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Abstract 

Arterial Spin Labelling (ASL) is a unique Magnetic Resonance Imaging (MRI) approach for 

quantifying tissue perfusion non-invasively. More than two decades of technical developments 

established ASL as a valuable tool in neuroimaging, having more recently began its translation 

to the clinic. ASL holds great potential for the assessment of kidney disease given that it does 

not require contrast agents which are typically contraindicated for patients with impaired renal 

function. However, renal ASL applications remain limited and the technique has yet to be 

incorporated into clinical practice. The sensitivity of ASL to patient movement, which severely 

corrupts the renal perfusion estimates, is arguably one of the greatest factors hindering a wide 

adoption of this technique. 

This thesis begins with an overview of the main concepts addressed in this work (kidney 

physiology, MRI and ASL) and a thorough literature review of previous renal ASL work. The 

problem of patient movement is then addressed at all levels of the ASL framework by combining 

a motion-insensitive ASL acquisition scheme with a specifically tailored image processing 

pipeline. The feasibility of this technique to provide repeatable renal perfusion measurements 

is demonstrated in the first paediatric cohort with impaired renal function to undergo renal ASL. 

Finally, the critical findings of this thesis are summarised and prospective future research 

directions are outlined.  
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1 Context 

The aim of this thesis is to develop an optimised non-invasive Magnetic Resonance Imaging 

(MRI) method to measure renal perfusion in paediatric patients with impaired renal function. In 

particular, the technique known as Arterial Spin Labelling (ASL), originally proposed by Detre et 

al. will be employed  (Detre et al. 1992; Williams et al. 1992). 

This chapter provides context and the motivation for the work carried out. It begins with an 

introduction to the basics of renal anatomy and physiology, with special focus on describing the 

blood circulation within the kidneys. The problem of Chronic Kidney Disease (CKD) is stated, 

together with a discussion on the pressing need for new approaches to obtain in vivo functional 

information of the human kidneys, both in healthy and diseased states. 

Given the specific focus of this work, I will review existing methods for measuring Renal Blood 

Flow (RBF) and some of their drawbacks. Finally, ASL is briefly introduced as a new method for 

the non-invasive in vivo measurement of renal perfusion. 

1.1 Basic Renal Anatomy and Physiology 

The kidneys are a pair of intra-abdominal organs, located near the posterior abdominal wall, 

behind the peritoneum. Each adult human kidney has a weight ranging from 115-170g, with 

approximate length, width and thickness ranging from 11-12cm, 5.0-7.5cm and 2.5-3.0cm, 

respectively (Taal et al. 2012). The main anatomical features of the kidneys are depicted in Figure 

1-1. Two main regions can be identified upon dissection of a kidney. The outer region, the cortex, 

with approximately 1cm thickness (Taal et al. 2012), receives the majority of the RBF and is 

where ultrafiltration occurs. The darker inner region, the medulla, contains the renal pyramids 

which extend towards the renal calyces. Urine passes through these, and continues towards the 

renal pelvis, where the calyces converge. The urine then finally leaves the kidneys through the 

ureters. 

The kidneys are responsible for a range of intricate and crucial tasks which are key to the overall 

normal function of the human body. These include a major role in the regulation of fluid volume 

within the internal environment, achieved by tightly controlling the ion and acid-base balance 

and adjusting the amount of water lost in urine. They also filter the blood, removing waste 

products as well as potentially toxic foreign chemicals, while avoiding the excretion of useful 

substances such as glucose or protein. They also have an important role in the production and 

secretion of hormones (e.g. erythropoietin) and enzymes (e.g. renin). Finally, the kidney plays 

an important role in gluconeogenesis (Gerich et al. 2001). 
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Figure 1-1 Renal Anatomy, with focus on the main arteries and veins. Adapted from (OpenStax 
2016) under a Creative Commons Attribution 4.0 International License.  

1.1.1 Blood circulation in the kidneys 

The kidneys are extremely well perfused organs. Even though they make up less than 1% of the 

total body mass, they receive 20% to 25% of the total cardiac output (Regan et al. 1995), 

corresponding to approximately 1–1.2L/min in healthy adults (Taal et al. 2012). This amount far 

surpasses their metabolic requirements. However, it is key to enable high glomerular filtration 

rates to ensure appropriate waste removal and a tight control over the blood volume and 

concentration of solutes in the body. 

The renal cortex and medulla have different physiological roles and metabolic demands. 

Accordingly, there are regional variations in blood flood throughout the kidney to meet the 

specific requirements of these regions. As it arrives into the kidney, all of the inflowing blood 

first reaches the renal cortex. Blood is then supplied to the renal medulla by the efferent 

arterioles of the deep nephrons, closest to the renal medulla (juxtamedullary nephrons) (Taal et 

al. 2012). Blood flow also varies within the medulla, where per unit tissue it ranges from about 

40% to 10% in the outer and inner medulla, respectively, relative to that of the cortex (Evans et 

al. 2004). 
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Blood is supplied to the kidneys by one of the branches of the abdominal aorta, the renal artery. 

Upon entering the kidney, the renal arteries divide into segmental arteries, which in turn branch 

into interlobar arteries. These traverse the renal columns and as they reach the renal cortex they 

further divide into arcuate arteries, which in turn branch into interlobular arteries. These finally 

give rise to the afferent arterioles which supply the nephrons, which will be described later.  

Each afferent arteriole leads into an intertwined network of capillaries, known as a glomerulus, 

which together with the Bowman’s capsule forms the renal corpuscle, which acts as a filter for 

the inflowing blood. The blood then exits the glomerulus through the efferent arteriole. 

Depending on the location of the nephron (superficial or deep cortex), the efferent arteriole 

leads into different vessel networks.  In superficial cortical nephrons (approximately 85% of the 

total number of nephrons in the kidneys (Saladin et al. 2016)), the efferent arteriole leads to a 

plexus of peritubular capillaries. In nephrons located in the deep cortex, closest to the medulla 

(juxtamedullary nephrons), the efferent arterioles descend to the renal medulla giving rise to 

long capillary loops, the vasa recta. The peritubular capillaries then reunite forming the 

interlobular veins, from which the blood flows through to the arcuate veins. The vasa recta drain 

into the arcuate veins. From these, the blood then proceeds to the interlobar veins and then 

finally leaves the kidney through a single renal vein and continues towards the vena cava. Figure 

1-1 highlights the main arteries and veins involved in the blood circulation in the kidneys. 

1.1.2 The Nephron 

The nephron is the functional unit of the kidney. The number of nephrons in human kidneys 

averages approximately 1 million per kidney, and is fixed at birth. There is nevertheless a wide 

variation in their number among subjects (exceeding a 10-fold range (Bertram et al. 2011)). 

Interestingly, recent studies have been addressing the feasibility of using MRI for counting the 

number of glomeruli (and thereby nephrons) in the rat kidney ex vivo (Beeman et al. 2011; 

Heilmann et al. 2012). 

Two main components are part of the nephron: the renal corpuscle, where the blood filtration 

takes place, and the renal tubules through which the resulting filtered fluid flows (also referred 

to as glomerular filtrate or ultrafiltrate). These and their main roles will be briefly described in 

the following sections. 

1.1.2.1 Renal corpuscle: filtration 

The difference in pressures in the afferent and efferent arterioles (at the vascular pole of the 

renal corpuscle) is largely responsible for driving the ultrafiltration process. The shorter 
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diameter of the efferent arteriole compared to the afferent arteriole results in a very high 

hydrostatic pressure in the glomerulus. Both the hydrostatic pressure exerted in the Bowman's 

capsule by the filtrate and the oncotic pressure caused by proteins in blood are not enough to 

counteract the glomerular hydrostatic pressure. This forces fluid to move into the capsular 

space. Relatively large components, such as blood cells and large proteins are unable to traverse 

the filtration barriers in the glomerulus and therefore remain in the bloodstream. On the other 

hand, water and small molecules such as glucose, amino acids and urea (among others) readily 

cross these barriers and move into the glomerular space, making up the ultrafiltrate. This fluid, 

which already differs significantly from the blood in terms of its composition, then continues to 

move through the renal tubule, where further changes to its composition will occur. The rate at 

which ultrafiltrate is generated in all glomeruli in both kidneys is known as glomerular filtration 

rate (GFR). Normal values for GFR in adults are approximately 125mL/min (Taal et al. 2012) and 

decrease with age (Delanaye et al. 2012). The GFR is kept at a relative constant level despite 

changes in blood pressure, owing to several mechanisms both intrinsic (autoregulation) and 

extrinsic to the kidney (neural and hormonal regulation). These act mainly by regulating the 

amount of blood entering and leaving the glomerulus and adjusting the surface area of the 

glomerular capillaries involved in filtration (Tortora & Derrickson 2014). 

Another important parameter to characterise renal function is the filtration fraction. This 

corresponds to the fraction of blood plasma which becomes glomerular filtrate. It is therefore 

computed as the ratio of GFR to renal plasma flow (RPF) and is hypothesized to reflect 

glomerular hydraulic pressure (Taal et al. 2012). A typical value for the filtration fraction in 

humans is 20% (Hall 2016). It is worth highlighting that from the approximately 1500L/day of 

blood reaching the kidney (of which around 750L/day would correspond to blood plasma), an 

excess of 150L/day of filtrate is formed. Given the small fraction of this which will correspond to 

the amount of urine produced, clearly there must exist reabsorption mechanisms in place to 

ensure that the vast majority of filtrate returns to circulation. These are described in the next 

section. 

1.1.2.2 Renal tubule: reabsorption and secretion 

The renal tubule initiates at the urinary pole of the renal corpuscle, opposite to the vascular pole 

where the afferent and efferent arterioles connect to the glomerulus. Its components are the 

proximal convoluted tubule, the loop of Henle, and the distal convoluted tubule. The distal 

convoluted tubules of independent nephrons then drain into the collecting duct, which 

transports urine to the calyces, which in turn drain into the ureter. Each segment of the renal 
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tubule has its own specialized roles in the production of urine. Two main basic processes occur: 

tubular reabsorption and tubular secretion. During reabsorption, filtered substances return to 

the bloodstream by moving into the peritubular capillaries. Proximal convoluted tubule cells, 

with their brush border to increase surface area, perform most of the reabsorption. Some of the 

solutes which are reabsorbed include glucose, amino acids and ions. The increase in osmolarity 

within the peritubular capillaries causes water to follow by osmosis. This is as opposed to water 

reabsorption that occurs in the collecting ducts, which is dependent on the presence of 

antidiuretic hormone. In fact, the reabsorption of both water and ions in later distal parts of the 

renal tubule (i.e. after the proximal convoluted tubule) is regulated by a variety of hormones. 

This allows reabsorption to occur in variable amounts which is key for ensuring a fine control 

over the volume and osmolarity of body fluids. Tubular secretion, essentially the opposite of 

reabsorption, is the process by which selected substances leave the bloodstream into the renal 

tubules. It therefore allows the elimination of substances that could not be filtered in the 

glomerulus (e.g. when such substances are attached to proteins). Unwanted substances that 

might have been reabsorbed passively, such as nitrogenous wastes are also secreted and make 

part of urine. 

1.2 Chronic Kidney Disease and the need for new biomarkers 

CKD is characterised by abnormalities in kidney function and usually structure, present for over 

3 months, with implications for health (KDIGO 2013). The loss in renal function may be 

progressive and irreversible and in its most advanced stage leads to end-stage renal disease. At 

this point, renal replacement therapy is required for survival, in the form of dialysis or kidney 

transplantation. CKD is recognised as a global health burden affecting more than 10% of the 

population in many countries (Eckardt et al. 2013), including the United Kingdom (Archibald et 

al. 2007). Worldwide, the costs of treating patients with end-stage renal disease have been 

estimated to exceed US$1 trillion (Stenvinkel 2010). In England, more than 1% of the total 

National Health Service (NHS) spending in 2009–2010 was attributed to CKD, where renal 

replacement therapy accounted for over half of these costs (Kerr et al. 2012). It is expected that 

in the future this financial burden will continue to intensify as the incidence of CKD continues to 

increase (Hoerger et al. 2015). Contributing factors for this include population ageing, obesity 

and diabetes (Kainz et al. 2015). It is also a well-known fact that CKD patients are at a much 

higher risk of developing cardiovascular disease, compared to the general population (Sarnak et 

al. 2003; Daly 2007). 

In clinical practice, CKD is classified according to the GFR and proteinuria levels. Kidney 

transplant recipients are considered to have CKD, regardless of their GFR levels or presence of 
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other markers of kidney damage (KDIGO 2013). Serum creatinine concentration is commonly 

used to estimate the GFR (Levey et al. 2009) (see Section 7.2.4.2 for the approach used to 

estimate GFR in this work). Recently other markers such as Cystatin C have been proposed to 

improve the precision in GFR estimation procedures (Inker et al. 2012). Nevertheless, estimated 

GFR (eGFR) measures obtained with creatinine-based equations remain inaccurate in certain 

patient groups (Stevens & Levey 2009). In fact, an early diagnosis may be hindered when relying 

on these methods as alterations in the GFR may only occur when irreversible damage to the 

kidneys has already taken place (Haufe et al. 2006; Artz 2010). Clearance studies using 

exogenous filtration markers may be necessary to confirm eGFR values (Stevens & Levey 2009), 

but many of these are costly, cumbersome to use in the clinic, or involve radiation exposure. As 

such, additional new biomarkers are necessary to allow for an earlier diagnosis and identification 

of individuals at higher risk of developing progressive CKD which can lead to kidney failure 

(James et al. 2010; Levin et al. 2011).  

Advances in molecular biology combined with a very active field of research in renal biomarkers 

has resulted in the introduction of a wide array of new potential biomarkers over recent years 

(Fassett et al. 2011; Lopez-Giacoman & Madero 2015; Wasung et al. 2015). Medical imaging, in 

particular through MRI, has also been emerging as a promising complement to these, offering 

distinctive advantages and a unique wealth of information on renal physiology. In addition to 

the established capabilities of MRI in providing exquisite anatomical detail and tissue contrast 

(allowing for precise total kidney volume or independent cortex/medulla volume 

measurements), MRI is also capable of providing information on blood flow and perfusion 

(Becker & Rossi 2017), microstructure (Thoeny & De Keyzer 2011), and related to oxygenation 

(Niendorf et al. 2015), among other physiological parameters. Importantly, all these measures 

are obtained in a completely non-invasive manner and allow for a separate assessment of both 

kidneys and even among different regions of the same kidney. 

1.3 Assessing Renal Perfusion 

Renal perfusion relates to the delivery of oxygen and nutrients to tissue, by means of blood flow 

occurring on the level of its capillary bed. It is quantified as a volume of blood delivered per unit 

time and mass of tissue. Common units are ml/100g/min. In the kidneys, it is intimately 

connected to glomerular filtration and tissue oxygenation. Therefore, it is a crucial parameter in 

the pathophysiology of renal disease, making its measurement highly desirable in the clinical 

setting. Biomarkers related to renal haemodynamics have the potential of providing an earlier 

and more sensitive diagnosis. This is especially important given the drawbacks of current 

methods used in the clinic (as discussed in the previous section). As such, they would not only 
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assist in the determination of the best treatment options at an early stage, but also in providing 

the clinicians with a window into the progression of disease. Furthermore, they would offer a 

novel follow up method to monitor therapeutic interventions. This additional information might 

also have the unexpected benefit of providing further understanding on the pathogenesis of 

specific diseases affecting the kidney. 

Investigating the differences in regional perfusion in the kidneys has long been of interest to 

physiologists (Aukland 1980; Knox et al. 1984). However, despite decades of research, 

developing methods with the ability to quantify absolute regional changes in renal perfusion is 

still a challenge (Pallone et al. 2012; Beierwaltes et al. 2013). 

Para-aminohippurate (PAH) clearance studies are the classical gold standard approach for the 

estimation of effective RPF (Sandilands et al. 2013; Schneider et al. 2013). This approach is based 

in the fact that the vast majority of PAH is extracted from the blood, due to a combination of 

filtration at the glomerulus and especially excretion by the renal tubules. If one assumes the 

extraction to be 100% then the clearance of this indicator allows an estimation of RPF, hence 

the term "effective" renal plasma flow. The disadvantage of this approach, which makes it 

unsuitable for clinical practice, is its invasive and time-consuming nature. In addition, the 

estimation of RPF in renal disease may be confounded by damage in the renal tubules, which 

impairs the secretion process, rendering the assumption of 100% extraction of PAH 

invalid.  Nevertheless, PAH clearance may serve as a benchmark to validate newer methods to 

measure renal perfusion in healthy volunteers. Indeed, recent work by Ritt et al. has shown a 

correlation between renal perfusion measurements using ASL MRI and RPF measurements using 

PAH (Ritt et al. 2010), before and after a pharmacological intervention. 

Radio-labelled microspheres have been used to assess organ perfusion (Aukland 1980). 

However, this method is limited to animal studies as it involves tissue collection. Artz et al. found 

a good correlation between perfusion estimates in the renal cortex obtained with both 

microspheres and ASL in a swine model (Nathan S Artz et al. 2011).  

Warmuth et al. validated renal ASL in the kidney in extracorporeal porcine kidneys, comparing 

perfusion estimates obtained with ASL and calibrated vessel flow, using an ultrasound 

flowmeter (Warmuth et al. 2007), after normalizing the ultrasound flow measurements per 100g 

of cortical tissue. 

Scintigraphy has long been used to assess GFR (Chantler et al. 1969) and to this day continues 

to be used for the same purpose (Cutajar et al. 2015). Positron emission tomography (PET) can 
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also be used to assess renal perfusion (Green & Hutchins 2011). The disadvantage with all 

nuclear medicine techniques is their associated radiation burden, invasiveness and low spatial 

and temporal resolution. 

Computed tomography (Lerman et al. 1999) offers better spatial resolution, although also 

requires the use of ionizing radiation. Contrast agents are typically required which can be 

contraindicated, especially when complications in renal function are already present 

(Beierwaltes et al. 2013). 

Doppler ultrasound has been proposed as a method to measure RBF but its accuracy is limited 

(Wan et al. 2008). The more recently introduced contrast-enhanced ultrasound technique may 

provide a favourable alternative (Schneider et al. 2011) but there are still concerns regarding its 

safety (Herget-Rosenthal 2011). 

MRI has been increasingly playing a larger role in the understanding and diagnosis of renal 

disease (Zhang et al. 2014). As with all MR-based methods, exposure to ionizing radiation is not 

a concern. Information regarding oxygenation and metabolism can be obtained with Blood 

oxygenation level-dependent (BOLD)-MRI (Prasad et al. 1996). There is data suggesting 

limitations of BOLD for CKD assessment (Michaely et al. 2012), although the future utility of renal 

BOLD-MRI is still under debate (Inoue et al. 2012). For a recent review on this topic, refer to 

(Niendorf et al. 2015). MRI can measure perfusion using exogenous intravascular tracers (based 

on gadolinium chelates) or endogenous diffusible tracers (with ASL). Over the years, Dynamic 

contrast-enhanced (DCE)-MRI has been delivering promising results and providing a wealth of 

information regarding kidney function (e.g. (Lee et al. 2007; Sourbron et al. 2008; Tofts et al. 

2012), among others). Nevertheless, there are still strict impediments to the use of contrast 

agents in certain patient groups (Kaewlai & Abujudeh 2012), which have proved useful in 

diminishing the incidence of nephrogenic systemic fibrosis due to exposure of gadolinium-based 

contrast agents (Wang et al. 2011). A disadvantage with this technique is the fact that multiple 

measurements within the same scanning session are not possible due to the relatively long 

clearance times of the contrast agent. A review of the DCE-MRI methods used to assess renal 

function is beyond the scope of this thesis. For a review of this topic, refer to (Jones et al. 2011). 

ASL is an MRI technique that allows a quantitative assessment of perfusion without the need for 

exogenous contrast agents. In fact, the subject’s own blood is used for this purpose. At the time 

of writing, no other method that can be used to assess perfusion in the kidneys does so in a 

completely non-invasive way, while being able to deliver regional perfusion measurements. This 

makes ASL extremely interesting both from the academic and clinical point of view. This work 
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focuses on the optimisation of ASL measurements for the kidneys. As such, both MRI and ASL 

will be introduced in its own chapter together with a comprehensive overview of previous 

efforts to assess renal perfusion with this technique. 
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2 Principles of MRI 

MRI is a powerful imaging modality, unique in its ability to non-invasively provide detailed 

anatomical and physiological information in vivo. It emerged in the 1970s, the fruit of key 

developments which allowed the application of Nuclear Magnetic Resonance (NMR) principles 

within the context of medical radiology. As such, its basis rests upon the interaction of nuclear 

spins and externally applied magnetic fields.  

This section aims to briefly summarize the fundamentals of MRI. The discussion is limited to a 

physical description of spin dynamics based on the classical Bloch formalism. This allows a 

description of the macroscopic behaviour as it pertains to the NMR phenomenon, which is 

sufficient for the understanding of the work presented in this thesis. Readers interested in a 

quantum mechanical treatment of the subject are referred to (Brown et al. 2014). In particular, 

I will address the origin of the NMR signal, MRI physics and the process of image formation. MRI 

sequences most relevant to this work will also be described. Furthermore, a significant focus will 

be given to ASL, the functional MRI technique developed and applied within the context of this 

thesis. 

2.1 Classical Description of NMR 

2.1.1 Spin and precession 

All subatomic particles, such as protons, possess an intrinsic nuclear angular momentum, known 

as spin. The same is true about atoms with an odd atomic number and/or an odd number of 

neutrons. This fundamental property is in some ways analogous to the classical angular 

momentum. An important difference is the fact that spin is quantized, taking only discrete 

integer or half-integer values. Hydrogen nuclei (1H) are composed of a single proton. Therefore, 

they have non-zero spin and thus exhibit the NMR phenomenon. This fact, combined with their 

extreme abundance in biological tissue as well as relatively high intrinsic NMR sensitivity make 

them most studied and widely used nuclei in MRI. Henceforth, I will refer to hydrogen nuclei 

(1H) nuclei simply as spins. Additionally, unless noted, I will also assume we are dealing with 

proton (1H) imaging throughout this thesis. 

In accordance to the laws of electromagnetic induction, a particle with net spin and an 

unbalanced charge (e.g. a proton) produces a magnetic field around itself. Thus, protons also 

possess a magnetic moment. If an external magnetic field (𝐵0) is absent, the spins assume 

random orientations, causing their net magnetic moment (resulting from the individual 

contributions of each spin) to be zero. An external magnetic field acting upon a sample causes 
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spins to align with it. A typical convention is to refer to the direction along which 𝐵0 is applied 

as the “z” or longitudinal direction. A number of spin states are possible for a nuclei of spin 𝐼, 

given by 2𝐼 + 1. Therefore, two (2.
1

2
+ 1)  states are possible for 1H. This energy splitting 

becomes observable when the sample is under the influence of 𝐵0. As a result, two spin 

populations emerge: spins aligned with 𝐵0 in a parallel orientation (low-energy state) and spins 

aligned with 𝐵0 in an anti-parallel orientation (high-energy state). The difference in energy 

between the two states depends on the strength of the applied magnetic field 𝐵0 (see Figure 

2-1). Thermal energy causes a slight preponderance for spins in the lower energy state. The ratio 

of the numbers of spins in each of the two populations is described by the Boltzmann 

distribution:  

 
𝑛−

𝑛+
= 𝑒−Δ𝐸/𝑘𝑇 Equation 2-1 

Where 𝑛− and 𝑛+ are the populations of spins in the anti-parallel and parallel orientations, Δ𝐸 

is the difference in energy between the states, 𝑘 is Boltzmann’s constant and 𝑇 is the absolute 

temperature.  

Solving Equation 2-1 for a temperature of 293.15K (i.e. 20°𝐶) and a field strength of 1.5T yields 

a population ratio 𝑛− 𝑛+⁄  equal to 0.999998. Despite this ratio being close to one, typical 

samples contain an immense number of protons (on the order of the Avogadro number). This 

translates to an excess of spins in the 𝑛+compared to those in the 𝑛− population. The 

contributions of all the individual magnetic moments add up and the result is enough to 

generate a net macroscopic magnetisation, often denoted by the vector 𝑴. After further 

manipulation (as discussed below), this magnetisation becomes measurable, forming the basis 

for the NMR signal. 

As we can see from Equation 2-1, the difference in the number of spins in each energy state is 

proportional to Δ𝐸, which in turn increases with 𝐵0. Thus, as 𝐵0 increases, so does the available 

net magnetisation 𝑴. This is one of the main reasons driving the increase in the magnetic field 

strengths achievable by the superconducting magnets of MRI scanners over the last decades. A 

larger amount of available magnetisation is desirable from a signal-to-noise ratio (SNR) 

perspective, provided technical challenges associated with high field imaging can be overcome 

(e.g. magnetic field inhomogeneities).  



27 
 

 

Figure 2-1 Zeeman splitting in a spin ½ system. In a sample of 1H nuclei, two spin populations 
are observed when an external magnetic field 𝐵0 is applied. The energy gap 𝛥𝐸 between the 
two corresponding spin states is proportional to the strength of the applied magnetic field 
𝐵0. There is a slight preponderance for spins to exist in the lower energy state, i.e. aligned to 
𝐵0. The emission of a photon of energy 𝛥𝐸 occurs with a transition from the high to the lower 
energy state. 

Another key phenomenon in NMR/MRI is precession. The interaction of spins with 𝐵0 produces 

a torque which acts perpendicular to the magnetic field and in the direction of the angular 

momentum. This gives rise to a circular motion of the individual magnetic moments about the 

field direction, analogous to the precessional movement of a gyroscope when its angular 

momentum interacts with the gravitational field. The precession frequency is given by the 

Larmor equation (Equation 2-2): 

 𝜔0 =  𝛾𝐵0 Equation 2-2 

Where 𝛾 is a constant known as the gyromagnetic ratio (𝛾 = 2.675x108 rad/s/T, for 1H). 

Frequently, the gyromagnetic ratio is also referred to as 𝛾 where 𝛾 = 𝛾 2𝜋⁄  = 42.58 MHz/T. It is 

worth noticing that the gyromagnetic ratio varies among nuclei. For 23Na, 𝛾 = 11.26 MHz/T. This 

fact can be exploited for performing “nucleus-specific” imaging, because if these two nuclei 

species are subjected to the same external magnetic field, their different Larmor frequencies 

allow any one of them to be excited while leaving the remaining nuclei undisturbed. Most of 

today’s clinical MRI systems operate at 𝐵0 fields of strength 1.5 and 3 Tesla. From Equation 2-2 

it follows that the corresponding Larmor frequencies for 1H are in the radio wave range. 

Electromagnetic radiation at this range of the electromagnetic spectrum is able to penetrate the 

patient with relatively low power deposition. This allows the phenomenon of NMR to be 

exploited in MRI as a technique with ability to probe inside of the human body non-invasively. 

2.1.2 Excitation 

Even though spin state population differences result in a net magnetisation, this is not directly 

measurable. This is because at rest, individual magnetic moments precess at random phases and 

consequently, no measurable transverse magnetisation exists. This is depicted in Figure 2-2.  
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Figure 2-2 Snapshot of a spin ensemble in dynamic equilibrium, under the influence of an 
external static magnetic field B0. The spins align with B0, with two populations arising. A slight 
preponderance exists (exaggerated in this diagram) for the lowest energy state (spin-up, parallel 
to B0). Individual magnetic moments precess at random phases. The lack of phase coherence 
results in no measurable transverse magnetisation component. 

In order to generate a measurable NMR signal, the equilibrium magnetisation must be tipped 

away from the longitudinal (𝑧) axis into the transverse (𝑥𝑦) plane. This can be achieved through 

the application of an oscillating magnetic field 𝐵1 at the Larmor frequency, perpendicular to 𝐵0 

(i.e. in the 𝑥𝑦 plane). This is also referred to as a radiofrequency (RF) pulse, owing to the short 

duration during which it is applied (on the order of a few milliseconds) and the fact that its 

frequency is tuned to the radio wave range. The matching of the frequency of 𝐵1 and the Larmor 

frequency of the spin system allows resonance to occur. As a result, 𝐵1 causes the magnetisation 

vector 𝑴 to experience a torque, being "excited" out of equilibrium. Individual spins will now 

precess synchronously. Consequently, 𝑴 also initiates precession, generating a time-varying 

transverse magnetisation which is readily detectable as it generates an electromotive force in a 

nearby receive coil, according to Faraday’s law of induction. Different amounts of energy can be 

supplied to the spin system by adjusting the strength and duration of the 𝐵1 field, resulting in 

different degrees of “conversion” of longitudinal magnetisation to transverse magnetisation. By 

carefully tuning these parameters, the equilibrium magnetisation can be rotated by 90°. This 

brings all of the longitudinal magnetisation into the transverse component, which maximises the 

amount of measurable signal. The corresponding RF pulse is aptly name 90°- or 𝜋 2⁄ -pulse. In 

general, the angle of rotation is known as the flip angle. This gives rise to the simplest MR signal 

that can be recorded, and is known as free induction decay (FID), a rather descriptive name as 

it encapsulates the fact that the measured signal results from a free precession of the net 



29 
 

magnetisation vector, which is measured via induction of current in a nearby coil. Furthermore 

it hints that the measured signal will eventually decay, through mechanisms that will be 

described shortly. 

A depiction of the excitation process can be seen in Figure 2-3 a). Before the application of the 

RF pulse, all available coherent magnetisation is aligned with the external magnetic field 𝐵0, 

along the longitudinal axis. This is frequently referred to as “equilibrium magnetisation” 𝑀0. As 

soon as 𝐵1 is applied, 𝑴 starts being “pushed” into the transverse plane (𝑥𝑦) while 

simultaneously precessing about the 𝑧-axis at the Larmor frequency. In the laboratory frame of 

reference (i.e. defined with respect to the magnet in the MR scanner), this results in a spiralling 

trajectory (Figure 2-3 a)). A “rotating frame of reference” is frequently considered during the 

analysis of the behaviour of 𝑴, as it simplifies the description of many MR phenomena. This can 

be thought of as a coordinate system where the 𝑥𝑦 plane itself rotates at an angular frequency 

matching the Larmor frequency of the spin system. The excitation process as seen from the 

rotating frame of reference is depicted in Figure 2-3 b). Note the usage of 𝑥′, 𝑦′ and 𝑧′ in the 

naming of the orthogonal axes in this coordinate system for distinguishing it from the laboratory 

frame of reference. In this case, the precession motion of 𝑴 about the 𝑧-axis disappears. 

 

Figure 2-3 Excitation due to application of a RF pulse as seen in the laboratory and rotating 
frames of reference. a) In the laboratory frame of reference, the tipping of the net magnetisation 
vector 𝐌 towards the transverse plane is accompanied by precession about the longitudinal axis. 
b) In the rotating frame of reference, itself rotating at the Larmor frequency ω0, precession is 
no longer visible, and the behaviour of 𝐌 is simplified to a monotonic tipping towards the x′y′ 
plane. The angle α between 𝐌 and the longitudinal axis is typically referred to as flip angle. 
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Even though the behaviour of individual magnetic moments is governed by the laws of quantum 

mechanics, a classical description of the behaviour of the bulk magnetization vector 𝑴 is given 

by Equation 2-3: 

 
𝑑𝑴

𝑑𝑡
= 𝛾𝑴 ×𝑩 Equation 2-3 

Where 𝑴 = [𝑀𝑥, 𝑀𝑦,𝑀𝑧], 𝛾 is the gyromagnetic ratio and 𝑩 is the applied magnetic field (𝑩 ≡

𝐵0). This equation describes precession of 𝑴 about the direction of 𝑩.  

2.1.3 Relaxation 

As was alluded to before, as soon as the magnetisation vector 𝑴 is tipped to the transverse (𝑥𝑦) 

plane, it immediately starts experiencing relaxation. As opposed to the individual magnetic 

moments, this causes the magnitude of 𝑴 to vary with time. These relaxation effects are in fact 

one of the major sources of image contrast in MRI, as if these did not exist we would have to 

rely on proton densities only which vary over a much smaller range when compared to the 

relaxation times. Two independent effects are at play.  Any perturbation to the equilibrium 

magnetisation 𝑀0 will be followed by a recovery process whereby the magnetisation will return 

to its thermal equilibrium state, along the 𝑧-axis: 

 
𝑑𝑀𝑧
𝑑𝑡

=
1

𝑇1
(𝑀0 −𝑀𝑧) Equation 2-4 

Where 𝑇1 is the spin-lattice (or longitudinal) relaxation time, which characterises the rate at 

which excitation energy is lost from the spin system as heat to the surrounding environment (in 

early NMR experiments this was most frequently the lattice of crystalline solids).  In practice, it 

is the time required for the longitudinal component of the magnetisation (𝑀𝑧) to return to 63% 

of 𝑀0 following the application of a 90°-pulse. Equation 2-4 shows that the rate at which 𝑀𝑧 

changes at any point in time during recovery is proportional to the difference 𝑀0 −𝑀𝑧 at that 

instant (see Figure 2-4). 

Unlike longitudinal relaxation, there is no energy loss involved in the second relaxation 

mechanism. Rather, it hinges on the loss of phase coherence of the individual magnetic 

moments, which manifests macroscopically as a decay of the transverse component of the 

magnetisation (𝑀𝑥𝑦), as depicted in Figure 2-5. This is given by Equation 2-5: 
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Figure 2-4 𝑇1 relaxation. Simulation of the effect of 𝑇1 relaxation on the longitudinal 
magnetisation (top) and corresponding depiction of longitudinal magnetization recovery in the 
rotating frame of reference (bottom). 

 

Figure 2-5 𝑇2 relaxation. Simulation of the effect of T2 relaxation on the transverse 
magnetisation (top) and corresponding depiction of spin dephasing in the rotating frame of 
reference (bottom). 
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𝑑𝑀𝑥𝑦

𝑑𝑡
= −

𝑀𝑥𝑦

𝑇2
 Equation 2-5 

Where 𝑇2 is the spin-spin (or transverse) relaxation time. The physical basis of this effect is 

directly linked to local magnetic field variations, which cause the precession frequencies of 

individual magnetic moments to change. The effects of this are easily understood when 

considered in the rotating frame of reference as depicted in Figure 2-5. In short, individual 

magnetic moments will deviate from the Larmor frequency, causing them to start fanning out. 

This phase dispersion causes the measurable signal to be attenuated compared to what it would 

have been if all moments kept precessing at the Larmor frequency, where the net sum of their 

vectors would yield the maximum possible signal. 

It is worth noticing that all relaxation processes occur at much slower time scales than 

precession by several orders of magnitude. Whereas relaxation occurs within the realm of 

fractions to a couple of seconds, precession occurs approximately 107 to 109 faster. Also, note 

that 𝑇1 determines the upper limit for 𝑇2 (i.e. 𝑇2 ≤ 𝑇1), given that in addition to the spin-spin 

effects described above, the transverse magnetization is inherently reduced as 𝑇1 effects take 

place (i.e. return of 𝑴 towards the 𝑧-axis). The latter increases with the strength of the static 

field 𝐵0. 

Combining Equation 2-3, Equation 2-4 and Equation 2-5 we obtain: 

 
𝑑𝑴

𝑑𝑡
= 𝛾𝑴 × 𝑩 +

1

𝑇1
(𝑀0 −𝑀𝑧)�̂� −

1

𝑇2
(𝑀𝑥�̂� + 𝑀𝑦�̂�) Equation 2-6 

This is known as the Bloch equation, introduced by Felix Bloch in 1946 (Bloch 1946), where �̂�, �̂� 

and �̂� are unit vectors in the laboratory frame of reference. This provides a phenomenological 

description of the precession and relaxation behaviours of the net magnetisation vector, and 

accurately describes the signal measured by the receiver coils.  

When 𝐵1 is no longer being applied, the only remaining field is the constant field 𝐵0. In this case, 

𝑩 = 𝐵0�̂�, and the three component equations can be solved to yield: 

 𝑀𝑥(𝑡) = 𝑒
−𝑡 𝑇2⁄ (𝑀𝑥(0) cos(𝜔0𝑡) + 𝑀𝑦(0) sin(𝜔0𝑡)) Equation 2-7 

 𝑀𝑦(𝑡) = 𝑒
−𝑡 𝑇2⁄ (𝑀𝑦(0) cos(𝜔0𝑡) + 𝑀𝑥(0) sin(𝜔0𝑡)) Equation 2-8 

 𝑀𝑧(𝑡) = 𝑀𝑧(0)𝑒
−𝑡 𝑇1⁄ +𝑀0(1 − 𝑒

−𝑡 𝑇1⁄ ) Equation 2-9 
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The local magnetic field variations related to the 𝑇2 effect are intrinsic to the spin system, as 

they relate to the interactions between the dipole moments of neighbouring spins. In practice, 

extrinsic factors can also contribute to an enhanced transverse relaxation, such as hardware-

dependent 𝐵0 inhomogeneities and those caused by the object under study itself (e.g. magnetic 

susceptibility differences due to air-tissue interfaces). The extrinsic field inhomogeneities are 

frequently captured by a separate decay term 𝑇2’. This combines with 𝑇2 to give the apparent 

transverse relaxation time 𝑇2
∗: 

 
1

𝑇2
∗ =

1

𝑇2
+
1

𝑇2
′ Equation 2-10 

Unlike pure 𝑇2 signal losses, those caused by 𝑇2′ can be recovered. This leads us into another 

key concept in NMR, that of spin-echo, described in the next section. 

2.1.4 Spin Echo 

In the spin echo technique, the first step is to apply a 90° pulse tuned to the Larmor frequency 

to generate transverse magnetisation. Natural spin dephasing occurs as spins in different 

positions experience slightly different magnetic fields due to local inhomogeneities, causing 

their precession frequencies to vary. The corresponding signal decays (free induction decay) 

under a 𝑇2
∗ envelope as shown in Figure 2-5. After waiting for a given amount of time (𝑇𝐸 2⁄ ), 

an additional 180° pulse (also referred as refocussing pulse, depending on the context) is played 

out. This does not have an effect on the rate of phase accrual by different spins, assuming they 

remain in the same position and therefore continue to experience the same field 

inhomogeneities. However, their phase angles are reversed. They continue to accrue phase as 

before, but because the phases had been reversed, this time they start rephasing. 

After another 𝑇𝐸 2⁄  time interval following the 180° pulse their phases converge, yielding a total 

signal which is no longer limited by 𝑇2
∗ but rather 𝑇2 (see Figure 2-5). Note that if we keep playing 

out refocussing pulses at multiples of the echo time 𝑇𝐸 following the first 𝑇𝐸 2⁄  interval we are 

able to acquire data corresponding to multiple echoes, even though their signal continues to 

decrease as governed by the 𝑇2 of the sample. Several imaging sequences make use of this 

approach, such as rapid acquisition with relaxation enhancement (RARE) (Hennig et al. 1986) 

and 3D Gradient and Spin Echo (3D-GRASE) (Feinberg & Oshio 1991; Oshio & Feinberg 1991). 

The latter was the basis for all imaging experiments in this thesis and therefore will be described 

in its own section (see Section 2.2.4.5). 
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Figure 2-6 Spin echo pulse sequence and corresponding signal evolution. The horizontal axis 
represents time. 

2.1.5 Inversion and saturation recovery 

By carefully tuning the parameters of an NMR acquisition, one can set up experiments that are 

sensitive to different tissue characteristics, such as magnetic relaxation properties. Several 

approaches have been developed for the in vivo measurement of the longitudinal relaxation 

times of tissue. A simple, yet powerful way of measuring the longitudinal relaxation time (𝑇1) of 

tissue is the inversion recovery (IR) method (Vold et al. 1968). Closely related is the saturation 

recovery technique (SR) (McDonald & Leigh Jr. 1973). The latter was used within this thesis for 

mapping the 𝑇1 relaxation times of the kidneys (see Chapter 6). 

If, for simplicity, we consider an NMR experiment, the IR/SR methods are conceptually very 

similar to a simple FID experiment, differing only in two main ways. First, prior to the excitation 

pulse, an additional pulse is played out. This causes the longitudinal magnetisation to differ from 

𝑀0 at the time of the excitation pulse. Second, this is repeated multiple times, each with a 

different time delay from the “magnetisation preparation” pulse and the excitation pulse. 

During this delay, different components of the tissue will recover exponentially at a rate given 

by their particular 𝑇1 and thus, a 𝑇1 contrast will be generated among them. This is then 

exploited by converting the available longitudinal magnetisation to transverse magnetisation, 

through the excitation pulse and subsequent data acquisition. Repeating this at multiple delay 

times allows us to sample the 𝑇1 recovery curves of the different tissues. The obtained signal 

intensities are then fit to an equation describing longitudinal relaxation (see Figure 2-7). 
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Figure 2-7 Recovery of the longitudinal magnetisation in IR and SR for a tissue species with T1 = 
1s and assuming M0 = 1. The curves correspond to the theoretical IR and SR fits to simulated 
data points, obtained from Equation 2-12 and Equation 2-13, respectively for IR and SR data. 

As the name hints, IR experiments start with a 180° inversion pulse, which inverts the 

longitudinal magnetisation from the 𝑧 to the −𝑧 axis (i.e. 𝑀0 becomes −𝑀0). Therefore, it is 

necessary to allow for a full recovery of the longitudinal magnetisation between repetitions, and 

so the time needed for a full inversion recovery experiment for 𝑇1 mapping can be quite long. 

SR methods address this by setting the longitudinal magnetisation to zero in the initial step of 

the experiment, replacing the 180° pulse by a 90° pulse. Therefore, the range of 𝑀𝑧 is reduced 

from [−𝑀0,𝑀0] in IR to [0,𝑀0] in SR (see Figure 2-7). For SR, the state of the longitudinal 

magnetisation immediately prior to the saturation pulse is not important, since a 90° pulse will 

always set 𝑀𝑧 to zero, irrespective of its current value. As such, SR is a more time-efficient 

method for 𝑇1 mapping. 

The Bloch equation for the longitudinal magnetisation (Equation 2-4) can be solved to yield: 

 𝑀𝑧(𝑡) = 𝑀0[1 − (1 − cos(𝜃))𝑒
−𝑡 𝑇1⁄ ] Equation 2-11 

If 𝜃 = 180° (IR), we have: 

 𝑀𝑧(𝑡) = 𝑀0(1 − 2𝑒
−𝑡 𝑇1⁄ ) Equation 2-12 

If 𝜃 = 90° (SR), we have: 

 𝑀𝑧(𝑡) = 𝑀0(1 − 𝑒
−𝑡 𝑇1⁄ ) Equation 2-13 
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To obtain 𝑇1 maps in a MRI experiment, we combine the methods described to measure 𝑇1 with 

an imaging pulse sequence for data acquisition (see Section 2.2.4 for a description of several 

pulse sequences). 

2.2 MRI Concepts 

So far, we have considered the signal coming from a large sample, where all spins are precessing 

at the Larmor frequency. To obtain images, we need to limit the resonance condition (i.e. when 

the frequency content of the RF pulse matches the precessional frequency of a spin isochromat) 

to a well-defined region in space. For standard (2D) MRI methods, spatial localisation can be 

thought of as a stepwise approach, where initially a single slice with a given thickness is 

"selected" and then further in-plane localisation is performed to restrict the MRI signal 

generation to small volume elements (voxels) which are the basic components of an image. 

Magnetic field gradients are at the heart of MRI. Their usage for encoding spatial information 

into NMR signals was initially proposed in 1973 by Paul Lauterbur (Lauterbur 1973). 

Comprehensive descriptions on the topics of signal localisation and pulse sequences in MRI can 

be found in the outstanding books by Bernstein et. al (Bernstein et al. 2004) and Brown, Cheng 

and Haacke et. al (Brown et al. 2014). 

2.2.1 Slice selection 

The process of slice selection is depicted in Figure 2-8. The application of linear gradient fields 

causes the spin precession frequency to linearly vary in space. If we play an excitation pulse 

simultaneously while the gradient is being applied, only the narrow band of spins whose 

precession frequencies match the frequency content of the excitation pulse 𝐵1 will meet the 

resonance condition. Thus, only the spins in this region will be excited, delineating a well-defined 

2D plane within the patient. The physical shape of the excited region depends on the shape of 

the spectrum of the RF pulse. In practice, to obtain approximately rectangular slice profiles 

regions it is typical to apply apodized sinc RF pulses (see Figure 2-8). Changing the carrier 

frequency of the RF pulse allows one to change the position of a slice, whereas the slice thickness 

can be specified by adjusting the bandwidth of the RF pulse or the amplitude of the slice-

selection gradient. It is from these regions that all signals which will be manipulated during an 

MRI pulse sequence will arise.  
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Figure 2-8 Slice selection using a sinc RF pulse. While a slice selection gradient GSS is being 
applied, the excitation of spins is restricted to a location with thickness Δz. The range of 
frequencies Δw is centered on the Larmor frequency ω0, typically at the isocentre of the 
magnet. Note that the sinc and the rect functions are a Fourier pair. This RF pulse in practice 
would correspond to a function truncated in time. 

2.2.2 Frequency encoding and K-space 

Having completed slice selection, the task of spatial localisation is effectively reduced to two 

dimensions. The next step is to do in-plane localisation within the selected region.  

After switching off the slice selection gradient (𝐺𝑆𝑆 in Figure 2-8) all spins are back to precessing 

at the Larmor frequency 𝜔0. To obtain information along one of the in-plane dimensions, 

another magnetic field gradient is superimposed on the main static field 𝐵0, this time orthogonal 

to the slice selection gradient.  

There are independently controlled gradient fields along each of the scanner’s axes 𝐺𝑥, 𝐺𝑦 

and 𝐺𝑧, which unlike 𝐵0, can be switched on and off. Mathematically, they can be defined as: 

 𝐺𝑥(𝑡) =
𝜕𝐵𝑧
𝜕𝑥

 Equation 2-14 

 𝐺𝑦(𝑡) =
𝜕𝐵𝑧
𝜕𝑦

 Equation 2-15 

 𝐺𝑧(𝑡) =
𝜕𝐵𝑧
𝜕𝑧

 Equation 2-16 

We can express the total gradient field as a vector, which is the 3D gradient of the 𝑧 component 

of the magnetic field, that is: 𝑮(𝑡) = ∇𝐺𝑍. 

The 𝑧 component of the magnetic field due to the linear gradients at a point in space 𝒓 is:  
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 𝐵𝑧(𝒓, 𝑡) =  𝑮(𝑡). 𝒓 Equation 2-17 

Therefore the Larmor frequency depends on the superposition of static and gradient magnetic 

fields: 

 𝜔(𝒓, 𝑡) = 𝛾(𝐵0 + 𝑮(𝑡). 𝒓) = 𝜔0 +𝜔𝐺(𝒓, 𝑡) Equation 2-18 

In the rotating frame, the term 𝜔0 disappears. Therefore, during the application of a gradient of 

duration  𝑡, spins isochromats at position 𝒓 have accrued phase given by: 

 

𝜙𝐺  (𝒓, 𝑡) =  −∫ 𝜔𝐺(𝒓, 𝑡
′)

𝑡

0

𝑑𝑡′ = −∫ 𝛾𝑮(𝑡′). 𝒓
𝑡

0

𝑑𝑡′

= −𝛾𝒓∫ 𝑮(𝑡′)
𝑡

0

𝑑𝑡′ = −𝒌(𝑡)𝒓  

Equation 2-19 

Where the vector 𝒌 corresponds to a point defining a specific spatial frequency in the so-called 

k-space: 

 𝒌(𝑡) = 𝛾∫ 𝑮(𝑡′)
𝑡

0

𝑑𝑡′ Equation 2-20 

It can be shown (see (Brown et al. 2014) for an extended discussion) that the demodulated 

measured signal 𝑠(𝑡) can be described by Equation 2-21: 

 𝑠(𝑡) =  ∫𝜌(𝑥) 𝑒𝑖𝜙𝐺 (𝑥,𝑡)𝑑𝑥 Equation 2-21 

Where 𝜌(𝑥) is the spin density of the object at location 𝑥. 

In spatial frequency terms, for the 𝑥 dimension: 

 𝑠(𝑘𝑥) =  ∫𝜌(𝑥) 𝑒
−𝑖2𝜋𝑘𝑥𝑥𝑑𝑥 Equation 2-22 

This shows that for the case of linear magnetic field gradients the signal corresponds to the 

Fourier transform (FT) of the spin density. Therefore, the inverse FT allows one to recover the 

underlying spin density: 

 𝜌(𝑥) =  ∫𝑠(𝑘𝑥) 𝑒
𝑖2𝜋𝑘𝑥𝑥𝑑𝑘𝑥 Equation 2-23 
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As we continuously sample data as the gradient is being applied (therefore referred to as 

readout gradient, 𝐺𝑅𝑂), we are creating a mapping between frequency and location - frequency 

encoding (FE). The recorded data will consist of the superimposition of the signals at different 

frequencies. A 1-D FT on the acquired signal then allows to obtain its amplitude (related to the 

proton density) for each of the signal’s component frequencies, which correspond to each 

location in the first in-plane dimension. The time between the slice-selective excitation RF pulse 

and the maximum signal being recorded during the application of 𝐺𝑅𝑂 is referred to as echo time 

(TE). 

The goal of MRI is to sample the whole of k-space corresponding to the object (or part of it) for 

which magnetisation is excited. The combination of gradients and RF pulses define the k-space 

trajectory. The longer a gradient with a given polarity is on, the further away from the origin of 

k-space (𝑘𝑥 = 𝑘𝑦 = 𝑘𝑧 = 0) a data point will be. The location of a data point in k-space can also 

be affected by RF pulses. A typical example is the change of phase caused by a 180° pulse (as 

seen in Section 2.2.4.1) which effectively reflects the coordinates of the k-space point across 

both 𝑘𝑥 and 𝑘𝑦 axis. There are countless possible k-space trajectories, particularly if non-

Cartesian imaging is considered. In practice, as discrete sampling of a continuous-time signal is 

involved, the Nyquist sampling criteria must be fulfilled to avoid aliasing artefacts. This states 

that the sampling rate must be twice the maximum frequency component of the signal being 

measured.  

The concept of k-space and k-space trajectories proves very helpful in the understanding of 

many MRI concepts. This the case for pulse sequences, image artefacts and other advanced 

techniques, particularly those related to partial sampling, such as partial Fourier (Feinberg et al. 

1986) or parallel imaging (Pruessmann et al. 1999; Griswold et al. 2002).  

After acquisition, the process known as image reconstruction allows one to convert the signal 

acquired in the frequency domain to the spin density in the image (real) space, where the FT 

plays a critical role as seen above. 

2.2.3 Phase Encoding 

The frequency encoding step, on its own, is not enough to match the acquired signal to the 

location of its source. Localisation along the second in plane dimension is achieved by the 

process of phase-encoding (PE). The PE concept is based in the fact the application of a gradient 

causes dephasing of the components of the transverse magnetisation. Therefore, after a 

gradient is applied for a given amount of time, phase is accrued or lost relative to some 

reference. Moreover, if we disregard transverse relaxation, this effect persists indefinitely after 
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the gradients are switched off, hence the term phase-encoding. This is contrarily to the spin 

precession frequencies, which revert to their original values. As we have seen, the amount 

(angle) of dephasing by a spin isochromat in the presence of a gradient is related to the product 

of the gradient amplitude and its duration. In practice, phase-encoding relies on the application 

of a separate gradient field 𝐺𝑃𝐸, applied along the second in plane direction, before 𝐺𝑅𝑂 and 

signal acquisition. For complete localisation of the signal, different measurements are 

performed, where the only variable during the acquisition is the strength of the PE gradient 

magnetic field.  

In the end, frequency and phase, are direct correlates of locations in the image. The mapping 

between the spatial frequency domain (k-space) and the image domain is achieved by 2D FT. If 

during slice selection a thick volume of spins is excited (also referred to as slab), spatial 

localisation along the third dimension (following the above discussion) can be achieved by 

extending the PE principles along this dimension (3D-FT imaging). 

2.2.4 Pulse Sequences 

In an actual imaging experiment, all the concepts addressed thus far are combined into MR pulse 

sequences. Here I will outline the two elemental MR pulse sequences – the spin echo and 

gradient echo sequences. The concept of echo-train pulse sequences is briefly introduced as 

relating to the Echo-planar Imaging (EPI) and Rapid Acquisition with Relaxation Enhancement 

(RARE) techniques. Furthermore, a more advanced echo-train pulse sequence, which derives 

from both the SE and GE, will be described. It is aptly known as 3D Gradient and Spin Echo (3D-

GRASE) and was the foundation for the all imaging experiments in this thesis. 

2.2.4.1 Spin Echo 

The physical basis of the NMR spin echo effect was described in Section 2.1.4. For imaging 

purposes (following the principles of slice-selection outlined in Section 2.2.1), the RF excitation 

pulse is played during the application of a slice-selection gradient (𝐺𝑆𝑆). Along the same axis, an 

additional gradient of opposite polarity, known as rephasing gradient, is used to compensate for 

the phase dispersion caused by the main slice-selection gradient. If not accounted, this would 

result in signal loss throughout the slice. The first step in the process of in-plane signal 

localisation is the application of a pre-phasing gradient which prepares the excited 

magnetisation for an echo to occur later. In terms of k-space trajectory the phase accrual caused 

by the pre-phasing gradient moves the magnetisation into high spatial frequency areas at the 

edge of 𝑘-space (see Figure 2-9 right location 2). Next, a slice-selective 180° refocussing pulse is 

played to form a spin-echo. This occurs when the area under the readout gradient (𝐺𝑅𝑂) matches 
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the area of the prephasing gradient lobe. This framework is repeated a number of times 

(repetitions) equal to number of required lines along the phase-encoding direction.  The only 

parameter that varies within each repetition is the gradient moment of the phase-encoding 

gradient. The time delay between excitation pulses is known as repetition time (TR). 

 

Figure 2-9 Spin echo pulse sequence diagram and k-space trajectory corresponding to the 
acquisition of the outermost positive phase-encoding k-space line. TE = Echo time. ADC = Analog-
to-Digital Converter 

2.2.4.2 Gradient Echo 

The main difference between the gradient echo sequence (Figure 2-10) and the spin echo 

sequence is that the echo is achieved by inverting the polarity of the readout gradient. The 

inversion of polarity is necessary because there is no refocussing pulse, whose effect is to reflect 

a 𝑘-space point with respect to the 𝑘-space centre. Furthermore, this time spin rephasing is 

limited by 𝑇2
∗. The echo time (TE) is defined as the time from the excitation pulse until the echo 

is formed. Gradient-echo based sequences can be made extremely fast, for example if low flip 

angles are used, which removes the need to wait for an extended 𝑇1 recovery period. Notable 

sequences that make extensive use of the gradient-echo principles include the fast low-angle 

shot (FLASH) (Haase et al. 1986) and echo planar imaging (EPI) (Mansfield 1977) techniques. 
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Figure 2-10 Gradient echo pulse sequence diagram and k-space trajectory corresponding to the 
acquisition of the outermost positive phase-encoding k-space line. 

2.2.4.3 Echo-planar Imaging (EPI) 

The main disadvantage of the basic spin echo and gradient echo techniques is that they are 

inefficient in their use of transverse magnetisation: only one 𝑘-space line is acquired per RF 

excitation making these sequences prohibitively long in practice. Echo-train sequences, such as 

Echo-planar Imaging (EPI), Rapid Acquisition with Relaxation Enhancement (RARE) (section 

2.2.4.4) and Gradient and Spin-Echo (GRASE) (section 2.2.4.5) address this issue by acquiring a 

fraction or the entirety of 𝑘-space after a single excitation.  

In EPI, originally proposed by Sir Peter Mansfield (Mansfield 1977), a train of gradient echoes is 

generated following the excitation pulse through the application of a series of bipolar alternating 

gradients along the frequency encoding direction. Small phase-encoding gradients (typically 

referred to as blips) allow each echo to be differently phase-encoded to cover different regions 

of 𝑘-space.  This results in a rectilinear 𝑘-space trajectory. The amount of time saved in EPI 

relative to the standard gradient echo sequence is directly related to the number of echoes 

sampled following a single excitation, known as the echo-train length (ETL). The maximum 

achievable ETL depends on the time window during which there is usable transverse 

magnetisation which in turn is determined by the 𝑇2
∗ relaxation properties of the tissue. 

Extremely high temporal resolution and motion-robust data can be obtained from EPI which has 

allowed this technique to find wide use in functional and real-time imaging. An in depth 

treatment of the family of EPI acquisition schemes, reconstruction approaches and strategies to 

deal with common EPI image artefacts is given in (Schmitt et al. 1998).  

2.2.4.4 Rapid Acquisition with Relaxation Enhancement 

RARE (Hennig et al. 1986), also referred to as Fast Spin-Echo (FSE) or Turbo Spin-Echo, is another 

key echo-train sequence which in turn uses a series of RF refocussing pulses to generate a train 
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of spin-echoes during which the transverse magnetisation is sampled to fill multiple 𝑘-space 

lines. RARE is relatively insensitive to off-resonance artefacts given that its primary means for 

echo generation if RF refocussing. Minimum scan time can be achieved by acquiring the entire 

𝑘-space after a single excitation (single-shot RARE), particularly when coupled with 𝑘-space 

undersampling methods such as partial Fourier (Feinberg et al. 1986). This is known as the Half-

Fourier Acquisition Single-shot Turbo spin Echo imaging (HASTE) technique (Semelka et al. 

1996). It allows high-quality “snapshot” 𝑇2-weighted scans to be performed, which are able to 

freeze patient movement and as such have found wide use in abdominal imaging. In the context 

of RARE, ETL is defined as the number of RF refocussing pulses. Even though in RARE the signal 

decays according to 𝑇2 (rather than 𝑇2
∗ as in EPI), achievable ETLs with RARE are typically lower 

than with EPI. This is due to the longer echo-spacing in RARE resulting from the fact that the rate 

of production of echoes per unit time is lower when relying on RF refocussing pulses than in the 

case of an echo train induced by gradient switching. An important limitation of RARE is the 

increased RF power deposition owing to its large number of RF pulses. This is often addressed 

by reducing the number of slices acquired (particularly as 𝐵0 increases), which limits patient 

coverage.  

2.2.4.5 3D-GRASE 

Gradient and Spin Echo (GRASE), a pulse sequence introduced by Oshio and Feinberg in 1991 

(Oshio & Feinberg 1991; Feinberg & Oshio 1991) incorporates the principles of gradient and 

spin-echo. Each time the magnetisation is excited (i.e for each repetition of the sequence), a 

train of RF refocusing pulses is combined with an alternating polarity readout gradient to enable 

the acquisition of multiple 𝑘-space lines. Different excitations of the magnetisation are 

frequently referred to as “shots” or “segments”. The time between these is the TR of the 

sequence. Günther et. al (Günther et al. 2005) extended the original 2D implementation for 3D 

imaging, first applying it for brain perfusion mapping with ASL. This sequence was used for all 

ASL data acquisitions within this thesis. A schematic of this pulse sequence is shown in Figure 

2-11, as well as the corresponding 𝑘-space trajectory for the case of a multi-shot acquisition with 

three segments. 

The sequence starts with a slab-selective excitation using a 90° pulse. This is followed by a spin-

echo train, where each refocussing pulse is followed by a phase-encoding step along the second 

phase-encoding direction (also called the partition direction). Flip angle error accumulation over 

the spin-echo train which causes loss of transverse magnetisation is avoided by employing the 

Carr-Purcell-Meiboom-Gill (CPMG) phase cycling technique (Meiboom & Gill 1958). In this 

approach, there is a 90° offset between the phases of the excitation and refocusing pulses (e.g. 
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applying the excitation along the 𝑥 axis and the refocusing pulses along the 𝑦 axis). Within the 

envelope of each spin echo, an EPI-like echo-train is used to acquire a complete partition. This 

phase-encoding strategy effectively allows separation of off-resonance and 𝑇2 effects along each 

of the phase-encoded directions (Mugler 1999). 

Furthermore, a centric ordering is used in the partition encoding direction. Here, the acquisition 

of the 𝑘-space centre is performed within the first spin echo. This ensures that the lower spatial 

frequencies in 𝑘-space (which specify the contrast of the image) are sampled with the largest 

amount of transverse magnetisation, and thus signal, available. Subsequently, partitions with 

positive values of 𝑘 (i.e. +𝑘𝑃𝐴𝑅) are acquired by even-numbered spin-echoes. Partitions in the 

−𝑘𝑃𝐴𝑅 region of 𝑘-space are acquired by odd-numbered spin echoes (see Figure 2-11).  

The number of spin echoes following the initial excitation is called ETL, and corresponds to the 

number of measured partitions. This may or may not correspond to the final number of 

reconstructed slices. A situation where the number of reconstructed slices is larger than the 

number of measured partitions is when 𝑘-space undersampling techniques are used. Partial 

Fourier (D. A. Feinberg, Hale, Watts, Kaufman, & Mark, 1986), is one of such techniques. It 

harnesses the complex conjugate symmetry property of the Fourier Transform (Bracewell 2000), 

and can be used to reduce the overall echo train duration (ETD) in a 3D-GRASE readout. Using 

this technique, the number of partitions that need to be explicitly measured can be reduced, 

while still being able to reconstruct a full image dataset.  

As previously mentioned, 𝑇2 effects are most important along the partition encoding direction. 

The longer the total ETD, the more transverse magnetisation will decay throughout the 

acquisition of a given shot. This translates into blurring along the partition direction, which limits 

the effective image resolution. Segmentation of the acquisition into multiple excitations per 3D 

𝑘-space (also referred to as shots within this context), can be used to reduce the ETL (and 

therefore ETD). Figure 2-11 shows one possibility for such a strategy, in this particular case 

showing segmentation along the phase-encoding direction, as implemented in the experiments 

in Chapter 4. 
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Figure 2-11 3D-GRASE pulse sequence diagram and 𝑘-space trajectory. This particular 𝑘-space 
trajectory corresponds to an acquisition with a centric reordering strategy for the different 
partitions and segmentation along the phase-encoding direction (number of shots = 3) – not 
shown in the pulse sequence diagram. 

2.3 Arterial Spin Labelling 

ASL is a non-invasive MRI technique which uses blood water as a freely diffusible tracer to 

quantify tissue perfusion (Detre et al. 1992; Williams et al. 1992). Perfusion relates to the 

delivery of blood and thus oxygen and nutrients to tissue at the capillary bed level. This 

technique is based on the acquisition of a pair of images. One of these images is known as a tag 

(or label) image.  The label image is flow-sensitized through the use of RF pulses that alter the 

longitudinal magnetization of arterial blood before it flows into the imaging plane, within the 

organ of interest.  The remaining image, known as "control" image, is acquired without 

perturbing the magnetisation of the inflowing blood. Ideally, provided the two images were 

acquired in the exact same way (except for the labelling module) and the organ of interest did 

not move, a simple subtraction should cancel the signal from the static tissue. This would leave 
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us with a purely perfusion-weighted image (PWI), also called Δ𝑀 (or difference) image. In 

practice, this is rarely the case, with several factors introducing errors into the PWIs. This thesis 

focuses on one of these – that of subject motion. Finally, the obtained PWI is then fed into an 

appropriate mathematical model describing the relationship between the Δ𝑀 signal and the 

actual blood perfusion. In the end, we obtain a quantitative perfusion map, in relevant 

physiological units (typically ml/min/100g of tissue). The major steps in a typical ASL experiment 

are depicted in Figure 2-12. 

 

Figure 2-12 ASL overview. In ASL, one PWI is obtained by subtraction of two separate scans: one 
acquired after inverting the magnetisation of the inflowing blood and the other without 
perturbing it. The result is then fed to an appropriate model to compute quantitative perfusion 
maps. Background suppression (BS) pulses (see Section 2.3.4), which are optional, were used to 
obtain the data in this Figure (using protocols described in Section 4.3.3). This explains the large 
signal intensity difference between the control and labelled images.  

Two important features characterise the ASL tracer and therefore the types of measurements 

that can be derived from it. First, the magnetic labelling mechanism is based on the excitation 

of the longitudinal magnetisation away from equilibrium. The longitudinal magnetisation 

naturally tends to recover which means that the label will decay with 𝑇1, therefore lasting only 

for a couple of seconds. This gives rise to an important trade-off in ASL. With the exception of 

velocity-selective labelling (Wong et al. 2006) (see Section 2.3.2) one has to wait a certain 

amount of time to allow the magnetic tag to move from the labelling site to the tissue of interest. 

Clearly if the measurement is performed too soon after labelling, no perfusion-weighted signal 

will be obtained. On the other hand, the longer one waits (potentially allowing a greater amount 

of labelled blood to arrive), the greater will be the amount of 𝑇1 relaxation occurring, yielding a 



47 
 

lower SNR measurement. Second, the label can freely exchange between the intravascular and 

extravascular compartments. This makes the transit time of a given labelled water molecule 

from the arterial to the venous side of the circulation longer that the time it takes for its 

magnetic label to vanish. Effectively, this means that once the ASL tracer reaches the tissue it 

will no longer leave, making the ASL measurement intrinsically proportional to the local 

perfusion.  

Two important shortcomings of ASL can be identified. First, ASL is that it is an inherently SNR-

limited technique. This is due to the fact that the amount of signal that can be attributed purely 

to blood perfusion is a small fraction (1-5%) of the tissue signal. As such, any fluctuation to this 

signal caused by factors extrinsic to blood perfusion will confound the quantitative ASL 

measurements. To address this, in addition to being performed at relatively low spatial 

resolution, ASL experiments typically include multiple repeated acquisitions (often referred to 

as averages) for the purposes of signal averaging. The second shortcoming, particularly 

important when imaging regions of the body and patients cohorts prone to moving, is ASL’s 

sensitivity to motion. This arises from the need to perform an image subtraction to obtain a PWI. 

Any subtraction errors resulting from an inconsistent position of the tissue of interest will 

introduce severe artefacts in the perfusion maps.  

Compared to more traditional methods that only allow a global assessment of Renal Blood Flow 

(RBF), ASL has the advantage of yielding parametric maps which enable an evaluation of 

focal/regional perfusion defects. Furthermore, unlike imaging methods based in exogenous 

contrast agents, ASL measurements can be performed multiple times in a single scanning 

session. In addition, nephrogenic systemic fibrosis is not a concern with ASL, making it ideal for 

the perfusion assessment of patients with impaired kidney function and paediatric populations 

(see Section 1.3). 

After more than 20 years of development, ASL is now regarded as a well-established technique, 

in particular in neuroimaging for cerebral blood flow quantification (CBF) (Detre et al. 2012). 

Significant effort is being put forth by the research community for widespread adoption of ASL 

into routine clinical practice (Alsop et al. 2015; Mutsaerts et al. 2015), specifically in the 

standardization of acquisition and analysis strategies. 

2.3.1 Magnetisation transfer 
Different pools of hydrogen nuclei (1H) contribute to the generation of the MRI signal in varying 

proportions. The 𝑇2 relaxation times of "bound" protons such as those associated with 

membranes or macromolecules are too short for their signal to be detected in conventional MRI 
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(i.e. excluding Ultrashort TE (UTE) pulse sequences (Robson et al. 2003; Tyler et al. 2007). On the 

other hand, mobile protons in "free" water have long enough relaxation times making them the 

largest source of MRI signal in most tissues (excluding fat). Nevertheless, it is possible for an 

exchange of magnetisation to occur between the bound and the free 1H pools. This is a process 

known as Magnetisation Transfer (MT) (Wolff & Balaban 1989; Henkelman et al. 1993; 

Henkelman et al. 2001) and can be useful for several applications as an additional source of 

image contrast (Filippi & Rocca 2007). In ASL, though, it acts mainly as a confounding factor 

which if ignored may result in an overestimation of perfusion. The RF pulses used to create the 

ASL tracer are off-resonance with respect to the water frequency and consequently saturate 

spins associated with macromolecules at the imaging location. Transfer of saturation to the spins 

in the free water pool then takes place due to the MT effect, reducing the available longitudinal 

magnetization. This reduces the signal intensity of the resulting tagged image which is a similar 

effect to the reduction of magnetisation caused by the arrival of tagged spins to the imaging 

region. Many different approaches have been devised to mitigate this problem, as discussed in 

the next section. 

2.3.2 Labelling Schemes 

Throughout the development of ASL, a wide range of approaches were implemented to 

magnetically label the inflowing blood (Petersen et al. 2006). These can be broadly divided into 

three main categories: Continuous ASL (CASL), Pulsed ASL (PASL) and Velocity-Selective ASL. 

Both CASL and PASL have been used extensively for the assessment of CBF for a wide range of 

applications (Detre et al. 2012; Telischak et al. 2015). This work, as well as the majority of renal 

ASL implementations (see Section 2.3.6) uses the Flow-sensitive Alternating Inversion Recovery 

(FAIR) PASL technique (Kim 1995; Kwong et al. 1995). 

CASL was the labelling approach employed in the first demonstrations of ASL (Detre et al. 1992; 

Williams et al. 1992). Typically, a long-duration RF pulse is applied proximal to the region of 

interest while a gradient is applied in the direction of flow. Blood spins are then inverted as they 

pass through the resulting inversion plane by the process of adiabatic fast passage (originally 

used for MR angiography (Dixon et al. 1986)). The temporal bolus width is defined by the 

duration of the RF preparation pulse. Therefore, there is no uncertainty regarding the duration 

of the bolus except for dispersion effects en route to the imaging slice(s). By the time any of the 

labelled spins reach the tissue of interest they have experienced the same amount of 𝑇1 decay. 

Since in theory all the spins are inverted closer to the tissue of interest, there will be less decay 

of the magnetic tag and consequently the SNR ratio of the resulting PWI will be higher than in 

PASL techniques (Eric C Wong et al. 1998). 
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The initial implementation of CASL was limited to a single slice, centered between the tag and 

control planes. To allow for multi-slice acquisitions, Alsop et. al (Alsop & Detre 1998) proposed 

a modification to the control acquisition whereby the MT effects are controlled for using a 

double adiabatic inversion technique. Two inversion planes are employed at the same offset 

frequency to replicate the MT effects of the label acquisition and their combined effect leaves 

the net magnetisation of the blood undisturbed. 

A different approach which also permits multi-slice studies and is robust to MT effects is to use 

an additional local coil for labelling. This was originally implemented in animal studies (Detre et 

al. 1994; Silva et al. 1995; Zhang et al. 1995) and later in human studies (Zaharchuk et al. 1999). 

The robustness to MT effects exists as long as the RF field from the labelling coil does not 

interfere with the region to be imaged. Another advantage of this approach compared to single 

coil CASL methods is the global lower power deposition (Specific Absorption Rate, SAR) which is 

particularly beneficial at higher magnetic field strengths. The requirement of specialist hardware 

has limited the widespread adoption of this technique. 

A relatively new technique, based on the same flow-driven adiabatic inversion principle as CASL 

is pulsed-continuous (or pseudo-continuous) ASL (pCASL) (Dai et al. 2008). In this approach, the 

long RF pulse used in CASL is broken down into multiple short RF pulses, both reducing MT 

effects and the SAR. This technique also presents the advantage of being easier to implement in 

modern hardware, which is optimized for short, high-powered RF pulses. This is currently the 

recommended labelling scheme for the assessment of CBF with ASL in the clinic (Alsop et al. 

2015) and it is being increasingly used in renal ASL in recent studies (see Table 2-1). 

In PASL, a large volume of blood is inverted almost instantaneously (on the order of a few 

milliseconds). The inversion of the blood spins is achieved by a spatially-selective frequency-

modulated adiabatic inversion slab, rather than flow-induced adiabatic inversion (as in CASL). 

The first PASL technique was EPISTAR (Echo-Planar Imaging and Signal Targeting with Alternating 

Radio frequency) proposed by Edelman et. al (Edelman et al. 1994) which controlled for MT 

effects by playing out identical inversion RF pulses in symmetrically opposite locations with 

reference to the imaging slice. However, this technique had limited multi-slice capabilities as the 

MT effects could only be completely eliminated in the tag-control subtraction of the slice in the 

central location. Improvements to this technique to enable multi-slice acquisitions consisted in 

the application of a double inversion pulse for the control image at the same location as the 

inversion pulse for the tag image (Edelman & Chen 1998). This implementation also solves the 
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issue of negative blood signal which may flow into the imaging region after the control pulse in 

the original EPISTAR method. 

Shortly after the introduction of EPISTAR, the Flow-sensitive Alternating Inversion Recovery 

(FAIR) PASL technique was proposed (Kwong et al. 1995; Kim 1995). The tag image is acquired 

after a non-spatially-selective RF pulse. In order for the static tissue signal in the imaging region 

to be the same as in the tag condition, the control image is acquired after an inversion pulse 

which is slice-selective for the imaging region (see Figure 2-13). An immediate advantage of this 

approach is the fact that no off-resonance RF pulses are applied with respect to the imaging 

region making this technique insensitive to MT effects. FAIR is the most widely utilised PASL 

technique, especially in renal applications (see Section 2.3.6). 

 

Figure 2-13 FAIR labelling module. Prescription of a) slab-selective and b) non-selective labelling 
and imaging slabs. 

Unlike in CASL, where the bolus length is determined by the duration of the labelling RF pulse, 

in single inflow time (TI) PASL studies, the accuracy of the perfusion quantification can be 

improved by making the bolus duration a known parameter. Several techniques were developed 

for this purpose: initially QUIPSS (Quantitative Imaging of Perfusion Using a Single Subtraction) 
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and QUIPSS II (Eric C. Wong et al. 1998) and shortly after Q2TIPS (QUIPSS II with thin-slice 𝑇𝐼1 

Periodic Saturation (Q2TIPS) (Luh et al. 1999). In QUIPSS, a saturation pulse is applied at given 

time 𝑇𝐼1 after the labelling pulse, removing the contribution of the labelled spins which arrived 

to the imaging region before this time. In the second version of this technique, QUIPSS II, the 

saturation pulse is instead applied to the labelling slab at time 𝑇𝐼1 which cuts off the trailing 

edge of the bolus. The resulting bolus has then known duration equal to 𝑇𝐼1. Another advantage 

of QUIPSS II is that it allows for multi-slice acquisitions. Q2TIPS further improves perfusion 

quantification by providing a greater saturation efficiency using a periodic train of thin-slice 

saturation pulses whose slice profile is also a better match to the tagging pulse profile. Q2TIPS 

was used in all acquisitions throughout the thesis where renal perfusion was quantified (i.e. 

Chapters 5, 6 and 7). 

Several other PASL techniques were introduced which differ mainly in the procedure for the 

mitigating MT effects on the signal intensity of the ASL difference image and resulting perfusion 

quantification, as summarized in a number of review articles (Golay et al. 2004; Günther 2014; 

Wong 2014; Petersen et al. 2006). 

However, many of these approaches are no longer as relevant nowadays since MT-effects can 

be controlled by saturating the imaging volume either before and/or after the labelling/control 

inversion pulses. 

Overall the main advantages of PASL compared to CASL are a lower RF power deposition and 

lower MT effects due to the shorter duration RF pulses and high inversion efficiency. 

Disadvantages are the lower SNR and the dependency on the RF coil coverage. 

Velocity-selective ASL (Wong et al. 2006) is a relatively new approach, which makes use of the 

decelerating property of arterial blood. Its main advantage is an insensitivity to transit delay 

effects since there is no spatial gap that the blood label must travel before it reaches the tissue 

of interest. This is achieved by applying non spatially-selective, but rather velocity-selective 

pulses which will label blood spins closer and within the imaging region, as long as they are 

travelling above a certain cut-off velocity. After a given time delay allowing the labelled blood 

to reach the capillary bed, an image is acquired whose signal originates from spins with velocity 

lower than the cut-off velocity. This condition is enforced by additional velocity-selective pulses 

during the imaging module. 
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2.3.3 Pre and post-labelling saturations 

Pre and post-labelling saturation pulses increase the accuracy of ASL measurements by reducing 

systematic errors which introduce signal differences between the label and control conditions 

which are not due to tissue perfusion (i.e. result in artificial perfusion-weighted signal). Such 

errors may be caused by residual magnetisation transfer effects, differences in inversion 

efficiencies between label and control conditions or imperfect slice profiles. Furthermore, 

saturating the imaging volume also ensures that at the start of each TR the state of the 

longitudinal magnetisation is always known (nulled), regardless of the duration of the TR of the 

sequence, which may vary due to respiratory-triggering. This allows background-suppression 

pulses to be used to null the static tissue magnetisation at the time of the excitation pulse. 

2.3.4 Background Suppression 

Background suppression (BS) is a technique that aims to improve the sensitivity of ASL 

measurements by attenuating signal from static tissue at the imaging region, and thereby 

reducing the noise contribution of this tissue (Ye et al. 2000). It builds upon the principles of 

multiple inversion recovery suppression introduced by Dixon et. al (Dixon et al. 1991). In this 

work, the BS scheme proposed by Günther et. al (Günther et al. 2005) was used. Two non-

selective inversion pulses are applied at times 𝜏1 and 𝜏2 to null tissue components with 

longitudinal relaxation rates 𝑅1,𝑜𝑝𝑡 and 0.5 × 𝑅1,𝑜𝑝𝑡. For each TI, 𝜏1 and 𝜏2 are computed using 

the following equations: 

 𝜏1 = 𝑇𝐼 + 2 ln(0.25 + 0.75𝑒
−0.5⋅𝑇𝐼⋅𝑅1,𝑜𝑝𝑡) /𝑅1,𝑜𝑝𝑡 Equation 2-24 

 𝜏2 = 𝑇𝐼 + 2 ln(0.75 + 0.25𝑒
−0.5⋅𝑇𝐼⋅𝑅1,𝑜𝑝𝑡) /𝑅1,𝑜𝑝𝑡 Equation 2-25 

Where 𝑅1,𝑜𝑝𝑡 equals 1 𝑇1,𝑜𝑝𝑡⁄ . For all our measurements, 𝑇1,𝑜𝑝𝑡 was assigned the value of 700ms. 

An example of the evolution of the magnetisation for two tissues with different longitudinal 

relaxation times before data acquisition is shown in Figure 2-14. 
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Figure 2-14 Incorporation of BS inversion pulses during the ASL Mz preparation in the imaging 
region prior to the readout module. In this example, TI=1600ms, with nulling of the 
magnetisation occurring at t=1500ms, by applying BS pulses at 549ms and 1249ms. At the time 
of the acquisition, the longitudinal magnetisation values in the renal cortex (T1 = 966ms) and 
medulla (T1 = 1412ms) (de Bazelaire et al. 2004) are approximately 9% and 6% of the equilibrium 
magnetisation, respectively. The sequence blocks are not to scale with respect to their temporal 
width. 

2.3.5 Quantification in ASL 

As previously discussed, the most common application of ASL is CBF quantification. Single-

compartment models commonly applied for CBF quantification are typically employed in renal 

studies. One might argue that this is a limitation since the unique anatomy and physiology of the 

kidneys may not be accurately represented by these models. On the other hand, the application 

of complex quantification models is not straightforward and may entail loss of precision in renal 

ASL due to current technical limitations, in particular the low SNR of the measurements. 

Perfusion quantification in the original ASL studies was achieved by modifying the Bloch 

equation for the longitudinal magnetization by adding a flow term accounting for arterial inflow 

and venous outflow (Williams et al. 1992). 

A more general approach was proposed by Buxton et. al (Buxton et al. 1998) which describes 

the evolution of the magnetisation as a sum over the history of the delivery of the magnetic tag 

by arterial blood and clearance by venous outflow and longitudinal relaxation: 

 
Δ𝑀(𝑡) = 2𝑀0𝑏𝑓∫ 𝑐(𝑡′)𝑟(𝑡 − 𝑡′)𝑚(𝑡 − 𝑡′)𝑑𝑡′

𝑡

0

= 2𝑀0𝑏𝑓𝑐(𝑡) ∗ (𝑟(𝑡)𝑚(𝑡)) 

Equation 2-26 
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In this equation, Δ𝑀(𝑡) is the signal intensity in the difference image at time 𝑡, 𝑀0𝑏 is the 

equilibrium magnetisation of arterial blood, 𝑓 is the flow, 𝑐(𝑡′) is the delivery function, 

representing the normalised concentration of magnetization arriving at the voxel at time 𝑡, 

𝑟(𝑡, 𝑡′) is the residue function, corresponding to the fraction of tagged water molecules that 

arrived at time 𝑡′ and remain at the voxel at time 𝑡. Finally, 𝑚(𝑡, 𝑡′) is the relaxation function, 

corresponding to the fraction of original longitudinal magnetisation in the tag that arrived at the 

voxel at time 𝑡′ and remains there at time 𝑡 and ∗ denotes the convolution operator.  

Assuming plug flow conditions, single-compartment kinetics and that as soon as the magnetic 

label reaches the tissue voxel it starts decaying with the 𝑇1 of the tissue, the following 

expressions can be used for 𝑐(𝑡) (PASL case), 𝑟(𝑡) and 𝑚(𝑡) (PASL/CASL case): 

 𝑐(𝑡) = {

0  , 0 < 𝑡 < Δ𝑡

𝛼𝑒−𝑡 𝑇1𝑏⁄  , Δ𝑡 < 𝑡 < Δ𝑡 + 𝜏

0 , Δ𝑡 + 𝜏 < 𝑡

 Equation 2-27 

 𝑟(𝑡) = 𝑒−𝑓𝑡/𝜆 Equation 2-28 

 𝑚(𝑡) = 𝑒−𝑡/𝑇1 Equation 2-29 

Where Δ𝑡 is the arterial transit time, 𝜏 is the temporal bolus width, 𝛼 is the labelling efficiency, 

𝑇1𝑏 is the longitudinal relaxation time of blood, 𝜆 is the tissue-blood partition coefficient for 

water (describing the relative concentration of water in tissue and blood), and 𝑇1 is the 

longitudinal relaxation time of the tissue. 

The signal in each voxel of the difference image given in Equation 2-26 under the assumptions 

represented by Equation 2-27, Equation 2-28 and Equation 2-29 then becomes: 

 𝑐(𝑡) = {

0  , 0 < 𝑡 < Δ𝑡

2𝑀0𝑏𝑓(𝑡 − Δ𝑡)𝛼𝑒
−𝑡 𝑇1𝑏⁄ 𝑞𝑝(𝑡) , Δ𝑡 < 𝑡 < Δ𝑡 + 𝜏

2𝑀0𝑏𝑓𝜏𝛼𝑒
−𝑡 𝑇1𝑏⁄ 𝑞𝑝(𝑡) , Δ𝑡 + 𝜏 < 𝑡

 
Equation 

2-30 

Where:  

 𝑞𝑝(𝑡) =

{
 
 

 
 𝑒𝑘⋅𝑡(𝑒−𝑘⋅Δ𝑡 − 𝑒−𝑘⋅𝑡)

𝑘(𝑡 − Δ𝑡)
 , Δ𝑡 < 𝑡 < Δ𝑡 + 𝜏

𝑒𝑘⋅𝑡(𝑒−𝑘⋅Δ𝑡 − 𝑒−𝑘(𝜏+Δ𝑡))

𝑘 ⋅ 𝜏
 , Δ𝑡 + 𝜏 < 𝑡

 
Equation 

2-31 
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 𝑘 =
1

𝑇1𝑏
−
1

𝑇1
−
𝑓

𝜆
 

Equation 

2-32 

Quantification can be achieved by performing one or multiple measurements at different TIs 

after the labelling. In the former case (i.e. single-TI measurements), the appropriate sub-

function in Equation 2-30 can be solved for 𝑓. In multi-TI studies, the signal intensities in the 

difference images at the acquired TIs are fit to Equation 2-30, from which we obtain values for 

flow, arterial transit time and, if not pre-determined by the experiment settings, bolus width 

(see Figure 2-15).  

 

Figure 2-15 Example of voxelwise multi-TI ASL fitting. Left – ASL PWI. Middle/right – Buxton 
model fit to ASL TI-series for voxels 1 and 2, respectively. 

2.3.6 Renal ASL 

The majority of ASL studies focus on brain applications (Detre et al. 2012). One can argue that 

the smaller amount of motion involved when imaging the brain plays a role in this. This is 

especially true in ASL, since the PWIs result from the subtraction of two images acquired at 

different points in time. Susceptibility artefacts can also be problematic, especially when imaging 

the abdomen as shown by Chen et. al (Chen et al. 1997). Fortunately, ASL is simply a preparation 

of the magnetization for the subsequent imaging module, which can be optimised according to 

the intended application. Despite these difficulties, the use of ASL to assess renal function has 

been steadily increasing, with more than 20 studies in humans published in the last 5 years (see 

Table 2-1). Furthermore, comparisons with more established methods to assess blood flow have 

been performed. Examples include comparisons to Para-aminohippurate (PAH) clearance: (Ritt 

et al. 2010), microspheres: (Nathan S Artz et al. 2011), ultrasound (Warmuth et al. 2007) and 

Dynamic contrast-enhanced (DCE)-MRI: (Winter et al. 2011; Wu et al. 2011; Zimmer et al. 2013; 

Cutajar et al. 2014; Conlin et al. 2017), generally supporting the premise that ASL can deliver 

reasonable estimates of blood flow. A considerable amount of published renal ASL studies 
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address the quantification of perfusion in healthy volunteers and reproducibility of the 

technique. More recently, ASL has been used to compare RBF measurements in healthy controls 

and patients. Table 2-1 summarises RBF quantification results in the majority of these studies, 

in humans. 

Roberts et. al conducted the first renal ASL experiments (Roberts et al. 1995). They modified a 

2D gradient echo sequence by adding a CASL module for labelling and acquired one axial slice in 

7 healthy volunteers during breath hold (BH). Intravascular signal was reduced using a bipolar 

gradient pulse after excitation. Chen et. al  (Chen et al. 1997) compared two PASL approaches 

with echo planar imaging (EPI) and half-Fourier single-shot turbo spin-echo (HASTE) readout 

modules in the brain and kidneys. This study alluded to the potential issues of using EPI in the 

abdomen, namely susceptibility effects. Wang et. al (Wang et al. 1998) demonstrated the value 

of ASL in the early detection of transplant rejection by monitoring renal perfusion changes 

following renal transplantation in an animal model. 

Berr et. al (Berr et al. 1999) utilised a partial Fourier turbo spin-echo sequence with a custom 

labelling scheme (Berr & Mai 1999). To reduce artefacts, they segmented the acquisition 

(number of shots = 2) and acquired multiple averages, resulting in an approximately 30-second 

acquisition for a single slice. Their semi-quantitative approach showed a signal decrease in the 

PWIs that correlated with the degree of stenosis in diseased kidneys. Karger et. al (Karger et al. 

2000) provided additional data showing realistic values for renal perfusion in 10 healthy 

volunteers. They combined a FAIR labelling scheme with a UFLARE (Ultra Fast Low Angle Rare) 

(Norris 1991) imaging readout. Michaely et. al (Michaely et al. 2004) used a FAIR HASTE 

sequence at 1.5T to acquire a single slice at a TI of 1.2s in healthy volunteers and patients with 

different types of renal disease. Three measurements were acquired under a 15s BH, and 

measurements with motion artefacts were manually discarded (retrospective sorting). They 

performed only a semi-quantitative analysis and report significant differences in the SNR 

between healthy and diseased kidneys but no significant differences between the different 

groups of patients. 

Martirosian et. al (Martirosian et al. 2004) presented the first study using a TrueFISP (Oppelt et 

al. 1986) imaging readout in renal ASL. They report an overall better image quality than when 

using EPI. The advantage of this method when compared to the previously referred non-EPI 

studies is mainly the shorter scan time. They scanned 12 volunteers and 1 renal transplant 

patient in BH and free breathing conditions, where subjects were asked to synchronize breathing 

with the acquisition. However, they only report quantitative perfusion values for one volunteer, 
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which agree with previous studies. Of the 36 acquired control-tag pairs (free-breathing), only 26 

were used for quantification due to differences in position of the kidneys. 

As the previous study alluded to, motion is probably the greatest challenge in renal ASL. Two 

conference abstracts have been presented employing navigators for motion-correction 

(Warmuth et al. 2005; Gach et al. 2006). 

De Bazelaire et. al assessed the feasibility of ASL for the study of metastatic renal cell carcinoma 

(de Bazelaire et al. 2005). They used a background-suppressed FAIR labelling module in 

combination with a single-shot fast spin echo readout with multiple averages at 3T. As a partial 

validation of the technique, they scanned 5 healthy volunteers and obtained quantitative values 

of perfusion consistent with existing literature. Interestingly, their data suggested the potential 

value of ASL for tumour blood flow monitoring after antiangiogenic therapy. Fenchel et. al 

(Fenchel et al. 2006) utilised the previously described FAIR TrueFISP scheme (Martirosian et al. 

2004) to scan patients with (n=12) and without (n=6) history of renal artery stenosis (RAS). In 

patients without RAS, the perfusion values obtained under BH and non-BH conditions were not 

statistically different. This time they used rigid registration on the non-BH scans, independently 

for right and left kidneys. They were able to differentiate patients with no or low-grade RAS from 

those with high-grade RAS. 

The first study addressing specifically the problem of motion in renal ASL was published by 

Robson et. al (Robson et al. 2009). Using a single-shot sequence (FSE), they were able to focus 

specifically on reducing motion-related subtraction errors. For this purpose, different 

combinations of BS and breathing strategies were evaluated. Both the variance of the 

measurements and image quality scoring by radiologists demonstrated the advantage of using 

BS. From an SNR point-of-view, controlled breathing (synchronizing the respiratory cycle with 

the image acquisition) was superior to BH acquisitions. However, this requires subjects to be 

compliant, which may be a problem in the clinic, especially with younger patients. They also 

showed that the image quality of free-breathing acquisitions can be improved by performing 

retrospective image sorting, allowing only measurements close to end-expiration to be 

considered in the averaging procedure. Kiefer et. al (Kiefer et al. 2009) scanned 11 healthy 

volunteers with a single-slice FAIR TrueFISP sequence. Forty measurements were performed 

under multiple BHs (total scan time of 08m24s), of which some were rejected to obtain a 

consistent dataset before averaging. Perfusion quantification was performed with both the 

classical single-compartment model and a two-compartment model which accounts for 
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restricted capillary permeability (Parkes & Tofts 2002), which reduced the overall variability of 

the perfusion measurements among subjects. 

In the work of Gardener et. al (Gardener & Francis 2010), the use of EPI was revisited. However, 

this time parallel imaging was used allowing them to overcome many of the drawbacks of EPI 

when applied to the abdomen. Specifically, PI revealed usefulness in decreasing the TE and the 

EPI echo-train length (ETL) which both contributed to a better image quality and to the 

possibility of covering the entire kidney with 7 slices. Similarly to a previous study (Robson et al. 

2009), they compared different breathing strategies and their combination with a BS scheme. 

Interestingly, their data suggested that BS reduced the SNR of the perfusion weighted image and 

caused an underestimation of perfusion. They also utilised rigid image registration which 

improved image quality in all acquisition methods. After realignment, they found no significant 

difference between perfusion rates measured from free-breathing and BH data. 

Song et. al (Song et al. 2010) introduced a free-breathing dual-navigated FAIR TrueFISP 

approach. The tagged images (i.e. acquired after slice-selective inversion) were discarded if the 

lung-liver interface position was not within the acceptance windows of both navigators. They 

acquired 20 single-slice control/tag pairs with acceptance rates of 40-60%, resulting in scan 

times of 6-9 min. Ritt et. al (Ritt et al. 2010) a FAIR TrueFISP sequence to scan 24 patients with 

metabolic syndrome (3 scans were non diagnostic due to poor image quality), before and after 

pharmacological intervention. Importantly, this is the first study comparing the ASL perfusion 

measurements with renal plasma flow (RPF) measurements obtained by a clearance study with 

PAH, where a moderate correlation was found. This study also suggests the capability of ASL to 

approximate changes in kidney perfusion. Lanzman et. al (Lanzman et al. 2010) scanned 20 renal 

allograft recipients (FAIR TrueFISP at 1.5T, 30 averages, single-slice, TI of 1.2s, scan time 4m30s). 

They have shown a significant reduction of cortical perfusion in the group of patients with an 

acute deterioration of renal function. Interestingly, they reported the smaller effect of 

respiratory motion on transplanted kidneys (located in the iliac fossa). 

Artz et. al (Nathan S. Artz et al. 2011) assessed inter and intra-visit reproducibility in adult 

healthy subjects and transplant recipients. The scanning protocol consisted of a single slice, 

single TI (TI=1.2s) FAIR TrueFISP acquisition with 32 measurements. They used respiratory 

triggering and coached the subjects to avoid breathing during the data readout. They report 

reproducible measurements for the cortex, but not for the medulla. Cutajar et. al (Cutajar et al. 

2012) demonstrated good intra- and inter-session repeatability of renal ASL measurements in 

healthy volunteers using a FAIR segmented 3D-GRASE acquisition scheme. Using this efficient 
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readout module, they were able to achieve whole kidney coverage at multiple inversion times. 

Prospective respiratory triggering and BS were used to maximise the accuracy of the 

measurements. Rossi et. al (Rossi et al. 2012) also employed a FAIR TrueFISP sequence to assess 

the spatial heterogeneity of perfusion in healthy volunteers and patients with mild CKD (CKD 

stages 1-3). They acquired 30 single-slice, single-TI ASL pairs during 30 BHs of 14s. Image 

registration (rigid) was used to correct for kidney shifts between the measurements. They found 

significant differences both in cortical and parenchymal (i.e. cortex + medulla) perfusion of the 

healthy volunteers compared to the patients, although the differences in the latter case were 

smaller. 

Schneider et. al (M. P. Schneider et al. 2012) have shown, in a group of 34 hypertensive patients, 

an increase in renal perfusion during aliskiren therapy. Post-aliskiren, RBF returned to original 

levels, even though the effect of blood pressure reduction was maintained. Imaging was 

performed at 1.5T using a standard FAIR TrueFISP under multiple BHs. Wang et. al (Wang et al. 

2012) hypothesized ASL could be sensitive to changes in renal haemodynamics following the 

intravenous administration of furosemide. They scanned 11 healthy subjects with a FAIR single-

shot FSE sequence at 3T. They measured a single slice which required 2 BHs of 20-30 seconds. A 

region-of-interest (ROI) analysis of cortical RBF. Three out of the 11 subjects failed the BH and 

image registration had to be used for correcting for the resulting motion artefacts.  Both cortical 

and medullary perfusion was shown to decrease following the administration of furosemide. 

Dong et. al (Dong et al. 2013) scanned 18 healthy volunteers and 13 acute kidney injury patients 

with a FAIR-FSE sequence at 3T. Three ASL pairs of a single slice at a fixed TI of 1.4s were acquired 

during a BH with duration of 20-30s. Despite respiratory coaching two patients had to be 

excluded from the analysis due to BH failure. Data processing consisted of non-linear registration 

for realignment of the different measurements, followed by a standard single-compartment ASL 

analysis. They report significantly lower renal perfusion values in the patient group when 

compared to healthy volunteers. 

Cutajar et. al (Cutajar et al. 2014) assessed the reproducibility of ASL and DCE-MRI and compared 

the perfusion estimates obtained with both techniques. For ASL, a similar protocol was used as 

described previously (Cutajar et al. 2012). Both techniques were shown to be reproducible, 

although interestingly their data suggests ASL is more reproducible than DCE-MRI. No significant 

differences were found between the RBF values obtained with both techniques. Another 

reproducibility study was performed by Gillis et. al (Gillis et al. 2014). They also demonstrate 

reproducibility in the ASL measurements, this time at 3T. A single slice was acquired with a FAIR 
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TrueFISP approach during BH. Image registration algorithms were then used to re-align the 

different measurements. They report no significant differences between two different ASL MRI 

measurements performed on different occasions. 

Tan et. al (Tan et al. 2014) used a FAIR TrueFISP sequence incorporating a low resolution 2D 

FLASH navigator to track the position of the lung-liver interface (acquired at the end of the main 

readout), which allowed for selective averaging according to the phase of the respiratory cycle. 

This was tested in 10 healthy volunteers and 5 patients with CKD (CKD stage 2-4). They have 

shown significantly higher SNR in free-breathing acquisitions compared to acquisitions during 

BH due to the higher number of measurements, even after data rejection. The acquisition 

efficiency was 35% in patients. They obtained significantly lower cortical and medullary 

perfusion rates in patients. In the work of Heusch et. al (Heusch et al. 2014), 98 transplant 

patients underwent renal ASL using a FAIR TrueFISP sequence at 1.5T (n = 65) and 3T (n = 33). 

They were divided in two groups according to their estimated glomerular filtration rate (eGFR) 

(>30 or <30 ml/min/1.73m2). Significantly higher perfusion was found in the group with the 

higher eGFR. There were no significant differences between the perfusion estimates obtained 

at 1.5T or 3T for both groups. In addition, the perfusion values correlated with eGFR suggesting 

the potential value of renal ASL to provide a marker of renal function.  

Cutajar et. al (Cutajar et al. 2015) conducted the first study assessing renal perfusion in living 

kidney donors (n = 8) pre and 1 year post-nephrectomy. Data acquisition was performed with a 

similar FAIR multi-shot 3D-GRASE scheme as previously reported (Cutajar et al. 2012). Formal 

GFR measurements were also performed to allow the calculation of the filtration fraction. They 

reported an increase in GFR in all donors which was accompanied by a comparatively smaller, 

but significant, increase in RPF per kidney, suggesting an increase in blood flow in every 

glomerulus (the number of glomeruli is constant). Hueper et. al (Hueper et al. 2015) scanned 46 

patients 4–11 days after transplantation. Twenty-six of the patients had delayed graft function 

and were shown to have significantly reduced perfusion (using a FAIR TrueFISP ASL method). 

ASL perfusion correlated with renal function assessed with eGFR. They reported higher perfusion 

in the living donor grafts compared to deceased donor grafts. Additionally, after the 1 year 

follow up their data suggests the potential of ASL measurements to help determine whether 

dialysis will be required after transplantation. This study provides further evidence of the 

potential value of ASL for monitoring renal allograft rejection, potentially reducing the need for 

invasive biopsies in the early post-transplantation period, as Wang et. al (Wang et al. 1998) had 

previously suggested. 
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A recent study by Gillis et. al (Gillis 2016) has also shown significantly decreased renal perfusion 

in CKD patients compared to healthy volunteers. Imaging was performed using a single-slice, 

single-TI (TI = 900ms) FAIR TrueFISP scheme during multiple BHs. Affine image registration with 

a correlation coefficient (CC) type cost function was used to ensure alignment of 𝑀0, 𝑇1 and 

perfusion data. Work by Ren et. al (Ren et al. 2016) has shown a reduction in renal cortical 

perfusion comparing healthy controls to renal transplant recipients with normal allograft 

function. A further reduction was found when comparing the latter group to recipients with 

impaired allograft function. A positive correlation between renal perfusion and eGFR in the 

transplant recipients was also reported. Scans were performed in free-breathing without 

respiratory triggering owing to the location of the transplanted kidney. Niles et. al published the 

first longitudinal study with matched pairs renal allograft donors and recipients (all clinically 

stable) (Niles et al. 2016). Scans were performed with a standard FAIR TrueFISP approach with 

a coached breathing strategy. They found a progressive decrease in renal perfusion in donors 

compared to the baseline scan (i.e. before transplant surgery) over a period of two years. Half 

of the transplant recipients received losartan therapy at 3 months after transplant. Recipients 

who did not undergo losartan therapy showed a more marked decrease in cortical perfusion as 

compared to the donors. At the 2 year point, cortical perfusion of the losartan group had 

decreased about 50% less than the losartan therapy group.  

A recent study by Robson et. al presents an innovative approach for acquiring volumetric renal 

ASL data at near-isotropic resolution (Robson et al. 2016). This is based in a background-

suppressed multi-shot 3D FSE pulse sequence with a radial 𝑘-space trajectory, which is preceded 

by a PCASL labelling module. This was compared to a more standard ASL approach using a single-

shot 2D FSE sequence with the same labelling technique, both in terms of perfusion 

quantification and SNR of the measurements. 3D acquisitions were performed both during 

synchronized and free breathing, whereas the 2D acquisition was performed with synchronized 

breathing only. Similar cortical perfusion values and SNR in healthy volunteers were obtained 

with the two techniques. Particularly interesting is that this result was found in both types of 

breathing strategies, including in the segmented multi-shot 3D acquisitions with a 23 shots, even 

though it was acknowledged that image artefacts and blurring were seen in the free-breathing 

acquisitions. A semi quantitative evaluation by radiologists of both acquisitions in patients with 

renal masses has shown clinical advantages of the 3D sequence due to higher spatial coverage 

and thinner slices which reduced partial volume effects.  

Shimizu et. al (Shimizu et al. 2017) investigated how the choice of post-labelling delay time in 

pCASL affects perfusion estimates in the renal cortex. ASL data was acquired at 3T with a 
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multislice 2D spin-echo EPI at 3 different post-labelling delay times (0.5, 1, and 1.5s) and was 

fitted to a typical single compartment model, to yield arterial transit time corrected RBF (ATC-

RBF). More perfusion estimates were also obtained using each of the 3 PLDs independently. All 

except the PLD of 1.5s exhibited a moderate correlation to eRBF obtained with 99mTc-MAG3 

scintigraphy. A recent study by Kim et al (Kim et al. 2017) not only assessed the reproducibility 

of RBF but also of arterial transit time in both the renal cortex and medulla. For this, they 

scanned 25 adult healthy volunteers at 3T, twice (scans 1 hour apart). The acquisition consisted 

of PCASL labelling with 4 post labelling delays (0.5, 1, 1.5 and 2s), a BS module, and a 2D spin-

echo EPI readout. Each PLD was repeated 12 times for signal averaging, requiring multiple BHs. 

This resulted in a scan time of ~12 min per subject. They found RBF to be repeatable in the cortex 

but not in the medulla (see Table 2-1). 

Li et. al (Li et al. 2017) used a FAIR TrueFISP sequence at 3T with retrospective motion correction 

(2D navigator + rigid registration) to evaluate differences in RBF between 30 healthy controls 

and 33 patients with diabetes and stage 3 CKD (median eGFR 46.7 ml/min/1.73m2). A single 

coronal-oblique slice was acquired at an inflow time of 1.5s (50 control/label pairs) and 2s (100 

control/label pairs), for controls and patients, respectively. A constant 𝑇1 value of 1.15 seconds 

was used. Cortical and medullary ROIs were manually selected in the final RBF maps. RBF in CKD 

patients was found to be approximately half to that of controls. Cortical and medullary RBF 

correlated with eGFR. Interestingly, they determined optimal thresholds for separating controls 

and CKD patients of 142.9 and 24.1 ml/100g/min, with corresponding Youden indexes of 0.85 

and 0.64, respectively for cortical and medullary RBF.  

A number of studies also shown the usefulness of ASL for the assessement of perfusion in renal 

cell carcinoma (Cedric de Bazelaire et al. 2008; C de Bazelaire et al. 2008; Lanzman et al. 2012; 

Zhang et al. 2016; Yuan et al. 2016) (not included in Table 2-1). 

In summary, the majority of studies limit the acquisition to a single slice at a fixed TI (typically 

ranging from 1-1.5s). One recent study used a different fixed TI for healthy volunteers (TI=1.5s) 

and patients (TI=2.0s) to account for possible delays in the arrival of the label in the latter case 

(Tan et al. 2014). Multiple measurements (up to 40) are performed for SNR benefits and in 

certain cases to obtain sufficient data to cope with retrospective sorting algorithms (e.g. to reject 

data acquired during unwanted parts of the respiratory cycle). Breath-hold acquisitions have 

been tested, but even in compliant adult subjects this does not completely solve the problem of 

motion. Reasons for this include the fact that the kidneys change position between different BHs 

and residual motion exists within BHs (Holland et al. 1998). In addition, the SNR per unit time of 
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these approaches is lower than in free-breathing scans. A common approach is to train subjects 

so that they match their respiratory cycle to the specific repetition time of the sequence (e.g.: 

(Martirosian et al. 2004; Nathan S Artz et al. 2011; Robson et al. 2016), among others). If they 

are able to comply with these instructions, this essentially results in a series of quick BHs during 

which the data acquisition is performed. The applicability of this approach may be limited, as 

compliance is likely to decrease in patient and/or young/elderly populations. 

Although BS is recommended as the main method to mitigate motion artefacts in brain ASL 

(Alsop et al. 2015), further work is required to verify if this holds true for renal imaging. BS has 

been used sparingly by certain groups, with different conclusions regarding the effectiveness of 

the method (Robson et al. 2009; Gardener & Francis 2010). It is also important to note that as 

the degree of BS increases, the effectiveness of image registration approaches is likely to 

decrease. This is the case given that BS reduces the amount of anatomical information to drive 

the registration algorithms, particularly if more advanced non-rigid registration transformations 

are employed. Gardener and Francis (Gardener & Francis 2010) used a combination of BS and 

image registration, but one might argue that given their 2D acquisition scheme, BS is not as 

effective as what could be achieved using 3D acquisitions, such as in the work presented by 

Cutajar et. al (Cutajar et al. 2012). Overall, image registration algorithms are commonly used, 

most frequently employing rigid transformations to re-align the different measurements 

(averages). Image-based navigators have also been gaining attention in the last few years. 

ASL has been used for the investigation of the effects of certain drugs in renal perfusion. 

Examples include furosemide (Wang et al. 2012), aliskiren (M. P. Schneider et al. 2012), and 

losartan (Niles et al. 2016). Other therapies have also been researched (e.g. renal denervation 

(Ott et al. 2013)). Changes in in renal cortical perfusion following intravenous administration of 

colloid fluids in healthy volunteers were also assess using ASL by Chowdhury et. al (Chowdhury 

et al. 2012).
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Table 2-1 Review of Renal ASL studies 

Reference 𝑵𝒔𝒖𝒃𝒋 𝑩𝟎 (T) Labelling Readout RBF (ml/100g/min) Highlights 

(Roberts et al. 1995) 7 (H) 1.5 CASL 2D-GE Cortex = 278±55; Medulla = 55±25 First renal ASL study in humans 

(Chen et al. 1997) 2 (H) 1.5 PASL 
(STAR) 

HASTE --- Highlights robustness to susceptibility and 
chemical shift artefacts of HASTE readouts 

vs. EPI 

(Berr et al. 1999) 6 (H); 
7 (P) 

1.5 PASL  HASTE --- Renal Vascular Disease. ASL signal 
correlated to % stenosis from X-ray 

angiograms 

(Karger et al. 2000) 10 (H) 1.5 PASL 
(FAIR) 

UFLARE WK = [140-319], 213±55 ([range], 
mean±SD) 

Quantitative assessment; First using FAIR. 

(Martirosian et al. 
2004) 

12 (H); 
1 (TrR) 

1.5 PASL 
(FAIR) 

TrueFISP Cortex = 220-280; Medulla = 50-
120 (range) 

First time using TrueFISP readout 

(de Bazelaire et al. 
2005) 

5 (H) 3 PASL 
(FAIR) 

FSE Cortex = 275±14 (mean±SD) First study @ 3T using FSE readout 

(Warmuth et al. 
2005) 

--- 1.5 PASL 
(FAIR) 

TrueFISP Image visual assessement only First study using navigators for prospective 
motion correction 

(Fenchel et al. 2006) 12+6 
(P) 

1.5 PASL 
(FAIR) 

TrueFISP Patients without RAS: 
WK: 240±57 (149–313);  

Medulla: 117±25 (80–151) 
Cortex: 316±77 (204–434) 

 

12 Patients with RAS, 6 without. Correlation 
between ASL perfusion vs. stenosis grade 

and ASL vs SPECT perfusion 

(Gach et al. 2006) --- 1.5 CASL Single-shot 
spiral 

--- Free-breathing with real-time motion 
tracking using a navigator 

 (Robson et al. 2009) 4 (H) 1.5 PCASL FSE WK = 332±140, (231-601) 
Cortex = 410±150, (287-706) 
Medulla = 223±76, (165-346) 

(mean±SD, range) 

Found BS, controlled breathing and image 
sorting helpful to reduce motion artefacts 
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Reference 𝑵𝒔𝒖𝒃𝒋 𝑩𝟎 (T) Labelling Readout RBF (ml/100g/min) Highlights 

(Kiefer et al. 2009) 11 (H) 3 PASL 
(FAIR) 

TrueFISP Cortex = 245±11; 
Medulla = 109±5 (mean±SD) 

Two-compartment model reduced variance 
of the ASL data compared to standard 

single-compartment model 

(Gardener & Francis 
2010) 

9 (H) 1.5 PASL 
(FAIR) 

SE-EPI Cortex = 341±45; 
Medulla = 102±32 (mean±SD) 

Used parallel imaging to reduce EPI ETL, 
achieving full kidney coverage (7 slices). BS 

reduced SNR of PWIs. Image registration 
improved image quality. 

(Lanzman et al. 
2010) 

20 (P) 1.5 PASL 
(FAIR) 

TrueFISP Stable >3 weeks post-transp:  
305±34, (258-347) 

Stable <3 weeks post-transp:  
297±44, (215-346) 

Acute decrease in function: 
(182±53, 113-278); (mean±SD, 

range); [all cortex] 
 

First study to assess the perfusion of 
transplanted kidneys with ASL. Used fixed 
renal allograft 𝑇1 (mean of cortical ROIs in 

the entire patient group). 

(Ritt et al. 2010) 24 (P) 1.5 PASL 
(FAIR) 

TrueFISP 253 ± 20 (Before telmisartan) 
268 ± 25  (After 2 weeks of 

treatment with telmisartan) 
WK measurements only. 

Metabolic syndrome patients. Moderate 
correlation between ASL and PAH 

clearance, as well as between perfusion 
changes assessed with both techniques 

after treatment with telmisartan. 

(Schewzow et al. 
2010) 

--- 3 PASL 
(FAIR) 

TrueFISP SNR analysis of PWIs only. Non-rigid registration improved PWI 
quality. Shown 16 averages as a good 

compromise between SNR and scan time. 

(Song et al. 2010) 8 (H) 3 PASL 
(FAIR) 

TrueFISP Cortex = 376, 191-378 (mean, 
range) 

Proposed dual navigator approach for 
motion correction. 

(Nathan S. Artz et al. 
2011) 

24 1.5 PASL 
(FAIR) 

TrueFISP Cortex: Native = 334±123, (81-456) 
Transplant = 273±82 (125-409) 

Medulla: Native = 72±29 (33-121) 
Transplant = 35±15 (11-70) 

14 transplant patients; 10 native kidneys 
broad range of function. Cortical perfusion 
reproducibility: Intra-visit CV: 4.8%-6.0% 

Inter-visit CV: 7.6%-13.1% 
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Reference 𝑵𝒔𝒖𝒃𝒋 𝑩𝟎 (T) Labelling Readout RBF (ml/100g/min) Highlights 

(Wu et al. 2011) 19 (H) 3 PCASL GE-EPI Cortex = 227±30;  
Medulla = 101±21 (mean±SD) 

Comparison of RBF estimates with both ASL 
and DCE-MRI. Moderate correlation found. 

ICC = 0.41. Low SNR hindered medulla 
measurements with ASL. 

(Cutajar et al. 2012) 20 (H) 1.5 PASL 
(FAIR) 

3D-GRASE Cortex = 196 and 204 (mean, two 
scans 7–55 days apart) 

First time 3D readout used in renal ASL. 
Multiple TI perfusion quantification. 𝑇1s  

determined on a per-subject basis. Shown 
good short and long term repeatability of 

RBF. 

(Rossi et al. 2012) 8 (H); 
9 (P) 

1.5 PASL 
(FAIR) 

TrueFISP Healthy subjects: Cortex = 329±53; 
Parenchyma = 301±51;  

CKD patients - GFR 69±12 (Inulin 
clearance):  Cortex = 263±81; 

Parenchyma = 244±77 (mean±SD) 

Significant difference was found between 
RBF in healthy subjects and patients with 

mild CKD 

(A. G. Schneider et 
al. 2012) 

34 (P) 
HT 

1.5 PASL 
(FAIR) 

TrueFISP Pre-aliskiren = 
272±25ml/100g/min; During-

aliskiren = 287±29 ml/100g/min; 
Post-aliskiren = 272±26 

ml/100g/min 

Renal perfusion increased during aliskiren 
therapy. After withdrawal of aliskiren, renal 

perfusion returned to original levels. 

(Wang et al. 2012) 11 (H) 3 PASL 
(FAIR) 

SS-FSE Pre-furosemide: 
Cortex = 367±41; Medulla = 119±25 

Post-furosemide: 
Cortex = 314±49; Medulla = 97±18 

(mean±SD) 

Shown ASL to be sensitive to changes in 
renal haemodynamics following 

administration of furosemide. Used non-
linear registration for correcting for failed 

BHs (3 out of 11 subjects) 

(Dong et al. 2013) 18 (H); 
13 (P) 

3 PASL 
(FAIR) 

SS-FSE Healthy volunteers: Cortex = 357-
426, 399±20; Medulla = 107-126, 

118±20; AKI patients: Cortex = 223-
392, 292±47; Medulla = 89-116, 

105±17 (range, mean±SD) 

Shown significantly lower renal perfusion 
values in an acute kidney injury patient 

group when compared to healthy 
volunteers. 
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Reference 𝑵𝒔𝒖𝒃𝒋 𝑩𝟎 (T) Labelling Readout RBF (ml/100g/min) Highlights 

(Ott et al. 2013) 19 (P) 
HT 

1.5 PASL 
(FAIR) 

TrueFISP 1-day before RDN = 256.8, 241–278 
1-day post-RDN = 263.4, 252–277 
3-mon post-RDN = 261.2, 240–285  

(mean, interquartile range) 
(all WK perfusion values) 

RBF assessed in patients with treatment-
resistant hypertension before and after 

renal denervation (RDN). Renal perfusion 
and function did not change after RDN. 

(Park et al. 2013) 1 (H) 3 PCASL TrueFISP Cortex = ≈320 Part of a study assessing feasibility of PCASL 
TrueFISP ASL in brain, retina and kidney 

(Sugimori et al. 
2013) 

5 (H) 3 PASL 
(EPISTAR) 

EPI Cortex = 287±49 Acquired data at multiple TIs, but 
performed single TI quantification using the 

TI yielding the highest signal intensity 

(Cutajar et al. 2014) 16 (H) 1.5 PASL 
(FAIR) 

3D-GRASE Cortex = 263±41 (mean±SD) Shown good agreement between RBF 
estimates with ASL and DCE. Also found ASL 

more repeatable than DCE MRI. 

(Gillis et al. 2014) 12 (H) 3 PASL 
(FAIR) 

TrueFISP Cortex = 327±63;  
WK = 229±41  

(mean±SD) 

Shown ASL to be repeatable over a period 
of up to 28 days (ICC=0.85; CV=9.2% for 

cortical perfusion) 

(Heusch et al. 2014) 98 
(TrR) 

1.5 
(n=65)

; 3 
(n=33) 

PASL 
(FAIR) 

TrueFISP Cortex:  
283±61 (eGFR>30 ml/min/1.73m2; 

n=60);  
178±63 (eGFR≤30 ml/min/1.73m2; 

n=38) 

No significant differences between 
perfusion estimates obtained at 1.5T or 3T 
(both groups). RBF correlated with eGFR. 

(Tan et al. 2014) 10 (H); 
5 (P) 

3 PASL 
(FAIR) 

TrueFISP Cortex:  
Healthy volunteers = 269±27; 

CKD patients = 155±25; 
(mean±SD) 

 

Employed a navigator technique to enable 
free breathing scans. BH scans with low 

number of measurements yielded very low 
SNR data. Good quality perfusion maps in 

patients with reduced perfusion. 
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Reference 𝑵𝒔𝒖𝒃𝒋 𝑩𝟎 (T) Labelling Readout RBF (ml/100g/min) Highlights 

(Breidthardt et al. 
2015) 

20 (H); 
20 (P) 

1.5 PASL 
(FAIR) 

TrueFISP Cortical perfusion (mean±SD) 
Young volunteers = 278±59 

Age-matched volunteers = 274±65 
HF eGFR > 60 ml/min/1.73m2 = 

171±31 
HF eGFR < 60 ml/min/1.73m2= 

146±50 

RBF correlated to eGFR in patients with 
chronic heart failure (HF). Correlation 

between volume-adjusted global kidney 
perfusion measured by PC-MRI and RBF 
measured by ASL. HF patients with and 

without renal dysfunction shown to have 
comparable RBF. 

(Cutajar et al. 2015) 8  
Kidney 
Donor

s 

1.5 PASL 
(FAIR) 

3D-GRASE Pre-nephrectomy:  
186±36 ml/100g/min; 214±32 

ml/kidney/min 
Post-nephrectomy:  

184±37 ml/100g/min; 253±45 
ml/kidney/min 

(mean±SD) 
(values for right kidney only - left 

kidney nephrectomy) 

First study to assess RPF in healthy living 
kidney donors, pre and post-donation. RPF 
per kidney increased in almost all donors, 
but not as much as GFR. Filtration fraction 

increased in all but one donor post-
nephrectomy 

(Hueper et al. 2015) 46 
TrR 

1.5 PASL 
(FAIR) 

TrueFISP 231±15 vs. 331±15  
(DGF vs. patients with initial 

function) 
339±19 vs. 243±14 (Living donor vs. 

deceased donor grafts) 
202±35 vs. 246±14 (Allograft 

rejection vs. DGF but no rejection) 
(all cortical perfusion values) 

Transplant patients with delayed graft 
function shown to have significantly 

reduced perfusion. ASL perfusion correlated 
with eGFR. Higher perfusion in living donor 
grafts compared to deceased donor grafts. 

(Gillis 2016) 24 (H); 
17 (P) 
CKD 

3 PASL 
(FAIR) 

TrueFISP Healthy volunteers: 
Cortex = 279±69; WK = 221±38 

CKD patients: 
Cortex = 136±37; WK = 146±24 

(mean±SD) 

ASL perfusion correlated with eGFR. 
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Reference 𝑵𝒔𝒖𝒃𝒋 𝑩𝟎 (T) Labelling Readout RBF (ml/100g/min) Highlights 

(Hammon et al. 
2016) 

5 (H); 
9 (P) 
HT 

1.5 PASL 
(FAIR) 

TrueFISP WK = 307±26 
Cortex = 337±35 

Medulla = 280±27 
(mean±SD) 

Shown good reproducibility study of RBF 
using ASL for both WK, cortex and medulla 

measurements 

(Ren et al. 2016) 20 (H); 
62 

(TrR) 

3 PASL 
(FAIR) 

TrueFISP Healthy volunteers: 
Right kidney = 390±61 
Left kidney = 392±64 
Transplant recipients: 

eGFR > 60 ml/min/1.73m2 (n = 34) 
≈290±75 

eGFR < 60 ml/min/1.73m2 (n = 19) 
≈200±90 

Cortical RBF lower in allografts with good 
function (eGFR≥60ml/min/1.73m2) 

compared to volunteers. Cortical RBF lower 
in allografts with impaired function 

(eGFR<60ml/min/1.73m2) compared to 
those with good function. RBF correlated 

with eGFR in TrR. 

(Niles et al. 2016) 15 
(TrR); 

15 
(TrD) 

1.5 PASL 
(FAIR) 

TrueFISP Donors: 
Baseline = 422±17; 

Decrease 2 years post-transplant = 
50±19; 

Transplanted kidneys: 
Baseline = 412±19; 

Decrease 2 years post-transplant = 
141±21; 

(all cortical perfusion values) 

ASL performed 3, 12 and 24 months post-
transplant in both TrR and TrD. In TrD also 

pre-transplantation. Both TrD and TrR: 
perfusion decreased over time, more so on 
TrR. Smaller decrease in TrR with losartan 

therapy. 

(Robson et al. 2016) 4 (H) 
4 (P) 

1.5 PCASL 3D-FSE 
(radial 

trajectory) 

Healthy volunteers: 
Cortex = 284±21; 

Patients (renal masses): semi-
quantitative assessment only 

First 3D near-isotropic resolution renal ASL 
study. No difference between RBF 

measured by 3D FSE and 2D SS-FSE. No 
difference in RBF obtained in free vs. 

synchronized breathing with 3D FSE. Better 
renal mass detection with 3D imaging 

readout. 
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Reference 𝑵𝒔𝒖𝒃𝒋 𝑩𝟎 (T) Labelling Readout RBF (ml/100g/min) Highlights 

(Shimizu et al. 2017) 14 (H) 3 PCASL SE-EPI Whole group = 139±38 
Young volunteers (n=8, ages 22-39) 

= 157±38; Older volunteers (n=6, 
ages 53-75) = 117±24 

(cortical perfusion obtained with 
multi-PLD modelling) 

RBF Quantification performed at 3 PLDs. 
Moderate correlation of RBF and effective 

RBF using 99mTc-MAG3 scintigraphy, except 
for longest PLD (1.5s), when performing 

single-TI quantification. 

(Kim et al. 2017) 23 (H) 3 PCASL SE-EPI Scan 1: Cortex = 215±65; Medulla = 
81±21; 

Scan 2: Cortex = 215±63; Medulla = 
79±28. 

 

Multi-slice acquisition (4 post-labelling 
delays). 

Two scans (1-hour apart) shown good 
reproducibility of cortical perfusion and low 

reproducibility of cortical and medullary 
arterial transit time. 

(Conlin et al. 2017) 7 (H), 
8 (P) 

3 PASL 
(FAIR) 

TrueFISP Healthy subjects: 
Cortex = 151±37; Medulla = 25±22 

Patients: 
Cortex = 158±103; Medulla = 36±31 

(units: ml/min) 
 

RBF derived from slope of ASL difference 
signal (averaged within manually drawn 

ROIs) using up to 16 different TIs. ASL RBF 
estimates agree with those obtained with 

DCE-MRI. Reliability of perfusion 
measurement dependent on having more 

than two TIs. 
(Li et al. 2017) 30 (H); 

33 (P) 
3 PASL 

(FAIR) 
TrueFISP Healthy subjects: 

Cortex = 207±42; Medulla = 47±16 
Patients (median eGFR 46.7 

ml/min/1.73m2) 
Cortex = 106±36; Medulla = 23±9 

 

RBF approximately half in patients 
compared to controls. Cortical and 

medullary RBF correlated with eGFR. RBF 
thresholds were determined to separate 

controls from patients. 

H: Healthy volunteers; P: Patients; RAGE = Rapid Gradient Echo; WK: whole-kidney; TrR: Transplant recipient; TrD: Transplant Donor. CV: Coefficient of 

variation; ICC: Intraclass correlation. HF: Chronic Heart Failure; PC-MRI: Phase-contrast MRI; DGF: Delayed graft function; HT: Hypertension. 
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3 Motion Correction in MRI 

Motion has been a problem in MRI for as long as the technique has existed. It has deleterious 

effects on image quality and often renders scans non-diagnostic. As a result, certain MR 

sequences need to be repeated during an examination, which in addition to adding to the 

patient’s discomfort, incurs additional financial costs. A recent study estimates yearly costs on 

the order of $100,000 per scanner due to the added scan-time required to repeat MR scans 

(Andre et al. 2015). 

A major focus in the MR research community is in establishing MR scanners as fully fledged 

scientific measuring instruments capable of delivering quantitative measurements related to 

Nuclear Magnetic Resonance (NMR) properties of tissue (such as T1, T2 and proton density). This 

represents a key advance compared to the more traditional MR acquisitions which instead 

provide qualitative or “weighted” measurements related to the fundamental NMR properties. 

Ultimately, with accurate quantitative measurements, biological tissue (both healthy and in 

diseased states) could potentially be characterised based on these parameters. 

Many of these modern MRI approaches are based on the acquisition of large amounts of data, 

routinely involving hundreds of images and different types of contrasts.  The full potential of 

these rich datasets can only be harnessed if techniques are in place which ensure that all images 

are not only free of motion artefacts but also aligned in the same space allowing them to be 

combined. This is the case for many of the MRI methods able to provide physiologically relevant 

parameter maps, such as blood flow maps as obtained with ASL. Ensuring a voxel-to-voxel 

correspondence throughout a time series is a challenge when such acquisitions take several 

minutes, and even shorter periods of time when the organs of interest are under the influence 

of involuntary motion, such as that caused by breathing. Furthermore, certain groups of patients 

are particularly prone to moving during the scans, due to a variety of medical conditions (such 

as Parkinson’s disease), or reduced tolerance to the MRI environment (e.g. children). 

Research on motion correction started in the early MRI days (Schultz et al. 1984; Wood & 

Henkelman 1984; Haacke & Patrick 1986), and over the years, a plethora of techniques have 

been developed to prevent, reduce and correct the negative influence of motion on image 

quality (Zaitsev et al. 2015). Nevertheless, there is no universally optimal approach for motion 

correction. The wealth of MR techniques existing and the variety of applications in the clinical 

arena often mean that tailored motion correction solutions are necessary for a given task. In 

fact, researchers frequently combine multiple approaches from the large pool of techniques that 

have been developed, often acting at different stages of the imaging workflow. These range 
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from effective scanning standard operating procedures to prevent motion artefacts in the first 

place (effective patient training and communication and immobilization devices), avoiding and 

reducing the negative influence of motion on image quality using specialized motion insensitive 

image acquisition techniques and correcting artefacts through advanced retrospective image 

processing methods. A significant challenge is to determine the best approach to perform 

motion correction in any particular application, as noted in a recent review by Zaitsev et. al 

(Zaitsev et al. 2015). 

This section aims to introduce the physical basis of motion-related artefacts in MRI and to 

summarise different approaches that have been developed over the years and are most related 

to the work in this thesis.  

3.1 Effects of motion in MRI 

Before delving into the basic principles which describe the effects of motion in MRI, it is 

pertinent to consider the time scale of physical movement by the subject and how it relates to 

the different steps in image acquisition. Firstly, motion artefacts are typically avoided along the 

frequency-encoding direction simply because this stage of the spatial localization process is fast 

enough (usually <10ms) that any movement by the subject is effectively “frozen” in time. This is 

not the case for phase-encoding, and therefore this is the direction along which motion artefacts 

are most common. Nevertheless, in many applications translational motion still occurs on a long 

time-scale when compared to the time required for acquisition of a complete 2D or 3D 𝑘-space. 

This is particularly true in single-shot acquisitions, where all data is acquired following a single 

MR excitation. In these cases, the total length of time during which data is being acquired is 

necessarily small due to relaxation effects, which may allow intra-shot motion to be assumed 

negligible.  

Multi-shot sequences are inherently motion-sensitive owing to the extended time gap between 

the different excitations required for the complete data acquisition. In this scenario, both 

involuntary physiological motion (e.g. respiration) and bulk body motion are no longer slower 

than the timescale of data acquisition and can have a dramatic effect on the quality of a given 

image. Furthermore, even if multi-shot motion artefacts are avoided or single-shot sequences 

are used, movement can still play a detrimental role in the consistency of the complete MR 

dataset, by causing the misalignment of successive images in a time series. This can be addressed 

by image registration methods (see Section 3.5). 

As discussed before (see Section 2.2), MR data is acquired in the frequency domain (𝑘-space) 

and thereafter reconstructed into images using the FT. Intrinsic to this process is the assumption 



73 
 

that the sampled object remains static during the entirety of the data acquisition process. When 

this assumption is violated, the reconstructed image will contain artefacts. From the Fourier 

relationship it follows that each 𝑘-space sample is a complex number which specifies the 

contribution of a given spatial frequency to the entirety of the object in the field of view (FOV). 

As such, a single point in 𝑘-space influences the image intensity of every pixel in the image. 

Consequently, movement at any point in the scan has the potential to corrupt the entire image. 

The simplest types of motion include translations and rotations. Their effects in the frequency 

domain are well-known and described by the Fourier Shift and Rotation theorems, respectively 

(Bracewell 2000). Consider a 2D object 𝑓(𝑥, 𝑦). A translated version of this object can be given 

by 𝑓(𝑥 − 𝑥0, 𝑦 − 𝑦0). Assuming 𝐹(𝑘𝑥, 𝑘𝑦) corresponds to the FT of 𝑓(𝑥, 𝑦), the Fourier Shift 

theorem states: 

  𝑓(𝑥 − 𝑥0, 𝑦 − 𝑦0)  
𝐹𝑇
⇔  𝐹(𝑘𝑥 , 𝑘𝑦)𝑒

−𝑖2𝜋(𝑘𝑥𝑥0+𝑘𝑦𝑦0) Equation 3-1 

Therefore, a translation in image space results in phase changes in the frequency domain. In 

addition, the Fourier rotation theorem states that: 

 
𝑓(𝑥 cos𝜃 − 𝑦 sin𝜃 , 𝑥 sin𝜃 + 𝑦 cos𝜃) 

𝐹𝑇
⇔ 𝐹(𝑘𝑥 cos 𝜃

− 𝑘𝑦 sin𝜃 , 𝑘𝑥 sin𝜃 + 𝑘𝑦 cos 𝜃) 
Equation 3-2 

As such, a rotation of the object in the (𝑥, 𝑦)-plane causes a rotation of 𝑘-space in the (𝑘𝑥 , 𝑘𝑦)-

plane by the same amount and direction (Bracewell 2000). These Fourier relationships are 

widely used in algorithms that retrospectively correct movement-related 𝑘-space 

inconsistencies (see Figure 3-1). If there is a means to determine the amount of translational 

movement by an object during the acquisition, multiplying the raw data by the complex 

conjugate of the added phase term due to this motion corrects for the corresponding image 

artefact. Rotational movement may in addition result in missing 𝑘-space sections and 

interpolation algorithms are required to satisfy the requirement of a regularly sampled grid 

imposed by Fast Fourier Transform (FFT)-based reconstructions (Atkinson & Hill 2003). 

Unlike translational and rotational motion, there is not a direct relation between non-rigid 

motion in image space and its effect in the frequency domain. This limits the types of techniques 

that can be used to tackle this problem. The physics of the acquisition process and artefact 

causes can be elegantly described using matrix notation (Batchelor et al. 2005). This can be 

solved iteratively with a conjugate gradient scheme to recover the motion-free image, as long 

as the underlying motion is known. White et. al. provided this prior information in the form of a 
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patient-specific respiratory motion model, obtained by non-rigid registration of a low resolution 

training dataset (White et al. 2009). External sensors can also be used for this purpose (Odille et 

al. 2008). 

 

Figure 3-1 𝑘-space operations corresponding to rotations and translations in image space. These 
are some of the building blocks of 𝑘-space-based motion correction techniques, such as 
autofocus or navigator-based approaches. 

A substantial amount of work on prospective motion correction using external tracking systems 

has been performed (e.g. (Maclaren et al. 2012), (Ooi et al. 2013)) since the initial proof-of-

concept paper by Zaitsev et. al (Zaitsev et al. 2006). However, at the moment these solutions 

are targeted exclusively to neuroimaging (Maclaren et al. 2013). Interestingly, recent research 

addresses the possibility of extracting physiological signals using a markerless external tracking 

system (Maclaren et al. 2015). Prospective and retrospective motion correction methods have 

also been used in combination (MacLaren et al. 2011). 

3.2 Autofocus 

Autofocus (Atkinson et al. 1997; Atkinson et al. 1999) is a retrospective motion-correction 

approach whereby trial corrections are iteratively performed on the raw data and then 

evaluated according to a particular cost function (e.g. an image quality metric), typically after 

reconstruction (see Figure 3-2). Ideally, an artefact-free image yields the minimum value for the 

cost function. Various image quality metrics have been reviewed previously (McGee et al. 2000). 

Examples of frequently used metrics include the image entropy (Atkinson et al. 1997) or gradient 
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entropy (Cheng et al. 2012). Overall their minimisation favours images with reduced blurring 

and distinct edges. Autofocus has been applied in areas outside the brain, such as the shoulder 

(Manduca et al. 2000), wrist (Lin et al. 2007) and abdomen (Cheng et al. 2012). These methods 

are attractive as they can be readily applied without additional hardware or modifications to the 

pulse sequence, but the optimisation stage can be very time consuming. Nevertheless, recent 

improvements in this area tackle this problem by reducing the search space of possible motion 

estimates through the use navigators (Cheng et al. 2012) or performing a more efficient 

gradient-based optimisation (Loktyushin et al. 2013). The problem of non-rigid motion 

correction has also been addressed recently by Cheng et. al by approximating non-rigid motion 

as localized linear translations (Cheng et al. 2012; Cheng et al. 2015). This framework was also 

employed for motion correction in angiography (Ingle et al. 2013). Loktyushin also expanded on 

their original work (Loktyushin et al. 2013) to allow for non-rigid correction (Loktyushin et al. 

2015). 

 

Figure 3-2 Autofocus loop 

3.3 Motion correction using data redundancy 

Modern MRI systems acquire data in parallel using independent receiver coil elements. This 

permitted the advent of parallel imaging in the second half of the 1990s (Sodickson & Manning 

1997; Pruessmann et al. 1999), constituting an important technical advancement in MRI 

technology. Initially devised to speed up MR image acquisition, parallel imaging can also be 

useful to improve image quality (e.g. decreasing blurring in single-shot scans) and reduce 

artefacts (e.g. due to motion). An example shown by Larkman et. al (Larkman et al. 2004) 

consists of splitting a corrupted dataset into two in a way that makes each of them amenable to 

a parallel imaging reconstruction. After reconstruction, the two can immediately be averaged, 

which may mitigate image artefacts, or an image registration algorithm may be used in the first 

place to achieve a greater level of data consistency before the averaging procedure. Parallel 

imaging can be used to detect and reject corrupted parts of k-space, and if the corruption is due 

to a short-lived event, the generalised simultaneous acquisition of spatial harmonics (SMASH) 



76 
 

approach (Mark Bydder et al. 2002) can be used to regenerate the incomplete 𝑘-space (M 

Bydder et al. 2002). Consider a fully sampled dataset where the acquired phase-encoded line 𝑛 

is used to generate line 𝑛 + 1. Because the data is fully sampled, two "versions" of line 𝑛 + 1 

are available, the sampled data and the data generated using parallel imaging. If a comparison 

of both lines reveals differences consistent with a certain model of motion, the data can be 

corrected. This forms the basis of the SMASH navigators approach by Bydder et. al (Bydder et 

al. 2003). The fact that data is corrected instead of rejected is beneficial in terms of the  signal-

to-noise ratio (SNR) of the final image. A drawback is that errors may end up propagating 

through 𝑘-space as the different lines are processed. In the Data convolution and combination 

operation (COCOA) method (Huang et al. 2010), a synthetic k-space is produced and then 

compared to the acquired data for the detection of corrupted data. An optimised combination 

of the two then yields an image with reduced artefacts. A different approach proposed by 

Atkinson et. al (Atkinson et al. 2004) uses multi-coil data in an optimisation scheme whereby the 

artefact source is parameterised and the parameters iteratively adjusted to maximise 

consistency of the data from different coils. Also in the image space, Winkelmann et. al 

(Winkelmann et al. 2005) perform a voxelwise consistency check to locate artefacts which are 

then removed with an extended Sensitivity Encoding (SENSE) reconstruction algorithm. More 

recently, Hu et. al (Hu et al. 2011) used multi-coil data to develop a self-gating approach for free-

breathing cine MRI. 

3.4 Navigators 

Navigators are fast pulse sequence elements incorporated into a "parent" sequence. They can 

provide motion-related information (bulk motion, respiratory/cardiac phases) and/or hardware-

related information (e.g. 𝐵0 changes (Hess et al. 2012)). This information is used either 

prospectively or retrospectively, respectively to guide the image acquisition or reconstruction 

to obtain a higher quality image. A main assumption is that negligible motion occurs between 

the navigator and the acquired data to be corrected. These can be divided into three categories: 

i) 𝑘-space, ii) image and iii) free induction decay (FID)-based navigators. Ehman et. al introduced 

the concept of navigator echo with the 1D linear navigator (Ehman & Felmlee 1989). This is 

simply a non phase-encoded line that crosses the centre of 𝑘-space and allows monitoring of 

translations in the direction of the corresponding readout gradient. To resolve in-plane 

rotational motion, Fu et. al proposed orbital navigators (Fu et al. 1995). Welch et. al extended 

this concept to three dimensions, introducing the so-called spherical navigators which are able 

to capture translations and rotations in 3D (Welch et al. 2002). These improvements require 

more data to be acquired which increases the time required for not only for the navigator 
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acquisition but also its processing to extract the motion information. Nevertheless, recent 

studies addressed this issue by introducing a template-based approach to speed up the 

processing of the spherical navigator data (Liu & Drangova 2011; Johnson et al. 2016). 

Alternatively, some methods focus on reducing the time necessary for acquisition of the 

navigator data, such as the cloverleaf navigators (Van Der Kouwe et al. 2006) which limit the 

amount of data acquired to 3 orthogonal lines crossing the centre of k-space (to track 

translations) and 3 quarter-circles (to track rotations), taking less than 5ms to be acquired. A 

different approach is to perform an image-based estimation of the motion parameters during 

the scan. Thesen et. al (Thesen et al. 2000) addressed the problem of motion correction in fMRI 

(functional-MRI) by registering successive multi-slice echo planar imaging (EPI) datasets in a 

time-series to a reference volume in real-time and using the obtained motion parameters to 

update the imaging coordinates for the following acquisitions. Other image-based navigators 

include PROMO (White et al. 2010), which has been used in brain ASL (Zun et al. 2014), and 

volumetric navigators (Tisdall et al. 2012), which have been shown capable of reducing the 

detrimental effects of motion in brain morphometry analyses (Tisdall et al. 2016). Again, as the 

amount of data in the navigator increases, more time is required for its acquisition which may 

limit their application especially in clinical sequences, which are optimized to have little dead 

time. Fat navigators (Nguyen et al. 2003) have been combined with highly accelerated parallel 

imaging for motion correction in neuroimaging (Skare et al. 2015; Gallichan et al. 2016; Gallichan 

& Marques 2017). Finally, FID-navigators are simplest type of navigator, sampled for a very brief 

period while no gradients are being applied. Initially proposed by Brau et. al. (Brau & Brittain 

2006) to gate abdominal acquisitions, these have more recently been used to detect motion and 

trigger data re-acquisition in the brain (Kober et al. 2011; Kober et al. 2012) and for MRI of the 

carotid arteries (Dyverfeldt et al. 2014). Another possibility, given their speed is to sample them 

frequently throughout the scan (e.g. at least every TR) to detect motion and if necessary trigger 

the acquisition of a more complex navigator as previously discussed (Waszak et al. 2016). 

Extracting motion information from FID navigators is a current topic of research (Babayeva et al. 

2015). 

3.5 Image Registration 

Image registration refers to a class of image processing algorithms whose aim is to align 

structures within images. This is achieved by determining a spatial one-to-one mapping between 

the pixels in the images. In the medical imaging context, the successful application of image 

registration is able to produce datasets which correspond to what would have ideally been 

acquired had the patient not moved. These have been increasingly used to compensate for 
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patient motion during image acquisition, which degrades the quality of the data. Image 

registration algorithms have been found useful for a variety of applications (Sotiras et al. 2012; 

Oliveira & Tavares 2014), including registration of similar types of images (intra- or mono-

modality registration) and images obtained with different techniques (inter- or multi-modality 

registration). Registration of data from different subjects is also common, as is registration to 

certain types of atlases, allowing group analyses and comparisons across studies to be 

performed. These and many other applications have solidified image registration as an 

ubiquitous pre-processing step in the MRI literature, available as part of widely used software 

packages (Ashburner 2012; Jenkinson et al. 2012; Klein et al. 2010). 

This section aims to summarise the main components within an image registration algorithm. 

These are depicted in Figure 3-3 and include: a type of transformation applied to the input image 

to match a reference image, an image similarity measure, which quantifies the degree of 

alignment between two images and an optimiser, involved in the estimation of the 

transformation which maximises the similarity between the images. A particular focus is given 

to the discussion of image similarity measures, in particular to those based on information 

theory, as some of the involved concepts (e.g. image entropy) are not only useful for image 

registration but also in other motion correction strategies relying on image quality measures. An 

example of these is the autofocus method (Atkinson et al. 1999; Atkinson et al. 1997) which was 

previously discussed and developed within the framework of this thesis (see Appendix A). 

Comprehensive reviews on this topic can be found in (Maintz & Viergever 1998; Hill et al. 2001; 

Pluim et al. 2003; Zitová & Flusser 2003). 

 

Figure 3-3 Typical image registration workflow (simplified) 

3.5.1 Transformation 

Image registration involves the computation of a transformation. This can be thought as the 

spatial mapping 𝑻 which maps the position and corresponding intensity from the pixels in one 

image to another, making them spatially aligned. The latter remains stationary, being commonly 
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referred to as reference, or target image. The image which will be transformed to match the 

reference image is typically referred to as moving or source image.  

The transformation is characterized by its degrees of freedom. Factors influencing the choice of 

transformation include the dimensionality of the data (2D images or 3D volumes) and whether 

it is expected that the object of interest will undergo deformations or distortions during imaging. 

Another consideration is the resolution of the data which influences the required accuracy of 

the registration process. 

In general, we can group transformations in two main families: those based in parametric 

models and non-parametric approaches. The latter type of transformations employ a larger 

number of parameters characterising a deformation vector for each pixel location. A classic 

example is the Demons algorithm (Thirion 1998; Pennec et al. 1999). All registrations performed 

within the context of this thesis belong to the group of parametric approaches. Therefore, non-

parametric transformations will not be discussed any further. 

The majority of medical image registration tasks involve registration of image volumes (i.e. 3D 

images). A standard approach, in particular when dealing with data from a single subject, is to 

apply transformations in which there are six degrees of freedom, allowing for three translations 

and three rotations. This is known as a “rigid body” transformation, which is characterized by 

preserving all distances between any pair of points. Additional degrees of freedom may allow 

scaling and skews in addition to translations and rotations. When these are incorporated, we 

are dealing with affine transforms, which preserve parallel lines. In 3D, they are represented by 

4x4 matrices (using homogenous coordinates). It is worth noting that rigid body transforms are 

a special case of affine transforms (unit scaling and zero skews). These have a relatively narrow 

range of applications where rigid body transforms do not suffice. This is the case since when 

tissue deformations exist, these are usually complex in nature and not typically limited to 

stretching and shearing. Nevertheless, affine transformations find use generally in initializing 

non-rigid transforms, as it is helpful from an optimisation perspective to ensure a good initial 

alignment for complex registrations. Additionally, these have been used to correct MRI 

hardware-related issues, such as image distortions (Hill et al. 2001).  

Non-rigid deformations are particularly useful for inter-subject registrations. An illustrative 

example depicting the application of different types of transformations in image registration is 

shown in Figure 3-4. Non-rigid transforms allow to model much more complex deformations. 

Unlike the previous types of transforms, these have a higher number of degrees of freedom, 

sometimes on the order of the number of pixels in the images. A common approach for the 
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parameterisation of the deformation fields is using cubic b-splines (Rueckert et al. 1999; Klein et 

al. 2010). A comprehensive review of deformable registration methods can be found in (Sotiras 

et al. 2012). 

 

Figure 3-4 Different types of image registration transformations. In this illustrative example, the 
transformations were applied independently for each of the objects, an approach which was 
used throughout this thesis, as the two kidneys can move independently. 

3.5.2 Similarity Metrics 

Image registration algorithms rely on specific image characteristics for determining the 

transformation that best aligns them. Examples of these include points, lines or curves defining 

edges, corners or other types of geometric features. Alternatively, the image intensity levels can 

be used directly. We focus on registration algorithms which are based on image intensities. As 

such, the transformation we recover aims to optimize some similarity measure which takes into 

account the intensities of the two images. Specifically, the role of image similarity metrics is to 

quantify how well the target image matches the reference image after the target image has been 

transformed.  This typically involves an iterative process where, in each iteration, the similarity 

of the reference image and the moving image (being brought into alignment with the reference 

image) are compared. Several types of image similarity metrics have been developed over time, 

and their suitability to a given application is intimately dependent on the types of images 

involved. 

3.5.2.1 Intra-modality registration 

When registering images of the same modality, where any changes between them can be 

attributed to motion, and to a smaller extent, noise, we are referring to intra-modality 

registration. Therefore, if two images are aligned, their subtraction yields an image with reduced 
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signal throughout the field of view. This is the rationale behind one of the most common intra-

modality similarity metrics, the mean of squared differences (MSD), which is defined as: 

 𝑀𝑆𝐷 = 
1

𝑁
∑(𝐼𝑅(𝑖) − 𝐼𝑀(𝑖))

2 

𝑛

𝑖=1

 Equation 3-3 

Where 𝑖 = 1,… , 𝑛 are the indexes of the pixels within the field of view of both images and 𝐼𝑅(𝑖) 

and 𝐼𝑀(𝑖) are the image intensities of the reference and moving images, respectively, at the 

pixel location 𝑖. Also widely used are the less restrictive correlation-based techniques, such as 

the correlation coefficient (CC): 

 𝐶𝐶 = 
∑ (𝐼𝑅(𝑖)
𝑛
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2⁄

 Equation 3-4 

Where 𝐼�̅� and 𝐼�̅̅̅� are the mean intensities of the reference and moving images, respectively. The 

CC allows registration of objects whose intensities are related by linear transformations.  

However, these metrics face challenges when where there is not necessarily a direct relationship 

between the intensities of the source and reference images. This is the case when registering 

images of different image modalities, or in the case of MRI, different pulse sequences and/or 

MR parameters. An important class of metrics, which are better suited for this purpose have 

their underpinnings in information theory.   

3.5.2.2 Inter-modality metrics 

The concept of entropy is frequently borrowed from information theory for use in image 

processing as a statistical measure of the amount of information or uncertainty in a given 

process. The most widely used definition of entropy was introduced by Shannon in his 1948 

seminal paper (Shannon 1948) and defined as: 

 𝐻 = −∑𝑝𝑖 log2 𝑝𝑖

𝑛

𝑖=1

 Equation 3-5 

for a process whose events e1, …, en occur with probabilities p1, …, pn.  

Entropy can be interpreted in various ways. It is maximized when the probabilities of all events 

occurring are equal. This corresponds to the state of highest uncertainty regarding the outcome 

of the given process. On the other hand, when the probability of a single event occurring 

dominates over all others, we are increasingly certain of the outcome of the process, and the 

value of entropy decreases. Therefore, entropy can be thought of as a measure of uncertainty. 
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A practical example is shown in Figure 3-5, where a number of processes, each characterized by 

5 events which occur with different probabilities, were simulated.  The entropies of each of the 

processes were computed. The outcome of process 1, whose events have the most similar 

relative probabilities of occurring, is the most difficult to predict. The entropy of this process is 

therefore the highest of the set.  

 

Figure 3-5 Entropy of general processes. Each data point in the plot corresponds to a simulated 
process, each with 5 possible events which occur at different probabilities. Three processes are 
highlighted (Processes 1, 2 and 3), and the probabilities of their events are shown in the table 
on the right-hand side. The higher the uncertainty of the outcome of each process, the higher 
the entropy (Process 1). In this context, entropy can be thought as a measure of dispersion of 
the probabilities of the events. Although not the same as standard deviation, entropy tends to 
decrease as the spread in the probabilities increases. 

Another common interpretation of entropy is as a measure of information. The closer we get to 

a process with a single event dominating in terms of its probability of occurrence (Process 3 in 

Figure 3-5), the lower the amount of information. This can be understood as in the limit where 

a single event is 100% likely, entropy will be zero (−1 × log2 1 = 0). Indeed, the amount of 

information in this process is zero as we already knew its outcome a priori with certainty before 

it took place. 

In the context of image processing, we focus on the probability distribution of the grey levels 

within an image when computing its entropy. The entropy is maximized for an image whose grey 

levels occur at equal probabilities (Image A in Figure 3-6). An image with a smaller “amount of 

information” (i.e., a larger proportion of voxels converging at a similar intensity) will have a 

smaller entropy (Image B in Figure 3-6). Image entropy therefore decreases as the histogram of 

an image gets “sharper”. This is used as the basis of an image quality metric in the autofocus 

work. Similarly to as discussed above, in the limit where all the pixels of an image have the same 

intensity, entropy is zero.  
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Figure 3-6 Simplified example of image entropy. In image A, all intensities occur with the same 
probability, which maximises the information content of the image, and thereby the value of 
entropy. When a larger proportion of pixels converge around a similar intensity level (Image B), 
the entropy value is minimised. 

Shannon also introduced the concept of joint entropy (Shannon 1948). In the context of image 

registration, joint entropy provides a measure of the amount of information in the combined 

reference and moving images. This can be conveniently represented by a joint histogram. Each 

axis in the joint histogram contains the range of possible intensities for each image. Each entry 

is obtained by counting the number of times a given combination of grey values occurs in 

corresponding locations of both images (Figure 3-7).  

 

Figure 3-7 Joint histogram corresponding to images A and B in Figure 3-6. In this instance, the 
value of the joint entropy equals the value of the entropy of image A as all combinations of 
intensities in the 3x3 images occur only once. 

This is particularly useful when attempting to align two images, and the basic rationale for this 

is depicted in Figure 3-8. Taking a renal MRI image as an example, I generated an additional set 

of images by applying translations of different amounts in the head-foot direction to the original 

image. The degree of misalignment between the images increases with the absolute value of 

the translation applied. This is easily visible in the checkerboard images combining one pair of 
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original and translated images. As the degree of misalignment increases, the locations of 

corresponding anatomical structures in both images no longer match. This translates to joint 

histograms with increased blurring, as the likelihood of finding the same combinations of image 

intensities in corresponding locations of the two images decreases. In a way analogous to the 

entropy of a single image, the joint entropy increases as the intensities in the joint histogram 

spread from the well-defined clusters which exist when the images are aligned. Even though the 

particular example in Figure 3-8 deals with intra-modality registration, it is important to realise 

that these clusters will exist regardless of the relationship between the intensities of 

corresponding structures in both images. This is the property that makes joint entropy-based 

information theoretic measures suitable for inter-modality registration. 

The joint histogram can be normalized by dividing it by the total number of voxels. The result is 

a joint probability density function 𝑝(𝑖, 𝑗) of images A and B, which is used for the calculation of 

the joint entropy (HAB): 

𝐻𝐴𝐵 = − ∑𝑝(𝑖, 𝑗) log2 𝑝(𝑖, 𝑗)

𝑖,𝑗

 

The joint entropy was first proposed as an image similarity metric for image registration in 1995 

by both Collignon (André Collignon et al. 1995) and Studholme (Studholme et al. 1995). 

A known issue with using joint entropy for this purpose is that optimizing it (i.e. minimizing the 

joint entropy of two images) may in fact result in a failed registration. This is the case because 

minimization of joint entropy occurs when the all entries in the joint histogram cluster around a 

single value. Depending on the field of view and structure being imaged, a large proportion of 

the voxels in both images may correspond to air. A joint-entropy based optimization may 

therefore result in a maximisation of the correspondence of air in the two images at the expense 

of ensuring the alignment of other structures, as this would yield the sharpest joint histogram. 

This is known as the overlap problem and other metrics have been proposed which perform 

better and are somewhat less sensitive to this problem. One of these metrics is mutual 

information, another information-theory concept proposed as a similarity metric for image 

registration in (A Collignon et al. 1995) and (Viola & Wells 1997). It can be defined as: 

𝐼𝐴𝐵 = 𝐻𝐴 +𝐻𝐵 −𝐻𝐴𝐵 

Where 𝐻𝐴 and 𝐻𝐵 are the marginal entropies of images A and B, computed within their 

overlapping volume. Their values will be low when background intensities make up a large 

proportion of this volume.  
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Figure 3-8 Influence of increased image misalignment on image theoretic measures (joint 
histogram, joint entropy and mutual information). Image A, a coronal oblique anatomical image 
of the kidneys, was translated in the in plane y direction from -22 to 22 pixels with increments 
of 1 pixel. This generated a new set of images (Image B) which were overlaid to image A. Joint 
Entropy and Mutual information between the two was computed (plots). For the translations 
corresponding to multiple values of ten, a checkboard image combining image A and B 
(neighbouring squared tiles displaying voxels from different images), and the joint histogram of 
the two images is displayed. Note that for the case of no translation (i.e. identical images) all 
grey level counts lie on the diagonal of the joint histogram. Although these images are of the 
same subject / modality, which is a case which could be handled by one of the simpler similarity 
metrics, this example suffices to illustrate the inner workings of information theoretic based 
similarity metrics. 

A maximisation of mutual information therefore will correspond to a scenario characterized 

simultaneously by: 

 High marginal entropies: both images will contain a relatively high amount of 

information, avoiding images dominated by background. 
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 Low joint entropy:  large amount of shared information between the two images, 

implying they are aligned. 

This explains why mutual information per se is less sensitive to the overlap problem when 

compared to the joint entropy alone. Further robustness to changes in image overlap was 

demonstrated by Studholme et al. (Hawkes et al. 1999) who proposed a normalization scheme 

for the mutual information, which outperformed the standard mutual information measure in 

inter-modality MR-CT and PET-MR registrations: 

𝑁𝑀𝐼𝐴𝐵 = 
𝐻𝐴 +𝐻𝐵
𝐻𝐴𝐵

 

A comprehensive review of mutual information based registration applications can be found in 

(Pluim et al. 2003).  

3.5.3 Optimisation 

Optimisation is effectively a stepwise process that seeks to find the “optimal” transformation 

which brings the structures of interest into alignment. In practice, a given transformation is 

applied to the moving image and the corresponding output is compared to the reference image 

using an image similarity metric (see section above). This result informs the registration 

algorithm with regards to the transformation to apply in the next iteration, if convergence has 

yet to be reached. A key component of this step is the optimisation strategy. An evaluation of 

the complete parameter space by performing an exhaustive search is rarely performed as a 

multitude of efficient numerical optimisation techniques can be employed to tackle this issue. 

This is of crucial importance as the computational burden of a registration task increases rapidly 

with the complexity of the transformations (i.e. their number of degrees of freedom). Examples 

of such techniques include: Gradient Descent, Levenberg-Marquardt, Newton-type methods 

(Gauss-Newton and Quasi-Newton), Robbins-Monro, Downhill Simplex method, Powell’s 

method, stochastic and evolutionary algorithms, among others. A detailed description of many 

of these algorithms can be found in (Press et al. 2002), in (Maes et al. 1999), and in (Klein et al. 

2007). In the latter, Klein et al. (Klein et al. 2007) evaluated a subset of the existing optimisation 

strategies within the framework of a cubic B-spline based deformation model and a mutual 

information similarity measure. Importantly, they’ve shown that it is possible to reduce the 

computational time considerably without compromising the accuracy of the registration results 

by using fewer voxels to calculate the cost function and its derivatives, especially when using 

stochastic gradient-based algorithms, which do not require the exact derivatives to be 

computed. An example of algorithms amenable to this type of approach is the Robbins-Monro 
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(Robbins & Monro 1951). In fact, Klein et al. (Klein et al. 2007) found this approach to perform 

the best among the methods assessed in their work. 

In 2009, Klein et al. further proposed an automatic approach for an adaptive determination of 

step size along the search direction, to be used in conjunction with the Robbins-Monro 

optimisation approach (Klein et al. 2009). This was the optimization technique used for all 

registration tasks in this thesis, as implemented in the open-source registration toolbox elastix 

(Klein et al. 2010). 
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4 Investigation and minimisation of the sources of image 

artefact in 3D-GRASE ASL of the kidney 

Part of this work was presented at an European MRI conference (Nery et al. 2015a) and a 

National MRI conference (Nery et al. 2015b). 

4.1 Introduction 

As discussed in Section 2.3.6, renal ASL using a segmented, background-suppressed 3D-GRASE 

acquisition scheme with respiratory triggering has been shown to be reproducible in healthy 

volunteers (Cutajar et al. 2012), allowing for multi-slice studies with a range of TIs. However, 

when scanning less compliant subjects, motion represents a significant hurdle that needs to be 

overcome before ASL can be routinely applied in the clinic. 

This chapter describes an investigation into the sources of image artefacts due to motion in 

multi-shot 3D-GRASE ASL of the kidneys. The primary aim was a thorough overview of the image 

acquisition and reconstruction scheme to identify the major sources of artefacts due to 

movement during the image acquisition. Even though motion-related artefacts that corrupt the 

ASL blood flow maps may arise at different steps of the acquisition and processing pipeline, here 

the focus was on the quality of the individual ASL perfusion-weighted images (PWIs). Further 

issues related to alignment of different sets of image data required for Renal Blood Flow (RBF) 

calculation (e.g. 𝑀0 and 𝑇1) were addressed elsewhere in the thesis (see Chapter 6). 

We scanned healthy volunteers who were instructed to move and change their respiration 

patterns during the scan to examine the major sources of motion and their effects on image 

quality. Different schemes based on the 3D-GRASE pulse sequence were compared. A 

retrospective analysis of the effectiveness of respiratory triggering during irregular breathing 

was performed by synchronizing the respiratory waveform recordings to the data readout 

instants, allowing identification of instances where respiratory triggering was unable to ensure 

data acquisition at a consistent point in the respiratory cycle.  

The 3D-GRASE pulse sequence was chosen as the basis for renal ASL experiments within this 

thesis as it constitutes an attractive image readout module for ASL. Reasons for this include: 

 Intrinsically higher signal-to-noise ratio (SNR) of 3D imaging, which is particularly 

important for a low SNR technique such as ASL. This is also advantageous in paediatric 

imaging due to the lower amount of signal available (comparatively smaller structures 

to image); 
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 Fast whole-kidney coverage; 

 Consistent background suppression (BS) throughout all slices: all slices are excited at the 

same time so BS is equally effective in all of them, unlike in 2D multi-slice methods; 

 Exactly the same inflow time for all slices, for the same reasons as in the previous point; 

 Reduced SAR when compared to FSE, due to the lower frequency of spin-echo 

refocussing, particularly important for high field strength imaging; 

 Lower sensitivity to field inhomogeneity/susceptibility effects than gradient echo echo 

planar imaging (EPI) due to spin rephasing at the 𝑘-space centre in each partition. 

4.2 Motion-sensitivity in segmented 3D-GRASE ASL 

As discussed in Section 2.2.4.5, acquisition schemes based on the 3D-GRASE pulse sequence 

either consist of a single-excitation (single-shot imaging) or require multiple excitations for 

completely filling 𝑘-space (multi-shot imaging). In both cases, intra-shot motion (i.e. motion 

occurring during the imaging readout) is assumed to be negligible given the sampling time for 

each shot, which is necessarily short (typically less than 300ms) to avoid severe degradation of 

the image quality due to signal decay during the echo train. On the other hand, in the case of 

multi-shot imaging, the time between the acquisitions of the different segments corresponding 

to a given 3D 𝑘-space is much longer. Within these larger time intervals, inter-shot motion is 

bound to occur when scanning less compliant subjects, especially in the paediatric population. 

When an object (e.g. a kidney) changes position between the acquisitions of different segments, 

phase inconsistencies will be present among the phase-encoding lines of the fully sampled 𝑘-

space, as discussed in Section 3.1. This will generate artefacts along the phase-encoding 

direction in the reconstructed images. Unless the amount and type of motion was precisely the 

same during acquisition of the ASL control and labelled images, the level of artefacts will differ 

among them. Consequently, the quality of the PWI (resulting from a subtraction of the two) is 

severely affected (see Figure 4-1). 

One obvious strategy to reduce inconsistencies in the position of the kidneys related to 

breathing effects is simply to acquire data during subject breath-hold. Nevertheless, this is of 

limited applicability in paediatric MRI given the difficulty that children have in consistently 

holding their breath for a reasonable amount of time (Chavhan et al. 2013). To allow for free-

breathing scans with some degree of robustness to breathing motion, respiratory bellows are 

typically used in abdominal MRI. These record a waveform corresponding to diaphragmatic 

motion and as such offer a proxy of the kidney movement due to respiration.  
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Figure 4-1 Severely corrupted images from a multi-shot 3D-GRASE ASL dataset (transplant 
patient). Motion between the acquisitions of the different segments of 𝒌-space results in a 
combination of blurring and ghosting after image reconstruction. The red arrows point to the 
kidney, almost invisible in these slices due to a combination of BS and motion artefacts. 

Throughout all the experiments in this thesis, respiratory bellows were used to prospectively 

trigger the non-selective and slab-selective inversion FAIR ASL pulses at the end-expiration stage 

of the respiratory cycle. This ensures all inversions to be consistently applied at the same point 

in the respiratory cycle. Furthermore, this also increases the probability of different shots at the 

same TI to be acquired in the same part of respiratory cycle, significantly decreasing breathing-

related motion artefacts. The drawback with using triggering is the increase of the acquisition 

time, since the true acquisition TR varies according to the duration of the respiration cycle. 

An additional source of error exists whenever multiple image volumes are acquired and 

combined during the processing stage, either to enhance SNR (such as the case of averaging 

several measurements at the same TI) or for multi-TI perfusion quantification using 

compartmental models. Despite the individual images being artefact-free, the position of the 

target tissue may vary throughout the time series (see Figure 4-2). In fact, this is always a 

potential issue in ASL since two image volumes are required to obtain a perfusion weighted-

a) Slice 3/12; TI = 1700ms 

Control Tag Difference Anatomical Scan 

b) Slice 6/12; TI = 2700ms 
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image.  Different techniques can be used to address this problem, such as image registration 

(see Section 3.5) and implemented in Chapter 6 or the use of retrospective sorting algorithms, 

as reviewed in Section (see Section 2.3.6) and implemented in Chapter 5. 

 

Figure 4-2 Renal inter-scan translational movement. The kidneys are largely at consistent 
positions during the acquisition of each shot in a given TI, yielding mostly artefact-free images. 
However, the different TI lengths result in acquisitions at varying parts of the respiratory cycle. 
The values below each image correspond to the TI used for the corresponding acquisition. 

4.3 Methods 

Renal ASL data, in the form of reconstructed DICOM images, was available at the start of this 

project which had been previously acquired with a multi-shot 3D-GRASE sequence. A careful 

visual inspection of these data revealed a non-trivial amount of motion artefacts. These included 

blurring and ghosting (appearance of replicas of the object or its structures along the PE 

direction). The nature of these artefacts makes it challenging to confidently discern their cause, 

whether it is involuntary movement due to breathing, bulk body motion, flow or peristalsis. 

Image-based registration algorithms are not suitable for correcting these types of artefacts, 

since the data corruption occurs at the 𝑘-space level. Consequently, appropriate data correction 

algorithms must also act at this level. As such, access to the raw 𝑘-space data is paramount. 

Furthermore, even though respiratory bellows had been used, physiological information (i.e. the 

  100ms                          300ms                          500ms                        700ms                         900ms                 

    1100ms                      1300ms                      1500ms                        1700ms                     1900ms                 

  2100ms                          2300ms                        2500ms                          2700ms 
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respiratory trace) for these data was not recorded. These three main reasons motivated the 

acquisition of a new renal ASL datasets, in healthy volunteers, where both respiratory 

waveforms and raw 𝑘-space data were recorded. Acquiring data in compliant healthy volunteers 

is advantageous as it is expected that motion will be kept to a minimum. Furthermore, tasks may 

be assigned to attempt to replicate some of the common artefacts and thus understand their 

origin.  

Recording raw 𝑘-space data was made a mandatory step in the standard operating procedures 

for an (at the time) ongoing study where renal ASL data was acquired in transplant patients also 

using a multi-shot 3D-GRASE sequence. As such, some of these data is also shown in this chapter, 

even though I was involved only in scanning, but not recruiting these patients. 

4.3.1 Optimisation of the acquisition loop structure 

Image reconstruction software was developed to serve as a basis for future 𝑘-space based 

motion correction algorithms.  For each scan, the raw data is essentially a file which strings 

together all outputs from the analog-to-digital converter (ADC) during data acquisition (in the 

order they were acquired) together with specific headers for each 𝑘-space line containing 

information useful for the reconstruction algorithm. The order in which data is acquired (as 

implemented in the pulse sequence software), on its own, can have a dramatic influence in the 

motion sensitivity of a multi-shot multi-TI ASL sequence. From an implementation point-of-view, 

acquiring all 𝑘-space volumes is an iterative process including four main loops:  

1. Segments (or shots) loop: iterates to completely fill a 3D 𝑘-space in segmented 

acquisitions; 

2. ASL loop: alternates from the control to tag condition; 

3. Inflow time (TI) loop: iterates to acquire all TIs specified in the scanning protocol; 

4. Averaging loop: iterates to acquire all measurements specified in the scanning 

protocol (for averaging purposes); 

The averaging loop will no longer be discussed for two reasons: first, no averaging was 

performed in all experiments in this chapter. Secondly, this was the outermost loop in the 

sequence implementation and thus did not directly contribute to an increased sensitivity to 

motion artefacts. Through an analysis of the raw data files, it was found that the loop structure 

used in the acquisition scheme was sub-optimal from a motion sensitivity perspective. Firstly, 

the innermost loop in the image acquisition is the ASL loop.  Previous work supports this choice 

to reduce ASL subtraction errors (Berr et al. 1999; Alsop et al. 2015). After one iteration of this 

loop, the first 𝑘-space segment at the first TI is acquired for both control and tag conditions. In 
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the following steps, instead of acquiring the remaining shots at the first inflow time, all first 

segments corresponding to all TIs were acquired. Only then the remaining 𝑘-space segments 

were acquired. For a hypothetical 2-segment 2-TI acquisition, the ordering of the scans is thus: 

C.S1.TI1---T.S1.TI1---C.S1.TI2---T.S1.TI2---C.S2.TI1---T.S2.TI1---C.S2.TI2---T.S2.TI2 

Where C/T correspond to Control and Tag scans, S1/S2 refer to segments 1 and 2, and TI1/TI2 

refer to the two specified TIs. This results in a long interval of time during which the patient can 

move and thus introduce 𝑘-space inconsistencies which manifest as motion artefacts. This time 

depends largely on the length of the perfusion time series (i.e. number of TIs in a given protocol). 

This loop structure (from now on referred to as loop structure #1, LS#1) is depicted in Figure 4-3, 

as well as an example from an actual acquisition which shows that in this case (6 TIs), separate 

segments corresponding to the same 𝑘-space were acquired approximately 1 minute apart. 

We modified the sequence loop structure (now referred to as LS#2) by modifying the sequence 

source code so that the outermost loop is the "TIs" loop (see Figure 4-4). Following the previous 

example, the new ordering is: 

C.S1.TI1---T.S1.TI1---C.S2.TI1---T.S2.TI1---C.S1.TI2---T.S1.TI2---C.S2.TI2---T.S2.TI2 

The time between the acquisitions of the different segments corresponding to the same 𝑘-space 

is significantly reduced (from approximately 1 minute to less than 10 seconds in the example in 

Figure 4-3 and Figure 4-4). In addition, a major advantage of LS#2 is that any given bulk body 

motion event no longer potentially affects all TIs in the acquisition but instead motion artefacts 

are now "localised" to the TI where the motion took place. 

 

Figure 4-3 Original loop structure (LS#1) used in multi-shot multi-TI 3D-GRASE ASL acquisitions. 
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Figure 4-4 Modified loop structure (LS#2) for multi-shot multi-TI 3D-GRASE ASL acquisitions. 

4.3.2 Retrospective investigation of motion during acquisition 

As mentioned in the start of this chapter, potentially useful motion information is available in 

the respiratory bellows waveform. This is used during the data acquisition but not recorded by 

default for a retrospective analysis outside the scanner. This is the case for the software version 

which interfaces with the MR scanner used in this work (Siemens NUMARIS/4 VB17A). I enabled 

the automatic recording of the respiratory trace amplitude, together with the triggering 

instants, by modifying the sequence source code. Combining this with the timestamps of the 

acquisition of the different 𝑘-space segments (which can be parsed from the raw data headers), 

one can create plots as shown in Figure 4-5.  This allows one to precisely identify where in the 

respiratory cycle the image readouts occur, and as we will show later in this chapter, provides a 

handle into understanding common motion artefacts in this type of sequence. This particular 

example shows that the end-expiration "static" portion of the respiratory cycle varies 

throughout the scan. In addition, due to the different delays between the trigger and data 

acquisition, longer TIs can be acquired at different parts of the respiratory cycle when compared 

to the shorter TIs. 

 

Figure 4-5 Example of a respiratory waveform recorded with bellows, with highlighted instants 
of triggering (gray dots) and data acquisition (gray columns). Note that the columns highlighting 
data acquisition are in their actual time scale (readout durations of 237ms). The numbers in the 
top of the plot indicate the shot index in the acquisition.  
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Another potential source of motion information is embedded in the 3D-GRASE pulse sequence. 

Non-phase encoded lines are acquired immediately before the first refocusing pulse (see Figure 

4-6). These lines are used to correct phase errors related to the data sampling under alternating 

polarity readout gradients (EPI modules within 3D-GRASE pulse sequences). A Fourier transform 

of any of these reference lines yields a projection of the object along the orthogonal direction 

of the readout gradient. In our acquisition, the readout gradient is along the Head→ Foot 

direction. Therefore, our hypothesis is that these data intrinsically contain motion-related 

information along this direction, which is the direction along which breathing-related kidney 

movement is predominant. 

 

Figure 4-6 Non-phase encoded scans embedded in the 3D-GRASE pulse sequence for EPI Nyquist 
ghost correction. A Fourier Transform of these yields a projection of the object along the 
orthogonal direction of the readout gradient (Head→Foot in our MR protocol) 

Finally, as a last tool to investigate the source of motion artefacts, we performed zero-filled 

reconstructions of the individual 𝑘-space segments. The rationale behind this is that even 

though aliasing artefacts will be present in the reconstructed images, because the low number 

of segments (one third of the full 𝑘-space data acquired per excitation), the approximate 

position of the kidneys during acquisition of each segment will be possible to discern. An 

example of this approach is given in Figure 4-7, which depicts a simplified motion simulation, as 

well as undersampled reconstruction of 𝑘-space segments. The vertical translations applied to 

each of the segments are clearly visible in these reconstructions. 
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Figure 4-7 Simulation of the effects of multi-shot motion and zero-filled reconstruction of each 
segment. The second and third segments where shifted in the up-down direction. This results in 
ghosting along the phase-encoding direction in the fully-sampled reconstruction. 

4.3.3 MR acquisition and Subjects 

MR data was acquired in a Siemens Avanto 1.5T scanner (Siemens Healthcare, Erlangen, 

Germany) running the Siemens NUMARIS/4 VB17A software version. Both the spine coil 

embedded into the scanner table and a dedicated abdominal array coil were used. The latter is 

composed of two clusters, each with 3 coil elements in the left-right direction, whereas the spine 

coil has eight clusters also with 3 elements each in the left-right direction (of the eight clusters, 

three or four are active, depending on the FOV). A multi-TI FAIR 3D-GRASE pulse sequence (see 

Figure 2-11) was used, with segmentation (number of shots = 3) in the phase-encoding direction 

(left-right). Partial Fourier (factor = 0.75) was used in the second phase-encoding (or partition-

encoding) direction (anterior-posterior). Slice-selective pre-labelling WET saturation pulses (Ogg 

et al. 1994) as well as a single post-labelling sinc saturation pulse were used. Each coronal-

oblique volume is comprised of 12 partitions with 5mm thickness. The field-of-view was 400mm 

(Head → Foot) × 325mm (Left → Right). TR and TE were, respectively, 3000 and 26.8ms. In-plane 

resolution was 3.1mm × 3.1mm. The bandwidth and echo-spacing were, respectively, 2170Hz/Px 

and 0.6ms. Fourteen control-tag ASL pairs were acquired at TI values ranging from 100ms to 

2700ms with 200ms increments. No data averaging was performed. Respiratory bellows were 

used to capture a waveform corresponding to the breathing cycle with a sampling frequency of 

50Hz, allowing triggering of the ASL inversion pulses at end-expiration. Background suppression 

is implemented as described in (Günther et al. 2005) (see Figure 2-14), resulting in a consistent 

suppression across a range of TIs (see Figure 4-8). Spectral fat saturation was used. All 3D-GRASE 
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images were reconstructed off-line using programs written by myself in MATLAB (Matlab 

R2013a (The MathWorks, Inc.)). 

 

Figure 4-8 Longitudinal magnetisation available at the time of the RF excitation pulse over a 
range of TIs used in our measurements. Simulation performed for 𝑻𝟏 relaxation times of 966ms 
and 1412ms, corresponding respectively to the renal cortex and medulla (de Bazelaire et al. 
2004), at 1.5T. 

To plan the different experiments to be performed within a single MR scanning session (around 

60 minutes), a preliminary analysis of the time penalty due to the use of respiratory triggering 

was performed. The dataset consisted of 58 3D-GRASE ASL scans from 15 subjects (age (years) 

= 31±18 (mean±std), range=14-71). These were data acquired outside of the scope of this 

project with a similar protocol as described above.  The nominal (i.e. without respiratory 

triggering) scan time (𝑇𝐴𝑛𝑜𝑚𝑖𝑛𝑎𝑙) of a 3D-GRASE ASL acquisition is given by: 

𝑇𝐴𝑛𝑜𝑚𝑖𝑛𝑎𝑙 = 2 × 𝑇𝑅 ×𝑁𝑠ℎ𝑜𝑡𝑠 × 𝑁𝑇𝐼𝑠 × 𝑁𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 

Where the 2 factor accounts for the acquisition of two distinct sets of images (control and tag). 

For a multi-shot (𝑁𝑠ℎ𝑜𝑡𝑠 = 3) acquisition with 14 TIs, TR of 3 seconds and no averaging, 

𝑇𝐴𝑛𝑜𝑚𝑖𝑛𝑎𝑙 is 252 seconds. The true acquisition time (including triggering) (𝑇𝐴𝑡𝑟𝑖𝑔𝑔𝑒𝑟) of each of 

the 58 scans was determined by calculating the time elapsed from the acquisition of the first to 

the last 𝑘-space lines using the timestamps of the raw MR data. The ratio 𝑇𝐴𝑡𝑟𝑖𝑔𝑔𝑒𝑟/𝑇𝐴𝑛𝑜𝑚𝑖𝑛𝑎𝑙 

was calculated for each scan. A boxplot summarising the 𝑇𝐴𝑡𝑟𝑖𝑔𝑔𝑒𝑟/𝑇𝐴𝑛𝑜𝑚𝑖𝑛𝑎𝑙 results is shown 

in Figure 4-9. 
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Figure 4-9 Triggering time penalty boxplot in 58 3D-GRASE ASL scans, calculated as the ratio 
𝑇𝐴𝑡𝑟𝑖𝑔𝑔𝑒𝑟/𝑇𝐴𝑛𝑜𝑚𝑖𝑛𝑎𝑙. The central line corresponds to the median, the edges of the box to the 

25% and 75% percentiles (q1 and q3, respectively). Points larger than q3+1.5(q3 – q1) or smaller 
than q1–1.5(q3 – q1) are considered outliers. 

The testing protocol is summarised in Table 4-1 (localiser scans are not included). 

Table 4-1 Volunteer 3D-GRASE ASL scans 

Scan# Task Loop Structure 𝑵𝒔𝒍𝒊𝒄𝒆𝒔 𝑵𝒔𝒉𝒐𝒕𝒔 𝑵𝑻𝑰𝒔 

1 Still LS#1 12 3 12 

2 Still LS#2 12 3 12 

3 Still * 10 1 12 

4 Still * 10 1 12 

5 Bulk Motion LS#1 12 3 6 

6 Bulk Motion LS#2 12 3 6 

7 Resp. Motion LS#1 12 3 6 

8 Resp. Motion LS#2 12 3 6 

* Loop structure LS#1 and LS#2 are identical for the case of single-shot imaging. The difference 
between scans #3 and #4 was the voxel size (see Table 4-2 for details) 

The main goals for these acquisitions were: 

 Compare images from both loop structures in still (Scans #1 and #2) and motion (#5/#6 

and #7/#8) conditions; 

 Assess the image quality of single-shot scans (Scans #3 and #4); 

 Assess to what extent motion artefacts due to breathing correlate with the 

information from the respiratory trace together with the data readout intervals. 

 Investigate if the EPI phase correction projections can provide useful “navigator” 

information. 

In scans #5 and #6, the volunteers were instructed to move into a new position two times during 

each scan, at the instants indicated in Figure 4-10. They were asked to attempt to limit bulk body 

movement to these instants, and not to return to their original position after the intentional 
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movement events. These corresponded to the moment in LS#1 after the 1st and 2nd segments 

had just been acquired for all TIs in the experiment. Visual instructions were displayed in a 

screen inside the scanner room, visible through a mirror inside the scanner bore (see Figure 

4-11). All the volunteers moved at the intended time and were asked to perform movements of 

similar amplitude in both scans. For scans #7 and #8, they were asked to speed up their 

respiratory rate for 5+ respiratory cycles in varying parts of the scan. The goal was to force data 

acquisition during different parts of the respiratory cycle to assess breathing motion effects, in 

an attempt to replicate what is likely to occur when subjects with very irregular respiratory rates 

are scanned.  

Four healthy adult volunteers, with previous experience in MRI (age (years) = 33±5 (mean±std), 

range=25-37) were scanned using this acquisition protocol. In one of the volunteers, Scans #6 

and #7 could not be performed due to time constraints.  

 

Figure 4-10 Instants when the volunteers were instructed to move during the scan (arrows). 
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Figure 4-11 Visual commands displayed inside the scanner to inform the patients about the 
voluntary movement instants. Each of the figures a)-f) corresponds to what the patient could 
side inside the bore. The patients were instructed to move after shots 12 and 24), in the instants 
indicated by the arrows in Figure 4-10. 

4.4 Results and Discussion 

In the presence of motion, the loop structure order greatly impacts image quality. A comparison 

of the images acquired with both loop structures is shown in Figure 4-12. As would be expected, 

given the instants within the acquisition where the subjects moved, all data at six TIs acquired 

with LS#1 shows severe motion artefacts despite the fact that only two motion events took place 

during the entire acquisition. This is no longer the case with the data acquired with LS#2. In 

theory, assuming that i) all movement within the scan was limited to the instants when the 

subjects were instructed to move and ii) that the subjects would be capable to remain in a static 

position after moving, all images acquired with LS#2 should be free of motion artefacts, and only 

show the kidneys in different positions. This is not the case, and a few reasons may explain this. 

On one hand, a consistent observation by the volunteers is the difficulty in remaining in a static 

position after voluntarily moving into a new position following the scanning protocol. Therefore, 

even though the largest movements within the scan were those when the subjects were 

instructed to move, it is likely that these were not the only motion events during the whole 

acquisition. Furthermore, it was challenging to instruct the volunteers to move by a 

predetermined amount. Therefore, the amplitude of movement between the volunteers varied 

widely. A visual inspection of the data suggests the largest amount of movement was seen in 

volunteer two (see Figure 4-12, images at 1300ms and 1700ms acquired with LS#2 in this 

volunteer). Such amplitudes of movement will have an effect on the ASL labelling efficiency, 

which can also explain the reduced perfusion signal in the PWIs. In any case, the benefits of using 

LS#2 are evident, in particular if we consider the images at the lower TIs, which for the case of 

LS#2 were completely acquired before any motion event, when the volunteers were able to 

remain still given that they were in their default, more comfortable position. On the other hand 
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even at these lower TIs, movement artefacts are already evident in the data acquired with LS#1, 

as the later segments are acquired after the patient has moved into a different position.  

 

Figure 4-12 LS#1 and LS#2 comparison in two volunteers 

A visual inspection of the scans where the subjects exhibited a voluntary irregular respiration 

revealed that the appearance of motion artefacts is consistent with the information from the 

respiratory waveform. Specifically, motion corrupted images result when the segments of their 

corresponding 𝑘-space are acquired in different parts of the respiratory cycle. An example is 
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shown in Figure 4-13 c). As can be seen in the bellows waveform (Figure 4-13 a)), the first shot 

corresponding to the motion-corrupted image (shot #19 in the acquisition) was acquired at a 

significantly different part of the respiratory cycle when compared to the remaining two shots 

corresponding to the same 𝑘-space (shots #21 and #23). According to the respiratory waveform, 

shot #19 was acquired following the inspiration of a deep breath, which causes the kidneys to 

move to an inferior position. This explains the artefact in c), which will be further confirmed in 

Figure 4-17 e) and h). A similar example, from a different volunteer can be seen in Figure 4-14, 

which in addition shows how these artefacts, which are initially seen in the control and tag 

images, propagate to the PWIs which are used for RBF quantification. 

 

Figure 4-13 Effects of inter-shot motion due to respiration (I) in multi-shot background-
suppressed 3D GRASE acquisitions. a) Respiratory trace recorded with bellows. The blue 
readouts correspond to the acquisition of the motion-free image (b)) and the green readouts 
correspond to the acquisition of the motion-corrupted image (c)) 
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Figure 4-14 Effects of inter-shot motion due to respiration (II) in multi-shot background-
suppressed 3D GRASE acquisitions and corresponding difference images. Readout #23, i.e. the 
third shot of the control image at the TI of 1700ms, was acquired in a significantly different part 
of the respiratory cycle. 

Consistent with the existing literature, the increased motion sensitivity of non-background-

supressed data was confirmed. Image artefacts are sometimes encountered even when 

respiratory triggering appears effective, ensuring the segments of a single 𝑘-space volume are 

acquired in comparable parts of the respiratory cycle (Figure 4-15 b). ASL subtraction errors also 

appear more prevalent in non-background suppressed data, especially at longer TIs (Figure 

4-16). 
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Figure 4-15 Effects of inter-shot motion due to respiration (III) in multi-shot non background-
suppressed 3D GRASE acquisitions. a) Respiratory trace recorded with bellows. The blue 
readouts correspond to the acquisition of the motion-corrupted image (b)). Unlike in Figure 
4-13, each readout occurs at consistent points in the respiratory cycle, but breathing-related 
artefacts are still evident. 

The projections obtained from the FT of the first phase correction reference line of each shot 

corresponding to the images shown in Figure 4-13 and Figure 4-15 are shown in Figure 4-17 d),h) 

and Figure 4-18 d),h), respectively. In both cases, it can be seen that the projections 

corresponding to the 𝑘-space segments (e)-g) in both figures) giving origin to the corrupted 

images are the less consistent.  This suggests that to a certain extent, there is motion-related 

information embedded in these projections, which could be used as a proxy for kidney 

movement. The question of whether this information can be used for detecting or correcting 

motion artefacts is outside the scope of this chapter, but will be revisited in Chapter 5. 
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Figure 4-16 Comparison of background-suppressed (BS) and non-BS data acquired in the “still” 
condition in volunteer 2. BS is effective in reducing subtraction errors, especially at longer TIs 
when the effectiveness of respiratory triggering is reduced. 

The undersampled reconstructions of each shot corresponding to each of the previously 

referred projections are also shown in Figure 4-17 and Figure 4-18. The respiratory waveform in 

Figure 4-13 a) indicates that shot #19 was acquired at end-inspiration. The zero-filled 

reconstruction of this shot (Figure 4-17 e)) is consistent with this observation, showing the 

kidneys (which overlap due to aliasing) in a significantly more inferior position when compared 

to the other two shots (Figure 4-17 f) and g)). These shifts in position cause phase inconsistencies 

in the fully sampled 𝑘-space giving rise to the artefacts in Figure 4-13 c) (highlighted by the 

arrows). Furthermore, the projections shown in Figure 4-17 h) also show a greater variation 

among shots when compared with the projections in Figure 4-17 d) acquired immediately 

before, in the motion-free scan (Figure 4-13 b)).  

The origin of the artefacts in Figure 4-15 b) can also be explained by respiratory related shifts as 

suggested by the undersampled reconstructions of Figure 4-18 e), f) and g) and the projections 

in Figure 4-18 h). In this case however, the renal shifts in position among the shots were smaller, 

and hard to detect based only on the respiratory trace plot in Figure 4-15 a). 
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The zero-filled reconstructions of each shot making up the control images in Figure 4-1 are 

shown in Figure 4-19s. In a), the undersampled reconstructions reveal different structures 

among the segments (arrows). This, together with potential bowel movements between the 

acquisition of the different shots results in ghosting in the fully sampled reconstruction. These 

data were acquired before enabling the recording of the respiratory data. However, in these 

cases, breathing-related motion is probably less problematic given the location of the transplant 

kidney (Lanzman et al. 2010). To reduce bowel movement, a more important source of artefacts 

when scanning more inferior regions, fasting for 4-6h before the scan or using anti-peristaltic 

drugs may be helpful (Romero et al. 2014). Nevertheless, one might argue that in these severe 

corruption cases, data rejection and/or reacquisition are possible alternatives if correction is a 

challenge.  

 

Figure 4-17 Zero-filled reconstruction of each shot from data in Figure 4-13 and corresponding 
projections obtained from the EPI phase correction data. a), b) and c) (which correspond 
respectively to shots #13, #15 and #17 in Figure 4-13) suggest that the acquisition of each shot 
took place at a similar point of the respiratory cycle. Conversely, both the zero-filled 
reconstructions e), f), g) (which correspond respectively to shots #19, #21 and #23 in Figure 4-13 
and the projections suggest that shot #19 (i.e. projection #1 in h)) was acquired when the 
kidneys were in a significantly lower position compared to the other two shots. This matches 
what can be seen in the bellows waveform in Figure 4-13 a), providing evidence for the origin of 
the motion artefacts in Figure 4-13 c). 
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Figure 4-18 Example analogous to Figure 4-17. Both e) and the projections in h) show the kidneys 
acquired in a different part of the respiratory cycle compared to the other shots, giving origin to 
the artefacts in Figure 4-15 b) 

 

Figure 4-19 Zero-filled reconstruction/projections from corrupted data. These data correspond 
to each shot making up the control images shown in Figure 4-1. 

Another alternative is to use single-shot acquisitions. These are more robust to motion, given 

that the entire 𝑘-space is sampled after a single excitation. In this scenario, care must be taken 
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so that the readout duration is kept within acceptable limits. On one hand, this is crucial to 

ensure that the assumption of negligible intra-shot motion still holds. In addition, this is a 

requirement to avoid excessive blurring due to 𝑇2 decay which broadens the point-spread 

function of the system, decreasing the effective resolution of the scans. Examples of PWIs 

acquired with single-shot scans are shown in Figure 4-20. Relevant image readout specific 

parameters are detailed in Table 4-2.  

Table 4-2 Single-shot and multi-shot image readout parameters 

Scan# 
Resolution 

(mm) 

TE  

(ms) 

BW  

(Hz/Px) 

Echo 

spacing (ms) 

EPI 

factor 

Readout 

duration (ms) 

3 4.2×4.2×6 38.24 2741 0.4 78 302 

4 6.3×6.3×6 26.46 2790 0.4 52 208 

All others 3.1×3.1×5 26.8 2170 0.6 40 237 

 

One of the disadvantages of the single-shot scans is the lower image resolution. However, from 

an SNR point-of-view, a lower image resolution is beneficial. This is especially important in an 

inherently low SNR technique such as ASL. In single-shot acquisitions, one can trade the extra 

time previously used to acquire multiple segments for additional single-shot measurements 

(multiple averages), which not only is beneficial in terms of SNR but further increases the 

robustness of the measurement to motion. Data acquired at 6.3mm in-plane resolution, with 

the shortest readout duration of the set, is of high quality, but the coarse image resolution 

results in a severe loss of cortico-medullary differentiation. At this resolution level, partial 

volume effects will likely have a pronounced effect on the quantification of cortical perfusion. 

Nevertheless, the high SNR and speed of acquisition of these scans can render them useful for 

transit delay mapping (Dai et al. 2012). An improved resolution of 4.2mm in-plane can still be 

obtained in a single-shot condition (Figure 4-20 b), at the expense of a 27% increase of the 

readout duration (237ms to 302ms). The resulting readout duration is still within the limit of 

what is acceptable (with respect to the total amount of signal decay occurring during the echo 

train) according to a consensus publication with recommendations of pulse sequence 

parameters for 3D-GRASE ASL (Alsop et al. 2015). Even though this was targeted to the brain, 

the relatively similar 𝑇2 values of the brain (e.g. 92.1±2.6ms for gray matter (Deoni et al. 2003)) 

and kidneys (e.g. 87±4ms for cortex  (de Bazelaire et al. 2004)) implies that this particular 

recommendation is arguably translatable to renal imaging.  
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Figure 4-20 Multi-shot and single shot ASL difference images. Comparison of PWIs acquired with 
the optimised multi-shot sequence and a single-shot sequence, the latter at two different in 
plane resolution settings. Scans acquired during free breathing, without any extra intentional 
motion by the subject. 

4.5 Conclusion 

ASL is intrinsically a motion sensitive technique since is dependent on an image subtraction step 

(control-tag) to generate a perfusion weighted image. Imaging in the abdomen presents 

additional challenges, motion in particular, when compared to the brain, where most of the ASL 

research is conducted. Respiratory triggering has shown to be useful, even when using advanced 

image registration algorithms (Seif et al. 2015). However, it is unable to solve all respiratory-

related problems because of the time delay between the trigger (ASL inversion pulse) and the 

imaging readout. Additional motion sensitivity is introduced when 𝑘-space is filled in a 

segmented fashion, with significant time gaps between the acquisition of the different RF 

excitations. I have shown the importance of reducing these time delays, in particular when 

acquiring data at multiple TIs. I have shown that our acquisition scheme can intrinsically provide 

motion-related information, by using EPI phase-correction lines in a navigator-like fashion. 

Whether this information can be used for rejection of corrupted PWIs, due to displacements 

between control and tag images was investigated elsewhere in this thesis (see Chapter 5).  

Alternatively, inconsistencies between the projections corresponding to different shots in 

segmented acquisitions will likely allow for detection of corrupted data, even before control-tag 

subtraction. Our preliminary volunteer data suggests that there is value in further investigating 

single-shot acquisition schemes. One may hypothesize that these are potentially better suited 

in the routine clinical environment, where motion is more likely to be an issue, especially in the 

paediatric population. With optimised sequence parameters, image artefacts due to motion 
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should be avoided in the control/tag images simply because of the fact that all data is acquired 

in a very short period of time, effectively freezing any motion. Nevertheless, both subtraction 

errors and shifts in position by the tissue of interest throughout the multi-TI data will still be a 

source of error in the perfusion measurements. Image registration algorithms will be used to 

tackle these issues in Chapter 6. In summary, 3D-GRASE is an efficient acquisition scheme for 

ASL but must be optimised when applied in the abdomen to overcome motion-related issues 

before it can be routinely used in the clinic.  
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5 Robust kidney perfusion mapping using a single-shot 3D-

GRASE readout and retrospective noise-reduction methods 

Part of this work was presented at an European MRI conference (Nery et al. 2016b) and (Nery 

et al. 2016a) 

5.1 Introduction 

The ultimate aim with this thesis is to develop a renal ASL method for clinical application in 

paediatric patient cohorts. This specific application demands for a robust approach capable of 

delivering usable data in the face of potentially uncompliant subjects. Therefore, the renal ASL 

approach developed in this chapter focuses on speed and robustness to motion.  

This chapter is divided into two parts, building on the conclusions laid out in the previous 

chapter. The first part consists of a feasibility study of perfusion quantification in the kidneys of 

healthy volunteers where for the first time single-shot 3D GRASE was employed as an imaging 

readout module. Unlike in (Cutajar et al. 2012), where ASL data was acquired at multiple TIs, 

here we take the conservative approach of using a single TI. The disadvantage of this approach 

is that it relies on the assumption that at the chosen TI the labelled bolus has arrived at the 

imaging region, which can be problematic in situations where the renal haemodynamics deviate 

from normal. Nevertheless, this approach is in line with our goal of achieving a fast acquisition 

scheme resilient to motion. Reasons for this include the fact that using a single TI results in: 

 Shorter scan times: the scan time is proportional to the number of TIs in the ASL 

protocol, which if combined with signal averaging may result in a prohibitively long scan. 

On the other hand, in single-TI single-shot 3D-GRASE imaging the nominal scan time 

remains most likely under 3 minutes, even when acquiring a large number of ASL 

control-label pairs; 

 Possibility of performing signal averaging: due to the shorter scan time; 

 Higher signal-to-noise ratio (SNR): resulting from signal averaging, particularly useful in 

cases of reduced perfusion, as is expected in patients with impaired renal function; 

 Possibility of rejecting corrupted data: given the protocol’s built-in data redundancy 

resulting from the acquisition of multiple ASL pairs at the same TI. This may be 

particularly beneficial in background-suppressed acquisitions, given that the reduced 

static tissue signal may affect the effectiveness of image registration algorithms; 

 Increased effectiveness of respiratory triggering: since even though the triggering event 

doesn’t directly initiate data acquisition, the delay between the trigger and actual 
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readout is constant for all acquisitions. This increases the likelihood of acquiring the data 

at consistent points in the respiratory cycle; 

Another reason why single-shot scans are beneficial is their reduced motion sensitivity when 

compared to non-background suppressed multi-shot scans. This is an issue even if these scans 

are not used to compute perfusion-weighted images (PWIs), but rather for calculation of 

baseline 𝑀0 and 𝑇1 maps, used in the quantification of Renal Blood Flow (RBF). 

Inconsistencies in 𝑘-space that translate to artefacts such as those seen in section 4.2 are no 

longer expected when data is acquired in a single fast readout (assuming no intra-segment 

motion). However, movement will still play a detrimental role as after control-label subtraction 

it gives rise to spurious signals which instead of reflecting tissue perfusion are caused by 

subtraction errors. This is particularly important when imaging the kidneys since they are subject 

to breathing-related movement. Furthermore, standard respiratory triggering implementations 

may face ASL-specific challenges (see Figure 5-1).  

Several methods have been developed which reduce the contribution of corrupted ASL 

difference images to a mean PWI (Tan et al. 2009; Shirzadi et al. 2015; Tanenbaum et al. 2015). 

In the work described in the second part of this chapter, I tackled this problem using two main 

strategies to either outright reject or downweigh the contribution of corrupted measurements. 

First, we developed and implemented an algorithm that makes use of the “navigator”-like 

Nyquist-ghost phase correction projections (as discussed in Chapter 4) for identifying and 

rejecting ASL pairs corrupted by motion.  

Furthermore, we apply for the first time in the kidneys two threshold-free weighted averaging 

approaches, based on (Tanenbaum et al. 2015). All motion compensation strategies are 

evaluated in terms of the quality of the final averaged PWI, using metrics such as the SNR and 

image entropy as potential image quality proxies. 
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Figure 5-1 Challenges with respiratory triggering. A – Varying inflow times may result in different 
acquisitions being performed in different parts of the respiratory cycle, even in subjects with 
reasonably regular respiratory patterns. B – Irregular respiratory rates. Note how the highlighted 
acquisitions occur at significantly different parts of the respiratory cycle, and consequently the 
kidneys will be in different positions. 

5.2 Methods 

5.2.1 MR acquisition and Subjects 

MR data was acquired in a Siemens Avanto 1.5T scanner (Siemens Healthcare, Erlangen, 

Germany) running the Siemens NUMARIS/4 VB17A software version. Both the spine coil 

embedded into the scanner table and a dedicated abdominal array coil were used. The latter is 

composed of two clusters, each with 3 coil elements in the left-right direction, whereas the spine 

coil has eight clusters also with 3 elements each in the left-right direction (of the eight clusters, 

three or four were active, depending on the FOV). A single-shot FAIR Q2TIPS 3D-GRASE pulse 

sequence (see Figure 2-11 and Figure 2-14) was used. Partial Fourier (factor 3/4) was applied 

along the partition direction, resulting in an ETD of 248 ms (for the brain, it is recommended an 

echo train shorter than 300 ms (Alsop et al. 2015) to avoid excessive through-plane blurring). In 

order to maintain the highest possible SNR (which is crucial for maximising the accuracy of 

measurement for the low perfusion values expected in disease), it was decided not to use a 

parallel imaging acquisition method. The g-factor SNR penalty resulting from the small number 

of coil elements in the PE (L-R) direction (3 for both the abdominal and spine array coils, as 

described above) would severely compromise image quality, even if a relatively modest parallel 

imaging acceleration factor (e.g. R=2) was employed, and so only partial Fourier methods were 

used in this work. Each coronal-oblique volume is comprised of 10 partitions with 6mm thickness 

 Legend: 
data acquisition 
trigger instant 

Inversion  
time (TI) 

A 

B 
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(8 sampled, 2 zero padded). The field-of-view was 288mm (Head → Foot) × 288mm (Left → 

Right). TR and TE were, respectively, 3000 and 31.5ms. In-plane resolution was 4.5mm × 4.5mm. 

The bandwidth and echo-spacing were, respectively, 2790Hz/Px and 0.4ms. Fifteen control-tag 

ASL pairs were acquired at a TI of 1200ms, allowing for signal averaging. The bolus duration (𝜏) 

was fixed to 900 ms. The nominal scan time was 90 seconds. Respiratory bellows were used to 

trigger the application of the ASL inversion pulses at end-expiration. Background suppression is 

implemented as described in (Günther et al. 2005) (see Figure 2-14). Slice-selective pre-labelling 

WET saturation pulses (Ogg et al. 1994) as well as a single post-labelling sinc saturation pulse 

were used.  

Five healthy adult volunteers, with previous experience in MRI (age (years) = 32±5 (mean±std), 

range=26-37) were scanned using this acquisition protocol, under two different conditions. 

During the first scan, the volunteers were instructed to remain still. No further instructions were 

necessary as the acquisition was performed during free-breathing. In the second scan, the 

volunteers were asked to change their respiratory rate/amplitude during approximately five out 

of the fifteen ASL pairs to intentionally reduce the efficacy of respiratory triggering. To assess 

the reproducibility of the technique, one of the subjects was scanned in the “no-motion” 

condition on three different occasions, with the second and third scan occurring 7 and 21 days 

after the first. 

5.2.2 Image analysis 

Perfusion quantification was performed using a single-compartment model (Song et al. 2010), 

assuming a 𝑇1 value for the kidney cortex of 0.966s (de Bazelaire et al. 2004). Because at the 

time of writing this chapter, registration algorithms able to register ASL images (background-

suppressed in this protocol) to the reference non-background suppressed data (reference 𝑀0 

images) had not been validated yet, the 𝑀0 value used for quantification is the median 𝑀0 in 

whole-kidney regions of interest (Fig. 1), obtained from a non-background suppressed 3D GRASE 

reference scan.  This ensures that in the case of the ASL and the 𝑀0 data being misaligned, 

perfusion quantification values close to the boundaries of the kidney (i.e. in the cortex) will not 

be biased by using 𝑀0 values from outside the kidneys. Renal cortical ROIs were manually drawn 

in the reference non-background suppressed data. Average cortical perfusion values were 

calculated within these ROIs in each of the subjects. 

5.2.3 Reducing the effects of motion corruption – theory 

Several methods were implemented with the aim of minimising the effect of large movements, 

which corrupt data beyond what is generally feasible for image registration methods to 
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compensate for. This is highly relevant in background-suppressed renal ASL data, as on one hand 

the background-suppression (BS) reduces the effectiveness of image registration algorithms and 

on the other hand extreme abdominal motion may be characterised by non-rigid 

transformations which further increase the complexity of the registration problem. 

5.2.3.1 Strategy 1: Data rejection 

As discussed in Chapter 4 immediately before the image readout portion of the 3D-GRASE pulse 

sequence, non-phase encoded lines are acquired for the purposes of phase correction. The 1D 

Fourier transform of each non-phase encoded echo from the phase correction reference scan 

corresponds to a projection of the object along the orthogonal direction of the readout gradient 

(Head→ Foot in all imaging protocols in this thesis).  We have shown in Chapter 4 that these 

projections contain intrinsic motion information. A simple algorithm was developed and 

implemented to make use of this information to identify misaligned ASL control-tag pairs, which 

after image subtraction yield a motion-corrupted ASL PWI. These corrupted intermediate PWIs 

are then rejected before data averaging. An overview of this algorithm is depicted in Figure 5-2. 

This figure shows a practical example of acceptance and rejection of PWIs, respectively in a case 

where the position of the underlying control and tag images is consistent and a case where the 

two are misaligned. This algorithm can be divided into three steps: 

 Step 1: definition of the ROI (within the projection data) within which shifts caused by 

motion will be tracked; 

 Step 2: determination of the shift (in pixel units) which maximises the similarity 

between control and tag projections (bestShift); 

 Step 3: acceptance/rejection of an ASL pair according to bestShift. 

The aim with Step 1 is to determine the region within the projections which ideally provides the 

maximum amount of information related to kidney motion. Following a visual inspection of the 

projection data and their variability especially in inconsistent ASL pairs, a set of heuristics were 

defined to determine this region in an automatic way. A consistent observation was that the 

region with highest signal in the projection data is located at the level of the liver region. For the 

purposes eliminating highly corrupted data (assuming a more fine motion correction to be 

feasible with image registration), it was assumed that tracking this region signal would suffice to 

detect significant breathing-related mismatches between the position of the kidneys in the 

control and tag images of a given ASL pair. As such, the ROI for motion tracking was defined to 

be the 9cm-wide region with the highest signal intensity in the sum of the control projections 

(see Figure 5-2.a)). The rationale for the size of this ROI is to provide a large enough margin to 
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likely include the lung-liver interface (proxy for breathing-related motion) within the tracking 

region in the second step of the algorithm. 

 

Figure 5-2 Automatic retrospective rejection in ASL using Nyquist-ghost elimination data. a) 
Definition of the ROI from which changes in position are tracked; b) example of rejection of a 
motion-corrupted difference image; c) example of acceptance of a motion-free difference image 

In the second step of the algorithm (see Figure 5-2.b) and c) for a practical example), for each 

ASL pair, the projection from the control acquisition is taken as a reference, and the projection 

from the corresponding tag acquisition is iteratively shifted from -4.5cm to 4.5cm (-10 to 10 

pixels at the resolution at which these data were acquired) in the head-foot direction, relative 

to its original position. For each shift, the sum of squared differences between the control 

projection and the shifted tag projection is computed within the previously defined ROI. The 

“bestShift” is defined as the shift which minimizes this sum of squared differences.  

Finally, in step 3 ASL pairs are accepted/rejected according to bestShift: 

 |𝑏𝑒𝑠𝑡𝑆ℎ𝑖𝑓𝑡| > 1 → reject ASL pair 

 |𝑏𝑒𝑠𝑡𝑆ℎ𝑖𝑓𝑡| ≤ 1 → accept ASL pair 

The threshold of 1 was chosen to avoid false positives (i.e. rejection of motion free data), as a 

small shift in the ROI may not necessarily translate to a significant mismatch between the 

positions of the kidneys at the time of acquisition of the control and tag image volumes. It is 
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assumed that in the event of the algorithm failing to reject motion corrupted data whose 

absolute value of bestShift is smaller or equal than 1, the underlying mismatch between control 

and tag image is small enough to be amenable for correction using image registration.  

The biggest advantage of this method is that the non-phase encoded data is acquired 

immediately before the actual image readout. Therefore, the motion information within these 

data matches exactly the position of the different organs exactly at the point of image 

acquisition, which is not the case with triggering, due to the delay between the triggered 

labelling pulse and the image acquisition. 

5.2.3.2 Strategy 2: Weighted averaging 

An alternative strategy is to weight the contribution of the different measurements in different 

proportions according to noise estimates derived from the ASL data itself. The contribution of 

measurements deemed corrupted by motion (and potentially other artefacts) to the final PWI 

can then be significantly reduced. The advantage of these approaches is that they largely require 

no user input (if the user wishes to restrict the FOV region over which the noise estimates will 

be calculated then the only step that requires user interaction at this stage is the definition of 

masks for specifying these), do not depend on arbitrarily defined thresholds, and can be readily 

implemented for any type of ASL sequence with little computational cost. The disadvantages 

include the fact that they are a purely retrospective method and unlike registration, they do not 

correct corrupted data. 

In general, if 𝜖𝑝 is a vector of noise estimates for each measurement (e.g. an ASL pair in this 

case), the vector of weights can be obtained by: 

 𝑤𝑝 =
1

𝑐𝜖𝑝
 Equation 5-1 

Where: 

 𝑐 =  ∑
1

𝜖𝑝

𝑁

𝑝=1

 Equation 5-2 

And 𝑁 is the number of measurements. As such: 

 ∑𝑤𝑝

𝑁

𝑝=1

= 1 Equation 5-3 

The calculation of the mean PWI (𝐼)̅ is simply the dot product: 
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 𝐼 ̅ = ∑𝑤𝑝 ⋅ 𝐼𝑝

𝑁

𝑝=1

 Equation 5-4 

Where 𝐼𝑝 is the PWI corresponding to the control-tag pair 𝑝. 

We explored two approaches for computing the noise power 𝜖𝑝 for each measurement. 

In the first, noise is estimated by computing the so called DVARS measure (Smyser et al. 2010; 

Power et al. 2012). In this approach, applied in a previous neuroimaging ASL study (Tanenbaum 

et al. 2015): 

 𝜖𝑝𝐴 =
1

𝑀
∑{[𝐼𝑝(𝑟) − 𝐼𝑝−1(𝑟)]

2
+ [𝐼𝑝+1(𝑟) − 𝐼𝑝(𝑟)]

2
}

𝑀

𝑟=1

 Equation 5-5 

Where 𝐼𝑝(𝑟) corresponds to the intensity of the PWI corresponding to the ASL pair 𝑝 at the 

locations (voxels) 𝑟. The total number of voxels over which the noise metric is calculated is 𝑀. 

In this case, the DVARS measure is only defined if “temporally” adjacent measurements exist. 

As such, both the ASL pairs 1 and 𝑁 are discarded, regardless of them being corrupted by motion 

or not. This method will henceforth be referred to as wMeanA. 

I propose a second approach (wMeanB), where the difference between each individual 

measurement and the mean of the PWI time series is computed: 

 𝜖𝑝𝐵 =
1

𝑀
∑{[𝐼𝑝(𝑟) − 𝐼𝑚𝑒𝑎𝑛(𝑟)]

2
}

𝑀

𝑟=1

 Equation 5-6 

Unlike when using 𝜖𝑝𝐴 , no data needs to be discarded for the computation of the weights for 

each ASL pair. One might expect this to be particularly important for multi-TI ASL. This is because 

such protocols necessarily include a smaller number of measurements due to time constraints, 

and as such, avoiding the rejection of uncorrupted data is crucial. Furthermore, this modification 

allows the possibility of running this algorithm in an iterative way. In the first iteration, 𝐼𝑚𝑒𝑎𝑛 

corresponds to a typical ASL averaged image where each measurement is assigned the same 

weight (1/𝑁). In subsequent iterations, 𝐼𝑚𝑒𝑎𝑛 corresponds to the output weighted mean image 

in the iteration that preceded it. As such, in the second and later iterations the individual PWIs 

are “compared” to an already improved mean image, further decreasing the weight assigned to 

corrupted measurements (see Table 5-1). Our preliminary tests show that after a small number 
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of iterations (less than 10) the algorithm converges (the change in individual weights across 

iterations becomes negligible). 

Both approaches allow the regions over which the noise estimates are calculated to be specified. 

The user therefore has control over the desired area for optimisation. In the particular case of 

renal ASL, subtraction errors due to respiration can also occur in organs/regions other than the 

kidneys. As such, each weighted averaging algorithm was tested in two conditions: 1) including 

all voxels within the FOV, to assess whether more robust noise control is achieved when 

accounting for possible corrupted data outside the kidneys; and 2) restricting the processing to 

voxels within renal cortical regions of interest only, where the perfusion would be subsequently 

calculated. 

Table 5-1 Pseudo-code 1: Iterative weighted averaging  

 

In summary, five methods for data rejection were tested (see Table 5-2): 

Table 5-2 Summary of implemented data rejection / noise-reduction methods 

Method # Name Noise estimate Mask No. of iterations 
1 rej --- --- --- 
2 wMeanA ϵpA  none 1 

3 wMeanA-mask ϵpA  cortex 1 

4 wMeanB ϵpB  none 10 

5 wMeanB-mask ϵpB  cortex 10 

 

For each iteration of “N_ITERATIONS” 

    If (first iteration) 

        % output of first iteration → unweighted mean image 

        meanImage = mean(pwImages, 4);  

        out{iteration} = meanImage; 

    Else 

        % mean image in iteration “n” → output of iteration “n-1” 

        meanImage = out{iteration}; 

    EndIf 

    For pwiImage of “N_MEASUREMENTS” 

        Compute 𝜖𝑝𝐵; 

        Compute 𝑤𝑝; 

    EndFor 

    % compute weighted mean image using weights 𝑤𝑝 

    out{iteration+1} = mean(pwImages, 4, 𝑤𝑝); 

EndFor 
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5.2.4 Reducing the effects of motion corruption – quantitative evaluation 

To quantitatively assess the effects of the motion/noise correction algorithms, four metrics were 

employed: 

I. Cortical signal-to-noise ratio (𝑆𝑁𝑅𝑐𝑡𝑥) 

 Ratio between the cortical signal intensity and the standard deviation of the 

signal intensity in a background ROI. The background ROI consisted of a region 

of 7×7×3 voxels without discernible perfusion signal. 

 𝑆𝑁𝑅𝑐𝑡𝑥 = 𝐼�̅�𝑡𝑥 𝜎𝑛𝑜𝑖𝑠𝑒⁄  

II. Cortical temporal standard deviation (𝑡𝑆𝑇𝐷𝑐𝑡𝑥) 

 Standard deviation of the signal intensity time series in cortical voxels  

 𝑡𝑆𝑇𝐷𝑐𝑡𝑥 = 𝜎𝑐𝑡𝑥
𝑡  

III. Cortical temporal SNR (𝑡𝑆𝑁𝑅𝑐𝑡𝑥) 

 Ratio between the cortical intensity and the standard deviation of the 

corresponding signal intensity time series  

 𝑡𝑆𝑁𝑅𝑐𝑡𝑥 = 𝐼�̅�𝑡𝑥 𝜎𝑐𝑡𝑥
𝑡⁄  

IV. Image (volume) entropy (𝐻𝑣𝑜𝑙) 

 Image entropy (as discussed in Section 3.5.2.2) computed throughout the 

entire image volume. 

 𝐻𝑣𝑜𝑙 = −∑ 𝑝𝑏 𝑙𝑜𝑔2 𝑝𝑏
𝐵
𝑏=1  

Where: 

 𝐼�̅�𝑡𝑥: perfusion-weighted (Δ𝑀) signal in a cortical voxel 

 𝜎𝑛𝑜𝑖𝑠𝑒: standard deviation of the signal intensity in a background ROI 

 𝜎𝑐𝑡𝑥
𝑡 : standard deviation of the cortical time series in a cortical voxel 

 𝐵: number of bins for entropy calculation (B = 256) 

 𝑝𝑏: normalised intensity histogram counts (probabilities) at bin 𝑏. 

Note that for the evaluation of the weighted averaging methods, 𝜎𝑐𝑡𝑥
𝑡  is calculated as the 

weighted standard deviation using the vector of weights 𝑤𝑝 (whose sum equals one) obtained 

during the weighted averaging methods. MATLAB’s implementation of the weighted standard 

deviation was used, which for a vector 𝑥 with elements 𝑥1, 𝑥2, … , 𝑥𝑁 and using weights 

𝑤1, 𝑤2, … , 𝑤𝑁  is defined as: 

𝜎𝑥
𝑤 = √

∑ 𝑤𝑖(𝑥𝑖 − �̅�)
2𝑁

𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

 

Where �̅� is the weighted mean of 𝑥. 

All metrics except 𝐻𝑣𝑜𝑙 are computed in a voxel-wise basis. Results, where presented in numeric 

form, are expressed as mean±standard deviation considering all voxels within the cortical ROI. 
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Two-tailed paired t-tests were used to assess for statistically significant differences in each of 

the metrics after applying each motion correction method when compared to the “No 

correction” condition. The threshold for statistical significance was chosen to be 0.05. 

5.3 Results 

5.3.1 Perfusion quantification in the still condition 

In the still condition, all ASL scans were free of motion artefacts (see Figure 5-3). Note that given 

the nature of the readout used during acquisition (3D), all slices are acquired simultaneously 

and therefore the level of motion corruption (and the effect of the motion suppression 

algorithms) is identical for all slices. For this reason, and for simplicity, only a central slice from 

each subject is shown when visually evaluating the effects of the motion suppression algorithms. 

Good image quality was obtained in a short nominal scan time (90 seconds) with clear contrast 

between renal cortex and medulla. Perfusion maps for subject 3 are shown in Figure 5-4, 

demonstrating good reproducibility of the technique. The mean cortical perfusion across all 

subjects/scans was 295 ± 97 ml/100 g/min (range: 245–343 ml/100 g/min), which agrees with 

the range of renal cortical perfusion values obtained in healthy volunteers in previous studies 

(see Section 2.3.6). Some degree of heterogeneity of the perfusion values can be see within 

different cortical regions in the kidneys, a finding which is repeatable in the case of subject #3 

(see Figure 5-4). Intra-kidney variations in perfusion have been found in the literature with other 

MRI techniques such as DCE-MRI (Sourbron et al. 2008; Cutajar et al. 2014) and may reflect 

different metabolic demands according to the kidney region. Further reasons that may explain 

some of the variability in RBF include the fact that a single constant TI was used for all subjects. 

Even though care was taken in the choice of TI (1.2s is standard across single-TI renal ASL 

literature), an intravascular contribution in some subjects can be an inevitable consequence of 

choosing a single TI which may be suboptimal for some subjects. Furthermore it must also be 

acknowledged that partial volume effects are likely non-negligible given the chosen voxel size, 

which ultimately is tied to the trade-off of sensitivity (high SNR) and accuracy of the 

measurements (high resolution and thus minimisation of partial volume effects). 
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Figure 5-3 PWIs and perfusion maps for the 5 volunteers in this study. Whole-kidney and cortex 
perfusion maps are shown. For each subject, the perfusion maps shown on the right correspond 
to the central slice in the difference image set. The cortical ROI was obtained by manual 
segmentation. 

 
Figure 5-4 Perfusion maps from subject 3 from three scanning sessions. Top row: whole kidney; 
Bottom row: cortical region of interest. The mean cortical perfusion for days 0, 7 and 21 was 
respectively 305±100, 320±110 and 343±101 ml/100g/min. 
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5.3.2 Effect of the noise-reduction methods 

5.3.2.1 Qualitative evaluation 

All methods were implemented successfully and reduce the effect of the corrupted 

measurements in the final PWI, albeit to a different extent. The boundaries of the automatically 

defined motion-tracking regions (ROI in Figure 5-2 a) for the rej method are shown in Figure 5-5 

for all subjects.  

 

Figure 5-5 Boundaries of the motion-tracking region detected automatically in the first step of 
the data rejection algorithm (corresponding to step a) in Figure 5-2) overlaid on a central slice 
from the first control BS volume for each subject. 

Figure 5-6 allows a qualitative evaluation of the result of applying the rej method. Rejection of 

corrupted data reduces blurring artefacts caused by the inclusion of motion-corrupted 

difference images in the averaging procedure. This increases the contrast between the renal 

cortex and medulla and will translate to a more accurate perfusion quantification. The algorithm 

is effective at preserving good data, thereby avoiding a SNR loss in motion-free datasets. This 

can be seen in subject #3, who remained motionless and whose regular respiratory cycle allowed 

for effective respiratory-triggering resulting in no motion artefacts. No data was rejected in this 

case. Subject #4 was asked to breathe irregularly for 2/3 of the scan to induce a greater amount 

of motion artefacts. Consequently, almost half of the measurements were rejected (7 out of 15). 

The decrease in the temporal standard deviation of the perfusion-weighted data is also evident, 

particularly in the more severely affected data from subjects #1 and #4, and as expected, not 

restricted to the kidneys. A visual analysis of the individual PWIs together with the measurement 

indices indicated for rejection by the rej method suggests that this method is very effective at 

rejecting severely corrupted data and in not rejecting motion-free data. These two factors are 
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particularly important if one wishes to combine this method with other motion correction 

approaches, such as image registration. In fact, the most important challenge faced by the rej 

method appears to be instances where data is not severely motion corrupted and fails to be 

rejected.  However, these are the cases where one would expect an effective image registration 

algorithm to be able to correct the data.  

 

Figure 5-6 ASL PWIs and tSTD maps before and after automatic data rejection. Central slices are 
shown. The intensity display range is the same for each set of images of each subject. For the 
tSTD maps, the intensities range from 0 to the 99% percentile. 

An instance where rej failed to reject one motion corrupted measurement can be seen in Figure 

5-7. This figure shows the individual PWIs from subject #2, during the “motion-task” scan. As 

expected, the last 5 measurements different significantly from the first 10, showing prominent 

motion artefacts resulting from the kidneys (and adjacent organs) changing position from the 

control to the label condition. The table accompanying the figure shows the weights assigned to 

each measurement by methods rej and wMeanB-mask. As can be seen, measurement #13 

(which clearly shows subtraction errors) was not rejected by rej. All the remaining motion 

corrupted measurements were rejected, and all of the motion free good quality data was 

preserved. Also in this figure, at the end of iteration #1 of the wMeanB-mask method, the last 5 

corrupted measurements contribute to 8.3% of the final perfusion image. Running additional 

iterations of the algorithm appears beneficial, as after 3 iterations, this contribution is reduced 
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to 3.5%. Therefore, the contribution of the set of corrupted images to the final difference image 

is approximately one order of magnitude lower than in the standard unweighted averaging 

method (3.5% vs. ≈33% (5/15)).  

 

Figure 5-7 Effect of noise reduction algorithms on the contribution of each PWI (before 
averaging) to the ASL averaging step (subject #2). Top: Individual PWIs; Table: Weights 
attributed to each individual PWI, by both the data rejection method and one of the weighted 
averaging methods (4 iterations shown, where the first corresponds to a standard unweighted 
averaging averaging). Both methods are able to reject, or greatly down-weigh the contribution 
of the later measurements in the time series, which are corrupted due to severe motion. 

Central slices for each of the subjects before and after application of all methods are shown in 

Figure 5-8. The largest visual difference among the set of images is between the “No correction” 

condition and any of the motion suppression methods. Notable differences between the motion 

suppression methods can be seen in subject #4, where the method wMeanA (both with and 

without applying the cortical mask) shows the increased blurring which reduces the 

differentiation between cortex and medulla, when compared to rej and wMeanB (with and 

without mask). Although difficult to perceive visually, wMeanB-mask was the most effective 

method in reducing blurring in subject #5.  
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Figure 5-8 Final averaged PWIs (central slice) for all subjects (following application of each of the 
proposed motion/noise suppression methods). 

5.3.2.2 Quantitative evaluation 

The absolute values of all image quality metrics averaged across all subjects are shown in Table 

5-3. In order for these metrics to better reflect the effect of the motion suppression methods on 

the actual perfusion measurements, only voxels in the cortex where considered during their 

calculation. The cortical masks used for each subject can be seen in Figure 5-9, overlaid onto a 

central slice from the averaged PWI dataset. The exception is 𝐻𝑣𝑜𝑙 which was calculated as a 

proxy for the image quality over the entire field of view (see Section 3.5.2.2 for more details on 

the use of entropy in image processing). The first metric being considered is 𝑆𝑁𝑅𝑐𝑡𝑥, calculated 

using the “background ROI” approach. The results from this metric are unexpected, as it 

decreases in all methods. Two possible explanations are 1) the fact that motion artefacts often 

cause the signal within the region of interest to increase (most obvious in subject 4) and 2) the 

reduced noise suppression in the background ROI resulting from the inclusion of a smaller 

number of measurements (or an increase in the variance in the weights assigned to each 
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measurement) in the averaging procedure. A more detailed discussion of this can be found in 

Section 5.3.3. 

Table 5-3 Image quality metrics before/after each proposed noise suppression methods. For the 
first 3 metrics (𝑆𝑁𝑅𝑐𝑡𝑥, 𝑡𝑆𝑇𝐷𝑐𝑡𝑥 and 𝑡𝑆𝑁𝑅𝑐𝑡𝑥) which are calculated on a voxelwise basis, first 
the mean and standard deviation of the metric values within the ROI are computed, for each 
subject. The values in the table correspond to the mean across the subjects of the mean and 
standard deviation within their corresponding ROIs. The values of 𝐻𝑣𝑜𝑙 correspond to the mean 
± standard deviation across subjects of the entropy calculated across the entire image volume. 

 𝑺𝑵𝑹𝒄𝒕𝒙 𝒕𝑺𝑻𝑫𝒄𝒕𝒙 × 𝟏𝟎
𝟖  𝒕𝑺𝑵𝑹𝒄𝒕𝒙 𝑯𝒗𝒐𝒍 

No  correction 48.1±14.5 4.38±1.99 3.46±1.41 5.33±0.37 

rej 43.4±13.8 3.43±1.42  4.29±1.94b 4.86±0.17 

wMeanA 42.7±13.3a,b 3.71±1.50 3.95±1.66 5.02±0.23 

wMeanA-mask 41.3±13.0a,b 3.60±1.46 4.09±1.73 5.00±0.27 

wMeanB 46.0±13.6 3.46±1.30 4.18±1.69a,b 4.85±0.17 

wMeanB-mask 42.4±14.0 3.14±1.09a,b 4.50±1.81a,b 4.83±0.21b 

astatistically significant difference when compared to the “No correction” case  
bstatistically significant difference when compared to the “No correction” case (excluding 

subject 3) 

 

Figure 5-9 Visual depiction of the manually drawn cortical ROIs used for quantitative evaluation 
of the motion suppression methods. Averaged difference images shown after application of the 
wMeanB-mask method. 
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Assuming that the specific haemodynamics of each subject remains fairly constant over the few 

minutes the data takes to be acquired, in ideal data without motion and other spurious artefacts, 

the variation in signal among the different measurements should be minimal. Therefore, any 

motion correction algorithm should reduce this variation. A metric that directly reflects this is 

the temporal standard deviation calculated along the 4th dimension of the data (time, i.e. 

measurements), in this case calculated accounting for cortical voxels (𝑡𝑆𝑇𝐷𝑐𝑡𝑥). Examples of 

𝑡𝑆𝑡𝑑 maps before and after applying the rej method can be seen in Figure 5-6. All methods were 

successful in decreasing this metric. The decrease was statistically significant in the case of 

wMeanB-mask even when including subject #3 in the analysis (whose data is practically motion-

free). Not only the mean values of this metric decreased, but also the mean of the standard 

deviation of the perfusion weighted signal within the ROIs approximately halved from the “No 

correction” case to the wMeanB-mask case.  

An alternative definition of the SNR is the temporal SNR (tSNR) over the cortical ROI (𝑡𝑆𝑁𝑅𝑐𝑡𝑥). 

Because in the definition of this metric the numerator is the mean of values within the cortical 

ROI, this metric is also sensitive to positive signal outliers (which similarly to the case of 𝑆𝑁𝑅𝑐𝑡𝑥 

may result in an increase value of the metric for motion corrupted data). However, an increase 

of 𝑡𝑆𝑁𝑅𝑐𝑡𝑥 was achieved with all methods, a testament of the effectiveness in reducing the 

variability of the signal across the measurements. Statistically significant differences were found 

between the “No correction” condition and the wMeanB method (with and without masking) 

and between the “No correction” condition and the rej method when subject 3 (motion-free 

data) was excluded from the analysis. Voxelwise maps of 𝑡𝑆𝑁𝑅𝑐𝑡𝑥 for each subject can be seen 

in Figure 5-10 for the “No correction”, rej, and wMeanB-mask cases. The increase in 𝑡𝑆𝑁𝑅𝑐𝑡𝑥 is 

greater as the level of motion corruption increases. Finally, the image (volume) entropy 𝐻𝑣𝑜𝑙 

decreased in all methods, with a statistically significant decrease in the case of wMeanB-mask if 

subject 3 is not accounted in the analysis (as it is expected motion correction methods to have 

negligible effect in this data as it is free of motion). 
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Figure 5-10 Averaged PWIs and tSNR maps before/after noise-correction. The data improves 
significantly after using both methods, with the degree of improvement being greater for highly 
motion corrupted data such as that from Subject #4. The numbers in tSNR maps correspond to 
the mean increase in this metric in the cortical ROI when compared to the “No correction” case. 

The change in all metrics following the application of the data rejection and weighted averaging 

methods, with respect to the standard averaging case is summarised in the boxplots displayed 

in Figure 5-11, Figure 5-12, Figure 5-13 and Figure 5-14. Focusing on 𝑡𝑆𝑁𝑅𝑐𝑡𝑥 and 𝐻𝑣𝑜𝑙 one might 

argue the best performing of the weighted averaging methods is wMeanB-mask, which is closely 

followed by the rej method. The “motion task” performed by the subjects was limited to 

changing the respiratory cycle. As such, bulk body motion is not expected, limiting the majority 

of the kidney motion to occur along the head-foot direction. This is arguably the best case 

scenario for the rej method, as this is the direction along which the reconstructed projections 

carry motion information.  
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Figure 5-11 Change (%) in the cortical SNR of the motion corrected averaged PWI signal relative 
to the corresponding non motion corrected PWI signal. The central line corresponds to the 
median, the edges of the box to the 25% and 75% percentiles (q1 and q3, respectively).  

 

Figure 5-12 Change (%) in the cortical tSTD of the motion corrected averaged PWI signal relative 
to the corresponding non motion corrected PWI signal. 
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Figure 5-13 Change (%) in the cortical tSNR of the motion corrected averaged PWI signal relative 
to the corresponding non motion corrected PWI signal.   

 

Figure 5-14 Change (%) in the entropy of the motion corrected averaged PWI signal relative to 

the corresponding non motion corrected PWI signal. 

The performance of the wMeanB-mask method should be independent to the type of motion 

which occurred during the scan (and thus not limited to head-foot motion as rej is). The fact that 
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this method performed similarly to the rej method in this head-foot motion condition, together 

with its simplicity and ease of implementation across different ASL sequences makes it very 

attractive and arguably superior to rej, at least in the case of each method being used in 

isolation. However, given the differences in the motion detection framework of both methods 

and that they use different information, a combination of both methods may further improve 

the results. A possibility for this could be to use the rej method as a pre-processing step applied 

before the data averaging, to allow the first iteration of the weighted averaging methods to start 

from a less corrupted PWI. However, I believe the biggest advantage of the rej method is that it 

provides information on whether the perfusion-weighted data is corrupted independently for 

each measurement. This is unlike the weighted averaging methods, which for each 

measurement derive a noise estimate by using adjacent measurements or the complete time 

series. This advantage is what would allow rej to be implemented for real-time data 

rejection/reacquisition, and this should be the scenario in which rej is most effective, while the 

weighted-averaging methods would be used retrospectively for further improving the data 

quality. 

5.3.3 Effect of asymmetric weighting on background-based SNR measures 

The results obtained with the background-noise ROI-based SNR measure (𝑆𝑁𝑅𝑐𝑡𝑥) were 

unexpected. One would expect that an increase in the data quality by rejection of corrupted 

measurements would increase the SNR of the data. Qualitatively, a visual inspection of the data 

following the motion/noise corruption methods clearly shows improvement in the final 

averaged PWI (reduction of blurring/edge artefacts and improvement in the cortico-medullary 

differentiation). However, the values from this metric decreased following the application of the 

motion/noise reduction methods. There can be several explanations for this. First, motion 

artefacts in the uncorrected data may result in artificially enhanced perfusion-weighted signal 

(positive signal outliers), which if occurring within the region of interest will positively bias the 

mean cortical signal, resulting in an increase of the SNR measure. The second reason is that all 

methods under examination will skew the weight of certain measurements during the averaging 

process which one may hypothesize reduces the noise suppression effect in regions of the 

background, specifically increasing the standard deviation of the signal in the voxels in this 

background region. This quantity corresponds to the denominator in the definition of the 

𝑆𝑁𝑅𝑐𝑡𝑥 metric. As such, an increase in this quantity results in a decrease of 𝑆𝑁𝑅𝑐𝑡𝑥. A basic 

simulation was implemented to test this hypothesis.  

The simulation begins with the initialisation of a synthetic noise-free image (Shepp-Logan 

phantom; Figure 5-15 a)). To generate a set of measurements in an analogous way to the 
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multiple measurements (ASL pairs) obtained in an ASL experiment, Rician noise is simulated to 

make several copies of this image Rician distributed, each with a slightly different noise profile 

Figure 5-15 b)). This step was achieved by using a freely available MATLAB toolbox (Ridgway 

2008). Then, each of this set of measurements is averaged multiple times, each with each 

measurement contributing to the final image in different proportions (different averaging 

weights). The SNR of each resulting averaged image is computed as the ratio of the mean of the 

voxels in 𝑅𝑂𝐼 1 and the standard deviation of the voxels in 𝑅𝑂𝐼 2 (see Figure 5-15 c)). This entire 

process is repeated a number of times specified by the user (see Table 5-4). For each run, only 

one weight set corresponds to the unweighted average condition (i.e. equal weights for each 

measurement). A plot of the resulting SNR values obtained for each set of weights against their 

variance is shown in Figure 5-16.  

 

Figure 5-15 Synthetic noise-corrupted data and ROIs. a) Noise-free synthetic image; b) Rician 
noise-corrupted version of a); c) Highlight of the ROIs used for a simulation of the effect 
weighted averaging on background noise-based SNR measures – ROI 1: signal; ROI 2: 
background. 

Table 5-4 Pseudo-code 2: Simulation of the effect of weighted averaging on SNR(calculated as 
the ratio between the mean signal intensity at the tissue ROI and the standard deviation of the 
signal intensity in a background ROI) 

 

Initialise noise-free test image 

Initialise SignalROI, NoiseROI 

For each run of “N_RUNS” 

    Generate “N_MEASUREMENTS” Rician noise-corrupted images 

    For each weightSet of “N_WEIGHT_SETS” 

        Perform weighted averaging of Rician noise-corrupted images* 

        Compute SNR of averaged image (SNR=mean(SignalROI)/std(NoiseROI)) 

        Compute Variance of weightSet 

    EndFor 

    Plot SNR vs. Variance of weightSet 

EndFor 
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Figure 5-16 Effect of increased weight variance on SNR of the weighted averaged data 
(simulation results). SNR is maximum when all data is equally weighted due to a better 
suppression of noise. 

As can be seen, for each of the runs of the experiment, the maximum SNR is obtained for a set 

of measurements whose variance is zero (i.e. unweighted averaging condition). Furthermore, 

the SNR tends to decrease as the variance of the weights increases. The decrease in 𝑆𝑁𝑅𝑐𝑡𝑥 

following the application of the proposed correction methods can likely be explained by this 

fact, together with the previously mentioned potential contribution of positive signal outliers 

resulting from motion artefacts. As such, the results of this simulation suggest that this particular 

SNR measure is not necessarily associated with a more reliable ASL measurement. Arguably 

more appropriate for this purpose is the 𝑡𝑆𝑁𝑅𝑐𝑡𝑥, as it better reflects the actual improvement 

the implemented noise suppression methods have in the data of interest and how motion would 

affect the quantitative perfusion measurements derived from the ASL data. Another benefit of 

that approach (because only the cortical region of interest is taken into account) is that it is not 

biased by varying noise profiles across the FOV, owing to the different coil sensitivities 

throughout the FOV as an array coil was used for data acquisition. 

Figure 5-16 was obtained by initialising the settings constants to: 

 N_RUNS = 4; 

 N_MEASUREMENTS = 15; 
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 N_WEIGHT_SETS = 150; 

5.4 Conclusion 

ASL is a unique MRI technique which uses blood water as a non-invasive freely diffusible tracer 

to quantify tissue perfusion. ASL benefits from 3D acquisition methods, which in the kidney have 

employed segmented readouts. These have provided high-quality data with good spatial 

resolution in healthy volunteers (Cutajar et al. 2012). The major drawback of these approaches 

is their high sensitivity to motion, potentially limiting their applicability in the clinic.  

To improve the robustness to motion of our ASL technique, tests with single-shot data readouts 

were conducted in healthy volunteers. In this work, we have demonstrated the use of single-

shot 3D GRASE in the kidney for the first time, and obtained perfusion values which are in 

accordance with previous renal ASL studies. This encourages further investigation and 

optimisation of single-shot ASL acquisition schemes to provide quantitative assessment of renal 

perfusion in clinically reasonable scan times. 

Despite the use of single-shot acquisition schemes, ASL is inherently a motion-sensitive 

technique due to the fact that PWIs are obtained by subtraction of two image datasets. 

Retrospective sorting is commonly performed in ASL to reject measurements where spatial 

mismatches exist between the ASL labelled and control images (e.g. (Gardener & Francis 2010)). 

We implemented and tested several approaches to reduce the negative impact of corrupted 

measurements to the final averaged ASL PWIs. First, an automatic algorithm was developed to 

identify and reject corrupted measurements in renal ASL. This algorithm uses “navigator-like” 

information extracted from reference scans already embedded in the acquisition, so no pulse 

sequence modifications were required and no extra data needs to be acquired. Even though this 

algorithm was used for retrospective data rejection, its simplicity and low computation burden 

makes it amenable for implementation at the scanner. This would allow real-time rejection of 

highly corrupted data, potentially followed by reacquisition until a set number of motion free 

measurements are obtained to ensure sufficient SNR. Furthermore, weighted averaging 

schemes were implemented which down-weigh the contribution of corrupted measurements 

during the averaging operation. This is achieved by calculating pairwise noise estimates without 

resorting to thresholds or arbitrarily fixed constants. Rejection of corrupted data reduces 

blurring artefacts caused by the inclusion of motion-corrupted PWIs in the data averaging 

procedure. This increases the contrast between the renal cortex and medulla and should 

translate to a more accurate and repeatable perfusion quantification. A quantitative evaluation 
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of the quality of the perfusion-weighted data using several image quality metrics was performed 

which demonstrates the benefit of using these methods.  
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6 Optimised post-processing pipeline for renal 3D-GRASE ASL 

Part of this work was presented at an International MR conference: (Nery et al. 2017a) and (Nery 

et al. 2017b). 

6.1 Introduction 

The previous chapter focused on the development of non image registration-based 

retrospective approaches to account for patient motion during ASL acquisitions. The rationale 

behind the strategies implemented in Chapter 5 is the assumption that in routine clinical 

scanning, a non-trivial amount of data will be severely corrupted beyond what registration-

based retrospective motion correction methods will be able to correct. Hence, these data need 

to be discarded before the subsequent quantification stage. This is feasible because traditional 

ASL sequences typically acquire several measurements with identical scanning parameters for 

the purposes of signal averaging. On another hand, while less severe motion by the patient can 

still induce strong image artefacts (particularly in ASL as it relies on image subtraction), the data 

might still be amenable for correction, particularly if the underlying patient motion did not 

introduce 𝑘-space inconsistencies such as those described in Chapter 4. The literature available 

on the correction of these types of artefacts in ASL is very sparse, even for brain ASL which is 

likely to pose fewer challenges than abdominal ASL. In fact, an initial foray into the development 

of such methods where I implemented an autofocus-based approach for multi-shot motion 

correction in ASL can be seen in Appendix A. It is important to note that respiratory triggering is 

only able to prevent artefacts due to motion associated with the patients’ respiration. To 

account for bulk body motion, other strategies are required. As such, a fundamental component 

of any state-of-the-art MR image processing pipeline is an image registration framework to 

correct for patient movement by retrospectively aligning the images (or organs of interest 

therein) acquired throughout the ASL experiment (Ashburner 2012; Jenkinson et al. 2012). 

The number of steps and complexity of an ASL image registration pipeline depend on several 

assumptions related to the experimental protocol and the nature of the data itself. Even though 

in this chapter we will focus on single-TI ASL, many of the developments presented here are 

readily extendable to multi-TI acquisitions. First, the ASL time series needs to be realigned. This 

consists of images with potentially varying contrasts, as the acquisition typically alternates 

between the label and control condition. Before applying any model-based approach for 

quantification of blood flow, it is then necessary is to ensure all these data are in the same space 

as the ASL “calibration” scans. These might consist of a simple PD image (as was the case in 

Chapter 5) or an additional image series, which itself needs to be realigned. The latter is the case 
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if one wishes to obtain patient-specific T1 maps, which is the approach undertaken in this 

chapter. An artefact-free voxelwise quantification of blood flow is only possible when all these 

image datasets are realigned. 

Here, I implement a framework aiming to fulfil this requirement and thereby enable accurate 

mapping of Renal Blood Flow (RBF) using ASL. This chapter is divided in two parts. First, two 

approaches for registration of saturation recovery time series are implemented. Their effect is 

then assessed by comparing the repeatability of the 𝑇1 estimates derived from these data as 

well as by quantifying the impact they have on the underlying saturation recovery fit quality. 

Using a saturation recovery sequence ensures that the longitudinal magnetisation state is 

consistent between TRs (i.e. nulled) regardless of the duration of the TR which is variable in 

respiratory triggered applications. The realignment of the ASL time series is then tackled by 

implementation of a customised image processing pipeline. Similarly, the effect of its application 

on the repeatability of RBF is evaluated. Furthermore, we also assess the effect of incorporating 

one of the noise-reduction approaches discussed in Chapter 5 in the processing pipeline. The 

impact of this approach, as well as image registration on the temporal standard deviation and 

temporal signal-to-noise ratio (tSNR) of the background-suppressed ASL PWI time series, is 

evaluated. The amount of renal translational motion which occurred during the acquisition of 

this time series is calculated based in the transformation matrices output from the image 

registration steps. Furthermore, this is correlated to the degree of improvement in the image 

quality metrics after applying the motion correction pipelines. All these experiments were 

performed using data from a cohort of paediatric patients with severe CKD (stages 3B-5). 

6.2 Methods 

6.2.1 Patient recruitment 

Twelve children with CKD were recruited by myself from the chronic renal failure clinic at Great 

Ormond Street Hospital NHS Foundation Trust after being referred by a nurse or a consultant 

nephrologist. Ethical approval for this study had been obtained. The scanning procedure was 

explained to the parents and children, initially by myself and also through 2 movies (one for 

children and one for the parents). Of these, one of the patients was scanned once but found the 

experience of MR scanning intolerable due to the closed environment of the MR scanner, 

resulting in the patient being excluded from the study. The parents were given the choice to 

remain in the scanner room in the vicinity of the child. Eleven patients (age (years): 12±3 (mean 

± std), range: 7-17, median 12 - 8 males) were successfully scanned on two different occasions 

for assessing the intra- and inter-session reproducibility of the RBF measurements using the 
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single-shot protocol described in the previous chapter. Scans were performed on a 1.5T Avanto 

scanner (Siemens Healthcare, Erlangen). The time between scans was: 23±10 (mean ± std), 

range: 7-35, median 21 days). 

6.2.2 Image acquisition 

MR data was acquired in a Siemens Avanto 1.5T scanner (Siemens Healthcare, Erlangen, 

Germany) running the Siemens NUMARIS/4 VB17A software version. The ASL acquisition 

consisted of the same protocol described in Chapter 5 (section 5.2.1). The exception was that in 

this case, twenty-five instead of fifteen ASL pairs were acquired. This modification was 

performed with the aim of allowing a further improvement in SNR, as we expected renal 

perfusion to be reduced in CKD patients. A larger number of measurements may also be 

beneficial in terms of motion robustness, insofar as the number of motion-free scans is likely to 

increase with the total number of measurements. The ASL scan was repeated up to 2 times in 

each session with a ≈40min gap between acquisitions. Importantly, the patient remained inside 

the scanner during this period, while other MR sequences were run. Scanning each patient two 

times in each MR session allowed and assessment of intra (i.e. within)-session reproducibility.  

Furthermore, as will be detailed in section 6.2.3.1, a saturation recovery (SR) dataset was 

separately acquired to allow for voxelwise 𝑇1 mapping on a subject-by-subject basis. A SR 

sequence was used with 9 post-saturation delays (TD) (range: 100-2500ms; increment 300ms; 

saturation pulse spatially non-selective) (see Appendix B for an example of a 𝑇1 map in one 

healthy volunteer obtained with this protocol). The imaging module consisted of a single-shot 

3D GRASE readout with main parameters matched to the accompanying ASL imaging module: 

matrix size 64x64x10, voxel size 4.5x4.5x6.0mm, Partial Fourier (factor 3/4), 

TR/TE=3000ms/31.54ms. Data acquisition was repeated up to 3 times in each session 

(dependent on patient tolerance) which across all patients resulted in a total of 52 SR datasets 

(2 excluded due to extreme motion). A proton-density (PD) volume was also obtained with 

similar scanning parameters (without saturation pulse) to serve as reference for image 

registration and functional renal parenchyma ROI drawing during data analysis. Respiratory 

triggering was used to trigger the saturation pulse at end-expiration. Therefore, the scans were 

performed under free-breathing and no respiratory coaching was necessary. Even though the 

PD acquisition required no saturation pulse, a delay of 1200ms from the triggering instant to the 

data acquisition was implemented to match the delay corresponding to the inflow time in the 

ASL acquisitions. This was implemented as it was verified that if no delay was present, the 

acquisition of the PD image and the ASL data rarely took place in a similar part of the respiratory 

cycle which further increased the misregistration of the two datasets.  
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6.2.3 Processing pipeline 

6.2.3.1 General remarks 

The main theoretical and practical factors, as well as assumptions that guided the development 

of the ASL image processing pipeline described in this chapter, are as follows: 

I. 𝑇1 maps required on a subject-by-subject basis: In Chapter 5, one of the assumptions 

during RBF quantification was that all voxels considered part of the renal cortex were 

assigned a fixed 𝑇1 value, obtained from a previous study (de Bazelaire et al. 2004). The 

rationale supporting this choice was that only data from healthy volunteers was used, 

and the range of variation of cortical 𝑇1 in this group of subjects is expected to be 

relatively small, compared to patient cohorts (Huang et al. 2011). When scanning tissue 

with well characterised 𝑇1 values (e.g. renal cortex in healthy volunteers), using a 

literature 𝑇1 simplifies and shortens the image acquisition and post-processing stages, 

and may reduce image artefacts. This is because it eliminates the use of 𝑇1 maps which 

themselves may have artefacts (resulting from misalignment of the underlying time 

series from which they are derived), which propagate to the RBF maps. Furthermore, 

issues of alignment of 𝑇1 maps to the ASL/𝑀0 data are no longer a concern. For these 

reasons, this approach is common in many studies (Shimizu et al. 2017; Niles et al. 2016; 

Robson et al. 2016), among many others. However, 𝑇1 is an established indicator of 

pathophysiological tissue status (Huang et al. 2011), and a voxelwise quantification of 

this quantity on an individual subject basis may be especially important in clinical studies 

as the underlying pathophysiology may cause 𝑇1 values to vary across subjects. Indeed, 

recent studies have shown increases in 𝑇1 with higher degrees of renal function 

impairment (as assessed by the estimated glomerular filtration rate (eGFR)) (Breidthardt 

et al. 2015; Gillis et al. 2016). With this in mind, a dedicated 𝑇1 mapping scan (saturation 

recovery (SR)) was included in the imaging protocol (as discussed in section 6.2.2). This 

scan is itself sensitive to patient movement due to the need to collect images at multiple 

recovery times. Therefore a registration module dedicated to the realignment of these 

data was implemented in the image processing pipeline. 

II. Varying contrast throughout the 𝑇1 mapping time series: Given that these data are 

acquired in a way so that multiple points throughout the longitudinal relaxation time 

curve are sampled, the contrast of the underlying images changes as a function of the 

post-saturation delay (TD). As such, three strategies (including two registration 
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approaches) were evaluated for pre-processing the data before model fitting to obtain 

the 𝑇1 maps: 

A. No motion correction; 

B. “Chain” registration; 

C. “Direct” registration; 

In the “chain” registration approach, images were successively registered to the 

adjacent image in the SR time course, starting from the longest TD.  This implementation 

aims to minimize contrast differences between the target and source image volumes 

throughout the recovery time series. Starting from the longest TD ensures the images 

with relatively higher SNR (due to longer 𝑇1 recovery time) are used as reference for the 

multiple registration steps. In the “direct” registration approach, all images in the time 

series are directly registered to a fixed reference scan (chosen to be the PD acquisition). 

A schematic of both approaches is depicted in Figure 6-1. 

 

Figure 6-1 SR registration approaches. a) “chain” method: start by registering the longest TD in 
the time series to the PD image, then every other TD is registered to its closest volume in the 
time series in decreasing order of post-saturation delay time; b) “direct” method all TDs are 
directly registered to a reference PD image 

III. Assumption of rigidity of the renal movement: At this stage we focused on accounting 

for changes in position and orientation of the kidneys by performing a six degrees-of-

freedom 3D rigid body registration. The main reason behind this assumption is that the 

background suppression (BS) module which is part of the ASL acquisition scheme used 

in this work significantly reduces the static tissue signal. The resulting lack of anatomical 

specificity in the unsubtracted ASL data renders highly complex transformations with 

thousands of degrees of freedom such as those required for non-rigid deformations 

unfeasible. Nevertheless, at the relatively coarse resolution we are imaging (4.5x4.5mm 

in plane), non-rigid behaviour such that caused by kidney pulsation should present less 

of a problem due to the fact that the renal capsule has a relatively rigid, inelastic nature 
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(Meyers et al. 2011) (particularly in CKD where the capsule is expected to be more 

fibrous and consequently even more rigid). Furthermore, no intra-subject registrations 

were performed (where it can be argued that non-linear transformations play a more 

important role). 

IV. Separate registration of the left and right kidneys: This is required due to the fact that 

the movement of both kidneys is not the same (Song et al. 2011; Siva et al. 2013). 

Therefore, since no single rigid transformation can simultaneously account for the 

displacements of both kidneys, rectangular masks were manually drawn in all slices to 

allow separate registration of left and right kidneys (see Figure 6-2 for an example of 

such masks). Several studies have also used similar approaches (Nathan S. Artz et al. 

2011; Fenchel et al. 2006). 

 

Figure 6-2 Left/right masks for separate registration of each kidney. The masks are overlaid in a 
reference proton-density volume from a child with CKD. Nine slices out of the ten acquired are 
shown. The numbers correspond to the slice indices, increasing towards the posterior part of 
the abdomen. 

V. Proton-density image used as “absolute” reference for registration: Even though a 𝑀0 

dataset can also be obtained from the same fitting operation from which the 𝑇1 maps 

are obtained, these are not used in the quantification. This is because 𝑀0 maps can be 

obtained from a single separate PD acquisition. As such, these 𝑀0 maps should contain 
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less artefacts as they do not depend on the assumption of a completely aligned time 

series. In addition to being used for calibration of the ASL data, these 𝑀0 maps are used 

as the “absolute” reference to which ultimately all data is aligned. That is, even though 

the intermediate registration steps in the pipeline use several types of images as 

reference, ultimately all 𝑇1 maps and ASL data will be aligned to the PD-derived 𝑀0 map. 

This accounts for the fact that even if the ASL time series is aligned, severe image 

artefacts will still propagate to the blood flow maps if the 𝑇1/𝑀0 data is not in the same 

space as the ASL data. 

VI. Separate registration of control and label image series: As mentioned in section 6.1, the 

contrast of adjacent images in the ASL time series changes if the label and control 

conditions alternate throughout the acquisition (which is the case for standard ASL pulse 

sequence implementations). Importantly, the absolute difference in signal between 

these conditions is amplified if BS is used (which is the case for all ASL acquisitions in 

this work). This factor is known to possibly affect registration results as these differences 

in contrast may be erroneously assumed to result from patient movement and 

consequently be minimised by the registration algorithm (Wang et al. 2008). 

Nevertheless, this is an often overlooked factor in the registration of ASL data, with few 

brain studies (and none in the kidneys) explicitly implementing this step (e.g. (Wang et 

al. 2008; Di Cataldo et al. 2011)). The proposed registration pipeline was designed so 

that only one control-label registration is performed per ASL dataset. The reason for 

why one registration step of this type was performed will be detailed below. 

6.2.3.2 Implementation 

All motion correction pipelines were developed and implemented by myself using MATLAB, 

using the open-source library elastix (Klein et al. 2010) for the registration tasks. Three-

dimensional rigid body registrations were performed using masks for independent registration 

of both kidneys (as discussed above), employing a mutual information-based image similarity 

measure (see all registration settings in Appendix B). An elastix MATLAB wrapper was written to 

create a simple interface providing all customised options necessary for this application (e.g. 

output of single 3D volumes following registration with multiple masks, “chain” registration). In 

addition to the 𝑇1 pre-processing strategies discussed in section 6.2.3.1 II, three ASL processing 

pipelines were evaluated: 

A. No motion correction 

B. Motion correction using image registration 
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C. Motion correction using image registration combined with a weighted averaging 

scheme (corresponding to wMeanB-mask introduced in Section 5.2.3.2). 

Two factors are worth highlighting regarding the complete ASL processing pipelines: 

 For B and C, the SR registration module was included into the pipeline using the 

approach deemed more robust following the “chain” vs. “direct” registration 

comparison. 

 For C, the masks used for the weighted averaging method corresponded to the 

rectangular masks drawn for separate registration of the left and right kidneys (an 

example is shown in Figure 6-2) 

Diagrams depicting pipelines B and C are shown in Figure 6-4 Note that in these diagrams, 

images or image series are referred to within brackets (i.e. the symbols “[“ and “]”), whereas 

operations acting on images are enclosed in rectangular boxes. Both pipelines start by 

registering each individual control [SS1,…,SSn] and label [NS1,…,NSn] image series separately to 

the mean of all images with the same labelling condition ([μSS] and [μNS], respectively). The 

resulting registered individual control/label images ([rSS1,…,rSSn] and [rNS1,…,rNSn]) are then 

averaged for improved SNR. Both resulting images ([μrSS] and [μrNS]) may still not be in the 

same space and therefore a direct subtraction of the two might result in subtraction errors. As 

such, the label image ([μrNS]) is registered to the control image [μrSS] (resulting in [rμrNS]). 

Note this is a single registration step using the averaged images (higher SNR) and the control 

image is used as reference given it has more signal as the blood had not been labelled. Finally, 

the control image ([μrSS]) is registered to the reference PD image. This yields the “final” control 

image ([fSS]). Because the label image is in the same space as the control image, simply using 

the transformation from this step (TSS) will bring the label image into alignment with the PD 

image, resulting in the “final” label image ([fNS]). This choice has to do with the significantly 

reduced tissue contrast in the label image (see Figure 6-3), which compromises a direct 

registration of this image to the PD image.  
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Figure 6-3 Reduced anatomical specificity in background-suppressed data. The loss of contrast 
is particularly pronounced in the label images, where the renal tissue (arrows) is almost 
indistinguishable from the adjacent structures. The control and label images are shown in the 
same intensity range. 

The difficulty of performing accurate image registration on background-suppressed data has 

been highlighted in several ASL studies (e.g. (Cutajar et al. 2014; Alsop et al. 2015), among 

others). Note that each image volume in the SR recovery time series was also registered to the 

same reference PD image for ensuring alignment between the 𝑇1 maps and the perfusion-

weighted datasets (not shown in Figure 6-4). 
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Figure 6-4 Motion correction pipelines for ASL data. Top: Processing pipeline B; Centre: 
Processing pipeline C (note that processing pipeline A corresponds to the “no registration” case 
and therefore is not shown in this figure. The main difference between the two is that in 
processing pipeline C, all image averaging steps were performed assigning weights to each of 
the individual images, as implemented in section 5.2.3.2 (smaller weights for individual images 
which deviate more from the unweighted average of the scans). 

6.2.4 Image Analysis 

All analysis software was implemented by myself using MATLAB. Voxelwise fits of the saturation 

recovery data to the Bloch equation describing the recovery of the longitudinal magnetisation 

(Equation 6-1) were performed to obtain 𝑇1 and 𝑀0 maps (note that the 𝑀0 maps from this fit 

were not used for RBF quantification, for reasons described above). A three-parameter fit was 

performed using the following expression: 

 𝑀𝑧(𝑡) = 𝑀0[1 − (1 − cos(𝜃))𝑒
−𝑡 𝑇1⁄ ] Equation 6-1 
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ASL RBF maps were derived from the single-TI data using the single-compartment modelling 

approach described in the previous chapter (Section 5.2.2). The major difference is that in this 

chapter (for reasons detailed above), rather than using fixed 𝑇1 and 𝑀0 values throughout the 

entire ROI, voxelwise 𝑇1 and 𝑀0 values were used instead. 

Regions-of-interest (ROIs) were manually drawn on the PD images for calculating ROI-based 

statistics related to the quantitative MR measures. The aim was to select all voxels deemed part 

of the functional renal parenchyma, with care not to include high intensity regions 

(corresponding to a dilated collecting system or cysts) in the ROIs. Several studies (e.g. (Robson 

et al. 2016; Shimizu et al. 2017), among others) use perfusion information in the difference 

images to identify and segment cortical regions of interest. This is arguably a valid assumption 

in healthy volunteers as the high perfusion results in strong signal in the cortical region. 

However, we believe this will likely not hold in certain patient groups as the cortical perfusion 

(and thus signal) is markedly reduced. Therefore, we opted by using the PD images (used as 

reference 𝑀0 maps) for drawing our ROIs given their higher amount of anatomical information. 

This should avoid biases related to drawing ROIs in PWIs in impaired kidneys, such as failing to 

include anatomically present cortex which is undetectable in the PWIs due to reduced perfusion. 

This is another reason why image registration is paramount for these datasets. Having a multi-

slice dataset proved crucial to allow tracking of the cysts across the volume to assist in the 

boundary definition.  

6.2.5 Evaluating the impact of motion correction 

Validation of the motion correction approaches was performed in two steps: separately for the 

registration of the SR data and for the complete pipeline integrating SR and ASL motion 

correction methods. 

6.2.5.1 Saturation recovery 

The impact of the registration algorithms on the intra- and inter-session repeatability of the 𝑇1 

estimates was evaluated using the intra-class correlation coefficient (ICC) and the within-subject 

coefficient of variation (WSCV). Furthermore, the quality of the underlying SR fits obtained 

following the different motion correction approaches was assessed employing the root mean 

squared error (RMSE) as a goodness of fit metric. Both 𝑀0 and 𝑇1 maps obtained for all patients 

in this work are shown both in the “no motion correction” condition and also after employing 

image registration to align each image in the time series. The quality of the 𝑀0 maps is also 

compared to that of the reference PD acquisition which is relatively insensitive to motion. 

Therefore, success by the image registration algorithms in aligning the SR time series can be 

shown by an increased similarity between the 𝑀0 maps and the reference PD images. 
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6.2.5.2 ASL 

Repeatability of RBF estimates was evaluated as assessed by the intra-class correlation 

coefficient (ICC) and the within-subject coefficient of variation (WSCV). The effect of registering 

the individual control/tag images (before averaging) was evaluated by computing the temporal 

standard deviation (tSTD) and tSNR of the ASL perfusion-weighted signal (metrics defined in 

Chapter 5 (Section 5.2.4)) in the functional renal parenchyma ROIs. As previously in this work, 

the main assumption that allows these metrics to relate to the amount of movement in the ASL 

datasets is that no significant change in the renal haemodynamics takes place during the time 

required for acquisition of the ASL data sets (≈ 3 minutes, accounting for delays associated with 

respiratory triggering). As such, noise, and especially motion are considered the major source of 

variability in the perfusion-weighted signal across ASL pairs. 

 

To summarise the “amount of motion” which took place during the acquisition of the ASL data 

for each patient (i.e. background suppressed control and label time series), a total translational 

motion index was calculated as the square root of the sum of the squared displacements relative 

to the reference image, obtained from the transformation matrices output from the registration 

algorithm. This index will be referred to as Euclidean distance (ED), and has been previously used 

for this purpose (e.g. in (Studler et al. 2010)). This metric is used as the most significant type of 

movement by the kidneys is translational in nature, caused by respiration which predominantly 

induces superior to inferior displacements. Correlation analyses were performed the between 

the improvement in the image quality metrics and the amount of motion in the corresponding 

scans, as well as the age of the subjects.  

6.2.5.3 Proton-density/perfusion-weighted (PD/PW) hybrid images (PW-PDI’s) 

The PD and ASL acquisitions share the same scanning parameters and image readout (with the 

exception of the labelling and BS modules which are only used for the latter). Therefore, the ASL 

information can be overlaid directly onto the PD image to generate a “hybrid” proton-density-

perfusion-weighted image (PD-PWI). The resulting red, green and blue (RGB) image displays a 

mixture of anatomical (PD) and functional (PWI) information, respectively represented by linear 

grayscale and a colour scheme (specified by its associated colormap). As such, in way analogous 

to established multi-modal hybrid techniques such as PET/CT and PET/MRI and other MR 

approaches such as fMRI/structural MRI, this allows for a superior spatial localization of the 

information contained in the functional measurements. In the case of ASL, this may be 

particularly useful for the evaluation of areas of heterogeneous or abnormal perfusion. 

Furthermore, this also allows for an efficient way of visually assessing the alignment between 
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the underlying PD and PWI datasets. Hybrid images of this type are shown for each patient, using 

PWI datasets both before and after motion correction. To obtain the PD-PWI image, a simple 

voxelwise approach was used. A sum of the intensities of each image (each independently 

normalised to the range [0 − 1]) is performed, weighting this sum with two factors 𝛼 and 𝛽, 

which refer, respectively, to the contribution of the PWI and the PD information in the final 

image. The following expressions describe this operation for a given pixel of coordinates (𝑥,𝑦): 

Table 6-1 Pseudo-code 3: Fusion algorithm for a given voxel (𝑥,𝑦) 

 

where map is a 𝐶 × 3 colormap matrix (𝐶 is the number of colors in the colormap, each 

represented by a RGB triplet) and 𝑐 is the index in the colormap which specifies the mapping of 

the weighted contribution of the intensity in the PWI (pwiSlice) to its corresponding RGB triplet 

in the colormap. Furthermore, hybridSlice is the resulting 𝑋 × 𝑌 × 3 matrix corresponding to 

the hybrid PD-PWI image, where 𝑋 and 𝑌 are respectively the number of pixels along each 

direction of the slice (i.e. 2D image). The optimal choice of values for 𝛼 and 𝛽 will be explored 

later in this chapter. 

6.3 Results 

6.3.1 General remarks on image registration  

Visual assessment of the registration results is an integral part of the development and 

validation of registration algorithms (Hill et al. 2001). In addition to the criteria established in 

section 6.2.3.1, the development of the image registration pipeline (as well as registration 

parameters) was guided by a visual assessment of the results at each registration step in the 

pipeline. Preliminary tests suggested that the greatly increased number of degrees of freedom 

offered by nonlinear registration severely decreased our confidence in the registration results, 

as non-linear registration applied directly to the background-suppressed control/label images 

resulted in unacceptable deformations. This can likely be attributed to the effect of BS which 

reduces the static tissue signal and thus the lack of anatomical detail rendered it unfeasible to 

obtain an accurate deformation field. 

6.3.2 Post-processing pipeline – T1 mapping 

Figure 6-6 and Figure 6-7 provide an overview of the results of 𝑇1/𝑀0 mapping in a single slice 

across the centre of the kidneys for all patients enrolled in this study (each row in the figures 

hybridSlice(x,y,1) = 𝛼 .× pwiSlice(x,y,1) .× map(c,1) + 𝛽 .× pdSlice(x,y,1) ← R channel 

hybridSlice(x,y,2) = 𝛼 .× pwiSlice(x,y,2) .× map(c,2) + 𝛽 .× pdSlice(x,y,2) ← G channel 

hybridSlice(x,y,3) = 𝛼 .× pwiSlice(x,y,3) .× map(c,3) + 𝛽 .× pdSlice(x,y,3) ← B channel 
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corresponds to data from a single patient). These were derived from the SR dataset, both with 

and without motion correction before the model fitting stage. All scans in these figures 

correspond to the first run of the first day for all patients. The three first columns (A, B and C) 

show 𝑀0 maps. A was obtained by a single PD acquisition with readout matching the main ASL 

scan but without any labelling or BS modules. B and C were the output of SR fitting, respectively 

without and with motion correction (“direct” registration). The improvement in image quality of 

the 𝑀0 maps in column C (i.e. after registration) is evident when compared to the equivalent 

maps obtained without motion correction (i.e. column B). This improvement can be seen as a 

marked reduction of artefacts close to the boundaries of the kidneys. Because the set of images 

in column A is obtained in a single fast acquisition (readout duration of less than 300ms) without 

need for any fitting, it is largely immune to motion artefacts. It can therefore serve as the gold 

standard to which the 𝑀0 maps obtained by SR fitting can be compared. The similarity between 

this set of PD images (column A) and 𝑀0 maps in column C is a testament to the effectiveness 

of the “direct” registration approach in compensating for the kidney displacements throughout 

the SR time series, despite the intrinsic contrast changes due to the varying post-saturation 

delays.  

Columns D and E show 𝑇1 maps, obtained respectively before and after application of the 

“direct” registration pipeline, overlaid onto the PD image shown in column A. Note that the 

pixels depicting 𝑇1 values are restricted to rectangular boxes, which were those used for 

independent left/right kidney registration. The same 𝑇1 information is shown, respectively in 

columns F and G, but restricted to the voxels assigned to the functional renal parenchyma ROIs, 

for a better appreciation of the variation in 𝑇1 values in the regions from which the mean 𝑇1 

estimates were obtained. As expected, when uncompensated for, the renal movement gives 

origin to artefacts, especially prominent close to the boundaries of the kidneys. Image 

registration is capable of suppressing these in most cases as can be seen by comparing the 

images from column D and E. After registration, the 𝑇1 maps are also generally smoother and 

less noisy, as the number of voxels with large spurious variations in 𝑇1 is reduced. At the same 

time, the maps show better anatomical specificity, preserving the variations in 𝑇1 values 

throughout different types of tissue, not only when comparing the kidneys to adjacent organs 

(e.g. liver) but also within the kidney, especially when lesions are visible. This is especially visible 

in patients #1, #5 and #10, where the kidney dilations visible as hyperintensities in the PD image 

are characterised by significantly higher 𝑇1 values. Columns F and G demonstrate how the use 

of image registration ensures artefacts are suppressed in the cortical regions. This is crucial for 

ROI-based quantification as many of the most severe artefacts in the 𝑇1 maps occur close to the 
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boundaries of the kidneys, which are precisely the regions from which the mean 𝑇1 estimates 

are derived (see artefacts highlighted by the arrows in column F in both Figure 6-6 and Figure 

6-7). Without motion correction, these artefacts result in severely inaccurate 𝑇1 values that are 

then used for perfusion quantification, which under these circumstances yield erroneous RBF 

maps. Despite the success of the proposed motion correction approach, variations in the 𝑇1 

estimates across the different subjects still remain. This can likely be attributed to the fact that 

the patient cohort under examination is very heterogeneous with respect to the underlying 

pathophysiology (see Chapter 7). 

A summary of the quantitative 𝑇1 values obtained across all scans of all patients (total number 

of scans = 50) with approaches A (no registration), B (“chain” registration) and C (“direct” 

registration) can be seen in Table 6-2.  

 

Table 6-2 Cortical T1 descriptive statistics before/after SR motion correction  prior to T1 mapping 
using the SR time series. Data from entire cohort (all patients/days/runs) (all values in seconds) 

 

 

Note that the maximum mean 𝑇1 value obtained following approach B was 3.55s, and 

corresponded to the scan where this approach failed (see below). Excluding this outlier, the 

range of 𝑇1 values using approach B was 1.24−2.13s, similar to that obtained using approach C. 

Statistically significant differences were found between the mean 𝑇1 values (averaged across the 

"functional renal parenchyma" ROI), in all patients (all runs/days) when comparing approaches 

A vs. B (two-tailed paired t-test, p<0.001) and A vs. C (two-tailed paired t-test p<0.00001) but 

not when comparing the approaches B vs. C (two-tailed paired t-test p=0.072). This suggests 

that in the presence of uncorrected renal motion the 𝑇1 values suffer from a significant positive 

bias. This can be problematic especially as increases in 𝑇1 have been associated with presence 

of parenchymal damage (Breidthardt et al. 2015).  

 

Both registration approaches improved the repeatability of the scans, with the “direct” 

registration method outperforming the “chain” method according to all repeatability measures 

(see Table 6-3). Propagation of registration errors in the “chain” method introduced severe 
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artefacts in the 𝑇1 map of one SR time series (approximately doubling the mean 𝑇1 in this scan). 

Therefore, repeatability indexes were computed for the full dataset and excluding this scan (see 

Table 6-3). Both registration methods are similarly effective except for the case where the 

“chain” approach failed resulting in a highly corrupted 𝑇1 map.  

 

Table 6-3 Intra/inter-session repeatability measures for the mean cortical T1 estimates. WSCV: 
within-subject coefficient of variation; ICC: intra-class correlation coefficient. Propagation of 
registration errors in the “chain” method introduced severe artefacts in the T1 map of one SR 
time series. “Chain” registration repeatability measures computed with and without inclusion of 
this outlier. 

 

 

Using both proposed registration approaches, the mean RMSE of the SR fits was found to be 

significantly lower throughout all patient/runs compared to the “no motion correction” 

approach (Figure 6-5 a)) (paired t-test p<1e-10). Interestingly, the RMSE decreased in the later 

runs. A likely explanation for this is that the fact that the only patients able to tolerate 3 runs 

were probably the more compliant ones, and as such their respective SR time series should be 

less affected by motion. There was no significant difference between the mean RMSE obtained 

the two registration approaches (paired t-test p=0.47). Further evidence of this fact can be seen 

in the histogram in Figure 6-5 b), obtained by pooling the value of the RMSE of all ROI voxels of 

all patients/days/runs.  

 

These results indicate a comparable performance by both registration methods but that the 

“chain” approach may be more susceptible to artefacts caused by the propagation of errors 

throughout the registration of the time series due to the fact that the reference image for each 

registration step is the result of the registration that preceded it (except for the longest TD 

image). On the other hand, in the “direct” approach, all registration steps are independent as 
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each image is individually aligned to the same reference image. This suggests that having a fixed 

high SNR reference image should be prioritized over minimizing differences in contrast 

throughout the time series using this particular approach. Furthermore, this encourages us to 

establish the “direct” registration strategy as standard for motion correction of the SR time 

series in our overall ASL processing pipeline. 

 

Figure 6-5 Effect of proposed registration approaches on the RMSE of the SR fits on the 
functional renal parenchyma ROIs. a) Average ± standard deviation (error bars) RMSE across all 
subjects for each run of a given day. b) Histogram of the RMSE of individual voxels for all 
patients/days/runs. The dashed lines correspond to the obscured sections of histograms A and 
B. 
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Figure 6-6 Overview of results of SR fitting 
(patients #1-#6), with and without applying 

image registration. Each row corresponds to 

data from a central slice of a single patient (the 

number in each row corresponds to the patient 

index). Each column shows images from a given 

type. A – proton density images (single 

acquisition); B – M0 map resulting from SR fitting 

(no motion correction); C – Same as B but using 

motion correction (“direct” image registration); 

D – T1 map obtained from SR fitting (without 

motion correction) overlaid on the PD images; E 

– Same as D but using motion correction 

(“direct” image registration); F and G: 

Respectively the same as D and E but T1 map 

values restricted to the functional renal 

parenchyma ROIs, from which mean T1 

estimates were derived. The white arrows in 

column F highlight artefacts in the T1 maps 

caused by misalignment during the time series 

before applying image registration All data from 

the 1st run of the 1st scan of each patient. 

 



155 
 

 

Figure 6-7 Overview of 
results of SR fitting 
(patients #7-#11) (figure 
organisation analogous to 
Figure 6-6) 
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6.3.3 Post-processing pipeline: ASL 

6.3.3.1 Registration of background-suppressed time series 

The mean change in temporal standard deviation (tSTD) of the perfusion-weighted time series, 

averaged across after applying the ASL processing pipelines B ( "registration only")  and C 

("registration + weighted averaging") relative to the “no motion correction” case (pipeline A) 

was -15.6±10.5% (range: -37.8% – 1.8%) and -24.3±14.6% (range: -57.2% – -1.0%) respectively. 

Analogously, the mean variation in temporal SNR (tSNR) after applying pipelines B and C, relative 

to A was, respectively 19.2±15.7% (range: 1.3% – 65.6%) and 31.4±25.0% (range: 1.1% – 87.9%). 

Note that these values relate to all scans in the dataset, including scans during which the amount 

of motion was smaller (where less room for improvement in the data exists). If only scans during 

which the average amount of total renal translational motion was larger than 50mm (or ≈1mm 

per volume) are considered, tSTD further decreases by 21.6±10% and 35.1±11.9 when 

comparing pipelines B and C with A, respectively. Analogously, the tSNR further increases by 

29.1±15.8% and 49.6±24.3%. The percent change in these metrics after applying pipelines B and 

C, relative to A for each individual run of all patients, as well as averaged across runs for each 

patient are shown in Table 6-4 (tSTD) and Table 6-5 (tSNR). For enhanced visualization, each 

entry in the tables is colour-coded according to the degree of improvement in the metrics for 

each scan, on a colour scale ranging from red (smallest improvement) to green (greatest 

improvement). For tSTD, improvement corresponds to a decrease in this metric, assuming that 

during the length of the scan (approximately 3 minutes, with the delays associated with 

respiratory triggering), the haemodynamics should remain constant and therefore any change 

in perfusion weighted signal should be attributed to noise and especially motion. On the other 

hand, improvement in tSNR corresponds to an increase in this metric (see Chapter 5 (Section 

5.2.4) for the definition of these metrics). Note the more frequent “green” colour coding on the 

right hand side of the tables, suggesting the added value of combining weighted averaging with 

image registration. In fact, applying this pipeline (C), resulted in a decrease in tSTD and an 

increase in tSNR in all scans in the dataset. 

Statistically significant differences were found between the tSTD and tSNR of the perfusion-

weighted time series in the "no motion correction" and the "registration only" as well as the 

"registration + weighted averaging" cases. In addition, these metrics also differed significantly 

between the "registration only" and the "registration + weighted averaging" cases (two-tailed 

paired t-tests, all p-values ≤ 1x10-5). All runs were considered individually in these tests (i.e. the 

metrics were not averaged across the four runs for each patient). This suggests a benefit in using 
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the motion correction pipelines and the usefulness of using a noise-reduction weighted 

averaging method in addition to standard image registration. 

Table 6-4 tSTD change after image registration relative to the no motion correction case (in %). 
In this table, the Euclidean distance (ED) was averaged across all runs for each patient. 

 

Table 6-5 tSNR change after image registration relative to the no motion correction case (in %). 
In this table, the Euclidean distance (ED) was averaged across all runs for each patient. 

 

As long as the data has not been corrupted to such a degree that motion correction is not 

feasible, one would expect a greater improvement in tSNR for datasets where motion is more 

prevalent. As such, the total renal translation motion (summarised by the Euclidean distance 

metric), averaged across runs for each patient is also shown in Table 6-4 and Table 6-5. A larger 

value in this metric suggests an overall larger amount of motion by the corresponding patient. 

In fact, statistically significant correlations between the amount of renal translational movement 

in each scan and the improvement in tSNR after applying image registration were found (R = 

0.59, p = 4.6x10-5) and a combination of registration and weighted averaging (R = 0.80, p = 
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2.3x10-10) in the corresponding perfusion weighted time series. Figure 6-8 shows the 

corresponding correlation scatter plots, where R is the Pearson correlation coefficient. 

 

Figure 6-8 Improvement in tSNR after motion correction methods. scatter plot displays the 
percent increase (i.e. improvement) in tSNR in the PWI time series after applying the motion 
correction processing pipelines B and C relative to the “no motion correction” case (pipeline A) 
according to the amount of renal translation motion, for each individual ASL run (n=42). Linear 
regression lines as well as the Pearson correlation coefficient and p-value are shown. A 
significant, positive correlation was found between the improvement in tSNR and the total 
amount of renal translation motion, as determined by the registration algorithm. 

The amount of renal translational movement (as determined by the rigid registration algorithm), 

averaged across runs, differed significantly between runs 1 and 2 (44.2±17.3mm vs. 

61.4±43.8mm, two-tailed paired t-test p=0.035, data pooled from the two days) but not 

between days 1 and 2 (46.3±20.7mm vs. 54.8±39.8mm, two-tailed paired t-test p=0.392, data 

pooled from the two runs). This finding appears consistent with the practical expectation that 

the likelihood of patient movement increases with the amount of time spent inside the scanner. 

This further suggests that for a given protocol, the most motion-sensitive sequences, such as 

ASL, should be acquired near the beginning of the scanning session. Table 6-6 shows the 

Euclidean distance metric obtained in each individual run in the dataset, as well as mean and 

standard deviation of this metric, both across runs and patients. 
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Table 6-6 Euclidean distance descriptive statistics across the whole cohort (all 
patients/days/runs) 

 

A weak, albeit statistically significant correlation was found between the age of the patient and 

the amount of renal translational movement in each of the patients’ ASL runs (see Figure 6-9).  

 

Figure 6-9 Correlation of renal motion and patient age. This scatter plot displays the total 
amount of renal translational motion (as determined by the rigid registration algorithm) 
according to the age of the patient. The linear regression line as well as the Pearson correlation 
coefficient and p-value are shown. 

Furthermore, weak but statistically significant negative correlations were also found between 

the improvement in tSNR (%) and the age of the subjects when comparing the "no motion 

correction" and the "registration only" pipelines (R = -0.37, p=0.015) and the "no motion 

correction" and the "registration + weighted averaging" pipelines (R = -0.49, p=0.0009). 
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6.3.3.2 Complete pipeline 

Figure 6-11 and Figure 6-12 provide an overview of the ASL results. Similarly to Figure 6-6 and 

Figure 6-7, a single slice across the centre of the kidneys is shown for all patients enrolled in this 

study and each row in the figures corresponds to data from the same patient. Results are shown 

for “no motion correction” condition and after applying the full ASL motion correction pipeline, 

including “direct” registration for the reference SR time series and the “registration + weighted 

averaging” strategy for the ASL data. All scans in these figures correspond to the first run of the 

first day for all patients. Column A shows the PD scans, used as the baseline 𝑀0 scan for 

calibration of the ASL data and also shown here to serve as the anatomical reference. Columns 

B and C show the hybrid PD-PWI images, respectively without motion correction and after 

applying the ASL motion correction pipeline.  

 

One immediate observation is the fact that the PW dataset is generally well aligned with the PD 

dataset, even before applying motion correction. At least three reasons likely explain this 

finding. First, the SR dataset was acquired immediately before the main ASL acquisition. Second, 

the fact that each ASL acquisition consisted of 25 identical measurements for averaging which 

confer motion robustness to the final averaged PWI even if the individual images before 

averaging may occasionally shift with respect to each other due to changes in the respiratory 

cycle. Third, the fact that even though no labelling is performed in the PD acquisitions, a delay 

following the application of the respiratory trigger was added in this acquisition to match the 

delay that exists between the respiratory trigger and the ASL acquisition (to allow the inflowing 

blood labelled in the aorta to reach the kidneys). This therefore increases the likelihood of the 

PD images and the ASL images to be acquired at the same point in the respiratory cycle. This 

demonstrates that a careful setup in the acquisition stage goes a long way to provide high quality 

data, even without motion correction.  

 

An example of one scan where a large misalignment (approximately 1cm) between the PD and 

the ASL data volumes can be seen, as well as the effect of applying ASL pipeline C (“image 

registration + weighted averaging”) is shown in Figure 6-10.  
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Figure 6-10 Motion correction of a large misalignment between PD/ASL volumes (approximately 
1cm). This misalignment is evident when looking at the proton-density perfusion-weighted (PD-
PW) images without motion correction (ASL pipeline A), particularly when generating these 
images with with varying levels of 𝛼 and 𝛽 weights. After image registration + weighted 
averaging (ASL pipeline C), a better match is seen between the PD and ASL datasets and the 
corresponding RBF maps are markedly improved. This scan corresponds to the second run of 
the first day of patient #1. 

Overall, the hybrid images are of high quality, and show patterns of renal perfusion which vary 

considerably when comparing to healthy volunteer data (such as shown in Chapter 5) but also 

between patients, according to the underlying pathophysiology. For example, the data from 

patient #4 suggests relatively high perfusion with a spatial distribution matching that of healthy 

volunteers (higher in the renal cortex), patient #3 appears to have a marked reduction in 

perfusion throughout the whole kidney and patient #1 shows local perfusion defects matching 

regions of kidney dilations as seen in the PD images. Columns D and E show the resulting 

quantitative RBF maps computed within the rectangular regions used for masking the image 

registration step, respectively following ASL pipeline A (“no motion correction”) and ASL pipeline 

C (“image registration + weighted averaging”). Here, the beneficial effects of motion correction 

are more perceptible, largely because several separate image datasets are used in conjunction 

to generate the RBF maps, and any misalignments between these give origin to severely biased 

RBF measurements. Similar to when no motion correction was applied before SR fitting for 

T1/M0, artefacts are seen close to the boundaries of the kidneys in the RBF maps if image 

registration is not used (highlighted by the arrows in the subfigures in column F). The existence 
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of such artefacts depends on the relative positions of the kidneys in the ASL and the “calibration” 

data (PD images / SR time series), which may change between different ASL runs. Therefore, 

they directly influence the repeatability of the RBF measurements. The proposed registration 

approach is able to improve the alignment between background-suppressed ASL data and the 

reference 𝑀0 maps, as well as 𝑇1 maps obtained by SR fitting. The boundary artefacts are 

accordingly reduced. This can be seen in Figure 6-11 and Figure 6-12, by comparing the 

corrupted data with artefacts highlighted in column F, with the images from the same patients 

after applying the correction (column G). A particularly striking case where this is also the case 

can be seen in Figure 6-10. The RBF values averaged across the functional renal parenchyma 

ROIs obtained in each of the four scans in all patients enrolled in this study are shown in Table 

6-7. 

Table 6-7 Mean functional renal parenchyma RBF values obtained for each patient in all of the 
four ASL scans (two runs (R1 and R2) in each of two days), together with the mean and standard 
deviation of the RBF values of each patient averaged calculated across the four scans. The colour 
coding for each entry in the table relates to the mean RBF values (lowest: red; highest: green) 
and the standard deviation of the mean RBF values obtained in the 4 scans for each patient (low 
STD → high repeatability: green; high STD → low repeatability: red). N/Aa: discarded due to fat 
shift artefact; N/Ab: discarded due to failure in respiratory triggering.  

 

Overall, across all scans of the entire cohort, the mean±std of the RBF obtained with each of the 

ASL pipelines was 127.4±81.8, 95.3±46.9 and 94.7±47.3 ml/100g/min, respectively using ASL 

pipelines A (“no motion correction”), B (“registration only”) and C (“registration + weighted 

averaging”). Overall, the standard deviation of the measurements decreased after applying the 

motion correction pipelines. A higher standard deviation of the 4 runs of each patient indicates 

larger variability in the mean RBF obtained in each measurement, which could be related to an 

incomplete or unsuccessful movement correction. The highest standard deviation is seen in 
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patient #4, whose last scan (day 2 run 2) yielded an RBF measure of approximately half of the 

first 3. A retrospective look through all the intermediate steps in the pipeline revealed that the 

final registration step (registration of the averaged background-suppressed control image to the 

reference PD scan) failed.  What caused registration to fail was the existence of a high-intensity 

region in the vicinity of the kidneys in the background suppressed control images. Compared to 

the background-suppressed kidneys, this high intensity region had a greater similarity to the 

non-background supressed kidneys in the PD dataset. Consequently, the registration algorithm 

brought this high intensity region into alignment with the kidneys in the PD reference image 

instead of the actual background suppressed kidneys. Given the rigid transformation, the 

alignment of the kidneys in the registered background suppressed data to the PD reference 

dataset ended up being worse after this final registration step that with no registration, which 

was responsible for a corrupted perfusion map and hence the greatly different RBF estimate in 

this particular scan compared to the first three. This highlights the need for data quality control 

checks to avoid propagation of errors/artefacts throughout an image processing pipeline, 

particularly as its degree of automation increases. Repeatability measures regarding the RBF 

estimates obtained using the different processing pipelines are summarised in Table 6-8. Note 

that no data was rejected in this chapter (other than scanning failure). All the scans which were 

not completely corrected were included in the repeatability analyses for a fair assessment of the 

success of the registration methods. 

Table 6-8 Intra/inter-session repeatability measures for the mean cortical RBF estimates. 
Pipeline A: “no motion correction”; Pipeline B: “registration only”; Pipeline C: “registration + 
weighted averaging”; WSCV: within-subject coefficient of variation; ICC: intra-class correlation 
coefficient. 

 

Image registration was particularly successful in improving the inter-session repeatability of the 

measurements. The intra-session repeatability without applying image registration was 

unexpectedly high. Because the SR dataset was acquired only once at the beginning of the 

scanning session, systematic errors due to consistent misalignment between the SR and the ASL 

dataset in both ASL runs resulted in a moderately repeatable mean RBF despite severe 
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corruption in the RBF maps in the no-registration case. The lowest repeatability was found to be 

the inter-session repeatability of the second scan of each day, a somewhat anticipated fact given 

the expected decreasing levels of compliance by the subjects the longer they remain in the 

scanner. In addition to the challenge faced in the registration of the second scan of the second 

day of patient #4 (discussed above), arguably the worst repeatability was found in patient #5 

(see Figure 6-13). In this case, the final RBF maps of the second run of both days of this patient 

remain affected by motion artefacts after the complete pipeline. In the “day 1 - run 2” scan, this 

is due to misalignment of between the PD and the final PWI (highlighted by the white arrows in 

the second row of Figure 6-13). This resulted in an underestimation of perfusion of the inferior 

pole of the kidney in (see column G), lowering the mean RBF with respect to that obtained in 

“day 1 - run 1”. In the case of “day 2 - run 2” extreme motion (note this was the scan with largest 

amount of motion according to the Euclidean distance metric) caused the background 

suppression (BS) to PD registration to fail (see bottom of Figure 6-13). Note that despite the 

movement, an improvement in quality of the PWI after BS to BS registrations can be seen.   

Indeed, ensuring alignment of the ASL and PD datasets was found to be the most challenging 

step in the pipeline because of their dissimilar signal intensities and contrast (due to the use of 

BS in the ASL scans). We therefore would recommend acquiring a SR dataset (≈1min using our 

acquisition protocol) immediately before/after any ASL acquisition, to minimise the likelihood 

of significant motion between acquisitions, particularly in challenging patient populations, such 

as the one in this study. Additionally, not only motion but other types of artefacts can be present 

in the unsubtracted background-suppressed data. Avoiding these, particularly in the 

neighbouring regions of the kidneys, is key to enable an already challenging registration task 

(registering background-suppressed to non-background-suppressed data).  
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Figure 6-11 Overview of ASL results 
before/after motion correction (patients 
#1-#6). Each row corresponds to data from 
a central slice of a single patient (the 
number in each row corresponds to the 
patient index). Each column shows images 
from a given type. A – Proton density 
images; B – PD/PWI fusion image, where 
the grayscale data corresponds to the PD 
images, and the coloured data corresponds 
to the averaged perfusion weighted image 
(no motion correction). C – Same as B but 
using motion correction (“registration + 
weighted averaging”); D – RBF map 
obtained without motion correction 
overlaid on the PD images; E – Same as D 
but using motion correction (“registration 
+ weighted averaging”); F and G: 
Respectively the same as D and E but RBF 
map values restricted to the functional 
renal parenchyma ROIs, from which mean 
RBF estimates were derived. All data from 
the 1st run of the 1st scan of each patient. 
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Figure 6-12 Overview of ASL 
results before/after motion 
correction (patients #7-
#11)(figure organisation 

analogous to Figure 6-11) 
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Figure 6-13 Worst repeatability case due to unsuccessful BS to non-BS (i.e. PD) registration (patient #5). 
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6.4 Correlation of RBF and T1 

As discussed in Section 2.3.6 of this thesis, several studies have shown decreased RBF in CKD. 

Furthermore, an increase in T1 has been associated with pathology-induced structural changes 

to the renal parenchyma.  

A statistically significant negative correlation was found between cortical RBF and T1 (R = −0.57, 

p = 0.006) in this patient cohort. The corresponding correlation scatter plot is shown in Figure 

6-14, where R is the Pearson correlation coefficient. 

 

Figure 6-14 Correlation of cortical RBF and T1. This scatter plot displays the cortical RBF and 
corresponding T1 for each patient in each of the scanning sessions (ASL runs from each day are 
averaged since both were quantified using the same saturation recovery series). The linear 
regression line as well as the Pearson correlation coefficient and p-value are shown. 

This correlation reflects the fact that both T1 and RBF are MR measures sensitive to pathology. 

Furthermore, in line with as discussed previously (section 6.2.3.1), supports the need for T1 

quantification on an individual subject basis to ensure accurate RBF quantification. 

6.5 Conclusion 

ASL is a unique MR approach for quantifying tissue perfusion non-invasively. More than two 

decades of developments enabled great strides in translating this technique from specialized 

research labs into clinical implementation (Alsop 2012; Alsop et al. 2015). Nevertheless, ever 

since its inception, ASL has been hindered by its propensity to motion-related artefacts which 

limit its application in the clinical domain, especially outside the brain (Robson et al. 2009; 

Gardener & Francis 2010). In this work, we have combined a motion-insensitive ASL acquisition 

scheme with a specifically tailored image processing pipeline using validated image registration 
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methods with the aim of enabling repeatable renal perfusion measurements in paediatric 

patients with kidney disease. Eleven patients were scanned, each twice (40-50 minutes apart) 

on two different days to assess the reproducibility of the measurements. 

Certain assumptions which simplify both the ASL acquisition and data processing in healthy 

volunteers, such as using literature 𝑇1 times, no longer hold as this parameter may change with 

the underlying pathophysiology. Therefore, our pipeline includes a SR recovery fitting module 

allowing patient-specific 𝑇1 maps to be derived. This relies on the acquisition of a series of 

images at varying post-saturation delays and therefore is also prone to motion artefacts. We 

evaluated the impact of two SR recovery time series registration approaches on the renal 𝑇1 

estimates obtained in this patient cohort. The “chain” method appears susceptible to 

propagation errors throughout the time series due to the fact that the reference image for the 

registration step changes in each iteration. This suggests that having a fixed high SNR reference 

image (“direct” approach) should be prioritized over minimizing differences in contrast 

throughout the time series using this particular “chain” implementation. Nevertheless, both 

registration approaches were successful in improving the quality of the 𝑇1 estimates on a 

challenging patient population, as assessed by the intra- and inter-scan repeatability and 

analysis of the RMSE of the SR fits. Furthermore, realignment of the SR time series resulted in 

an improvement of the quality of the SR fits, as assessed by the RMSE metric (RMSEs of the SR 

fits were statistically significantly reduced after registration). A visual comparison of the 

resulting 𝑇1/𝑀0 maps clearly demonstrates the usefulness of image registration in reducing 

artefacts caused from misalignment of the individual image volumes from the SR time series. 

Finally, the mean 𝑇1 estimates from each scan of each patient (averaged across the entire ROI) 

were found to be statistically different after image registration, compared to the no motion 

correction case. Across all scans, we obtained a mean 𝑇1 of 1.89±0.29 and 1.65±0.21s 

(mean±std), respectively in the “no motion correction” condition and after applying the “direct” 

registration method. 

As anticipated, from an ASL standpoint scanning paediatric patients with CKD presented 

additional challenges, especially in terms of motion and reduced signal to noise ratio (SNR) of 

the perfusion signal. From an acquisition perspective, our data suggests that the optimised 

protocol was able to cope with this as the images are free of motion-artefacts due to the single-

shot nature of the acquisition. The amount of perfusion signal varies considerably among 

patients as the population is quite heterogeneous in terms of their pathologies. Nevertheless, 

the perfusion-weighted signal following control-label subtraction is clearly detectable in all 

patients when compared to the surrounding tissue and background regions with no expected 
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perfusion. This can be attributed to the moderate resolution at which the ASL scans are 

performed as well as the multiple averaging step implemented in this protocol, which boosted 

the SNR. We observe a very close match between visible pathologies in our anatomical scans 

(e.g. collecting system dilations) and a marked reduction in perfusion signal in the ASL scans. 

This is especially evident in the PD-PWI hybrid images shown in this chapter.   

Despite the single-shot acquisition, the additional bulk body movement and irregular respiratory 

rates (which reduces the efficacy of respiratory triggering) prevalent in this patient cohort still 

poses challenges as all the measurements rely on processing multiple image volumes acquired 

separately. As seen above, registration of the SR time series was successful. In addition, the 

registration of the background-suppressed data was assessed by computing the temporal 

standard deviation (tSTD) and temporal SNR (tSNR) of the perfusion-time series. A statistically 

significant improvement in both metrics was achieved by using image registration, which was 

further enhanced by integrating the weighted averaging approach into the processing pipeline. 

The degree of improvement in tSNR positively correlated with the amount of renal translational 

motion which took place during the acquisition of the ASL time series, as described by the 

Euclidean distance metric. 

Given the large number of averages in the ASL scan, the factor which most critically affected the 

measured RBF values was the alignment between the averaged ASL data (i.e. the final averaged 

PWI) and the calibration datasets (𝑇1 and 𝑀0 maps). Indeed, if these image volumes are not 

aligned, the resulting RBF maps are corrupted, showing severe artefacts particularly close the 

boundaries of the kidneys and producing wildly inaccurate RBF values. This is especially 

problematic as cortical perfusion measurements are typically derived from these regions. The 

effect of registration in reducing these types of artefacts was demonstrated in Figure 6-11 and 

Figure 6-12. This resulted in an improved inter-session repeatability of the scans, assessed by 

the intra-session correlation coefficient and within-subject coefficient of variation. Interestingly, 

even though the intra-session repeatability did not improve per se, a reduction in the systematic 

errors in the RBF estimates due to consistent misalignment between the SR and the ASL dataset 

between different runs in the same session was achieved. 
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7 Feasibility of 3D-GRASE Renal ASL in a Paediatric Cohort with 

Impaired Renal Function  

7.1 Introduction 

Having previously established ASL in healthy volunteers (see previous work by our group in 

(Cutajar et al. 2012) and Chapter 5 within this thesis), this chapter presents a cross-sectional 

study delving into the question of whether ASL is feasible in paediatric patients with different 

degrees of renal failure. This chapter examined two hypotheses:  

1. Reproducible Renal Blood Flow (RBF) measurements are possible in children with CKD. 

2. RBF and the estimated glomerular filtration rate (eGFR) are directly correlated. 

To investigate these hypotheses, eleven children with severe CKD of different 

pathophysiological origin (eGFR (ml/min per 1.73m2) = 26 ± 9 (mean ± standard deviation), 12-

47 (range)) underwent the same ASL acquisition on two different days to assess the repeatability 

of the RBF measurements and whether ASL can provide clinically-relevant information. 

Furthermore, the challenges of applying ASL in a paediatric cohort are described, namely in 

terms of acquisition (image artefacts, especially as they relate to movement issues) and image 

analysis (selection of regions of interest for RBF analysis and delayed bolus arrival times). 

7.2 Methods 

7.2.1 Recruitment 

Between March and July of 2016, eleven patients (8 male) underwent MRI scans on two different 

occasions. This is the same cohort of patients originally introduced in Chapter 6 (section 6.2.1). 

After an initial interaction with the patients and their parents, where the overall aims of the 

study were explained, children/parents who agreed to participate in the study were provided 

with information sheets and videos to explain the MRI procedure. On the day of each scan, both 

the parents and the child were given the opportunity to ask questions prior to the start of the 

MRI session. To reduce anxiety and maximise comfort, the children were encouraged to bring a 

DVD to watch during the scan using a mirror system mounted on a frame positioned over the 

child’s head and a pillow was placed under the legs to minimise lumbar lordosis. Parents were 

given the option to remain in the scanner room during image acquisition and encourage their 

child to remain still for the duration of the scan. 
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7.2.2 MR acquisition and image processing 

All data acquisitions were performed on a 1.5T Siemens Avanto system (Siemens Healthcare, 

Erlangen, Germany). The MR parameters were described in Section 5.2.1 and Section 6.2.2. All 

children underwent two single-TI ASL scans with an inflow time of 1.2s; one at the beginning of 

the session and the other at the end of session. In addition to the single-TI ASL scan with an 

inflow time of 1.2s, some patients (depending on their tolerance level to MRI scanning) had 

additional ASL runs at longer inflow times of 1.4, 1.6 and 1.8 seconds, albeit with 15 averages 

rather than the 25 averages that were acquired for the main ASL scan. Quantitative RBF results 

from these scans with longer TI are not reported in this work; they were only used to confirm 

cases where it was suspected that the inflow time of 1.2s was not sufficiently long. 

Data pre-processing consisted of the methods described in Chapter 6. Motion correction was 

performed using rigid registration for both the saturation recovery and ASL data, combined with 

noise/outlier removal using weighted averaging of the ASL data.  

Quantification of single-TI data was performed as previously described Chapter 6 using a single-

compartment modelling approach and subject-specific voxelwise 𝑇1/𝑀0 maps obtained from 

separate saturation recovery / proton-density acquisitions. 

7.2.3 Data analysis 

7.2.3.1 Region-of-interest (ROI) selection  

Several criteria were established for the manual selection of regions-of-interest (ROIs) for RBF 

quantification: 

1. Two types of ROIs were drawn: 

a. Cortical ROIs or functional renal parenchyma (FRP) ROIs (the differences 

between these are discussed below). 

b. Whole-kidney ROIs.  

2. All ROIs were drawn on the PD images (acquired in the same space as the ASL data). This 

was done so that no renal parenchyma was missed, as it could be the case if the ROIs 

had been drawn using the ASL data only (given the low perfusion in patients with 

advanced CKD).  

3. ROIs were drawn in all slices of the 3D dataset with clearly distinguishable renal tissue. 

The drawing of ROIs in the edge slices was done conservatively to avoid including voxels 

with obvious partial volume effects. 

4. The approach to drawing the ROIs differed depending on the presence or absence of 

significant dilatations in the kidney.  
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a. For patients without dilations or when dilations were not part of the renal tissue 

(such as in patient #7), the cortical ROIs were drawn using the same methods as 

for the healthy volunteers: including only voxels of the outer region of the 

kidney, approximately 2 to 3 voxels wide (9 – 13.5mm at the native resolution 

of the scans). In these patients, the whole-kidney ROIs consist of the cortical 

ROIs plus all the remaining renal parenchyma. 

b. For patients with large dilatations, all non-dilated renal parenchyma was 

included in the regions (henceforth referred to as functional renal parenchyma 

(FRP) regions). No cortico-medullary differentiation was possible. In these 

patients, the WK ROIs are equal to the FRP ROIs, as no more parenchymal renal 

tissue was left after drawing the FRP ROIs. 

5. Any dilatations were tracked across the multislice dataset to assist on the determination 

of their borders with the goal of avoiding their inclusion into both the cortical/FRP and 

whole-kidney ROIs.  

Examples of ROIs can be seen in Figure 7-1 and Figure 7-2, respectively for one patient with 

dilatations and one without dilatations. 

 

Figure 7-1 Regions of interest (ROIs) in a patient with dilatations. In patients with dilatations, the 
same ROI was considered for deriving functional renal parenchyma and whole-kidney statistics. 
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Figure 7-2 Regions of interest (ROIs) in a patient without dilatations. 

7.2.3.2 Data quality assessment 

Residual uncorrected motion poses one of the main challenges in the assessment of the 

repeatability of ASL. Therefore, after motion correction, the data quality of all scans was 

assessed by visual inspection (separate for each kidney) to allow a fair assessment of drawbacks 

and merits of ASL without being confounded by major movement issues. Only RBF results from 

datasets of sufficient quality were included in the Bland-Altman and correlation plots (see 

Section 7.2.5). The inclusion criteria were: 

 No obvious artefacts in the final averaged PWIs, T1 maps and PD images 
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 Good alignment between T1, M0 and perfusion-weighted data confirmed by visual 

subjective evaluation, based in the types of artefacts found when clear misalignments 

between these datasets exist (see Chapter 6 for a thorough discussion). 

7.2.4 Clinical topics 

7.2.4.1 Assessing clinical stability of the patients  

Serum creatinine measurements for all patients were obtained from routine blood sampling. 

Due to logistic reasons, blood samples were only obtained in days when the patients attended 

clinical appointments, which did not necessarily correspond to the days when MR scanning was 

performed. The time gap between blood sampling and the MR acquisition is reported below.  

Several previous studies have used different heuristics to establish whether subjects are in a 

clinically stable condition with respect to their renal function between MR visits. For example, 

Lanzman et. al. (Lanzman et al. 2010) considered subjects clinically stable if their variation in 

serum creatinine was less than 20% in the four months prior to the study, whereas Artz et. al. 

(Nathan S. Artz et al. 2011) considered patients stable if their serum creatinine varied by 

0.3mg/dL, (i.e. 26.5 𝜇mol/L) or less between MR visits (on the order of months).  

In this study, the two scans for each patient were performed within a short period (time between 

scans: 23±10 (mean ± std), range: 7-35, median 21 days). For this reason, and given that for all 

patients no acute changes in clinical status occurred between visits, we assume all the children 

were clinically stable between the two MR sessions.  

Stability over a longer term was also assessed. Given the variable frequency of blood sampling 

in our cohort, patient clinical stability was established based on the serum creatinine 

measurements closest to the scan days (shown in Table 7-1) and measurements available in the 

months prior to the scans (up to 1 year before), considering patients stable if the variation in 

serum creatinine was less than 20% following Lanzman’s approach (Lanzman et al. 2010). The 

preliminary results of patient follow-up (up to 1 year after the MRI scans) are also reported 

where available. 
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Table 7-1 Demographic and clinical data for each patient in the cohort. aWhere only one blood pressure value is shown it refers to the diastolic blood pressure. 
bNegative values indicate that the MR was performed before the creatinine measurement.  
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7.2.4.2 Calculation of eGFR  

The estimated Glomerular Filtration Rate (𝑒𝐺𝐹𝑅) was calculated from serum creatinine (𝑆𝐶𝑟) 

(obtained from routine clinical blood sampling) and height (ℎ) measurements using the "Bedside 

Schwartz" equation, which in SI units is as follows (Schwartz et al. 2009): 

 𝑒𝐺𝐹𝑅 = 3654.86 × 
ℎ

𝑆𝐶𝑟
 Equation 7-1 

Where the respective units of 𝑒𝐺𝐹𝑅, ℎ, and 𝑆𝐶𝑟 are 𝑚𝐿/𝑚𝑖𝑛 𝑝𝑒𝑟 1.73𝑚2, 𝑚, and 𝜇𝑚𝑜𝑙/𝐿.  

7.2.5 Statistical Analyses  

The agreement of the RBF measurements between runs in a given day and between days was 

evaluated. Bland Altman plots, as well as to a lesser extent correlation plots, were used to 

visualize the spread of RBF among the various measurements in each subject. Bland Altman plots 

were constructed by plotting the difference in RBF measurements against to their means. The 

95% limits of agreement are obtained by computing the mean ± 1.96 × standard deviation of 

the difference in the RBF estimates. T-tests were used to test the null hypothesis that the RBF 

differences come from a distribution with zero mean. The correlation between RBF (in 

ml/100g/min) measured using a TI of 1.2s and eGFR (ml/1.73m2/min) was evaluated by 

computing the Pearson’s correlation coefficient, where p values smaller than 0.05 were deemed 

to be significant. 

7.3 Results and discussion 

7.3.1 Recruitment 

Despite liaising with the parents and the child before the MRI session, identifying children that 

were able to cooperate during the scan presented a significant challenge, a finding also 

described elsewhere (e.g. (Cahoon 2011)).  Some centres already used mock MRI scanners to 

attempt to rule out subjects whose anxiety levels and movement during a MRI practice session 

suggest the actual imaging experiment is unlikely to provide good quality data (Hallowell et al. 

2008). Though the benefits of this approach are clear, we did not have access to a mock scanner 

at GOSH and so were unable to assess potential volunteers for the study in this way. 

Twelve children/parents agreed to take part in the study. One child was unable to undergo MRI 

scanning as despite careful preparation and setup she was unable to remain in the scanner for 

more than a couple of minutes. Therefore, eleven children (age (years): 12±3 (mean ± std), 

range: 7-17, median 12) were scanned on two occasions. Four children had posterior urethral 

valves, three children had renal dysplasia, one child had nephronophtisis, one had acute tubular 
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necrosis (ATN), one had haemolytic uraemic syndrome and one had renal cyst and diabetes 

syndrome (see Table 7-1). In one subject, the MR session had to be prematurely aborted 

approximately 25 minutes after the session start due to perceived discomfort and anxiety. In 

this particular case, the MR protocol was slightly adapted to prioritise the ASL sequences, which 

allowed test-retest data to be obtained despite the shortened MR session. 

7.3.2 Patient’s clinical status 

Demographic and clinical data for each of the 11 patients enrolled in this study are displayed in 

Table 7-1. The time elapsed between the blood sampling and the MRI scan of the corresponding 

patients was 24±30 (mean ± std), range: 0-89, median 11.5 days. (see results for each 

patient/day on Table 7-1. 

As discussed in Section 7.2.4.1, the clinical status of all children remained stable between the 

MR scans. In terms of longer term stability, eight out of the 11 patients (specifically patients #1, 

#2, #4, #5, #6, #9, #10, #11) were clinically stable based in the criteria defined in Section 7.2.4.1. 

One year following the MR scans, the 3 patients with progressive CKD (patients #3, #7 and #8) 

had reached end-stage renal disease and either started preparation for (or were already 

undergoing) renal replacement therapy.  

Across the whole cohort, serum creatinine levels were 231 ± 99 (mean ± std), range: 117-498, 

median 223 μmol/L corresponding to eGFR levels of 26 ± 9 (mean ± std), range: 12-47, median 

27 ml/min per 1.73m2. The number of patients at each CKD stage across the cohort is: Stage 3A 

= 1; Stage 3B = 1; Stage 4 = 8; Stage 5 = 1. 

Four out of the eleven children presented with renal dilatations. In some patients, significant 

atrophy and thinning of the renal cortex can be seen, particularly in cases with hydronephrosis, 

where dilation of the renal pelvis and calyces has occurred. A loss of cortico-medullary 

differentiation was also apparent in the 𝑇1 maps (see Figure 7-3), similar to clinical ultrasound 

findings. 
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Figure 7-3 Loss of cortico-medullary differentiation in two patients. Rows 1 and 2 (from top): PD 
images. Rows 3 and 4: T1 maps in the whole-kidney ROIs overlaid on the PD images. 

7.3.3 Data quality assessment and handling of exceptional data 

The results of the data quality assessment are summarised in Table 7-2. This table provides 

information (separately for each kidney) on which scans met or failed the data quality criteria 

(within the latter are those that failed due to scanning failure or excessive unsalvageable 

motion). In addition, kidneys which could not be analysed are specified, either because they 

could not be accurately discerned in the PD images, therefore resulting in a very low degree of 

confidence in drawing the ROIs (such as the left kidney of patient #9), or because no functioning 

renal parenchyma could be segmented (e.g. left kidney of patient #5 where only severe dilations 

are visible due to obstruction and associated reflux). Furthermore, the table is color-coded to 

highlight which intra and inter-session comparisons were not possible following the exclusion of 

corrupted data therefore specifying which data could not be included in the plots shown in this 

chapter.  
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Table 7-2 Results of visual evaluation of data quality. Only the scans that met the inclusion 
criteria described in Section 7.3.3 (checkmarked) were included in the plots seen in this chapter. 

 

In summary, following motion correction, the majority of scans were deemed of good quality 

and therefore used for further analyses. The averaged PWIs show a satisfactory signal-to-noise 

ratio (SNR) despite reduced perfusion, which can be attributed to the 3D sequence that ran with 

multiple averaging at a relatively coarse resolution. Out of the 44 scans (11 patients, 4 runs 

each), 2 were discarded due to scanning failure: fat shift artefact (patient #6) and triggering 

failure (patient #10), as detailed previously (Chapter 6). Four scans were rejected due to 

excessive motion/image registration failure. Details on the failure of image registration in these 

cases are discussed in Section 6.3.3.2. Therefore this translates to an 86% (38/44) success rate 

in this cohort of children.  

Children with single functioning kidneys included patients #4, #5, #7 and #9. In terms of 

individual kidneys, in 4 children the function of one kidney was so poor as to be unanalysable on 

ASL. Nevertheless, all 4 only contributed to a very small fraction of the total renal perfusion in 

each child, which can be visually confirmed by examining to the perfusion-weighted data, 

particularly when displayed together with the complementary anatomical information (e.g. 

using the PD-PWI fusion images). Of the 72 possible kidneys (seven patients with two kidneys 

and four runs and four patients with a single kidney and two runs), 6 had to be excluded. 

Specifically, the right kidney of patient #4 is hypoplastic and contributed to less than 10% of the 

total renal function when assessed by a Nuclear Medicine DMSA scan at 3 years of age. Its small 

size renders ROI drawing challenging due to partial volume effects and image registration is 

impaired due to the very small number of voxels included in the rectangular renal mask, which 

specifies the region of the FOV to be registered. Both the left kidney of patient #5 and the right 

kidney of patient #7 were considered non-functioning following MAG3 renograms and show 
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little to no perfusion weighted signal in the ASL data. The left kidney of patient #9, despite being 

larger than the other rejected kidneys, is still small compared to the contralateral kidney, and 

was difficult to visualise and segment in the PD images (similar finding in clinical ultrasound) 

with very low perfusion-weighted signal. 

Patient #3’s day#1−run#1 scan was the only case where using image registration introduced 

errors in the data. There was relatively little patient movement during this particular scan, which 

combined with data averaging resulted in a sufficient quality PWI, therefore allowing the criteria 

of data quality to be met even without motion correction. Therefore, in all analyses, the results 

from day#1−run#1 of patient #3 refers to the data without motion correction. This particular 

ASL run was unique in this regard. 

7.3.4 Effect of respiratory triggering on acquisition time 

As discussed in Section 4.3.3, the “true” acquisition time (TA) of respiratory-triggered scans 

(𝑇𝐴𝑡𝑟𝑖𝑔𝑔𝑒𝑟) is longer compared to the nominal scan time of non-respiratory triggered 

acquisitions (𝑇𝐴𝑛𝑜𝑚𝑖𝑛𝑎𝑙) due to the fact that with respiratory-triggering, the actual TR of the 

sequence depends on the subjects’ respiratory cycle. For the ASL scanning parameters used in 

this study (single-shot single-TI ASL with 25 measurements), 𝑇𝐴𝑛𝑜𝑚𝑖𝑛𝑎𝑙 is 150 seconds (2 ×

3[𝑠 𝑇𝑅⁄ ] × 25[𝑇𝑅]). Table 7-3 shows the “triggering time penalty factor” (𝑇𝐴𝑡𝑟𝑖𝑔𝑔𝑒𝑟/

𝑇𝐴𝑛𝑜𝑚𝑖𝑛𝑎𝑙) as well as 𝑇𝐴𝑡𝑟𝑖𝑔𝑔𝑒𝑟  (in seconds) for all ASL runs of all patients in this cohort (total 

number of runs = 42). 

Table 7-3 𝑇𝐴𝑡𝑟𝑖𝑔𝑔𝑒𝑟/𝑇𝐴𝑛𝑜𝑚𝑖𝑛𝑎𝑙 and 𝑇𝐴𝑡𝑟𝑖𝑔𝑔𝑒𝑟  for all ASL runs. The underlined values 

correspond to the mean and standard deviation across all runs of all patients (total number of 
runs = 42). 

 



182 
 

In summary, the actual scan time of the ASL runs in this study was 237±31s (range = 189-307s). 

That is, using respiratory triggering doubled the scan time in the worst cases, and at best 

increased the scan by approximately 25%. 

7.3.5 ROI definition 

Only the PD images were used for ROI definition. This avoids an underestimation of the number 

of renal parenchyma voxels due to reduced perfusion signal particularly in the patients where 

perfusion impairment is most severe, which would bias the RBF quantification results. All PD 

images were of high quality, free of movement artefacts owing to the single-shot nature of the 

acquisition. Good tissue contrast is observed particularly between functioning cortex and lesions 

characterised by a very long 𝑇1 (such as dilatations and cysts), which in several cases allowed 

them to be excluded from the functional renal parenchyma ROIs provided their size was 

sufficient to make them resolvable at the scan’s set voxel size. Nevertheless, ROI selection 

proved more challenging than on healthy volunteers as seen in Chapter 5. Despite the 

volumetric data set, avoiding the inclusion of non-parenchymal regions was challenging in 

patients, especially as this was done based on the PD images alone and no functional 

information guided this process (to avoid introducing bias, as described above). A retrospective 

visual analysis of the PD-PWI fusion images together with the manually drawn ROIs suggests that 

in some cases (e.g. patient #1) non-parenchymal kidney regions (dilatations) were included in 

the ROIs.  A similar outcome is likely to have occurred in patient 9, where cysts close to the 

kidney boundaries were included in the cortical ROI. When this happens, longer mean 𝑇1 values 

are obtained and the mean RBF is biased towards lower results. Drawing the ROIs for volume 

measurements in the PD images may also result in some errors due to partial volume effects, 

particularly in the edge slices, due to a combination of the relatively coarse resolution and the 

blurring characteristic of the single-shot 3D readout.  

This raises the question on which image should the ROI be drawn. If the ROI is based on the PD 

image, then the ROI may include anatomically present renal parenchyma that is not perfused. If 

the ROI is based on the PWI then all the parenchyma might not be included. The volumes of 

these two ROIs will be different giving different results of RBF in ml/kidney/min. The importance 

of the difference between these two ROIs remains an open question. 

Furthermore, volume measurements using the PD images are further complicated by a 

limitation intrinsic to the FAIR labelling scheme. In renal ASL experiments using the FAIR labelling 

scheme, it is necessary to avoid including the aorta within the slab-selective inversion region. 

This ensures that inflowing blood is not inverted (labelled) in the control acquisition. Depending 
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on the specific anatomy of each subject, specifically on the relative position of the kidneys and 

the aorta, meeting this criterion while imaging the entirety of both kidneys simultaneously may 

not be possible. Figure 7-4 depicts one case (patient #3) where this is the case. This illustration 

shows anatomical reference scans (acquired in the three anatomical planes using a TrueFISP 

sequence) for positioning of the ASL imaging volume. As can be seen, in order to exclude the 

aorta from the selective inversion slab (which by definition closely matches the imaging slab), 

the selective inversion region has to be moved posteriorly. This causes a significant anterior 

portion of the kidneys not to be included in the imaging volume, thus preventing estimation of 

the whole-kidney volume from these images. Visual inspection revealed that the entirety of both 

kidneys was not included in the field of view in the more than half of the subjects. Since in this 

work all ROIs were drawn on the PD images, all RBF results are shown in ml/100g/min, and not 

ml/kidney/min. 

 

Figure 7-4 Incomplete kidney coverage due to FAIR labelling. Anatomical reference TrueFISP 
scans used for position of the ASL selective inversion and imaging volumes. a) Axial slice; b) 
Sagittal slice; c) Coronal slice. The axial dataset is crucial for positioning of the ASL imaging 
volume and inversion slab excluding the aorta so that inflowing blood is not labelling in the slab-
selective (i.e. control condition). Depending on the relative anatomical position of the kidneys 
and the aorta, and assuming both kidneys are to be included in the imaging volume, then 
anterior portion of the kidneys may be excluded from the imaging region. 

7.3.6 RBF Intra and Inter-session agreement 

Bland Altman and correlation plots are shown for the intra and inter-session comparisons, both 

considering separate kidneys and for the case when perfusion is averaged across all voxels of 
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the two kidneys (see Figure 7-5 to Figure 7-12). Furthermore, plots were constructed for both 

the functional renal parenchyma and whole-kidney ROIs. As mentioned above, all scans deemed 

not of sufficient quality due to uncorrected movement artefacts or scanning failure are excluded 

from these plots. These are highlighted in the legend of the figures using a cross symbol. A strong 

correlation was found for all comparisons, particularly for the intra-session condition. Because 

a good agreement between measurements cannot be deduced from even a high correlation 

(Bland & Altman 1986), Bland Altman plots are also shown.  

 

Figure 7-5 Mean RBF intra-session agreement (right kidney – FRP ROIs). Left: correlation 
between runs in a single day for all datasets of acceptable data quality (together with lines of 
equality to illustrate the agreement between scans). The scans marked with a cross in the legend 
table are not shown either because the kidney was not analysed (non-existent or impossible to 
segment) or the scan was deemed of insufficient data quality. See Table 7-2 for details. 
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Figure 7-6 Mean RBF inter-session agreement (right kidney – FRP ROIs). 

 

Figure 7-7 Mean RBF intra-session agreement (left kidney – FRP ROIs). 
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Figure 7-8 Mean RBF inter-session agreement (left kidney – FRP ROIs). 

 

Figure 7-9 Mean RBF intra-session agreement (right kidney – WK ROIs). 
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Figure 7-10 Mean RBF inter-session agreement (right kidney – WK ROIs). 

 

Figure 7-11 Mean RBF intra-session agreement (left kidney – WK ROIs). 
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Figure 7-12 Mean RBF inter-session agreement (left kidney – WK ROIs). 

A summary of the statistical parameters obtained from the Bland-Altman analysis is shown in 

Table 7-4, where the limits of agreement (LOA) are shown in ml/100g/min. 

Table 7-4 Summary of statistics from the Bland-Altman plots, where LOA is in ml/100g/min 

 

In all plots, the mean of the differences is relatively small, with the largest bias (6.4 ml/100g/min) 

being found in the inter-session comparison of the left kidneys considering the FRP ROIs. For 

each comparison, t-tests have shown that the null hypothesis (RBF differences coming from a 

distribution with zero mean) is not rejected at the 5% significance level. The limits of agreement 

are calculated based on the spread of the differences of the RBF measurements (mean ± 1.96 × 

standard deviation of the differences). As such, the majority of points on the plots will lie within 

these limits, except for outlier cases where the differences between measurements are the 

greatest. These include the intra-session comparisons of patient#01-day#1 (Figure 7-5 and 

Figure 7-9) and patient#06-day#2 (Figure 7-7). Since the 𝑀0 and 𝑇1 maps are shared among the 

intra-session scans, these do not account for the variability of RBF in these cases. In the case of 

patient#06-day#2, the variability can be at least partly explained due to an exaggerated through 

plane translation found by the image registration algorithm when registering the left kidney. In 

the case of patient#01, even though no motion issues are seen in both runs of the first day, the 
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ASL PWI from the second runs shows reduced PW signal, resulting in the lower mean RBF 

obtained. Inter-session comparisons that yield differences outside of the limits of agreement 

include: Patient#02-Run#1 (Figure 7-6 and Figure 7-10) and Patient#10-Run#1 (Figure 7-8), 

where in both cases RBF increased in the second day. Good alignment between the different 

datasets in these scans was confirmed, therefore physiological variation may play a role in these 

variations, especially as the changes in mean T1 between these days are relatively small 

(approximately 100ms and 50ms, respectively). 
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7.3.7 RBF vs eGFR 

Plots of the mean RBF in each kidney obtained in all scans vs. eGFR are shown in Figure 7-13 and 

Figure 7-14, respectively for the FRP and WK ROIs. Analogous plots with the mean RBF averaged 

across all voxels of both kidneys are shown in Figure 7-15 and Figure 7-16.The mean functional 

renal parenchyma / cortical RBF at the inflow time of 1.2s in this patient cohort was, respectively 

101 ± 52 (mean ± std), range = 51-188 ml/100 g/min, significantly lower than in the cohort of 

adult healthy volunteers presented in Chapter 5 (295 ± 97 ml/100 g/min). Whole-kidney RBF 

was 105 ± 44, range = 61-175 ml/100 g/min (see Table 7-5). All patients with progressive CKD 

(patients #3, #7 and #8), which at 1 year following the MRI scans require renal replacement 

therapy had low RBF values, in the range of 60-75 ml/100g/min. No statistically significant 

correlations were found between RBF (in ml/100g/min, averaged across both kidneys) at the 

inflow time of 1.2s and eGFR in both FRP and WK ROIs considering each run individually, 

respectively (R = 0.227, p = 0.17) and (R = 0.244, p = 0.14) (see Figure 7-15 and Figure 7-16, 

respectively). The same is verified after averaging the RBF results of the two runs in a given day, 

respectively (R = 0.295, p = 0.19) and (R = 0.307, p = 0.18). 

Table 7-5 Mean FRP and WK RBF values obtained for each patient in all of the four ASL scans 
(two runs in each of two days), together with the mean and coefficient of variation of the RBF 
values of each patient averaged calculated across the four scans. Only scans of good quality were 
included (see Section 7.3.3). The colour coding for each entry in the table relates to the mean 
RBF values (lowest: red; highest: green) and the coefficient of variation of the mean RBF values 
obtained in the 4 scans for each patient (low CV → high repeatability: green; high CV → low 
repeatability: red). 
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Figure 7-13 Mean RBF (FRP ROIs) vs. eGFR - separate kidneys. 



192 
 

 

Figure 7-14 Mean RBF (WK ROIs) vs. eGFR - separate kidneys. 
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Figure 7-15 Mean RBF (FRP ROIs) vs. eGFR – merged kidneys. 
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Figure 7-16 Mean RBF (WK ROIs) vs. eGFR – merged kidneys. 

The following sub-sections reflect a tentative grouping of the patients based on their underlying 

pathology. 

7.3.7.1 Patients #3, #6, #8 

Patients #3 (Nephronophtisis), #6 (ATN) and #8 (haemolytic uraemic syndrome) presented with 

intrinsic kidney disease without dilatations. Patients #3 and #8 have relatively similar eGFRs, 

whereas the eGFR of patient #6 is around twice as that of patients #3 and #8. Given the 

underlying pathophysiology in patients #3 and #8, a progressive decrease in renal function is 

expected. This was the case, as in the months following the scans, there was a significant 

progression towards end-stage renal disease leading both patients to require dialysis. Patient #6 

presented with ATN. The natural history of patients with ATN is variable, depending on the 

degree of ischemia suffered by the kidney. The ASL data reveals better perfusion in patient #6 

as compared to #3 and #8, consistent with the significantly higher eGFR in patient #6. Unlike 

patients #3 and #8, patient #6 remained in stable CKD, not needing dialysis. This suggests that 

ASL may be providing clinically relevant information and might provide insight into different 

pathological processes. 
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7.3.7.2 Patients #1, #5, #7 and #10 

Patients #1, #5, #7 and #10 presented with posterior urethral valves resulting in bilateral 

dilatations. The PWIs closely match the anatomy: no PW signal is seen in the anatomical 

locations of the dilatations, and tissue is clearly perfused in the remaining functioning 

parenchyma (see Figure 7-17). An exception is patient #7 (lowest eGFR in the cohort) whose 

dilatations occur at the ureter level and the renal parenchyma shows a globally reduced 

perfusion, which fits what one might expect from a lower eGFR measure.  

 

Figure 7-17 PD and PD-PWI fusion images in patients with dilatations (patients #1, #5, #7, #10). 
Each show shows 3 slices of each patient. There is a very good match of the ASL perfusion signal 
and the anatomy as seen in the non-background suppressed PD (left) and PD-PWI (right) images. 
Note the lack of perfusion signal in regions with dilatations, as one would expect. All scans 
correspond to the first run on the first day. These data were interpolated (bicubic interpolation, 
factor of 3), as is common in medical imaging visualization software. 

7.3.7.3 Patients #2, #4 and #11 

Three patients presented with renal dysplasia as primary diagnosis (patients #2, #4 and #11). 

Patients #2 and #4 show a perfusion image with good signal. Whilst having a low GFR (between 

19.6 and 21.0 ml/min/1.73m2), these two patients have the highest RBF of the entire cohort, 

respectively 171 ± 12 and 188 ± 5 (mean ± standard deviation across the scans which met the 

data quality criteria). Despite a similar primary diagnosis, the perfusion obtained in patient #11 

is significantly lower than in patients #2 and #4. In addition, the whole-kidney perfusion (per 

100g) is higher than the cortical perfusion in the case of patient #11, which would not be 
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expected if the majority of blood had perfused the cortex at the inflow time used. The RBF 

results of Patient #11 are surprising (low RBF which does not match with the relatively high 

eGFR). Therefore, in this particular patient, ASL data at the inflow time of 1.6s was visually 

inspected and processed analogously to the 1.2s TI ASL scans for a preliminary analysis of the 

RBF map at this longer inflow time.  A visual evaluation of the perfusion-weighted signal at both 

TIs, overlaid on the reference PD images, suggests that at the chosen TI the complete bolus of 

labelled blood might not had left the large vessels and reached the renal cortex (see Figure 7-18). 

Analysis of the quantitative perfusion maps supports this finding as setting the inflow time to 

1.6s resulted in a higher cortical RBF than at the TI of 1.2s (see Figure 7-18). This raises an 

interesting and important observation in relation to inflow times used in ASL. This will be 

discussed below in the conclusion of this chapter. 

 

Figure 7-18 Delayed inflow time (patient #11 – 4/10 slices). The PD-PWI fusion images (right) 
confirm very good alignment between the PD and the PWI dataset. At TI=1.2s, perfusion has yet 
to reach the cortex, particularly in the left kidney (larger kidney on the right side of the figure). 
After quantification, this results in a reduced mean RBF at TI=1.2s compared to the longer TI of 
1.6s. In the highlighted slice (arrows), the mean perfusion is 95 ± 32 ml/100g/min at TI = 1.6s 
compared to 71 ± 41 ml/100 g/min at the TI = 1.2s. 
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7.3.7.4 Patient #9 

Patient #9 presented with a markedly enlarged right kidney with multiple cysts visible in the PD 

images, and extremely reduced perfusion signal in those corresponding regions. The 

pathophysiology of this patient is unique in this cohort, so forms a group of its own. The data in 

this patient is of very high quality (high SNR and almost completely free of artefacts – see Figure 

7-19). The functional RBF (in ml/100g/min) is low (51±1 and 61±6 ml/100g/min, respectively for 

the FRP and the WK ROIs, mean ± standard deviation across runs). An inflow time of 1.2s, and 

to a larger extent the inclusion of cysts (with no perfusion) in the FRP ROIs likely contributes to 

this.  This finding is supported by the fact that despite the large volume of the WK ROI, the 

difference in mean RBF between this ROI and the FRP ROI is the largest in this patient (with the 

mean WK RBF being approximately 47% higher than the mean FRP RBF), suggesting the inclusion 

of non-parenchymal tissue in the FRP ROIs. 

 

Figure 7-19 PD, 𝑇1 and RBF data from patient #9: PD, PD-PWI fusion images, T1 maps overlaid on 
PD images and RBF maps overlaid on PD images (from the top to the bottom rows). 

7.3.8 Limitations of ASL measurements in children with CKD 

This feasibility study has demonstrated several imitations, which are highlighted in the following 

sections. Despite these limitations, the MR data has shown the potential of renal ASL in 
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providing clinically relevant information in a challenging patient group in the first feasibility and 

reproducibility study of this technique on a paediatric cohort with severe CKD. 

7.3.8.1 Heterogeneous patient cohort 

A small cohort of children enrolled in this study, including patients with different ages and body 

surface areas, variable degrees of CKD and a wide range of diagnoses, where one might expect 

that the degree to which perfusion is impaired may be linked to each patients’ underlying 

pathophysiology. 

7.3.8.2 Lack of RBF measurements normalised to kidney volume 

The kidney volumes vary significantly between subjects with some having only one functional 

kidney. As such, perfusion measurements normalised per total kidney volume are desirable, but 

currently not available due to the FAIR labelling imaging field-of-view limitation (see Section 

7.3.5), which affects the proton-density ROIs from which whole-kidney ROIs were derived. 

Normalizing renal perfusion measurements per kidney or per volume/mass of cortical tissue 

may provide a more complete picture of the haemodynamics of the whole kidney. For example, 

in (Cutajar et al. 2015), RBF was measured using ASL in kidney donors pre and post-

nephrectomy. They found no significant differences in RBF in ml/100 g/min but given an increase 

of kidney volume post-nephrectomy, RBF in ml/kidney/min did increase significantly, suggesting 

hyperperfusion at the level of each individual glomeruli. A similar finding was reported by 

[Eikefjord2016b] who compared single-kidney renal blood flow in healthy controls and living 

kidney donors, measured with DCE-MRI. No significant difference was found in RBF in 

ml/100g/min between the two groups. However, when the entire kidney volume was taken into 

account (significantly higher in the donor group), RBF in ml/kidney/min was found to be higher 

in the kidney donors. 

7.3.8.3 Appropriate inflow times 

A visual inspection of the pattern of perfusion-weighted signal enhancement, especially when 

overlaid on the PD images (PD-PWI fusion images) allows one to assess  whether a given scan 

might have been performed with an inadequate inflow time. A preliminary analysis suggests that 

in some patients (specifically #3, #7, #8 and #11) an inflow time of 1.2s may not be long enough 

to ensure arrival of the complete bolus of labelled blood at the renal cortex. This is a well-known 

limitation of single-TI ASL studies, and is likely to be more prevalent in patients than healthy 

volunteers (for which an inflow time of 1.2s as used in this study is commonly used in the 

literature).  
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To attempt to confirm this hypothesis, exploratory ASL acquisitions were also performed data 

at an inflow time of 1.6s (0.4s longer than the standard inflow time of 1.2s).  

As discussed above, an inflow time of 1.2s seemed insufficiently long in patient #11 for the 

labelled blood to reach the renal cortex. ASL data from this patient acquired with a 1.6s TI was 

processed and analysed analogously to the 1.2s TI.  Figure 7-17 provides evidence of this fact, 

where mean cortical RBF calculated at TI=1.6s increased up to 34% in a central slice when 

compared to the mean RBF obtained at TI=1.2s 

 A similar situation occurred in patients #3, #7 and #8, and to a lesser extent in patient #9. 

However, as seen above, the low mean cortical RBF in patient #9 is also related to the inclusion 

of cysts close to the boundary of the kidney in the cortical ROIs. 

Multi-TI scans can address this issue, but in this preliminary work which primarily addressed the 

concern of motion in paediatric patients we opted for a conservative approach of using a single-

TI. This allows the scan to be completed in a shorter period of time, and also the acquisition of 

a high number of measurements providing additional motion robustness. Nevertheless, the 

results presented here provide motivation to move to a more comprehensive multi-TI approach 

for renal ASL in CKD patients. Under good circumstances (e.g. appropriate SNR and motion-free 

data), a multi-TI approach can simultaneously reduce errors in the absolute RBF measures and 

provide additional information on the tissue haemodynamics. In single-TI ASL the main a priori 

assumption to ensure accurate quantification is that the entire labelled bolus has arrived at the 

tissue at the chosen TI. Variations (e.g. prolongation) of the arterial transit time, as can be 

expected in certain pathologies, may render this assumption invalid. Multi-TI techniques, by 

sampling and fitting the inflow curve across multiple time points, allow for variations in arterial 

transit time to be accounted for in the RBF calculation. Including measurements at short inflow 

times also allows for a better characterisation of the bolus arrival time which may in itself be a 

biomarker of altered perfusion dynamics. Furthermore, by knowing the amount of time spent 

by the labelled bolus in the intravascular and extravascular spaces, it is possible to account for 

the different relaxation properties of the label according to where it resides. 

7.3.8.4 RBF modelling 

A comparatively minor limitation is that similarly to other studies (e.g. (Song et al. 2010; Nathan 

S. Artz et al. 2011; Niles et al. 2016), the model employed for RBF quantification did not account 

for possible differences in the 𝑇1 of the blood and tissue). We suspect that in some cases this 

could have contributed to an underestimation of the perfusion values, for subjects and renal 
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anatomical regions where the 𝑇1 values obtained from the SR dataset might have exceeded the 

values typically found for the 𝑇1 of blood. 

7.3.8.5 Timing of blood sampling 

Ideally blood samples for serum creatinine estimation and thus eGFR calculation in each patient 

would have been acquired on the day of each MR session, for a more accurate reflection of the 

patient’s biochemical state of the day of the scan. Nevertheless there was a short period 

between MRI scans and no changes in clinical status occurred between scans. 

7.4 Conclusions 

This study evaluated the feasibility of renal ASL in a paediatric cohort and was able to show 

reproducible RBF measurements in children even with severe CKD. RBF was found to be 

significantly lower in children with CKD than in healthy adult volunteers. The hypothesis that 

there is a direct correlation between eGFR and RBF in children with CKD has been disproven. 

The lack of correlation between eGFR and RBF might be a reflection of the different 

pathophysiological processes in different pathologies. The combination of low eGFR and low RBF 

may be a biomarker leading to end-stage renal disease: Patients #3, #7 and #8, who had some 

of the lowest eGFRs in the cohort, had low RBF (<80ml/100g/min), and their clinical status 

worsened in the year following the scans - these may be index cases.  Information on the 

variation and importance of arterial arrival times needs to the investigated in a larger cohort of 

children with similar causes of CKD. Arterial transit times could represent a new renal disease 

biomarker, leading to a better understanding of the underlying pathophysiology and thus 

natural history of progression or lack of progression of CKD. A prospective study with a larger 

group of children with a similar diagnosis would be necessary to test this hypothesis.   

From a practical perspective, we would recommend acquisition of a SR dataset immediately 

prior to the main ASL acquisition to minimize the likelihood of large kidney displacements 

between these, which may be difficult to correct for using image registration. Avoiding non-

movement related artefacts, especially those that may introduce regions of high intensity in the 

vicinity of the kidneys in the background suppressed data (e.g. fat shift or B1 inhomogeneity) is 

of paramount importance as these may severely affect the accuracy of image registration (this 

was seen in patient #4). 

Nevertheless, to our knowledge this is first study showing the feasibility of renal ASL in a 

paediatric cohort with severe kidney disease. Further work will focus on establishing the 

minimum number of signal averages that allows good SNR and motion robustness properties to 

be obtained, in an effort to reallocate some of the time currently used to acquire multiple 
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repetitions of a single TI to acquisitions at different inflow times so that variable haemodynamics 

can be accounted for in the RBF modelling and quantification. 

8 Conclusions and Future Outlook 

8.1 Conclusions 

Throughout recent years, ASL has been slowly making its way into the clinical realm as technical 

challenges are addressed allowing the potential of the technique to be realised. This thesis 

aimed to develop and apply ASL in the context of paediatric CKD. Several challenges were 

encountered, with patient movement being the most prevalent one. This was addressed at all 

levels of the ASL framework and applied in the first study showing feasibility of ASL in children 

with severe chronic kidney disease.  

Chapter 4 has shown the importance of optimised multi-shot acquisition schemes to reduce the 

likelihood of patient movement corrupting the data at the k-space level. This is particularly 

important since such corruption events give rise to artefacts that are impossible to correct using 

standard post-processing approaches. Nevertheless, even optimised k-space filling strategies 

remain motion-sensitive when they rely on several excitations separated by time gaps long 

enough so that patient movement is not “frozen”. This inherent limitation of multi-shot schemes 

is demonstrated in a variety of ways. First, a retrospective analysis of the respiratory trace of 

subjects who underwent multi-shot 3D GRASE ASL scans to which the instants of data acquisition 

(readout modules) were synchronized. This allowed correlation of the image artefacts to 

inconsistencies with respect to the phase of the respiratory cycle during which the data was 

acquired, explaining the source of the image artefacts. These were further confirmed by 

examining independent undersampled reconstructions of each k-space segment, as well as 

“navigator-like” information obtained from reconstructing projections from the phase 

correction acquisitions embedded in the 3D-GRASE pulse sequence. This suggests that the use 

of multi-shot acquisition approaches is likely to hinder the adoption of ASL in routine clinical 

practice, particularly in patients where compliance may be reduced, such as children. This 

motivated a preliminary assessment of data acquired with single-shot 3D-GRASE readout 

schemes. This has shown merit in these types of acquisitions, which were explored in the 

remaining chapters in this thesis. 

Building on the conclusions from Chapter 4, Chapter 5 presents a feasibility study of renal 

perfusion quantification in healthy volunteers where for the first time single-shot 3D GRASE was 

employed as an imaging readout module in the kidneys (Nery et al. 2016b). This allowed a robust 
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and fast (on the order of 2 minutes, depending on the respiratory rate of the subjects) 

volumetric mapping of cortical perfusion. RBF estimates were obtained in accordance with the 

existing literature. Furthermore, automatic retrospective approaches to outright reject or 

reduce the contribution of corrupted ASL PWIs to the final RBF maps were developed. These 

were tested in the same cohort of healthy volunteers, who had undergone an additional ASL 

scan which included periods of intentional movement by the subjects. The developed 

approaches were able to significantly reduce image artefacts and blurring and significantly 

improved the temporal signal-to-noise ratio of the perfusion weighted time series (up to a 73% 

improvement in the most corrupted dataset).  

After adopting a more robust readout (with respect to movement) and implementing 

approaches to reduce the effect of corrupted ASL measurements on the final RBF maps, Chapter 

6 focused on the development and implementation of a complete ASL quantification pipeline 

employing image registration for motion correction. The pipeline includes steps for registration 

of both the saturation-recovery (SR) data (from which renal T1 estimates are obtained for 

quantification) and the ASL datasets. Both were independently validated in a cohort of 11 

children with severe chronic kidney disease. We show an improvement in the quality of the 

cortical T1 estimates, as assessed by intra and inter-scan repeatability and analysis of the 

residuals of the SR fits. The registration of the individual PWIs (before averaging) resulted in a 

statistically significant decrease of the temporal standard deviation and increase of the temporal 

SNR of the PWI time series (i.e. improvement in both metrics). Incorporating one of the noise 

correction strategies introduced in Chapter 5 (wMeanB-mask) into the quantification pipeline 

resulted in a further statistically significant improvement of both metrics compared to image 

registration alone. Both the SR and ASL datasets were also registered to the reference PD scan, 

significantly reducing errors in the RBF quantification caused by misalignment of these different 

types of data. Considering the complete pipeline with motion correction (i.e. considering the 

combined effect of SR registration, ASL PWI registration, SR to PD and ASL to PD registration), 

the repeatability of the RBF estimates obtained in scans performed on different days improved 

significantly compared to the “no motion correction” case.  

The feasibility of ASL in children with severe chronic kidney disease was assessed in Chapter 7, 

using the optimised methods developed in Chapters 4, 5 and 6. This cohort had arguably the 

most severe degree of CKD explored so far in the literature with several patients close to end-

stage renal failure (eGFR (ml/min per 1.73m2) = 26 ± 9 (mean ± standard deviation)). As 

expected, this patient cohort has shown significantly reduced renal perfusion compared to 

healthy volunteers. Nevertheless, despite having a limited number of patients, this study 
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suggests that children with CKD are not a homogenous pathophysiological group with respect 

to the relationship between RBF and estimated filtration (eGFR). Furthermore, our data suggests 

that the arterial transit times (ATT) vary in this cohort of patients, which warrants future studies 

on the optimisation of multi-TI ASL schemes to account for these haemodynamic changes. These 

will also provide quantitative ATT information, whose variation among patients may provide 

insight on the underlying pathophysiology. Despite several limitations and highlighting several 

of the challenges of performing ASL in a clinical scenario in a difficult patient cohort 

(combination of severe CKD arising from different causes), this study was able to address the 

fundamental concern of patient movement. This allowed us to obtain reproducible functional 

renal parenchyma and whole-kidney RBF measurements in the first paediatric cohort to undergo 

renal ASL, demonstrating feasibility of this technique. 

8.2 Future Outlook 

With respect to the use of volumetric readouts for ASL, an important avenue for future work is 

to improve single-shot acquisition schemes. As shown in this work, we believe they are 

necessary for robust acquisition methods to enable a wide adoption of ASL in the clinic, 

particularly in applications where movement is of particular concern. Even in the brain, where 

currently multi-shot acquisition schemes are recommended (Alsop et al. 2015), future 

improvements in image acquisition should eventually result in a shift to single-shot acquisition 

methods, as highlighted by Wong et. al. (Wong 2014).  The greatest disadvantage of volumetric 

single-shot schemes is their achievable spatial resolution. The spatial resolution of the ASL 

protocol used to scan children with CKD is not ideal from a theoretical standpoint. Defining an 

optimal spatial resolution for scanning children with CKD is challenging given that the 

dimensions of renal cortex vary widely depending on the overall size of the kidneys (age of the 

subjects) and especially on the underlying pathophysiology (e.g. present or absence of 

dilatations in the collecting system). In this particular study, a compromise in spatial resolution 

was necessary to ensure the possibility of whole-kidney single-shot imaging at 1.5T.  

Partial volume correction methods may also be beneficial but these rely on accurate 

segmentations from high resolution anatomical scans and require certain assumptions to be 

fulfilled (e.g. spatial consistency). Furthermore, the lack of widespread automated image 

segmentation methods applicable for renal imaging (particularly in disease) makes obtaining 

such segmentations a laborious process which typically relies on lengthy manual segmentation 

efforts by experts. As such, these were not explored in this work. 
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A coarse spatial resolution may cause renal parenchyma voxels to be composed of signal 

originating simultaneously from both cortical and medullary tissue, particularly in the voxels 

close to the interface between these two tissues. This is the well-known partial volume effect, 

which affects all MRI techniques to an extent depending on their achievable spatial resolution. 

In renal ASL data, this may translate into the difference between the RBF measured in two 

deemed cortical voxels being caused by an unequal proportion of cortical and medullary tissue 

in the voxels, rather than a true difference in cortical RBF. This effect is exacerbated by the 

marked differences between cortical and medullary perfusion, as the former can be up to five 

times higher than the latter. In certain types of CKD (e.g. vascular diseases), cortical thinning is 

often observed (O’Neill 2000), which may further amplify errors in cortical perfusion 

measurements due to partial volume effects. As such, improving the spatial resolution of this 

technique will be of importance to improving the sensitivity and specificity of renal ASL in 

detecting perfusion deficits, particularly in focal disease. The approach presented in this thesis 

has significant room for improvement as no acceleration/undersampling methods (apart from 

partial Fourier) were used. These can be used to improve the spatial resolution of the scans 

while leaving the ETD unchanged or reduce the ETD to minimize blurring and thereby improving 

the effective resolution of the scans (Griswold et al. 1999). Several aspects are relevant when 

considering the use of parallel imaging in children with CKD at 1.5T. The main factor is related 

to the SNR of the ASL measurements. First, as previously discussed, ASL is a technique with an 

intrinsically low SNR, which is further reduced in a subjects where the perfusion is compromised 

(which is the case in CKD). If parallel imaging is used with the aim of increasing the resolution of 

the scans, as would be desirable in this particular case (maintaining the same echo-train 

duration) then the loss of SNR is not only caused by undersampling the data but also from the 

corresponding decrease in voxel volume. The fact that scans were performed at 1.5T is also not 

advantageous as compared to at a field strength of 3T where most of the recent renal ASL work 

is performed. Furthermore, parallel imaging methods were not implemented on the available 

prototype 3D-GRASE ASL sequence. An in-house implementation of parallel imaging acquisition 

and reconstruction methods was not pursued as it was superseded by the priority of developing 

motion correction approaches. The use of parallel imaging will address the main disadvantage 

of 3D single-shot sequences, which is the long echo train duration, during which relaxation 

effects are significant and result in a loss of image quality. A reduction in the acquisition window 

(shot duration) may also have the benefit of reducing physiological noise as shown in (Do et al. 

2014). If fact, (Do et al. 2014) et. al. found that the reduction in physiological noise was large 

enough to offset the increase in thermal noise caused by using parallel imaging resulting in a net 
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gain in terms of tSNR. However these findings were obtained in a cardiac ASL study using a 

TrueFISP readout and whether similar gains could be seen in renal 3D-GRASE ASL will require a 

future study. 

Compressed sensing (Lustig et al. 2007) may also be used to improve the spatial resolution or 

coverage of ASL scans. The latter has been shown by Han et. al., who have used compressed 

sensing to improve the coverage of a bSSFP-based (i.e. TrueFISP) ASL acquisition scheme (Han 

et al. 2016). Alternative approaches to cope with blurring include modulating the flip-angles to 

preserve signal at later stages of the echo train (Liang et al. 2014) and post-processing 

techniques (Galazzo et al. 2014). 

It is important nonetheless to keep in mind that under-sampling techniques come with an 

associated SNR loss which may be particularly costly for ASL, especially in patients with low RBF 

as seen in CKD. For this, imaging at a higher field (e.g. 3T) is attractive, given that the SNR of ASL 

measurements is proportional to the magnitude of the main magnetic field. In ASL, an additional 

advantage exists at higher fields since the magnetic label takes a longer time to decay, so a 

smaller amount of the possible signal is lost during the transit of the label. Nevertheless, a 

methodological approach is required for this investigation as the increased field strength may 

present additional challenges with respect to magnetic field inhomogeneity and power 

deposition. Pseudo continuous labelling (pCASL) may present a viable method to further 

improve SNR but even though this is now the labelling method of choice for brain ASL, further 

validation is necessary for the kidneys, particularly with respect to the variations in labelling 

efficiency caused by susceptibility effects and strong blood flows in the aorta (Shimizu et al. 

2017). A particularly important and often overlooked fact is the geometric limitations of FAIR 

when applied in the context of renal imaging (as shown in Chapter 7), which can likely be solved 

with pCASL. 

Both these possible improvements in SNR and spatial resolution are highly desirable in ASL as 

currently perfusion measurements in the renal medulla are still highly challenging (Nathan S. 

Artz et al. 2011; Kim et al. 2017), which may also provide important information on the 

pathophysiology of renal disease (Wentland et al. 2009). 

Future research is also necessary on the interplay between background-suppression and image 

registration, specifically on determining the optimal levels of background suppression to 

simultaneously reduce the fluctuations of static tissue signal which affect the perfusion 

measurements while still allowing registration methods to successfully realign the ASL data.  
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As seen in the renal ASL review presented in Chapter 2, research into multi-TI ASL methods has 

emerged only recently, and is mostly still limited to adult healthy volunteer studies. Our data 

shows how using single-TI ASL is advantageous from a motion-robustness perspective, but also 

that arterial transit times vary in this group of patients. Therefore, it is necessary to work on the 

compromise between the data redundancy that gives single-TI ASL its motion robustness and 

the additional haemodynamic information provided by multi-TI scans. Noise and motion 

compensation methods such as those that were presented in Chapter 5 and Chapter 6 will play 

an important role in this. 

Besides all the potential technical improvements described above, one can imagine that the 

number of ASL studies in patient populations will continue to increase. Ultimately, multi-centre 

studies with large patient cohorts will be necessary to ascertain the extent to which ASL (likely 

in combination with other non-invasive MRI biomarkers) will be adopted in clinical practice. 

Several scenarios can be envisaged, all of which have the potential to significantly impact the 

lives of patients with kidney disease: MR biomarkers may help in the stratification of patients 

with respect to their risk of progression to ESKD, elucidate aspects of renal pathophysiology and 

in a non-invasive identification of the critical mechanisms of kidney injury in each patient. 

Furthermore, they may provide valuable information to guide therapy on a patient-specific basis 

and potentially in the design of clinical trials to assess future therapies for renal disease.  

Appendix A - Reduction of motion artefacts in multi-shot 3D 

GRASE ASL using Autofocus  

This work was presented at an International MR conference (Thomas et al. 2016). 

Introduction 

A brief review of motion correction methods was presented in Chapter 3. Some of these were 

developed to perform 𝑘-space based corrections to correct for artefacts which can not be 

addressed by traditional image registration strategies such as those presented in Section 3.5. 

Many of these artefacts are avoided by adopting single-shot protocols, as presented in Chapter 

5. Nevertheless, unless advanced methods for accelerating the image acquisition and 

reconstructing undersampled data are used, the maximum achievable effective resolution of 

the scans is affected. Despite not being the focus of this thesis, and not constituting a chapter in 

its own right, I implemented and conducted tests with a 𝑘-space-based method (autofocus) for 

retrospective motion correction of multi-shot data. The results formed the basis of an abstract 
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(Thomas et al. 2016) and are presented here as a demonstration of merit for future work in this 

domain. 

Methods 

It is known that translations in image domain correspond to phase ramps in the frequency 

domain (Fourier shift theorem), as discussed in Section 3.1. Therefore, the algorithm applies trial 

phase ramps to the acquired raw data to compensate for the rigid body translations that have 

occurred between the acquisitions of the different 𝑘-space segments. After each shift and 

following reconstruction, the image quality of the resulting image is quantified using a quality 

metric, in this case the image entropy (see Section 3.5.2.2). Minimizing the entropy of an image 

reduces blurring and removes ghosts from otherwise reduced signal intensity regions. This is the 

basic principle of the autofocus method (Atkinson et al. 1997; Atkinson et al. 1999). To avoid a 

lengthy brute-force optimization, a basic iterative algorithm was implemented whereby the 

algorithm starts applying phase shifts in a coarse grid, which is iteratively refined (see Figure A-

1). This allows the algorithm to start with a large range of possible phase ramps while 

simultaneously correcting motion at the subpixel level at later iterations by significantly reducing 

the step size of the phase increments. 

Data from a healthy volunteer were acquired on a Siemens 3T Tim Trio scanner (Siemens 

Healthcare, Erlangen). Background suppressed FAIR Q2TIPS 3D GRASE ASL volumes were 

acquired with the following parameters: TE=26.84ms; TI1/TI2=800/2000ms; spatial 

resolution=3.1x3.1x5mm; acquisition matrix 128x104x12, with 5/8 partial Fourier applied along 

the second PE direction and segmentation applied in the primary PE direction (3 shots), resulting 

in an echo train duration (ETD) of 215ms; 140° refocusing pulse flip angle; TR=4s. Data were 

acquired in batches of 4 repeats: during the first batch, the subject was asked to remain as still 

as possible; during the second batch, the subject was asked to make translational head 

movements during the first and third repeat. Raw 𝑘-space data were exported from the scanner 

and processed with MATLAB code developed by myself (The MathWorks, Inc., Natick, MA, 

United States). 
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Figure A-1 "Multi-grid" autofocus in a 3-segment acquisition. For simplicity, the figure only 
considers trial shifts one in direction. I also consider one of the three shots to be in the reference 
position. As such, trial shifts are only applied to the other two shots. 

Results 

The autofocus algorithm was able to reduce inconsistencies between the different 𝑘-space 

segments, by applying phase corrections which allowed convergence to an optimal minimum-

entropy solution for the 3-shot 3D GRASE data sets. The effect of applying the autofocus 

algorithm to one of the ASL control acquisitions from a scan with intentional subject movement 

is shown in Figure A-2. Two main improvements are clear:  

i. Reduction in blurring, visible as an increase in image sharpness when comparing Figure 

A-2 a) and Figure A-2 b). 

ii. Reduction in image ghosting, demonstrated by Figure A-2 c), which corresponds to a 

subtraction of the images before and after applying the autofocus method. 
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Figure A-2 Result of applying the autofocus algorithm in control multi-shot 3D-GRASE images (3 
slices from the same subject). a) Standard reconstruction b) Autofocus reconstruction c) 
Difference between a) and b) 

Conclusion 

An autofocus-type method was implemented to correct for 𝑘-space inconsistencies resulting 

from movement occurring during the acquisition of segmented 3D-GRASE datasets. This initial 

implementation was unable to robustly correct for these types of artefacts in the kidneys. 

Reasons for this possibly include the non-rigid movement occurring in the abdomen (not 

necessarily the kidneys). As a proof of concept, we applied this method in brain ASL data (to 

satisfy the rigid motion condition) acquired from a volunteer which moved during the scan under 

controlled conditions. Our method was able to significantly reduce image blurring and ghosting 

artefacts, thus demonstrating the use of autofocus to improve image quality in multi-shot 3D 

GRASE ASL acquisitions. Autofocus presents advantages such as the fact that it does not require 

additional modifications to the pulse sequence and can be readily applied to our data. In 

addition, since in our acquisition multiple 𝑘-space lines are acquired within the same excitation, 

we have an inherent grouping of the k-space data, which significantly reduces the number of 

unknown motion parameters. These results are promising and encourage further work in 

optimising our autofocus method for renal acquisitions. Nevertheless, this was not pursued in 
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the remainder of the PhD due to a shift in focus to single-shot acquisitions, which are less 

susceptible to movement which directly corrupts individual k-space volumes. 
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Appendix B – T1 mapping example in one healthy volunteer 

As discussed in Chapters 5 and 6 (sections 5.2.2 and 6.2.3.1), ASL quantification in healthy 

volunteers was performed assuming a fixed cortical 𝑇1 value obtained from the literature. Two 

main reasons led to this approach: 

 Renal cortical 𝑇1 values in healthy volunteers are relatively well characterised 

(compared to patient populations) and therefore a literature 𝑇1 can be expected to be 

representative of the cortex of the healthy volunteer cohort examined in this thesis. 

 A practical reason (also discussed in section 5.2.2) was that all motion correction 

pipelines were developed after the collection and processing of the healthy volunteer 

data. 𝑇1 mapping data is particularly prone to image artefacts in the absence of motion 

correction methods due to the varying delay from the respiratory trigger (inversion) to 

image acquisition. Therefore, the use of corrupted 𝑇1 maps was avoided by using a fixed 

literature 𝑇1  value. 

A 𝑇1 map obtained in a healthy volunteer with the same acquisition (section 6.2.2) and analysis 

(section 6.2.4) methods (except for the absence of motion correction) employed in the 

paediatric cohort with CKD can be seen in the following figure.  

 

Figure B-1 𝑇1 map (RBG voxels) overlaid on one of the saturation recovery image volumes 
(grayscale voxels) from where the 𝑇1 map was calculated. 

Despite the lack of motion correction, the minimal amount of movement in the underlying 

saturation recovery time series allowed a good quality 𝑇1 map to be obtained. Consistency 

across the cortical regions as well as corticomedullary differentiation can be seen. Furthermore, 
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the mask used when generating the figure above was obtained by simple thresholding and in 

addition to the kidneys, 𝑇1 values from the liver can also be seen and are lower than in the 

kidneys, as expected (de Bazelaire et al. 2004). 
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Appendix C – elastix parameter file  

// ======================= 

// ===== Image Types ===== ----------------------------- 

// ======================= 

(FixedInternalImagePixelType "float") 

(MovingInternalImagePixelType "float") 

(FixedImageDimension 3) 

(MovingImageDimension 3) 

(UseDirectionCosines "true") 

 

// =========================== 

// ===== Main components ===== ------------------------- 

// =========================== 

(Registration "MultiResolutionRegistration") 

(FixedImagePyramid "FixedSmoothingImagePyramid") 

(MovingImagePyramid "MovingSmoothingImagePyramid") 

(Interpolator "BSplineInterpolator")  

(Metric "AdvancedMattesMutualInformation") 

(Optimizer "AdaptiveStochasticGradientDescent") 

(ResampleInterpolator "FinalBSplineInterpolator")  

(Resampler "DefaultResampler") 

(Transform "EulerTransform") 

 

// ========================== 

// ===== Transformation ===== -------------------------- 

// ========================== 

(HowToCombineTransforms "Compose") 

(AutomaticTransformInitialization "true") 

(AutomaticScalesEstimation "true") 

 

// ============================== 

// ===== Similarity Measure ===== ---------------------- 

// ============================== 

(NumberOfHistogramBins 32) 

(ErodeMask "false") 

 

// =================== 

// ===== Pyramid ===== --------------------------------- 

// =================== 

(NumberOfResolutions 1) 

 

// ===================== 

// ===== Optimizer ===== ------------------------------- 

// ===================== 

(MaximumNumberOfIterations 500)  

(AutomaticParameterEstimation "true") 

(UseAdaptiveStepSizes "true") 

 

// ========================== 

// ===== Image Sampling ===== -------------------------- 

// ========================== 

(NumberOfSpatialSamples 4096)  

(NewSamplesEveryIteration "true") 

(ImageSampler "RandomSparseMask") 

 

// ======================================== 

// ===== Interpolation and Resampling ===== ------------ 

// ======================================== 

(BSplineInterpolationOrder 1) 

(FinalBSplineInterpolationOrder 3) 

 

(DefaultPixelValue 0) 

(WriteResultImage "true") 

(ResultImagePixelType "float") 

(ResultImageFormat "nii") 
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