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Abstract

Josephson junctions are used in present day voltage standards. To extend their

use to AC voltage standards a high bandwidth, low-noise detector is required. A

candidate component for this detector is a superconducting comparator based on

Rapid Single Flux Quantum (RSFQ) circuits. The work presented here is a study

to determine if nanobridge weak links can be used as the active Josephson element

in these circuits. In order to achieve this an understanding of the nanobridge

properties and in particular their critical currents is fundamental. We present

simulations of a simple comparator using the circuit simulation software JSIM in

order to study the effect of varying nanobridge parameters such as width, length,

and loop area. These geometrical variables have an affect on the critical currents

and loop inductances which subsequently effect device performance. Particular

emphasis is given to investigation of how these parameters affect a key figure of

merit, the grey zone width.
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Introduction

Figure 1: The quantum metrological triangle, reflects the fundamental relationships
between the basic electrical quantities, namely the voltage, current and frequency,
given by quantum mechanical laws. The numbers k, m and n are integers.

Research into the field of electrical metrology focusses on the development of

quantum standards. The main goal is the realisation of electrical quantities in terms

of the fundamental constants, electron charge e and Plank’s constant h. A voltage

standard based on the Josephson effect was the first true step towards quantum

electrical metrology [1–4]. This was followed a decade later by the quantised

Hall effect, based on the von Klitzing constant [5, 6] which allows the ohm to be

maintained very precisely. A quantum current standard is yet to be fully realised.

Nevertheless, recent developments suggest that there are many different possible

manifestations in which a quantum current standard could be realised [7–10]. Taken

together these three quantum standards, define the quantum electrical triangle

of standards shown in Figure 1. The units can be realised in terms of different

combinations of e and h. Although the DC voltage standard is well established
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there is still plenty of demand for research on AC voltage standards.

Early research focused on development of two types of methods for achieving

an AC voltage standard: i) the Josephson Arbitrary Waveform synthesiser (JAWS)

[11–14] which exploits the Josephson relation of flux quantisation to generate a

voltage output from high frequency pulse, and ii) the Programmable Josephson

Voltage Standard (PJVS) [15–17] using an array of Josephson junctions biased in

such a way to create a staircase AC wave. Both methods suffer from significant

drawbacks (see section 1.4) and have been restricted to low frequency AC waveforms.

More recent work has focused on utilising very fast Rapid Single Flux Quantum

circuitry (RSFQ) in the form of Analogue to Digital converters as a means towards a

high frequency AC voltage standard, through the use of a Josephson comparator as

the main signal processing and decision making element of the circuit. The measure

of the performance of a Josephson comparator is its grey zone, which describes

the decision uncertainty of the comparator, represented as a finite transition of

width between logical states “0” and “1” and arises as a result of smoothing due

to thermal noise. Previous work has lead to much understanding of this limiting

factor from both a theoretical and an experimental point of view. In Chapter 2 we

review recent progress in the development and testing of Josephson comparators.

The main existing method of fabricating the active Josephson element in RSFQ

circuits utilises complex multilayer tunnel junction technology with low Tc mate-

rial [18–21] or through the use of grain boundary junctions in high Tc [22] materials.

Although the processes are well established they do require several steps to yield

active devices, and their complexity reduces the ability to integrate these circuits

into other devices such as optical or microwave circuits. This report investigates

the feasibility of using nano-bridge weak links as the active Josephson element

of Josephson comparators in an RSFQ logic circuit. The ease of fabrication and

the ability to integrate and fabricate other components on a single chip makes it

a very attractive means of obtaining complex integrated circuitry in a few steps.

In Chapter 3 we discuss the lithographic approaches used by various groups to
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pattern and fabricate nano-bridge weak links. We use this to discuss initial design

parameters for the low Tc Josephson comparator and introduce the circuit and

inductance simulation tools, JSIM and 3D-MLSI.

Using both JSIM and 3D-MLSI we perform and report on simulations that

describe operational performance of a low Tc nanobridge comparator based on a

design first introduced by Oelze et al. [23] for high Tc films. We discuss the effect of

biasing, inductance distribution and temperature variation on device performance,

and determine optimal operational parameters and biasing margins. In Chapter

5 we discuss the issues that arise from variations in the electrical parameters of

in fabrication yields of nano-bridge weak links such critical current spreads due

to fluctuations in the fabricated of weak link. We also discuss the viability of

perorming measurements close to Tc to minimise heating effects in the nanobridge.

We discuss effect of high critical currents at temperatures much lower than Tc and

the resulting effect on the grey zone. Finally we draw conclusions for the conditions

that result in optimal comparator operation resulting in the smallest grey zone.
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Chapter 1

Theoretical Background

1.1 Superconductivity
Superconductivity is a phenomenon of exactly zero electrical resistance and

expulsion of magnetic fields occurring in certain materials when cooled below a

characteristic critical temperature Tc. It was discovered by Dutch physicist Heike

Kamerlingh Onnes on April 8, 1911 in Leiden when studying the resistance of solid

mercury at cryogenic temperatures [24].

Figure 1.1: Experimental demonstration of mercury superconductivity from Kamer-
lingh Onnes original research. Adapted from [24].
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Kamerlingh Onnes passed a current through a pure mercury wire and measured

its resistance as he steadily lowered the temperature. Instead of the resistance

levelling at 4.2K it suddenly vanished. Deliberately increasing the electrPlotting

the resulting Is (?) RN as a function of the phase for a typical short weak link

results in Figure 1.15, where the critical current Ic is taken as the maximum value

of the function.on scattering by introducing impurities to the mercury did not effect

the observed vanishing of resistance [25]. According to Kamerlingh Onnes “Mercury

passed into a new state, which on account of its extraordinary electrical properties

may be called a superconductive state”.

In 1933, Walther Meissner and Robert Ochsenfeld [26] used a single crystal of

tin and found it to have an interesting magnetic property of excluding a magnetic

field, unlike simply a perfect conductor which would conserve magnetic flux within

it. This phenomena of magnetic field expulsion is caused by a current flow that

generates a magnetic field inside the superconductor that balances the field that

would have otherwise penetrated the material. This is shown in Figure 1.2 and is

known as the Meissner effect.

Figure 1.2: Diagram of the Meissner effect. Magnetic field lines, represented as
arrows, are excluded from a superconductor when it is below its critical temperature.

Many theories were introduced to examine and describe the nature of supercon-
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ductivity, much of the early work relied on phenomenological models. For a more

comprehensive look at such a model see ref [27].

London Equations: As a restricted form of the Maxwell equations, the

London brothers introduced a set of equations that describe the behaviour of

superconductors and are consistent with experimental observation, in particular

the Meissner effect:
∂Js
∂t

=
nse

2

m
E (1.1)

∇× Js =
nse

2

m
B (1.2)

It is important to note that these equations did not attempt to explain the micro-

scopic origin of superconductivity. If the second London Equation 1.2 is manipulated

by applying Amperes law

∇×B = µ0Js

then the result is the differential equation

∇2B =
µ0nse

2

m
B =

1

λ2
L

B (1.3)

where λL is known as the penetration depth defined by:

λL =

√(
m

µ0nse2

)
(1.4)

Applying Equation 1.3 to a plane boundary located at x = 0 we get:

B(x) = B(0)e−x/λL (1.5)

which shows the field decaying exponentially over the penetration depth with the

magnetic field vanishing in the bulk of the material as shown in Figure 1.3.
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Figure 1.3: Variation of an applied magnetic field inside a superconductor.

At Tc the magnetic field penetrates throughout the material as λL diverges. As

soon as temperature is lower than Tc the penetration depth goes very close to its

value at T = 0 establishing the Meissner effect in the bulk of the supwerconductor.

Experimentally, the penetration depth often follows the two fluid temperature

dependence that has been modelled by Gorter and Casimir [28] as;

λ(T ) = λL/

√
1−

(
T

Tc

)4

(1.6)

Although in theory the penetration depth of most metals should be in the range of

20-50 nm, some measurements showed it to be much longer, by up to one order of

magnitude, in some samples of aluminium [29]. This result was only explained by

the concept of the coherence length, first introduced by Pippard as the Pippard

coherence length ξ0.

Pippard Coherence Length: Pippard argued that a superconductor should

have a characteristic dimension ξ0 which describes the evolution of the wavefunction

or the order parameter of the superconductor over a certain distance. This could

be estimated by an uncertainty principle argument

∆x & ~/∆p ≈ ~υF /kTc (1.7)
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leading to the definition of a characteristic length

ξ0 = α
~υF
kBTc

(1.8)

where α is a numerical constant of order unity. ξ0 plays a role analogous to the

mean free path ` in the non local electrodynamics of normal metals and were later

found to be comparable to the size of a Cooper pair (see BCS theory). Pippard

found that he could fit the experimental data on both tin and aluminium by choice

of a single parameter α = 0.15 [30] in Equation 1.8.

BCS theory: For many years, the phenomenon of superconductivity could not

be satisfactorily explained by the laws of conventional physics. However in the early

1950’s, American physicists John Bardeen, Leon Cooper, and John Schrieffer [31]

formulated a theory for superconductivity that earned them the Nobel Prize in

Physics in 1972. According to the BCS theory, interaction between electrons and

phonons (the vibrational mode of the positive ions in a crystal lattice) causes a

reduction in the coulomb repulsion between electrons, which is sufficient at low

temperatures to provide a net long range attraction. This attraction causes the

formation of bound pairs of remote electrons of opposite momentum and spin, the

so called Cooper pairs.

One of the main predictions of the BCS theory is the existence of an energy gap

at the Fermi level. In a normal metal the electron states are filled up to the Fermi

energy εF , and there is a finite density of states at the Fermi level g (εF ). In the

BCS theory for superconductors below Tc, the electron density of states acquires a

small gap separating the occupied and unoccupied states. This gap is fixed at the

Fermi energy, and so it does not prevent electrical conduction. A minimum energy

of Eg = 2∆(T ) is required to break a pair, creating two quasi-particle excitations.

∆(T ) was predicted to increase from zero at Tc to a limiting value far below Tc of

Eg(0) = 2∆(0) = 3.528kBTc (1.9)
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The superconducting energy gap close to Tc is

2∆(T ) ≈ 3.52kBTc

√
1−

(
T

Tc

)
(1.10)

where the critical temperature Tc in weakly coupled superconductors can be ap-

proximated by:

Tc =
1.14~ωD
kB

e−1/N(0)Uep (1.11)

where Uep is the electron-phonon coupling potential and ωD is the Debye frequency.

Ginzburg-Landau theory: Ginzburg and Landau postulated the existence

of an order parameter which characterised the superconducting state [32]. The order

parameter is assumed to be some (unspecified) physical quantity which characterises

the state of the system. In the normal metallic state above the critical temperature

Tc of the superconductor it is zero. While in the superconducting state below Tc it

is non zero. Therefore it obeys;

ψ(r) =


0 T > Tc

6= 0 T < Tc

(1.12)

The order parameter is now usually taken as a measure of the number of supercon-

ducting electrons in a system, i.e.

ns = |ψ(r)|2 (1.13)

Close to the critical temperature, Tc, ψ(r) is small enough to apply a Taylor’s series

expansion to the free energy of the system which is of the form:

f = fn0 + α|ψ|2 +
β

2
|ψ|4 +

1

2m∗

∣∣∣∣(~
i
∇− e∗

c
A
)
ψ

∣∣∣∣2 +
~2

8π
(1.14)
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where fn0 is the free energy at the normal state. The free energy for the super-

conducting state and the normal state are respectively fs and fn. Their difference

fs − fn is

fs − fn = −H
2
c

8π
= −α

2

2β
(1.15)

The coefficient β is always positive for the theory to hold while there are two

different cases for α

|ψ|2 =


α > 0, T > Tc

α < 0, T < Tc

(1.16)

• For Tc < T , α > 0 and fn reaches its minimum and |ψ|2

• Tc > T , α < 0 and |ψ|2 = −α/β

Using the definition of the thermodynamic critical field Hc, Ginzburg-Landau

gave the following expression for the coefficients α and β that are known parameters

for a given superconductor:

α(T ) = − 2e2

mc2
H2
c (T )λ2

eff (T ) (1.17)

β(T ) = −16πe2

m2c2
H2
c (T )λ4

eff (T ) (1.18)

where

λ2
eff =

m∗c2

4π|ψ|2e∗2
(1.19)

in which e∗ and m∗ represent the mass and the charge of a Cooper pair i.e. 2e and

2me. Moreover, Ginzburg and Landau assumed that the free energy of the super-

conductor must depend smoothly on the parameter ψ(r). When perturbations such

as currents or magnetic fluxes are applied, the system will adopt the wavefunction

configuration that minimizes the free energy, leading to a pair of coupled differential

equations for ψ(r) and the magnetic vector potential A(r), which is equal to
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β|ψ|2ψ + α(T )ψ +
1

2m∗

(
~
i
∇− e∗

c
A
)2

ψ = 0 (1.20)

Js =
e∗

m∗
|ψ|2

(
~∇ψ − e∗

c
A
)

(1.21)

The result was a generalisation of the London theory to deal with situations in

which ns varies with space, and also to deal with the non-linear response to fields

that are strong enough to change ns.

Ginzburg-Landau Coherence Length: The Ginzburg-Landau equations

predict a characteristic “coherence length” ξ(T ). Normalisation of the wavefunction

using f = ψ/ψ∞, where ψ∞ = −α/β in the absence of any magnetic field leads to:

~2

2m∗|α(T )|
d2f

dx2
+ f − f3 = 0 (1.22)

where

ξ2(T ) =
~2

2m∗|α(T )|
=

Φ0

2
√

2Hc(T )λeff
(1.23)

The Ginzburg-Landau coherence length should not to be confused with the Pippard

coherence length ξo since this ξ(T ) represents the length scale over which the

order parameter ∆ or the wavefunction Ψ varies and diverges at Tc, whereas the

electrodynamic Pippard’s ξo is essentially constant for a given superconductor. Using

the BCS theory, the expression for the GL coherence length can be approximated

for clean limit where ξ0 < `

ξ(T ) = 0.74
ξ0√

1− T
Tc

(1.24)

and dirty limit where ξ0 > `

ξ(T ) = 0.855

√
ξ0`

1− T
Tc

(1.25)
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1.2 Josephson junctions
Named after the British physicist Brian Josephson [33], Josephson junctions

are a subset of weak links; a family of structures that display the Josephson ef-

fect. Such structures have an important application in voltage standards [34],

quantum-mechanical circuits, such as Superconducting QUantum Interference De-

vices (SQUIDs) [35], superconducting qubits [36], and RSFQ digital electronics [37].

Different examples of Josephson junctions are shown in Figure 1.4.

Figure 1.4: Different types of structures where the Josephson effect can take
place. (a) tunnel junction, for example, S-I-S sandwich. All others are dif-
ferent weak links (structures with direct non-tunnel-type conductivity): (b)
sandwich, (c) proximity effect bridge, (d) ion implanted bridge, (e) Dayem
bridge, (f) variable thickness bridge, (g) point contact, (h) blob type junction.
S = Superconducting, S’ = superconducting with reduced critical parameters,
SE = semiconductor (usually highly doped), N = normal metal and I = Insulator.
Adapted from Likharev [38]
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1.2.1 Josephson effect

Following the BCS theory [31], Gor’kov’s derivation of the BCS equations from

the Ginzburg-Landau theory [39] and Giaver’s current tunnelling experiment across

aluminium oxide [40], Josephson wrote a set of equations describing what happens

at the interface between two weakly coupled superconductors [41]:

Is = Ic sinϕ (1.26)

dϕ

dt
=

2e

~
V (t) (1.27)

The electrodynamic phenomena taking place at the Josephson Junction are gen-

erally divided into stationary (Equation 1.26) and non-stationary (Equation 1.27)

effects. Depending on whether the variables, including the phase difference change

with time. If the phase ϕ = θ2 − θ1, where θ1 and θ2 are the phases of the order

parameter ∆ in the electrodes, remains constant, the voltage across the junction

is zero, at the same time a non-zero super-current as shown by Equation 1.26 can

flow through the junction with magnitude |Is| 6 Ic, where Ic is the critical current.

Therefore if the current is not larger than the critical current Ic then there will be

no voltage drop across the junction

In Josephson’s theory, in the stationary state described as the DC effect, the

supercurrent Is is a sinusoidal function according to Equation 1.26 of the phase. In

the absence of fluctuations (see sections 1.2.1) there are two sets of solutions for

the stationary state that correspond to V = 0:

ϕ = ϕn = arcsin (I/Ic) + 2πn (1.28)

ϕ = ϕ
′
n = π − arcsin (I/Ic) + 2πn (1.29)
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Before Josephson’s prediction, it was only known that normal (non-superconducting)

electrons could cross an insulating barrier, by means of quantum tunnelling. Joseph-

son was the first to predict the tunnelling of superconducting Cooper pairs [41].

The DC Josephson effect had been seen in experiments prior to 1962, but had been

attributed to “super-shorts" or breaches in the insulating barrier leading to the

direct conduction of electrons between the superconductors.

Response to DC source (The AC effect): Among the non-stationary

(AC) effects occurring when the phase of the junction changes with time, from

Equation 1.27, when a Josephson junction experiences a nonzero voltage above Ic

the phase grows linearly in time to yield

ϕ =
2e

~

∫
V dt = ωJt+ const ωJ =

2e

~
V (t) (1.30)

which in turn yields an alternating current Is = Ic sin(ωJt), that oscillates at

the Josephson frequency fJ = ωJ/2π = V (t)/Φ0. The typical oscillations of the

Josephson supercurrent and the voltage can be seen in Figure 1.5.

Figure 1.5: Example of the supercurrent Is oscillations and the corresponding
voltage oscillations in a typical Josephson junction. Integrating the voltage curve
results in multiple of the flux quanta Φ0.
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Response to AC signal: Once an alternating voltage is applied to a junction

so that V (t) = V0 + Vrf cos (ωrft), the phase then becomes:

ϕ(t) = ϕ0 +
2πVdct

Φ0
+

2πVrf
Φ0ωrf

sin(ωrft) (1.31)

Using ωJ,dc = 2πVdc/Φ0 and ωJ,rf = 2πVrf/Φ0 and substituting this into Equa-

tion 1.26 with a Fourier-Bessel series expansion, the supercurrent can be expressed

as:

Is = Ic

∞∑
−∞

(−1)n Jn
(
ωJ,rf
ωrf

)
sin (ϕ0 + ωJ,dct+ nωJ,rft) (1.32)

Figure 1.6: The dc component of Is versus the applied dc voltage for a junction biased
by a voltage V (t) = V0 + Vrf cos (ωrft). Adapted from Enss and Hunklinger [42].

Only in a few situations can the net current in a Josephson junction be approxi-

mated by the supercurrent Is, in general other current components have to be taken

into account.
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Normal (quasiparticle) current IN : At finite temperatures, thermal breakup

of Cooper pairs results in a finite density of normal electron referred to as “quasi-

particles”. In the zero voltage state the quasiparticles do not contribute to the

Josephson current. However if the phase of the junction changes with time according

to the Equation 1.27, then the quasiparticles contribute towards the Josephson

junctions total current. This current is a resistive current and therefore the voltage

state of a Josephson junction is also called the resistive state. At temperature close

to Tc the the energy 2∆ (T ) required to break up a Cooper pair is much smaller

than kBT resulting in concentration of quasiparticles being close to the electron

density in the normal state resulting in current voltage characteristics described by

Ohm’s law:

IN =
V (t)

RN
(1.33)

Displacement current ID: When the voltage and its time derivative dV/dt

are nonzero due to the change in the electric field, the displacement current ID

plays an important role in total current present in the Josephson junction

ID = CJ
dV

dt
(1.34)

where CJ is the Josephson junction capacitance.

Fluctuation current IF : The conversation so far about other current com-

ponents has not taken into account fluctuations that arise due to noise, there are

three types of fluctuations, namely thermal noise, shot noise and 1/f noise.

(i) Thermal noise: According to the Johnson-Nyqvist formula for thermal

noise, when an ohmic resistor satisfies the condition, kBT � eV, ~ω, the power

spectral density of the current fluctuations in that resistor is described by:

SI (f) =
4kBT

RN
(1.35)
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The relative intensity of the thermal noise current is expressed as ratio of thermal

energy and the Josephson junction coupling energy and takes the form of the

dimensionless parameter γ:

γ =
kBT

EJ
=

2ekBT

~Ic
(1.36)

The thermal noise cannot be above EJ otherwise the Josephson effect is destroyed

it is therefore necessary to have the Josephson coupling energy larger than the

thermal energy.

(ii) Shot noise: Once the voltage is large enough that kBT, ~ω � eV , then

shot noise becomes an important factor. Not to be confused with current fluctuations

in equilibrium that occur without any applied voltage as described earlier. Shot

noise consists of random current fluctuations due to charge carriers in conductors.

The Schottky formula is used to express the power spectral density of these current

fluctuations as:

SI (f) = 2eIN (1.37)

and unlike thermal noise fluctuations where the current strength is described by

the dimensionless parameter γ, since shot noise follows a Poissonian distribution

the strength of the current fluctuations is expressed by the variance of the current

I where 〈I〉 is the current average:

∆I2 = 〈(I − 〈I〉)2〉 (1.38)

(iii) 1/f noise: Some times referred to as flicker noise. 1/f noise is frequency

dependant and is mostly dominant at low frequencies. Typically for Josephson

junctions this is below 1kHz and thus can be ignored for many measurements at

higher frequencies.
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The Resistively and Capacitively Shunted Junction (RCSJ) Model:

Using Kirchhoff’s circuit law, the net current I flowing through a Josephson junction

is expressed as a sum of all current sources leading to I = Is+IN+ID+IF, Expanding

this leads to

I = Ic sinϕ+
V (t)

RN
+ CJ

dV

dt
+ IF (1.39)

Substituting V in this equation with

V (t) =
Φ0

2π

dϕ

dt
(1.40)

results in the non-linear equation

I = Ic sinϕ+
Φ0

2πRN

dϕ

dt
+ CJ

Φ0

2π

d2ϕ

dt2
+ IF (1.41)

Equation 1.41 is more commonly referred to as the Resistively and Capacitively

Shunted Junction (RCSJ) model and is used to describe the the net current through

a Josephson junctions and is represented in an equivalent circuit diagram as a

Josephson junction in parallel with a resistor and a capacitor as shown in Figure 1.7.

Figure 1.7: Equivalent circuit of the RCSJ model for a real Josephson junction.
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As the name suggests the RCSJ model represents an ideal Josephson junction

as a junctions in parallel with a a resistor, a capacitor and noise current source.

Rewriting Equation 1.41 using the dimensionless parameters τJ and the Stewart-

McCumber parameter βc, the original equations becomes:

i

Ic
= sinϕ+

dϕ

dτ
+ βc

d2ϕ

dτ2
(1.42)

where

τ =
t

τJ
τJ =

Φ0

2π

1

IcRN
(1.43)

and

βc =
RNCJ
τJ

=
2πIcR

2
NCJ

Φo
(1.44)

Depending on the quantitative value of βc, it is possible to distinguish two limiting

types of junctions; overdamped βc � 1 and underdamped βc > 1.

Figure 1.8: (a) Current-voltage characteristics of an overdamped and (b) under-
damped Josephson junction. The arrows indicate the direction of the current sweep
and the inset plots in (a) demonstrate the time domain voltage oscillations of the
Josephson junctions
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Overdamped: If βc � 1 then the weak link is said to be overdamped. The

capacitance of the weak link is considered negligible in the electrical circuit. The

I-V curve of an overdamped weak link driven by a DC current source in the absence

of noise is given by

V (t) = IcRN

√(
I

Ic

)2

− 1 (1.45)

The I-V characteristics are non-hysteretic as shown in Figure 1.8(a) and the Joseph-

son oscillations at different biasing points can be also be seen in the figure.

Underdamped : If βc > 1 the junction is then said to be underdamped and

the I-V characteristics become hysteretic as shown in Figure 1.8-(b). This can be

explained by the fact that the relaxation constant of the RC components is much

greater than the Josephson response, limiting the dynamics of the junction.

Figure 1.9: RCSJ model current -voltage characteristics at intermediate damping.
The arrows mark the return current values IR at which the junction returns to the
zero-voltage state.
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Washboard model: Equation 1.41 from the RCSJ model can be written in

the form (
~
2e

)
C
d2ϕ

dt2
+

(
~
2e

)
1

RN

dϕ

dt
+ Ic

[
sinϕ− I

Ic
+
IF(t)

Ic

]
(1.46)

Using the Josephson coupling energy EJ = ~Ic/2e, multiplying through by ~/2e

and normalising the currents to i = I/Ic and iF(t) = IF(t)/I results

(
~
2e

)2

C
d2ϕ

dt2
+

(
~
2e

)2 1

RN

d

dϕ
{EJ [1− cosϕ− iϕ+ iF(t)ϕ]} (1.47)

Equation 1.47 can be interpreted in the context of a particle moving along the

x-axis with mass m and damping η in a potential U . The differential equation

describing this particle is

m
d2x

dt2
+ η

dx

dt
+
dU

dx
= 0 (1.48)

Comparing Equations 1.46 and 1.47 shows the clear relationship between the motion

of the phase of a Josephson junction and the motion of a particle of mass m with

damping η in potential U as

m =

(
~
2e

)2

C η =

(
~
2e

)2 1

RN
U = EJ [1− cosϕ− iϕ+ iF(t)ϕ] (1.49)

Figure 1.10: The relationship between the damped motion of a particle of mass
m and the phase of a Josephson junction in the tilt washboard potential U . The
applied current I results in a tilt of the potential U . Graphs represent, zero Iapplied,
small Iapplied and large Iapplied respectively.
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The washboard model is visualised in Figure 1.10 where the mass of the particle

m is proportional to the capacitance of the junctions C, whilst the damping is

proportional to 1/R.

In addition to the effect of βc, thermal effects also influence the shape of the

IV graph, When thermal noise current is included into the RSCJ equation for

an overdamped junctions, the relationship stated in Equation 1.45 does not hold

any longer. Ambegaokar and Halperin showed that thermal fluctuations result in

rounding of the I-V curve due to phase slippage resulting in a non-zero voltage even

in the limit I → 0 and in turn resulting in suppression of Ic [43].

Thermal noise and IV rounding: The effect of thermal noise on I-V char-

acteristics of Josephson junction was first modelled in 1969 by Ambegaokar and

Halperin [44] by equating the motion of the phase to that of of a Brownian of a

particle of mass m in potential U as was seen in the washboard model. Ambegaokar

and Halperin formed a Fokker-Planck equation [45] which, when solved derives the

solution:

v =
4π

γ

{
(eπγx − 1)−1

[∫ 2π

0
dϕf(ϕ)

] [∫ 2π

0
dϕ

′ 1

f(ϕ′)

]
+

∫ 2π

0
dϕ

∫ 2π

0
dϕ

′ f(ϕ)

f(ϕ′)

}−1

(1.50)

where

f(ϕ) = exp (−U(ϕ)/T ) (1.51)

and

U (ϕ) =
1

2
γT (iϕ+ cosϕ) (1.52)

A simpler form of Equation 1.50 was introduced by M.S Colclough [46] in the form

of:

v =
γ

2
sinh

(
πi

γ

)[∫ π
2

0
cosh

(
2ϕi

γ

)
I0

(
2

γ
cosϕ

)
dϕ

]−1

(1.53)

where I0 is the modified Bessel function. Plotting Equation 1.53 at different values

of γ results in:
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Figure 1.11: Numerical simulations of the I-V graph predicted by Equation 1.53 at
different values of γ.

The thermally activated phase slippage can be explained in the context of

the washboard model. For current values I < Ic due to thermal activations the

particle can escape its local minimum and the phase moves down the tilt washboard

potential U resulting in a finite voltage. As γ increases the rounding increases as

shown in Figure 1.11.

1.3 Constriction “S-C-S" weak links
Unlike tunnel junctions, where the two superconducting electrodes are separated

by a thin insulating barrier and hence are defined by these barriers, constriction weak

links on the other hand can be defined by geometry without a barrier. Prominent

examples are point contact structures such as that shown in Figure 1.4 (g), or

constrictions ’S-C-S ’ Figure 1.4 (e) which are of particular importance to this report

due fabrication simplicity allowing them to be incorporated into complex integrated

circuit chips in very few fabrications steps. As such the following sections will look
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at constriction type weak links in more detail.

1.3.1 Critical length Lc and effective length Leff

Unlike other types of junctions the Josephson effect extends into the electrode

banks of constriction type weak links, meaning that an effective length Leff rather

than the geometric length L which dictates a weak links properties, comparison

and classification of such structures therefore focuses on Leff and is compared to

characteristic length ξGL and the mean free path `.

Effective length Leff: Constriction weak links with Leff � ξGL are denoted

as short or dirty to distinguish them from long or clean weak links for which

Leff & ξGL. The terms dirty and clean for constriction weak links are not to

be confused with the well known dirty and clean limits in the general theory of

superconductivity, where they are used to denote the relation between values of

` and the coherence length ξ0. The order parameter variation extends into the

banks, involving them in the nonlinear Josephson effect. Based on the assumption

that the effects extends over a length δ into the banks, Likharev postulated a

one-dimensional superconducting electrodes in equilibrium (ODSEE) model for the

structure with effective length Leff = L+ 2δ as shown in Figure 1.12.

Figure 1.12: Current density for constriction weak links with various geometrical
lengths L and widths W . The current density falls off to half its maximum value
at Leff = max(L, W). Adapted from Likharev and Yakobson [47].
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Critical length Lc: Numerical simulations of the Usadel equations performed

by Likharev and Yakobson [47] demonstrate that at L > 3.5ξ(T ), the current phase

relation becomes multivalued as shown in Figure 1.13.

Figure 1.13: The current phase relation for nanobridges of different length ratio
L/ξ(T). Current is normalised to the critical current I0. Adapted from Likharev [38].

This deviation from ideality occurs at values L > Lc where Lc ≈ 3.5 ξ(T ). In

this region the current phase relationship becomes multivalued and the constriction

weak link no longer exhibits the ideal Josephson effect, this limiting length is called

the critical length Lc. In addition to the existence of Lc, further simulations by

Likharev and Yakobson identified two additional regions that depend not on Lc

but on a critical width Wc. In the region W < Wc where Wc ≈ 4.44 ξ(T ), phase

slippage results in 1D-depairing, whilst for W > Wc coherent vortex motion ensures

long range order. This is shown in Figure 1.14.
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Figure 1.14: The effect of L andW normalised to ξ(T ) on the current phase relation.
Adapted from Likharev [38].

1.3.2 Critical current

Although developed for tunnel junctions, the Josephson theory can be extended

to constriction weak links as a good approximation assuming the dimensions are

comparable to the Ginzburg-Landau coherence length ξGL.

Ambegaokar and Baratoff (AB) model: Weak links of the constriction

type “S,C,S ” have been analysed within the framework of the Ginzburg-Landau

theory by Ambegaokar and Baratoff [48] and then by Aslamazov and Larkin [49] at

temperatures close to Tc where the properties of the bridge coincide in the main

with properties of Josephson tunnel junctions which satisfy

Is(ϕ)Rn =
π∆

2e
tanh

(
∆

2kBT

)
(1.54)

Equation 1.54 holds well at temperatures close to Tc, but as temperatures move

away from Tc it becomes a very poor fit. In 1975 and 1977, Kulik and Omelyanchuk

developed an alternative set of equations that better model the effect of temperature
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on Ic of different weak links.

KO(I): The first case(denoted as (KO-I)) [38] applies to dirty or short weak

links and gives

Is(ϕ)Rn =
2πkBT

e

∑
ω>0

2∆ cos(ϕ/2)

δ
arctan

∆ sin(ϕ/2)

δ
(1.55)

where δ =
√

∆2 cos2(ϕ/2) + (~ω)2 1and the nth Matsubara frequency ~ω satisfies

~ω = πkBT (2n+ 1) where n is a positive integer. Plotting the resulting Is (ϕ)RN

as a function of the phase for a typical short weak link results in Figure 1.15, where

the critical current Ic is taken as the maximum value of the function.
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Figure 1.15: Is (ϕ) relationship for a typical short Nb weak link produced from
the KO(I) equations, Is (ϕ) tends from a sinusoidal to a non-sinusoidal relation as
T → 0. Ic is taken as the maximum value of the function.

KO(II): The second case(KO-II) [50] applies to clean or long weak links and

gives

Is(ϕ)RN =
π∆

e
sin(ϕ/2) tanh

∆ cos(ϕ/2)

2kBT
(1.56)

1not to be confused with the δ from the ODSEE model encountered earlier.
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Plotting the Is(ϕ)RN in this region gives the behaviour shown in Figure 1.16
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Figure 1.16: Is (ϕ) relationship for a typical long/clean weak link produced from
the KO(II) equations, as with the KO(I) theory, Is (ϕ) tends from a sinusoidal to a
non-sinusoidal relation as T → 0.

Considering the maximum of Equations 1.54, 1.55, 1.56, a graphical represen-

tation of the the temperature dependence of Ic can be produced for each case as

shown in Figure 1.17.
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Figure 1.17: Graphical representation of the KO-I, KO-II and the AB predictions
for the temperature dependence of IcRN.
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It is in short weak links where the ideal Josephson effect is observed since the

Is relationship has a close to perfect sinusoidal relation to the phase as shown in

Figure 1.16, and an increase in the effective length causes considerable deviation

from the ideality. However, the details may differ depending on the mean free path

`.

1.4 Voltage standards

1.4.1 DC voltage standard

The most significant metrological application of superconductivity and especially

the Josephson effect is the Josephson DC voltage standard. This quantum standard

enables the reference of the unit of voltage just to physical constants, and is used

in many laboratories world wide for high precision voltage measurements.

Figure 1.18: One-volt NIST Josephson Junction array standard having 3020 junc-
tions. Microwave energy is fed to four chains of junctions through the fine guide
structure at the left. The thin tapered structures at the end of each chain are
terminations to prevent reflection of energy back up the chain [51].

The Josephson effect reduces the reproduction of voltages to the determination

of a frequency, which can be finely controlled with high precision and accurately

referenced to atomic clocks. As will be seen in Chapter 2 this follows from

V =
h

2e
f = Φ0f (1.57)
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The inverse of the flux quantum, 1/Φ0, is called the Josephson constant, and is

denoted KJ . In 1990 the adopted value was KJ−90 = 483598× 109Hz/V. A single

Nb tunnel junction operated at the first-order constant-voltage step generates about

145µV, when irradiated by 70 GHz microwaves [52]. Highly integrated junction

series arrays are therefore needed to achieve practical output voltages up to 1 V or

10 V [53].

1.4.2 AC voltage standard background

The Josephson effect may be applied to synthesise an AC waveform with metro-

logical accuracy, aiming at the AC voltage standard or precision AC measurements.

Most of the research towards an AC voltage standard revolves around employing fast

Digital to Analogue (D/A) converters as means of exploiting the Josephson effect

and in particular flux quantisation as means of achieving AC voltage standards.

There are three different approaches that exploit the principle of D/A converters to

achieve the AC voltage standard:

• Binary

• Pulse driven

• RSFQ

Binary voltage standard: DC voltage standards based on hysteretic Joseph-

son junctions cannot change the voltage with the speed fast enough to generate

an AC waveform even at a frequency as low as a few Hz. The first successful

approach to realise a rapidly programmable DC voltage standard was the Binary-

type Josephson D/A converters proposed by NIST [54]. In this approach, an array

of nonhysteretic junctions is divided into sections containing a binary number of

junctions (1,2, ... 2n). The output voltage is given as V = Nf/KJ , where N is

the number of digitally programmable voltage steps N and KJ is the Josephson

constant. Different output voltages are programmed by using independent bias
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currents to select an arbitrary number of voltage steps N and therefore the voltage

of each array segment in the binary series can be controlled,

Figure 1.19: Circuit schematic of a programmable Josephson Voltage Standard
(Binary voltage standard) and the resultant voltage output where the voltage steps
are clearly visible and produce a AC output.

Tri-layer tunnel junctions with large critical currents have been developed by

NIST to provide higher output current and better stability against noise [55]. Their

over damped characteristic results in a nonhysteretic I-V curve that is inherently

stable without the use of external shunt resistors. This junction technology and

circuit design has advanced to the level where a binary sequence circuit with

32768 SNS junctions in nine independently selectable arrays on a single chip has

demonstrated stable accurate voltages up to 1.2 V [56]. However, the binary

type D/A converter suffers from substantial uncertainty as a result of switching

transients and jitters. This is due to the fact that the transitions from one voltage

level to another are controlled by external semiconductor circuits. The only way

to completely avoid transients at all is to use the so-called pulse driven Josephson

arbitrary waveform synthesiser in which the output voltage is controlled not by
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changing the total voltage steps N, but by changing the driving frequency f using a

microwave digital pulse generator.

Pulse driven voltage standard The interest in quantum-accurate AC wave-

form synthesis led to the development of another version of Josephson voltage stan-

dards for AC applications [57,58]. The limitations of binary-type D/A converters

do not appear, if Josephson junctions are operated by a train of short current pulses.

The train of pulses determines the number of flux quanta transferred through the

Josephson junctions or weak link at any time [59]. The waveform to be generated is

encoded in the pulse train. A high pulse repetition rate generates high voltages; the

voltage decreases with decreasing pulse repetition rate. Figure 1.20 schematically

shows the principle of operation. The pulse train is typically created by the use of

second-order sigma-delta (SD) modulation [60].

Figure 1.20: Example of a pulse driven voltage standard set-up.

Important steps towards increasing precision and accuracy of pulse drive wave-
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form synthesiser involved the development of a code generator allowing a pulse

repetition frequency of about 10 GHz [61] and the use of a bipolar drive sig-

nal [62,63]. Overdamped Josephson junctions are embedded into the middle of a

coplanar waveguide transmission line (CPW). As the pulses consist of broadband

frequency components ranging from DC to about 30 GHz [64], a coaxial microwave

assembly is required in order to enable the transmission of these broadband signals.

The broadband pulse drive including DC and low-frequency components causes

additional requirements in operation compared to sinusoidal driven arrays. The DC

component must be delivered to the array, e.g. by a direct connection to the code

generator [65]. A resistive microwave termination at the end of the CPW would

produce an unwanted common mode voltage; in order to avoid this common mode

voltage, the initially used arrays were designed as lumped elements, whose junction

series array are directly grounded. Finally, a simple splitting of the array in parallel

microwave paths is not possible [66]. A comparison between the output voltages of

a pulse-driven and a binary divided Josephson voltage standard at 8 mV showed an

excellent agreement of both systems within a relative deviation of 5× 10−7 [60, 67].

In both previous examples the underlining principle of single flux quantum

manipulation is the core foundation of exploited towards achieving AC voltage

standard. However in the binary type voltage standards, the quantised pulses are

not counted or monitored through the system and when the system is switched

off and on again results in a loss of precision. Pulse driven standards overcome

this obstacle since pulses are counted, however complex semiconductor circuitry in

the pulse pattern generator means that this is an expensive solution. This can be

overcome if the pulse pattern generator can be encoded into the superconducting

circuitry, here is where Rapid Single Flux Quantum (RSFQ) technology plays an

important role.
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1.4.3 Rapid Single Flux Quantum (RSFQ)

In electronics, rapid single flux quantum (RSFQ) is a digital electronics tech-

nology that uses superconducting devices, namely Josephson junctions, to process

digital signals. RSFQ provides an intrinsic digital coding which represents infor-

mation by the presence or absence of a magnetic flux quantum Φ0 = h/2e in a

superconducting loop containing one or more weak links. The presence of a single

flux quantum (SFQ) corresponds to a circulating current J = Φ0/L in the loop

where L is the loop inductance. The exchange of flux quanta between these loops

is performed by switching events of the weak links. RSFQ electronics provide very

high switching speed in combination with very low power consumption and is a

promising field for fast A/D conversion. This technology eliminates the issues that

arise from pulse driven AC voltage standards. In this thesis we will investigate

whether in combination with constriction type weak links a whole RSFQ circuit

can be fabricated on a single chip in one e-beam lithography and metal deposition

session.

(i) Background: In RSFQ technology, information is represented as short

pulses with a duration of the order Φ0/IcRN. In general it is desirable to use

junctions with high IcRN to maximise the speed of the device. For a typical

IcRN product of 1 mV for low temperature superconducting material like Nb the

pulse duration is ≈ 2 ps. During a single pulse the phase difference across a

Josephson junction evolves by 2π and according to the second Josephson equation

V = (~/2e)(dϕ/dt), a 2π change results in voltage pulse of fixed area
∫
V dt =∫

(~/2e)dϕ = (~/2e) = Φ0 = 2.07× 10−15 Wb.
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Figure 1.21: A typical voltage pulse. A combination different time dictate the shape
of the voltage pulse. The LJ/RN time constant is responsible for the width/duration
of the voltage pulse whilst the RNCJ time constant is responsible for the duration
of the fall of the pulse. Lastly the

√
LJCJ time constant determines the length and

duration of the tail of the pulse.

The idea of the RSFQ logic is to use these quantised pulses for the storage and

transfer of information at GHz speeds without any losses.

(ii) Building blocks: RSFQ circuity can be broken down into four different

section as shown in Figure 1.22.

Figure 1.22: Schematic representation of RSFQ circuitry.

The first component of any RSFQ logic circuit is the Single Flux Quantum

pulse (SFQ) spike. In principle, the SFQ pulse can be generated through biasing an

overdamped Josephson junction slightly above its critical current Ic. This results

in a supercurrent Is flowing in the form of short pulses across the junction with a

corresponding voltage pulse of area
∫
V dt = Φ0 as shown in Figure 1.23.
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Figure 1.23: Example of time domain supercurrent and voltage oscillation in a
Josephson junctions.

(iii) Josephson Transmission Line (JTL): The second stage of an RSFQ

logic circuit acts as driver and receiver for transfer of SFQ pulses along a passive

superconducting micro-strip line usually referred to as a Josephson Transmission

Line (JTL).

Figure 1.24: Discrete Josephson transmission line for active SFQ pulse transfer.

The JTL consists of several Josephson junctions connected in parallel by super-

conducting strips of a relatively low inductance, and DC-current biased to their

sub-critical state (IJTL . Ic). The loop inductances are chosen so that the screening

current βL = 2LIc/Φ0 is just less than unity, so the loops transmit rather than store

flux. The Josephson transmission line is a key component of any RSFQ circuitry

and tends to be the first element designed and implemented when attempting

to fabricate RSFQ circuits. As an SFQ pulse arrives at the JTL a 2π jump of
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the Josephson phase is triggered in the first junction of the JTL since the pulse

is sufficient for the junction current to exceed Ic. This results in an SFQ pulse

developing which in turn triggers a 2π phase shift in the adjacent junction. In

effect this is equivalent to a flux quanta moving from left to right across the JTL

by the input signal. JTLs can also be used to amplify SFQ pulses. For that, the

critical currents of the junctions and the corresponding DC bias currents should

grow in the direction of the pulse propagation, with a proportional decrease of the

inductances. Unfortunately JTL’s transmit pulses equally well in both directions

and cannot be used for isolation. A buffer stage is needed as shown in Figure 1.25.

Figure 1.25: buffer stage.

The Buffer stage: The junctions are DC-current biased below their critical

currents. If a short pulse arrives at A, it induces a 2π switching of the Josephson

phase of junction J1. This switching produces the standard SFQ pulse at the output

terminal B. On the other hand, if the pulse arrives at terminal B, junction J2

generates a 2π change maintaining an overall zero flux state of the loop. Thus, no

SFQ pulse passes to the input A of the circuit, hence it performs the function of a

one-directional buffer.

If the DC bias current Ib is not too far from the junction critical current Ic, this

SFQ pulse can be triggered by an incoming short pulse, with either the nominal or

a somewhat different amplitude. It means that the circuit shown in Figure 1.25

37



can reproduce SFQ pulses, bringing their area
∫
V (t)dt to the nominal value Φ0,

providing a moderate voltage gain if necessary.

Josephson Comparator: The Josephson comparator is one of the funda-

mental building blocks of RSFQ electronics and is the basic decision element for

very fast A/D converters, within the RSFQ circuit family it is the exclusive device

which provides logical data processing. The behaviour of a Josephson comparator

is influenced by the characteristics of the comparator loop and weak links that act

as the Josephson elements in the device. This behaviour in turn is dictated by:

• The IcRn product of the weak links

• The size of the current biasing of the weak link relative to their critical current

• The loop inductance

• The value of the Stewart-McCumber parameter βc

A Josephson comparator acts as a sampler, where an SFQ clock input arrives at

point A in Figure 1.26 and sets the sampling rate of the two Josephson junctions

J1 and J2,. Depending on the size of the signal current Isignal to be sampled, either

one of junctions J1 or J2 switch producing a logical ”1“ output whilst the the other

junction remains in the non-active state with an output of “0”. In the example

shown in Figure 1.26 as the SFQ pulses arrive at point A, they cause junction J1

to switch and produce voltage pulses up to a certain threshold current (denoted

Ith). Above this threshold current junction J2 is triggered and begins producing

voltage pulses whereas J1 reverts to the resting state.
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Figure 1.26: Schematic circuit of a typical Josephson comparator setup and the
associated output voltage of the different junctions. As an SFQ pulses arrives from
point A it triggers junctions J1 causing it produce voltage pulses up to a threshold
Isignal value above which J2 is the junction triggered and produces pulses. This
threshold current is denoted as Ith.

By either (i) tracking the number of pulses generated from both junctions J1

and J2 as a ratio of the incoming pulses generated or (ii) measuring the DC average

voltage output from both junctions and dividing by the DC average voltage of

the incoming pulses, a switching probability graph can be produced as shown in

Figure 1.27 where the transition from “0” to “1” switching probability is represented

as a Heaviside step function. In an ideal scenario this transition is a single vertical

step as shown in Figure 1.27, however due to the presence of thermal noise in a

real device results in a smearing of this step and an uncertainty region where both

junctions J1 and J2 cab switch. It is this region that is a major limiting factor in

device performance and is referred to as the grey zone width.
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Figure 1.27: Illustrative graph of an ideal switching probability of junction J2 from
Figure 1.26, where the transition from “0” to “1” in the switching occurs as a vertical
Heaviside step function.
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Chapter 2

Literature review of RSFQ and

Josephson comparator devices for

high speed circuitry

One of the earliest attempts at utilising the Josephson effect in integrated circuit

came from the IBM project to create the worlds first Josephson junction based

computer [68]. During the program’s lifetime major advances were seen in the

development of essential computer components such as logic and memory circuits

as shown in Figure 2.1, together with fabrication and packing technologies for

such devices. This was seen as the first sign of the march of superconducting

integrated circuits based on Josephson junctions and the Josephson effect on the

semiconductor circuitry sector. The programme however was stopped in 1983, due

to difficulties controlling the Ic spread of Pb-alloy based Josephson junctions and

its poor resilience to repeated thermal cycles. Both of these issues were solved with

the introduction of Nb based fabrication technologies such as those developed by

the “Japanese High speed Computer Project” 1 which resulted in the fabrication of

1The Japanese High speed Computer Project was a collaboration between Japanese computer
companies and government agencies (ETL, NEC, Hitachi, Fujitsu, NTT)
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Nb/Al2O3/Nb tunnel junctions which offer higher degrees of controlling Ic spreads

when compared to the Pb-alloys [69–71] which allowed large scale integration

complexity and is able to better withstand repeated thermal cycling.

Figure 2.1: Optical image of a Josephson processor developed by IBM. Adapted
from W. Anacker [68].

In addition to issues described earlier, IBM’s use of underdamped Josephson

junctions in a technology referred to as latching logic, where operation of such

devices is similar to that of RSFQ circuits and is based on the voltage logical states

of ”1" and "0” i.e. the zero and finite voltage states that occur for current values

between Ic and IR as seen in Figure 1.8 resulted in clock speeds of less than 1 GHz.

This was overcome by the development and introduction of Rapid Single Flux

Quantum (RSFQ) logic.
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2.1 RSFQ and the Josephson comparator
This was first proposed by Likharev, Semenov and Mukhanov in 1985 as a joint

project between Moscow state university (MSU) and Institute of Radioengeneering

and Electronics (IRE) [72]. Based on underdamped Josephson junctions, RSFQ

circuits utilise flux quantisation to store and transfer information along a circuit.

Low power and energy dissipation, and very high speeds are some of the major

advantages of RSFQ logic.

2.1.1 RSFQ family

Expanding on the introduction of RSFQ provided in section 1.4.3, In the following

section I will briefly describe a few branches of RSFQ logic circuits in terms of high

speed devices. The first of such are known are asynchronous components.

Asynchronous Components: Are responsible for the transfer of SFQ pulses

across an RSFQ circuit, such example include JTL introduced in section 1.4.3,

Splitters and Mergers, examples of such circuits are shown in Figure 2.2. As with

the (JTL) introduced in previous chapter the main role of asynchronous components

is the transfer of SFQ pulses from an SFQ converter/generator to the main decision

making element of an RSFQ circuit the Josephson comparator (see Section 2.2)

Logic gates: The first RSFQ circuits developed by Likharev et al. [72] was a

logic gate T Flip-Flop circuit shown in Figure 2.2. As with semiconductor circuits

RSFQ Logic gates have been developed with logic elements such as AND and OR

as shown in Figure 2.2 (d)-(e)

Converters: Are responsible for the conversion of DC currents and pulses

into SFQ pulses (DC/SFQ) and vice versa (SFQ/DC). They can take the shape of

a single junction or a much more complex arrangement involving several SQUIDs2

examples of a DC/SFQ circuit is shown in Figure 2.2 (g)

2Superconducting QUantum Interference Devices
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Figure 2.2: Schematic representation of RSFQ circuit suggested by Likharev,
Semenov and Mukhanov [72] and different possible circuits a) Splitter, b)Merger,
c)JTL, d)AND, e)OR and f)DC/SFQ. Circuits adapted from Suny/Stony Brook
RSFQ cell library [20]. 44



Materials and cell libraries; Much of the early work in RSFQ circuity was

focused on the development of common cell libraries that can be used to construct

complex circuitry for very fast electronics In 2002 Febvre et al. [73] performed a com-

parative study of RSFQ cell libraries based on low Tc Nb/Al2O3/Nb tunnel junctions

and high Tc DryBa2Cu3O7−δ (as the electrode material) and PrBa2Cu3−xGaxO7−δ

(as the tunnelling barrier) with an emphasis on clock frequency limits in the hope

of constructing complex circuitry from a common cell library like the ones found in

the Suny/Stony Brooks group [20] which can integrated into optical or microwave

signal circuits.

Figure 2.3: Test circuit used by Febvre et al. and equivalent (a) low Tc Nb/Al-
Al2O2/Al tunnel junctions and (b) high Tc circuits composed of DyBa2Cu3O7−δ as
the electrodes and PrBa2Cu3−xGaxO7−δ. Adapted from Febvre et al. [73]

The work focused on determining the upper clock frequency limit of the different

circuits and thus establishing clear operating margin for devices based on different

materials. Using the circuits shown in Figure 2.3 they undertook a two step process,

first by optimising the devices for the maximum possible frequency to reach the
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highest margin of operation3. The results are shown in Figure 2.4

Figure 2.4: Operating margins of both low and high Tc devices. The low Tc device
offers higher operating margins up to 30% compared to high Tc devices were it only
stands at 15%. Adapted from Febvre et al. [73]

Since the establishment of very reliable cell libraries for RSFQ circuits, work

has focused on the decision elements of all such devices and as such research in

improving the preformance and decision making of Josephson comparator utilising

low and high Tc material, below are a few examples of such efforts and a brief

description of their results.

3the term margin of operation is used to describe the upper and lower limit at which the
Josephson comparator can be operated without any loss of preformance, the larger the margin of
operation the more resistant the Josephson comparator is to fluctuations in input currents and
voltages allowing for easier operation.
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2.2 Josephson comparator
As the only element in the RSFQ circuit family that provides logical data

processing, the Josephson comparator is an important component of any fast

samplers and analogue to digital convert circuits and is the determining element

of their performance. Sometimes referred to as a balanced comparator, where two

identical junctions (or with very similar parameters) are connected by a common bias

source which is usually the processed signal, a basic setup is shown in Figure 1.26.

Due to their importance work has been carried out to understand the fundamental

limitations of such devices. In the following sections we review the theoretical and

experimental studies into the performance of the comparators

2.2.1 Theoretical studies; comparator sensitivity, resolution and

error

Theoretical models of Josephson comparators have focused on a particular set of

devices, by using small inductance loop the source of the SFQ pulses can be lumped

together as phase generators, whilst the grey zone is seen in terms of a probability

P where the switching as mentioned in Section 1.4.3 is defined as the transition

from “0” meaning no switching and “1” representing full switching and follows a

Gaussian process where for a balanced comparator ∆Ix describes the total range

of current where the transition from “0” to “1” occurs, a graphical representation

of the switching is shown in Figure 2.5, whilst the switching probability is also

described mathematically as:

∆Ix =

∣∣∣∣∂P∂I
∣∣∣∣−1

I=0

(2.1)
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Figure 2.5: Graphical representation of the switching probability. The red line
represents an ideal Heaviside vertical step describing a zero or infinitely small grey
zone, whilst the blue line represents the scenario in a real device where thermal and
other noise sources result in a smoothing of the Heaviside function, ∆Ix describes
the range of currents at which the transition from “0” to “1” switching probability
occurs at. Ith represents the current value at which the switching probability stands
at 0.5, if the comparator is described as a balanced comparator then Ith = 0µA.

Sensitivity and Resolution: In 1991 based on experimental observations,

Filippov and Korne [74] proposed a numerical model that predicts the effect of

thermal fluctuations on the grey zone width of a simple Josephson comparator, as

such defining fundamental limits effecting the sensitivity of a balanced comparator.

By using the phase generator lumped circuit definition, Filippov and Kornev

fabricated and tested the circuit shown in Figure 2.6.
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Figure 2.6: Schematic representation of the experimental (top left) and equivalent
circuit (top right) used by Filippov and Kornev. The energy potential diagram of
the phase ϕ (bottom) is calculated as a functions of the phase difference of the
two comparator junctions ϕ = ϕ1 − ϕ2. Whilst ϕe is the incoming phase from the
preceding circuit. Adapted from Filippov and Kornev [74].

Using the RSCJ model and the washboard analogy, the phase difference ϕ is

described as:

mϕ̈+ 2mγϕ̇+mω2 (t) sin (ϕ) = F + Ff (2.2)

where

m = 2CJ

(
~
2e

)2

, γ = (2RNCJ)
−1 , ω2 (t) =

(
2e

~CJ

)
Ic cos

(
ϕe (t)

2

)

F = −I~
2e
, Ff =

I~
2e

(If2 − If1)

where If1 and If2 are the fluctuation currents.By assuming that the inversion of the

energy potential through increasing ϕe depends on a rate κ so that any changes in
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ϕe (t) occurs in such a way that the frequency ω2 (t) satisfies;

ω2 (t) =
(
ω2

0 + ω2
1

)
e−κt − ω2

1 (2.3)

where ω2
0 = (2eIc/~CJ) cos (ϕe (0) /2) and ω2

1 = (2eIc/~CJ) cos (ϕe (∞) /2). The

initial state of the determines the movement of the phase potential and in particular

the inverted system. If ϕ is small enough it allows for Equation 2.2 to be linearised

resulting in the Langevin equation;

mϕ̈+ 2mγϕ̇+mω2 (t)ϕ = F + Ff (2.4)

Omitting the complex derivation of the solution to Equation 2.4 which can be found

here [74]. By linearising ϕe and taking its initial value as ϕe (0) = arcsin (Is/Ic)

and ϕe (∞) = ϕe (0) + 4π/ (2 + L cos (ϕe (0))), Filippov and Kornev proposed two

expression for ∆Ix.

Quantum limit: when kBT � ~ω0, for a Josephson comparator consisting

of two overdamped junctions where (ω0/γ) if t� 1/
((
γ2 + ω2

1

)1/2 − γ) and ∆Ix

is represented as;

∆Ix| T=0
γ�ω0

=

(
8e2IcVc

~

)1/2
λ0λ1

λ0 + λ1
ln (Ω/ω0) (2.5)

where λ0 = cos (ϕe (0) /2), λ1 = cos (ϕe (∞) /2) and Ω is defined as a cut off

frequency and is approximately equal to ≈ 50ω0.

Thermal limit: In this region, where kBT � ~ω0, if t� 1/
((
γ2 + ω2

1

)1/2 − γ),
when conditions, γ � ω1, κ � ω2

1 or γ � ω1, κ � ω1/γ, then the expression for

∆Ix becomes;

∆Ix = (4πIcIT)1/2

(
λ0λ1

λ0 + λ1

)1/2

(2.6)

where

IT =
2ekBT

~
=

2πkBT

Φ0
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Employing the circuit shown in Figure 2.6 Filippov investigated the effect of

temperature, clock frequency and SFQ pulse duration on the size of the grey zone.

using the assumptions that the clock frequency rate is slower than the Josephson

plasma frequency ωp =
√

2πIc/Φ0C, Filippov looked in to the effect of temperature

on the grey zone ∆Ix and comparing the results to those from the model introduced

earlier. Results are shown in Figure 2.7. Filippov also found that when the clock

speed dϕe/dt decreases results in the grey zone ∆Ix shrinking [75].

Figure 2.7: Temperature dependence of the grey zone at different ratios of κ/ω0

marked as black circles with error bars present. The solid lines represent the grey
zone derived from first principles according to equations present in Filippov [74]
whilst the dashed lines represent the pure thermal model according to Equation 2.6.
There is good correlation between the first principle model and the data up to
2 K at which point the purely thermal model becomes a better fit. Adapted from
Filippov et al. [75]
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Errors: The low switching energy of RSFQ circuits whilst very desirable

does mean that when operated in the thermal region the probability of thermally

induced switching, a process known as false switching can occur, this results in

false readouts and is highly undesirable. Due to the use RSFQ circuitry as large

scale high speed digital signal processor understanding and controlling error rate

becomes very important. Theoretical and experimental work has been done by Herr

et al. [76–78] and Ortlepp et al. [79, 80] towards the developments of modules that

quantify errors in such circuits.

x
′
i = fi (x, u, τ) + Γi (τ) i = 1...k (2.7)

∂W

∂τ
=

{
−
∑
i

∂

∂xi
fi (x, u, τ) +

∑
i

σi
2

∂2

∂x2
i

fi (x, u, τ)

}
W (2.8)

Using the Fokker-Planck Equation 2.8 constructed from a set of stochastic Equa-

tions 2.7 which represent the Josephson comparator system both Herr and Ortlepp

et al. developed a set of equations that model the rate of error in a superconducting

circuit. Beginning with the work done by Herr et al.. Focused on dynamic error

which arises from transfer of SFQ pulses across an RSFQ circuit. Using a slow

10 GHz clock frequency they developed an error detection circuit as shown in

Figure 2.9 using HYPRES 1 kA/cm2 Nb tunnel process [19].
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Figure 2.8: Set-up of Herr et al. error rate experiment. The inset demonstrates an
SFQ pulse reaching the two junctions that make the Josephson comparator of the
JTL stage and the measured error rate. Adapted from Herr and Feldman [77].

The DC/SFQ generates an SFQ pulse that travels to JTL via the buffer where

it circulates at a frequency of 10 GHz, changing the biasing of escape junctions

results in the SFQ pulse exiting the the ring. whilst the pulse is circulating an SFQ

pulse splitter labelled ”S1" directs a pulse towards the clock JTL whilst splitters

S2 and S3 direct the SFQ pulse towards 2 identical 10 stage JTL circuits (which

have an escape junction as shown in Figure 2.8) which in turn transfers a pulse

which triggers the XOR circuit. Correct operation comes from both JTL circuit

stages transferring pulses to the RSFQ XOR circuit which in turn results in zero

output. In the presence of error the SFQ pulse exits through an escape junctions

and is detected by the SFQ/DC stage and the RSFQ XOR outputs a logical 1. By

adjusting the biasing current of the 2 JTL stages the frequency of errors can be
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varied, from optimal bias where no SFQ pulse exit via the escape junction to where

all SFQ pulses exit indicating error. Plotting the bit error rate versus the biasing

current resulted in a smooth curve as shown in Figure 2.9

Figure 2.9: Schematic of simplified RSFQ circuit. The stages proceeding the
comparator are lumped together as a phase generator. Adapted from Herr and
Feldman [77].

Based on these results the group developed a theoretical model using the phase

generator argument [74]. Linearisation of the phase from the phase generator

which is similar to the method introduced by Filippov et al. but use a different

approximations for their system where the phase of the phase generator is a step

function described by;

ϕ (t) = ϕ0 +
2π

1 + exp (−πt/τ)
(2.9)

where ϕ0 is the initial phase resulting from input currents of the DC/SFQ and τ

is the rise time of the phase. By simplifying the circuit and representing all other

components except the comparator junctions as a phase generator as shown in

Figure 2.9, the switching probability of the escape junctions is modelled as an error

function shown in Equations 2.10

√
α/T

4π

∫ ∞
Ix

e−(α/T )z2dz
Ix Large−−−−−→ 1

π
√
α/TIx

e−(α/T )I2x (2.10)
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Where Ix is current, for an asymmetric comparator as the one fabricated by Herr

et al. is calculated as Ix = Ib − Io where Io is an offset current which can be used

to achieve balance, T is temperature and α is a constant which depends on circuit

parameters which is determined as a linear fit from the experimental bit error rate.

Plotting Equation 2.10 results in the graph seen in Figure 2.9 where the minimum

error rate is achieved at the balance point where Ix = 0.

In order to fully understand thermal switching events the switching probabil-

ity of the comparator junctions must be modelled. Using the washboard analogy

Herr et al. introduces the parameters m, d and k as

m =

(
~
2e

)
C d =

(
~
2e

)
1

R
κ =

(
~
2e

)
1

Leff
(2.11)

the phase of the transmission junction is defined as an independent spatial variable

x resulting in the phase of the escape junction equaling ϕ (t)− x. Constructing a

Langevin equation of motion for the circuit gives;

ẋ = v v̇ = Dv (x, v, t) + Γ (t) (2.12)

where

Dv (x, v, t) =
−I ′

b + Ic1 sin (ϕ− x)− Ic2 sin (x− κx) +m1ϕ̈+ d1ϕ̇− (d1 + d2) v

m1 +m2

(2.13)

and the noise current in the resistor results in the stochastic force Γ (t) with mean

zero and variance;

Dvv =

(
1

R1
+

1

R2
+

1

Rb

)
2kBT

m1 +m2
(2.14)

Combining all the variables to calculate the switching probability as shown in
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Equation 2.8 results in the Fokker Planck equation

∂W

∂t
=

(
−v ∂

∂x
− ∂

∂v
Dv (x, v, t) +

1

2

∂2

∂v2
Dvv

)
W (2.15)

Taking the spatial terms separately, a method known as operator splitting, the two-

step Lax-Wendroff method is used to solve for the the first order partial derivative

and the Crank-Nicolson method is used for the v derivative, this is known as

operator splitting a computational exhaustive method due to the large grid points

Solving Equation 2.15 allows the tracking of the phase of the comparator junctions;

Figure 2.10: Example of time evolution of the phases probability distribution
function at 3 ps apart, each frame represents probabilities of 0.47, 0.91, 0.995 and
0.9999

This method restricts modelling of switching probability to only the comparator

junctions i.e. escape and transmission junctions. In 2003 Ortlepp et al [79].

suggested an approach that divides the RSFQ circuits into its component parts

which are then characterised in terms of their switching probability. The data

for the separate sections are then combined resulting in an overall switching error

for the whole comparator circuit, allowing the switching probability to be tracked

throughout the device, giving a more complete picture of the error which arises in

an RSFQ circuit and as such does not require the complicated setup used by Herr

et al. to track the error. Using a modification of the RSCJ equations they define

56



two parallel junctions like those in a JTL (see Section 1.4.3)each having its own

biasing source connected to a phase generator ϕ as:

Φ0

2πRN1
ẋ1 = Ib1 − Ic1 sin(x1) +

Φ0

2π

(
ϕ− x1

L1
+
x2 − x1

L2

)
Φ0

2πRN2
ẋ2 = Ib2 − Ic2 sin(x2) +

Φ0

2π

(
x1 − x2

L2

) (2.16)

The Fokker-Planck equation for the circuit is then given as:

∂W

∂t
= W

(
2π
RN1Ib1 +RN2Ib2

Φ0
+
RN1

L1
+
RN1 +RN2

L2

)
− ∂W

∂x1
RN1

(
2π
Ib1 − Ic1 sin(x1)

Φ0

ϕ− x1

L1
+
x2 − x1

L2

)
− ∂W

∂x2
=

(
2π
Ib2 − Ic2 sin(x2)

Φ0
+
x1 − x2

L2

)
+

1

4

4πkBT

Φ0

(
R2
N1
∂2W

∂x2
1

+R2
N2
∂2W

∂x2
1

)
(2.17)

By solving Equation 2.17 analytically [81] and by ensuring that the phase of the

junctions proceeding the phase generator is directly following it, this leads to three

different errors [82, 83] being extracted from the solution, the first is known as a

static error and is given as:

ps(t) =
d

dt

∫∫
x2>π+ϕ

W (x1, x2, t) , dx2 , dx1 (2.18)

and the other are referred to as dynamical error and given as:

pd1(t) =
d

dt

∫∫
x2>π

W (x1, x2, t) , dx2 , dx1 (2.19)

pd2(t) =
d

dt

∫∫
x2>3π

W (x1, x2, t) , dx2 , dx1 (2.20)

Using Equations 2.18-2.20 it is possible to track errors in circuit as a function of

time as shown in Figure 2.11.
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Figure 2.11: All three error rates and the corresponding circuit. Static error seem
to be the biggest contributor to overall error in the circuit, as the phase generator is
turned on at t = 5 ps, there is a period of a few picoseconds where the most likely
due to circuit transient the dynamic error has a bigger contribution to overall error
until the circuit settles where static error then begins to dominate again. Adapted
from Ortlep et al. [79]

However this method is restricted to phase generator type circuits with low

clock frequency similar to the those introduced by Filippov et al. [74]. In addition

to the work mentioned so far into the error rate of RSFQ circuits work has also be

done by Goldobin et al. [84] and Polonsky et al. [85], where a circulating SFQ pulse

was observed not to decay for several hours suggesting a BER of < 10−14.

2.2.2 Experimental studies; Low Tc devices

In almost all cases, the material of choice for low temperature Josephson com-

parator is niobium Nb, due to its high critical temperature when compared with

other low Tc materials meaning it can with stand large magnetic fields and is easily

deposited using sputtering techniques. The basic set-up of any RSFQ Josephson

comparator is described in Figure 1.26.
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Design guidelines: In 2010 Thomas Ortlepp et al. [86] tested through sim-

ulations and experimental observations. Using 3 circuits shown in Figure 2.12 as

base and altering different parameters 8 different Josephson comparator circuits are

realised. The changes are detailed in Table 2.1.

Figure 2.12: Circuit and optical images of the basic layout of all the comparators
tested by Ortlepp et al. All devices fabricated from low Tc Nb/Al2O3/Nb tunnel
junctions. Adapted from Bjoern and Ortlepp [86].
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Using comparator 2.12 as a reference device all other circuits were modified with

respect to one topological or design parameter aspect. Ortlepp et al. investigated

the effect of critical current of the junction J2 on comparators 1-a, 1-b and 1-c,

comparators 1-a. and 1-c are identical except for the inductors that make up the

loop L2a and L2b whilst comparator 3 is obtained by removing the shunt resistor

from comparator 1-a. Comparators 2-a, -b, -c and -d utilise the presence of a

shared biasing source at Ib2 which is directly connected to the driver junctions

J1, in addition to this comparators 2-b and -c share a common shunt resistor R23.

Common damping resistors R12and R34 are included in the centre of the comparator

loop made up of J1 - J2 - J3 and the output loop consisting of J3 − J4 in comp2-d,

resulting in a low pass filter for the noise current of the resistors forming due to the

loop indcantce and the damping resistor. All of these modifications are summarised

in Table 2.1.

Name 1-a 1-b 1-c 2-a 2-b 2-c 2-d 3
Figure 2.12a 2.12a 2.12a 2.12a 2.12b 2.12b 2.12c 2.12a
Ic1 (µA) 250 250 250 250 250 250 250 250
Ic2 (µA) 200 175 225 200 200 200 200 200
Ic3 (µA) 150 150 150 150 150 150 150 150
Ic4 (µA) 200 200 200 200 200 200 200 200
βc1 1 1 1 1 1 1 � 1 1
βc2 1 1 1 1 � 1 � 1 � 1 � 1
βc3 1 1 1 1 � 1 � 1 � 1 � 1
βc4 1 1 1 1 1 1 1 1

Rxx (ω) - - - - 0.75 3 0.75 -
L1 (pH) 2.1 2.1 2.1 2.1 2.2 2.2 2.2 2.1
L2a (pH) 3.4 3.4 3.4 2.2 1.9 1.9 1.0 3.4
L2b (pH) 1.0 1.0 1.0 0.3 - - 1.0 1.0
L2c (pH) 1.3 1.3 1.3 1.3 1.5 1.5 1.3 1.3
L3a (pH) 3.8 3.8 3.8 3.8 3.8 3.8 2.1 3.8
L3b (pH) - - - - - - 2.1 -
L4 (pH) 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2

Table 2.1: Design parameters of Josephson comparator where Rb1 = Rb2 and Rxx
is the damping resistors R12, R23, R34, The values βc � 1 implies an unshunted
junction. Adapted from Bjoern and Ortlepp [86].
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Figure 2.13: The left column are JSIM simulation results whereas the right column
show measurement results. Adapted from Bjoern and Ortlepp [86].

The results obtained from both simulations and experimental testing is sum-

marised in Figure 2.13. As of 2010, Bjoern and Ortlepp reported a grey zone width

of 3.2 µA lower right graph of Figure 2.13, one of the smallest recorded at 4.2 K

using comparator 2-b which has the small common shunt resistor. They attribute

61



this to their ability to separately fine tune the biasing current of the comparator

cell. In addition to the smallest grey zone Bjoern and Ortlepp suggest the following

guide lines for reducing the size of the grey zone;

• The addition small common shunt resistors such as R23 for comparator

junctions

• Direct bias source connections to driver and output junctions

• A large non-storing total comparator loop inductance

Optimisations (speed and accuracy): Ortlepp et al. [87] have also looked

into improving the accuracy and speed of Josephson comparator again in terms of

grey zone width. Using the circuit describes in Figure 2.14 the trade-off between

speed and accuracy was investigated via simulation and analysis of comparator

switching times.

Figure 2.14: Circuit digram of comparator and block diagram whole device used
in simulations, the block labelled TERM represents a 0.7 Ω termination resistor.
Adapted Bjoern and Ortlepp [87].

This was carried out by altering biasing currents, total inductance of comparator

and output loops, βc, operating temperature, Junction critical currents and current

density. A short summary of the influence of the six parameters on the comparator

performance is given in Table 2.2.
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Parameter Modification Benefit
Bias supply Direct connection to

driver and output
junction

Larger bias margins

Loop inductance High value Accuracy
Low value Speed

McCumber parameter βc2<1 <βc3 Speed
Critical current density High value Speed and partly accuracy

Operating temperature Low Accuracy
High Speed

Table 2.2: Influence of different parameters on comparator performance. The βc
values refer to the Stewart-McCumber parameters for junctions J2 and J3 shown in
Figure 2.14. Adapted Bjoern and Ortlepp [87].

By decreasing the operating temperature, the grey zone width can be reduced

until a lower limit arising due to quantum noise. On the other hand, due to the lack

of thermal energy at low temperatures, the switching time dramatically increases,

especially for signal currents close to the threshold current. Consequently, the

trade-off between speed and accuracy also extends to the operating temperature.

Clock frequency: In 2011 Haddad et al. [88] investigated the relationships

between grey zone and clock frequency using the circuit is described in Figure 2.15

Figure 2.15: Circuit digram of Josephson comparator, a section of the Josephson
Transmission Line and the RSFQ output designed by Haddad et al. [88].

The bias current sources are realised by voltage sources in series with on-chip

resistors as assumed for the simulations. The comparator circuit is driven by a

clock pulse which is transmitted to the comparator by switching of J1. Only one

of the two junctions (J2 or J3) is able to switch when a clock pulse triggers the

comparator. The signal current Iin determines which one will switch. Ideally,
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if Iin > Ith, J3 switches otherwise J2 switches, where the parameter Ith is the

threshold current of the comparator. Figure 1.26 illustrates the functionality of the

Josephson comparator and shows schematically the SFQ pulses, which are produced

by the switching of J1, J2, J3 depending on the input signal current Iin.

Figure 2.16: Graph showing the relationship between clock frequency and the grey
zone at different biasing values of Ib1. At the lower Ib1 currents the increasing the
clock frequency dose not effect the grey zone it is only after a threshold frequency
is reached that an increase in clock frequency translates to an increase in grey zone.
Adapted Haddad et al. [88].

Ortlepp et al. found that the narrowest grey zone was achieved for a bias current

107µA at Ib1 when compared to the other bias sources Ib and Ib2. Deviation

from this bias current at Ib resulted in a larger grey zone width. Ortlepp et al.

identified a clear relation between clock frequency and grey zone. The grey zone

remains constant for all clock frequencies below a characteristic frequency fc. Above

this frequency an increase of the grey zone was observed which was temperature

independent. To achieve the lowest grey zone width required careful adjustment of

bias currents.
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Ib1/µA GZ / µA fc / GHz
80 7.17 16
90 6.55 13
100 Not defined Not defined
107 2.21 2
110 2.88 2
115 3.93 7
120 4.93 10
125 5.77 12
135 7.11 14
140 7.64 15
150 8.5 16

Table 2.3: Table of characteristic frequency fc and recored grey zone.Adapted
Haddad et al. [88].

This process is only suitable for systems with very few comparators, as used in

A/D converters or sensor systems. Ortlepp et al. reported a clock frequency of 15

GHz, the grey zone is almost constant between 80 and 140 µA. This fact is very

important for the design of comparators in digital circuits, because the bias current

requires some margin to allow complex circuits to work in the presence of process

variability such as the critical current spreads in fabricated device.

Low Tc ADC: As the name suggests analogue-digital converters take a con-

tinuous voltage or current (Analogue) input converting it into a N-bit digital output

at a rate dictated by the sampling frequency fs. Superconducting ADC commonly

split into two categories Nyquist sampling and oversampling ADCs. One of the

earliest implementations of ADC utilising RSFQ technology used the oversampling

technique in a sigma-delta modulator [89]. Przbyszt et al. [90] tested a high speed

RSFQ circuit. By utilising a large inductor (Σ) to integrate a voltage signal which

is then fed to a single Josephson (∆) junction which takes the resultant integrated

current and produces SFQ pulses. The basic set-up of this sigma-delta modulator

is described in Figure 2.17. The buffer stage acts as a low pass filter ensuring that

the SFQ pulses do not travel back down through the circuit.
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Figure 2.17: Block diagram of sigma-delta modulator ADC and schematic diagram of
sigma-delta modulator fabricated by Przbyszt et al. using 6 kA/cm2 Nb/Al2O3/Nb
tunnel junctions. An analogue signal is fed into the modulator which outputs a
digital signal at the sampling clock frequency. Adapted from Przbyszt et al. [90].

Figure 2.18: Simulations of sigma delta modulator Σ integrating inductor and 1 GHz
sine wave input sampled at 40 GHz vs the digital output of for the modulator.
When the current in the inductor exceeds a threshold of 7 µA results in observed
current drop in the inductor during corresponding to sampling periods. Adapted
from Przbyszt et al. [90].
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2.2.3 Experimental studies; High Tc devices

The one thing most of the low temperature Josephson comparators have in

common is the complexity of circuit design when the whole RSFQ circuit is taken

into account. It would be preferable to have a simple comparator that is able

to give fast and reliable measurements. For this reason the high Tc comparator

design by Oelze et al. [23] is of particular interest. These circuits were fabricated

on asymmetric 24◦ Yittria stabilised zirconia YSZ bicrystal substrates. Epitaxial,

200 nm thick YBCO films were deposited by co-evaporation and patterned by

standard optical lithography with Argon ion milling. Subsequently, a 400 nm thick

SiO insulation layer and a gold layer were evaporated and patterned by lift-off in

order to provide the additional bias current line Ib. Figure 2.19 shows the layout

of the balanced comparator consisting of a generator junction(Jg), a Josephson

transmission line JTL, a buffer stage (J1, J2), and the comparator junctions J3 ,

J4. The equivalent circuit can be found in Figure 2.19.

The Josephson junctions had a width of 3µm, critical currents Ic = 340µA,

and IcRn = 0.4 mV at T = 40K. The inductances of the JTL were realised as

holes with dimensions of 235µm2. These inductances were calculated using a three

dimensional field analysis program 3DMLSI (see Section 4.3) and were found to be

about 10 pH. The use of the additional insulator and gold layer as interconnect line,

instead of a superconducting line joining the comparator loop between junctions

J2 and J3, allowed Oelze et al. to decrease the inductance of the comparator loop

formed by junctions J1–J4 down to 24 pH [23].
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Figure 2.19: Llayout of the balanced comparator fabricated from high Tc supercon-
ductor and the equivalent circuit. Adapted from B. Oelze et al. [23]
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Figure 2.20: Switching probability of junction J4 from comparator designed by
Oelze et al. at T = 40 K. Adapted from Oelze et al. [23]
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Figure 2.21: Effect of temperature on grey zone width. Generator junction voltage
is maintained at f = 95 GHz . Adapted from Ozelc et al. [23]

High Tc ADC: Based on the Comparator in Figure2.19 designed and devel-

oped by Oelze et al. B. Ruck et al. [91] designed, fabricated and tested a sigma-delta

modulator based on 5 µm YBCO grain boundary junctions (see dashed line in

Figure 2.22) with critical current Ic of 450 µA and IcRN product of 1 mV on a

SrTiO3 substrate, the resultant best grey zone measured for the comparator stood

at 10 µA for a pulse frequency of 24 GHz at T = 33 K. Ruck et al. speculate that

the low grey zone is in part due to the flattening of the SFQ pulses ( a technique

first suggested by Filippov et al. [75] 4) due to the microwave losses properties of

the SrTiO3 substrate, with a worst case resolution of 6-bits at measurements of

up to 100kHz was obtained for the sigma-delta modulator, due to restriction on

measurement set-up a complete characterisation was not possible.

4The concept of flatting an SFQ pulse refers the the use of a smooth SFQ pulse that is spread
over a longer time period normally associated with low frequency pulses Fillipove suggested that
pulses should be spread over time intervals in the form τ = 1/f and the change in phase of such
pulses should follow a linear behaviour where ϕ0(t) = 2πft+ constant.
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Figure 2.22: Optical image of fabricated device with the grain boundary Josephson
junction marked by the dashed line and the equivalent circuit diagram. Iclock =
I5 = 272 µA, I1 = I2 = I4 = 550 µA and I3 = 0 µA. L15 = L16 = 3.5 pH and
L21−(Σ) = 200 pH. Adapted from B. Ruck et al. [91].
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Figure 2.23: Example of Simulations and experimental observation of grey zone
dependence on signal current Isignal when the generator J1 junction voltage is
maintained at 50 µV at T = 68 K. Optimal operation of the comparator is at the
minimal of the grey zone. Adapted from B. Ruck et al. [91].
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Chapter 3

Simulation tools and fabrication

techniques

3.1 JSIM
J-SIM [92] is based on JSPICE [93] a popular superconducting integrated circuit

simulator previously used by Berkeley and many other organisations. JSPICE

itself is based on SPICE [94] with the addition of Josephson elements. As such

the JSIM has a similar input to SPICE. It utilises a fixed point method to reduce

the iterations for solving the circuit related coefficient matrix at predefined time

steps. Allowing the effect of noise in resistors to be modelled through the addition

of stochastic voltage and current noise sources by Satchell [95] greatly enhanced the

capabilities of the softwares. The basic problem solved by most circuit simulators

is finding a solution to a system of simultaneous equations of the form:

dx

dt
= F (x) (3.1)

Where the solution has a second order convergence, the backwards Euler method

(which is the simplest method for such problems) is ineffective. The trapezoidal
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integration rule with dx/dt replaced by

2

hn
(xn − xn−1)−

(
dx

dt

)
n−1

= F (xn) (3.2)

where xn is the value of x at time tn and hn is the nth time step, is an attractive op-

tion as it reduces the problem of solving simultaneous ordinary differential equations

to solving a system of simultaneous nonlinear equations. Unfortunately no algorithm

exists for directly solving nonlinear equations. Instead J-SIM employees an iterative

method of which the Newton-Raphson method is a well known algorithm for solving

f (x) = 0 [96]. The method requires an initial guess of the solution. Subsequent

iteration is given by the Taylor series expansion of f (x) about the previous solution,

truncated to the first two terms f
(
xk−1

)
+ f ′ (xk−1)

(
xk − xk−1

)
= 0. In the case

of a system of equations, the derivative is replaced by a matrix of derivatives called

the Jacobian. The iterations continue until |xk − xk−1| is less than some predefined

number which is the convergence tolerance. Now the problem has been reduced to

solving systems of simultaneous linear equations of the form

2

hn
xkn−J

(
xk−1
n

)
xkn =

2

hn
xn−1 +

(
dx

dt

)
n−1

+F
(
xk−1

)
n−1
−J

(
xk−1
n

)
xk−1
n (3.3)

where J
(
xk−1
n

)
is the Jacobian of F

(
xk−1
n

)
evaluated at xk−1

n and xon is an initial

guess of the solution x at time tn. The Newton-Raphson method is second order

and will converge to the solution if the initial guess xon is close enough to xn. To

efficiently solve the problem J-SIM creates a matrix of a size directly proportional to

the complexity of the circuit. A circuit with N nodes will have at least N equations

and the matrix will be at least of dimension N by N . The LU decomposition

method is well suited for these types of problems [96]. Equation 3.4 is an example
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of an LU decomposition.


α11 α12 α13

α21 α22 α23

α31 α32 α33

 =


L11 0 0

L21 L22 0

L31 L32 L33



U11 U12 U13

0 U22 U23

0 0 U33

 (3.4)

L stands for lower triangular matrix and U stands for upper triangular matrix. Any

nonsingular matrix can be decomposed to a product of two matrices where one

is lower and the other is the upper triangular. Once the matrix is decomposed

to LU, the solution is easily obtained in two steps. First the equation Ly = b is

solved, and the solution is obtained by solving Ux = y. Both steps are simple. The

former involves only forward substitutions and the later involves only backward

substitutions. A more through explanation of the LU decomposition and its

implementation in solving linear system of equations can be found here [96–100].

Comparison with JSPICE: Since J-SIM is based on JSPICE which itself is

based on SPICE with the addition of Josephson elements. Both J-SIM and JSPICE

use the modified nodal analysis method (MNA) to represent circuit equations [94].

The difference lies in the implementation of the MNA matrix and the treatment of

the phase. JSPICE treats the phase of a Josephson junction as a separate voltage

node to which no circuit element may be connected and the nonlinear equations

are solved by Newton-Raphson method, and time integration is typically done by

trapezoidal rule. A typical nodal entry of a single Josephson junction in JSPICE

takes the form of:



N+ N− Nφ

2C
hn

+ 1
R −2C

hn
− 1

R Iccosφ
o
n

−2C
hn
− 1

R
2C
hn

+ 1
R −Ic cosφon

−hn
2

2e
h −hn

2
2e
h 1


=



RHS

Is

−Is

φn−1 + hn
2

2e
h vn−1


(3.5)
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where

Is =
2C

hn
vn−1 + Cv̇n−1 − Ic sinφon + Icφ

o
n cosφon (3.6)

and C, R, and Ic are junction capacitance, voltage-dependent resistance and critical

current, respectively and φon is the guessed solution for the Newton-Raphson iter-

ations. A major disadvantage in JSPICE when solving problems in the giga-tera

hertz region for Josephson junctions revolves around the time step integration, for

such oscillations JSPICE recommends the user set a maximum internal integration

time step to about 0.2 ps. This time step limitation is quite fundamental as it

means no time step larger than the Nyquist period can be taken. As such, the

development of J-SIM focused on saving computation time instead of saving on the

number of time steps. The typical MNA matrix for a Josephson junction in J-SIM

takes the form of:



N+ N− Nφ

2C
hn

+ 1
R −2C

hn
− 1

R 0

−2C
hn
− 1

R
2C
hn

+ 1
R 0

−hn
2

2e
h −hn

2
2e
h 1


=



RHS

Is

−Is

Φn−1 + hn
2

2e
h v̇n−1


(3.7)

where:

Is = −Ic sin(φon) +
2C

hn
vn−1 + Cv̇n−1 (3.8)

Since the phase of the Josephson junction determines its behaviour and is linked to

the voltage drop across the junction itself, J-SIM makes an attempt at guessing the

phase at the next time step resulting in a set of non-linear equations which can be

solved not with the Newton-Raphson 1 but using the less computationally intensive

fixed point method [96] which is much simpler but requires a good initial guess of

the phase.

1The Newton-Raphson method is expensive because at each time step and each Newton iteration,
an LU decomposition must be done in order to solve Ax = b. The Jacobian (Equation 3.3) needs
to be updated during each iteration requiring a new LU decomposition.
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3.1.1 J-SIM Implementation and Model set-up

Circuits in J-SIM are represented as a single .js file, where every component

of the circuit is defined using a name, numbering to represent nodes and a

value taking the form NAMEXXXX N1 N2 VALUE. Capacitors, resistors, inductors and

Josephson junctions are denoted as C, R, L and B respectively and take the input

form CXXXX, RXXXX, LXXXX and BXXXX. Current I and voltage V are implemented as

functions describing their behaviour. Sinusoidal, pulse or a piece-wise linear sources

are given as SIN, PULSE and PWL, and they also require a start/inital values and

times e.g. Vbias 17 0 SIN(0 1MV 100GHZ 0US 0) describes a sinusoidal voltage

source named Vbias between nodes 17 and ground (0) with an initial voltage of 0, a

maximum voltage of 1 mV a 100 GHz frequency, a delay of 0 and an a phase angle

value of 0. A list of voltage and current source inputs are shown in Script 3.1.

Voltages

VXXXX N1 N2 SIN( Vint Vfin FREQ TD THETA)

VXXXX N1 N2 PULSE(V1 V2 TD TR TF PW PER)

VXXXX N1 N2 PWL(T0 V0 T1 V1 . . . . )

Current

IXXXX N1 N2 SIN( I0 IA FREQ TD THETA)

IXXXX N1 N2 PULSE( I1 I2 TD TR TF PW PER)

IXXXX N1 N2 PWL( I0 I0 T1 I1 . . . . )

Script 3.1: Example of Current and voltage inputs in JSIM. SIN, PULSE and PWL
represent sinusoidal, pulse and piecewise linear inputs. Other inputs are TD= Total
delay, TR = Total rise, Period width, FREQ = Frequency. All PWL sources must
start with V0 and I0 at zero with an initial time T0 of zero. All value inputs are
either in decimal or scientific notation.

In addition to the above mentioned description of a Josephson junction they also

must have a model specified which include junction critical current, capacitance, nor-

mal resistance e.g. B1 1 0 myjj describes a Joesphson junction named B1 between

nodes 1 and 0 with a model named myjj charactrised as .model myjj jj(rtype=0,
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rn=1000, icrit=100u, cap=0.25p). where icrit describes the critical current,

cap is the junction resistance, rn is the normal resistance and the rtype = 0 is

specific for low Tc material, simulating high Tc substrates such as YBCO would

require rtype=1.

Initial testing of J-SIM: In order to build a working model of our devices

we first begin testing J-SIM using a single Josephson junction biased so that I > Ic,

using the junction parameters reported by Oelze et al. [23] with a critical current

Ic = 340 µA with an IcRN product of 0.4 mV, the capacitance of the junction is

calculated using Equation 1.44 so that βc = 0.1. The JSIM script is described in

Script 4.13.1.

∗ Capacitance of junction calculated for βc = 0.1

∗ Current source
I input 0 1 PWL( 0 0 100P 0 10PS 600uA)

∗The Josephson junction and its model
B1 1 0 j j j 0
. model j j j 0 j j ( r type=0, rn=1000 , i c r i t =340u , cap=0.06994063974173338PF)

∗Shunt Resistor
R1 1 0 1.1764705882352944ohm

∗Time Step and length of simualtion
.TRAN 0.1PS 1NS

. f i l e B1_I_600 .TXT

. p r in t devv Bg

. p r i n t dev i Bg

. p r i n t phase Bg

Script 3.2: JSIM script describing a single Josephson junction B1 with critical
current Ic = 340 µA, shunted by a resistor R1 biased by a current source Iinput
which are all connected between nodes 1-0. The current source Iinput has initial
values of 0 a total delay of 100 ps after which the current rises from 0-600 µA
in 10 ps, and is set at 600 µA to ensure that the Josephson junction is in the
resistive state.The .TRAN statement a “transient analysis specification statement”
and it dictates the output intervals and final time point of data. The final print
statements output the voltage, current and the phase of the junction to a file titled
B1_I_600.TXT.

Figure 3.1 shows the JSIM output compared to the numerical solution of the
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RCSJ model which was obtained by solving the RCSJ Equation 1.39 using a python

script that utilises a backwards Euler method with an initial guess of zero for the

phase and a similar time step to that used in the JSIM model.
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Figure 3.1: A segment of a 1 ns J-SIM time domain voltage simulations tested
against the numerical solution of the RCSJ model described in Equation 1.39. The
current source in both JSIM and the python script is set to I = 600 µA. Both
J-SIM and the numerical solution of RCSJ model are in good agreement during
voltage rise periods they diverge slightly from each other during the fall of the
voltage oscillations. This can be attributed to the inability to finely tune the current
ramp time in our python program to that of JSIM.

Comparing VDC over 1 ns for both, JSIM simulation and the numerical solution

of the RCSJ model gives: 525.89 µV and 525.95 µV respectively, giving a 0.6 µV

difference between the two. This can most likely be associated with the inability

to finely match the current ramping rate in the python program to that of JSIM.

Nonetheless this is an encouraging result and allows the focus to shift towards

generating IV graphs.
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Time step: As mentioned before, the power of J-SIM lays in its ability to

reduce computational cost2 when calculating the time step integration allowing it

to preform calculations at much lower time steps compared to JSPICE where a

0.2 ps integration step lower limit is imposed. Figure 3.2 shows a J-SIM output of a

single Josephson oscillation at different time step integration values using Script 4.1

and only altering the time step line of .TRAN 0.1PS the simulations are run for 1 ns

and voltage comparisons are shown in Table 3.1.

Figure 3.2: J-SIM output of single Josephson voltage oscillation at different time
step. Using Script 4.1 and only altering the “Time step and length of simulation” and
running simulations with .TRAN 1PS, .TRAN 0.1PS, .TRAN 0.01PS, .TRAN 0.001PS.
A comparison between the different time steps is shown in Table 3.1.

Time step VDC / µV
1 ps 532.3763
0.1 ps 525.8856
0.01 ps 525.6944
0.001 ps 525.6884

Table 3.1: J-SIM voltage output of different time step simulations averaged over
1 ns from Script 4.1.

2The use of the iteration method instead of the Newton-Raphson method and the lack of
requiring further LU decomposition allows J-SIM to significantly reduce calculation time allowing
it to perform simulations at much lower time step something which is not possible with JSPICE.
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Comparison between the different time 0.1, 0.01, and 0.001 ps shown in Table 3.1

reveals very little difference between the VDC values of the J-SIM outputs. Since

the simulations are done over a nanosecond and decreasing the size of the time

step results in longer computation time, maintaining a 0.1 ps time step is a good

compromise between accuracy and speed with only a 0.1912 and 0.1972 µV difference

between the simulations of .TRAN 0.1 and those of .TRAN 0.01 and .TRAN 0.001.

Automation: Since J-SIM is a stand alone programme with no GUI (General

User Interface), scripts must be written to automated the process of generating

large numbers of .js files for processes such as creating IV graphs. Using python, a

.master file is created, acting as a template it can be edited to change the current

value of each .js creating the effect of a current sweep, the output is then processed

again using python and in particular the scientific libraries of Numpy, Scipy and

Matplotlib. An example J-SIM IV graph output is shown in Figure 3.3.

-1500 -1000 -500 0 500 1000 1500

Voltage / µV

−1000

−500

0

500

1000

C
u
rr

e
n
  
/ 
µ
A

JSIM simula ion

Solu ion of  he RCSJ model

-648-647-646-645-644-643

Voltage / µV

−700

−699

−698

−697

−696

−695

C
u
rr

e
n
  
/ 
µ
A

Figure 3.3: IV curve of J-SIM simulations of a single Josephson junctions described
in Script 4.1 and the RCSJ solution of the same junctions. In both simulations the
current source Iinput set to sweep between −1000 to 1000 µA. Both the J-SIM and
numerical solution of the RCSJ model give exactly similar IV graphs to each other,
however closer inspection of a segment of the IV curve as shown in the inset shows
that they diverge slightly. The total difference between theoretical and simulated
error between the J-SIM output and the RCSJ model is < 1%.
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Noise: Through the addition of Gaussian distributed random numbers ξi(t)

and with zero mean and unit variance Julian Satchell [95] modified the original

J-SIM circuit Equation 3.1 making the substitution:

Fi (x, t) −→ Fi (x, t) +
giξi(t)

√
2√

τ
(3.9)

where the xi, are the circuit variables, F is a (nonlinear) function of those variables,

gi are constants and τ is the total noise strength and is usually equated to
√

2.This

substitution introduces random numbers at the start and the end of each time step,

Julian Satchell recorded a 2% error between J-SIM simulations and theoretical

models described by Ambegaokar and Halperin [95]. The actual implementation

of noise is done as additional current sources in parallel to every resistors with a

current spectral density shown in Equation 3.10. An example of a J-SIM model

where noise is added at T = 40 K is shown in Script 3.3 and the accompanying IV

graph in Figure 3.4 compares the J-SIM output with that from Equation 1.53.

S
1
2
i =

√
4kBT

Rn
(3.10)

∗ Capacitance of junction calculated for βc = 0.1
∗ Current source
I input 0 1 PWL( 0 0 100P 0 10PS 600uA)
∗The Josephson junction and its model
B1 1 0 j j j 0
. model j j j 0 j j ( r type=0, rn=1000 , i c r i t =340u , cap=0.06994063974173338PF)
∗Shunt Resistor
R1 1 0 1.1764705882352944ohm
∗Thermal noise added as a current source across resistor
R1NOISE 1 0 NOISE(43.332232437297748P 0 .0P 0 .1P)
∗Termination
.TRAN 0.1PS 1NS

. f i l e B1_I_600 .TXT

. p r in t devv Bg

. p r i n t dev i Bg

. p r i n t phase Bg

Script 3.3: The modified J-SIM script with the addition of thermal noise highlighted
in green represents a thermal noise at T = 40 K.
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Figure 3.4: IV graph of Josephson junction described in Script 3.3. The numerical
solution of the of M.S Coclough from Equation 1.53 is plotted against the J-SIM
output. Noise is added at T = 40 K.

As powerful a tool J-SIM is, it can not be used as a single tool for circuit

simulations as it requires prior knowledge of circuit parameters, whilst the IcRN

product can be estimated to a high degree of accuracy using the KO (I) theory

from Equation 1.55 in nanobridge Josephson junctions and the capacitance can be

estimated from a predefined value of βc in Equation 1.44, calculating the inductance

of a circuit on the other hand require the use of simulation software.

3.2 Inductance estimation
Inductance estimation is an important step the superconducting circuit design.

Example of tools used for inductance calculation are “L meter" [101] and the more

popular “FastHenry” [102]. Application of “L-meter” suffers from difficulty in data

input representation and time consuming computations, whilst “FastHenry” treats

all structures as horizontal or vertical microstrips and therefore introduces errors

when structures have curves and corners. The idea behind the development of

3D-MLSI specifically focused on solving these issues in superconducting structures

and “revolves around simplifying the input process hence allowing the user to
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define general structures as needed and ensuring fast and accurate calculations of

inductance in any 3D structure.” [103].

3.2.1 3D-MLSI

3D-MLSI can simulate both high and low Tc superconducting structures fabri-

cated from thin superconducting films. It is possible to simulate self and mutual

inductances for currents circulating around the holes and for variety of other designs.

Figure 3.5 is a task flow chart for the program.

Figure 3.5: Flow chart of the different steps 3D-MLSI undertakes to prepare the
finite element matrix used to solve the inductance of superconducting devices.
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Implementation: The input of 3D-MLSI allows for the interactive drawing,

editing of current paths and terminals, and the importing of calculated inductances

into the schematic. Its CAD input takes a .txt or .dat file with x and y coordinates

in addition to some other properties of the superconducting structure e.g. London

penetration depth, film thickness and the number of conducting layers present.

Currents can either be induced by the magnetic flux trapped in holes of the films,

induced by external magnetic field or inputted through predefined terminals. An

example of a 3D-MLSI file is shown in Figure 3.6.

Figure 3.6: Example of an input file in 3D-MLSI.

UPM and MLW: 3D-MLSI consists of a pre-processor (UPM) which takes

CAD input and is responsible for the creation of the finite volume mesh used in the

numerical core. Successful execution of UPM creates two files: name.upm which

contains various data and name.trg which contains triangular mesh. The triangular

mesh is very important in the calculation of inductance by (MLW), the finer the

mesh (more triangles present) the more accurate the inductance calculation from
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the numerical core (MLW) is. As input, (MLW) takes the two files generated by

(UPM): name.upm and name.trg. When executed successfully (MLW) creates a

further two files: name.psi (solution) and name.out (inductances or other specific

data). An example of the output generated from (UPM) and (MLW) file are

shown in Figure 3.7.

Figure 3.7: An example of a 3D-MLSI simulation of a small SQUID with the
circulating current shown. The first image shows the (UPM) output with the
triangle mesh highlighted in the inset. Whilst the second image shows the output
from (MLW) with the induced current lines shown in white.
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3.3 Overview of techniques for nanobridge fabrication

3.3.1 Lithography

Lithographic processes are usually split into i) photolithography, and ii) nanoscale

lithography such as electron beam lithography. In research labs both techniques

are usually reserved for specific process e.g. photolithography is normally used

to pattern µm sized contact pads and tracks, whilst electron beam lithography

is set aside for sub-µm structures and therefore is very vital in the fabrication of

nanobridge weak links.

Photolithography: One common technique in photolithography employs

resist lift off. Using a Lift-Off Resist (LOR) which is spun on a wafer and then

baked after which a positive or a negative photo resist is then spun on top and is

baked again forming a bilayer. The coated resist is then exposed with ultraviolet

light through a manufactured chromium mask, the UV light breaks the chemical

bonds of the resist molecules making it soluble in photo-resist developers such as

MF-26, a TMAH-based (Tetramethylammonium hydroxide) developer. If the resist

is positive then the exposed areas are removed whereas if the resist is negative then

the opposite case is true and the unexposed areas are removed. In both cases the

presence of LOR results in an undercut since it is more sensitive than the other

resist. As this method is reserved for micron sized structures such as contact pads

and tracks, highly conductive materials are then thermally evaporated on to the

wafer. in this particular example Chromium is used as a non-magnetic adhesion

layer and gold usually provides a stable, highly thermally and electrically conductive

layer. Excess metal and photo resist and LOR are then removed in lift-off through

an acetone bath and sonication.The process is summarised in Figure 3.8.
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Figure 3.8: Graphic illustration of the photolithographic lift off process using LOR
and a positive photo resist followed by development and the thermal evaporation of
Cr and Au.

Electron-Beam Lithography: Photolithography is a very effective method

for micron scale structures but due to the nature of weak links and the Josephson

effect sub-nm structures are required, this is only possible with Electron Beam

Lithography (EBL) or some other nanoscale processing technique. Derived from

the early scanning electron microscopes, EBL is a specialised technique for creating

sub-nm structures required by the modern electronics industry for integrated circuits.

The main attributes of the technology are i) its capabilities of very high resolution

and ii) its flexibility allowing it to work with a variety of materials and realise an

infinite number of patterns.

Electron Beam Lithography relies on a controlled beam of electrons to expose a

section of resist. The incident energy available ranges from a few hundred electron

volts to 100 keV. Electrons can be focused either by electrostatic forces or magnetic

forces. Electron lenses in principle behave the same way as optical lenses in all but

a few special cases. The quality of electron lenses are not nearly as good as optical
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lenses in terms of aberrations. In an EBL system, one set of lenses controls the

aperture and therefore the current of the beam. Another set of lenses blanks the

beam to protect the sample from unwanted exposure during idle time. Finally, some

demagnifying lenses and some deflectors steer the beam exactly to the required

position. The general set-up is shown Figure 3.9.

Figure 3.9: An example for a typical EBL set-up found in many clean rooms.

Film deposition: Metallisation or film deposition of superconducting thin

films can be achieved through techniques such as electron beam (e-beam) evaporation

or magnetron sputtering. Depending on the desired metal one method is more

favourable than the other. E-beam evaporation is ideal for films with relatively low

evaporation temperature such as aluminium, gold and titanium, whilst malleable

metals that are difficult to evaporate in e-beam systems such as refractory metals

e.g. niobium or complex alloys generally require sputtering to achieve high quality
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films.

Electron beam evaporation uses energy transfer by heating a crucible filled

with a target material, by bombarding it with electrons generated from a tungsten

filament. This causes the atoms of the target material to evaporate into the gaseous

state, after which they precipitate into solid form and coat everything in the chamber

included a substrate such as a silicon wafer (resting within line of sight) with a

thin layer of the target material. A crystal monitor usually placed near the sample

records the thickness of the film. In sputtering however, the process involves the

use inert ionised gas (usually argon) to eject material from a target acting as a

source onto a substrate such as a silicon wafer in a vacuum chamber.

Figure 3.10: Schematic representation of the different methods of metallisation. On
the left a typical set-up of an e-beam evaporator system is shown. The focusing
magnets bend the electrons generated from the tungsten filament onto the crucible
containing the target material causing it to evaporate and precipitate into solid
form and coat the sample. A crystal monitor is used to track the thickness of the
films deposited allowing the system to be automated by shutting down the source
once a desired thickness is reached. On the right an example set-up of a sputtering
system using Ar atoms that are ionised and accelerated towards the target causing
atoms to be ejected and deposited on to the sample. Image of sputtering system
adapted from PhD thesis of Arnaud Blois [104].
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Once the pattern is transferred successfully on to the resist and depending

on when the metallisation of the substrate occurred i.e. before the application of

the e-beam resist or after the development of the resist, two possible methods are

available for the realisation of a nanobridge structure.

Lift-off and Etching: Based on opposing principles, much debate in literature

has surrounded the efficacy and superiority of lift off and etching compared to

one another. The e-beam lift-off process follows the same principle as was seen in

photolithography (see Section 3.3.1) where after development of patterned resist

and metallisation, excess resist and thin film are removed by a mild solvent usually

acetone and sonication leaving only the metal in the opening of the resist that

has adhered to the wafer. In the etching process, the metal film is deposited first

followed by the e-beam resist which is then patterned. After successful transfer of

the pattern, both resist and metal are etched down to the desired structure after

which the resist is stripped off. Figure 3.11 gives a brief overview of the two different

techniques.

Figure 3.11: A schematic representation of the additive lift-off process and the
subtractive etching method.
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Etching of the sample can be achieved through techniques such as argon milling

or Reactive Ion Etching (RIE). Both procedures involve the deposition a resist on

top of a metal and then removing both the exposed resist and the metal underneath

that region to only leave the desired structure.

Reactive Ion Etching and Argon Milling: Fabrication of Nb nanobridges

is well documented in literature using etching processes. The most commonly

used techniques for the realisation of sub µm structures are argon ion milling and

Reactive Ion Etching (RIE). In argon ion milling, gaseous argon atoms are ionised

and accelerated towards a sample via an electric field generated by an acceleration

grid, before collisions with the sample occur the argon ions are deionised through

an electron emitting grid usually referred to as neutralising grid regenerating the

argon atoms and in the process generating a wide beam that etches everything that

is exposed to it. There is a variation in the etching rate of material e.g target metal

etches at a rate 3 to 10 times faster than the e-beam resist. So while everything

etches to some degree, when the process is complete, the metallisation that defines

the circuit remains.

RIE on the other hand is a mix between a physical and a chemical etch, employ-

ing an RF field to generate plasma that strips electrons from heavily electrophilic

atoms such as SF6 and CF4 creating positively charged ions which accelerate towards

the sample due an electric field generate from two electrodes in in the chamber.

The ionised atoms start etching down the exposed area of the resist and the metal

underneath, leaving only the desired structure. A schematic representation of both

processes is given in Figure 3.12.
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Figure 3.12: Schematic diagram of both RIE and argon milling. The image on
the left is a simplified example of RIE using CF4 and Ar which are inject into a
chamber in gaseous form where plasma (blue) strips electrons from them creating
positively charged ions which accelerate towards the sample due to the electric field
generated from two electrodes. Whilst in argon milling, argon gas is introduced
into a chamber where a combination of a heated cathode (red), anodes (green) and
magnetic field generated from solenoids (purple) ionises the argon atoms at which
point they optically aligned grids extract highly ionised Ar+ and direct it towards
a Neutraliser (blue) which reforms the Ar atoms resulting in a fully neutralised ion
beam that mills down the resist and a small amount of the thin film.

3.3.2 Techniques for realisation of nanobridge weak links

EBL and resist: Although electron beam lithography tools are capable of

forming extremely fine probes, the main factor limiting the resolution is the resist.

Ideally, an e-beam resist should have both a high contrast and a high sensitivity

but in practice they are often conflicting. There is a very wide range of e-beam

resists: organic or inorganic, chemically amplified or not. However, despite being

one of the first resists to be discovered in 1968, Poly(MethylMethAcrylate) (PMMA)

still provides the best performance. Sub-100 nm features are routinely achievable

by lift-off. As the electrons penetrate the resist, they experience many small

angle scattering events (forward scattering), which tend to broaden the initial

beam diameter. As the electrons penetrate through the resist into the substrate,
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they occasionally undergo large angle scattering events (backscattering). The

backscattered electrons cause the proximity effect, where the dose that a pattern

feature receives is affected by electrons scattering from other features nearby. During

this process the electrons are continuously slowing down, producing a cascade of

low voltage electrons called secondary electrons.

Figure 3.13: Monte-Carlo simulations of the electron scattering for two different
acceleration voltages on a 200 nm thick PMMA layer. The image on the left
represents the beam simulation at 10 keV, the low beam energy is represented in the
green and red colours of the lines. The image on the right with deep blue colours is
that of a 30 keV beam. The 30 keV beam suffers less forward and backscattering
resulting in better defined lines.

Figure 3.13 shows a Monte-Carlo simulation of the electron trajectories through

300 nm of PMMA using the Raith simulation software included with the EBL

system in the London centre for nanotechnology (LCN) at 20 keV and 30 keV

respectively. It is clear that a higher beam energy results in less scattering. Though

each interaction only deviates electrons by a small angle, they are very frequent

which can lead to a wide diffraction angle, especially at lower beam voltages. A

higher beam energy results in less scattering but more damage to the substrate. A

bigger aperture leads generally to better images and a better signal to noise ratio

but comes at the cost of a smaller depth of focus, a lower resolution and more

damage to the sample due to higher current values.
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An alternative to EBL that some groups have used to pattern nanobridges is

utilise a Focused Ion Beam (FIB) as the main writing process to acheive the desired

nano scale structure. Using photolithography for the µm sized structures and an

FIB for sub-µm features means complex devices can be obtained in very few steps.

Focused ion beam: FIB utilises a beam of ionised elements (usually gallium)

fired from a gun to bore down into a sample, as the ions hit the surface of the

sample material a small amount of the metal is sputtered as secondary ions (i.e.

M+ or M−) and in the process producing some electrons which when collected to

form an image of the substrate. Figure 3.14 shows a simple illustrative set-up of

a Ga/FIB. The disadvantage of FIB is that it results in Ga+ implantation in the

edges of the superconducting film which poisons the material reducing its transition

temperature or destroying superconductivity all together.

Figure 3.14: Simplified set-up of a Ga/FIB system. A Ga+ gun fires Gallium ions
towards a substrate which bore into the sample as shown in the inset, resulting
in some material begin sputtered as either secondary ions or atoms and emitting
electrons which are collected and used to form an image of the substrate.
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3.4 Review of work on niobium nanobridge weak links

in the literature
EBL: Much of the early work revolving around the fabrication of Nb nanobridge

weak links relied on the use of e-beam lithography in addition to a milling, etching

or lift-off process [38,105–107]. An example of a process used to successfully realise

Nb weak links is by Tachiki et al. [108] who fabricated and tested 20 nm thick Nb

weak links with a minimum bridge area of 65 nm and 60 nm in width and length

respectively. The ideal Josephson effect was observed for all samples that had a

width of < 110 nm. The devices were realised through the use of a 80 kV and

204 C/cm2 EBL recipe to pattern a sample of a positive e-beam resist overlaid on

top of a 20 nm thick Nb thin film, the resulting structure was then etched using CF4

and O2 gases in a 90-10% mixture, with voltage acceleration and current density of

400 V and 1.05 mA/cm2 respectively. One of the successfully fabricated Nb weak

links and a measured IV curve are shown in Figure 3.15.

Figure 3.15: Design and SEM image of a 20 nm thick Nb weak link with Tc of 8.4 K,
` = 51 nm and w = 110 nm. The measured IV graph of the fabricated nanobridge
is shown at T = 7.1 K. Adapted from Tachiki et al. [108].
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FIB: A lot of work has been done into fabricating nanoSQUIDs using Ga/FIB

by Hao et al. at NPL [109–113]. An example of two devices is shown in Figure 3.16.

Fabrication of this device starts with sputtering of 100-200 nm thick Nb film on

to an oxidised silicon wafer. Standard photolithographic technique were used for

the larger structures such as tracks whilst a dual beam Ga/FIB system from Nova

Nano-lab3 was used to produce the nanobridges. The beam current was kept to

about 10 pA so as to minimise beam size and allow very small structure to be

fabricated. The group has also recorded Tcs of between 6-9 K depending on the

degree of Ga+ implantation. An example of the temperature dependence of the

measured critical current for the two devices in Figure 3.16 is shown in Figure 3.17.

Figure 3.16: SEM images of two nanoSQUIDs fabricated by NPL with dimensions
of 65 nm width for the structure on the left and a proof of concept for the dual
beam system through the fabrication of the structure on the right, a tri-loop SQUID
which are very difficult to obtain through traditional EBL methods. A Co particle
(the white dot in the right hand loop) was also deposited within that loop. Adapted
from Hao et al. [113].

3The Nova Nano-lab FIB used by et al. in this example is capable of nanoscale structures down
to below 50 nm
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Figure 3.17: Graph of the temperature dependence of Ic in two samples measured
by NPL. Ic data fit is set to Ic ∝ (1− T/Tc)2, which is predicted by a number of
models including the thermal phase slip predicted in Ambegaokar and Halperin
model (see Section 1.2.1) and is observed in a number of Josephson junction devices,
a more in-depth analysis can be found in [38,114]. Adapted from Hao et al. [113]

Typical transition temperatures for Nb thin films tend to be between 8-9 K,

which is the same measured for nanoscale Nb structures fabricated through EBL

methods. However the Tc of Ga/FIB fabricated nanoscale devices tends to vary

quite considerably as is seen in the work of Hao et al.. This is due to Ga ion

implantation as is seen in in the inset of Figure 3.14 which result in the poisoning

of the superconducting thin films. This leads to lowering in Tc or even destroying

superconductivity. It can also lead to contamination of the underlying structure and

even create defects in thin films over great lengths, up to 50 nm. The implantation

depth in Nb can be between 30-40 nm which is why it becomes a significant issue

for structures smaller than 100 nm. Recently introduced neon or helium-ion FIBs

have been shown not to suffer from these drawbacks and as such have been showing

great promise in the field of nanoscale fabrication and can be looked at as a genuine

alternative to both Ga/FIB and EBL methods.
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Chapter 4

Initial testing and model set-up of

RSFQ circuit in JSIM

4.1 Introduction
As mentioned previously the true measure of the performance of a Josephson

comparators is the grey zone, which describes its decision uncertainty. In an ideal

case this would be a Heaviside step function as shown in Figure 4.1.
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Figure 4.1: Illustration of a Heaviside step function. In a real device the transition
will most likely appear spread over a region around x = 0.
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As mentioned earlier there are several ways of defining the grey zone. However

in this present work, since the transition edges are sometimes not ideal we have to

use some alternative definitions and fits to the data:

• The current range ∆Ix corresponding to the switching probability between

0.1 and 0.9. This can be used in simple cases where the start/end of the grey

zone is poorly defined.

• Another method is to use the approximation introduced by Haddad et al. [88]

where the grey zone is defined as GZ = 1/m where m is the slope of the

tangent at switching probability p = 0.5 of the switching probability curve.

Error and double error functions: As mentioned earlier the switching

behaviour in an ideal Josephson comparator can be described by a Heaviside step

function as was seen in Figure 4.1. This however is not true in real devices though

since, due to the presence of thermal noise, the switching decision is not deterministic

i.e. the transition between the states “0” and “1” is not a vertical step, instead the

switching probability is spread over a region. This behaviour can be approximated

numerically by an error function (erf) as shown in Equation 4.2, which is a modified

Heaviside step function [87]:

ERF(I) =
1

2
+

1

2
erf
(√

π
Ix − Ith

∆Ix

)
, (4.1)

ERF(I) =
1

2
+

1

2
erf
(√

π
Ix − Ith
GZ

)
(4.2)

At high operational frequencies the Josephson comparator loop may start to store

more than one flux quanta at a time before a decision is made by either comparator

junction. This increase in uncertainty is especially prominent around the threshold

current Ith which results in the formation of a plateau around that region as shown

in Figure 4.2.
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Figure 4.2: Schematic representation of the two error functions ERF(I) and ERF(II)
shown on the left and right respectively. The difference of the threshold currents
Ith2 − Ith1 is a measure of the plateau present in the double error function.

The presence of the plateau results in an alteration of the numerical formula

used to calculate the switching behaviour of the Josephson comparator. Instead

of a single error function describing the switching behaviour as shown in the right

of Figure 4.2, instead it can be fitted to a double error function, ERF(II), which

is characterised by two threshold currents Ith1 and Ith2, where Ith1 and Ith2 are

represented as the currents at p = 0.25 and p = 0.75 respectively, and by two grey

zone widths GZ1 and GZ2 [87]. This is given by:

ERF (II) =
1

2
+

1

4
erf
(√

π
Ix − Ith1
GZ1

)
+

1

4
erf
(√

π
Ix − Ith2
GZ2

)
(4.3)

In an ideal scenario the threshold current Ith1 = Ith2 and the grey zone widths GZ1

= GZ2 results in the switching probability curve being accurately represented by

the single error function in Equation 4.2. Hence the double error function, ERF(II),

reduces to the single, ERF(I). However when Ith1 6= Ith2 and GZ1 6= GZ2 this will

result in a double error function characterised by a plateau as shown in the second

graph of Figure 4.2.
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4.2 Comparator and JSIM set-up
Comparator: The device fabricated and tested by Oelze et al. [23] previously

mentioned in Section 2.2.3 and shown in Figure 4.3 is an ideal candidate for testing

the viability of using weak link nanobridge Josephson junction as the active element

in an RSFQ circuit. The simplicity of the device means that it can be fabricated

using low Tc material such as Nb, either patterned through an EBL or FIB method

as described in Section 3.3.2.

Figure 4.3: Circuit diagram of Josephson comparator designed by Oelze et al..
The junctions are labelled as Jg for the generator junction, Ja-b-c denote the JTL
junctions and finally the comparator loop consisting of J1-2 acting as the buffer
stage and junctions J3-4 as the comparator junctions. As an SFQ pulse generated
from junction J1 travels through the circuit via the JTL junctions Ja-b-c and is
introduced into the larger comparator loop via J1, either junctions J3 or J4 will
begin to oscillate depending on the value of the input current from Ix. The current
biasing source Ib acts as balance and its role will be looked at in more detail in
Section 4.3. Adapted from Oelze et al. [23].

Initial set-up and testing of JISM was performed using the junction parameters

reported by B. Oelze et al. e.g. critical current Ic of 340 µA with an IcRN product

of 0.4 mV at T = 40 K. In order for the Josephson junctions to function as RSFQ

elements they must be non-hysteretic which leads to an assumption of a βc value

of < 1. Since the capacitance of non-hysteretic junctions is negligible we will take

βc = 0.1 to calculate the junction capacitance needed in the J-SIM model. The

junction normal state resistances RN were added as separate shunt resistors in the

model. Noise sources were added at 40 K to each resistor.
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4.2.1 Model set-up

The first process in designing and implementing the Josephson comparator in

J-SIM is calculating the loop inductance and inductance distribution of the said

circuit. The inductance distribution of the circuit we will be testing in this report

can be broken into two main segments:

• The inductance loops of the Josephson Transmission Lines

• The inductance of the larger comparator loop

Oelze et al. fabricated and simulated the JTL loop as a hole with inner dimensions

2 × 5 µm as shown in Figure 4.4. The inductance distribution of the comparator loop

on the other hand is somewhat more ambiguous due to part of the superconducting

loop design begin masked by over layers in the published diagram, the reported

value is of 24 pH. [23] .

Figure 4.4: Graphical representation of the geometry used in the high Tc 3D-MLSI
simulation of inductance of the JTL loop.

Inductance: Calculating the inductance of a superconducting structure re-

quires the use of finite element tools such as 3D-MLSI, however for the sake of

simplicity it is usually safe to assume that a superconducting loop increases with

inner perimeter and is uniformly distributed throughout the loop. To ensue optimal

current distribution inductors are split into several groups of equal values as shown

in Figure 4.5.
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Figure 4.5: Circuit diagram of the comparator loop and lumped inductors which
need to have equal values to ensure equal current distribution.

Since all the oddly numbered inductors of the JTL loop have the same inductance

values and in order to achieve equal current distribution between both L9 and L10

they must also have the same inductance values. Finally to ensure even current

distribution of Ib results in L9 + L10 + L11 = L12 + L13 + L14 and since L9 and

L14 are connected though ground therefore must have an equal distribution so as

to not create in miss timing of flux arrival from the JTL. This finally gives us an

inductance distribution in the form of:

L2 = L4 = L6 = L8

L1 = L3 = L5 = L7 = L9 = L10 = L13 = L14 (4.4)

L11 = L12

Using the relationships in Equation 4.4 and the total values estimated by Oelze et al.

for high Tc material, we calculate the inductances as, L1 = 2.22 pH, L2 = 5.56 pH

and L11 = 7.56 pH we estimate similar total values ourselves using 3D-MLSI.

Current source timing: The final section required to construct a working

J-JSIM model concerns the timing of when bias sources are switched on. Script 4.1

describes the final model used to simulate the Josephson comparator in Figure 4.3.
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∗ Capacitance of junction calculated for βc = 0.1 and Noise is added at 40 K
∗ Current source
I input 0 1 PWL( 0 0 100PS 0 10PS 520uA)
I j t l 1 0 3 PWL(0 0 1PS 0 10PS XXXX)
I j t l 2 0 5 PWL(0 0 1PS 0 10PS XXXX)
I j t l 3 0 7 PWL(0 0 1PS 0 10PS XXXX)
Ib 0 13 PWL(0 0 30PS 0 10PS 544uA)
Ix 0 16 PWL(0 0 50PS 0 10PS XXXX)
∗ Inductance
L1 1 2 2 .22PH
L2 1 3 5 .556PH
L3 3 4 2 .22PH
L4 3 5 5 .56PH
L5 5 6 2 .22PH
L6 5 7 5 .56PH
L7 7 8 2 .22PH
L8 7 9 5 .56PH
L9 9 10 2 .22PH
L10 9 11 2 .22PH
L11 12 13 7.56PH
L12 13 14 7.56PH
L13 15 16 2 .22PH
L14 16 17 2 .22PH
∗ Junctions
Bg 2 0 j j j 0
Ba 4 0 j j j 0
Bb 6 0 j j j 0
Bc 8 0 j j j 0
B1 10 0 j j j 0
B2 11 12 j j j 0
B3 14 15 j j j 0
B4 17 0 j j j 0
. model j j j 0 j j ( r type=0, rn=1000 , i c r i t =340u , cap=7e−14F)
∗ Shunt resistance
Rg 2 0 1 .176ohm
Ra 4 0 1.1764ohm
Rb 6 0 1 .176ohm
Rc 8 0 1 .176ohm
R1 10 0 1 .176ohm
R2 11 12 1 .176ohm
R3 14 15 1 .176ohm
R4 17 0 1 .176ohm
∗Thermal noise added as a current source across resistor
iRjg 2 0 NOISE(43.332232437297748P 0 .0P 0 .1P)
iRja 4 0 NOISE(43.332232437297748P 0 .0P 0 .1P)
iRjb 6 0 NOISE(43.332232437297748P 0 .0P 0 .1P)
iRjc 8 0 NOISE(43.332232437297748P 0 .0P 0 .1P)
iRj1 10 0 NOISE(43.332232437297748P 0 .0P 0 .1P)
iRj2 11 12 NOISE(43.332232437297748P 0 .0P 0 .1P)
iRj3 14 15 NOISE(43.332232437297748P 0 .0P 0 .1P)
iRj4 17 0 NOISE(43.332232437297748P 0 .0P 0 .1P)
∗Termination
.TRAN 0.1PS 1NS
. f i l e High_tc . txt
. p r i n t devv Bg
. p r i n t dev i Bg
. p r i n t phase Bg

Script 4.1: J-SIM script that defines the Josephson comparator in Figure 4.3.
103



Since we are dealing with several biasing sources and the need to minimise

dynamic error arising from circuit transients, we found that the best course of

action is to stagger the time at which the bias currents are switched on. This is

implemented in the first section of the JSIM code. Finally the bias sources of the

JTL reach equal values so that IJTL1=IJTL2=IJTL3.

4.3 Initial set-up of J-SIM
Using a modification of the python script used in Section 3.1.1 to generate multiple

.js files, we began testing our J-SIM simulations by looking at the voltage of the

generator junction as a function of the Josephson transmission lines bias currents

IJTL.

Frequency and Vg: We began running simulations to determine the voltage

dependency of Jg on input currents at IJTL, by maintaining a constant Ig of 520 µA

and varying IJTL. Vg was averaged in the python script over 1 ns. The results are

shown in Figure 4.6 as the current w of Vg against IJTL. An increase in the average

DC voltage of Jg, in turn translates to an increase in the frequency and the number

of SFQ pulses present in a given time frame as shown in Figure 4.7.

Figure 4.6: Voltage dependency of junction Jg against IJTL. Ig represents the input
current.
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Figure 4.7: Region of time domain JSIM simulations of Jg at biasing values of
IJTL = 204 and 340 µA respectively. The average voltage of Vg is calculated in the
free running region which occurs after the first pulse.

To ensure validity of J-SIM simulations we evaluate the number of flux quanta

Φ0 present in the time domain simulations by integrating the area under V (t) and

dividing by Φ0. As can be seen from Figure 4.8, the number of Φ0 and SFQ pulses

present in the simulation is 23.
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Figure 4.8: Number of Φ0 over time of the top graph shown in Figure 4.7. Inset shows
an expanded plot of voltage over time of generator junction Jg at IJTL = 204 µA.
Maximum number of Φ0 equal to number of voltage pulses present in the simulation,
both stand at 23 suggesting that the relationship

∫
V dt = Φ0 is maintained.
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Once confidence in the JSIM simulations was established, we continued testing

the expected effect of other sources such as Ig and Ib on the average voltage output

of the generator junction Jg due to the way these currents distribute in the structure.

Ig and Ib: Again using the same J-SIM Script 4.1, we first looked into the

effect of varying both IJTL and Ig and the impact that had on the resulting average

voltage of Jg. We begin first with Ig and IJTL shown in Figure 4.9.
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Figure 4.9: Characteristics of average voltage across the generator junction Jg at
different values of IJTL and Ig.

Unlike the case when only IJTL is varied, varying both IJTL and Ig leads to a

series of shifted average voltage output curves of Jg. As Ig increases the biasing

current of IJTL needed for Jg to to begin oscillating correspondingly decreases. In

the final set of tests, we looked at the effect of varying Ib and IJTL on the overall

voltage of Jg. Similarly to what was done when Ig was varied, we modified our

python programme to cycle through several values of Ib, resulting again in a series

of shifts in the average voltage curves as is shown in Figure 4.10. These shifts in

both Figures 4.9 and 4.10 are a result of superposition of bias currents leading to

an increasing contribution in the total current through Jg. Changes in Ig cause a

bigger shift since it is directly connected to the generator junction as opposed to Ib
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which is much further away in inductance terms and has minimal influence on Jg.
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Figure 4.10: I-V graphs of Comparator and generator junctions at different bias
values of Ib and IJTL whilst Ig is maintained at 520 µA.

The average voltages across the generator and comparator junctions Jg, J3 and

J4 at different values of Ib are shown in Figure 4.11. It can be seen that the cleanest

grey zone edge is obtained for Ib = 544µA (which is the value used by Ozele et al.).

Figure 4.11: Average voltage across comparator and generator junctions at different
bias values of Ib, Ig and IJTL are maintained at 520 µA and 238 µA. Values of Ib
other than 544 µA result in some feature/steps in the grey zone edge, suggesting
either unbalance in the comparator, or storage of flux in the comparator loop.
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4.4 Comparison of J-SIM simulations to Oelze et al.

data
To ensure validity of the J-SIM model, we compared our simulation results to

the measurements of Oelze et al.1. We first begin by comparing the the IV graphs

obtained by the group to our J-SIM output. As mentioned in Section 2.2.3, Oelze

et al. showed the average voltage dependence of junctions Jg, J3 and J4 on the

signal current Ix at T = 40 K, the results of which are shown in Figure 4.12. It

can immediately be seen that both I-V graphs from Oelze et al. and J-SIM exhibit

similar key characteristics i.e. self oscillation of Junctions J3 and J4 at high values

of the signal current Ix leading to the observed branches on the left and right sides

of Figure 4.12.

Figure 4.12: JSIM output of the generator and comparator junctions and the
experimental results obtained by Oelze et al. at biasing values of Ig = 520 µA and
IJTL = 340 µA. Data adapted from Oelze et al. [23]

The key difference in the two sets of results lies within the grey zone width. In

both the J-SIM output and the measurements obtained by Oelze et al. junction J4

1In addition to experimental measurements Oelze et al. performed simulations using PSCAN
but did not publish details of their model we therefore focus on their experimental measurements
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begins to transition from a no switching state at an approximately similar signal

current Ix values. However once the voltage of both junctions starts to rise they

end at two different points. Comparing the switching probability of the data from

Oelze et al. and the J-SIM output in Figure 4.13 best illustrates this.

Figure 4.13: A close up of the transition region of Figure 4.12 and the resulting
switching probability (p = V4/Vg) graph. The grey zone ∆Ix for both Oelze et al.
and J-SIM stand at 113 µA and 209 µA respectively. Data adapted from Oelze et
al. [23].

Comparing the switching probability of the J-SIM output (V4/Vg) to that of the

data collected by Oezle et al. shows the transition between the two data sets from a

switching probability of “0” to “1” start at approximately equal signal currents but

end at different points. This translates into two different grey zones which stand at

113 and 209 µA respectively. The discrepancy between the two widths is most likely

attributed to the way in which the JSIM model is set-up. Actual devices suffer

from fabrication variations in parameters resulting in a spread of critical current

of the junctions, so instead of a single Ic value for all Josephson junctions as was

assumed in the J-SIM model, the real device likely has a critical current Ic spread

of +−15% as reported by Oelze et al.. This spread in critical current translates into

a discrepancy between the recorded grey zone width from JSIM and that from

the data presented by Oelze et al. This will be consider parameter spreads are
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introduced into simulations in Chapter 5. This discrepancy is only significant at

high voltages, on the other hand at lower voltage values of Jg the error is much less

prominent as shown in Figure 4.14.

Figure 4.14: Graph showing the comparison of the different grey zones from both
JSIM (green and red) and the experimental data collected by Oelze et al. Data
adapted from Oelze et al. [23].

Using the definition of the grey zone described in Section 4.1, again we compared

the grey zone recorded by Oelze et al. to the J-SIM output at lower average voltage

values for Jg. From Figure 4.14 it can be seen that the grey zone of the J-SIM

output as defined by Haddad et al. and labelled GZ is a good approximation to that

recorded by Oelze et al. but starts to diverge substantially above 150 µV which

is most likely due to the fact that the switching curves are poorly represented by

a single error function due to the presence of a small plateau in the middle curve

meaning that the gradient at switching probability p = 0.5 does not represent the

grey zone but instead the steepness of the plateau. The grey zone as defined by

∆Ix is a much closer estimation to the experimental data at higher Vg values.

The ability of JSIM to produce IV characteristics of the Josephson comparator

that are very similar to those from the experimental data obtained by Oelze et

al. makes it a very powerful simulation tool with a tolerable discrepancy for our
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simulations. In the next section we take a further step in analysing the Josephson

comparator by investigating the effect of the biasing on grey zone width and

the decision process manifested as the switching time of junctions J3 and J4 in

particular.

4.5 Further testing and simulation results
IJTL and grey zone width: In the following section we utilise J-SIM to

further test the effect of the biasing current of the Josephson comparator at different

IJTL values. Using the definitions of the grey zone width stated in Section 4.1 we

perform simulations and collect the resultant grey zone as shown in Figure 4.15.

Figure 4.15: Graph illustrating all the different definitions of the grey zone vs IJTL
at Ig = 520 µA, T = 40 K. Both the grey zone for GZ1 and GZ2 are shown and the
average of both is also plotted as GZ1 + GZ2

Figure 4.15 shows above a threshold where Ic is exceeded, the grey zone has

an approximately linear dependancy on IJTL. The variation between the different

methods of defining the grey zone as described in Section 4.1 is quite interesting.

Whilst all methods display similar characteristics i.e. a linear relation between grey

zone and IJTL, the grey zone calculated using the gradient method for one or two

steps and given as GZ, GZ1 and GZ2 is a good approximation of ∆Ix at certain

values but starts to diverge at higher bias currents, i.e. at lower values of IJTL,
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GZ1, GZ2 and GZ1 + GZ2 are in good agreement. This is not the case as the value

of IJTL increases i.e. at IJTL > 340 µA. This can be explained via the switching

graphs where the ERF error function from Equations 4.2 and 4.3 are a poor fit as

shown in Figures 4.16 and 4.17.
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Figure 4.16: The switching curves of the comparator junction J4 at frequency of
25 GHz at Ig = 520 µA and IJTL = 204 µA.
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Figure 4.17: The switching curves of the comparator junction J4 at frequency of
100 GHz at Ig = 520 µA and IJTL = 374 µA.

At higher current biasing of IJTL results in a plateau which in turn effects the

grey zone approximations using GZ, GZ1 and GZ2. Therefore for the reminder of
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this report ∆Ix will act as the reference grey zone width which other approximations

are compared to.

Decision and switching time: Investigations of the decision process of the

Josephson comparator can be visualised through averaging of the switching time of

the device. In order to do this we first begin by running multiple simulations of a

single J-SIM script and collecting the time difference between the time for the first

voltage peaks of Vg and V3 or V4. An example of this is shown in Figure 4.18 where

300 JSIM simulations at a signal current Ix = 0 µA were run. Each measurement

includes a ≈ 35 ps delay which is the time for a signal to travel across the JTL.

The additional switching time is then set by the effect of noise in the comparator loop.
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Figure 4.18: Switching of the Josephson comparator with respect to the generator
junction using the circuit parameters provided by Oelze et al. at T = 40 K with
IJTL=204 µA at Ix=0 µA.

The nature of Josephson junctions and the way in which noise is added to J-SIM

simulations ensures that no two runs are the same. By taking the mean switching

of the time difference for the simulations performed over a wide range of signal

currents Ix, we can plot the switching time dependence of the comparator on the
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input signal Ix as shown in Figure 4.19. For J3, the mean switching evolves as

Ix increases from negative values reaching a peak value before decreasing at large

positive values.

The region shown in Figure 4.19 corresponds to the grey zone switching region

of J3 and J4. At large positive values of Ix, the arrival of a flux quantum in the

comparator loop is sufficient to always switch J4, so the time delay is therefore set

by IJTL. For smaller/negative values of Ix there is an extra delay until a random

noise fluctuation helps switch it.
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Figure 4.19: The average mean switching time of J3 and J4 at IJTL=204 µA with
respect to Jg.

This transition is indicative of the switching of the Josephson comparator and

can be related directly to its decision making process. By plotting the dependence

of the mean switching at different values of IJTL over the same signal current Ix as

shown in Figure 4.20, we see the effect of increasing the voltage of Jg and in turn

the number of SFQ pulses in the circuit on the decision process in the comparator.
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Figure 4.20: Mean switching time of J4 at different values of IJTL .

At lower biasing values of IJTL the mean switching of junctions J4 climbs to

a maximum value as a function of Ix before beginning to descend and vis-versa

for junction J3, this behaviour is absent in higher values of IJTL where the mean

decision time is almost constant2, considering only the maximum values of the mean

switching against values of IJTL at 204− 272 µA shows that at low values of IJTL

the mean switching of the device stays around ≈ 190 ps. At large positive values

of Ix the switching time achieves low values. There is also a dependancy of the

switching time on IJTL due to the biasing of IJTL affecting the current through the

generator junction and thus the frequency of single flux quantum generation.

We can relate these observations back to Figure 4.16 showing the smallest grey

zone recorded at IJTL = 204 µA, where the mean switching time varies considerably

over the grey zone. An ideal comparator would have the smallest mean switching

time variation and the smallest possible grey zone. However this unattainable,

instead the smallest grey zone width corresponds to a large variation in the mean

switching time, therefore operation of a Josephson comparator requires a sacrifice

2This is problematic to determine with absolute certainty due to the narrow range of Ix.
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between either fast operation where the variation in mean switching time is minimal

but resulting in a large grey zone, or a narrower grey zone width with a slower

device.

Variations in inductances: In addition to the biasing of the comparator we

looked at the effect of altering the inductance distribution on overall grey zone width.

By maintaining an overall inductance of the loops similar to that reported by Oelze

et al. we used the flexibility of J-SIM to alter the way in which the inductances of

the JTL loops were distributed resulting in four different possibilities that still hold

true to the relationship between the inductors described in Section 4.2.1. In addition

to this we also varied the inductance values of L11 and L12 to look into the effect

on grey zone width of altering the distribution of Ib to increase the bias current to

J3 and J4. Figure 4.21 shows the grouping of the different inductors in the circuit

whilst both Table 4.1 and Figure 4.22 summarises the systems investigated and the

grey zone widths recorded.

Figure 4.21: Circuit schematic of the inductance distributions that will be
used in the JSIM simulations. By defining the inductances we shall use as
L1=L3=L5=L7=L9=L10=L13=L14 and L2=L4,=L6,=L8, allows us to manipu-
late the current distributions from Ib in the large comparator loop and observe the
resultant effect on grey zone width which is reproted in Table 4.1 for all grey zone
and in Figure 4.22 for ∆Ix.
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System
Label

Inductor and
inductance values

/ pH

Lowest Jg voltage and
grey zone recorded

L1 L2 L11 L12
Vg /
µV

∆Ix/
µA

Vg /
µV

GZ/
µA

Vg /
µV

GZ1 /
µA

GZ2 /
µA

a 1 7

9 9 50 36 50 26 50 40 45
10 8 93 48 93 53 93 36 69
11 7 52 57 92 82 52 54 75
12 6 50 49 50 80 50 54 31
13 5 54 32 54 26 54 27 51
14 4 50 53 50 38 50 40 56
15 3 48 54 92 95 48 53 52
16 2 46 41 46 61 46 55 31
17 1 89 39 52 28 52 34 43
18 0 92 52 52 53 52 39 61

b 2 5

7 7 50 35 50 31 50 28 53
8 6 83 48 50 43 83 46 58
9 5 57 53 84 93 116 52 58
10 4 50 39 50 37 50 56 39
11 3 48 29 48 22 85 40 50
12 2 88 48 54 43 54 56 52
13 1 87 56 52 57 52 54 47
14 0 50 41 50 36 87 76 36

c 3 3

5 5 48 32 48 21 74 35 35
6 4 75 46 46 36 75 37 52
7 3 46 49 46 50 77 40 52
8 2 44 34 44 26 78 56 36
9 1 48 30 48 30 48 31 34
10 0 77 48 48 33 48 55 67

d 4 1

3 3 75 32 5 27 43 25 26
4 2 35 47 5 36 77 44 90
5 1 40 48 40 64 40 43 39
6 0 33 28 25 18 25 32 48

Table 4.1: List of all the configurations tested to investigate the effect of inductance
distribution using J-SIM. Total inductance of system maintained at 10 pH and 24 pH
for the JTL and comparator loops respectively L1=L3=L5=L7=L9=L10=L13=L14,
L2=L4=L6=L8. The device is biased at Ig=520 µA whilst the corresponding IJTL
tends to be the lowest value at which the device starts oscillating which is 204 µA
for most, whilst for some inductance distributions that value shifts to 238 µA. This
is shown in Figure 4.22.
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Figure 4.22: Graphs of the collected grey zone widths ∆Ix at Ig=520 µA for different
inductance distributions in the JTL and the comparator.

Current redistributions through changing the ratio of L11 to L13 has most of its

impact at lower frequencies as shown in Figure 4.22. As the frequency increases the

grey zone width converges into almost a single curve for systems (c) and (d), whilst

the grey zone widths for systems (a) and (b) cross at IJTL = 374 µA and 442 µA

respectively. The sensitivity of the comparator to current redistribution is of quite

interest since it allows us the ability to fine tune the performance of the comparator

not only by manipulating the magnitude of the bias currents but also through

varying the dimensions and shape of the comparator loop, some thing that would

be more difficult in the high Tc material used by Oelze et al. due to restrictions

on junction placement. In general though the best performance is obtained for a

balanced comparator loop with L11 = L12, keeping the comparator loop and the

connection symmetric is therefore desirable in fabrication.
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4.6 Summary
In this chapter we have outlined the evaluations criteria on which to evaluate a

Josephson comparator circuit either as a single step grey zone or that with a plateau

described by Equations 4.2 and 4.3. We have also outlined the initial comparator

setup in JSIM shown in Script 4.1. By comparing JSIM output to that of a device

fabricated by Oelze et al. [23] in a high Tc substrate gives encouragement as to the

validity of the JSIM model, as shown in Figure 4.12 similarities in key features

between the graphs, such as the presence of negative voltage and the self oscillation

of junctions on both sides of each graph. The variations in the recorded grey zone

between the two graphs can be attributed by the absence of a critical current

spread in the JSIM model which is present in the work by Oelze et al. [23], this is

investigated in the following chapter. where by utilising JSIM we investigate the

effect of adding critical current spreads to the overall performance of the Josephson

comparator.
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Chapter 5

Simulations testing the feasibility

of using low Tc nanobridge weak

links in Josephson comparators

5.1 Introduction
The use of nanobridge weak links as the active Josephson element in an RSFQ

circuit and in particular Josephson comparators introduces high degrees of flexibility

in fabricating and testing the circuits in labs without the need of to rely on integrated

tunnel junction technology that can only be fabricated from predetermined cell

libraries by specialised foundries such as Hypres Inc, whilst nanobridge weak links

are much easier to produce for labs with nanoscale fabrication facilities with the

only limiting factors being either resist resolution in lift off and RIE systems, or thin

film poisoning in FIB. Both of these limiting factors can be overcome by iteration

i.e. optimisation of EBL process can allow lift-off and RIE processes the can obtain

nanobridge weak links with dimensions comparable to the coherence length ξGL,

whilst a recently developed Ne/He FIB system might be capable of overcoming

the film poisoning issue that surrounds Ga/FIB. In the following chapter we shall

perform JSIM simulations of the Josephson comparator designed by Oelze et al. but
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with the high Tc parameters replaced by those appropriate to low Tc nanobridges.

We then report report on operational performance and limits of the circuit. We

begin by investigating the range operational parameters likely for a circuit based

on low Tc thin films.

Ic and the Operating temperature: As the most studied material used in

low Tc devices, niobium will be the focus of this thesis as the material of choice in

simulations. Nb films can be obtained via either e-beam evaporation or sputtering

with a maximum Tc of 9.25 K. The Tc depends on factors such as the base pressure

of the deposition system and the processing of the nanobridge. With such a high Tc

relative to other low temperature materials such as aluminium and titanium, it is a

very convenient material to test in liquid helium and as such will be the remaining

focus of simulations in this chapter. We begin by calculating the likely temperature

dependence of the critical current. We assume a Nb nanobridge behaves as a dirty

metal weak link and apply the KO(I) theory using Equation 1.55 for a typical

normal resistance RN of 1 Ω and taking into account the range of Tc obtained due to

the choice of fabrication method [108,113]. The expected critical current variation

is shown in Figure 5.1.

Figure 5.1: Temperature dependence of the critical current Ic calculated from the
KO(I) theory in Equation 1.55. The choice of Tc reflects the possible transition
temperatures obtained due to the choice of fabrication methods.
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In order to successfully operate an RSFQ circuit the active Josephson element

must be overdamped where βc � 1. For devices based on tunnel junctions βc is

usually greater than unity due to high capacitance. We can calculate the capacitance

per unit width between the banks of the nanobridge weak link using [115]:

C = ε0εr
K (κ′)

K (κ)
(5.1)

where ε0 is the vacuum permittivity, εr is the average relative permittivity of the

nanobridge region between the banks, K is the elliptic integral of the first kind, κ is

the modulus which depends on the dimensions of they gap between the electrodes, κ′

is its complementary modulus. Taking a value of εr ≈ 2.41 for the nanobridge region

between banks of 1 µm in width, gives an estimated capacitance of ≈ 2.5× 10−17F.

Inputting this value in the Stewart-McCumber from the RCSJ model for a junction

with RN = 1 Ω and Ic = 800 µA at T = 8 K calculated from Figure 5.1 for a device

with Tc = 9.25 K results in βc = 2πIcR
2
N/Φ0 = 6 × 10−5 which falls well within

the limit βc � 1, suggesting that unlike tunnel junctions there will be no hysteresis

related to the capacitance. However many nanobridges are found to have hysteretic

IV characteristics.

In 1974 Skocpol et al. [117] introduced a widely accepted explanation for the

origin of this hysteresis. They proposed that when the applied bias exceeds the

critical current of the nanobridge, Joule heating in the nanobridge results in a

hot spot formation which in turn results in the nanobridge region entering the

normal state. the current needed to self sustain this normal hotspot region is lower

than the critical current. This in turn leads the current voltage characteristics of

the overdamped weak link to resemble that of a hysteretic underdamped junction,

resulting in the need to reduce the applied bias to well below Ic to get back into the

superconducting state. This return current value is referred to as the re-trapping

1Since half the nanobridge region is made approximately comprised of air where εr, air ≈ 1 and
SiO2 where εr, SiO2 = 3.9 [116], 2.4 is a good approximation to take for εr, nanobridge.
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current Ir and is a function of the geometry, materials and operating temperature

of the nanobridge and banks. The hotspot extends into the banks over a thermal

length scale η defined as η =
√
κt/α where κ is the thermal conductivity, α is the

heat transfer coefficient to the substrate and t is the thickness of the film. Skocpol,

Beasley and Tinkham (SBT) modelled Ir for nanobridge weak links where the

dimensions of the structure are short compared to this thermal length scale as:

Ir ≈

√(
κt2Tc
RN

)(
1− T

Tc

)
(5.2)

Plotting the temperature dependence of Ic and Ir for a nanobridge with dimensions

(l × w × t) of (100 × 80 × 120) nm, RN = 1 Ω and Tc = 9.25 K results in a

plot describing the possible operating temperatures of a nanobridge where the

current voltage characteristics of the weak link are non-hysteretic as shown in

Figure 5.2.This shows that the possible operating temperature for a non-hysteretic

nanobridge weak links extends to about 2 K below Tc.

Figure 5.2: Predicted temperature dependence of the critical current Ic and the
re-trapping current Ir of a typical Nb nanobridge based on the KO(I) theory and
the SBT model of Skocpol et al.

Repeating the calculation for Nb films of different critical temperatures results
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in a similar set of curves as shown in Figure 5.3.
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Figure 5.3: Temperature dependence of the critical current Ic and the re-trapping
current Ir based on the KO(I) theory and the SBT model at different critical
temperatures Tc.

The relatively high Tc of niobium leads to a very high critical current density as

T → 0. For this reason, we can see from Figure 5.3 that the non-hysteretic region

generally has critical currents from zero to about 1 mA. In practice we might want

to avoid being to close to Tc or to the hysteretic region so critical currents of several

hundred microamps are likely.

Noise at low Tc: Using for the moment the circuit parameters of the Joseph-

son comparator described in Section 4.2, we look into the effect of adding noise at

temperatures close to Tc for a lower operating temperature. For instance, assuming

RN = 1 Ω we can estimate the corresponding temperature as is shown in Figure 5.4

where the Ic = 340 µA. Maintaining the total loop inductances as 10 pH and 24 pH

for the JTL and comparator loops respectively and adding noise at T = 5.1 K and

8.4 K as is shown in Figure 5.5, we see little difference between the two simulations

suggesting that at low temperatures small differences in the noise temperature have

little influence on overall device performance as we might expect.
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Figure 5.4: Temperature dependence of the critical current for low Tc Nb nanobridge
at different Tcs. The dashed line represents the corresponding temperatures at
which Ic = 340 µA.
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Figure 5.5: Blue and green lines on each plot represent switching of J4 for noise
added at T = 8.4 K and 5.1 K respectively, with Ic = 340 µA at different IJTL
values and Ig maintained at 520 µA.
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Loop inductance: In addition to the temperature dependant re-trapping

current, the total loop inductance of the Josephson comparator places further

restriction on the operating temperature of the Josephson comparator. Optimal

operation of the Josephson comparator requires that the value of the screening

parameter βL is equal to or as close as possible to 1 to ensure that the loops are

not in the flux storing state. Taking βL as:

βL =
2LIc (T )

Φ0
(5.3)

we can plot the dependence of the total loop inductance on the critical current (and

in turn the temperature) as shown in Figure 5.6.
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Figure 5.6: The critical current dependence of βL as a function of total loop
inductance for Tc = 9.25 K. For optimal operation of the Josephson comparator,
we restrict ourselves to choosing a total loop inductance so βL ≈ 1. This in turn
places a restriction on the possible critical currents and in turn the temperatures
that can be used. The solid black line represents the βL that was used by Oelze et
al. in their high Tc device.

Based on the assumption from 3D-MLSI simulations that the total inductance

of a Nb track is of order 1 pH per µm, and the limitations of actual loops that

can be fabricated, we have decided to choose a total loop inductance of 7 pH and
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12 pH for the JTL and comparator loops respectively. Although smaller inductance

loops can probably be fabricated by EBL, making the structures too small would

make it harder to extract heat to avoid hysteresis. We used these inductances in

combination with a normal resistance of RN = 1 Ω, Ic calculated using the KO(I)

theory for Nb, and with a critical temperature of Tc = 9.25 K so as to allow for the

highest possible Ic within the constraints of βL = 1.

5.2 Operating parameters and process variation in sim-

ulations
In order to gain a clear picture of the performance of the Josephson comparator

and build a more realistic model of the device we introduced critical current spreads

to our JSIM models. In a real device these spreads would be a result of variation in

the nanobridge dimensions that arise due to the tolerance of the fabrication process.

Introducing variation: Changes in the length and the width of the nanobridge

translate directly to variations in the recorded critical current. Using the a random

number generator from the python scientific library Numpy with a Gaussian distri-

bution, we recreate this spread in critical current where the mean of the distribution

is the recorded Ic obtained from the KO(I) theory and the upper and lower limits

are the percentage Ic spreads, an illustration of this is shown in Figure 5.7.

Figure 5.7: Illustrative representation of the Numpy random distribution in Ic used
to mimic the critical current spreads in nanobridges. x represents the percentage
spread and the mean is that of the average critical current according to the KO (I)
theory.
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5.3 Simulations with variations in Ic

Critical current spreads due to variations in the length of the nanobridge weak

links are first investigated. We assume that a small variation in length results in a

very small linear variation in the value of the normal state resistance RN so that it

can be taken as approximately constant. In contrast we assume that Ic wil tend to

depend exponentially on the length of the bridge and will tend to vary more rapidly

than RN. The variations in Ic will in turn vary the IcRN product of the junction.

Using the python script described earlier, we randomly assigned critical currents to

all the different junctions and recorded the resultant average voltage of the generator

and comparator junctions. Utilising the KO(I) theory we performed simulations

for a Nb nanobridge weak link of dimensions (l × w × t ) of (100× 80× 120) nm

and a normal state resistance RN = 1 Ω, taking into account the restrictions placed

on operating temperature due to hysteresis as a result of thermal heating and our

choice of total inductances of the JTL and comparator loops. Simulations were

performed at T = 9, 8.5, 8 and 7.5 K for a device with an assumed transition

temperature of Tc = 9.25 K. The choice of transition temperature allows simulations

of a broad range of critical currents within the confines of operational limits and

whilst maintaining a biasing value of Ig of 1.6Ic. Figure 5.8 shows the set-up of the

comparator and the junctions with random assignments of Ic.

Figure 5.8: illustration of the inductances to be used in JSIM simulations in addition
to critical current distribution in device. The generator junction Jg uses the mean
value of the Gaussian distribution representing the calculated Ic from the KO(I)
theory, the junctions highlighted by the red bracket use the randomly assigned
critical current values extracted from the Gaussian distribution. Ig is maintained
at 1.6Ic.
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The first set of simulations were to establish the ideal operating parameters

of the comparator. In a similar manner to Oelze et al. we began by establishing

the biasing values of Ib that result in the highest average voltage of the generator

junction Jg at the lowest biasing value for IJTL and ±5% critical current spread.

The results are shown in Figure 5.9.
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Figure 5.9: Current voltage characteristics of the Josephson comparator for junctions
Jg (blue), J3 (green) and J4 (red) respectively, at different biasing values of Ib
where current sources Ig and IJTL are maintained at 1.6Ic and 0.5Ic respectively.
The curves are for a ±5% critical current variation.
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The output average voltage of the generator and comparator junctions is not

affected by the biasing value of Ib up to and including a value of Ib = 1.6Ic, at

which point the shape of the resulting switching characteristics of the generator

and comparator junctions vary substantially from the ideal transition that defines

a balanced comparator. In order to achieve the desired smooth transition of the

switching characteristic we use biasing currents at Ib = 1.4 and 1.5Ic. We now

consider a range of different critical current spreads.
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Figure 5.10: Switching characteristics of junction J4 in the Josephson comparator
at different critical current spreads. The observed shift in the threshold current
Ith is seen in all the simulations and resembles the case of Oelze et al. seen in
Chapter 4. This particular simulations is of a comparator with biasing values of
Ig = 1.6Ic, Ib = 485 µA and IJTL = 0.6Ic. The further increase in voltage at higher
Ix is where J4 starts to self oscillate.

The addition of critical current spreads in Figure 5.10 results in a variation

in the threshold current from Ith = 0 µA when compared to the case where no

spread is included. Expanding on this to other values of Ib and IJTL as is shown

in Figure 5.11 demonstrates possible operation of the Josephson comparator at
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critical current spreads of up to and including ±30% of Ic and only requires re-

biasing of the comparator to ensure correct function at all spreads for instance

switching of junction J4 at ±25% of Ic does not occur at IJTL = 0.5Ic as is shown in

Figures 5.11(a) and 5.11(b). Increasing the value of IJTL to 0.6Ic results in correct

operation for all critical current spreads.
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(a) Ib = 485 µA and IJTL = 173 µA (b) Ib = 520 µA and IJTL = 173 µA
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Figure 5.11: Simualted average voltage of junction J4 of the Josephson comparator
at c = 347 µA at T = 8.4 K with the addition of critical current spreads between
5 − 30%. The overall grey zone width (∆Ix) recorded for Ib = 520 µA and
IJTL = 208 µA is 23, 17, 28, 24, 16 µA respectively, with each grey zone having
a standard deviation of 6 µA. In comparison at Ib = 485 µA and IJTL = 208 µA
the recorded grey zone widths (∆Ix stand at 16, 18, 23, 18 µA respectively with a
standard deviation of 2 µA.

Grey zone width: We now consider the effect of variation in Ic on the

resultant grey zone width, using the definitions of the grey zone described in

Section 4.1. First we plot the resultant grey zone width ∆Ix GZ, GZ1 and GZ2
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for simulations with critical current spread of ±5%Ic around the critical current

calculated from the KO(I) theory for devices with a Tc of 9.25 K, a normal state

resistant RN of 1 Ω and temperatures, T = 9, 8.5, 8, 7.5 and 7 K. The results of

this are reported in Figure 5.12.

Figure 5.12: All the differently defined grey zones widths recorded for the Josephson
comparator at critical current spread of ±5%Ic for Ic = 347 µA, Ib at 1.4Ic and Ig
at 1.6Ic.

An increase in the value of Ic results in an increase of the possible range of

voltage output achieved by Jg i.e. in the plot of ∆Ix the maximum grey zone

width stands at 450 µA for an average voltage of 700 µV which translates into an

operating frequency of 340 GHz. Whilst the large grey zone width makes operating

at this point impractical it does speak towards the possibility of refinement resulting

in the reduction of the grey zone at these kind of frequencies.
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Figure 5.13: The recorded grey zone width dependence of the generator junction
voltage for comparator device with Ic = 129 µA .

Furthermore, examining the the grey zone width at lower operating voltage

as is shown in Figure 5.13 for Ic = 129 µA, we see that ∆Ix and GZ are in good

agreement up to a value of Vg = 50 µV (which translates to an operating frequency

of 24 GHz) with an almost constant grey zone width in this range similar to the

recorded grey zone vs operating frequency observed by Haddad et al. [88] for a Nb

tunnel junctions device (previously mentioned in Section 2.2.2 and in Figure 2.16).

The effect of critical current spreads on the grey zone width ∆Ix at Ic = 129 µA

is shown in Figure 5.14 demonstrates some discrepancies between the different

critical current spreads at the lowest generator junction voltages. However the

overall increasing trend of the grey zone is similar for all spreads and similarly, at

the minima of the curves, the grey zone widths are similar. Expanding this to other

critical currents as is shown in Figure 5.15 we see the effect of increasing Ic spread

has on the recorded grey zone width.
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Figure 5.14: The recorded grey zone width dependence on the generator junction
voltage for comparator device with Ic = 129 µA at different critical current spreads.

The Josephson comparator is still operational at higher critical current spreads

but requires rebiasing of Ib in order to achieve minimum discrepancy between the

different spread values, i.e. at bias of Ib = 1.4Ib results in the least amount of

fluctuations in the recorded grey zone width ∆Ix for Ic = 129 µA at all critical

current spreads. At lower frequencies there is some fluctuations in the recorded grey

zone for other critical currents. However this begins to settle as the frequency of the

generator junction increases as is shown in Figure 5.15. The Josephson comparator

has so far demonstrated quite a high tolerance rate for several values of critical

current spreads reflecting variations in the length of the nanobridge weak link.

Whilst it would be ideal to maintain the lowest possible Ic spread for all active

elements in the Josephson comparator, the use of the KO(I) theory and JSIM

simulations suggests that comparators based on nanobridge weak link are quite

resilient to variations in Ic and as such variations in the length of the nanobridge

region of the weak link. In any case probably the variation in fabrication length

will be less significant than the variation in width which we will examine next.
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Figure 5.15: Recorded ∆Ix of the Josephson comparator at different critical currents
and critical current spreads.

5.4 Variations of Ic and RN with IcRN constant
In addition to variations in the length of the nanobridge weak link, using

fabrication methods such as EBL or FIB will almost result in variation in nanobridge

width. This will change Ic and RN whilst keeping IcRN constant. To simulate this

we fix IcRN using the KO(I) theory. We then allow Ic to vary and determine the

corresponding RN from IcRN.

Similar to what was established when Ic alone was varied, we begin by examining

the result of corresponding variations in both Ic and RN as shown in Figure 5.16

for junctions J4 with a mean critical current of Ic = 129 µA and an IcRN product

of 0.13 mV at T = 9 K. This shows possible operation of the Josephson comparator

even at ±30% spreads in Ic and RN with only some rebiasing of the device required

135



to achieve the desired switching characteristics.
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Figure 5.16: Simulation of a Josephson comparator with variations in nanobridge
width represented as a spread in Ic and RN whilst maintaining the overall IcRN to
that of the KO(I) theory.

We estimate from SEM images of various arrays of nanobridges made at UCL

and elsewhere that there could be spreads of ±10% in fabricated junction widths in

even the best devices, so these simulated results are encouraging.

Grey zone width: The grey zone widths at the lowest spread of ±5% are

shown in Figure 5.17. Like Figure 5.12, this demonstrates that the comparator

performs very well at low critical currents, i.e. Ic = 129 µA, but access to higher

values of operational frequencies requires an increase in Ic that comes at the cost of

an increase in the resultant grey zone width.
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Figure 5.17: JSIM simulations of the grey zone width for a spread of ±5% in the
critical current and the normal state resistance.

Expanding this to consider other spreads as shown in Figure 5.16 for different

critical currents demonstrate similar characteristics to the simulations in Figure 5.15,

i.e. an almost constant grey zone width at lower operational frequencies, as the

frequency is increased the grey zone dependence on operational frequency increases

linearly up to a maximum value at which point the device becomes inoperable.
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Figure 5.18: Recorded ∆Ix of the Josephson comparator at different critical currents
and critical current spreads with corresponding variations in RN to keep IcRN
constant.

Similar to the case where only Ic was varied, we find the Josephson comparator

based on nanobridge weak link parameters is very resistant to variation in the

nanobridge width.

138



5.5 Summary
In this chapter we have outlined the effect of altering different parameters on

the recorded grey zone width and the effectiveness of the device. By utilising the

method introduced by Skocpol et al. [117] we were able to narrow down feasible

operating temperatures to ensure that all Josephson comparators are operated

in the non-hysteretic region. Variations in Ic and RN can be used a simulation

methods to represent variations in weak link length and width. applying spreads of

up to ± 30% meant that results for the most common fabrication spreads can be

investigated.

Due to the nature of the low Tc material and thus the corresponding operating

temperatures, the device is very resistant to thermal noise fluctuations, instead a

more pressing concern is the operating parameter βL and the total loop inductance

throughout the Josephson comparator. Performing simulations of with varied values

of Ic we can replicate the effect of changes in the length of a weak link, whilst varying

Ic and RN, and adhering to the total IcRN product based on the KO(I) theory,

we can simulate the effect of variations in both the length and the width of the

weak link. In both scenarios the JSIM simulations demonstrate a functioning device

that only requires rebiasing. In conclusion when all the results are considered this

Josephson comparator is an ideal candidate as a low Tc device for RSFQ circuitry.
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Chapter 6

Conclusions and suggested future

work

6.1 Conclusion
In the present project, we have demonstrated simulations of Josephson junction

superconducting circuitry using JSIM with a good degree of accuracy, the addition

of noise whilst minimal at low temperatures makes JSIM a useful tool. Its use

in conjunction with the KO(I) theory gives encouraging results as to the ability

of nanobridge weak links to withstand successful variations in width and length

due to fabrication methods. The simulations have also demonstrated the presence

of an almost constant grey zone width at small critical current and operational

frequency values. Operating at low critical current values results in a narrow grey

zone although this however sacrifices the maximum operational frequency of the

comparator.

The inductance of the JTL and comparator loops should be low enough so

as to have a screening current βL ≈ 1, leading both loops to hold only one flux

quanta. An increase in the loop inductance results in the device occupying the

storage state which in turn leads to the formation of a plateau indicative of the

presence of extra flux in the system in turn reducing overall system sensitivity and
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resulting in increased ∆Ix.

6.2 Future work
Whilst it is possible to operate the Josephson comparator at temperatures close

to Ic, in an ideal scenario operation of the comparator would be well below Tc, as

such the issue of hysteresis could be overcome through the use of a bilayer. By

depositing a conductive layer such as gold on top of the Nb film, which has a better

thermal conductivity and acts as thermal cap, with its higher thermal conductivity

allowing heating to dissipate through it at a much faster rate than the formation of

the hotspot.

Figure 6.1: DC/SFQ circuit developed at SUNY/Stony Brook.

The versatility of the nanobridge weak links allows for the fabrication of several

types of RSFQ circuits usually only obtained through cell libraries from specialised

foundries such as HYPRES/Inc and SUNY/Stony Brook. One circuit of particular

interest is the DC/SFQ converter in the SUNY/Stony Brook cell library shown in

Figure 6.1. Built around a DC SQUID formed by J2 − LSQUID − (J1/J3) where

junctions J1 and J3 act as a single junction. Once the signal current is large enough

to trigger J2 it causes in a flux to travel through to the output which could be a

JTL whilst J1 and J2 ensure that the total flux in the loop remains at zero The net

result “is that a single picosecond SFQ pulse can be generated on-chip by applying

141



a slowly changing, noisy and inexact dc current from a room-temperature current

source. Similarly, when the input current is decreased below a certain value, the

split junction J1,J3 flips, restoring the initial state of the SQUID”. This would be a

suitable circuit as a next step to try after nanobridge comparator.
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