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An efficient, accurate and robust multiple-relaxation-time (MRT) discrete Boltzmann method (DBM) is
proposed for compressible exothermic reactive flows, with both specific heat ratio and Prandtl number
being flexible. The chemical reaction is coupled with the flow field naturally and the external force is
also incorporated. An efficient discrete velocity model which has sixteen discrete velocities (and kinetic
moments) is introduced into the DBM. With both hydrodynamic and thermodynamic nonequilibrium ef-
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1. Introduction

Exothermic reactive flows are commonplace in nature and in-
dustry which play significant roles in economic and social devel-
opment all over the world. In fact, more than 80% utilizable en-
ergy is transformed through exothermic reactive phenomena in the
world [1]. On the other hand, they are associated with environ-
mental problems, accidents or even disasters. For example, atmo-
spheric pollution, global warming and climate change are closely
linked to harmful emissions from reactive flows. In particular, fire
hazards, which often induce explosion and shock, may cause huge
danger and damage to human life, property and environment. Al-
though considerable researches have been devoted to these fields,
there are still many open issues due to their complexity. To be spe-
cific, they have a wide span of physicochemical phenomena, in-
teract over various spatio-temporal scales, and involve various hy-
drodynamic and thermodynamic nonequilibrium behaviours [2-4].
Especially, for a spacecraft flying from the earth surface to outer
space, where the chemical reaction and gravity exist, it covers a
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wide range of Knudsen numbers and various essential nonequi-
librium phenomena. To describe such complex systems, traditional
macroscopic models have the benefit of high computing efficiency,
but could not capture detailed information accurately. While mi-
croscopic models have the merit of an accurate and full descrip-
tion, they encounter spatio-temporal constraints because of their
high computing costs.

At the mesoscopic level, the lattice Boltzmann method (LBM)
may overcome aforementioned problems [5-16]. In the past three
decades, the LBM has achieved significant success in the simula-
tion of complex systems, including reactive flows [17-35]. The tra-
ditional LBM usually works as an alternative tool to solve macro-
scopic equations, such as incompressible Navier-Stokes (NS) equa-
tions. Various physical quantities, such as flow velocity and tem-
perature, may be described by different sets of the discrete distri-
bution function. Recently, a novel variant of LBM, discrete Boltz-
mann method (DBM), has emerged as an efficient kinetic model
to capture both hydrodynamic and thermodynamic nonequilibrium
effects in fluid flows [36,37]. Different from traditional LBMs, the
DBM employs only one set of discrete distribution function to de-
scribe various physical quantities, including the density, tempera-
ture, velocity, and other high order kinetic moments, which is in
line with the Boltzmann equation.
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Fig. 1. Sketch of the discrete velocity model D2V16.

Since 2013, several Single-Relaxation-Time DBMs have been for-
mulated for exothermic reactive flows [38-40]. Yet, the Prandtl
number in those proposed model is fixed at Pr = 1. To overcome
this, a multiple-relaxation-time (MRT) DBM was presented [41].
There are 24 independent kinetic moments satisfied by 24 discrete
equilibrium distribution functions in this work [41]. These kinetic
moments are necessary for the DBM to recover the reactive NS
equations in the hydrodynamic limit [41]. Besides, the effects of
external force are neglected in this model [41]. However, external
forces (such as gravity) often have essential influences upon reac-
tive flows. In the present work, we introduce a new form of re-
action and force terms, and reduce the 24 kinetic moments (and
discrete equilibrium distribution functions) to only 16 while the
recovery of the NS equations is made as well. Besides its prac-
tical value as an efficient computational tool for the traditional
dynamics of complex systems, this model also provides details of
nonequilibrium behaviours dynamically and conveniently. We de-
scribe the DBM in Section 2, validate it in Section 3, and finally
summarize this work in Section 4.

2. Discrete Boltzmann method

The DBE takes the form,

g—f+v V= M- 1s<f-f€4)—A+F+R. (1)
Here f=(f; fo -+ fy)" and 9= (f{7 f39 ... fi!)T denote dis-
crete distribution functions and their equ111brium counterparts, re-
spectively. = (f; f» --- fN)T and fed = (ffq f;q f)f,q)T repre-
sent kinetic moments of discrete distribution function and their
equilibrium counterparts, respectively. M~! is the inverse ma-
trix of M, and M is a square matrix, see Appendix A S=
diag($; S, --- Sy) is a diagonal matrix with element S; describing
the speed of f; approaching feq withi=1,2, ---, Nand N = 16. As

shown in Fig. 1, the discrete velocities, v = d1ag(v1 v, --- Vy), take
the following form,
cyc : (£Vq,0) 1<i<A4,
v = Joye: (Fve £vg)  5<i<8, )
"7 ) eye: (21, 0) 9<i<12,
cyc: (£vp, £1) 13 <i< 16,

with tunable parameters v, and v, controlling the value of v;.
The artificial term A= (0 --- 0 A3 Ag 0 --- 0)" is used to mod-
ify the collision operator & = —M~1§(f — f¢9), in terms of

A - stgg—ss [4UX<D+I—1 ouy 1 auy>
5

D+I 9x D+1dy

0 duy
+2uy< 8uy + al}l/ )] (3)

D+1 dy D+I dx

ou,  Juy

a2 2] “
The reason for this modification is as follows. Although the tunable
relaxation coefficients S; seem mathematically independent of each
other, coupling may exist among the relaxation processes of vari-
ous kinetic modes (f”e fi- feq) from the physical point of view.
For the sake of correct descrlption of macroscopic behaviours, we
should perform the Chapman-Enskog expansion, analyze the con-
sistency of nonequilibrium transportation terms in the recovered
hydrodynamic equations, and find a solution for the modification
to the collision term. In short, this modification is incorporated in
the DBM to recover the consistent NS equations in the hydrody-
namic limit, see Appendix A. The artificial term is the function of
the velocities (uy, uy) and the first-order partial derivatives of them
with respect to x or y. These derivatives can be solved by vari-
ous finite difference schemes. In this work, the central difference
scheme is adopted. For example,

Agszsgjs7[4uy<D+1 19u, 1 Bux)

% _ Uy (ix + 1, 1y) — ux(ix — 1, 1y)
ox 2Ax

at the node (ix, iy). Numerical tests demonstrate that the artificial

term does not induce significant numerical problems. Furthermore,

the artificial term can be removed for the case S5 = Sg and §; = S,.
The force and reaction terms, F+R=(Ff+R; K +R;

Fy + Ry)T, describe the variations of the distribution function due

to the external force and chemical reaction. Specifically,

(5)

F+R = %[fieq(p,u—i-ar,T+tT/)—fl.eq(p,u,T)], (6)
Mathematically, the difference of the equilibrium distribution func-
tions over a small time interval is an approximation to the change
rate of distribution functions, based on the assumption f; %f,.eq.
The physical reason for Eq. (6) is as follows. It is regarded that
neither external force nor chemical reaction changes the density p.
The external force affects the hydrodynamic velocity u with accel-
eration a. Consequently, the velocity changes from u into u+ar
within a small time interval T due to the external force. Mean-
while, the temperature changes into T + 7T’ on account of the
chemical reaction. Specifically, the change rate of energy is

E'=pu-a+pQ), (7)
because of the external force and chemical reaction. From

Eq. (7) and the definition E =2 pT + lpu.u, we obtain the
change rate of temperature

2Q)
D+TI
where D = 2 stands for the number of dimensions, I the number
of extra degrees of freedom corresponding to molecular rotation
and/or internal vibration. The reaction process A is defined as the
mass ratio of the chemical product to mixture. The chemical reac-
tion is controlled by the Cochran’s rate function

M =w1p"(1=A) +@2p"A(1 - 2), 9)

T = (8)

which depends upon the pressure, p = pT, in terms of adjustable
parameters wi, wy, m and n [42]. Here A is defined as the local
mass fraction of the reaction product. Without loss of generality,
we choose (w1, w,, m, n) = (2, 100, 2, 2.5), and employ the igni-
tion temperature T;g = 1.1 in this work. Only when T> Tj, can the
chemical reaction take place.
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For the sake of recovering the NS equations, the discrete equi-
librium distribution function should satisfy the following relations

Y f=p. (10)
> i = pug, (11)
Y fWE+n) = pl(D+DT +u?], (12)
> fiavip = p(BapT + Ualip), (13)
AW+ nPvig = pua[(D+1+2)T +u?], (14)

foqv,-aviﬂv,-x :p(ua8ﬁx + Uﬁ(Sxa + uX(Saﬁ)T + pUglpgly, (15)

D FAW A+ 0P iavip = pSapl(D+1+2)T +u?]T
+ pugug[(D+1+4)T +u?], (16)

where ,72 is employed to describe internal energies in extra de-
grees of freedom with n; = ng for 5<i<8 and n; = 0 for the oth-
ers.
In fact, Eqs. (10)-(16) can be uniformly written as M x ¢4 =

In Eqgs. (10)-(12), f{? can be replaced by f;, from which we can
calculate physical quantities (o, u, T). Whereas replacing fl.eq with
f;i results in the imbalance between the left and right sides of
Egs. (13)-(16). These differences are just departures of high order
kinetic moments of the dlStl‘lbuthH function from their equilib-
rium counterparts, i.e., fl”e f, fl The departures can be uti-
lized to probe the nonequilibrium states from various points of
view. Note that fi”e =0 for 1<i<4 due to the conservation laws,
hence the parameters S;, S, S; and S; do not play any role.
While fi"" may be nonzero for i>5 in nonequilibrium state. To

be specific, fge ( f;e) is the departure of energy in the x (y) di-
rection from its equilibrium stat(f; fgi’ fgf and f”e are linked
with the viscous stress tensor; fg¢, fi° fi5 fre  fne and f

100 J110 J12»
refer to the departures of energy ﬂuxes from their equ111br1um
counterparts; f 1”56‘, and ff are related to fluxes of energy

flux from their equilibrlum counterparts. The nonequilibrium ef-
fect f, multiplied by its amplification factor S;, plays an essen-

tial role in the evolution of fluid systems. It is clear that fi”e in

Eq. (A1) has a strong effect with large §;. Actually, those depar-
tures are calculated conveniently in each iteration of the com-
puting process. Moreover, the dynamic viscosity w, thermal con-
ductivity «, and Prandtl number Pr are functions of §;. Specif—
ically, u = ,oT/Su, K= (D+I+2)pT/(25K) and Pr_SK/S,L, for
S,t =385 =8;=35; and S, =S5 =Sy, see Appendix A. In contrast, all
the amplification factors are identical in the SRT model, i.e., Pr =1,
which is only a special case of the MRT model.

It can be found that discrete Boltzmann equation is in a simple
form and its algorithm is easy to code. In contrast, the NS equa-
tions depend upon both the first-order and second-order partial
derivatives of velocities (uy, uy) with respect to x or y, which are
nonlinear terms relatively difficult to be treated with [40]. More-
over, it often needs to solve the Poisson equation based on global
data transfer in NS method, while all spatio-temporal information
communication is local in DBM that is suitable for massively par-
allel computing. In addition, the DBM provides an efficient tool to
study detailed nonequilibrium effects and/or rarefied effects of gas
flows beyond NS equations by capturing the departures of kinetic
moments from their equilibrium counterparts [40,43]. Finally, it is
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Fig. 2. Initial configuration (a) and time evolution (b) of physical quantities in the
process of chemical reaction in a free falling box. The squares stand for D2V16 re-
sults, triangles for D2V24 results, and lines for exact solutions.

easy to have a proper kinetic boundary condition for DBM to de-
scribe the velocity slip and the flow characteristics in the Knudsen
layer that cannot be well described by traditional hydrodynamic
models [43].

3. Validation and verification

For validation and verification purposes, four benchmark tests
are performed. (i) The chemical reaction in a free falling box is
simulated to verify the effects of external force and chemical re-
action. (ii) The simulation of a detonation wave is carried out to
demonstrate the DBM in the case with violent chemical heat re-
lease. Additionally, we assess the spatial and temporal convergence
of the numerical results. (iii) To verify the DBM for adjustable spe-
cific heat ratios and Prandtl numbers, we simulate Couette flow.
Moreover, it is demonstrated that the nonequilibrium information
provided by the DBM coincides with its analytical solution. (iv)
Finally, a typical two-dimensional benchmark, shock reflection, is
simulated successfully. Besides, it is demonstrated in the first two
tests that the discrete velocity model D2V16 has higher efficiency
and better robustness than D2V24 [41]. Note that the second or-
der Runge-Kutta scheme is adopted for the time derivative, while
the second order nonoscillatory and nonfree-parameter dissipation
difference scheme [44] is employed for the space derivative in
Eq. (1). It is preferable to set At < 1/Max(S;) due to the explicit
scheme for the time derivative, where Max(S;) denotes the maxi-
mum among S;. The relation between the time step At and space
step Ax = Ay should satisfy convergence conditions. Additionally,
variables and parameters used in this paper are expressed in non-
dimensional forms, i.e., the widely accepted LB units [45,46].

3.1. Reaction in a free falling box

First of all, we simulate the exothermic chemical reaction in
a free falling box, see Fig. 2(a). Initially, the box is evenly filled
with premixed chemical reaction with released heat Q = 1.0, den-
sity p = 1.0, temperature T = 2.0, velocity u = 0, and acceleration
= (0, 140). The reaction is ignited uniformly, hence we adopt
only one mesh grid, i.e, Ny=N, =1, and the space step Ax =
Ay =107, time step At =107, In addition, the specular reflec-
tion boundary conditions are imposed. There are two purposes of
this simulation. One is to validate the simulation results in the
case with both the external force and chemical reaction taken into
account. The other is to compare D2V16 with D2V24 constructed
in Ref. [41]. The parameters (vq, Vp, a) = (1.7,3.7,3.3) is adopted
for D2V16, and (vq, Vp, Ve, Na, Np, Nc) = (1.2,1.9,2.7,3.5,0.1,2.0) is
chosen for D2V24. For both D2V16 and D2V24 models, the collision
parameters are §i =10° except S5 = S5 = $; = 2 x 104, Correspond-
ingly, the Prandtl number Pr =S, /S, =5, with §;, =S5 =55 =$;,
and S, = Sg =Sy. The specific heat ratio is y = (I+4)/(I+2) =
1.4.
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Fig. 3. Sketch of the initial configuration for detonation.
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Fig. 4. Pressure profiles in the evolution of the detonation wave at times, t; = 0.25,
t; = 0.30, t3 = 0.35, and t; = 0.40, respectively.

Fig. 2(b) displays the evolution of physical quantities (p, uy,
E), where E is the sum of internal energy and chemical heat. The
squares are for D2V16 results, triangles for D2V24 results, and lines
for exact solutions. In the process of chemical reaction in the free
falling box, the chemical reactant changes into the product and the
chemical heat is released, with the conservation of total mass, mo-
mentum and energy. Obviously, both D2V16 and D2V24 provide
numerical results p = 1.0 and E = 6.0, which equal the exact so-
lutions precisely. And the flow velocity simulated by either D2V16
or D2V24 coincides the exact u = gt. Consequently, both D2V16
and D2V24 are satisfactory. Moreover, on a personal computer, the
computing time is 1.3 s for D2V16, and 2.4 s for D2V24. Clearly,
D2V16 requires less RAM and shorter computing time than D2V24.

3.2. Detonation wave

In order to test the present DBM under the condition with vio-
let chemical heat release, we target the detonation wave. The ini-

24 T T

Solution
0O DBM

N

i
T

]

Temperature
N

(©)

0.860

-
o
T

0.855 0.865 0.870

X

179
tial configuration is
(p, T, ux, uy, A), = (1.38837,1.57856, 0.57735,0, 1) (17)
(o, T, ux, uy, A)g = (1,1,0,0,0)

where the suffix L indexes the left part, 0 <x<0.05, and R the
right part 0.05<x<1, see Fig. 3. The inflow or outflow con-
dition is adopted in the x direction, the period condition is
employed in the y direction. The parameters are =3, Q =1,
(Vg V. 1g) = (1.7,3.7,3.3), At =105, Ax= Ay =107, and Ny x
Ny = 10,000 x 1. The collision parameters are $; = 10> except S,
(i.e., §5, .§5, §7) =2 x 104

The detonation wave travels from left to right with speed vs.
The chemical reactant is in front of the detonation wave with
A =0, and it changes into the product after the wave with A =
1. Fig. 4 illustrates the propagation of pressure at time instants,
t; =0.25, t; = 0.30, t3 =0.35, and t4 = 0.40, respectively. It can
be obtained in Fig. 4 that the speed of the detonation wave is
vs = 2.062. Compared with the theoretical value vy = 2.06395, the
error is only 0.09%, which is satisfactory.

The physical quantities (p, ux, T, p) firstly increase in the com-
pression zone, then reduce in the rarefaction zone, and finally level
off after the detonation wave. Their profiles at time t; = 0.40 are
plotted in Fig. 5 (a)-(d). Squares are for numerical results and lines
are for Zeldovich-Neumann-Doering (ZND) solutions [2]. Simula-
tion results behind the detonation wave are (p, ux, T, p) = (1.38907,
0.577593, 1.57737, 2.19109). Compared with the analytical solutions
(p, ux, T, p) = (1.38837, 0.57735, 1.57856, 2.19162), the relative dif-
ferences are (0.05%, 0.04%, 0.08%, 0.02%), respectively. Obviously,
the numerical and analytical results coincide well in Fig. 5. The tiny
differences between them are due to the fact that the ZND theory
ignores the viscosity and heat conduction, and the von Neumann
peak is assumed as a strong discontinuity which is not a truth.
The DBM considers the viscosity, heat conduction as well as other
nonequilibrium effects. Note that, with the decrease of collision pa-
rameters, the nonequilibrium effects are enhanced, and the differ-
ences between the DBM and analytical solutions become large [41].

To compare the numerical robustness of D2V16 and D2V24
[41], the aforementioned detonation wave is simulated by us-
ing the D2V24 as well. The parameters are (Vq, Vp, Uc, Na. N, Nc) =
(3.5,4.0,5.0,4.0,0.0, 3.0) for D2V24. The other parameters are the
same as those for D2V16. Fig. 6 exhibits the pressure profile at
time t = 0.028. The solid (dotted) line stands for D2V16 (D2V24).
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Fig. 5. Profiles of the detonation wave: (a) density p, (b) velocity uy, (c) temperature T, and (d) pressure p. Squares and lines refer to numerical and analytical results,

respectively
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Fig. 6. Comparison between simulation results of D2V16 and D2V24.

Obviously, D2V16 gives a smooth profile around the detonation
front, while D2V24 gives an oscillating profile. This nonphysical os-
cillation is soon amplified and results in the stop of the simulation
program. Moreover, further tests demonstrate that D2V16 is capa-
ble of simulating the detonation wave for Mach number Ma > 100.
However, it is difficult and even impossible to use D2V24 to simu-
late such high-Mach systems.

Next, let us assess the spatial and temporal convergence of the
DBM results. The spatial convergence is proved considering several
values of the space step, Ax=Ay=5x 10", 1x 107>, 2 x 1072,
4x107, 8 x 107>, 1.6 x 104, with fixed time step At =1 x 1076,
The relative difference of the minimum value of fg’e around the
detonation wave is chosen as the numerical error. Fig. 7 (a) illus-
trates the numerical error versus space step. The squares stand for
the DBM results and the line for the fitting function, In(error) =
kIn(Ax) + 10.2446, with the slope k = 2.16164. It is near the exact
value k = 2 since the space derivative is solved at the second order
level.

In a similar way, the temporal convergence is demonstrated
considering several values of the time step, At=5x10"7, 1 x
106, 2x 1076, 4x 1076, 8x 1076, 1.6 x 107>, with fixed space
step Ax= Ay =1.6x10"4. Fig. 7 (a) illustrates the numerical
error versus time step. The fitting function takes the form,
In(error) = kIn(At) + 15.6137 with k = 2.06822. The slope is close
to the exact one k =2 because the second order scheme is used
for the time derivative.

3.3. Couette flow

To verify the DBM for various values of the specific heat ratio y
and Prandtl number Pr, we simulate Couette flow. The velocities of
the upper and lower walls are u = ugeyx and 0, respectively. Here ey
is the unit vector in the x direction, and uy = 0.1. The distance be-
tween the two walls is H = 0.2. The initial flow field is set as (p, u,
T) = (1, 0, 1). The viscous shear stress transmits momentum into
the fluid and changes the flow velocity distribution, see Fig. 10.

8l T T T 1
B DBM

ol T Fitting Function |
—
°
QD 12} 1
£

14}t (a) ]

A2 1 A0 9 8
In(AX)

.
Up

L L L L L2 Z L L
p=1
u=0 H
T=1

VAV AVA A A Awd

Fig. 8. Sketch of the initial configuration for Couette flow.

When the field reaches steady, the temperature is different for var-
ious y or Pr, see Fig. 9. The space step is Ax = Ay =103, the
time step At =5 x 107>, and the parameters (vq, vy, q) = (1.1, 1.7,
2.3). Periodic boundary conditions are employed for the left and
right boundaries, and the nonequilibrium extrapolation method is
applied to the top and bottom boundaries. The sketch of the initial
configuration for Couette flow is shown in Fig. 8.

Fig. 9 illustrates the temperature T versus y when the Couette
flow reaches equilibrium. Fig. 9(a) shows the cases with y =1.3,
1.5, 1.8, and fixed Pr = 1.0; Fig. 9(b) shows the cases with Pr = 0.5,
1.0, 2.0, and fixed y = 1.5. The collision parameter S, is 2 x 103 for
Pr=0.5, 1x103 for Pr=1.0, and 5 x 10? for Pr = 2.0, the other
collision parameters $; are 1 x 103, The symbols represent DBM re-
sults, the lines denote the corresponding analytical solutions,

X

T=T1+(T2—T1)%+£2X(1—7>, (18)

2ca\" " H
where T; (= 1.0) and T, (= 1.0) are temperatures of the lower and
upper walls, respectively. Obviously, the numerical results agree
well with the analytical solutions. Fig. 10 exhibits the horizontal
velocity uy (a) and nonequilibrium quantity fge (b) versus y in the
case with ¥ = 1.5 and Pr = 0.5. The squares, circles, triangles, and
diamonds stand for DBM results at times t; = 0.05, t; =1, t3 =5,
and t4 = 30, respectively. In panel (a), the lines are for the analyt-
ical solutions,

Yy 2 D 2o ME N\ . /Ny
u_Huo—f—ﬂuo;[ - exp(—n T —pm)sm( o ) . (19)

Clearly, the numerical and analytical results coincide well with
each other. Hence, the DBM has the capability of capturing the
flow field in the dynamic process of the Couette Flow. In panel (b),
the lines stand for the analytical solutions

A duy ou

ne __ 0 Y

5 = M(By +8x>'
It can be found that the DBM results are in good agreement with

the analytical values. That is to say, the DBM could describe the
nonequilibrium behaviours accurately.

(20)

-6 — T T T

H DBM
r —— Fitting Function

In(At)

Fig. 7. Numerical errors versus space (a) and time steps (b). The squares stand for the DBM results and the line for the fitting function.
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and fixed y = 1.5. The symbols indicate DBM results and the lines denote analytical solutions.
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(diamonds), respectively. The symbols stand for numerical results, the lines for analytical solutions.
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Fig. 11. Density contour of steady regular shock reflection on a wall.

3.4. Shock reflection

For the purpose of verifying the model for two dimensional sys-
tems, we use a typical benchmark: regular shock reflection. The
computational domain is a rectangle. The reflecting surface is im-
posed on the bottom, the supersonic outflow is adopted for the
right boundary, and the Dirichlet conditions are utilized on the top
and left boundaries, i.e.,

{(p, T.ux. Uy)oye = (1,0.5,2,0) 1)

(o, T, ux, uy)xo1,; = (1.25,0.56,1.9, —0.173205)
The interesting readers refer to Ref. [41] for more details of the ini-
tial configuration. The parameters are Ny x Ny =300 x 100, Ax =
Ay=10"3, At =5x10"%, =2, (vg, v, na) = (1.7, 2.9, 3.0). The
collision parameters are S, = 1.8 x 10°, and 2 x 10° for the others.
Fig. 11 exhibits the density contour of the steady regular shock re-
flection. Theoretically, the angle between the incident shock wave
and the wall is ¢ =7 /6 while the DBM gives the angle ¢ =
ArcTan(0.1/0.173). The relative difference between them is only
0.1%, which is satisfying.

4. Conclusions

We present an MRT DBM for compressible flows, taking both
chemical reaction and external force into account. The specific
heat ratio as well as the Prandtl number are flexible. This model
recovers the reactive NS equations in the hydrodynamic limit.

Meanwhile, thermodynamic nonequilibrium effects are dynami-
cally taken into account through considering the departures of ki-
netic moments from their equilibrium counterparts. In fact, the
nonequilibrium effects together with their relaxation parameters
play a crucial role in fluid systems.

Compared with a previous MRT DBM where 24 discrete veloc-
ities (and kinetic moments) are employed to couple the chemical
reaction with fluid flows [41], our model requires only 16 discrete
velocities (and kinetic moments) and thus less computing efforts.
Compared to another MRT DBM with the incorporation of only a
conventional force term [37], our model introduces a new form for
both force and reaction terms, which are physically more general.
In this paper, we also demonstrate that the present model provides
high computational efficiency, physical fidelity, and numerical ro-
bustness
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Appendix A

The elements of matrix f%9 take the form ffq =p,
Gl =pux. f37=puy. fi7=pl@+DT+u?], f57=p(T+u}).
Fel = puxuy, f57=p(T+ud), f§'=puD+1+2)T +u?]. f§=
puy[D+1+2)T +u?],  fid =3puT +pud, fol = puyT + puduy,
P = puxT + puti2.  fid =3puyT+pu3.  fid = p[(D+1+2)T +
u?]+ pu2[(D+1+4)T + u?], Fed = puxuy[(D+1+ 4T +u?],
fleg =p[(D+1+2)T +u?] + pud[(D+1+4)T +u?]. The elements
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of matrix M read My; =1, My; =V, Ms;=vy, My =02 +1?2,
Ms; =12, Mg =VyViy. My;i= v%,, Mg; = (V2 + n?)Viy, Mo; =
W7 + 0Py, Migi =V} Muni=Viviy. M=y}, M=},
Mugi = (V? + n?)v%, Mysi = (V2 + 02Uy, Mygi = (V7 + 77?)’%

Let us introduce quantities E = MvM~!, f=Mf A=MA, F=
MF, R = MR. Then the first nine elements of F and R are obtained,
ie, =0 F= Pax, = pay, Fy = 2puxay + 2puyay, f= 2,ouxax,
Fs = puxay + puyay, B = 2puyay, Fy = 2pux(uay + uyay) + payu? +
pax(D+1+2)T, Fy = 2puy (uxax + uyay) + payu? + pay (D + 1+ 2)T.
Rl 0, 1?2_0 RA3 0, R4—2ﬂ)\/Q Rxs—,OD)L_*_(Il, Rs—o R7=
P29, Rg=(D+1+2)pu%l. Ry= (D+1+2)puy2:?, which
are necessary in the following Chapman-Enskog analysis.

Multiplying Eq. (1) by M leads to
of
3t +

Substituting the variables’ expansion,

£ £(0 £(1 £2
ﬁ:]ci()+fi()+jci()+

v.(ﬁ?) :—§<f—fﬂ1)—i\+?+ﬁ, (A1)

D00
ot — oty oty (A2)
0 d ’
V=Vie g Ta arla
A=Ay E=F;, Ri=Ry.
into Eq. (A.1) gives
O — fea, (A3)
9 §0) SFO _ALFLR
3t +E.-V; )TO = _§FO _A+F+R, (A4)
Do (2 g v o s )
aty daty ’

with f® = 0(e*). 3/9t, = 0(e"), 3/dr1y = O(e). Ay =0(e). Fy; =
0(¢), Ryj=0(¢e),1=1, 2, --+, and rq =X, y. Here ¢ corresponds to
the Knudsen number.

From Eqs. (A.3) to (A.4), we obtain

affr  afe afw

__eFfM B p
ot +78x1 + FI Sifi7+R +Ry, (A.6)
OfyT af o s L8 8
ot Ty =-§ 2 +E 4Ry, (A7)
s T s T i =SV +B+R (A8)
at, x| oyr > '
0fs" af ST e r g s
ot oy ot Re "9
A ) P
TH—FT)Q_'_ 8y1 = —S5f5 +F +Rs, (A]O)
N T B I (A1)
8[’1 8X1 8}/1 - 6J6 6 & ’
Ofy  of  ofy AL p L p
Gt ety = =-S5V +F+Ry, (A12)
feq feq fe
0 fg 014 8f15 sz(l) Ag + K + Rs, (A13)

8t1 8x1 8y

ofs" ofid  afid _
aty 0x1 +TM

—§9f9(1) —Ag +ﬁ9 +R9.

From Egs. (A.3) to (A.5), we get

f f(1) f(l)

8t2 + 8t1 + 8)(1
3f f(1) af(l)

8t2 + 8t1 * 8x1

af;q f(1) f(1) +

3, o T ox

I S

8t2 + 3t1 + 8X1

(A14)

(A15)

(A.16)

(A17)

(A18)

Adding Egs. (A.6)-(A.9) and (A.15)-(A.18) results in the following

equations,

afee 9 9 .

%4‘%4‘ Z{y =k +R,

057 3 (g 20\, O (e, DY _ 7 . B
W"‘ﬁ(s +f5 )+@<f +f6):F2+R2?
A D rg » D (g 2 L
*f<>f )b,

(A19)

(A.20)

(A.21)

(A.22)

Using the expressions of fieq, Ef9. R, and Egs. (A.10)-(A.14), we

obtain the NS equations,

d
Bt +ar, Ty, (PUets + Pup) = Pl

0p | djou _

8t + E 0,

djo | Op

ot 0Ty

% B(E + Zp)ua _
Jat 0ry

where j, = pu, is the momentum in « direction, and & =

9
arﬁ

DpT + pu? is twice the total energy, with

P __pT 2%,L%,L% — f»
wTg ax D+10x D+I1dy )

pT (duy, du 1
ny:Pyx=—56<x+a; féb,

dy

which reduce to

du, Oug
-

oy " ore

2 Juy

ouy
- 331,)(3043) - MBW%,S,

(A23)

(A.24)

oT
|:K/3 %—Paﬂua} =2puUydy +20A'Q,

(A.25)
D+

(A.26)

(A27)

(A28)

(A.29)

(A.30)

(A31)
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K = (D—“+1)‘2—T, (A32)
2 Se

for S5 =S5 =5;=35, and Sg=Sg =S, where u = pT/S, is the
dynamic viscosity, k = (D + 1+ 2)pT/(2§K) is the thermal conduc-
tivity. With the definitions of specific heat at constant pressure
cp=(D+1+2)/2 and specific heat at constant volume ¢, = (D +
I)/2, we obtain the flexible specific heat ratio y = cp/cy = (D +1+
2)/(D +1I) and Prandtl number Pr = cpi/k = Sic /S,

References

[1] Chu S, Majumdar A. Opportunities and challenges for a sustainable energy fu-
ture. Nature 2012;488:294-303.

[2] Law CK. Combustion physics. Cambridge University Press, Cambridge; 2006.

[3] Ju Y. Recent progress and challenges in fundamental combustion research. Adv
Mech 2014;44:1-72.

[4] Nagnibeda E, Kustova E. Non-equilibrium reacting gas flows: kinetic theory of
transport and relaxation processes. Springer, Berlin; 2009.

[5] Succi S. The lattice Boltzmann equation for fluid dynamics and beyond. New
York: Oxford University Press; 2001.

[6] Higuera FJ, Succi S, Benzi R. Lattice gas dynamics with enhanced collisions. EPL
(Europhys Lett) 1989;9(4):345.

[7] Montessori A, Prestininzi P, La Rocca M, Falcucci G, Succi S. Lattice kinetic
approach to non-equilibrium flows. In: AIP conference proceedings, 1738. AIP
Publishing; 2016. p. 090005.

[8] Zhang Y, Qin R, Emerson DR. Lattice Boltzmann simulation of rarefied gas
flows in microchannels. Phys Rev E 2005;71(4):047702.

[9] Tang GH, Zhang YH, Emerson DR. Lattice Boltzmann models for nonequilib-
rium gas flows. Phys Rev E 2008;77(4):046701.

[10] Meng ], Zhang Y, Shan X. Multiscale lattice Boltzmann approach to modeling
gas flows. Phys Rev E 2011;83(4):046701.

[11] He X, Luo L-S. Lattice Boltzmann model for the incompressible Navier-Stokes
equation. ] Stat Phys 1997;88(3):927-44.

[12] Benzi R, Sbragaglia M, Succi S, Bernaschi M, Chibbaro S. Mesoscopic lattice
Boltzmann modeling of soft-glassy systems: theory and simulations. ] Chem
Phys 2009;131(10):104903.

[13] Li Q, Luo KH, Kang Q, He Y, Chen Q, Liu Q. Lattice Boltzmann methods for
multiphase flow and phase-change heat transfer. Prog Energy Combust Sci
2016;52:62-105.

[14] Lai H, Ma C. A new lattice Boltzmann model for solving the coupled viscous
burgers equation. Physica A 2014;395:445-57.

[15] Schmieschek S, Narvdez A, Harting J. Multi relaxation time lattice Boltzmann
simulations of multiple component fluid flows in porous media. In: High per-
formance computing in science and engineering '12. Springer; 2013. p. 39-49.

[16] Liang H, Li QX, Shi BC, Chai ZH. Lattice Boltzmann simulation of three-dimen-
sional Rayleigh-Taylor instability. Phys Rev E 2016;93(3):033113.

[17] Ponce Dawson S, Chen S, Doolen GD. Lattice Boltzmann computations for re-
action-diffusion equations. ] Chem Phys 1993;98(2):1514-23.

[18] Zanette DH. Interplay of reaction and transport in a perfect fluid. Phys Rev E
1994;50(2):1171.

[19] Qian YH, Orszag SA. Scalings in diffusion-driven reaction a+b— c¢: numerical
simulations by lattice BGK models. ] Stat Phys 1995;81(1):237-53.

[20] Weimar JR, Boon JP. Nonlinear reactions advected by a flow. Physica A
1996;224(1-2):207-15.

[21] Tian Z, Xing H, Tan Y, Gu S, Golding SD. Reactive transport LBM model for CO,
injection in fractured reservoirs. Comput Geosci 2016;86:15-22.

[22] Succi S, Bella G, Papetti F. Lattice kinetic theory for numerical combustion. ]
Sci Comput 1997;12:395-408.

[23] Filippova O, Hanel D. A novel numerical scheme for reactive flows at low mach
numbers. Comput Phys Commun 2000;129:267-74.

[24] Yu H, Luo LS, Girimaji SS. Scalar mixing and chemical reaction simulations us-
ing lattice Boltzmann method. Int ] Comput Eng Sci 2002;3:73-87.

[25] Yamamoto K, Takada N, Misawa M. Combustion simulation with lattice Boltz-
mann method in a three-dimensional porous structure. Proc Comb Inst
2005;30:1509-15.

[26] Lee T, Lin C, Chen LD. A lattice Boltzmann algorithm for calculation of the
laminar jet diffusion flame. ] Comput Phys 2006;215:133-52.

[27] Chiavazzo E, Karlin IV, Gorban AN, Boulouchos K. Efficient simulations of de-
tailed combustion fields via the lattice Boltzmann method. Int ] Numer Meth-
ods Heat Fluid Flow 2011;21:494-517.

[28] Chen S, Mi J, Liu H, Zheng C. First and second thermodynamic-law analyses of
hydrogen-air counter-flow diffusion combustion in various combustion modes.
Int ] Hydrogen Energy 2012;37:5234-45.

[29] Succi S, Filippova O, Smith G, Kaxiras E. Applying the lattice Boltzmann equa-
tion to multiscale fluid problems. Comput Sci Eng 2001;3(6):26-37.

[30] Furtado K, Yeomans J. Lattice Boltzmann simulations of phase separation in
chemically reactive binary fluids. Phys Rev E 2006;73(6):066124.

[31] Ashna M, Rahimian MH, Fakhari A. Extended lattice Boltzmann scheme for
droplet combustion. Phys Rev E 2017;95(5):053301.

[32] Falcucci G, Succi S, Montessori A, Melchionna S, Prestininzi P, Barroo C,
et al. Mapping reactive flow patterns in monolithic nanoporous catalysts. Mi-
crofluid Nanofluid 2016;20(7):1-13.

[33] Falcucci G, Amati G, Krastev VK, Montessori A, Yablonsky GS, Succi S. Het-
erogeneous catalysis in pulsed-flow reactors with nanoporous gold hollow
spheres. Chem Eng Sci 2017;166:274-82.

[34] Scagliarini A, Biferale L, Mantovani F, Pivanti M, Pozzati F, Sbragaglia M,
et al. Front propagation in Rayleigh-Taylor systems with reaction. In: J Phys
Conf Ser, 318. IOP Publishing; 2011. p. 092024.

[35] Biferale L, Mantovani F, Sbragaglia M, Scagliarini A, Toschi F, Tripiccione R.
Reactive Rayleigh-Taylor systems: front propagation and non-stationarity. EPL
(Europhys Lett) 2011;94(5):54004.

[36] Chen F, Xu A, Zhang G, Li Y, Succi S. Multiple-relaxation-time lattice Boltz-
mann approach to compressible flows with flexible specific-heat ratio and
Prandtl number. EPL (Europhys Lett) 2010;90(5):54003.

[37] Chen F, Xu A, Zhang G. Viscosity, heat conductivity, and Prandtl number effects
in the rayleigh-taylor instability. Front Phys 2016;11(6):114703.

[38] Yan B, Xu A, Zhang G, Ying Y, Li H. Lattice Boltzmann model for combustion
and detonation. Front Phys 2013;8(1):94-110.

[39] Lin C, Xu A, Zhang G, Li Y. Polar coordinate lattice Boltzmann kinetic modeling
of detonation phenomena. Commun Theor Phys 2014;62(5):737.

[40] Lin C, Xu A, Zhang G, Li Y. Double-distribution-function discrete Boltzmann
model for combustion. Combust Flame 2016;164:137-51.

[41] Xu A, Lin C, Zhang G, Li Y. Multiple-relaxation-time lattice Boltzmann kinetic
model for combustion. Phys Rev E 2015;91(4):043306.

[42] Cochran SG, Chan ]. Shock initiation and detonation in one and two dimen-
sions. Lawrence Livermore National Laboratory Report; 1979. UCID-18024.

[43] Zhang Y, Xu A, Zhang G, Chen Z. Discrete Boltzmann method with maxwell-
type boundary condition for slip flow. Commun Theor Phys 2018;69(1):77-85.

[44] Zhang H, Zhuang F. NND schemes and their applications to numerical simula-
tion of two-and three-dimensional flows. Adv Appl Mech 1991;29:193-256.

[45] Watari M. Finite difference lattice Boltzmann method with arbitrary spe-
cific heat ratio applicable to supersonic flow simulations. Physica A
2007;382(2):502-22.

[46] Gan'Y, Xu A, Zhang G, Li Y. Lattice Boltzmann study on Kelvin-Helmholtz insta-
bility: roles of velocity and density gradients. Phys Rev E 2011;83(5):056704.


http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0003
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0003
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0005
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0005
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0011
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0011
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0011
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0018
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0018
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0022
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0022
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0022
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0022
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0023
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0023
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0023
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0024
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0024
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0024
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0024
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0025
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0025
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0025
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0025
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0028
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0028
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0028
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0028
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0028
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0029
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0029
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0029
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0029
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0029
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0030
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0030
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0030
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0031
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0031
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0031
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0031
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0037
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0037
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0037
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0037
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0042
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0042
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0042
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0043
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0043
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0043
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0043
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0043
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0044
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0044
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0044
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0045
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0045
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0046
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0046
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0046
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0046
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0046

	MRT discrete Boltzmann method for compressible exothermic reactive flows
	1 Introduction
	2 Discrete Boltzmann method
	3 Validation and verification
	3.1 Reaction in a free falling box
	3.2 Detonation wave
	3.3 Couette flow
	3.4 Shock reflection

	4 Conclusions
	 Acknowledgements
	 Appendix A
	 References


