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Abstract

The paper proposes a decentralized state estimation method for the control of

network systems, where a cooperative objective has to be achieved. The nodes

of the network are partitioned into independent nodes, providing the control in-

puts, and dependent nodes, controlled by local interaction laws. The proposed

state estimation algorithm allows the independent nodes to estimate the state

of the dependent nodes in a completely decentralized way. To do that, it is nec-

essary for each independent node of the network to estimate the control input

components computed by the other independent nodes, without requiring com-

munication among the independent nodes. The decentralized state estimator,

including an input estimator, is developed and the convergence properties are

studied. Simulation results show the effectiveness of the proposed approach.

Keywords: Network Systems, Multi-Agent, Decentralized State Estimation,

Cooperative behavior.

1. Introduction

The paper considers the control of network systems problem, where the goal

is to achieve some desired dynamic cooperative behavior. Network systems
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include, as example, sensor networks [2], networks of autonomous agents (such

as robots and UAVs) [3], biological networks [4], transportation networks [5],5

microgrids [6], social [7] and economic networks.

Decentralized control of network systems has been widely addressed in the

last few years, mainly in the application fields of multi-robot systems [3], dis-

tributed sensor networks [2], and interconnected manufacturing equipments [8].

Controllability issues of network systems are analyzed in [9].10

Generally speaking, the aim of decentralized control strategies is implement-

ing local interaction rules to regulate the state of the overall system to some

desired configuration. In fact, mainly investigated coordinated behaviors in-

clude aggregation, swarming, formation control, coverage and synchronization

[10, 11, 12, 3, 13, 14, 15]. While they constitute fundamental basic low level15

objectives to be achieved in multi-agent systems, these coordinated behaviors

are still far away from several interesting real world applications.

In this paper, we consider heterogeneous networks, composed of nodes that

are assigned with different roles. In particular, the nodes are partitioned into

independent nodes, providing control inputs, and dependent nodes, controlled20

through local interaction. In this paper, in order to control the state of the

entire network, we propose a decentralized estimation method to let the inde-

pendent nodes estimate the state of the dependent nodes. In particular, both

the estimation and the control phases are computed locally at each node in a

decentralized way.25

As a motivating example, consider the problem analyzed in [16, 17], where a

team of mobile robots is controled to implement a cooperative dynamic behav-

ior, modeled as the cooperative tracking of desired periodic trajectories. The

motivation behind this work was to provide a model for cooperative operations,

similar to those performed by groups of human operators, such as the produc-30

tion cycle for a certain object, or the construction of a building. The team of

robots was partitioned into two groups: a (small) set of independent robots was

used as control inputs for the (large) set of dependent robots, evolving according

to local interaction. In order to achieve such a cooperative behavior, the input
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for the system depends on the state of the entire team.35

Another example is represented by microgrids [6] for energy production and

delivery. In these systems, distributed generators adapt their production rate

(i.e. the input for the system) based on the need of the loads (i.e. the state of

the system), which are connected by means of a network. Efficient management

of microgrids requires knowledge of the state of the entire network.40

In these application examples, independent nodes (i.e. the input points for

the network system) have usually access only to a subset of the state variables

of the system: namely, they can only measure the state of their neighboring

nodes. It is worth noting that, if a connected communication network exists

among the control nodes, information can be shared among them. However,45

this is not always feasible, nor reliable, and can cause drawbacks. In particu-

lar, when considering static nodes (e.g. the generators in a microgrid) having

a connected communication network to exchange information among the nodes

requires significant infrastructure, which may not be feasible, and may raise

security and privacy issues. On the other hand, when considering mobile nodes50

(e.g. mobile robots), several strategies exist in the literature to guarantee con-

nectivity preservation [18, 19, 20, 21, 22], but they introduce constraints on the

admissible trajectories of the nodes, that may be undesirable.

To address this kind of problems, in this paper we introduce a completely de-

centralized estimation procedure: without requiring any communication among55

the independent nodes, the proposed method provides a reliable estimation of

the entire state of the network system that can be used for control purposes.

The paper is organized as follows. A review of the relevant literature and

the main contributions of the paper are provided in Section 2. In Section 3,

the notation used throughout the paper is presented. The considered problem60

is introduced in Section 4. In Section 5 the decentralized state estimator is

designed and the related estimation error is analyzed in Section 6. Then, some

convergence conditions are derived in Section 7. The effectiveness of the pro-

posed method is shown in simulation in Section 9. Some final remarks can be

found in Section 10.65
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2. Related work

The research on distributed and decentralized state estimation is a fertile

and extensive field, with a lot of remarkable contributions. For a survey on

distributed estimation see, for example, [23]. Decentralized estimation is often

exploited for control purposes, since it allows the implementation of control70

strategies based on global quantities relying only on locally available infor-

mation [24, 25]. Two main different approaches have been proposed in the

state of the art to the problem of distributed state estimation: the diffusion

mechanism [26, 27], where the diffusion of the local estimations in neighbors

is obtained after incremental update, and the consensus strategies [28], applied75

to obtain average observations or estimations at each iteration. Moreover, an

important branch of research on distributed estimation is represented by dis-

tributed Kalman filters [29] and their combination with the diffusion mecha-

nism [30, 31]. See [32] for a survey. An interesting new field is the link between

distributed/decentralized estimation and distributed monitoring (see as example80

[33], [34] and [35]).

The contribution of the paper is the design of a decentralized state estimation

method to control network systems. The proposed estimation method allows

each independent node to estimate the state of the dependent nodes. Local

conditions on the filter matrix of the state estimator are derived to guarantee85

the convergence of the estimation error to zero. The main novelty of this paper is

the lack of information available at each independent node, which is not able to

communicate to the other independent nodes: in this manner, it is not necessary

to assume the presence of any direct communication among the independent

nodes. Moreover, each independent node not only needs to estimate the state90

of the other nodes, but also the control input components computed by the

other independent nodes. The considered problem represents therefore a more

challenging scenario than previous works. In this paper, we extend the results

obtained in [1] for multi-agent systems controlled by consensus interactions,

to the general framework of network systems. Furthermore, in this paper i)95
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we provide extended proofs of the theoretical results; ii) we describe several

simulations performed in different scenarios; and iii) we analyze the effects of

the measurement noise and of the lack of communication between independent

nodes on the performance of the proposed estimation and control schemes.

A similar estimation problem is considered in [36] for multi-robot systems,100

where an observer-controller scheme is presented for fault diagnosis, but differ-

ently from our proposed method, the observer uses information communicated

from neighbours in a distributed way and the convergence proof uses the strongly

connected communication graph assumption.

Many works in the literature consider single-leader networks (see [37] as105

example), while here the leaders can be many and have to cooperate without

communication.

In [38], the problem of estimating the state of a multi-agent system based on

asynchronous and noisy measurements is considered, but the estimation task is

not carried out by the agents.110

3. Notation and mathematical operators

In this section we define some symbols that will be used throughout the

paper.

The symbol Iρ will be used to indicate the identity matrix in R
ρ×ρ, while

the symbols Oρ and Oρ, σ will be used to indicate a square and a rectangular115

zero matrix in R
ρ×ρ and in R

ρ×σ, respectively.

Moreover, we will use vi to denote the i−th component of vector v, and Ψi

to denote the i−th block of a block diagonal matrix Ψ.

Given a list of vectors χi ∈ R
ρ, i = 1, . . . , σ, we use the symbol col(·) to

denote the vector χ̄ ∈ R
ρσ, namely

χ̄ = col(χi, i = 1, . . . , σ)

that is obtained stacking all the vectors χi, i = 1, . . . , σ.

The symbol ·⊗· will be used throughout the paper to indicate the Kronecker120

product. This operator exhibits the following mixed product property [39]:
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Property 1. Let A, B, C, D be matrices of opportune dimension, defined in

such a way that AC and BD exist. Then,

(A⊗ B) (C ⊗ D) = AC ⊗ BD (1)

Given a random variable ψ ∈ R, we will denote with Eψ its expected value.

4. Problem formulation

Consider a set V of N nodes, whose interconnection is modeled by means of

a connected undirected graph G.125

Let xi ∈ R
m be the state of the i−th node and consider the following single-

integrator kinematic model:

ẋi = µi (2)

where µi ∈ R
m is each node’s control input.

In order to keep the notation simple, in the following we will consider the

scalar case, thus assuming xi ∈ R and that the results can be extended to the

multi-dimensional case, considering each component separately.

Let us now divide the nodes into two sets: a (small) set VI ⊂ V of independent130

nodes, to whom it is possible to inject an external control action, and a set

VD = V \VI of dependent nodes, whose state evolves according to a local control

action, based on the state of the neighboring nodes. Let NI be the number

of independent nodes, and ND = N − NI be the number of dependent nodes.

We consider the challenging scenario where there is no communication between135

independent nodes.

Let x ∈ R
N be the state of the network system, collecting the nodes‘ states

xi, i = 1, . . . , N , ordered putting first the ND dependent nodes and then the

NI independent nodes. We will hereafter consider the nodes interconnected in

such a way that the dynamics of the network system can be written as follows:140

ẋ =





A B

ONI ,ND
ONI ,NI



x+





OND,NI

INI



 ν (3)
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where ν ∈ R
NI is the input vector, A ∈ R

ND×ND represents the interconnection

among the dependent nodes, and B ∈ R
ND×NI represents the interconnection

among dependent and independent nodes. This represents a generic intercon-

nection among the nodes: for instance, as shown in [40], it can be obtained from

the consensus interconnection.145

Define now xD = [x1, . . . , xND
]⊤ ∈ R

ND as the state vector of the dependent

nodes, and xI = [xND+1, . . . , xN ]⊤ ∈ R
NI as the state vector of the independent

nodes. According to (3), the dynamics of the independent nodes can be written

as the following single-integrator model:

ẋI = ν (4)

We introduce now u ∈ R
NI as the desired input that we would like to

introduce into the system by means of the independent nodes, in order to achieve

some cooperative objective. For this purpose, we define the input ν as follows:

ν = u̇−H (xI − u) (5)

with H ∈ R
NI×NI . It is possible to show that, for any choice ofH > 0, under the

control law (5), the dynamics of the independent nodes exponentially converge

to the desired input u. In particular, matrix H can be designed for making such

a convergence arbitrarily fast. Hence, in order to keep the notation simple, we

will hereafter assume that the independent nodes are controlled in such a way

that

xI ≈ u (6)

If, for instance, nodes are represented by mobile robots whose state is the po-

sition, this corresponds to imposing a sufficiently fast and accurate position

control.

Hence, from (3) and (6), the dynamics of the dependent nodes can be written

as follows:

ẋD = AxD +Bu (7)

Each independent node is then used to inject the control input ui, i = 1, . . . , NI ,

at different points of the network according to matrix B. To achieve this objec-
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tive, we assume that each independent node is able to measure the state of the

dependent nodes it is connected with, according to matrix B⊤.

y = B⊤xD, (8)

where y ∈ R
NI is the output vector, that is the vector containing the state

variables measured by the independent nodes, where each independent node

can measure only its corresponding components of the output y. Therefore, the

output equation for each i−th independent node can be rewritten as:

yi = b⊤i xD (9)

for each component i = 1, . . . , NI , being b
⊤
i the i−th row of B⊤.

The interconnection between the N nodes can be modeled by means of a150

connected undirected graph G. We will hereafter make the following assumption:

Assumption 1. G is a connected undirected graph.

Furthermore, in the scenario we are considering there is no communication

between independent nodes, that is, no edge exists among the independent155

nodes. Namely, information can be shared among the robots, and each inde-

pendent node is connected to one (or more) dependent nodes. The graph then

includes connections among the dependent nodes, while no exchange of infor-

mation occurs among the independent nodes.

Furthermore, we make the following additional assumption:160

Assumption 2. The pair (A,B) is controllable.

According to (3), matrices A,B are related to the interconnection structure.

Controllability is typically guaranteed, for connected networks, under mild as-

sumptions [41].

The goal is to control the state of the network system to achieve some co-

operative objective. For this purpose, we design the control law as follows:

u = FxD + ζ (10)
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where the first term FxD is a stabilizing term, being F ∈ R
NI×ND defined so165

that (A+BF ) is Hurwitz stable, and ζ is a general vector, an exogenous signal,

known by the independent nodes, designed based on the cooperative objective

we want to achieve.

Since the state xD is not completely available to the independent nodes, we

derive a decentralized state observer, so that the following control law can be

implemented

u = F x̂D + ζ (11)

where x̂D is an estimate of the state xD, and we demonstrate that the state of

the system converges to the desired configuration.170

5. The decentralized state observer

In order to allow each independent node to implement the control strategy

in (11) exploiting only locally available information, it is necessary to derive a

state estimator of the network system state xD. Moreover, since each indepen-

dent node is not able to communicate to other independent nodes, it is necessary175

to estimate the control input components computed by the other independent

nodes.

We assume that all the matrices (system and regulator matrices) are known

and constant. Hence, each independent node i estimates the input vector using

its own state estimate d̂i of the state xD as:

ûi = F d̂i + ζ, (12)

where the state estimate d̂i dynamics are computed as:

˙̂
di = Ad̂i +Bûi −Ki(yi − b⊤i d̂i) (13)

with Ki ∈ R
ND×1 being a matrix containing the weights related to the i−th

node of the filter matrix K that will be defined in the following sections to

guarantee the desired convergence properties. In fact, it is worth noting that180

the estimation scheme (13) is implemented by each independent node based only
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on locally available data, that is without knowledge of the other independent

nodes’ state estimates. For this reason, standard estimation schemes cannot be

adopted in this case.

6. Estimation error analysis185

For analysis purposes, we consider an extended formulation of the state

vector estimate x̂E , collecting the state estimates of the independent robots,

that is

x̂E = col(d̂i, i = 1, . . . , NI).

The dynamics of the extended estimator can be described as:

˙̂xE = AE x̂E +BE ûE −KE(y −DE x̂E), (14)

where AE = INI
⊗ A is a block matrix having non-null blocks only on the

diagonal, equal to A; BE = INI
⊗B is defined in an analogous way; ûE can be

computed similarly to x̂E as

ûE = col(ûi, i = 1, . . . , NI),

KE is a NIND × NI block matrix having on the diagonal the column vectors

ki; similarly, DE is a NI ×NIND block matrix having on the diagonal the rows

b⊤i . Since (12) can be rewritten in the extended form

ûE = FE x̂E +ΩE , (15)

where FE = INI
⊗ F is a diagonal block matrix having the matrix F repeated

on the diagonal and ΩE = INI
⊗ ζ, (14) becomes

˙̂xE = (AE +BEFE +KEDE)x̂E +BEΩE −KEy. (16)

Define now the extended estimation error ǫ ∈ R
NIND as follows:

ǫ = x̂E − xE (17)
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where xE is a vector collecting NI times the state vector xD. We now analyze

the dynamics of the extended estimation error ǫ̇ = ˙̂xE − ẋE , using (16) and the

extended version of (7):

ẋE = AExE +BEuE (18)

with

uE = F̃E x̂E +ΩE , (19)

where F̃E is a block matrix, where each (i, j)−th block (with i, j = 1, . . . , NI)

is a null matrix except from the j−th row of matrix F . An example of F , F̃E

and FE is provided in Appendix.

The dynamics of the extended estimation error are given by:

ǫ̇ = (AE +BEFE +KEDE)x̂E +BEΩE −KEy −AExE

−BEF̃E x̂E −BEΩE . (20)

We can observe that the output can be rewritten using extended vectors as

y = DExE . (21)

Moreover, since F̃ExE − FExE = 0, it holds

BEFE x̂E−BEF̃E x̂E = BE(FE−F̃E)x̂E = BE [FE x̂E−F̃E x̂E−FExE+F̃ExE ]

= BE [FE − F̃E ]ǫ. (22)

So we have

ǫ̇ = (AE +BE(FE − F̃E) +KEDE)ǫ. (23)

Matrix KEDE is a block diagonal matrix where each block on the diagonal

is based on the outer product kib
⊤
i . Matrix F̃E can be computed as:

F̃E = ĨEFE ,

where ĨE is a NIm×NIm block matrix, each block (i, j) having one single ele-

ment different from 0 in correspondence to the (j, j) diagonal element. There-

fore, (23) can be rewritten as

ǫ̇ = (AE +KEDE +BE(INIm − ĨE)FE)ǫ = (Λ + B̃FE)ǫ, (24)
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where Λ = AE +KEDE is a block diagonal matrix, being each i−th block equal

to A+ kib
⊤
i , and B̃ = BE(INIm − ĨE).190

7. Convergence analysis

In this section we analyze the convergence properties of the proposed esti-

mation scheme. In particular, the following Theorem provides a methodology

to locally define matrix Ki in (13) in such a way that the estimation error

asymptotically converges to zero.195

Theorem 1. Consider the state estimation scheme defined in (13), and let

λi,min be the minimum eigenvalue of A + kib
⊤
i + BF , ∀i = 1, . . . , NI . If,

∀i, . . . , NI , ki is defined so that the following holds

λi,min ≤ −
∥

∥

∥
(INI

⊗B) F̃E

∥

∥

∥
, (25)

then the estimation error (24) converges asymptotically to zero.

Proof. We need to prove the asymptotically stability of the system described

by (24). More specifically, we have that:

• A,B and related matrices are defined by the system topology;

• F and related matrices are defined by the control law, in order to ensure200

the desired convergence performances.

We define matrix K in order to guarantee the convergence of the estimation

error. Let us consider the Lyapunov function

V =
1

2
ǫ⊤ǫ . (26)

To guarantee that the estimation error ǫ goes to zero, we need to ensure that

the derivative of the Lyapunov function is negative (semi)definite, namely

V̇ =
∂V

∂ǫ
ǫ̇ = ǫ⊤ǫ̇ ≤ 0 (27)
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Let us consider (24) and let matrix Ψ be defined as follows:

Ψ = Λ + INI
⊗ (BF ) . (28)

Then, it is possible to rewrite (24) as:

ǫ̇ =
(

Ψ− (INI
⊗B) F̃E

)

ǫ (29)

by noting that

BEFE = (INI
⊗B) (INI

⊗ F ) (30)

can be rewritten as

BEFE = INI
⊗ (BF ) (31)

according to (1) (Property 1). It is worth noting that matrix Ψ is a block

diagonal matrix, whose i−th block Ψ[i] is equal to

Ψ[i] = A+BF +KiDi (32)

Let us now consider the Lyapunov derivative (27): it can be rewritten as

V̇ = ǫ⊤
(

Ψǫ− (INI
⊗B) F̃Eǫ

)

= ǫ⊤Ψǫ− ǫ⊤
(

(INI
⊗B) F̃E

)

ǫ

≤ ǫ⊤Ψǫ+
∥

∥

∥
(INI

⊗B) F̃E

∥

∥

∥
ǫ⊤ǫ

(33)

It is worth noting that the value of

∥

∥

∥
(INI

⊗B) F̃E

∥

∥

∥

can be computed, once B and F have been defined.

In order to prove the theorem, it is therefore necessary to define K so that

the following holds:

ǫ⊤Ψǫ ≤ −
∥

∥

∥
(INI

⊗B) F̃E

∥

∥

∥
ǫ⊤ǫ (34)

From standard matrix theory [42], it holds for a symmetric matrix A = A⊤:

x⊤Ax ≤ λmin(A)x⊤x,
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being λmin(A) the minimum eigenvalue of A; moreover, x⊤Ax = x⊤((A +

A⊤)/2)x. Then we can write:

ǫ⊤Ψǫ = ǫ⊤((Ψ + Ψ⊤)/2)ǫ ≤ λmin((Ψ + Ψ⊤)/2)ǫ⊤ǫ. (35)

Since λmin((Ψ + Ψ⊤)/2) ≤ λmin(Ψ) [43], we have the following condition

ǫ⊤Ψǫ ≤ λminǫ
⊤ǫ, (36)

with λmin the minimum eigenvalue of Ψ. We can rewrite condition (34) as

λminǫ
⊤ǫ ≤ −

∥

∥

∥
(INI

⊗B) F̃E

∥

∥

∥
ǫ⊤ǫ (37)

Then, we obtain

λmin ≤ −
∥

∥

∥
(INI

⊗B) F̃E

∥

∥

∥
(38)

that can be computed locally since Ψ is a block diagonal matrix: we have, ∀i,

λi,min ≤ −
∥

∥

∥
(INI

⊗B) F̃E

∥

∥

∥
,

being λi,min the minimum eigenvalue of A+KiDi +BF . Therefore, Ki has to

be designed so that (25) holds.

Remark. It is worth noting that matrix Ki can be locally computing, only205

assuming that each independent node knows matrices F and B. In the following,

we show a constructive algorithm to design matrix K so that the condition in

Theorem 1 holds.

7.1. Constructive algorithm

In this section we provide a constructive method to define ki so that (25)210

is satisfied, while guaranteeing that (A + BF ) is Hurwitz stable: this ensures

both that the estimation error vanishes, and that the state has the desired

convergence properties.

Let (A,B) be a controllable pair and let bi be a non null column of B. In

order to find ki satisfying (25) we can use pole placement techniques. It is

possible to demonstrate that there always exists ki such that A+kib
⊤
i +BF has
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Algorithm 1 Constructive algorithm for node i to find ki
1: Given (A,B) controllable

2: Heymann’s lemma:

find F ⇒ (A+BF, bi) controllable

3: if (A+BF ) is Hurwitz stable then

4: Pole placement:

find k⊤i ⇒ λi,min ≤ −
∥

∥

∥
(INI

⊗B) F̃E

∥

∥

∥
(25)

5: end

the desired set of eigenvalues. In order to guarantee that this problem is feasible,

we have to check controllability of the couple
(

(A+BF )⊤, bi
)

, by noting that

eig[A+ kib
T
i +BF ] = eig[(A+BF )⊤ + bik

⊤
i ].

Since (A,B) is controllable by assumption, using the results in Heymann’s

Lemma [44], it is always possible to find a matrix F such that the pair (A +215

BF, bi) is controllable. Consequently, it is always possible to find a row k⊤i such

that the matrix A+BF + kib
⊤
i has the desired set of eigenvalues. Controllabil-

ity is a structural property for LTI systems and, therefore, it is invariant with

respect to static feedback. Thus, the pair (A + BF + kib
⊤
i , bi) is controllable.

We can always write bik
⊤
i = BKi where all the rows of Ki are null but the220

i−th one, which is equal to k⊤i . Setting K = F + Ki, we have that the pair

(A + BK, bi) is controllable and A + BK has the desired spectrum. The final

step is to check that (A+BF ), with the obtained matrix F , is Hurwitz stable.

The constructive algorithm is summarized in Algorithm 1.

Remark 1. Defining matrix F as in Line 2 of Algorithm 1, that is, accord-225

ing to the Heymann’s Lemma, does not formally guarantee Hurwitz stability of

matrix (A+BF ). Therefore, it is necessary to check this condition, as defined

in Line 3 Algorithm 1. In the case that the obtained matrix F does not sat-

isfy this requirement, other procedures have to be followed. In all the developed

simulation examples the obtained matrix F satisfies the required condition. ⋄230
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8. Measurement noise

For a more complete analysis, it is possible to consider the presence of mea-

surement noises, by including an additive term in the output equation (9), thus

obtaining:

yi = b⊤i xD + η[i],

where η[i] is a random noise for the i-th node with mean value equal to η̄i, and

standard deviation equal to σ̄i. Therefore, we can rewrite the output equation

using the extended formulation and we obtain: y = DExE + η, where η is a

vector collecting all the components of η[i], i = 1, . . . , NI , ordered according to

their index. The dynamics of the extended estimation error (17) becomes

ǫ̇ = (AE +BE(FE − F̃E) +KEDE)ǫ−KEη. (39)

We have the following results.

Proposition 1. If the measurement noise is a zero-mean noise, then the esti-

mation error mean converges to zero.

Proof. The mean of the estimation error can be described by the following

dynamic model:

Ėǫ = (AE +BE(FE − F̃E) +KEDE)Eǫ−KEEη,

Since, by assumption, we consider a zero-mean measurement noise, then

Ėǫ = (AE +BE(FE − F̃E) +KEDE)Eǫ,

that converges to zero, thanks to the result in Theorem 1.235

Proposition 2. Given η̄ the mean of the measurement noise, different from

zero, then the estimation error mean converges to a bounded value.

Proof. The mean of the estimation error can be described in this case by the

following equation:

Ėǫ = (AE +BE(FE − F̃E) +KEDE)Eǫ−KEEη̄,
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which converges to a bounded value, since it represents an asymptotically stable

linear system with bounded input.

In the case that the measurement noise mean is known, we can trivially consider240

it in the estimator formulation.

9. Simulation results

9.1. The considered problem

As a case study, we consider a multi-agent system composed of N intercon-

nected mobile robots, partitioned into two groups: a small group of independent245

robots, and a large group of dependent robots. The objective of the system is

to solve a tracking problem: namely, a set of periodic setpoint trajectories is

designed, and the independent robots are controlled in such a way that the

dependent robots asymptotically track those trajectories.

For this purpose, we consider the following interconnection:











ẋi = −
∑

j∈Ni

wij(xi − xj) if i ∈ VD

ẋh = νh if h ∈ VI

(40)

where xi represents the position of the i-th robot, wij > 0 are the edge weights,250

and Ni is the set of the neighbors of the i−th robot, that is the set of the robots

that are interconnected to the i−th one. Moreover, define νh ∈ R
m as a control

input. It is worth noting that the dependent robots are interconnected with their

neighbors with the standard, well known, (weighted) consensus protocol [28].

Without loss of generality, in the following we will consider the scalar case, thus255

assuming xi ∈ R. It is possible to extend all the results to the multi-dimensional

case, considering each component separately.

Define L(G) as the Laplacian matrix associated to the graph G. Therefore,

as shown in [40], it is possible to decompose the Laplacian matrix L(G) as:

L(G) = −





A B

B⊤ C



 , (41)
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where A = A⊤ ∈ R
ND×ND represents the interconnection among the dependent

robots, and B ∈ R
ND×NI represents the interconnection among dependent and

independent robots. The dynamics of the dependent robots can be written

as in (7), namely

ẋD = AxD +Bu

We would like to note that this equation represents the standard model of a

LTI system: standard linear control techniques, based on the Francis’ regulator

equations, were exploited in [16] for solving the tracking problem.260

In particular, periodic setpoints are defined for each independent agent by

means of an exosystem, as the linear combination of n harmonics, that is a

linear combination of the elements of the following vector:

ξ (t) =

[

1 sin

(

2π

T
t

)

cos

(

2π

T
t

)

. . . sin

(

n
2π

T
t

)

cos

(

n
2π

T
t

)]⊤

.

(42)

A periodic setpoint can then be defined as a linear combination of the com-

ponents of ξ, defining a matrix J ∈ R
ND×n̄ such that

xs (t) = J ξ (t) (43)

where n̄ = (2n+ 1).

It is possible to define a linear exosystem

ξ̇ (t) = Gξ (t) (44)

where G ∈ R
n̄×n̄ is an opportunely defined marginally stable matrix [16], that,

initialized with

ξ (0) = [1, 0, 1, . . . , 1]
⊤

yields (42) as a solution.

The input u was then defined as follows:

u = FxD + (Γ− FΠ)ξ (45)

18



where Γ ∈ R
NI×n̄ and Π ∈ R

ND×n̄ are obtained as the solution of the regulator

equations that, in this example, can be written as follows:






AΠ+BΓ = ΠG

Π− J = OND,n̄

(46)

Matrix F ∈ R
NI×ND is chosen in such a way that (A+BF ) is Hurwitz stable.

It is worth remarking that, as known from basic linear control theory, Γ,Π, F

can always be found if the pair (A,B) is controllable. As shown in [41], given265

a connected undirected graph G, utilizing randomly chosen edge weights, it is

possible to ensure controllability of the pair (A,B) with probability one.

The control strategy (45) requires the full knowledge of the state vector xD,

which is a centralized quantity. In [16], the presence of a communication graph

among the independent robots was assumed, and a state observer was then270

designed, based on information exchange among the independent robots.

According to the considered problem, here we assume that no communica-

tion exists among the independent robots. An example of interconnection

topology defined with no communication among the independent nodes is de-

picted in Fig. 1. In the picture, independent nodes are highlighted with red275

dashed ellipses, while dependent nodes are highlighted with green solid ellipses:

black lines represent interconnections among the nodes.

Exploiting the procedure introduced in this paper, it is possible to design

a decentralized state estimation system, that does not require communication

among the independent nodes. Subsequently, the control law (45) can be im-

plemented in a decentralized manner, as follows:

ui = α⊤
i F d̂i + (Γ− FΠ)ξ (47)

where α⊤
i selects the component related to agent i.

In the simulations we consider single integrator agents moving in a three

dimensional environment, namely xi ∈ R
3, ∀i = 1, . . . , N . Let (x, y, z) repre-280

sent the global reference frame. The results presented in the previous sections

are easily extended to this multi-dimensional case, considering each component

separately.
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Figure 1: Independent nodes are highlighted with red dashed ellipses, while dependent nodes

are highlighted with green solid ellipses. Black lines represent interconnections among the

nodes: in the considered scenario, no edge exist among the independent nodes.

9.2. Estimation procedure

Several simulations have been carried out in order to evaluate the perfor-285

mance of the proposed control strategy. The results of some remarkable exam-

ples are summarized in Figs. 2, 3 and 4, for different network topologies and

different numbers of dependent and independent robots.

The interconnection topology among the robots is depicted in Figs. 2(a), 3(a)

and 4(a). In the pictures, Di indicates the i-th dependent robot, and Ij indi-290

cates the j-th independent robot. Red and green lines are used to represent

dependent-dependent and independent-dependent robots interconnections, re-

spectively.

The three-dimensional setpoint trajectories xs (t) are represented in Figs. 2(b),

3(b) and 4(b): each colored line represents the setpoint for one of the depen-295

dent robots. The objective of the control system is then to make each dependent

robot track one of the setpoint trajectories. This is obtained by means of the

independent robots, that act as the control input for the system.

In order to evaluate the performance of the proposed estimation and control

strategy, we computed both the estimation error ǫ(t) defined in (17) and the

20



tracking error e(t) defined as follows:

e (t) = xD (t)− xs (t) (48)

where the setpoint xs (t) is computed as in (43).

Specifically, Figs. 2(c), 3(c) and 4(c) show the evolution of the estimation300

error ǫ(t), while Figs. 2(d), 3(d) and 4(d) show the evolution of the tracking

error e(t). Due to space limitations, the plot depicts only the components along

the x-axis, and only the estimation error for the first independent agent. Similar

results are obtained in the other cases.

As expected, the estimation error asymptotically vanishes, and as a result305

the dependent robots correctly track the desired setpoint trajectories.

As expected, the estimation error quickly goes to zero and, subsequently,

the tracking error goes to zero as well.

9.3. Analysis of the effect of the lack of communication among independent

robots310

Simulations have been carried out in order to assess the degradation of the

performance introduced by the decentralized estimation scheme proposed in

this paper due to the fact that no communication exists between independent

nodes. For comparison purposes, we considered the estimation scheme originally

proposed in [16], in which communication among the independent robots was315

assumed: in particular, each independent robot had access to the entire output

vector, and was then able to implement a standard Luenberger state observer.

We consider as a representative example the case described in Fig. 3, considering

ND = 9 dependent robots and NI = 3 independent robots. Fig. 5 shows the

evolution of the tracking error (along the x-axis) in the two cases: considering320

communication among the independent robots, and utilizing the decentralized

observer introduced in this paper (see Figs. 5(a) and 5(b), respectively). It is

worth noting that the performance of the system is very similar, in the two

cases: hence, it is possible to conclude that, in practical cases, utilizing the
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Figure 2: Simulation performed with ND = 10 dependent robots, and NI = 5 independent

robots
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Figure 3: Simulation performed with ND = 9 dependent robots, and NI = 3 independent

robots
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decentralized estimation scheme proposed in this paper has a negligible effect325

on the system, and does not significantly degrade the performance.

9.4. Measurement noise

The presence of measurement noise has been considered as well. In particu-

lar, as described in Section 8, a Gaussian measurement noise has been consid-

ered, with mean value equal to η̄, and standard deviation equal to σ̄.330

Results are reported for one representative example, corresponding to the

interconnection topology depicted in Fig. 4(a), including ND = 14 dependent

robots, controlled by NI = 6 dependent robots having the objective to imple-

ment the setpoint trajectories depicted in Fig. 4(b).

Two different measurement noises were considered: Fig. 6 considers a zero-335

mean Gaussian noise, while Fig. 7 considers a Gaussian measurement noise with

mean value η̄ = 10. In both cases, the standard deviation is σ̄ = 1.

As expected, in the zero-mean case, both the estimation error (depicted in

Fig. 6(a)) and the tracking error (depicted in Fig. 6(b)) asymptotically converge

to zero, while they converge to a bounded value in the non-zero-mean case (see340

Figs. 7(a) and 7(b) respectively).

10. Conclusions

This paper proposes a decentralized state estimation method. The purpose

is the control of network systems in order to track arbitrary setpoint trajectories.

The proposed state estimation algorithm is designed allowing each independent345

node to estimate the input of the other independent nodes and the state of

the dependent nodes, without requiring communication among the indepen-

dent nodes. Conditions are derived to formally guarantee that estimation error

asymptotically converges to zero. The presence of measurement noises has been

investigated as well.350

The proposed estimation method has been exploited in [45] to implement a

decentralized fault diagnosis scheme, allowing to detect and isolate faults in the

considered multi-agent systems.
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(b) Tracking error e (t), x component, defined as in (48), achieved utilizing the decentralized

estimation scheme introduced in this paper

Figure 5: Simulation performed with ND = 9 dependent robots, and NI = 3 independent

robots

26



Time
0 5 10 15 20 25

0

10

20

30

40

50

60

70

80

90

100

(a) Estimation error (average absolute value)

Time
0 5 10 15 20 25

0

10

20

30

40

50

60

70

80

90

100

(b) Tracking error (average absolute value)

Figure 6: Simulation performed with ND = 14 dependent robots, and NI = 6 independent

robots, with measurement noise (mean η̄ = 0, standard deviation σ̄ = 1)

As a future work, we would like to analyze the scenario where the network

topology may change over time.355
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Appendix

In the appendix we show an example that clarifies the structure of matrices

FE and F̃E .

Consider, as an example, the case where NI = 2 and ND = 3. In this case,

we have F ∈ R
NI×ND , defined as follows:

F =





F11 F12 F13

F21 F22 F23



 (49)
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Matrix FE = INI
⊗ F is then defined as follows:

FE =

















F11 F12 F13 0 0 0

F21 F22 F23 0 0 0

0 0 0 F11 F12 F13

0 0 0 F21 F22 F23

















(50)

Matrix F̃E is defined as a block matrix, where each (i, j)−th block (with

i, j = 1, . . . , NI) is a null matrix except from the j−th row of matrix F . Namely:

F̃E =

















F11 F12 F13 0 0 0

0 0 0 F21 F22 F23

F11 F12 F13 0 0 0

0 0 0 F21 F22 F23

















(51)

Let xE =
[

x⊤D x
⊤
D

]⊤
, where xD = [x1 x2 x3]

⊤
. Then, the following equality

holds:

FExE = F̃ExE (52)
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