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Abstract 

Schizotypy is a multidimensional construct that provides a useful framework for understanding 

the etiology, development, and risk for schizophrenia-spectrum disorders. Past research has 

applied traditional methods, such as factor analysis, to uncover common dimensions of 

schizotypy. In the present study, we aim to advance the construct of schizotypy, measured by the 

Wisconsin Schizotypy Scales-Short Forms (WSS-SF), beyond this general scope by applying 

two different psychometric network filtering approaches—the state-of-the-art approach (lasso), 

which has been employed in previous studies, and an alternative approach (Information Filtering 

Networks; IFN). First, we applied both filtering approaches to two large, independent samples of 

WSS-SF data (n = 5,831 and n = 2,171) and assessed each approach’s representation of the 

WSS-SF’s schizotypy construct. Both filtering approaches produced results similar to traditional 

methods, with the IFN approach producing results more consistent with previous theoretical 

interpretations of schizotypy. Then, we evaluated how well both filtering approaches reproduced 

global and local network characteristics between the two samples. We found that the IFN 

approach produced more consistent results for both global and local network characteristics. 

Finally, we sought to evaluate the predictability of the network centrality measures for each 

filtering approach by determining core, intermediate, and peripheral items of the WSS-SF and 

using them to predict interview reports of schizophrenia spectrum symptoms. We found some 

similarities and differences in their effectiveness, with the IFN approach’s network structure 

providing better overall predictive distinctions. We discuss the implications of our findings for 

schizotypy and for psychometric network analysis more generally.  
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Network Structure of the Wisconsin Schizotypy Scales-Short Forms: 

Examining Psychometric Network Filtering Approaches 

Schizotypy is a multidimensional construct that encompasses the subclinical and clinical 

continuum of schizophrenia-spectrum disorders. At its most extreme manifestations, schizotypy 

is expressed as full-blown schizophrenia. Converging evidence across behavioral, cognitive, 

neurobiological, and ambulatory assessment studies supports the overlap of the schizotypy 

continuum and schizophrenia-spectrum disorders (e.g., Ettinger, Meyhöfer, Steffens, Wagner, & 

Koutsouleris, 2014; Kwapil & Barrantes-Vidal, 2015). In addition, schizotypy provides early 

detection of schizophrenia-spectrum liability in non-clinical samples, prior to the onset of 

psychosis, medication, and stigmatization (Kwapil & Barrantes-Vidal, 2015). Therefore, 

schizotypy offers a promising framework for understanding the etiology, development, and 

expression of schizophrenia-spectrum disorders. Several traditional approaches, such as 

confirmatory factor analysis, have been used to examine the dimensional structure of schizotypy, 

typically identifying two to five underlying dimensions, with positive, negative, and disorganized 

schizotypy as the most replicated factors (Gross, Mellin, Silvia, Barrantes-Vidal, & Kwapil, 

2014; Kwapil, Barrantes-Vidal, & Silvia, 2008; Raine & Benishay, 1995; Wuthrich & Bates, 

2006). Despite these findings, traditional approaches do not account for the nature of the 

interactions taking place between items that contribute to schizophrenia-spectrum liability. 

An increasingly popular approach in studying psychopathology is through network 

science (Borsboom, 2017). The network approach defines psychopathological disorders and 

personality traits as complex systems—phenomena that emerge from the causal interactions 

between symptoms and trait nuances (Borsboom & Cramer, 2013; Schmittmann et al., 2013). 

Such an approach can offer a unique perspective for examining schizophrenia-spectrum liability 
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by defining schizotypy items as interacting symptom nuances, and determining which items are 

most central to the construct. Therefore, in the present study, we apply the network approach to 

examine the multidimensional structure of schizotypy via the 60-item Wisconsin Schizotypy 

Scales-Short Forms (WSS-SF; Winterstein et al., 2011). Furthermore, we employ interview 

measures to evaluate how the WSS-SF’s network structure associates with interview-rated 

symptom measures.  

Because the WSS-SF contains 60 items, the WSS-SF network will be convoluted with up 

to 1,770 possible connections—that is, a possible connection between every item. Therefore, 

filtering is needed to minimize spurious relations (multiple comparisons problem) and to increase 

interpretability (induce parsimony). To examine the network structure of schizotypy (via the 

WSS-SF), we apply two network filtering approaches to minimize spurious edges and maximize 

interpretability. One filtering approach, the lasso (Epskamp, Borsboom, & Fried, 2017), has been 

commonly applied in psychopathology research. The other filtering approach, Information 

Filtering Networks (IFN), has been previously applied to cognitive and neural networks (Kenett, 

Anaki, & Faust, 2014; Tewarie, van Dellen, Hillebrand, & Stam, 2015). Although the lasso 

network filtering approach has become popular in psychopathological research, little attention 

has been given to the limitations of this approach, such as biased comparability, reduced 

reproducibility, and arbitrary thresholding (Barfuss, Massara, Di Matteo, & Aste, 2016; Forbes, 

Wright, Markon, & Krueger, 2017; van Wijk, Stam, & Daffertshofer, 2010). Consequently, we 

compare the performance of these two filtering approaches using two large cross-sectional 

datasets of the WSS-SF, and we conclude that the IFN-based filtering approach can circumvent 

some of the limitations of the popular lasso-based filtering approach. 
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Wisconsin Schizotypy Scales-Short Forms 

The WSS-SF, a widely used set of scales, measures positive and negative schizotypy. The 

questionnaire includes two negative schizotypy sub-scales—Physical Anhedonia (diminution of 

sensory experiences; Chapman, Chapman, & Raulin, 1976) and Revised Social Anhedonia 

(disinterest in social experiences; Eckblad, Chapman, Chapman, & Mishlove, 1982) scales—and 

two positive schizotypy sub-scales—Perceptual Aberration (distortions of body image; 

Chapman, Chapman, & Raulin, 1978) and Magical Ideation (delusions and odd beliefs; Eckblad 

& Chapman, 1983) scales. The traditional factor structure of the WSS-SF has a positive and 

negative schizotypy factor, with the social anhedonia scale loading onto both factors (Gross, 

Silvia, Barrantes-Vidal, & Kwapil, 2015; Kwapil et al., 2008). 

Kwapil, Barrantes-Vidal, and Silvia (2008) reported that positive and negative factors are 

differentially associated with interview measures of symptoms and impairment. Positive 

schizotypy is related to reports of psychotic-like experiences, substance abuse, mood disorders, 

and hospitalization. Negative schizotypy is associated with negative and schizoid symptoms, and 

the decreased likelihood of intimate relationships. Both positive and negative schizotypy are 

linked to poorer overall functioning and to paranoid and schizotypal symptoms (Gross et al., 

2015; Kwapil et al., 2008). Furthermore, elevated scores on both dimensions are associated with 

increased liability of schizophrenia-spectrum disorders and are related to psychopathology, 

personality, and impaired social functioning (Barrantes-Vidal et al., 2013). Therefore, this factor 

structure of the WSS-SF appears to be highly reliable and valid, as shown across multiple studies 

(Gross et al., 2014; Kwapil et al., 2008; Kwapil, Ros-Morente, Silvia, & Barrantes-Vidal, 2012). 
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Although the factor structure and validity of the WSS-SF have been investigated by 

traditional methods, a clearer picture of how these items interact with each other and the 

importance of their interactions is still lacking (Kwapil & Barrantes-Vidal, 2015). For example, 

despite social anhedonia’s positive loadings onto positive schizotypy, there is little research on 

which positive schizotypy scale it’s most related to. A factor analysis of the Schizotypal 

Personality Questionnaire (Raine, 1991), social anhedonia, perceptual aberration, and magical 

ideation scales suggests that the perceptual aberration scale could be connected to impaired 

social functioning (Wuthrich & Bates, 2006). Moderate correlations between social anhedonia 

and perceptual aberration seem to support this idea, however, magical ideation is also shown to 

be moderately related though to a lesser extent (Kwapil et al., 2008). Thus, an open question is 

what items of social anhedonia are the most connected to positive schizotypy—and to which 

scale? Another question is what items are more central to the construct? Are these items more 

related to clinical symptoms and impairment than less central items? 

Investigating the underlying structure of the WSS-SF should provide clearer distinctions 

of the schizotypy construct it measures (Kwapil & Barrantes-Vidal, 2015), and guide the 

development of future schizotypy scales by identifying items most central to the schizotypy 

construct measured by the WSS-SF (Gross et al., 2014; Kwapil, Gross, Silvia, Raulin, & 

Barrantes-Vidal, 2017). Moreover, identifying items that are at the core of schizotypy 

measurements can improve the detection and diagnosis of schizophrenia-spectrum 

psychopathology (Keshavan, Nasrallah, & Tandon, 2011). Psychometric network analysis 

provides an avenue to directly investigate connections at the within and between scales as well as 

the ability to determine which items are most central to the WSS-SF schizotypy construct. 
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Psychometric Network Analysis 

The computational field of network science has greatly advanced the understanding of 

complex systems (Barabási, 2016). Such an approach is increasingly applied at the cognitive and 

psychological levels to quantitatively study cognitive phenomena in both typical and clinical 

populations (Baronchelli, Ferrer-i-Cancho, Pastor-Satorras, Chater, & Christiansen, 2013; 

Isvoranu et al., 2017; Karuza, Thompson-Schill, & Bassett, 2016). Recent research has applied 

psychometric networks (Epskamp, Maris, Waldorp, & Borsboom, 2015) to investigate the 

intricate interactions of psychopathology and personality (Costantini et al., 2017). The network 

perspective offers a new conceptualization of psychopathology that takes the form of mutual, 

interacting symptoms through which disorder arises (Borsboom, 2017; Borsboom & Cramer, 

2013; Fried et al., 2017). 

Although network psychometric analysis can investigate the intricate interactions 

between the items of the WSS-SF, interpreting these interactions can be difficult. Networks 

contain multiple connections across all possible pairs of variables (e.g., symptoms, items) 

included in the model and therefore are likely to have spurious edges (i.e., multiple comparisons 

problem). Thus, filtering is necessary to minimize spurious connections and to increase the 

interpretability of the network. This, however, introduces a problem known as sparse structure 

learning (Zhou, 2011): How best to reduce the complexity and dimensionality of the network 

while retaining relevant information? To address this problem, different approaches have been 

developed with the aim of extracting meaningful and parsimonious models (Friedman, Hastie, & 

Tibshirani, 2008; Molinelli et al., 2013; Zhou, 2011).  
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Regression-based Filtering Approach 

To date, regression-based filtering methods—removing edges based on statistical 

significance or regressing each variable over all other variables—have dominated the 

psychometric network literature (Epskamp, Borsboom, et al., 2017; Fried & Cramer, 2016; van 

Borkulo et al., 2014). Several different regression-based approaches have been developed, 

including the removal of edges below a certain threshold (Borsboom & Cramer, 2013; McNally 

et al., 2015), false discovery rate (Bringmann, Lemmens, Huibers, Borsboom, & Tuerlinckx, 

2015; Bringmann et al., 2013), and the most widely used approach, the least absolute shrinkage 

and selection operator (lasso; Epskamp, Borsboom, & Fried, 2016; van Borkulo et al., 2014).  

The lasso filtering approach (Friedman et al., 2008; Tibshirani, 1996) minimizes spurious 

edges by using fully regressed coefficients (i.e., one variable regressed over all others) and 

shrinking small coefficients to zero through the application of an ℓ1-regularization penalty on the 

estimation of the inverse covariance matrix (Barber & Drton, 2015; Ravikumar, Wainwright, & 

Lafferty, 2010). The ℓ1-penalty is determined by the Extended Bayesian Information Criterion 

(EBIC; Chen & Chen, 2008), which controls for false positives. Because of this, the lasso 

approach excels at preventing model over-fitting, leading to better specificity (Epskamp & Fried, 

2016). In dichotomous data, like that of the WSS-SF, the lasso approach is applied via the Ising 

model. The Ising model iteratively regresses one variable, using logistic regression, on all other 

variables and shrinks small coefficients to zero (van Borkulo et al., 2014). 

The regularized fully regressed coefficients of the lasso induce parsimony by retaining 

fewer—sparser—connections in the network (Epskamp & Fried, 2016). Furthermore, these 

connections represent conditionally dependent variables: they are the association between two 

variables after controlling for all other variables in the network, and the lack of a connection 
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represents conditional independence between two variables. This conditionality grants the 

possibility of a causal pathway existing between connected nodes (Epskamp & Fried, 2016). 

Thus, the advantages of the lasso approach are that the network specificity is high, the resulting 

network is sparse and more interpretable, and the connections can be interpreted as possible 

casual pathways between variables. 

Although the lasso approach is state-of-the-art, with new algorithmic techniques 

constantly being developed (Costantini et al., 2017; Danaher, Wang, & Witten, 2014; Friedman 

et al., 2008; Ravikumar, Wainwright, Raskutti, & Yu, 2011), its limitations are receiving a 

growing amount of attention (Barfuss et al., 2016; Forbes et al., 2017; Guloksuz, Pries, & van 

Os, 2017; Wichers, Wigman, Bringmann, & de Jonge, 2017). The first limitation is the 

comparability of lasso-based networks between cross-sectional samples, and between clinical 

and non-clinical samples, is often biased because the number of edges included in lasso-based 

networks are a function of sample size—smaller samples retain fewer edges than larger samples 

(Epskamp & Fried, 2016; Fried et al., 2017). This variation in edge densities—the proportion of 

edges retained in the network over all possible edges—alters the structure of the network, 

making cross-sectional and psychopathological differences prone to be confounded with 

differences in edge density (Tewarie et al., 2015; van Wijk et al., 2010). For example, when there 

are a greater number of edges in the network, the clustering coefficient (CC; the extent to which 

two neighbors of a node will be neighbors themselves) increases and the average shortest path 

length (ASPL; the mean shortest distance over all pairs of nodes) decreases. This means that in 

two WSS-SF networks node A (e.g., symptom A) could be significantly closer to (or further 

away from) node B (e.g., symptom B), suggesting that the potential of node A to influence node 

B has been altered. Therefore, differences in the ASPL and CC have the potential to 
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meaningfully alter the interpretation of a symptom’s potential to influence other symptoms. 

These attributes of networks are considered global characteristics because they measure the 

overall structure of the network. 

Traditional psychometric network analysis has given little attention to these global 

characteristics and have instead focused on local network characteristics termed as centrality 

measures—measurements of a node’s influence in the network. Notably, network centrality 

measures, such as betweenness centrality (the extent a node lies on paths between other nodes) 

and closeness centrality (average distance from all other nodes), are based on the distances 

between nodes in the network and are influenced by the variation in edge density (Stam et al., 

2014). Because edge densities alter the ASPL, varying distances between nodes, it is likely that 

the reproducibility of betweenness and closeness centrality are also affected. Indeed, a recent 

paper opted to only discuss node strength—the sum of all edge weights connected to a node—

because of the low reliability often reported for betweenness and closeness centrality measures 

(Fried et al., 2017). Considering only a few studies have examined global network characteristics 

(Boschloo, Schoevers, van Borkulo, Borsboom, & Oldehinkel, 2016; Costantini et al., 2017),  

it’s possible that the low reliability of these centrality measures is related to differences in global 

network characteristics such as the ASPL. 

In addition to decreased reliability of betweenness and closeness centrality measures, the 

average degree—the mean number of connections a node has in the network—of the network 

could also be altered due to differences in edge density (van Wijk et al., 2010). Consequently, 

this has the potential to influence the measurement of node strength by varying the amount of 

edges that are contributing to the sum of the edge weights. Moreover, greater edge densities 

could include smaller or larger edge weights, which would alter the average connectivity—mean 
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strength of the edge weights in the network (De Schryver, Vindevogel, Rasmussen, & Cramer, 

2015). Therefore, differing edge densities inevitably lead to heterogeneity in global and local 

(i.e., centrality) network measures, compromising comparability and reducing reproducibility. 

For the WSS-SF, different sample sizes mean that the lasso-based networks would have a 

different edge density, leading to different network structures despite measuring the same 

questionnaire. In short, the global and local network characteristics of the lasso-based networks 

have variable comparability and reproducibility across independent samples because they are 

sample size dependent (but see Costantini et al., 2017; van Borkulo et al., 2015). 

Another potential pitfall is that conditional independence networks such as lasso-based 

networks tend to have a greater amount of measurement-error—fully regressed coefficients raise 

the potential of edges between highly correlated variables to be arbitrarily dropped. For example, 

a symptom network of people scoring high in schizophrenia-spectrum symptoms would have 

high scores on many of the symptom measures and therefore have small variation in the response 

patterns between each symptom. Because each symptom is regressed over all others, it’s likely 

that the shared variance between these high scores will be removed, thereby leaving some 

symptoms completely disconnected. It’s unlikely that these symptoms are truly unrelated or 

disconnected from one another. Therefore, regression-based approaches that induce conditional 

independence via fully regressed coefficients can reduce the comparability and reproducibility 

between samples (Forbes et al., 2017). 

The shrinkage of correlations below a certain threshold also contributes to reduced 

reproducibility because variables can be eliminated based on statistical significance rather than 

theory. For example, some variables or factors may be consistently found to be weakly related 

but are implicated by theory to be intrinsic in the construct’s conceptual hierarchy. Both fully 
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regressed coefficients and the arbitrary selection of a threshold contain the possibility of ignoring 

hierarchical patterns in the data that are relevant in psychopathological and personality 

phenomena (Barfuss et al., 2016; Markon, Krueger, & Watson, 2005; McCrae, 2015). For 

instance, the WSS-SF has relations between positive and negative schizotypy that are relatively 

weak but are consistent with theory and are modeled in the traditional factor structure (Gross et 

al., 2015). Therefore, it is possible that connections between the two WSS-SF schizotypy factors 

would not replicate or that the factors could be arbitrarily separated, despite theoretically being 

bridged by the social anhedonia scale. 

Despite the many different network filtering approaches that exist, so far only regression-

based filtering approaches have been applied in the psychometric network literature (Epskamp, 

Borsboom, et al., 2017; Fried & Cramer, 2016; van Borkulo et al., 2014). Thus, although the 

lasso approach is state-of-the-art, alternative filtering approaches may circumvent its potential 

pitfalls, such as biased comparability, reduced reproducibility, and the elimination of hierarchical 

information (Barfuss et al., 2016; Forbes et al., 2017; Tewarie et al., 2015). In the present 

research, we investigate an alternative filtering approach, Information Filtering Networks (IFN; 

Aste, Di Matteo, & Hyde, 2005; Barfuss et al., 2016; Mantegna, 1999; Massara, Di Matteo, & 

Aste, 2016; Tumminello, Aste, Di Matteo, & Mantegna, 2005), which is based on topological 

(structural) constraints. The IFN approach may be able to overcome some of the limitations that 

are found in the lasso and regression-based approaches. 

Information Filtering Networks 

 The IFN approach applies a constraint on the structure of the network that reduces it to a 

sub-network, which retains the strongest zero-order correlations from the original network. This 

constraint retains a specific number of connections with defined global topological properties. 
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Two main methods of the IFN approach are the minimum spanning tree (MST; Mantegna, 1999) 

and the Planar Maximally Filtered Graph (PMFG; Tumminello et al., 2005). The MST sorts all 

edge weights (i.e., correlations) between nodes in a network in a descending order and adds the 

largest possible edge weight to two nodes such that all the nodes in the network are connected 

without forming cliques—a set of connected nodes. Thus, the MST method retains the most 

significant connections in the network so that each node has at least one connection to one other 

node (n – 1 edges). The MST has been shown to produce meaningful hierarchical structures in 

financial systems (Mantegna, 1999) and to be less biased when comparing within- and between-

sample neural networks because it avoids some of the methodological limitations (such as those 

discussed earlier) of other approaches (Tewarie et al., 2015). 

The PMFG method similarly sorts edge weights between nodes in a network in a 

descending order and adds the largest edge weight between two nodes one by one while 

constraining the sub-network to be planar—the sub-network can be represented in a way that no 

edges overlap with one another (Aste et al., 2005; Tumminello et al., 2005). This procedure 

reveals a sub-network—a subset of connections (3n – 6 edges) from the original network that 

contain the most important information (correlations) from the original network. The sub-

network is composed of 3- and 4-node cliques (i.e., a triangle and tetrahedron, respectively). 

From these cliques, a nested hierarchy develops: dimensionality is reduced in a deterministic 

manner while retaining local information and the global hierarchical structure of the original 

network (Song, Di Matteo, & Aste, 2011, 2012). In psychology, the PMFG method has been 

applied to investigate and compare the structure of semantic memory in typical and clinical 

populations (Borodkin, Kenett, Faust, & Mashal, 2016; Kenett et al., 2014; Kenett, Gold, & 

Faust, 2016; Kenett et al., 2013). 
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More recently, the Triangulated Maximally Filtered Graph (TMFG; Massara et al., 2016) 

method was introduced. Like the PMFG method, the TMFG method filters the network by 

maintaining planarity, retaining 3n – 6 edges. However, the way in which the TMFG method 

adds nodes and edges is more efficient, and it produces comparable or better results than the 

PMFG method (Massara et al., 2016). This modified construction adds a node to the center of the 

3-node cliques by using a score function that maximizes the sum of the 3 connecting edge 

weights. With this addition, the 3-node cliques become 4-node cliques, which possess a chord—

an edge that is not part of the clique but connects two nodes in the clique, forming two triangles. 

Thus, generating what is called a chordal network (Lauritzen, Speed, & Vijayan, 1984; Massara 

et al., 2016). 

The advantage of chordal networks is that they perfectly represent the independence 

assumptions of Markov (i.e., bidirectional or undirected relations) and Bayesian (i.e., directional 

relations) networks (Koller & Friedman, 2009). This means that there exists a directed network 

model with conditional independencies identical to those in the undirected network as well as a 

representation of the edges in the network that can be reduced to a directed network (see 

Lauritzen & Spiegelhalter, 1988 for more technical details; Pearl, 2014). In this way, a chordal 

network allows a representation of the whole joint probability distribution and embeds 

conditional independence within the network structure (Darroch, Lauritzen, & Speed, 1980). 

Thus, the meaning and interpretation of the TMFG method and the lasso approach are 

equivalent. One limitation of chordal networks, however, is that they may add unnecessary edges 

in order to satisfy the chordal property (Spiegelhalter, 1987). 

Both the IFN and lasso approaches aim to infer a probability distribution that maximizes 

the likelihood of the observations. Indeed, Barfuss et al. (2016) show that both approaches 
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produce a multivariate normal distribution with the sparse inverse covariance matrix and their 

performances can be directly compared by comparing the values of their likelihoods in a training 

dataset to a testing dataset. The main difference between the two approaches is that the IFN aims 

to maximize the likelihood by retaining the largest correlations while the lasso uses a penalizing 

term that favors sparsity in the inverse covariance matrix. Thus, IFN networks avoid a potential 

pitfall of the lasso approach: they use zero-order correlations, instead of directly penalizing the 

sparse inverse covariance matrix, when estimating the conditional independence structure. This 

means that the reliability of network measures between samples should be greater in IFN-based 

networks because zero-order correlations are more stable than fully regressed coefficients 

(Forbes, Wright, Markon, & Krueger, 2017). 

Importantly, the IFN approach avoids another pitfall found in regression-based methods: 

reduced comparability between samples. Because the number of edges is kept constant and does 

not vary based on sample size, network measures are less biased when attempting to compare 

between cross-sectional or clinical and non-clinical samples (Tewarie et al., 2015; van Dellen et 

al., 2015). In the TMFG method, for example, the WSS-SF network, with 60 variables, will 

always have 174 edges (3n – 6 edges). Thus, although sample size will likely affect the reliability 

of each network measure’s estimate, differences in the network measures will be related to 

sample heterogeneity (e.g., psychopathological expression) rather than differences in edge 

density. In contrast, edge density in the lasso approach varies with sample size, so differences in 

network measures are more likely to be confounded with edge density and sample heterogeneity. 

Furthermore, in the lasso approach, edge density is typically expected to be greater in clinical 

samples compared to non-clinical or remitting samples (van Borkulo et al., 2015), but unless the 
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sample sizes are exactly equal, it’s unclear whether the differences in edge density and network 

measures are due to differences in sample size, psychopathological expression, or both.  

A final advantage of the IFN approach is the development of a hierarchical structure, 

which complements the structure of many psychopathological and personality phenomena 

(Markon et al., 2005; McCrae, 2015). This makes IFN-based networks ideal for determining the 

dimensional nature of the WSS-SF and other psychometric questionnaires because they form a 

conceptual hierarchy from local connections (items) to global structures (scales, phenomena). 

For example, items and clusters of items in the WSS-SF represent characteristics that are 

consistent with symptoms of schizophrenia-spectrum disorders. In this way, WSS-SF items 

measure overlapping symptom nuances (e.g., “Sometimes I have had feelings that I am united 

with an object near me”), which form symptom clusters that are representative of a single feature 

(e.g., uniting percepts with body boundaries) of a larger symptom (e.g., somatic delusions). 

Although beyond the scope of this paper, there are clustering techniques that outperform 

traditional methods of hierarchical clustering, which can be used on the IFN networks to easily 

extract this hierarchical information (Musmeci, Aste, & Di Matteo, 2015; Song et al., 2011, 

2012; Yu et al., 2015). 

The Present Research 

One aim of the present study was to analyze the network structure of the WSS-SF and to 

demonstrate the feasibility of applying the IFN approach in psychometric network analysis. We 

first applied both lasso and IFN network filtering approaches to analyze the network structure of 

the WSS-SF in two large, independent samples. We sought to determine which WSS-SF scales 

would bridge positive and negative schizotypy in order to gain a better understanding of how the 

weakly related factors are linked. In line with previous research, we expect that the social 
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anhedonia scale will be connected to a positive schizotypy scale for all networks and samples, 

bridging the negative and positive schizotypy factors (Kwapil et al., 2008; Lewandowski et al., 

2006). Based on previous correlational and factor analytic work (Gross et al., 2015; Wuthrich & 

Bates, 2006), we anticipate that, for all networks and samples, perceptual aberration will have the 

most connections to social anhedonia. 

Another aim of the study was to evaluate the between-sample comparability and 

reproducibility of both network filtering approaches. Following Forbes et al. (2017), we assessed 

the comparability of the global network characteristics—ASPL, average connectivity, average 

degree, CC, and edge density—for both network approaches by examining the similarities and 

differences between each sample. Moreover, we assessed the reproducibility of the local network 

characteristics by determining the proportion of edges that replicate (and do not replicate) and by 

correlating centrality measures between each sample. Based on differences in edge density and 

the type of correlations (i.e., zero-order vs. fully regressed coefficients) used in each network 

filtering approach’s construction, we anticipate that the IFN-based networks will have better 

comparability (more similar global network characteristics) and more robust reproducibility 

(better local network characteristics) than the lasso-based networks. 

Finally, we sought to determine which items were most central to the WSS-SF’s 

schizotypy construct and investigate whether these items were predictive of schizophrenia-

spectrum symptoms. Accordingly, we identified core, intermediate, and peripheral items of 

Sample 1’s network structure for both network filtering approaches. The core, intermediate, and 

peripheral schizotypy items were then used in multiple regression analyses to predict interview 

reports of schizophrenia-spectrum symptoms and overall impairment from a subset of 

participants in Sample 1. In this way, the predictability of each filtering-based network structure 
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was examined. If the central items identified by each approach are truly more core to the WSS-

SF schizotypy phenomenon, then we expect that they should predict schizophrenia-spectrum 

symptoms at least as well as intermediate and peripheral items. 

Methods 

Participants 

  Sample 1 consisted of participants (M = 19.4 years, SD = 3.7) that were obtained from a 

large, independent sample of undergraduate students (n = 6,137) from the University of North 

Carolina at Greensboro (UNCG), previously reported in Kwapil et al. (2008). Participants with 

missing data were excluded (n = 206), resulting in a sample consisting of 5,831 participants 

comparable to the original sample in terms of sex (76% female) and ethnicity (74% Caucasian, 

26% African American). Sample 2 consisted of 2,171 undergraduate students from the UNCG 

who were primarily young adults (M = 19.6 years, SD = 3.3) reported in Gross et al. (2012). This 

sample was comparable to the first sample in terms of sex (76% female) and ethnicity (69% 

Caucasian, 31% African American). 

A subset sample of 430 participants was drawn from Sample 1 and was administered 

structured diagnostic interviews. These participants were either recruited through the university’s 

research pool or were oversampled based on elevated scores on the schizotypy scales to assure 

adequate representation of high schizotypy participants. They were comparable to Sample 1 and 

2 in terms of demographics (74% female; 74% Caucasian and 26% African American) but had 

slightly higher schizotypy means compared to both samples, consistent with the oversampling 

procedure (Table 1). 
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Materials 

Schizotypy assessment. Schizotypy was measured via the WSS-SF, which contains 60 

true-false items measuring positive and negative schizotypy. Positive schizotypy is measured by 

two sub-scales assessing perceptual aberration and magical ideation; negative schizotypy is 

measured by two sub-scales assessing social and physical anhedonia—all scales have 15 

questions each (SI 1). The data were coded in raw matrices such that each row contained all 

endorsements made by a participant i and each column is a different item j comprising the entire 

scale. Each cell is either coded as one (participant i endorsed item j) or zero (participant i did not 

endorse item j). After reverse-scoring as needed, all items were scored so that higher scores 

reflected higher levels of schizotypy. 

Interview measures. The Global Assessment of Functioning Scale (GAFS; Endicott, 

Spitzer, Fleiss, & Cohen, 1976) was used to assess overall functioning of each participant 

ranging from marked psychopathology at the low end to superior functioning at the high end. 

The Wisconsin Manual for Assessing Psychotic-like Experiences (Chapman & Chapman, 1980; 

Kwapil, Chapman, & Chapman, 1999) was used to measure the deviance of psychotic symptoms 

across a range of clinical and subclinical deviancy. The Negative Symptom Manual (Kwapil & 

Dickerson, 2001) measures six classes of clinical and subclinical negative symptoms of 

schizophrenia. Finally, modules of the International Personality Disorders Examination 

(Organization, 1995) were used to provide dimensional ratings of schizoid, schizotypal, and 

paranoid personality disorder traits. 

Network Construction 

IFN approach. In these networks, nodes represent the different items and edges 

represent endorsement associations between items—the tendency of the sample to endorse item 
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b, given that item a is endorsed—computed with Pearson’s correlations. In binary data, 

Pearson’s correlations are equal to phi coefficients, which are related to a chi-square of a 2 × 2 

contingency table and are interpreted as the association between two variables (Sokal & Rohlf, 

1995). Phi coefficients were used, rather than tetrachoric correlations, because the schizotypy 

scales are positively skewed, which violates the assumption of a bivariate normal distribution 

used in the calculation of tetrachoric correlations (Glass & Hopkins, 1970). 

Network filtering. The TMFG method (Massara et al., 2016) was applied to construct a 

sub-network, from the endorsement association matrix, that captures the most relevant 

information between nodes that are embedded in the original network and minimizes spurious 

associations. The resulting sub-network is a clique-tree composed of 4-node cliques connected 

with 3-node cliques, and it retains a total of 3n – 6 edges from the original network. The TMFG 

method begins by sorting all edge weights (i.e., the zero-order correlations) in descending order 

and adding the largest edge weight one by one, based on an iterative construction process of a 

topologically constrained network (i.e., planar). In this construction, the algorithm adds a node 

into 3-cliques, based on a “T2 move” (Aste, Gramatica, & Di Matteo, 2012; Massara et al., 

2016). The T2 move inserts a node into any 3-clique’s center where edges are added to it, 

forming a tetrahedron and keeping the network planar. When adding these nodes, the algorithm 

optimizes a score function that ensures the added node has the maximum increase in the sum of 

the additional edge weights (see SI 2 for further technical details). We computed the TMFG-

filtered, weighted adjacency matrix using the NetworkToolbox package1 (Christensen, 2018) in R 

(R Core Team, 2017). 

                                                 
1 The most up-to-date version of the NetworkToolbox package can be retrieved from 
https://github.com/AlexChristensen/NetworkToolbox 
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lasso approach. The Ising model uses logistic regression to isolate the unique 

associations between all variables—that is, the association between two nodes is conditioned 

over all nodes in the network, leaving only the unique variance between the two nodes of 

reference.2 These conditioned associations have been interpreted as potential causal pathways in 

previous lasso-based network models (Epskamp et al., 2015; van Borkulo et al., 2014). Logistic 

regression coefficients are log-odds ratios and not partial correlations—thus, their interpretations 

are not equivalent but have been referred to as analogous in the literature, so for convenience we 

will refer to the logistic regression coefficients as fully regressed coefficients. Raw data for both 

samples were analyzed based on the Ising model, using the IsingFit package (van Borkulo et al., 

2014) in R. 

Network filtering. For both samples, the eLasso method in the Ising model (van Borkulo 

et al., 2014) was applied to minimize spurious edges and increase interpretability of the network. 

The Ising model applies an ℓ1-regularization penalty on the inverse covariance matrix 

(Ravikumar et al., 2010; van Borkulo et al., 2014), which is determined by the EBIC (Chen & 

Chen, 2008), to minimize spurious edges when constructing the networks. The EBIC contains a 

hyperparameter (γ) that controls how much the model prefers sparsity—ranging from sparse 

models with less connections (γ > 0) to dense models with more connections (γ = 0). In the past, 

the hyperparameter has been reported to be optimal when equal to .25 (Barber & Drton, 2015; 

Ravikumar et al., 2010). Thus, based on previous studies, for both samples we used the 

suggested γ = .25 setting. 

Network Measures 

                                                 
2 Notably, these two network filtering approaches differ in the statistics being used (i.e., phi coefficients versus 
logistic regression with one node regressed over all others). Despite this, they yield the same interpretation of 
conditional independence. To eliminate any statistical differences between the two approaches, we have applied the 
lasso approach. Comparable analyses (SI 4) and discussion (SI 5) are provided in the supplementary materials. 
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Global network characteristics. To investigate the global characteristics of the network, 

we examined five global network measures: ASPL, average connectivity, average degree, CC, 

and edge density. The ASPL measures the mean shortest distance between any two nodes in the 

network—smaller values suggest that, on average, symptoms generally are less distant from 

other symptoms. The average connectivity measures the consistency of the edge weights 

included in the network (De Schryver et al., 2015). This was calculated by summing the absolute 

sum of all edge weights included in each network and dividing it by the number of edges in the 

network. The average degree—mean number of connections each node has in the network—is 

computed by summing every node’s degree in the network and dividing it by the number of 

nodes. The CC measures the extent in which two neighbors of a node will be neighbors 

themselves—that is, whether two connected nodes will both be connected to a third node. In this 

way, the CC represents the cliquishness of the network and indicates the tendency of a symptom 

to cluster with nearby symptoms. The edge density of a network is the proportion of edges 

included over the total of all possible connections ((n2 – n)/2). The ASPL, average degree, CC, 

edge density, and average connectivity were computed using the NetworkToolbox package in R 

whose metrics were adapted from the Brain Connectivity Toolbox in Matlab (Rubinov & Sporns, 

2010). 

Centrality measures. In line with previous research, we used centrality measures to 

investigate the local network characteristics. These are considered local because influence is 

assessed for each node, whereas global measures assess the structure of the entire network. 

Betweenness centrality (BC) measures the extent a node lies on the paths between other nodes 

(Freeman, 1977). Therefore, items (nodes) with high betweenness values make up the most 

central elements or “backbone” of the network (Borgatti, 2005). Closeness centrality (LC) is the 
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inverse of the average distance from all other nodes (Boccaletti, Latora, Moreno, Chavez, & 

Hwang, 2006; Freeman, 1977). Put simply, closeness centrality is the distance away from the 

most center point of the network—nodes in the middle of the network will have higher closeness 

centrality values than the most peripheral nodes. Node strength sums the edge weights of all the 

connections linked to a node so that a high number of connections and high edge weights will 

have a greater value (Barrat, Barthelemy, Pastor-Satorras, & Vespignani, 2004; Newman, 2004). 

Thus, node strength centrality measures the number of direct connections and the magnitude of 

those connections. Degree (k), the number of connections a node has, is a basic measure of a 

node’s importance, and its distribution reveals important information about the type of network. 

Eigenvector centrality (EC) is the weighted sum of direct and indirect connections of a node and 

is an index of the quality of connections for each node (Bonacich & Lloyd, 2001). For example, 

the EC distinguishes a node of low degree that is connected to many high degree nodes and a 

high degree node that is connected to only low degree nodes (Bonacich, 2007). Thus, higher EC 

values are given to nodes that have connections to other central nodes (van Borkulo et al., 2015). 

The NetworkToolbox package in R was used to compute all measures of centrality. 

Statistical Analyses 

Representation of positive and negative schizotypy. One aim in analyzing the network 

structure of the WSS-SF is to analyze the network structure of the WSS-SF in two large, 

independent samples, by both lasso-based and IFN-based approaches, to determine which WSS-

SF scales would bridge positive and negative schizotypy. To do so, we examined the number and 

strength of the connections between the positive and negative schizotypy scales. Moreover, we 

examined how many edges between the two factors replicated as well as how many nodes—that 

were connected by those edges—replicated between the two samples for both approaches. 
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 Global network characteristics. ASPL, CC, and Average connectivity. To evaluate the 

differences for the ASPL and CC, we applied independent samples t-test analyses for both 

measures for both approaches. For the ASPL statistical analysis, we used the distance matrix—a 

matrix with the shortest number of paths from one node to every other node—to calculate the 

local shortest path length (ASPLi). The ASPLi is the average distance for each node (i.e., the 

distance vector) to all other nodes. In this way, the mean of the ASPLi is the global ASPL, which 

allows the statistical measurement of differences in the global ASPL between samples. Similarly, 

we computed the local clustering coefficient (Ci), which is the average of each node’s clustering 

coefficient vector. Again, the mean of the Ci is the global CC and this allows us to statistically 

test for differences in the global CC. A significant difference for the ASPL would suggest that on 

average a node is closer to (or further away from) all other nodes. A significant difference for the 

CC would suggest that on average a node is more (or less) connected within its local 

neighborhood. To test for differences in the average strength of the edge weights, we used an 

independent samples t-test analyses on the average connectivity between the two samples for 

both approaches. A significant difference would suggest that one sample’s network retained 

larger edge weights on average than the other sample’s network. Previous work suggests that 

significant differences in edge strength might suggest clinically relevant differences between 

samples (van Borkulo et al., 2015). In contrast, no difference would suggest that the edge 

weights retained in the network are similar and that the samples are similar in 

psychopathological expression. 

Local network characteristics. Local network characteristics were assessed by the 

number of edges that replicated between both samples’ networks, the differences in the strength 

of the replicated edge weights, and the strength of linear and rank-order centrality correlations. 
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Edge replication. Edges replicated if they appeared in both samples. The proportion of 

edges that were replicated were divided by the total number of edges in the respective sample. In 

the lasso approach, this led to two values. One value for the proportion of edges in sample 1 

(e.g., 400 edges) and another value for the proportion of edges in sample 2 (e.g., 248 edges). In 

the IFN approach, edges were constant (i.e., 174 edges), so only one edge replication value was 

necessary. Next, the mean absolute edge weight difference of replicated edges was calculated 

using only the edges that replicated and then difference between sample 1 and sample 2’s 

replicated edges strengths were calculated. Finally, the absolute values were computed and 

Pearson’s correlations were used to determine the similarity between the replicated edge weights 

(Borsboom et al., 2017). The edge replication measures were computed using the 

NetworkToolbox package in R. 

Between-sample centrality correlations. To examine the reproducibility of centrality 

values and their rank-order between the samples for both approaches, Pearson’s correlation and 

Kendall’s tau-b coefficient were used. Pearson’s correlations were used to evaluate the linear 

consistency of the centrality values, as used in Borsboom et al. (2017). The rank-order 

correlations were also used because previous research has suggested that centrality indices are 

often interpreted by their rank (Forbes et al., 2017). Standard guidelines for between-sample 

reliability have yet to be established in the field of psychometric network analysis.  

Prediction of psychopathological interview measures. Hybrid centrality measure. To 

evaluate the predictability of both filtering approaches’ centrality measures, we determined 

nodes that were most central in Sample 1’s network. Sample 1’s centrality measures were used to 

predict interview reports of impairment and schizophrenia-spectrum symptoms because the 

interviewed sub-sample was drawn from that sample. To assess overall centrality, we used a 
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hybrid centrality measure (Pozzi, Di Matteo, & Aste, 2013). The hybrid centrality measure ranks 

nodes based on their centrality values across multiple measures of centrality (BC, LC, k, EC, and 

NS). Based on previous work (Pozzi et al., 2013), we used weighted (w) and unweighted (u) tied 

rankings (sorted in descending order) of each centrality: 

HC =  
BC𝑤 +  BC𝑢+ LC𝑤 +  LC𝑢 +  𝑘𝑢 + EC𝑤 +  EC𝑢 + NS𝑤 − 8

8 × (𝑁 − 1)
 . 

The hybrid centrality measure describes highly central nodes with large values and highly 

peripheral nodes with small values. This hybrid measure is not biased by greater weight given to 

any one centrality measurement (each centrality measure quantifies different aspects of 

“centralness”) and provides a singular, continuous measure of overall centrality in the network. 

Such a measure has been shown to provide more consistent and robust results than any single 

centrality measure in isolation (Pozzi et al., 2013). The NetworkToolbox package in R was used 

to compute the hybrid centrality measure. 

Multiple regression of interview symptoms. The hybrid centrality values were sorted in 

descending order to determine the core, intermediate, and peripheral WSS-SF items. The top 5 

items for each scale were designated as core, the next 5 as intermediate, and the last 5 as 

peripheral. These breaks (i.e., one third of the items in each scale) were chosen to give an even 

distribution and gradation of item classifications for each scale. The core, intermediate, and 

peripheral positive and negative schizotypy items were summed together to create item group 

totals. Finally, the positive and negative schizotypy item groups were used in multiple regression 

analyses to predict psychopathological impairment and several schizophrenia-spectrum 

symptoms. 
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Code and scripts. R code for all analyses performed in this study can be found in SI 6. 

All data and code used in this study has been made available on the Open Science Framework: 

https://osf.io/c6rqy/.  

Procedure 

Participants for both samples completed the Wisconsin Schizotypy Scales (WSS) as part 

of mass screening assessments (Gross et al., 2012; Kwapil et al., 2008). Participants who 

received scores of three or greater on an infrequent responding scale were omitted from the 

analyses (Chapman & Chapman, 1983). Then, the 60 items that are included in the WSS-SF 

were extracted from the original WSS. Participants provided informed consent to participate in 

the study and received course credit for their participation. 

Participants from the Kwapil et al. (2008) sub-sample were administered structured 

recorded interviews conducted by a licensed clinical psychologist and advanced graduate 

students in clinical psychology (Kwapil et al., 2008), which lasted approximately two hours. The 

interviewers were not aware of the participant’s scores on the schizotypy questionnaires. All 

studies included were approved by the UNCG Institutional Review Board. 

Results 

Descriptive statistics for each WSS-SF scale, positive and negative schizotypy factors, 

and the interview ratings are presented in Table 1. We represented the WSS-SF networks based 

on the lasso and IFN approaches described above and applied them to both samples. Then, we 

computed the various global (ASPL, average connectivity, average degree, CC, and edge 

density) and local network measures (BC, CC, NS, k, and EC). After, edge replication and 

correlation analyses were computed and completed as described above. Finally, we computed the 

hybrid centrality measure for both approaches, and used the core, intermediate, and peripheral 
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items in multiple regression analyses, predicting interview reports of schizophrenia-spectrum 

symptoms and psychopathological impairment. 

Representation of Positive and Negative Schizotypy 

IFN approach. In both samples, the social anhedonia scale was connected with positive 

schizotypy, which is consistent with traditional factor analysis findings (Gross et al., 2012, 

2015). Between both networks, 6 edges connected social anhedonia and perceptual aberration. 

As predicted, social anhedonia was connected to positive schizotypy via perceptual aberration 

(Figure 1). This finding is consistent with previous correlation results (Gross et al., 2012) and the 

factor analysis findings using 3 scales of the WSS and Schizotypal Personality Questionnaire 

(Wuthrich & Bates, 2006). The average edge strength of the six edges between the positive and 

negative schizotypy factors were relatively small (Sample 1, M = .13, SD = .03; Sample 2, M = 

.15, SD = .02) compared to the average edge strength of the networks (Sample 1, M = .25 and 

Sample 2, M = .24). Of the 6 edges, 4 replicated with an average absolute edge weight difference 

of .01 (SD = .014). Moreover, in both networks, the same 3 social anhedonia items (SA02, SA07, 

SA08) were connected to 2 of 3 the same perceptual aberrations items (PB03 and PB07), which 

meant that 5 of the 7 nodes connecting between the two factors replicated (71.4%). 

lasso approach. Beginning with Sample 1, there were 27 (7 negative) connections 

between positive and negative schizotypy. Similar to the IFN-based networks, the strength of the 

bridging edges—connections between the positive and negative schizotypy factors—was 

relatively small (M = .14, SD = .07) compared to average connectivity of the network (M = .36). 

Of the 27 edges, 8 (5 negative) edges were between physical anhedonia and magical ideation, 6 

edges were between social anhedonia and perceptual aberration, and the remaining 13 (2 

negative) edges were between social anhedonia and magical ideation. Consistent with traditional 
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analyses, social anhedonia had most of the connections (19 total) with positive schizotypy (Gross 

et al., 2012; Kwapil et al., 2008). But contrary to our prediction, magical ideation had more 

edges connected to social anhedonia than perceptual aberration. 

In Sample 2, there were 9 (3 negative) connections between positive and negative 

schizotypy. Again, the average weight of these edges (M = .23, SD = .11) was smaller than the 

average connectivity of the network (M = .44). Of the 9 edges, 3 negative edges were between 

physical anhedonia and magical ideation, 2 edges were between social anhedonia and perceptual 

aberration, and 4 edges between social anhedonia and magical ideation. Similar to sample 1, 

social anhedonia had the most connections to positive schizotypy items (6 total) and the magical 

ideation scale had the most connections to social anhedonia. Notably, none of the bridging edges 

from sample 1 replicated in sample 2. Moreover, of the 34 nodes (16 negative and 18 positive 

schizotypy) that were connected by these edges, only 8 replicated (23.5%; SA06, SA08, SA10, 

MI01, MI05, MI06, MI12, and MI14). 

Global Characteristics 

IFN approach. The IFN-based networks had identical edge densities for both samples 

.098 (174 edges; Table 2). Since the edge density was constant between samples, the global 

characteristics of the networks were considerably consistent. The ASPL, t(118) = 1.157, p = 

.250, and CC, t(118) = -.259, p = .796, did not significantly differ between the two networks. 

Because average degree is a function of edge density, it did not differ between the two samples 

(5.80). However, the standard deviation was slightly different between the two samples (Sample 

1 = 2.81 and Sample 2 = 3.04). Finally, the average connectivity between the two samples hardly 

differed t(346) = .858, p = .39, suggesting that the average edge weights included in the networks 
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between the two samples were highly similar and both samples had similar psychopathological 

expressions. 

lasso approach. The lasso-based networks had different edge densities between the 

samples: Sample 1 had an edge density of .226 (400 edges) and Sample 2 had an edge density of 

.140 (248 edges; Table 2). As expected, the differences in edge density affected the global 

network measures. First, the ASPL, t(118) = -9.356, p < .001, and the CC, t(118) = 2.136, p = 

.035, were significantly different between the two networks. This means that the ASPL 

significantly decreased and the CC significantly increased when there were more edges retained 

in the network (i.e., Sample 1’s network). Next, the average degree was different between each 

sample with 13.33 (SD = 4.48) for Sample 1 and 8.27 (SD = 3.51) for Sample 2. Finally, the 

average connectivity significantly differed between networks, t(646) = -2.829, p = .005, 

suggesting Sample 1’s network retained smaller edge weights than Sample 2’s network. Overall, 

the global network characteristics for the lasso-based networks were significantly different 

between samples whereas the IFN-based networks did not differ, which suggests the lasso-based 

networks had lower comparability between the samples. 

Changes in Estimated Edges 

IFN approach. Because edge densities were equivalent between the samples, only one 

replication percentage was produced. Sample 1 and Sample 2 had 108 of 174 edges replicate 

(62.1%). Of the edges that replicated, the mean absolute edge weight difference was relatively 

small .027. This is further reflected by the high correlation between the replicated edge weights 

between the two samples, r(106) = .93. Moreover, these results support the finding that the 

average connectivity hardly differed. 
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lasso approach. Starting with Sample 1, the proportion of edges that replicated in sample 

2 was 204 of 400 edges (51%). However, the same 204 replicated edges in Sample 2 revealed 

82.3% of the edges replicated. Of the edges that replicated, we calculated the mean absolute edge 

weight difference between each sample (SD’s are reported in Table 2). Between Sample 1 and 

Sample 2, there was an average edge weight difference for replicated edges of .181. There was 

large correlation between the replicated edge weights, r(202) = .84. The IFN-based networks, 

however, had a numerically larger correlation for the replicated edge weights. 

Node Centrality 

IFN approach. The between-sample centrality correlations were fairly consistent across 

all centrality measures (Table 2). Pearson’s centrality correlations ranged from .70 for degree to 

.94 for the eigenvector centrality. Kendall’s tau centrality correlations ranged from .54 for 

betweenness centrality to .81 for the eigenvector centrality. For both correlation types, 

betweenness centrality and degree had similar correlations while closeness centrality and node 

strength were slightly higher. Eigenvector centrality had the highest correlations of all centrality 

measures. Considering the large differences in sample size, we take these findings as strong 

between-sample reliability. 

lasso approach. The between-sample centrality correlations for the lasso-based networks 

had a larger range. Pearson’s centrality correlations ranged from .24 for betweenness centrality 

to .96 for the eigenvector centrality (Table 2). Kendall’s tau centrality correlations ranged from 

.24 for degree to .88 for the eigenvector centrality. Eigenvector centrality was the most stable 

followed by node strength centrality. The high correlations of node strength are consistent with 

previous findings (Epskamp, Borsboom, et al., 2017; Fried et al., 2017). Betweenness centrality 

had a marginally significant Pearson’s correlation (r = .24, p = .071) and a slightly larger 
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correlation for Kendall’s tau (r = 38). Similarly, closeness centrality’s correlations were 

moderately related between the two samples. The results for betweenness and closeness 

centrality are consistent with previous findings, which suggest that they are less reliable than 

node strength (Epskamp, Borsboom, et al., 2017). There were small correlations for degree, 

which may be due to the difference in average degree between the two networks. In summary, 

the IFN-based networks produced equal to or higher correlations across all centrality measures 

except for eigenvector centrality. 

Predicting Interview Reports of Schizophrenia-spectrum Symptoms 

To assess the predictability of the centrality of items in each network filtering approach, 

we applied multiple regression analyses to predict interview measures of psychopathological 

impairment and schizophrenia-spectrum symptoms for the 430 participants using core, 

intermediate, and peripheral schizotypy items from Sample 1 (see SI 3 for items). Using the 

hybrid centrality measure, which gave us an overall centrality score, we determined core, 

intermediate, and peripheral items as described above. 

IFN approach. Consistent with our hypotheses, positive and negative core schizotypy 

items were equal to or better predictors than intermediate and peripheral items for all measures 

of schizophrenia-spectrum pathology and overall functioning (Table 3). Positive core schizotypy 

items significantly predicted diminished overall functioning (β = -.267, p = .002), with marginal 

effects for positive (β = -.156, p = .071) and negative (β = -.124, p = .066) intermediate 

schizotypy items. For psychotic-like experiences, both positive core (β = .332, p < .001) and 

intermediate (β = .214, p = .008) schizotypy items had significant effects, with positive core 

schizotypy items having a larger effect. Negative and schizoid symptoms were significantly 

predicted by negative core (β = .275 and β = .271, respectively; both p’s < .001) and intermediate 
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(β = .187, p = .003 and β = .133, p = .046, respectively) schizotypy items, with negative core 

schizotypy items having a slightly larger effect for both symptoms. Both positive (β = .234, p 

=.007) and negative (β = .137, p = .042) core schizotypy items significantly associated with 

schizotypal symptoms. Moreover, positive intermediate schizotypy items were also significantly 

related to schizotypal symptoms (β = .175, p = .039). Finally, only positive core schizotypy items 

predicted paranoid symptoms (β = .183, p = .049). Overall, these results confirm that the IFN 

approach’s centrality measures have predictive validity—core schizotypy items are equal to or 

better than intermediate and peripheral schizotypy items at predicting schizophrenia-spectrum 

symptoms. Moreover, intermediate schizotypy items were more related to impairment and 

symptoms than peripheral items but to a lesser degree than the core schizotypy items. 

lasso approach. Positive core schizotypy items were consistent with our predictions, 

associating with impairment and nearly all schizophrenia-spectrum symptoms except for 

negative symptoms (Table 4). Contrary to our predictions, however, negative core schizotypy 

items were not as effective as the negative intermediate and peripheral schizotypy item groups at 

predicting some schizophrenia-spectrum symptoms. Positive (β = -.275, p = .001) and negative 

(β = -.162, p = .017) core schizotypy items were related to overall psychopathological 

impairment. Psychotic-like experiences were predicted by positive core (β = .433, p < .001) and 

intermediate (β = .156, p = .038) schizotypy items. All negative schizotypy item groups were 

positively related to negative symptoms, with effect sizes descending from peripheral (β = .201, 

p = .002) to intermediate (β = .185, p = .004) to core items (β = .166, p = .010). Unexpectedly, 

positive peripheral schizotypy items were negatively related with negative symptoms (β = -.144, 

p = .044). Schizoid symptoms were positively related to positive core (β = .194, p = .021), 

negative intermediate (β = .220, p = .001), and negative peripheral (β = .177, p = .009) 
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schizotypy items. Notably, negative core schizotypy items did not predict schizoid symptoms (β 

= .073, p = .272). Similar to the negative symptoms, positive peripheral schizotypy items 

negatively associated with schizoid symptoms (β = -.166, p = .025). Positive core (β = .277, p = 

.001) and intermediate (β = .168, p = .035) schizotypy items predicted schizotypal symptoms, 

with positive core items having a larger effect. Finally, paranoid symptoms were related to 

positive (β = .232, p = .010) and negative (β = .173, p = .015) core schizotypy items as well as 

marginally related to positive intermediate items (β = .153, p = .072). Surprisingly, positive 

peripheral schizotypy items had a significant negative relationship with paranoid symptoms (β = 

-.195, p = .013).  

Overall, the lasso results were mixed. On the one hand, the positive schizotypy item 

groups for the lasso-based network had the expected predictive distinctions of overall 

centrality—that is, between core, intermediate, and peripheral items. On the other hand, negative 

schizotypy item groups exhibited the opposite distinctions for the expected relationships with the 

negative schizophrenia-spectrum symptoms. 

Discussion 

In the present study, we conducted the first network analysis of the WSS-SF to 

investigate the underlying structure of its multidimensional schizotypy continuum. This was 

achieved by applying two different network methodologies: one popular approach in 

psychometric network analysis (lasso; Epskamp et al., 2017), and an alternative approach (IFN) 

that has been applied in cognitive (Borodkin et al., 2016; Kenett, Beaty, Silvia, Anaki, & Faust, 

2016; Kenett et al., 2013), neural (Tewarie et al., 2015; van Dellen et al., 2015), and financial 

market networks (Massara et al., 2016; Tumminello et al., 2005). To evaluate the IFN approach, 

we compared its performance with the current state-of-the-art approach, the lasso approach 
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(Epskamp et al., 2015; van Borkulo et al., 2014). Each approach was evaluated on its 

representation of the WSS-SF’s schizotypy continuum and by assessing its between-sample 

performance based on global and local network characteristics. To examine the predictability of 

the network structure produced by each approach, we identified core, intermediate, and 

peripheral items of positive and negative schizotypy, which were used to predict interview 

reports of schizophrenia-spectrum symptoms. 

Overall, we found that both filtering approaches had network connections that were 

consistent with traditional findings. The IFN approach, however, produced more reliable and 

theoretically consistent results. Moreover, we found the IFN approach was more consistent in 

reproducing global and local characteristics of the WSS-SF networks between samples. Finally, 

both approaches had strong predictive validity for the positive schizotypy continuum, but the 

IFN-based network had better predictability for the negative schizotypy continuum, too. Thus, 

we conclude that the network structure of the IFN-based network had better overall predictability 

than the lasso-based network. 

Representation of Positive and Negative Schizotypy 

Both network filtering approaches provided results that were consistent with traditional 

findings—social anhedonia bridged positive and negative schizotypy factors (Gross et al., 2012; 

Lewandowski et al., 2006). The approaches differed, however, on which positive scale had the 

most connections to social anhedonia. The IFN-based networks revealed that perceptual 

aberration had the most connections to social anhedonia, which is consistent with previous 

correlational findings (Gross et al., 2012). Moreover, these results also support past theoretical 

schizotypy interpretations, which suggest that intrapersonal body distortions affect interpersonal 

social relationships (Wuthrich & Bates, 2006). The lasso-based networks revealed that magical 
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ideation had the most connections to social anhedonia. Magical ideation has also been shown to 

be moderately related to social anhedonia but to a lesser degree than perceptual aberration (Gross 

et al., 2012). Therefore, these results are not incompatible and may in fact complement each 

other. A possible explanation for why social anhedonia had more connections with different 

positive schizotypy scales could be that the perceptual aberration scale has stronger zero-order 

correlations, but when items are conditioned over all other items, the common variance shared by 

the perceptual aberration correlations is removed and magical ideation items are more uniquely 

related.  

Notably, the zero-order correlations for perceptual aberration in the IFN-based networks 

were consistent between the two samples, but the unique associations (i.e., fully regressed 

coefficients) in the lasso-based networks were less reliable and did not replicate. The poor 

reproducibility of bridging connections has been noted in previous research using traditional 

conditional independence networks (Forbes et al., 2017). This suggests that bridging edges in the 

lasso-based networks might be unreliable. One reason for this might be that the zero-order 

correlations of the bridging edges are typically small (as shown by our results), so conditioning 

them increases measurement-error and makes them prone to arbitrary retention and removal. 

To further advance the understanding of the schizotypy continuum, future work should 

consider using network analysis on multiple questionnaires like previous factor analysis has done 

(Wuthrich & Bates, 2006). Such a network could use questionnaires, such as the WSS-SF, the 

Multidimensional Schizotypy Scale (Kwapil et al., 2017), the Schizotypal Personality 

Questionnaire (Raine & Benishay, 1995), and the Oxford-Liverpool Inventory of Feelings and 

Experiences (Mason, Claridge, & Jackson, 1995), to form a nomological network (Cronbach & 

Meehl, 1955) of schizotypy (Meehl, 1962). The combination of these scales could further 
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develop the measurement of schizotypy by increasing the definitiveness and distinctiveness of its 

dimensions. Moreover, the conceptual hierarchy produced by the IFN approach’s clique structure 

would be particularly useful for investigating the hierarchical structure of the schizotypy 

nomological network. 

Between-sample Network Characteristics 

Overall, the IFN approach was more consistent across global network characteristics and 

nearly all local centrality measures. This was expected because the IFN approach constrains the 

networks to an equal edge density, which maintains a similar network structure and ensures 

network comparability across independent samples. In contrast, the lasso approach adapts the 

edge density based on sample size, which alters the network structure. For instance, the larger 

edge density in the lasso-based Sample 1’s network led to a larger CC, smaller ASPL, greater 

average degree, and smaller average connectivity. In comparison, the IFN-based networks had 

no such differences. The significant differences in ASPL and CC of the lasso-based networks 

suggest that nodes have different potentials to influence their neighbors and other nodes in the 

network. This significantly alters the interpretation of what a node’s potential influence could be. 

Moreover, the significant difference of average edge strength might be an effect of including 

more edges that are smaller (rather than clinically relevant differences between samples) because 

the sample size suggests that these edges are no longer considered false positives. Thus, although 

the lasso-based network’s edge densities are adapted to produce fewer false positives in the 

specific samples, the comparability and reproducibility of the network measures between 

samples are influenced. 

The edge replication proportions, for instance, are difficult to compare for cross-sectional 

lasso-based networks. As we show, cross-sectional samples with large sample size differences 
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can skew and complicate the true proportion of edges that replicate. On the one hand, if a 

researcher uses the largest sample as the baseline model, like past research has done (Forbes et 

al., 2017), then the edge reproducibility between samples becomes inflated because there are 

more edges on the whole to replicate. On the other hand, comparing a smaller sample to a larger 

sample likely underestimates the edge replication proportion. The IFN approach, however, 

produces a single measurement, which makes the edge replication proportion comparable and 

direct. In addition, despite the lasso approach allowing fewer false positives, both lasso-based 

networks had a greater number of edges than the IFN-based networks. Thus, the IFN-based 

networks were more parsimonious (i.e., fewer number of edges) and had better global network 

comparability. 

Global network differences may have also affected the reproducibility of local network 

measures (i.e., centrality) in the lasso-based networks. For example, there were low correlations 

for betweenness centrality, closeness centrality, and degree. Previous research using the lasso 

approach has continuously found that betweenness and closeness centrality have low correlations 

and reliability (Epskamp, Borsboom, et al., 2017; Forbes et al., 2017). It’s likely that the low 

reliability of these measures is due to variations in the global network structure (e.g., varying 

ASPL values). Notably, the consistency of the global network structure in the IFN-based 

networks seemed to improve the reproducibility of the centrality measures. The IFN approach 

had numerically larger between-sample centrality correlations for all measures except for 

eigenvector centrality. The zero-order correlations of the IFN approach also probably contributed 

to the higher centrality reproducibility because they included less measurement-error. Therefore, 

centrality reproducibility in the lasso-based networks likely suffered from two main issues: 

differences in edge density and fully regressed coefficients. In general, the centrality correlations 
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for both approaches were smaller than previous findings (Borsboom et al., 2017), which was 

expected due to the large differences in sample size. 

Finally, an important finding was that eigenvector centrality had very high between-

sample correlations for both network filtering approaches. In a growing field that is concerned 

about the reliability and reproducibility of networks (Borsboom et al., 2017; Epskamp, 

Borsboom, et al., 2017; Forbes et al., 2017; Fried & Cramer, 2016), the consistency of the 

eigenvector centrality suggests that it should be included with the other centrality measures. The 

EC is proportional to the sum of the centrality values of the nodes that it is connected to, which 

means it is a decent singular measure of overall centrality. Moreover, the EC has important 

interpretations: it is related to the dimensional structure of the network (Bonacich, 1972) and 

nodes high in EC have high quality connections, meaning they have a high potential for 

influence in the network. Because of this, the eigenvector centrality should strongly be 

considered as a staple centrality measure for future psychometric network analysis. 

WSS-SF Schizotypy Continuum 

 For the IFN-based network, the interview results revealed that items classified as core 

items were more strongly associated with impaired functioning and schizophrenia-spectrum 

symptoms than intermediate and peripheral items. Furthermore, negative schizotypy intermediate 

items were more related to the negative symptoms and schizoid symptoms than peripheral items. 

Comparatively, the lasso-based network had similar findings for positive schizotypy, with 

positive core items having equal to or better associations with impairment and schizophrenia-

spectrum symptoms. The negative schizotypy findings, however, were contrary to our 

expectations: negative intermediate and peripheral schizotypy items had larger effects for 

negative symptoms and schizoid symptoms than the negative core schizotypy items. These two 
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symptoms are traditionally associated with negative schizotypy (Gross et al., 2012; Kwapil et al., 

2008), which means that negative core schizotypy items should have had stronger effects. This 

suggests that the lasso-based network did not provide as strong of inferential differentiation of 

overall centrality within its structure for negative schizotypy items when compared to the IFN-

based networks. 

The IFN-based network distinctions establish a richer conceptualization of the WSS-SF’s 

schizotypy continuum, which provides clearer links to the liability of schizophrenia-spectrum 

disorders. Our findings indicate that core items have greater clinical relevance than intermediate 

and peripheral items, and some intermediate items are more related to clinical symptoms than 

peripheral items. This gradation of the WSS-SF’s schizotypy phenomenon increases the 

specificity of its schizotypy continuum, which is useful for detecting early signs of 

schizophrenia-spectrum liability before the onset of disorder (Kwapil & Barrantes-Vidal, 2015). 

Limitations 

The first limitation, pointed out by Guloksuz et al. (2017), pertains to the latent constructs 

already embedded in the WSS-SF’s schizotypy construct. Schizotypy is based on DSM criteria, 

which confines the understanding of schizophrenia-spectrum disorders to symptoms that are 

already known. In this way, our network analysis largely supports previous knowledge. Although 

we extend this knowledge of the WSS-SF’s schizotypy continuum by determining specific items 

that are more relevant to clinical symptoms, future research should expand the network analyses 

of schizotypy to include behavioral and cognitive measurements. For example, schizotypy has 

been linked to depression, anxiety, personality, executive control, and memory deficits (Kane et 

al., 2016; Lewandowski et al., 2006; Sahakyan & Kwapil, 2016). A network including these 
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measures would provide a more holistic perspective for determining the liability of 

schizophrenia-spectrum disorders. 

Next, although the TMFG method of the IFN approach performed well, the 3- and 4-

clique structure imposed by the TMFG method might not be suitable for all types of 

psychometric networks. Moreover, all of the IFN methods impose a specific network structure 

(i.e., planar or a tree) on the data. This limitation is not unique to the IFN approach—it holds for 

most network estimation methods (Epskamp, Kruis, & Marsman, 2017)—but it strongly applies 

here. The imposed structures of the IFN approach could produce too few or too many 

connections than what are in the true network structure. On the one hand, the tree and planar 

constraints are prone to limiting the connections of densely connected nodes by allowing only 

edges that keep the network a tree or planar. On the other hand, spurious connections may be 

artificially retained because of the cliques maintained in the PMFG and TMFG structures. 

However, for the TMFG method specifically, artificial edges may be necessary to maintain its 

chordality property (Spiegelhalter, 1987). Nevertheless, the IFN approach is not limited to tree 

(MST) or planar (PMFG and TMFG) structures, which means a variety of networks with 

different structural properties can be constructed by this approach (Aste et al., 2005). 

Furthermore, future methodological advancements could be applied to identify the reliability of 

edges kept in the network (Tumminello, Coronnello, Lillo, Micciche, & Mantegna, 2007) and to 

reduce the number of false positives included in the IFN networks. 

Finally, our dataset was limited to cross-sectional samples, which means our analyses 

were restricted to the group-level and to a single time point. Despite our findings that the most 

central nodes in the network predict increased liability for schizophrenia-spectrum symptoms, it 

does not mean that this holds across individuals. Similarly, singular time points are ineffective at 
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detecting the progression of schizophrenia-spectrum liability over time, which would be valuable 

for prevention and intervention. Experience sampling, for example, would provide a perspective 

of schizotypy in daily life, which could offer a developmental time course for future liability and 

decomposition into disorder (Chun, Barrantes-Vidal, Sheinbaum, & Kwapil, 2017). Therefore, 

we echo the call for future experimental designs to gather this type of data to provide more 

detailed insights into the progression of schizophrenia-spectrum liability at the individual-level 

(Borsboom, 2017; Fried & Cramer, 2016; Guloksuz et al., 2017; Wichers et al., 2017). 

Conclusions 

 In summary, our findings provide improved insight into the connections between the 

WSS-SF’s schizotypy factors and define a more specific continuum of WSS-SF items that are 

clinically relevant for schizophrenia-spectrum liability. We also examined two network filtering 

approaches and found that the IFN-based networks revealed more consistent, parsimonious, and 

predictive results. Moreover, we established the feasibility of the IFN approach by demonstrating 

its ability to provide less biased comparison and greater reproducibility in cross-sectional 

samples than the lasso-based networks. Thus, the IFN approach provides an alternative network 

approach in psychometric network analysis and contributes to the ongoing discussion of network 

reproducibility in this field.  
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Table 1. Descriptive statistics for each measure and their respective sample. Samples 1 and 2 

had similar statistics for each schizotypy scale. The sub-sample had slightly higher means and 

standard deviations than the two large samples. 

 Measure Descriptive Statistics 
Sample Size n = 5,831 n = 2,171 n = 430 

Statistic M  
(SD) 

Range M  
(SD) 

Range M 
(SD) 

Range 

Physical Anhedonia 2.09 
(2.30) 

0 - 14 2.26 
(2.28) 

0 - 14 2.71 
(2.95) 

0 - 14 

Social Anhedonia 1.77 
(2.41) 

0 - 15 1.96 
(2.42) 

0 - 15 3.01 
(3.50) 

0 - 15 

Perceptual Aberration 1.21 
(2.28) 

0 - 15 1.13 
(2.15) 

0 - 15 2.32 
(3.49) 

0 - 15 

Magical Ideation 3.26 
(2.91) 

0 - 15 3.19 
(2.87) 

0 - 15 4.30 
(3.74) 

0 - 14 

Negative Schizotypy Total 3.86 
(3.80) 

0 - 29 4.22 
(3.75) 

0 - 24 5.72 
(5.25) 

0 - 26 

Positive Schizotypy Total 4.47 
(4.64) 

0 - 30 4.32 
(4.46) 

0 - 30 6.61 
(6.72) 

0 - 28 

Global Assessment Functioning 
Scale (GAFS) 

    73.19 
(10.13) 

6 - 91 

Psychotic-like Experiences 
(PLEs) 

    1.29 
(2.07) 

0 - 9 

Negative Symptoms     3.03 
(4.34) 

0 - 22 

Schizoid Symptoms     .74 
(1.58) 

0 - 11 

Schizotypal Symptoms     1.13 
(1.79) 

0 - 11 

Paranoid Symptoms     .83 
(1.68) 

0 - 12 
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Table 3. Multiple regressions of psychopathology and schizophrenia-spectrum symptoms on 

positive and negative schizotypy’s core, intermediate, and peripheral item groups for the IFN-

based network. 

 

IFN Interview Criterion (df = 423) 

Schizotypy Predictors (β) GAFS PLEs Negative Schizoid Schizotypal Paranoid 

Positive Core -.267** .332*** .100 .139 .234** .183* 

Positive Intermediate -.156† .214** .055 .010 .175* .059 

Positive Peripheral .076 .007 -.118 -.093 .014 -.039 

Negative Core -.076 .064 .275*** .271*** .137* .015 

Negative Intermediate -.124† .050 .187** .133* -.015 .098 

Negative Peripheral -.052 -.062 .076 .058 .063 .081 

 Adj. R2 .162*** .278*** .247*** .185*** .184*** .059*** 

Note: all beta coefficients are standardized; Global Adjustment Functioning Scale (GAFS) and 

Psychotic-like Experiences (PLEs). † p < .10; * p < .05; ** p < .01; *** p < .001. 

  



EXAMINING PSYCHOMETRIC NETWORK FILTERING APPROACHES 59 

Table 4. Multiple regressions of psychopathology and schizophrenia-spectrum symptoms on 

positive and negative schizotypy’s core, intermediate, and peripheral item groups for the lasso-

based network. 

lasso Interview Criterion (df = 423) 

Schizotypy Predictors (β) GAFS PLEs Negative Schizoid Schizotypal Paranoid 

Positive Core -.275*** .433*** .068 .194* .277*** .232** 

Positive Intermediate -.017 .156* .123 .038 .168* .153† 

Positive Peripheral -.053 -.030 -.144* -.166* -.012 -.195* 

Negative Core -.162* -.056 .166** .073 .008 .173* 

Negative Intermediate -.071 .080 .185** .220*** .105 -.005 

Negative Peripheral -.033 .040 .201** .177** .080 .028 

 Adj. R2 .156*** .285*** .246*** .192*** .185*** .082*** 

Note: all beta coefficients are standardized; Global Adjustment Functioning Scale (GAFS) and 

Psychotic-like Experiences (PLEs). † p < .10; * p < .05; ** p < .01; *** p < .001.  
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Figure 1. A visualization comparison of the WSS-SF networks structure for the samples of the 

IFN-based and lasso-based methods. Nodes are identified by color and scale: physical anhedonia 

(orange; 1-15), social anhedonia (blue; 16-30), perceptual aberration (purple; 31-45), and 

magical ideation (green; 46-60).  Edge thickness depicts the strength of edge weights. 


