
MET2018

Can Software Engineering be Taught by
Making (and) Music? a proposed empirical
study.

Nicolas Gold
University College London, U.K.

Evangelos Himonides
University College London, U.K.

Abstract
The work proposed here centres on materializing core concepts of software
engineering (e.g. version management, architecture, the interplay between
functional and non-functional requirements, the need to think at both
small and large scale simultaneously, user interaction and design con-
straints, as well as project management) in design thinking through the
creation of physical instruments, and their subsequent translation (by in-
troducing the crucial engineering concepts of abstraction and abstract rep-
resentation) into a combination of software-based digital instruments with
physical controllers. The hope is that by doing so, the thinking skills that
benefit software engineering (beyond programming) can be developed
through physical, not just mental practice. More broadly, students can en-
gage with other aspects of their curriculum (physics, art, design etc) and
bring these to bear in an integrated way.

Keywords
making, programming, software engineering, LEGO

Aims
To research ways in which making may be combined with aspects of com-
puter music to create and evaluate secondary-level education resources
that introduce fundamental engineering and software engineering con-
cepts at early stage.

There is no doubt that computer music can be used in the context of mo-

sempre | 169

Researching Music, Education, Technology

tivating programming education (e.g the highly-successful SonicPi initiat-
ive), however programming is only one part of the broader engineering
picture in which software sits.

It is proposed that Lego Technic is used as the foundational material with
which to work: children are usually familiar with Lego as a construction
tool and system and it has been well-researched as an educational resource.
It has been used to construct musical instruments (although there are not
many full-scale working examples) and can be easily adapted (through the
Mindstorms system or similar) to controller construction with sensors and
switches. It is likely that the SonicPi system (or the underlying SuperCol-
lider synth) can be leveraged to provide easy instrument definition and
sound production with controllers communicating over local networks,
and to introduce programming using the resources that that project has
already developed for schools.

The concrete aim is to develop two physical instrument prototypes and
corresponding digital/controller versions, create instruction, lesson plans
and other educational resources (e.g. ‘workshops’) to accompany them, to
evaluate these in a mainstream secondary school setting, and publish the
results. The proposed series of workshops and materials to be developed is
envisaged as an ‘off-the-shelf ’ resource for teachers to use either each ses-
sion individually for particular aspects of curriculum support, or as a co-
herent programme leading to better student education in computer sci-
ence and software engineering, delivered through a curriculum founded on
computer music.

The intention is that students completing the series would have an appre-
ciation of many underpinning concepts of software development, revealed
and demonstrated through physical and subsequently digital means. For
example, designing an instrument such as a guitar requires one to consider
not just the ‘user interface’ (balancing norms of playing with creativity),
but also the underlying ‘architectural’ design that must provide sufficient
strength not to warp or crack under the tension of strings (and that must
be thought about as the instrument is being developed) and functional
properties like the transmission and amplification of sound in the body.

170 | sempre

MET2018

There is thus balance between functional and non-functional requirements
(along with fundamental lessons to be learned about sound, waves,
propagation, amplification, resonance and so forth). Building like this re-
quires design thinking that considers multiple viewpoints simultaneously,
experiments with solutions, records things that work and things that don’t
(version control) and ultimately, after completing the physical instrument,
can re-examine and critique it from a new standpoint: the digital instru-
ment. The lessons learned from physical implementation can then be
moved into the digital realm: abstracting control and representation of the
instrument away from its inherent properties makes some problems easier
to solve (e.g. neck tension), and others are new: how should the software
be organized? Can we retain history of our development? Others are re-
addressed in the new context: at what stage do we have to think about
fundamental structures? What happens if we don’t?

Overall therefore, it is hoped that students come to software development
with a physically-developed appreciation of the need for software engin-
eering approaches, and some of the fundamental thinking patterns re-
quired.

Acknowledgements

The authors would like to thank the UCL Computer Science Strategic
Research Fund for funding this research.

References
1. Kmieć P. S. (2016). The unofficial LEGO Technic builder's guide. No

Starch Press.
2. Gannod, G. C., Burge, J. E., & Helmick, M. T. (2008, May). Us-

ing the inverted classroom to teach software engineering. In Pro-
ceedings of the 30th international conference on Software engineering
(pp. 777-786). ACM.

3. Runeson, P., Host, M., Rainer, A., & Regnell, B. (2012). Case
study research in software engineering: Guidelines and examples. John
Wiley & Sons.

4. Sonic Pi - The Live Coding Music Synth for Everyone. (n.d.). Re-
trieved February 23, 2018, from https://sonic-pi.net/

sempre | 171

