71 - 

TROG-2 (Total correct) 112 71.58 6.89 .88 s 

     TOWRE-2 Words 111 61.12 11.44 .90 r 

     TOWRE-2 Nonwords 110 36.75 10.71 .90 r 

Arithmetic composite 111 53.72 25.62 .97 r 

     Addition 111 17.62 8.14 .92 r 

     Addition plus carry 112 8.62 5.31 .89 r 

     Subtraction 112 12.14 5.76 .88 r 

     Subtraction plus carry 112 6.02 3.88 .85 r 

     Multiplication 112 9.43 5.82 .93 r 

WASI 112 18.12 5.38 .94 s 

Word Lists (WL)    .84 s 

     Learning 112 32.44 6.03  

     Delay 111 6.09 1.94  

     Consolidation 111 4.29 1.78  

SRT1 RT Difference Score 110 .13 07 .51 s /.26 r 

SRT2 RT Difference Score 111 .14 .08 .62 s /.26 r 

SRT1 Sequence error score 110 .17 .17 -.07 r 

SRT2 Sequence error score 111 .16 .30 -.07 r 

SRT1 Error type score 110 .73 .32 .12 r 

SRT2 Error type score 111 .81 .32 .12 r 

SRT1 Attention Rating 112 7.25 1.29 .75 r 

SRT2 Attention Rating 111 7.23 1.45 .75 r 

s = split-half reliability / r = test-retest reliability; All procedural learning measures control 

for baseline performance. 
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Table 7.2 Correlation matrix for all measures. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1. Age (months)                  

2. TROG-2 .31**                 

3. Towre Words .18 .45*                

4. Towre Nonwords .19* .35* .83**               

5. Arithmetic composite .44** .42** .50** .55**              

6. Addition .42** .40** .50** .52** .92**             

7. Addition with carry .33** .32** .38** .43** .89** .78**            

8. Subtraction .36** .38** .42** .48** .93** .78** .81**           

9. Subtraction with carry .25** .36** .50** .52** .85** .69** .73** .78**          

10. Multiplication .50** .37** .40** .46** .83** .68** .62** .72** .63**         

11. Non-verbal IQ .35** .58** .36** .36** .43** .37** .29** .38** .29** .52**        

12. WL Learning .07 .47** .37** .32** .26** .19* .19* .23* .29** .29** .17       

13. WL Delay -.07 .34** .24* .19 .15 .12 .06 .13 .17 .22* .10 .76**      

14. WL Consolidation .03 .30** .24** .21* .19* .14 .10 .17 .22* .25** .14 .63** .68**     

15. Attention SRT1 .17 .39** .37** .33** .29** .26** .31** .23* .32** .19* .32** .18 .10 .04    

16. Attention SRT2 .17 .37** .44** .37** .29** .27** .33** .28** .31** .10 .28** .16 .05 .12 .75**   

17. SRT1 RT .09 .05 .07 .05 -.01 .04 -.03 -.05 .01 -.05 .06 -.05 .02 -.03 .18 .26**  

18. SRT2 RT .15 .32** .31** .22* .25** .21 .23* .27** .28** .15 .28** .20* .13 .10 .19* .36** .26** 

*p < .05; **p  < .01                  
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7.2.3 Predicting individual differences in attainment from measures of 

procedural and declarative memory  

The principal objective of the study was to assess the relationships between 

measures of basic cognitive skills (procedural learning [SRT RT]), attention during the 

SRT task, and declarative memory (free recall) on the one hand and measures of 

attainment (Reading [TOWRE word reading, TOWRE nonword reading]) Arithmetic, 

and Grammatical skills (Test of Reception of Grammar) on the other. For this purpose 

a latent variable path model was estimated and is shown in Figure 7.4.  Modelling was 

conducted in Mplus 7.31 (Muthén & Muthén, 1998-2016) with the very small amount 

of missing data being handled with Full Information Maximum Likelihood estimation.  

The starting point was a model in which each of the predictors (procedural learning 

in the SRT task, attention in the SRT task, and declarative memory [verbal free recall]) 

predicted each of the measures of attainment (reading, grammar, and arithmetic).  

Nonsignificant relationships between the predictors and measures of attainment were 

dropped iteratively and changes in χ2 were used to check that there was no significant 

loss of model fit as a result of omitting each of the nonsignificant paths. The final 

simplified model is shown in Figure 7.4; the parameter estimates are the standardized 

regression coefficients and correlations. The model yields a good fit to the data, χ2(79) 

= 94.526, p = .112; RMSEA = . 042 [90% CI . 0.000 0.071]; CFI = .98; TLI = .98. 
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Figure 7.4 Path model of relationships between constructs. Single headed arrows represent regression paths or factor loadings. Twin headed arrows represent 
correlations between variables. Standardized regression coefficients and correlations are shown. 
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One notable feature of this model is that the level of procedural learning on the 

serial reaction time task is quite strongly correlated (r = .56) with ratings of children’s 

attention while performing the task. The other critical features of this model are the 

patterns of prediction from the serial reaction time task, attention in this task and 

declarative learning to measures of attainment (reading, grammatical skills and 

arithmetic). Procedural learning as measured by the serial reaction time task is not a 

significant predictor of any of these measures. In contrast, attention during the serial 

reaction time task is a predictor of all these outcomes, and in addition declarative 

memory is a predictor of both reading and grammatical skills.   

The significant relationship between rated attention during the SRT task and 

performance on this task (and on all measures of attainment) is a novel and unexpected 

finding. Attention ratings were allocated during testing, prior to any derivation of 

procedural learning scores from the tasks, so ratings could not have been biased by 

any knowledge of the extent of each child’s degree of procedural learning. The pattern 

of results here suggests that procedural learning in the SRT task is not itself a good 

predictor of variations in reading, grammatical, or arithmetic skills. However, the SRT 

task is highly attentionally demanding, and the extent to which children can maintain 

attention during the task is a relatively powerful predictor of variations in reading, 

grammatical, and arithmetic skills. This pattern is clarified by inspecting the pattern of 

correlations between the latent variables in the model (see Table 7.3). 

The most powerful correlate of all three measures of attainment is rated attention 

during the SRT task. In comparison the learning score on the SRT task is a weaker 

correlate of all outcomes. Finally, declarative memory is a moderate correlate of 

grammatical skills and a weaker correlate of reading.   
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Table 7.3 Correlations between the latent variables in model in Figure 7.4 

 1 2 3 4 5 

1. Procedural Learning (SRT)      

2. Declarative Learning (CMS - WL) .22     

3. Attention .56 .19    

4. Reading (TOWRE) .31 .29 .51   

5. Grammar (TROG-2) .30 .44 .46 .45  

6. Arithmetic (TOBANS) .21 .07 .37 .54 .39 

 

7.3 Discussion 

This study used latent variable path analysis to explore the extent to which 

procedural learning (as assessed by a serial reaction time task), declarative learning 

and sustained attention during the serial reaction time task predicted variations in 

attainment on measures of reading, grammar and arithmetic.  Latent variable models 

allow us to assess the relationship between constructs without the confounding 

influence of measurement error (McCoach, Black, & O’Connell, 2007).   

The model showed that declarative learning was a moderate predictor of attainment 

and was not significantly associated with variations in attention on the serial reaction 

time task. This finding is in line with many other studies that have found a robust 

relationship between measures of verbal declarative memory and reading ability 

(Melby-Lervåg, Lyster, & Hulme, 2012).  

The findings for procedural learning are more surprising. Procedural learning (as 

assessed by a serial reaction time task) was strongly related to ratings of children’s 

attention while performing the task (r = .56), and measured attention on this task was 

highly predictive of both procedural learning and variations in attainment. Conversely, 

once such attentional effects were controlled, there was no relationship between 

procedural learning on the serial reaction time task and measures of attainment. The 

model shows that it is a child’s ability to attend to a lengthy and repetitive 
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computerized task that is an important predictor of attainment, not their procedural 

learning ability.  

Few studies have examined the impact of attentional variability on procedural 

learning in language disordered children, although some have included measures of 

attention in their testing battery, in order to control for potential group confounds. 

Sengottuvel and Rao (2013b; 2014) measured attention in children with language 

impairment and typically developing children performing an adapted serial reaction 

time task, having found a correlation between attention and procedural learning in 

children in a previous study (Sengottuvel & Rao, 2013a). However, as they found 

similar levels of attention in both groups, they did not go on to examine whether a 

relationship between attentional scores, procedural learning and language ability 

existed.  

A study by Staels and Van den Broeck (2017) used a deterministic serial reaction 

time task in groups of dyslexic and typically developing children. Although the 

principal measures of implicit learning on this deterministic task (increased RTs on 

introduction of a block of random trials and the rebound effect on returning to the 

sequence) were equivalent across groups, they found that a slight deficit in the initial 

learning of the sequence in the dyslexic group disappeared after controlling for 

attentional functioning, using parent and teacher ratings on an ADHD scale. This 

finding is particularly interesting as it is the first extreme group design to suggest that 

SRT implicit learning performance in children with dyslexia may be differentially 

impaired by attentional functioning. 

Only one experiment has related attentional functioning to procedural learning and 

language ability across the sample. Waber et al. (2003) examined serial reaction time 

performance in 422 children with a wide range of reading ability. Parental ratings of 

attention predicted error rates on the serial reaction time task, but not response times. 

These studies suggest that measures of attention are useful additions to testing batteries 

examining procedural learning.   
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The current results might be seen as lending support to these findings; though the 

within-task measure of attention in this study is very different from measures of global 

parent or teacher rated attention used in previous studies. In addition the current study 

demonstrated associations between attention on the task and the principal measure of 

implicit learning, as indexed by differences in reaction time to probable vs. improbable 

sequences. Furthermore, the study shows that attention during the serial reaction time 

task accounts entirely for the relationship between procedural learning performance 

and measures of attainment (reading, grammar and arithmetic). A possible weakness 

of the current study is that it did not also include a standardised ADHD scale, such as 

those used above. It could be speculated that ratings for ADHD and the ratings of 

attentional functioning on the serial reaction time task used here would be highly 

correlated, but future research could explore whether including both measures sheds 

additional light on the relationship between procedural learning, attention and 

attainment. 

An interesting question is whether attention would still account for the relationship 

between procedural learning and attainment in a procedural sequence learning task 

better able to maintain the focussed attention of children throughout the task? The 1000 

trial SRT task used in the current study is highly demanding of sustained attention.  

Some previous studies have highlighted the importance of keeping motivation high 

and avoiding fatigue in children during monotonous or cognitively demanding 

procedural learning tasks. Most have responded by introducing abbreviated procedural 

learning tasks (e.g., Perlant & Largy, 2011; Stoodley, Ray, Jack, & Stein, 2008). 

However, generally brief tasks are less likely to yield reliable measures than longer 

tasks (Nunally & Bernstein, 1994), and the shorter 500 trial serial reaction time task in 

Chapter 5 in particular was found to be unreliable in children.   

One potential consequence of extending a procedural learning task to increase 

reliability is that participants may start to learn it declaratively, rendering the task no 

longer a valid or pure measure of procedural learning. However this possibility is 

inconsistent with the pattern of results obtained here, in which serial reaction time 

learning scores and measures of declarative learning had different relationships to 
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attainment (the former mediated by variations in attention, the latter not). Moreover, 

by using probabilistic rather than deterministic regularities between target locations, 

the serial reaction time task employed here was designed specifically to render the 

structure hard to learn declaratively (Schvaneveldt & Gomez, 1998; Song, Howard, & 

Howard, 2007).  

In summary, this study found that verbal declarative memory skill predicted 

reading, grammar and arithmetic attainment. However, the relationship between 

procedural learning (as assessed by a serial reaction time task) and attainment was 

entirely explained by rated attention during the task. Previous research has documented 

the frequent comorbidity between language disorder and attention deficits (Carroll, 

Maughan, Goodman, & Meltzer, 2005; Finneran, Francis, & Leonard, 2009; Laasonen 

et al., 2014). On the basis of the present findings, it can be conjectured that the poorer 

performance of such groups on procedural learning tasks may well reflect poorer 

attentional functioning during testing, rather than any separable procedural learning 

impairment. Furthermore, poor attention evident during the task is likely not to be an 

isolated effect and ongoing difficulties with sustaining attention will likely have 

knock-on effects on attainment. We recommend that future studies of procedural 

learning and language disorders include measures of attention and use procedural 

learning tasks specifically designed both to have good reliability and to address the 

inevitable attentional variability of participants.  
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Chapter 8 Study 4: Probabilistic categorization in children 

8.1 Introduction  

The weather prediction task (WPT: Knowlton, Squire, & Gluck, 1994) examines 

implicit probabilistic perceptual category learning, such as may be evident in early 

language learning as children detect statistical regularities in a continuous speech 

stream and subsequently map those sounds to meanings (Evans et al., 2009; Saffran et 

al., 2003). The learning of such probabilistic relationships is also crucially involved in 

the mastery of the rules of grammar (Ullman et al., 1997) and similar processes are at 

work when learning to read, where the co-occurrence of letters can serve as 

probabilistic cues for those that follow (Arciuli & Simpson, 2012).  

As documented in Chapters 3 and 4, the weather prediction task has been used in 

a number of studies to investigate the claims of the procedural deficit hypothesis 

(Gabay et al., 2015; Kemény & Lukács, 2010; Lee et al., 2016; Lee & Tomblin, 2015; 

Lukacs & Kemeny, 2014; Mayor-Dubois et al., 2014). Results of previous research are 

mixed, but the bulk of evidence so far, along with the results of the meta-analysis in 

Chapter 4, suggests that performance on the task is impaired in both children and adults 

with developmental language disorder and dyslexia.  

The weather prediction task has some advantages over other implicit learning 

tasks. Unlike in the artificial grammar or statistical learning tasks, the existence of 

hidden conditional probabilities in this task are not revealed to the participants, which 

means the task can be used twice to gauge test-retest reliability and it likewise follows 

that it does not rely on a testing phase that may draw on explicit memory processes to 

make legality judgements about rules or associations learned earlier.  

The weather prediction task also holds an advantage over the serial reaction time 

and Hebb serial order learning tasks by using a unitary measure of above chance 

performance on the task as a reflection of implicit learning, rather than relying on a 

difference score. Given the problems associated with the use of difference scores that 
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has been demonstrated in previous chapters, the use of this measure may serve to 

improve the reliability of the task. 

However, one important drawback of the weather prediction task as an index of 

implicit learning is the uncertainty over the extent to which implicit and explicit 

learning processes are involved in the task. It has been argued that participants are 

supposedly unaware that they are applying probabilistic reasoning strategies as they 

select outcomes in the task.  In support of this, Gluck et al (2002) found self-reports of 

even simple strategies corresponded poorly with actual performance, suggesting that 

rules to guide performance were acquired in an unconscious, non-verbalisable way.  

However, Knowlton et al’s (1994) original experiments with amnesiac patients and 

controls suggested that while early performance is supported by implicit associational 

learning, declarative memory processes are increasingly brought to bear to aid 

performance as the task develops. Certainly, experimental manipulations of the 

weather prediction task aimed at reducing the contribution of explicit processing, such 

as the introduction of a secondary tone counting task (Foerde, Poldrack, & Knowlton, 

2007) or reducing the amount of time available to process feedback (Price, 2009), 

result in lower accuracy on the task. 

The current study investigates whether performance on the task is predictive of 

language-related attainment in a large unselected sample of children. It also explores 

the extent to which performance on the task may involve declarative learning. 

Consistent with the overall aims of the thesis, it also takes care to examine the 

reliability of the task.   

8.2 Method 

8.2.1 Participants 

The same participants recruited into the study in Chapter 7 were tested on a weather 

prediction task in small groups on two occasions a week apart. Means and standard 
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deviations for attainment and declarative memory measures were, therefore, the same 

as those in Chapter 7 (see Table 7.1). 

8.2.2 Task and testing procedures 

In the weather prediction task participants are shown arrangements of stimuli (cue 

arrangements) and are asked to classify these arrangements into one of two possible 

outcomes. Cue arrangements include 1 to 3 stimuli out of a total possible set of 4. The 

task has a probabilistic structure, with each stimulus given a fixed probability of a 

certain outcome. The probability of an outcome on any given trial is, therefore, based 

on the combined probability of the cue arrangement that is displayed. Overall the two 

outcomes occur with equal frequency. Participants are not aware of the probabilistic 

nature of the task. After each trial feedback based on the cue-outcome probabilities 

informs them whether their choice was correct or incorrect. A trial is scored correct if 

it accords with the conditional probabilities of the cue arrangement shown, regardless 

of “correct / incorrect” feedback to the participant. This means the percentage score 

allocated to each participant reflects how well they have learned the probabilistic 

associations between cue arrangements and outcomes. 

The cue-outcome probabilities associated with outcome 1 in the original weather 

prediction task were .75, .57, .43, and .25 (Knowlton et al., 1994). However, a study 

with children with developmental language disorder and typically developing controls 

found no learning on a task using these weights (Kemény & Lukács, 2010). A weather 

prediction task was, therefore, designed that used the identical probabilistic structure 

to the task in Gluck et al. (2002, Experiment 2). The cue-outcome probabilities 

associated with outcome 1 in this version of the task (0.2, 0.4, 0.6, and 0.8) were such 

that responding with the most likely category for each pattern would result in the 

correct prediction in 83% of trials, as opposed to the 76% in Knowlton et al’s (1994) 

original task. This version of the task was selected in order to maximize the number of 

participants who perform above chance. See Table 8.1 for the outcome frequencies of 

each arrangement. 
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Table 8.1 Cue arrangements and outcome frequencies of the weather prediction task 

Pattern Cues present Park Pool Total 

A 0001 17 2 19 

B 0010 7 2 9 

C 0011 24 2 26 

D 0100 2 7 9 

E 0101 10 2 12 

F 0110 3 3 6 

G 0111 17 2 19 

H 1000 2 17 19 

I 1001 3 3 6 

J 1010 2 10 12 

K 1011 5 4 9 

L 1100 2 24 26 

M 1101 4 5 9 

N 1110 2 17 19 

TOTAL  100 100 200 

 

8.2.2.1 Stimuli 

The task used verbal nameable pictures to investigate the link between verbal 

probabilistic category learning and language-related ability and was given a theme to 

appeal to children. The task introduced the children to four minion friends who each 

attended a different class at Minion school (see Figure 8.1). Each minion held a placard 

emblazoned with their class emblem. These placards were the verbal nameable 

pictures associated with the probabilistic outcomes. Participants were informed that 

each break time the minions decided whether to visit the park or the pool after school. 

On each trial the children were asked to predict which of these two alternatives the 

minions would pick, depending on which minions appeared in the playground at break 

time.  

Two versions of the task were developed that were identical in all but the four 

nameable pictures used as stimuli (WPT1: Hat, Leaf, Book, Cup; WPT2: Ball, Car, 
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Fork, Shoe). The tasks each contained 200 trials and the trial order was pseudo-

random, such that no repeats of cue arrangements on consecutive trials. The left to 

right order of the individual stimuli within each prescribed cue arrangement was 

randomized, so that individual stimulus locations within each arrangement could not 

serve as an additional cue. The testing lag between task attempts was one week. 

    

Figure 8.1 Two screenshots from the weather prediction task. 

 

8.2.2.2 Group administration Procedure 

One to one testing on implicit learning tasks is a lengthy process. For this reason a 

process was trialled that administered tasks to children in small groups. The task was 

hosted on an external server, which enabled groups of 8 to 12 children at a time to dial 

in to the task from school Information and Communication Technology (ICT) suites, 

using school computers. Group administration of the weather prediction task, made it 

possible to test all participating children in any given class within a single 90 minute 

session.  

At the start of every group session each participating child was allocated to a 

computer and was asked to click a link on a web-page pre-loaded by the experimenter 

in order to enter the experiment. The children were then asked to enter a simple unique 

code as an identifier. The experimenter then explained the task to the children as a 

group, with children asked to follow the written version of these instructions on the 

screens in front of them, clicking the “Next” button in time with the rest of the group, 
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as prompted by the experimenter until the instructions were completed. The children 

were then told to click the “Start button” on the final instruction screen to begin the 

experiment individually. The experiment itself was self-paced and children returned 

to class on completion, in order not to disturb those still working on the task. The 

sessions were closely monitored by the experimenter to keep communication between 

the children to a minimum during the task.  

8.2.2.3 Test of task knowledge 

At the end of the second task children were asked four questions to gauge the extent 

of their explicit knowledge of single cue-outcome associations. For each of the four 

cues, they were asked to judge how likely the Minion was to want to go to the park or 

the pool. To respond the children had to click on 1 of 5 options displayed horizontally 

from left to right on the screen. Each option was associated with a score on a Lickert 

scale (1 to 5) 

Does [Minion Cue] love the park or the pool? 

Press this button if you think that [Minion cue]… 

…always wants to go to the park (1) 

…prefers the park, but not all the time (2) 

…likes them both the same (3) 

…prefers the pool, but not all the time (4) 

…always wants to go to the pool (5) 

 

8.3 Results 

The 200 trials on the weather prediction task were split into four blocks of 50 trials. 

The percentage of optimal responses were measured for each block. Procedural 

learning was defined as above chance performance that significantly improved across 

the 4 blocks of the tasks. Two of the arrangements (F and I) had an average predictive 

value of 50% and were scored as correct, regardless of the answer given by the 

participant. This meant that performance above chance level would be reflected by an 
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overall percentage score of over 56% rather than 50%, since these two cue 

arrangements appeared on 6% of the trials (12 times across the 200 trials). 

Means and standard deviations by block and task total for both tasks are in Table 

8.2. The percentages of optimal responses were higher on the second compared to the 

first task. Performance on the first block of WPT1 was at chance, but was slightly 

greater than chance on the remaining three blocks. The mean percentage of optimal 

responses was considerably higher on the first block of WPT2, suggesting that a 

strategic approach to the task may have developed by the second attempt, since 

although the cues themselves were different on the second task the probability weights 

associated with the cues were identical to the first task. Performance continued to 

improve over the course of the second task. 

Table 8.2 Means and standard deviations by block and task total for both task attempts. 

 WPT1 (n = 107) WPT2 (n = 103) 

 Percentage of 

Optimal Responses 

SD Percentage of 

Optimal Responses 

SD 

Block 1 56.6 5.98 60.37 9.31 

Block 2 58.21 8.83 62.56 11.29 

Block 3 58.22 8.10 62.37 11.49 

Block 4 58.36 8.48 63.34 11.48 

Total 57.85 6.26 62.16 9.03 

 

Once again, mixed effects models (Rabe-Hesketh & Skrondal, 2012) in Stata 

(13.0) were used to analyse the percentage of optimal responses for each task 

separately. Block was entered as a fixed effect and item and participants as crossed 

random effects to take account of participant variability.  

For the first task Block was a significant predictor of percentage of optimum 

responses (Block 1 – 4 unstandardised regression coefficient = 1.757, z = 2.30, p = .02, 

95% CI [.26, 3.25]. The result was similar on the second task (Block 1 – 4 
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unstandardised regression coefficient = 2.97, z = 3.01, p < .001, 95% CI [1.04, 4.91], 

such that both tasks showed significant improvement in performance over the course 

of the four blocks of trials (see Figure 8.2). 

 

Figure 8.2 Percentage of optimum responses on both attempts at the weather prediction task with 
95% confidence intervals. 

 

8.3.1 Task measures and reliability  

The implicit learning measure used for each child was the mean percentage of 

optimal responses across all four blocks of each task. Test-retest reliability of this 

measure was moderate (r = .46). Test-retest reliability of the last block of the task was 

slightly higher (r = .50). 

8.3.2 Correlations 

Correlations between the weather prediction tasks and the attainment and 

declarative memory variables from Chapter 7 for the whole sample were uniformly 

low (see Table 8.3). Low but significant correlations were noted between WPT2 and 

NVIQ (r = .21), the TOWRE word reading test (r = .26) and long-term verbal 

declarative memory (WL-C) on the CMS word lists free recall task (r = .21), but these 

were no longer significant once Bonferroni corrections had been made. There were no 
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correlations between implicit learning on the serial reaction time task and performance 

on either of the weather prediction tasks. 

However, it was noted during the task that a number of children appeared to be 

randomly pressing buttons throughout the tasks. Observations were, therefore, 

restricted to the 38 participants who displayed learning on both tasks (ie: those 

participants whose percentages of optimal responses were above 56 % on both tasks), 

in case the chance-level performance of children who did not engage with the tasks 

was masking any underlying relationships between variables (see second two columns 

of Table 8.3). There were no significant correlations for the first task, but the 

correlation between WPT2 and TOWRE word reading increased (r = .36), as did the 

correlation between WPT2 and long-term verbal declarative memory (WL-C) on the 

CMS word lists free recall task (r = .53). This relationship was even evident on the 

first block of the task (WL-C and WPT2 Block 1 r = .36).  The correlation between 

WPT2 and the verbal short-term memory (WL-L) was also significant (r = .32). These 

results suggest that children who performed the weather prediction tasks well may 

have better than average verbal declarative memory and word reading skills, although 

once again the correlations were not significant after applying Bonferroni corrections 

for multiple comparisons.  
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Table 8.3 Correlations between weather prediction tasks and attainment and memory measures 
(from Chapter 7) by overall sample and for the subgroup of participants who achieved above 
chance performance on both attempts at the weather prediction tasks. 

 
Overall Sample 

 Subgroup performing 

above chance (n= 38) 

 WPT1 WPT2  WPT1 WPT2 

Age in months -.06 .01  -.14 -.08 

TROG-2 (Total correct) .11 .15  .09 .16 

TOWRE-2 Words .09 .26*  .15 .36* 

TOWRE-2 Nonwords -.03 .17  .00 .24 

Arithmetic composite .05 .19  .04 .05 

WASI .17 .21*  .11 .21 

Word Lists (WL)      

     Learning .05 .14  .19 .32* 

     Delay -.02 .12  .15 .28 

     Consolidation -.05 .21*  .12 .53* 

SRT1 RT Difference Score -.04 -.13  -.23 .02 

SRT2 RT Difference Score -.00 .08  -.09 .10 

*p < .05 

8.3.3 Task performance and declarative learning 

To explore the question of whether improved performance towards the end of the 

task reflected declarative learning, rather than implicit learning, the children’s 

judgements on the 5-choice explicit tests on WPT2 were examined. Cue 1 was strongly 

associated with “The Pool”, Cue 4 was strongly associated with “The Park. Cues 2 and 

3 had weak associations with the outcomes. This meant that the appropriate response 

for Cue 1 was a high score on the Lickert scale (4 or 5) and the appropriate response 

for Cue 4 was a low score (1 or 2). Cue 2 should also tend towards higher scores and 

Cue 3 lower ones. 

The explicit judgement scores for each cue were entered into a multiple regression 

with the percentage of optimal responses on the last block of the WPT2 task as the 

dependent variable, since by then any declarative learning should be well established. 
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A significant model emerged, F(4,98) = 5.68, p < .001, which explained 15.51% of the 

variance in performance on the last block of the task (Adjusted R2 = .155). Table 8.4 

gives the regression coefficients and other information for the four predictor variables. 

As hypothesized, Cue 1 and Cue 4, which were both associated with outcomes with a 

high probability, were significant predictors of performance. Cue 2 and 3 were not 

significant (although their coefficients were in the right direction). This suggests that 

children used explicit knowledge of the two predictors with strong associations with 

outcome to guide their performance on the task, such that seeing Cue 1 within a cue 

arrangement would lead them to select “The Pool” and seeing Cue 4 within a cue 

arrangement would lead them to select “The Park”. 

Table 8.4 Regression coefficients for each cue for the model predicting performance on last block 
of WPT2. 

Predictor variable B SE β p 95% CI 

Cue 1 3.29 1.01 .32 <.01 [1.28, 5.30] 

Cue 2 .73 .86 .08 .40 [-.97, 2.43] 

Cue 3 -.03 .84 -.00 .97 [-1.70, 1.64] 

Cue 4 -2.00 .78 -.24 .01 [-3.55, -.46] 

Coefficients for Cues 3 and 4 are negative, as they were associated with lower values on the 

Lickert scale. 

 

Similar regression models for the other blocks of the task showed that explicit 

knowledge of the cue-outcome associations did not predict performance on the first 50 

trials of the task. On the second and third blocks such knowledge was already a 

significant predictor of performance, however, explaining 12.69% and 13.23% 

respectively of the variance in performance (2nd Block: F(4.98) = 4.71, p = .002; 3rd 

Block: F(4.98) = 4.89, p = .001), although only explicit knowledge of Cue 1 was 

significant in both cases (Cue 1 for Block 2 and Block 3: beta = .30, p = .003). The 

regression model for the task as a whole was almost identical to the one for the last 

block (WPT2 Total: F(4.98) = 5.51, p < .001). 
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8.4 Discussion 

Performance on the first attempt at the weather prediction task was only just above 

chance, but this improved on the second attempt, where performance with new stimuli 

was already above chance in the first block of 50 trials and continued to improve across 

the course of the task. At first glance these results could be taken to indicate the 

presence of implicit learning on the second task. However, explicit judgements at the 

end of the second task showed that knowledge of single cue-outcome associations 

guided performance. Correlations between overall task performance and other 

variables were low, but relationships between performance on the second task and both 

verbal declarative memory and word reading fluency were evident in the subset of 

participants who displayed learning on the tasks, such that better prediction of 

probabilistic associations between cue and outcome was related to more proficient 

verbal memory and reading performance. The tasks were also shown to be moderately 

reliable. 

8.4.1 The reliability of the task 

The reliability of the weather prediction task in this study was not high, but it was 

considerably better than the other implicit learning tasks used in this thesis. Why might 

this be the case? Firstly, the implicit learning score for the weather prediction task 

avoided the use of difference scores, relying on the number of optimal responses in a 

dichotomous forced choice format instead. Difference scores are inherently unreliable 

(Lord, 1958; Overall & Woodward, 1975), as has been discussed in Study 1 (see 

Chapter 7) and this may have played a role in the better reliability of the task.  

The task also required participants to make judgements that were associated with 

varying levels of probability. Siegelman, Bogaerts, & Frost (2017) report that tasks 

that include trials of varying levels of difficulty are likely to be more reliable when 

measuring complex, multi-faceted constructs, such as implicit learning, than tasks that 

constrain trials to a single type and level of difficulty. The weather prediction task 

performs well against this criterion.  
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However, Siegelman et al. (2017) also cautioned that task reliability will be 

adversely affected when the proportion of participants that perform better than chance 

is low, since chance level performance adds nothing but noise to the data. In this study 

less than 40% of the participants performed above chance on both occasions of taking 

the task. This can be compared unfavourably to the 80% of healthy adult participants 

that performed above a criterion of 65% on a task with identical cue outcome 

probabilities in Gluck et al. (2002). One obvious difference between Gluck et al’s 

study and the current study is the age of participants. Perhaps the reliability of the 

current weather prediction task is no better than moderate on account of the young age 

of the children taking the task. This conjecture is consistent with the reasonable level 

of reliability found in the pilot serial reaction time task in adults and the poorer 

reliability in the subsequent study in children reported in Chapter 7. 

This study also trialled group administration of the weather prediction task in an 

effort to reduce testing time. This has clear benefits for researchers, but also benefits 

schools, as testing of large numbers of children can be accomplished in a short time 

with minimum disruption to teaching. For budgetary reasons, children in this study 

accessed the task using the schools’ own ICT equipment. This had the advantage that 

children were familiar with the computerized equipment. However, ICT provision 

differed from school to school. Some provided desktops and mice with a dedicated 

ICT suite. Others provided laptops with integrated trackpads and no dedicated space 

for testing. While the weather prediction task does not rely on response times which 

would have been confounded by such differences, this is still less than ideal. In spite 

of these differences, group administration of the tasks worked well and the children 

were minimally distracted by the presence of others. However, it is possible that this 

mode of administration may have had a further negative impact on task reliability. Not 

least, giving the task to children in small groups, rather than individually, may have 

influenced how assiduously some of the children applied themselves to the task and 

this may have been a factor in the chance level performance in some cases.  
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8.4.2 The extent of explicit learning on the task 

This study was also concerned with the extent to which performance on the 

weather prediction task reflected declarative rather than implicit memory processes. If 

successful task performance is shown to utilize declarative learning, then ascribing the 

impaired performance on the task of language-disordered groups to deficits in 

procedural learning may be premature. Certainly, Gabay et al. (2015) found evidence 

that impaired performance on the weather prediction task by dyslexic participants was 

due to impaired explicit learning of cue-outcome relationships, rather than deficits in 

procedural learning. This study used a simplified version of a method devised by 

Newell, Lagnado, & Shanks (2007) to probe the extent of participants’ explicit task 

knowledge about single cue-outcome probabilities. Newell et al’s method asked 

participants to estimate the probability that each cue predicts a particular outcome. The 

difference between this figure and the actual probability was then taken as an 

indication of task knowledge. This explicit testing method was considered too 

mathematically sophisticated for 7 year-old children, so a simpler version with a 5 

point scale was designed. Regression analyses showed that the explicit judgements for 

the two probable cues predicted performance, while the judgements for the two weaker 

cues did not. These results indicate that explicit learning of single cue-outcome 

associations on the weather prediction task in children is limited to the cues with a 

strong association with a particular outcome, ie: the children focus attention on the 

highly predictive cues and respond based on their presence or absence in the stimuli 

arrangements. This conjecture is in line with similar findings for the artificial grammar 

learning task by Perruchet and Pacteau (1990) who demonstrated how implicit learning 

performance in such tasks could be explained by the explicit learning of simple 

bigrams, rather than by abstraction of complex rules. However, overall the number of 

children using this simple strategy successfully in the current study was small and 

generally performance on the task was not very good. 

The study also found performance on the second weather prediction task related to 

measures of verbal declarative memory on the CMS Word Lists free recall task, such 

that children with superior declarative memory skills were better at the task. This 
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finding is consistent with the hypothesis that explicit memory processes aid 

performance on the task. This was particularly the case for the long-term verbal 

declarative memory measure (WL-C) and a significant correlation was even found 

with the first block of the second task. This may indicate that, in spite of the different 

stimuli set used on each task, the improved performance from the very beginning of 

the second task compared to the first one was linked to recall of statistical or deductive 

reasoning strategies that were honed on the first occasion of taking the task.  

However, there are two specific characteristics of the weather prediction tasks used 

in this study that may make it more susceptible to declarative learning than the original 

version of the task. Firstly, the tasks in this study used verbal stimuli (nameable 

pictures) as cues, compared to the ostensibly non-verbal tarot cards or geometric 

shapes more typically used, and it is possible that this contributed to the development 

of declarative knowledge of cue-outcome relationships. Being able to apply verbal 

labels to the cues makes it possible to formulate verbalisable rule-based strategies, 

which in turn facilitates explicit learning processes, thereby improving categorization 

accuracy (Fotiadis & Protopapas, 2013; Price, 2009).  

A second characteristic that can be linked to declarative learning is the probabilities 

assigned to the cues in the tasks. Gluck et al. (2002) tested adult participants on two 

versions of the weather prediction task. The first version used Knowlton’s et al’s 

(1994) original cue-outcome weights and resulted in 30% of participants reaching a 

performance criterion of 65% correct judgements. The second version used the 

probabilities in the current task and, as already noted, 80% of participants achieved the 

same criterion. Fotiadis and Protopapas (2013) linked this improvement in 

performance to declarative learning, with the stimuli in the latter version made more 

explicitly discriminable by virtue of their adjusted probabilities. The version of the 

task used in this study was selected with the aim of maximizing the number of children 

performing above chance, but it may be that improved performance on the task as a 

result of more discriminable probabilities necessarily involved declarative learning. 
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To conclude, the results of the current study suggest that the weather prediction 

task may not be a good task to investigate implicit learning processes, while also 

highlighting some particular difficulties in using this task with young participants. 

Although the reliability of the task was moderate, only a relatively small proportion of 

children performed above chance. In this subset of participants, declarative knowledge 

of single cue-outcome probabilities for the two more heavily weighted cues 

significantly predicted task performance in all but the first block of 50 trials, becoming 

a progressively stronger predictor as the task progressed. Finally, regardless of 

declarative or implicit labels, this study ultimately found little evidence that 

performance on the task was related to language skills. The relationship with word 

reading fluency was weak. Even in the subset of participants who performed above 

chance, correlations were not significant once adjustments for multiple comparisons 

were made.  
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Chapter 9 Study 5: Procedural and declarative learning in dyslexia 

9.1 Introduction 

This study investigated whether impaired procedural learning is a potential cause 

of reading difficulties in dyslexia. The sample comprised a group of children with 

dyslexia and a younger typically developing group matched for reading ability. 

Measures of procedural learning, declarative learning and attention were taken for both 

groups. This design addresses a possible criticism of the correlational design used in 

earlier chapters. The studies in the previous chapters have recruited children unselected 

for ability in order to investigate the procedural deficit hypothesis without the 

methodological limitations of group designs. However, if procedural memory deficits 

are linked to language pathology only and not to language ability more broadly, it is 

possible that correlational designs do not include enough children with severe reading 

and/or language disorder in order to show evidence of any significant relationship. In 

support of this view, Stoodley et al. (2008) found impaired procedural learning 

performance in a group of children with dyslexia, but unimpaired performance of both 

typically developing controls, as well as a group of “garden variety poor readers”, 

whose reading impairment was linked to general underachievement.  

An additional rationale for this study is that the majority of studies investigating 

the procedural deficit hypothesis have used an age-matched control group. An 

advantage of using a reading ability-matched design instead is that it allows an 

inference to be made about the direction of causation, if any deficit in procedural 

learning is found. This is because any difference in procedural learning cannot be the 

result of differences in reading ability. This study, therefore, investigates whether 

impaired procedural learning is a potential cause of reading difficulties in dyslexia, 

using a sample of children with dyslexia and a younger typically developing group 

matched for reading ability. 

In this study, the dyslexic sample was drawn from a group of children with a formal 

diagnosis of dyslexia attending specialist schools, while a comparison group that was 

twice as large was drawn from younger children in mainstream classrooms that had 
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been recruited for the study in Chapter 7 study. Maximising the number of typically 

developing controls should minimize the effect of individual differences in this group 

(Lukacs & Kemeny, 2014).  

9.2 Method 

A comparison of children with dyslexia and reading age-matched controls was 

used to evaluate differences in procedural and declarative learning. Ethical approval 

for the study was granted by the UCL Research Ethics committee. 

9.2.1 Participants 

Seventy two children aged between 7 and 11 years took part in the study. There 

were 24 children with dyslexic difficulties (mean age = 117.67 months; SD = 13.81) 

and 48 typically developing reading-ability matched controls (mean age = 91.67 

months; SD = 5.76). The dyslexic group was recruited from specialist schools for 

children with dyslexia in both Surrey and North London. Data from 48 children who 

were part of the sample in Study 4 were used to form the reading age control group. 

The control group children were matched with the dyslexic group on reading fluency 

on the TOWRE sight word efficiency test.  

9.2.2 Measures and procedure 

The dyslexic children were tested individually on the following measures that have 

been used in previous chapters. Children were tested in two 25-minute sessions one 

week apart. Tasks were completed in a fixed order.  

Reading ability was examined using the test of word and non-word reading 

efficiency (TOWRE-2: Torgesen, Wagner, & Rashotte, 1999); verbal declarative 

learning was assessed using the Word Lists subtest from the Children’s Memory Scale 

(Cohen, 1997), including learning, delayed and consolidation scores; procedural 

learning was assessed using the 1000 trial version of the probabilistic serial reaction 

time task used in Study 4; and the 9-item SRT attention rating scale was used to assess 
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the level of attention the children paid to the serial reaction time task. An additional 

measure of attention (GoNoGo Task) was also included and is described below. 

GoNoGo task. Children completed a computer task to provide a measure of 

behavioural inhibition. The first 30 trials of this task presented a cartoon bug which 

children were instructed to ‘splat’ as quickly as they could in order to establish their 

pre-potent response. There were variable lengths of inter-stimulus interval (300 ms, 

600 ms, 900 ms) to ensure children waited until the target was presented before 

responding. The bug stimulus was presented for 800 ms, during which time children 

were able to make their response by pressing the spacebar on the computer keyboard.  

If children responded in less than 800 ms, “Splat!” appeared on the screen for 500 ms. 

If the button was not pressed in this time “Too slow!” appeared for 500 ms. Following 

these trials, a test phase presented 80 GoNoGo trials. Children were instructed to press 

the button to splat bugs, but to inhibit their response when a ladybird was presented. 

There were 60 presentations of the bug (Go trials) and 20 presentations of the ladybird 

(NoGo trials), with trials presented in a random order. The task lasted approximately 

5 minutes. Stimuli were presented and responses recorded using E-Prime Software 

(version 2.0). The number of NoGo trials successfully inhibited was used as a measure 

of behavioural inhibition. 

9.3 Results 

Twenty four dyslexic children were tested and compared to a control group of 48 

children matched for reading fluency on the TOWRE-2 word reading test that were 

taken from the sample of 112 children tested in Study 4 (Chapter 7). The means, 

standard deviations and reliabilities for all tasks are shown in Table 9.1 by group. As 

expected, in spite of being matched for word reading fluency (TOWRE-2 Word 

Reading Raw Score) the word and non-word reading standard scores of the dyslexic 

group were considerably lower than the typically developing group. Although the 

mean scores for the verbal declarative memory measures and for SRT rated attention 

were higher for the dyslexic group than the control group, further analyses showed 

these differences were not significant (ANOVA with group (2 levels) and declarative 
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memory (3 levels): F (1, 70) = 2.03, p = .159, 
2
p  = .03; t-test for SRT rated attention: 

t (70) = -1.14, p = .26, d = -.28). However, results showed that the two groups were 

not equated for performance on the GoNoGo task, with the dyslexic group 

demonstrating significantly lower levels of response inhibition, t (69) = 3.13, p = .003, 

d = .78.
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Table 9.1 Means, standard deviations and task reliabilities by group, with group differences and effect sizes. 

 Typically developing Group (n = 48)  Dyslexic Group (n = 24)    

 Mean SD Min Max  Mean SD Min Max  t d Reliability  

Age in months 91.67 5.76 83 105  117.67 13.81 93 138  -11.28 -2.82 - 

Gender (f/m) 29 / 19 - - -  17 / 7  - - -    - 

Handedness 47 / 1 - - -  19 / 3 - - -    - 

TOWRE-2             .90 r 

     Words (raw)  51.96 11.60 11 62  50.58 17.60 20 88  .40 .10  

     Words (standard)  108.56  9.47  82  124  90.13 11.38 65 120  7.28 1.82  

     Non-words (raw) 29.58 9.92 0  50  22.67 10.68 5 48  2.72 .68  

    Non-words (standard)  112.67  10.76 79  135   92.00 8.98 73 113  8.10 2.02  

Word Lists             .84s 

     Learning 30.96 6.20 16 45  33.38 5.75 21 40  -1.60 -.40  

     Delay 5.60 1.93 1 9  6.17 1.79 3 9  -1.19 -.30  

     Consolidation 4.08 1.92 0 8  4.21 1.67 1 7  -.27 -.07  

NoGo Accuracy 13.79 2.93 5 20  11.42 3.19 4 17  3.13 .78 - 

SRT1 RT Difference 0.13 0.05 0.02 0.23  0.14 0.06    -.37 -.09 .26 r 

SRT Attention 6.88 1.51 3 9  7.31 1.51 3 9  -1.14 -.28 - 
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9.3.1 Procedural Learning 

The principal measure of procedural learning for serial reaction time tasks is the 

difference between the response times for trials that follow a predictable sequence and 

those that do not. For the RT analyses in this task, only correct responses were included 

and data was screened and prepared using the same procedures followed in previous 

chapters. See Table 9.2 for means and standard deviations for each group.  

Table 9.2 Serial reaction time task RT means and standard deviations for dyslexic and control 
groups by sequence and epoch 

Epoch Dyslexic group (n = 24)  Control group (n = 48) 

 Probable Improbable  Probable Improbable 

1 583.21 (150.13) 629.83 (152.42)  725.25 (177.89) 778.11 (211.96) 

2 550.82 (117.32) 624.97 (139.72)  650.20 (134.96) 726.68 (163.21) 

3 520.24 (95.07) 617.30 (148.69)  608.98 (128.17) 676.65 (130.23) 

4 508.46 (101.85) 583.52 (113.40)  573.02 (107.04) 685.78 (171.87) 

5 492.31 (97.89) 585.92 (126.94)  559.06 (109.98) 691.66 (174.47) 

 

There was evidence of procedural learning on the serial reaction time task in both 

groups. As shown in Figure 9.1, RTs for the probable sequence were faster than for 

the improbable sequence across all blocks in both groups.  
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Figure 9.1 SRT task RTs for the probable and improbable sequences by dyslexic (DD) and typically 
developing control groups (TD), with 95% confidence intervals. 

 

To investigate whether there was a difference between groups in the level of 

procedural learning on the serial reaction time task a mixed factorial Analysis of 

Variance (ANOVA) was performed with group (2 levels: control group vs. DD) as a 

between participants variable, and sequence (2 levels: probable vs. improbable) and 

epoch (5 levels: epochs 1-5) as within participant variables. This method of analysis 

was selected to facilitate comparison with the results of previous group design studies 

of procedural learning and dyslexia. Mauchly’s test indicated that the assumption of 

sphericity had been violated for the main effects of epoch (2(9)= 67.39, p < .001) and 

for the interaction between sequence and epoch (2(9)= 27.42, p = .001). Therefore 

degrees of freedom were corrected using Greenhouse-Geisser estimates of sphericity.  

Results showed that RTs on probable sequences were significantly faster than on 

improbable sequences across groups (F (1, 70) = 280.58, p < .001, partial eta squared 

= .80) (Probable sequence mean = 592 ms, SD = 124.11 ms; improbable sequence 

mean = 677.29 ms, SD = 140.76 ms). There was a main effect of epoch (F (2.50, 

174.69) = 20.39, p < .001, partial eta squared = .23), indicating a significant decrease 

in RT across the epochs of the task. There was also a main effect of group (F (1, 70) 
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= 10.04, p = .002, partial eta squared = .13) such that children with dyslexia were 

significantly faster on the task compared to the control group, regardless of sequence 

(Dyslexic group mean  = 569.66 ms, SD = 108.61 ms; Control group mean = 667.54 

ms, SD = 130.28 ms). Critically, however, despite overall differences in RT the two 

groups did not differ in the level of procedural learning as indicated by the non-

significant interaction between group and sequence (F (1, 70) = 1.27, p = .26, partial 

eta squared = .02) and group, sequence and epoch (F (3.30, 230.79) = 1.72, p = .16, 

partial eta squared = .02). Therefore, procedural learning appears to be equivalent in 

both groups.  

9.3.2 Correlations by group 

Sample sizes were small, but correlations for each group were examined to see if 

the pattern of relationships between the measures in the study differed by group. 

Correlations between the measures for each group were generally low (apart from the 

expected relationships for reading measures and for verbal declarative memory 

measures) and similar to one another (see Table 9.3 and Table 9.4 for correlations by 

group). 
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Table 9.3 Correlations between measures for the dyslexic group. Pairwise correlations are above the diagonal and partial correlations controlling for age are below the 
diagonal (*p < .05). 

 1. 2. 3. 4. 5. 6. 7. 8. 9. 

1. Age in months  .76* .67* .35 .29 .07 -.02 -.14 .49* 

2. TOWRE-2Words .76*  .82* .11 .11 -.15 -.02 -.06 .48* 

3. TOWRE-2 Non-words .67* .63*  .28 .14 .13 -.08 -.16 .48* 

4. WL-L .35 -.26 .06  .68* .41* .19 -.30 .14 

5. WL-D .29 -.18 -.08 .65*  .32 .09 -.16 -.17 

6. WL-C .07 -.31 .11 .41 .32  -.34 -.07 -.09 

7. NoGo Acc -.02 -.00 -.09 .21 .11 -.34  .01 .27 

8. SRT RT Difference -.14 .07 -.09 -.28 -.13 -.06 .01  .04 

9. SRT Rated Attention .49* .19 .24 -.04 -.37 -.15 .33 .12  

 

Table 9.4 Correlations for the control group. Pairwise correlations are above the diagonal and partial correlations controlling for age are below the diagonal.  

 1. 2. 3. 4. 5. 6. 7. 8. 9. 

1. Age in months  .19 .29* .09 -.09 .08 .23 .07 .11 

2. TOWRE-2Words .19  .77* .32* .07 .23 .42* .16 .36* 

3. TOWRE-2 Non-words .29* .76*  .34* .06 .22 .24 .12 .30* 

4. WL-L .09 .32* .33*  .72* .60* .06 -.01 .13 

5. WL-D -.09 .09 .09 .73*  .67* -.18 -.10 -.05 

6. WL-C .08 .22 .21 .60* .69*  -.10 .03 -.10 

7. NoGo Acc .23 .40* .19 .05 -.16 -.11  .02 .43* 

8. SRT RT Difference .07 .15 .10 -.02 -.09 .03 .01  .17 

9. SRT Rated Attention .11 .35* .29 .12 -.05 -.11 .43* .16  
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The control group showed a low but significant correlation between short-term 

declarative verbal memory (WL-L) and word and non-word reading (r’s = .32 and .34 

respectively), which was absent in the dyslexic group. Both groups also displayed 

significant correlations between rated attention on the SRT task and word and non-

word reading and these were larger for the dyslexic group (r’s .48 and .48) =  than the 

typically developing control group (r’s  = .36 and .30 respectively).  

However, the mean age of the dyslexic group was approximately 2 years older than 

the typically developing group, and the age range far greater. Age in the dyslexic group 

was significantly related to word (r = .76) and non-word reading (r = .67), as well as 

to the level of attention paid to the SRT task (r = .49), so partial correlations were also 

estimated for both groups that controlled for the effect of age (see Table 9.3 and Table 

9.4, which also list partial correlations for all measures for both groups). Once this was 

done the relationship between SRT rated attention and word and non-word reading in 

the dyslexic group was no longer significant. The difference between the correlation 

for word reading and short-term verbal declarative memory for the two groups 

increased (see Figure 9.2), only remaining positive in the control group (Dyslexic 

group r = -.26; Control group r = .32*). 

 

Figure 9.2 Left scatterplot showing relationship between word reading and short-term declarative 
memory for each group, with linear fit lines. Right plot shows same relationship, but controlling 
for age. 

 

A moderate correlation between the two measures of attention (SRT rated attention 

and GoNoGo accuracy) in the control group (r = .43), suggested a degree of construct 
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validity for the SRT attention rating scale, as both tasks are broadly indexing aspects 

of attention, although this correlation was absent in the dyslexic group. Crucially, there 

was no relationship between procedural learning on the serial reaction time task and 

any other variables for either group, regardless of whether the correlations controlled 

for age or not.  

9.4 Discussion 

This study compared the performance of a group of children with dyslexia and a 

typically developing control group matched for reading ability on a range of tasks 

investigating procedural and declarative learning and attention. This design enabled 

comparison of children who differ in their ability to learn to read but who have 

developed equal levels of reading skill. Reading level designs like this can shed light 

on the causal direction of relationships between memory skills and reading that an age-

matched comparison cannot do, since differences in task performance cannot be 

attributed to difference in reading ability. However, a drawback of this design is that 

while significant group differences might suggest that procedural learning plays a 

causal role in reading development, the absence of a significant difference between 

groups does not necessarily imply there is not a causal relationship (Goswami & 

Bryant, 1989). 

9.4.1 Procedural learning 

This study showed that children with dyslexia show comparable levels of 

procedural learning to that shown by the reading ability-matched control group of 

typically developing children. Furthermore, individual differences in procedural 

learning did not correlate with word or non-word reading in either group.  

Examining performance of the two groups on the serial reaction time task in more 

detail does highlight some interesting differences, however. First, the dyslexic group 

were faster overall on the task than the control group. This can be attributed to the fact 

that they were older, but a second difference between the groups is more interesting. 

Although, the interaction between group and epoch was non-significant, Figure 9.1 
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shows that the slopes for both sequenced and random trials for dyslexic children in the 

first half of the task is flatter than for typically developing children. This might indicate 

poorer initial motor learning in the dyslexic group. Furthermore, while children with 

dyslexia show evidence of implicit learning, RTs to improbable trials continue to 

decrease in speed even at the end of the task. Given that children with dyslexia are 

showing clear evidence of implicit learning we should expect RTs on improbable trials 

to increase as they do in the control group or plateau. Decreasing RTs to the end of the 

task on the random sequence can only indicate continued motor learning right through 

to the late stages of the task. This pattern may indicate that extraneous factors, such as 

impaired coordination or motor learning (Ramus, Pidgeon, & Frith, 2003) influence 

the performance of children with dyslexia on serial reaction time tasks.  

9.4.2 Declarative learning 

More surprisingly, there was no significant difference between the two groups in 

terms of declarative learning. However, it is possible that the increased age range in 

the dyslexic group is an explanation for this finding, Regardless of this, the dyslexic 

group did not show the same relationship between declarative learning and reading as 

the control group. There was a clear positive relationship between declarative learning 

and both word and non-word reading in the typically developing group that was absent 

in the dyslexic group. The procedural deficit hypothesis claims that declarative 

learning plays a compensatory role in language disorder (Ullman & Pullman, 2015). 

If this is correct, then we should expect to find a relationship between verbal 

declarative learning and reading in the dyslexic group and yet we do not. In spite of 

overall equivalent scores between groups on the verbal declarative memory task, the 

lack of such a relationship in the dyslexic group supports the view that verbal memory 

is indeed impaired in dyslexia (Howes, Bigler, Burlingame, & Lawson, 2003; Griffiths 

& Snowling, 2002; Kramer, Knee, & Delis, 2000; Mcdougall, Hulme, Ellis, & Monk, 

1994; Ovler, Obrzut, Asbiornsen, 2012; Tijms, 2004), at least in so far as it relates to 

reading ability. 
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9.4.3 Attention and response inhibition 

The two groups also showed similar levels of attention during the serial reaction 

time task, in spite of the older age of the dyslexic group. However, one interesting 

finding is that the dyslexic group was significantly worse at inhibiting responses on 

the GoNoGo task compared to the typically developing group. Poorer performance on 

executive function tasks such as GoNoGo in children with dyslexia has been linked to 

ADHD comorbidity (Gooch, Snowling, & Hulme, 2011; Wilcutt et al., 2001). 

However, this study found no link between response inhibition and attention rating on 

the task in this group, which could have been expected if comorbid ADHD symptoms 

were responsible for impaired serial reaction time task performance. This suggests that 

the level of attention paid to the serial reaction time task reflects a somewhat different 

aspect of attention from that which is impaired in ADHD. 

In summary, we found that both typically developing and dyslexic children 

matched for reading ability demonstrated equivalent levels of procedural learning on 

a serial reaction time task, but that this procedural learning did not relate to measures 

of reading fluency in either group. Declarative learning in the two groups was also 

comparable. However, here some differences between the groups were apparent. 

Declarative learning was related to reading fluency in the typically developing group, 

while no such relationship was found in the dyslexic group. The results of this study 

call into question the claims of the procedural deficit hypothesis, casting doubt on the 

assumption that impaired procedural learning is behind the pattern of deficits seen in 

dyslexia or that declarative learning plays a compensatory role over time. 
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Chapter 10 General discussion 

10.1 Summary 

This thesis set out to investigate the claims of the procedural deficit hypothesis of 

language learning disorders. The hypothesis incorporates a multiple systems view of 

memory, whereby a domain-general procedural memory system is responsible for the 

extraction of the statistical regularities that govern language. This system is separate 

from a declarative memory system that supports word-specific knowledge. It has 

further been suggested that it is particularly the procedural learning of sequentially, or 

probabilistically structured, information that is involved in language learning 

(Christiansen, Dale, Ellefson, & Conway, 2002). According to this hypothesis deficits 

in the procedural memory system are one major causal risk factor for language learning 

disorders, such as dyslexia and developmental language disorder (Nicolson & Fawcett, 

2007; Ullman & Pierpont, 2005). Research to date has used a number of implicit 

learning tasks to test the theory, but has so far delivered inconsistent results.  

A review of the literature in Chapter 3 revealed that there are a number of possible 

reasons why this might be the case. In the main, research has used extreme group 

designs, frequently with small sample sizes, giving rise to potential issues with 

reliability, as well as with classification into groups, since developmental language 

disorder and dyslexia are both heterogenous and dimensional disorders. Another issue 

with existing research is that typically only one or very few procedural learning 

measures are taken, often without declarative measures for comparison. Similarly, 

learning in verbal and non-verbal modalities is rarely examined in the same 

participants. However, the multiple systems view of memory is central to the claims 

of the hypothesis. Without multiple measures of different types of memory 

(procedural, declarative, verbal and non-verbal) across several cognitive domains it is 

not possible to assess the claim that any procedural deficit in language learning 

disorders is the product of a unitary, domain-general procedural memory system or 

that declarative memory is unimpaired. 
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10.1.1 The meta-analysis 

The starting point for this thesis was a series of meta-analyses (Chapter 4) 

assessing the existing evidence for a procedural learning deficit in language learning 

disorders. It included separate analyses for the main implicit learning tasks (serial 

reaction time task, Hebb serial order learning task, artificial grammar learning and 

statistical learning tasks and the weather prediction probabilistic category learning 

task).  

The meta-analyses yielded a significant, but small, pooled effect size reflecting 

poorer procedural learning in language-disordered compared to control groups in 

studies using serial reaction time tasks (pooled effect size g = -.28, 95% CI [-0.37, 

0.03]) or the Hebb learning task (pooled effect size g = -.31, 95% CI [-0.21, 0.23]). By 

far the largest number of studies investigating the procedural deficit hypothesis used 

the serial reaction time task. This meta-analysis could only include approximately half 

of these studies, as most reported insufficient data to calculate effect sizes and many 

were unable to supply additional data on request. However, the number of studies 

included was considerably greater than in any previous relevant meta-analyses. 

However, the small effect size in the analysis of group design studies was not 

corroborated by a similar result for the analysis of correlational studies using the serial 

reaction time task, which did not find a significant relationship between serial reaction 

time performance and language ability.  If performance on the serial reaction time task 

taps a cause of language or reading difficulties, one should expect to find a correlation 

between learning on the task and language or reading skills in unselected groups. The 

failure to replicate group deficits in procedural learning on the serial reaction time task 

in correlational designs casts doubt on the view that the serial reaction time task is a 

genuine correlate of reading or language skills.  

The effect size for group design studies using the serial reaction time task found 

by the current meta-analysis is much lower than those of several previous smaller 

meta-analyses (Lum et al., 2013; Lum et al., 2014; Obeid et al., 2016). This is likely 

to be because the analyses in this thesis took account of the between participants 
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variability for both components of the derived implicit learning measures, something 

previous meta-analyses had not done. The small effect sizes for the studies in the 

analysis likely result from the large amount of variance they encorporate, which in turn 

suggests that the tasks used in previous studies may not have been reliable and this is 

a theme we will return to later in this chapter. It should be noted that none of the studies 

in the series of meta-analyses in Chapter 4 reported the reliability of the implicit 

learning tasks they used.  

A meta-analysis of probabilistic category learning using the weather prediction 

task returned the largest significant overall effect size for the difference between 

language disordered and control groups in the series of analyses (g = -0.63, 95% CI [-

1.07, -0.19]), but there were too few studies to examine the potential effect of 

moderators such as IQ and declarative learning. The group design meta-analysis of 

artificial grammar learning and statistical learning concluded that there was a 

significant overall difference between groups (g = -0.53, 95% CI [-0.79, -0.28]), 

although the accompanying funnel plot indicated that the true effect size, although 

significant, may be quite small. Surprisingly, no moderators were found to explain any 

of the variance between studies in these analyses. Since the nonsignificant variation in 

effect sizes (or size) of the other analyses precluded investigation of potential 

moderators, it is clear that there are still many unanswered questions surrounding the 

claims of the procedural deficit hypothesis. Overall, however, the results of the series 

of meta-analyses in this thesis were in line with a recent review of group design studies 

using serial reaction time tasks and / or artificial grammar tasks with dyslexia and 

control participants (Schmalz et al., 2016). They concluded that the effect size for 

studies using the artificial grammar learning task was likely to be small. They further 

judged that evidence for a deficit in procedural learning in groups with dyslexia in 

studies using the serial reaction time task was “underwhelming” (p. 10), but that these 

studies reported too little of the necessary information to conduct a meta-analysis at 

all.  

A final notable finding was the scarcity of existing evidence to support the claim 

that any procedural deficit on the tasks was domain-general, with only four studies 
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included in the series of meta-analyses reporting significant deficits in language-

disordered groups across more than one type of task (Hsu & Bishop, 2014; Lee & 

Tomblin, 2015; Lukacs & Kemeny, 2014; Vicari et al., 2005). 

10.1.2 The experimental studies 

The experimental studies in this thesis were formulated in order to avoid the 

methodological limitations of the existing research detailed at the beginning of this 

chapter. The decision was taken to use a correlational design to examine the range of 

language and literacy ability in a large unselected sample of children and to investigate 

the relationship with both procedural and declarative memory skills on several tasks 

and to do so in both verbal and non-verbal modalities. Crucially, the reliability of all 

the implicit learning tasks was carefully assessed. None of the resulting studies found 

any evidence that procedural learning is related to language ability. 

In the first study (Chapter 5), 101 children completed a battery of language-related 

attainment tests; serial reaction time, Hebb serial order learning and contextual cueing 

tasks, as well as measures of free and immediate serial recall. Implicit learning 

measures were of a comparable length to those in the literature. The measures of 

declarative memory were reliable and loaded on separable verbal and non-verbal latent 

factors. Furthermore, in line with previous research into language disorders and 

declarative memory, variations in verbal declarative memory were stronger correlates 

of language, literacy and arithmetic skills than variations in non-verbal declarative 

memory. By contrast, the procedural memory measures were found to have poor 

reliability and showed no appreciable correlation with each other or with measures of 

attainment. 

In an effort to improve the reliability of the serial reaction time task the next study 

trialled an extended version of the task with adult participants (Chapter 6). The 

reliability of the extended task was acceptable in this sample and so the second large-

scale study in the thesis examined the relationships between performance on an 

extended 1000 trial serial reaction time task, verbal declarative learning and attainment 
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in a representative sample of 112 children (Chapter 7). A measure of attention assessed 

during the serial reaction time task was also taken. Reliability of the extended task in 

children was poor, displaying only a slight improvement compared to the first study 

and the task remained a weak correlate of reading and language. Crucially, a latent 

variable path analysis showed that the measure of attention taken during the task 

accounted entirely for the relationship between procedural learning and measures of 

reading, grammar and arithmetic. Verbal declarative learning, on the other hand, once 

again showed a significant relationship with attainment. 

The next study was motivated by the decision to explore another facet of implicit 

learning critically involved in both language acquisition and use: probabilistic 

category learning. The weather prediction task is a category learning task that has been 

used by several studies to explore the procedural deficit hypothesis (see Chapter 4). 

The aim of this was to further explore the claim that deficits in procedural learning in 

language disorder are domain-general. It assessed the relationship between the weather 

prediction task, declarative learning and attainment (Chapter 8). While the reliability 

of this task was moderate, further investigation suggested that this may have been a 

consequence of the extent of declarative learning required to perform the task well. 

The task did not correlate with attainment, nor did it correlate with the extended serial 

reaction time task administered to the same children in Chapter 7. The study also 

highlighted additional limitations of this task, particularly in children, with the 

majority of participants failing to perform above chance. The subset of children who 

did perform above chance showed a slightly different pattern of results to the overall 

sample, but participant numbers in this subset were low (n = 38 of 107). This has clear 

implications for the task from a psychometric point of view, since tasks where a large 

proportion of participants perform no better than chance are typically insensitive to 

individual differences (Siegelman, Bogaerts, Christiansen, & Frost, 2017).  

The final study investigated procedural learning in dyslexic children using the 

extended serial reaction time task (Chapter 9). Previous studies investigating the 

procedural deficit hypothesis have almost all used age-matched group designs (NB: 

Hsu & Bishop, 2014 also included an ability-matched group). In age-matched group 
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designs it is impossible to disentangle significantly poorer procedural learning in 

language-impaired groups from reading ability, since poorer reading may be a cause 

rather than a consequence of procedural learning impairment.  The study in this chapter 

instead matched a group of dyslexic children with a control group on reading ability. 

A significant difference between groups with this design would show that any 

difference between groups was not simply a consequence of differences in reading 

ability. However, the results of the study showed that the groups were equated for 

procedural learning performance. In addition, there was some indication that reading 

ability related to verbal declarative memory skill in the control group that was not 

found in the dyslexic group. While a null result using this design should not be 

interpreted as evidence of no relationship between procedural learning and reading 

ability, the weight of the evidence from the   studies conducted for this thesis clearly 

fails to support the procedural deficit hypothesis.  

10.2 Key findings 

We will now look at the key implications of these findings in more detail. 

10.2.1 Task reliability and different approaches to psychological investigation 

The procedural learning tasks developed in Chapter 5 are representative of those 

used in the literature, yet they were all found to be unreliable. Previous research has 

not reported task reliability and this may be because historically reliability has meant 

different things to the experimental and correlational approaches to psychological 

investigation. A reliable task from a group design perspective is a task that consistently 

returns the same results (e.g., faster RTs to sequenced compared to random trials or 

better recall for repeated compared to unrepeated lists). Here, replicability is key. For 

correlational studies a reliable task is one that consistently ranks individuals in the 

same order across attempts. Hedge, Powell, and Sumner (2017) point out that tasks 

that have a proven track record in group design research may not translate well to 

research using correlational designs. This is because what makes a task reliable from 

a group design perspective is low variance between participants in a group, so that the 

averaged response is consistently the same from experiment to experiment. However, 
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this is the same quality that can make a task unsuited for use in correlational designs, 

since low between participants variance makes is difficult to detect relationships 

between variables at an individual differences level. It is, therefore, important to 

consider whether this is the case for the tasks in this thesis. Are the procedural learning 

tasks used in this thesis reliable from an experimental perspective, justifying the 

approach taken in previous research, but just not suited to the correlational approach 

used here? It is true that a substantial number of group design studies have found 

poorer implicit learning in groups with developmental language disorder or dyslexia 

compared to normal or typically developing groups. However, if the independent 

variable of language disorder (either dyslexia or developmental language disorder) in 

group design studies is supposed to relate to a deficit in procedural learning, then every 

well-conducted study should produce a similar result (impaired procedural learning 

performance of the experimental group) and this is not what is found. The results 

across the literature are highly inconsistent (see Chapters 3 and 4). While the existence 

of the occasional null result can be ascribed to experimental confounds, the 50:50 split 

of significant to non-significant results for the serial reaction time task documented in 

Chapter 4 is very difficult to reconcile with the procedural deficit hypothesis. Results 

for the other paradigms are similarly inconsistent. Alongside the large amount of 

variance forming part of the effect size calculation for each study in the meta-analyses 

for the serial reaction time and Hebb serial order learning tasks, this suggests that the 

tasks are no more reliable as tools for experimental research than they are for 

correlational use. The poor reliability of the implicit learning tasks found in this thesis 

is, therefore, of critical importance regardless of the choice of experimental design. 

10.2.2 Why are implicit learning tasks unreliable? 

Why might the reliability of the procedural learning tasks be so low? Ostergaard 

(1998) noted that the relative contribution of learned information is likely to be far 

lower in procedural than declarative tasks. In a declarative task like word list recall, 

there is minimal external stimulus information for the participant to process at recall 

and hence variation in memory integrity is likely to cause most of the variance in 

performance. In a procedural task such as contextual cuing, by contrast, each trial 



279 

 

evokes a number of perceptual as well as motoric processes that will contribute to 

variance in performance over and above learned sequence knowledge. If a target is 

embedded amongst 12 distractors in a contextual cueing display, for example, then 

variation in basic perceptual processes (scanning across the objects until the target is 

identified) and response selection and execution will all contribute to measured 

variance. Any relevant procedural information that can be retrieved from memory 

about the likely location of the target in a familiar display will make only a small 

contribution to the RT on a given trial. The same can be said of the other procedural 

learning tasks, such as the serial reaction time task. Ostergaard formalized this idea in 

his Information Availability model. According to this model, when the relative 

contribution of learned information to performance is low, the reliability of the task 

for measuring that learned information will be low too. 

10.2.3 Task reliability from a developmental perspective  

Another related finding from the thesis is that procedural learning tasks may be 

particularly unreliable in children. The age invariance of implicit learning (Reber, 

1993; Vinter & Perruchet, 2000; Meulemans, Van der Linden, & Perruchet, 1998) has 

been cited as a key difference between implicit and declarative learning (e.g., Schacter 

& Moscovitch, 1984) and this difference used as evidence to support multiple systems 

views of memory. While many studies have reported intact implicit learning in 

childhood and even in infancy (see Chapter 2), the developmental invariance of 

implicit learning is not consistently agreed upon, with a number of studies 

demonstrating developmental trajectories across a range of tasks (e.g., Arciuli & 

Simpson, 2011; Thomas et al., 2004; Vaidya, Huger, Howard, & Howard, 2007). 

However, if implicit learning tasks are particularly unreliable in children, compared to 

older children or adults (as demonstrated by the poor reliability of the serial reaction 

time task in Chapters 5 and 7, compared to reasonable reliability of the same task in 

adults in Chapter 6), then the developmental invariance of implicit learning cannot be 

reliably assessed, since implicit learning measures in younger participants are likely to 

be less reliable than those in older participants. The multiple memory systems model 

evolved primarily from neuropsychological research into dissociations in performance 



280 

 

between normal and clinical populations, for the most part once normal development 

had taken place. The poor reliability of the tasks in young participants thus raises a 

question over how useful it is to apply such a model in a developmental context. 

10.2.4 The role of attention and task engagement in implicit learning 

Another key finding in the thesis links the issue of reliability with concerns about 

the validity of the tasks as measures of implicit learning. Chapter 7 demonstrated that 

the level of attention children paid to the SRT task was strongly related to procedural 

learning and, further, that it accounted entirely for the relationship between procedural 

learning and attainment. This finding is in line with research that has found that 

selective attention of relevant stimuli is a prerequisite for robust implicit learning 

(Frensch & Runger, 2003; Jiang & Chun, 2001; Shanks, 2005). Certainly, dividing 

attention by administering implicit learning tasks in dual task scenarios has been 

shown to have a detrimental effect on performance (e.g., Nicolson & Fawcett, 1990; 

Fawcett & Nicolson, 1992; Shanks & Channon, 2002; Turk-Browne et al., 2005; Yap 

& Leij, 1994), although there is debate over whether the secondary task interferes with 

the implicit learning itself or just with the expression of that learning.  

Consideration of attention as a moderator on implicit learning in studies 

surrounding the procedural deficit hypothesis has typically been limited to the 

screening of participants for symptoms or history of ADHD. A few previous studies 

have questioned whether their results were related to the poorer attentional resources 

of their experimental groups (e.g., Kelly et al., 2002; Saffran & Robe-Torres, 2009; 

Waber et al., 2003; Staels & Van den Broek, 2015). However, there is now growing 

interest in the potentially confounding influence of attention in implicit learning 

(Staels & Van den Broek, 2017; Sigurdardottir et al, 2017), as well as the role attention 

plays in language development (de Diego-Balaguer, Alvarez, & Pons, 2016). The 

results in Chapter 7 lend weight to the suggestion that procedural learning performance 

is moderated by attention. However, future investigation will benefit from refining the 

definition of attention, in order to better distinguish between attentional capacity and 

the allocation of attentional resources (Frensch & Runger, 2003). This can perhaps be 
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summed up as the difference between considering attention as a trait or as a state. 

Sustained attention as a trait could be described as the ability to maintain a vigilant 

state (Posner & Petersen, 1990). It refers to enduring attentional resources and is 

investigated using measures such as continuous performance tasks that ask participants 

to monitor a stream of stimuli and respond to pre-specified targets. ADHD scales also 

index attentional resources from a trait perspective. Attention as a state, on the other 

hand, also encompasses more fluctuating states, such as level of task engagement and 

focus, which have been shown to facilitate sustained attention (Matthews et al., 2010) 

and task performance. These two aspects of attention (trait and state) may be related, 

but they are not synonymous. The former has implications for the validity of the tasks 

as measures of procedural learning, but the implications of the latter are more focused 

on the reliability of the task. Intriguingly, Sigurdardottir et al. (2017) found a 

continuous performance test a poor predictor of statistical learning in adult dyslexic 

and control participants, while a history of childhood ADHD was a far better predictor, 

so there may be important differences between measures of current and historical trait 

attention too. 

10.2.5 The role of declarative memory processes in implicit learning 

A further finding from the thesis, that declarative learning related to performance 

on the weather prediction task (Chapter 8) links specifically to an important ongoing 

debate about the process purity of implicit learning tasks and hence their validity as 

measures of procedural learning. It also provides another possible reason for 

inconsistent findings in the previous literature surrounding the procedural deficit 

hypothesis. The current results lend some support to the assertion that implicit learning 

tasks are not process pure (e.g., Reber, 1989; Shanks & John, 1994; Cleeremans, 

Destrebecqz, & Boyer, 1998) and are likely to involve declarative learning to a 

variable and an, as yet, unknown degree.  

This has been noted in previous research. For example, Guerard et al. (2011) found 

that aware participants recalled repeated sequences better than non-aware participants 

on a Hebb serial order learing task. Buchner, Steffens, Erdfelder, and Rothkegel (1998) 
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demonstrated that declarative learning of sequence fragments contributed to 

performance on a serial reaction time task and was present from early in the task, while 

Perruchet & Amorim (1992) found implicit learning on the serial reaction time task 

was highly correlated to explicit knowledge of the sequence, as tested by a post-task 

generation test (r’s > .75). 

Disentangling the relative contributions of declarative and implicit learning to task 

performance is far from simple, although attempts have been made (e.g., the process 

dissociation procedure: Jacoby, 1991). However, the use of direct tests of explicit 

learning were not included in the serial reaction time, Hebb serial order learning or 

contextual cueing tasks in this thesis for the following reasons. Shanks and John (1994) 

highlight difficulties in devising measures that actually index the knowledge that is 

responsible for the change in performance, and that are sensitive to all relevant 

declarative knowledge, without falsely attributing elements of declarative knowledge 

as implicit. This is even more of an issue for probabilistic tasks, such as the SRT task 

in this thesis, as a result of the greater variety of material seen by participants. 

Additionally, both declarative and procedural meta-cognitive knowledge is thought to 

develop with age (Schneider, 2010; Schneider & Lockl, 2008) and the children in these 

studies were young.  

Nevertheless, the extent of declarative learning on the weather predicition task was 

assessed. In so far as the post-task explicit judgement test can be considered an 

accurate measure of declarative learning on the task 3 , results demonstrated that 

declarative learning contributed to task performance. In addition, task performance 

related to a separate measure of verbal declarative learning in the subset of participants 

who performed above chance. Given these results, it is reasonable to conjecture that 

declarative learning does contribute to performance on probabilistic category learning 

tasks and that the superior performance of control groups compared to groups with 

                                                 
3 Gluck et al (2002) caution that labelling performance strategies on the task as declarative or implicit 

may be overly simplistic. Incremental learning may occur in a non-declarative fashion, but the learning 

strategies that develop using this process may also be verbalisable. Similarly, a simple and memorable 

performance strategy, such as the single cue strategy on the weather prediction task, does not necessarily 

have to be declarative. 
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language learning disorders in previous research may reflect declarative memory skills 

to a degree.  

The extent to which declarative learning may contribute to measures of procedural 

learning in serial reaction time tasks is less clear. The latent variable path model in 

Chapter 7 showed that verbal declarative learning correlated only weakly with 

performance on the extended serial reaction time task (r = .22). This suggests that 

superior verbal declarative memory skills did not greatly aid performance on the serial 

reaction time task in this thesis. However, task variations, such as using complex 

sequence structures, purportedly upweight the contribution implicit learning makes to 

derived procedural learning measures (Cohen, Ivry, & Keele, 1990) and such complex 

sequence structures were purposely used in this thesis. By contrast, the bulk of studies 

investigating the procedural deficit hypothesis have used simpler sequences and / or 

deterministic tasks. It is, therefore, not unreasonable to suppose a greater contribution 

of declarative learning to serial reaction time task performance in the previous studies 

using simpler sequence structures. 

The impact of declarative learning on implicit learning task performance is too 

often ignored in the literature surrounding the procedural deficit hypothesis, with 

significantly poorer task performance in groups with developmental language disorder 

or dyslexia attributed entirely to a deficit in the procedural memory system. There is a 

problem inherent in ascribing the poorer performance of experimental groups to a 

deficit in procedural learning on the basis of their performance on a task that is not a 

process pure measurement of procedural learning. Additionally, Sun, Slusarz, and 

Terry (2005) proposed that not only do implicit learning tasks inevitably involve both 

implicit and declarative learning, but that these processes interact, often 

synergistically, to aid performance. This makes holding procedural memory 

responsible for differences in performance on procedural learning tasks especially 

problematic.  
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10.2.6 The role of motor learning in implicit learning 

The results in this thesis also suggest that motor learning ability may contribute to 

the group differences on the serial reaction time task found in developmental language 

disorder and dyslexia in previous research. Children with lower levels of attainment in 

the first study (Chapter 5) were slower across both probable and improbable sequences 

on the serial reaction time task. The results in Chapter 9 also showed that the slope 

reflecting early (motor) learning was flatter for the dyslexic group than for the control 

group on each of the component sequences of the serial reaction time task. Some 

previous studies have also noted similar differences in motor learning between groups 

with dyslexia and developmental language disorder (e.g., Henderson & Warmington, 

2017; Laasonen et al., 2014; Mayor-Dubois et al., 2014; Vakil et al., 2015).  

Evidence of motor deficits have been found in poor readers using the serial reaction 

time task (Stoodley, Harrison, & Stein, 2006) and in those with developmental 

language disorder more generally (Bishop, 2002; Brookman, McDonald, McDonald, 

& Bishop, 2013; Hill, 2001).  Ise & Schulte-Körne (2012) conjectured that group 

differences in performance on the serial reaction time task in dyslexia may reflect 

problems with motor learning on the task. They comment that a disproportionate 

number of studies using simple sequences report a significant difference between 

groups compared to the overall ratio of significant to null results. They relate this to 

the fact that simple sequences can be more easily learned as a sequence of finger 

movements than complex sequences. The motor learning component is, therefore, 

more evident in results from studies with simpler sequences, but more likely to be 

overlaid by other extraneous factors in studies using complex sequences. 

So it can be seen that a number of cognitive functions may influence procedural 

learning in the tasks used to assess the procedural deficit hypothesis. This may happen 

in unsystematic ways, adding noise to the data and contributing to the poor reliability 

of the tasks, but may also happen in more systematic ways, whereby cognitive 

processes unrelated to a strict definition of procedural learning may be at least partially 
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responsible for the impaired procedural learning shown by groups with developmental 

language disorder and dyslexia in some previous research.  

10.2.7 Implications for the multiple memory systems debate  

The results of the studies in this thesis also have implications for the procedural 

deficit hypothesis position that the procedural learning deficit in language learning 

disorders is domain-general. This issue forms part of the larger debate about the 

existence of multiple memory systems that govern different types of learning and 

memory.  

On one side of the debate, multiple memory systems proponents furnish evidence 

from neuro-psychological and neuro-imaging research in support of the existence of 

separable memory systems (see Chapter 2), which include a domain-general implicit 

learning system (e.g., Poldrack & Foerde, 2008). However, this evidence is only 

persuasive if we can accept that the tasks upon which participants are measured 

provide reliable, relatively process-pure measures of implicit learning. The results in 

this thesis strongly suggest that they do not. 

Nevertheless, let us leave aside the question of task reliability and validity for the 

moment and consider the results of the studies in the thesis from a multiple systems 

standpoint. If the multiple memory systems view of a domain-general procedural 

memory system is correct, one would expect to find correlations between implicit 

learning measures on different tasks and across verbal and non-verbal modalities, yet 

the current results failed to show any evidence of this at all. Not only was there no 

relationship between Hebb serial order learning, serial reaction time and contextual 

cueing tasks in Study 1 (Chapter 5), which could conceivably be explained by different 

task demands, there was also no relationship between verbal and non-verbal analogue 

versions of the same tasks. Indeed, in the case of the contextual cueing task, there was 

no correlation between verbal and non-verbal conditions on the same task. Neither was 

there a relationship between performance on the weather prediction task and the 

extended serial reaction time tasks administered to the same children in Study 3 and 4 
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(Chapters 7 and 8). Although very little previous research has examined relationships 

between different implicit learning paradigms at an individual level, a recent study 

reports results that are consistent with the findings in this thesis, with low correlations 

between implicit learning measures across different types of task (serial reaction time 

and statistical learning tasks), as well as across visual and auditory modalities 

(Siegelman & Frost, 2015). Therefore, at first glance this task specificity clearly sits 

in opposition to the procedural deficit view of implicit learning as a domain-general 

mechanism, adding support to the argument that implicit learning is not a unitary 

construct.  

However, returning once more to the issue of reliability, the low test-retest 

reliability of the tasks in the thesis makes it difficult to attribute the low correlations 

between tasks (ie: Hebb, serial reaction time, contextual cueing and weather 

prediction) to the specificity of implicit learning or to draw any conclusions about 

whether implicit learning differs across verbal and non-verbal modalities. There seems 

to be an inevitable Catch 22 with the poor reliability of the existing tasks. While the 

lack of supporting evidence for domain-generality using these tasks in previous 

research and the low correlations between the tasks in this thesis cast doubt on the 

unitary nature of procedural learning, the poor task reliability makes it difficult to rule 

out entirely whether procedural learning as a stable domain-general ability does exist, 

since the tasks as they currently exist may simply be incapable of measuring it. 

Here, another recent study reporting low correlations between closely related 

statistical learning tasks in adults may be helpful (Erikson, Kaschak, Thiessen, & Berry 

2016). Testing participants on such closely related tasks makes it less likely that 

differing task demands and the resulting recruitment of divergent cognitive functions 

are responsible for the lack of correlation. This is the same rationale behind testing 

participants on SRT tasks that were identical in all but sequence in Chapters 6 and 7.  

Erikson et al. (2016) showed that their tasks had low test-retest reliability, but critically 

they were able to show that improving the test-retest reliability of their measures (with 

composite implicit learning measures and a longer test phase) did not improve the 

correlations between tasks. It seems logical to suppose that if highly similar tasks with 
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reasonable levels of test-retest reliability do not correlate, then implicit learning may 

not be a unitary ability.  

On the other side of the multiple memory systems debate, connectionist accounts 

aim to demonstrate how the apparent dissociations between declarative and implicit 

memory in amnesia, for example, can be predicted by simple, single-system 

connectionist models of learning (e.g., Kinder & Shanks, 2003). This apparently more 

parsimonious view suffers from its own challenge, however. Poldrack and Foerde, 

(2008) point out that single systems views can suffer from “parameter proliferation”, 

whereby the fit of any given connectionist model is improved by adding parameters 

that relate to mechanisms that belong to other cognitive systems entirely. Such single 

system explanations are then arguably no more parsimonious than multiple systems 

views. While the findings in this thesis do suggest that cognitive processes unrelated 

to a “pure” construct of implicit learning may systematically influence performance 

on the tasks (i.e., attention, declarative learning or motor learning), the findings also 

make clear that such processes, along with many others may affect the stability of the 

tasks in unsystematic ways too. It is primarily the reliability, rather than validity, of 

implicit learning tasks that is questioned by the results in this thesis.  

Accounts that seek to reconcile the ubiquity of implicit learning across multiple 

domains with evidence of considerable task specificity can be visualised as sitting 

somewhere between the multiple memory systems and connectionist positions. For 

example, Frost, Armstrong, Siegelman, and Christiansen (2015) suggest that the 

domain-general, unitary nature of procedural learning extends only as far as a set of 

computational principles. However, these principles are constrained by modality, as a 

result of the different combinations of cortical areas that must be recruited to perfom 

each task. Different tasks will recruit different combinations of cortical areas and the 

result will be considerable specificity for implicit learning. The studies in this thesis 

showed significant procedural learning on tasks across a wide range of cognitive 

domains and across verbal and non-verbal modalities (from sequence learning and 

perceptual priming to category learning), alongside a lack of any relationship between 
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them and this combination is not inconsistent with Frost et al’s (2015) explanation, yet 

the question of poor task reliability remains. 

Arciuli (2017) adds that since other cognitive processes have a systematic 

influence on implicit learning, implicit learning itself must be viewed as a multi-

component ability made up of many functions from processing speed and memory to 

attention. The results in the thesis are not inconsistent with this position also, but once 

again the poor reliability of the tasks upon which procedural learning is measured 

precludes any definitive conclusions. 

10.2.8 Procedural learning as an individual difference 

The above clearly has implications for procedural learning from an individual 

differences perspective, since two of the key criteria that procedural learning needs to 

fulfill in order to be considered an individual difference variable is that it needs to be 

both a unitary ability and a stable characteristic of the individual (Siegelman & Frost, 

2015). 

It seems that multiple memory systems views are more likely to see procedural 

learning as a legitimate individual difference variable, while single system 

connectionist views are not. The positions held by Frost et al. (2015) and Arciuli 

(2017) fall somewhere in between. For Frost et al. (2015), individual differences in 

procedural learning reflect relative strengths and weaknesses at a neural level (such as 

white matter density, for example), while for Arciuli (2017) individual differences in 

implicit learning would reflect both how well individual component functions of 

implicit learning perform, as well as how optimally they are connected. Given the poor 

reliability of the implicit learning paradigms currently available, it can be argued that 

from a psychometric view, these instantiations of procedural learning as an individual 

difference variable may be of limited practical use. It remains that any questions about 

the nature of procedural learning and the relationship between procedural learning and 

language ability must wait until there are reliable tasks with which to investigate them. 
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10.3 Final words 

To conclude, the studies in this thesis have found no evidence that poorer 

procedural learning is related to lower levels of language-related attainment. 

Moreover, these studies have uncovered a number of possible reasons for the pattern 

of inconsistent findings in literature relating procedural learning deficits to 

developmental language disorder and dyslexia. These reasons hinge on the both the 

reliability and the validity of the tasks used to investigate procedural learning. The 

results of the studies in this thesis seriously question the suggestion that the construct 

of a “procedural learning system” can be reliably measured and cast strong doubt on 

claims from earlier studies that deficits in such a system are related to language 

learning difficulties. 
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Appendices 

Appendix A: Search terms for the literature search for the meta-analyses 

Database Search Terms  

PsychINFO, Medline 

via Ovid   

 

 

(OR between all the terms) 

Implicit learning (entered as a subject heading) 

Implicit adj2 learn$* 

Implicit adj2 memory  

Procedur$ adj2 learn$  

Procedur$ adj2 memory 

Probabili$ adj2 learn$ 

Probabili$ adj2 memory 

Statistic$ adj2 learn$ 

Statistic$ adj2 memory 

Sequence adj2 learn$ 

Serial adj2 learn$ 

Serial reaction time  

Hebb$ adj2 learn$ 

contextual cueing 

Artificial grammar 

finite state grammar 

Weather prediction task 

 

AND 

 

(OR between all the terms) 

language disorders (subheading)  

language development disorders (subheading) 

specific language impairment (subheading) 

dyslexia (subheading) 

Language adj2 impair$ 

Language adj2 problem$  

Language adj2 disorder$  

Language adj2 deficit$  

Language adj2 difficult$  

Language adj2 abilit$ 

Language adj2 fluen$  

Read$ adj2 abilit$ 

Read$ adj2 fluen$  

Read$ adj2 impair$ 

Read$ adj2 difficult$ 

Verbal adj2 impair$ 

Verbal adj2 deficit$ 

Verbal adj2 abilit$ 

Phonolog$ adj2 impair$ 

Phonolog$ adj2 deficit$ 

Gramma$ adj2 impair$ 

Gramma$ adj2 deficit$  
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Appendix B: Correlations between components elements of the implicit learning 

tasks 

Correlations between the individual components of the difference scores for the 

implicit learning tasks were high (see. High correlations between component scores of 

the contextual cueing and SRT tasks, however, simply demonstrate that participants 

who are fast at pressing buttons on one task are fast on the others and are not suggestive 

of any other commonality between tasks. The RT component totals do not correlate 

with random or Hebb trial recall component scores, which just means that if 

participants were fast at pressing buttons they were not necessarily good at recalling 

sequences and these correlations are not relevant to implicit learning. 
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Appendix B 1  Correlations for the RT and recall component scores for the implicit tasks 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1. CCNV Predictable                 

2. CCV Predictable .73*                

3. CCNV Unpredictable .91* .76*               

4. CCV Unpredictable .74* .86* .74*              

5. SRT1 Probable .62* .48* .63* .48*             

6. SRT2 Probable .53* .42* .54* .40* .88*            

7. VRT1 Probable .63* .59* .62* .60* .73* .70*           

8. VRT2 Probable .56* .54* .58* .47* .64* .68* .81*          

9. SRT1 Improbable .59* .45* .60* .43* .95* .86* .64* .55*         

10. SRT2 Improbable .44* .29* .42* .28 .80* .90* .59* .58* .81*        

11. VRT1 Improbable .59* .54* .59* .57* .72* .66* .93* .78* .63* .61*       

12. VRT2 Improbable .51* .50* .51* .41* .61* .65* .76* .94* .54* .59* .73*      

13. NVHebb Hebb -.14 -.02 -.09 -.26 -.11 .05 -.02 .07 -.13 .03 -.08 .06     

14. NV Hebb Random -.18 -.32 -.19 -.33 -.17 -.05 -.12 -.05 -.21 -.03 -.10 -.04 .62*    

15. V Hebb Hebb -.15 -.15 -.16 -.14 -.03 -.16 -.11 -.19 -.02 -.24 -.08 -.24 .24 .22   

16. V Hebb Random -.16 -.08 -.16 -.05 -.10 -.00 -.01 -.03 -.11 -.12 -.04 -.07 .32 .23 .48*  

*p < .05                 
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