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Abstract 

The hippocampus is one of the brain’s great mysteries. Historically, theories of its function 

included emotion, response inhibition, general memory, and spatial perception/learning, 

with memory vs. space emerging as a particular focus of more recent debates. A 1978 paper 

by Olton and colleagues (Brain Res. 1978 Jan 13;139(2):295-308) captured this dichotomy by 

exploiting their newly developed radial maze task to reveal a profound deficit in the ability 

of hippocampally lesioned rats to execute a spatial memory task. This finding supported the 

emerging spatial map theory of hippocampal function, and helped pave the way for the 

subsequent uncovering of an entire brain system linking space and memory. 

Main text 

In the late 1950s, the neuroscience world was tilted on its axis by a clinical case report that 

led to profound changes in thinking about memory. Scoville and Milner published a report 

of a neurosurgical patient, Henry Molaison (known for many years as HM), who had 

developed a deep and permanent anterograde amnesia following therapeutic bilateral 

temporal lobe resection [1]. They described his condition as follows:  
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“After operation this young man could no longer recognize the 
hospital staff nor find his way to the bathroom, and he seemed to 
recall nothing of the day-to-day events of his hospital life. There 
was also a partial retrograde amnesia, inasmuch as he did not 
remember the death of a favourite uncle three years previously, nor 
anything of the period in hospital, yet could recall some trivial 
events that had occurred just before his admission to the hospital. 
His early memories were apparently vivid and intact”.   

Until then, neuroscientists had thought that memory is probably distributed across the 

brain: this report seemed to suggest that it might be more modular. In particular, Scoville 

and Milner concluded “… that the anterior hippocampus and hippocampal gyrus, either 

separately or together, are critically concerned in the retention of current experience.”  

From memory to map 

This finding of a possible specific memory module in the brain electrified the field, and 

neuroscientists immediately turned to animal experiments to try to find out what the 

hippocampus might be doing for memory, and how. It is interesting to look back on the 

literature of the 1960s and 1970s and see the growing puzzlement over the data emerging 

from hippocampal lesion studies, in both monkeys and rats. Lesion techniques at that time 

were blunter instruments than today, with the use of surgical removal, aspiration and 

radiofrequency coagulation. Such methods produce large holes in the brain and also destroy 

fibres of passage, and we now know that many of the early findings from hippocampal 

lesion studies were side-effects of extra-hippocampal damage. Even so, replications of HM’s 

surgery in either monkeys or rodents were, in the words of the behavioural neuroscientist 

Helen Mahut, “disappointing”, with rodents showing “a complex profile of post-operative 

behavioural changes, none of which reflect a selective memory deficit”, and monkey studies 

also revealing consistently negative results [2] with preserved object discrimination and 

object reversal learning. However, Mahut was seeing in her own work the glimmerings of an 



3 
 

answer as to what the hippocampus might be doing in animals. In a series of studies of 

monkeys with medial temporal lobe ablations, including hippocampus and sometimes 

amygdala, she found a consistent impairment in tasks having a spatial component, 

particularly if this involved a reversal [2]. Meanwhile, studies in rodents were also beginning 

to find that some tasks did appear to be affected by hippocampal lesions, and prominent 

among these were, again, those having a spatial component [3,4]. Pieces of the developing 

picture seemed to fall into place in the early 70s, when John O’Keefe and Jonathan 

Dostrovsky reported initial findings indicating that single hippocampal neurons in rats were 

selectively active for places in the environment [5]. O’Keefe and Lynn Nadel made a detailed 

and compelling argument for the hippocampus being a spatial processing structure in their 

famous 1978 book The Hippocampus as a Cognitive Map [6]. 

This left a conundrum unaddressed, however. The amnesia of HM and other similar human 

cases was not for space alone; in fact, it seemed to affect virtually all events of daily life. 

HM’s memory span was only as long as his attention span – the moment he was distracted, 

the events of the past disappeared into oblivion, whether or not they involved a spatial 

aspect. For this and other reasons, many continued to stoutly defend the argument that the 

roles of the hippocampus go beyond that of merely spatial memory or spatial 

representation. Perhaps one of the firmest voices of this viewpoint is Larry Squire’s, who 

argued, and continues to argue, that spatial memory is a subtype of a more general type of 

memory that he called (in humans) “declarative” [7]. Similarly, Neal Cohen and Howard 

Eichenbaum suggested that the multifarious firing correlates of hippocampal neurons 

indicate that they “…represent various relationships among multiple stimuli and 

contingencies or responses, including configurational properties of items simultaneously 
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present in the environment and significant relationships between temporally separated 

items” [8]. 

Into the debate between spatial and more generally-oriented memory functions of the 

hippocampus came the 1978 paper by David Olton, together with John Walker and Fred 

Gage, that is the focus of the present article [9]. They employed a new method for assessing 

memory capabilities of animals, using a task introduced a few years earlier by Olton and his 

student Robert Samuelson [10]. In the standard version of the so-called radial maze, or 

Olton maze, task, animals start from a central platform and make their way to the ends of 

several – usually 8 – arms to find food, until all the arms have been depleted (Figure 1). At 

its core, this is a working memory task, because the animal needs to keep a running record 

of which arms it has visited and which it has not, with the arms being defined by their 

locations in the room. Somewhat oddly, rats (in contrast to mice) do not generally use an 

algorithm for making arm choices (e.g., enter the arm immediately to the left of the current 

one) but seem to make their next choices at random. In a variant of this task, only some of 

the arms are ever baited, and the animal thus has to maintain both a longer term 

“reference” memory of which are the sometimes-baited arms, as well as a working memory 

record of which arms it has visited in this session. 

Using this task, Olton et al. tested the effects of several types of brain lesion that share the 

characteristic of de-afferenting or de-efferenting the hippocampus. Lesions to the fornix and 

septal nuclei deprive the hippocampus of the bulk of its subcortical connections, while 

lesions of entorhinal cortex remove its cortical connections. Lesions of the septal area also 

remove a rich source of cholinergic input to hippocampus, as well as (we now know) 

disrupting oscillatory hippocampal activity in the 8-11 Hz theta range. Control animals with 
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lesions to postero-lateral (i.e, parietal) cortex, as well as ones with sham surgery or no 

surgery, were also tested. The results were striking – all lesions that interfered with the 

hippocampus and its communication with other brain structures, including septum, fornix 

and entorhinal cortex, induced profound and enduring deficits on the task, whereas the 

neocortical lesions did not. Thus, overall, the findings seemed to support the idea that the 

hippocampus, in the authors’ words “plays a major role in spatially organized behaviors.” 

From map to memory map 

The space/memory debate did not end with this study; in fact it continued to gain force. The 

study’s findings were provocative and influential, but did not settle once and for all the 

question of space vs. memory, because the radial maze could in theory be solved non-

spatially by remembering the extra-maze cues associated with each arm (although with 

hindsight, this is probably not what rats do). The findings did, however, galvanise thinking 

about how one could distinguish between a purely spatial vs. a more mnemonic explanation 

for the hippocampal dependence of such tasks. Shortly afterwards, to circumvent the 

possibility of non-spatial cue learning during navigation, Richard Morris devised the 

watermaze, which relies entirely on processing the spatial relations between extra-maze 

cues, and showed that hippocampal lesions profoundly affected performance on this task 

too [11]. 

Even with these clear demonstrations of its contribution to spatial processing, the idea that 

the hippocampus might have a more general role in memory remained alive and kicking. As 

mentioned, Squire and Eichenbaum were among the most enthusiastic proponents of this 

idea, but were by no means the only ones. As neurophysiologists picked up on O’Keefe’s 

method for recording place cells and began to extend it, an increasing number of reports 
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emerged presenting correlates of hippocampal neuronal activity that were not entirely 

spatial. A robust debate ensued, with Cohen and Eichenbaum calling the cognitive map 

theory, with evident frustration, the “theory that wouldn’t die” [12]. Defenders of the 

spatial mapping theory, particularly O’Keefe himself, argued that many apparently non-

spatial correlates, such as firing near goals or rewards, were artefacts of behavioural 

changes occurring at those places. Since place cells were by this time known to be 

modulated by movement [13], it can be hard to refute these arguments. However, as 

evidence accrued for non-spatial correlates that were clearly not movement artefacts, the 

notion of “place” began to be extended to take these findings into account. Place cells on 

the Olton maze, for example, proved to be highly directional, firing differently when the 

animal traversed an arms outwards vs. when it returned – “place” was thus modulated by 

other task-relevant demands. Place cells could even be modulated by the differing 

intentions of the animal at a place, even when all other factors were accounted for, and so 

“place” has eventually morphed into the extended concept of “spatial context”.  

The hippocampus as a memory map 

Despite all these other non-spatial modulators, place seems somehow fundamental to place 

cells. Even after decades of experiments, there are few reports of place cell activity that 

does not also have a spatial component, whereas if the cells were part of a more general 

memory mechanism then we might expect to see some cells with non-spatial firing 

correlates (e.g., cells that fire everywhere in a black box but nowhere in a white one, cells 

that fire when one experimenter is present but not a different one, etc). The ubiquity of the 

spatial modulation of hippocampal cells has led to speculation that the hippocampal spatial 

map might be a way for the brain to organise memories, thus being a critical component of 
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them. This idea has emerged several times in the decades since HM, and takes two different 

but related, and sometimes partially overlapping forms. One is that the brain uses space, via 

hippocampal place cells, as the organising framework for associating episodic memories, the 

idea being that returning to a place, or thinking of a place, can activate associative links that 

retrieve memories of things that have happened there. This idea was advanced by O’Keefe 

and Nadel who noted that the cognitive map – what they called the “locale system” – could 

order representations in a structured context, and thus be central to representation of 

context-specific experiences.  

The other memory map idea is that the hippocampus itself is a map, or organises a map, of 

where memories are stored in the brain. The best known of these so-called indexing 

theories was proposed by Teyler and DiScenna [14] who suggested that the hippocampus is 

a coordinate system for neocortical loci, the links to which are formed by Hebbian 

strengthening of the synapses between coactive neurons. Their ideas borrowed from a 

number of earlier ones including Hebb’s rule for creating cortical cell assemblies, and Marr’s 

ideas about the simple memory function of hippocampus (“archicortex”). The indexing 

theory finds support in the discovery of reactivation of hippocampal-neocortical links during 

offline processing periods such as sleep.  Collectively, these ideas have led to the emerging 

view that the hippocampus is a “memory map” – at once a map of space, a map of the 

brain, and a register of the links between these [15]. 

The Olton maze and its variants continue to be popular to this day. Although none of the 

studies based on it was able, on its own, to prove (or refute, for that matter) the spatial 

theory of hippocampal function, the paradigm taps into many broad questions pertaining to 

cognitive navigation, and does so at a level of concreteness that helped retain the task’s 
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appeal over the years. What are, for instance, the algorithms that animals use for deciding 

which order to visit arms in? Where are the working vs. reference memory traces located? 

What methods does the brain use for updating these traces? And where is the site of 

decision-making at choice points? The Olton maze is also notably easy to run and score, and 

lastly, given that rats are foragers, it taps into a relatively natural behaviour for these 

animals. With the growing recognition of the importance of ethologically-relevant 

experimental design, the Olton maze is likely to be with us – like the wider debates on 

hippocampal functions that it helped propel – for years to come. 
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Figure legend 

Figure 1: (A) Schematic of the radial maze, showing the spoke-like configuration, and food 

wells at the ends of the arms. (B) Schematic of the rat brain (top) showing the location of 

the hippocampus, and (below) the relationship of the hippocampus to medial septum and 

fornix (conveying subcortical inputs) and entorhinal cortex (cortical inputs). 

  



11 
 

 


