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a b s t r a c t 

An efficient, accurate and robust multiple-relaxation-time (MRT) discrete Boltzmann method (DBM) is 

proposed for compressible exothermic reactive flows, with both specific heat ratio and Prandtl number 

being flexible. The chemical reaction is coupled with the flow field naturally and the external force is 

also incorporated. An efficient discrete velocity model which has sixteen discrete velocities (and kinetic 

moments) is introduced into the DBM. With both hydrodynamic and thermodynamic nonequilibrium ef- 

fects under consideration, the DBM provides more detailed and accurate information than traditional 

Navier–Stokes equations. This method is suitable for fluid flows ranging from subsonic, to supersonic and 

hypersonic ranges. It is validated by various benchmarks. 

© 2018 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Exothermic reactive flows are commonplace in nature and in-

dustry which play significant roles in economic and social devel-

opment all over the world. In fact, more than 80% utilizable en-

ergy is transformed through exothermic reactive phenomena in the

world [1] . On the other hand, they are associated with environ-

mental problems, accidents or even disasters. For example, atmo-

spheric pollution, global warming and climate change are closely

linked to harmful emissions from reactive flows. In particular, fire

hazards, which often induce explosion and shock, may cause huge

danger and damage to human life, property and environment. Al-

though considerable researches have been devoted to these fields,

there are still many open issues due to their complexity. To be spe-

cific, they have a wide span of physicochemical phenomena, in-

teract over various spatio-temporal scales, and involve various hy-

drodynamic and thermodynamic nonequilibrium behaviours [2–4] .

Especially, for a spacecraft flying from the earth surface to outer

space, where the chemical reaction and gravity exist, it covers a
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ide range of Knudsen numbers and various essential nonequi-

ibrium phenomena. To describe such complex systems, traditional

acroscopic models have the benefit of high computing efficiency,

ut could not capture detailed information accurately. While mi-

roscopic models have the merit of an accurate and full descrip-

ion, they encounter spatio-temporal constraints because of their

igh computing costs. 

At the mesoscopic level, the lattice Boltzmann method (LBM)

ay overcome aforementioned problems [5–16] . In the past three

ecades, the LBM has achieved significant success in the simula-

ion of complex systems, including reactive flows [17–35] . The tra-

itional LBM usually works as an alternative tool to solve macro-

copic equations, such as incompressible Navier–Stokes (NS) equa-

ions. Various physical quantities, such as flow velocity and tem-

erature, may be described by different sets of the discrete distri-

ution function. Recently, a novel variant of LBM, discrete Boltz-

ann method (DBM), has emerged as an efficient kinetic model

o capture both hydrodynamic and thermodynamic nonequilibrium

ffects in fluid flows [36,37] . Different from traditional LBMs, the

BM employs only one set of discrete distribution function to de-

cribe various physical quantities, including the density, tempera-

ure, velocity, and other high order kinetic moments, which is in

ine with the Boltzmann equation. 
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Fig. 1. Sketch of the discrete velocity model D2V16. 
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Since 2013, several Single-Relaxation-Time DBMs have been for-

ulated for exothermic reactive flows [38–40] . Yet, the Prandtl

umber in those proposed model is fixed at Pr = 1 . To overcome

his, a multiple-relaxation-time (MRT) DBM was presented [41] .

here are 24 independent kinetic moments satisfied by 24 discrete

quilibrium distribution functions in this work [41] . These kinetic

oments are necessary for the DBM to recover the reactive NS

quations in the hydrodynamic limit [41] . Besides, the effects of

xternal force are neglected in this model [41] . However, external

orces (such as gravity) often have essential influences upon reac-

ive flows. In the present work, we introduce a new form of re-

ction and force terms, and reduce the 24 kinetic moments (and

iscrete equilibrium distribution functions) to only 16 while the

ecovery of the NS equations is made as well. Besides its prac-

ical value as an efficient computational tool for the traditional

ynamics of complex systems, this model also provides details of

onequilibrium behaviours dynamically and conveniently. We de-

cribe the DBM in Section 2 , validate it in Section 3 , and finally

ummarize this work in Section 4 . 

. Discrete Boltzmann method 

The DBE takes the form, 

∂f 

∂t 
+ v · ∇f = −M 

−1 ˆ S 

(
ˆ f − ˆ f eq 

)
− A + F + R . (1)

ere f = ( f 1 f 2 · · · f N ) 
T 

and f eq = ( f 
eq 
1 

f 
eq 
2 

· · · f 
eq 
N 

) T denote dis-

rete distribution functions and their equilibrium counterparts, re-

pectively. ˆ f = ( ̂  f 1 ˆ f 2 · · · ˆ f N ) 
T 

and 

ˆ f eq = ( ̂  f 
eq 
1 

ˆ f 
eq 
2 

· · · ˆ f 
eq 
N 

) 
T 

repre- 

ent kinetic moments of discrete distribution function and their

quilibrium counterparts, respectively. M 

−1 is the inverse ma-

rix of M , and M is a square matrix, see Appendix A . ˆ S =
iag ( ̂  S 1 ˆ S 2 · · · ˆ S N ) is a diagonal matrix with element ˆ S i describing

he speed of ˆ f i approaching ˆ f 
eq 
i 

, with i = 1 , 2, ���, N and N = 16 . As

hown in Fig. 1 , the discrete velocities, v = diag( v 1 v 2 ��� v N ), take

he following form, 

 i = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

cyc : ( ±v a , 0 ) 1 ≤ i ≤ 4 , 

cyc : ( ±v a , ±v a ) 5 ≤ i ≤ 8 , 

cyc : ( ±v b , 0 ) 9 ≤ i ≤ 12 , 

cyc : ( ±v b , ±v b ) 13 ≤ i ≤ 16 , 

(2) 

ith tunable parameters v a and v b controlling the value of v i . 

The artificial term 

ˆ A = (0 · · · 0 ˆ A 8 
ˆ A 9 0 · · · 0) T is used to mod-

fy the collision operator � = −M 

−1 ˆ S ( ̂ f − ˆ f eq ) , in terms of 

ˆ 
 8 = ρT 

ˆ S 8 − ˆ S 5 
ˆ S 5 

[
4 u x 

(
D + I − 1 

D + I 

∂ u x 

∂x 
− 1 

D + I 

∂ u y 

∂y 

)

+ 2 u y 

(
∂ u y 

∂x 
+ 

∂ u x 

∂y 

)]
, (3) 
ˆ 
 9 = ρT 

ˆ S 9 − ˆ S 7 
ˆ S 7 

[
4 u y 

(
D + I − 1 

D + I 

∂ u y 

∂y 
− 1 

D + I 

∂ u x 

∂x 

)

+ 2 u x 

(
∂ u y 

∂x 
+ 

∂ u x 

∂y 

)]
. (4) 

he reason for this modification is as follows. Although the tunable

elaxation coefficients ˆ S i seem mathematically independent of each

ther, coupling may exist among the relaxation processes of vari-

us kinetic modes ( ̂  f ne 
i 

= 

ˆ f i − ˆ f 
eq 
i 

) from the physical point of view.

or the sake of correct description of macroscopic behaviours, we

hould perform the Chapman–Enskog expansion, analyze the con-

istency of nonequilibrium transportation terms in the recovered

ydrodynamic equations, and find a solution for the modification

o the collision term. In short, this modification is incorporated in

he DBM to recover the consistent NS equations in the hydrody-

amic limit, see Appendix A . The artificial term is the function of

he velocities ( u x , u y ) and the first-order partial derivatives of them

ith respect to x or y . These derivatives can be solved by vari-

us finite difference schemes. In this work, the central difference

cheme is adopted. For example, 

∂u x 

∂x 
= 

u x (i x + 1 , i y ) − u x (i x − 1 , i y ) 

2�x 
(5) 

t the node ( i x , i y ). Numerical tests demonstrate that the artificial

erm does not induce significant numerical problems. Furthermore,

he artificial term can be removed for the case ˆ S 5 = 

ˆ S 8 and 

ˆ S 7 = 

ˆ S 9 .

The force and reaction terms, F + R = (F 1 + R 1 F 2 + R 2 · · ·
 N + R N ) 

T , describe the variations of the distribution function due

o the external force and chemical reaction. Specifically, 

 i + R i = 

1 

τ

[
f eq 
i 

(
ρ, u + a τ, T + τT ′ 

)
− f eq 

i ( ρ, u , T ) 
]
. (6) 

athematically, the difference of the equilibrium distribution func-

ions over a small time interval is an approximation to the change

ate of distribution functions, based on the assumption f i ≈ f 
eq 
i 

.

he physical reason for Eq. (6) is as follows. It is regarded that

either external force nor chemical reaction changes the density ρ .

he external force affects the hydrodynamic velocity u with accel-

ration a . Consequently, the velocity changes from u into u + a τ
ithin a small time interval τ due to the external force. Mean-

hile, the temperature changes into T + τT ′ on account of the

hemical reaction. Specifically, the change rate of energy is 

 

′ = ρu · a + ρQλ′ , (7) 

ecause of the external force and chemical reaction. From

q. (7) and the definition E = 

D + I 
2 ρT + 

1 
2 ρu · u , we obtain the

hange rate of temperature 

 

′ = 

2 Qλ′ 
D + I 

, (8) 

here D = 2 stands for the number of dimensions, I the number

f extra degrees of freedom corresponding to molecular rotation

nd/or internal vibration. The reaction process λ is defined as the

ass ratio of the chemical product to mixture. The chemical reac-

ion is controlled by the Cochran’s rate function 

′ = ω 1 p 
m (1 − λ) + ω 2 p 

n λ(1 − λ) , (9)

hich depends upon the pressure, p = ρT , in terms of adjustable

arameters ω 1 , ω 2 , m and n [42] . Here λ is defined as the local

ass fraction of the reaction product. Without loss of generality,

e choose ( ω 1 , ω 2 , m, n ) = (2, 100, 2, 2.5), and employ the igni-

ion temperature T ig = 1 . 1 in this work. Only when T > T ig can the

hemical reaction take place. 
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Fig. 2. Initial configuration (a) and time evolution (b) of physical quantities in the 

process of chemical reaction in a free falling box. The squares stand for D2V16 re- 

sults, triangles for D2V24 results, and lines for exact solutions. 
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For the sake of recovering the NS equations, the discrete equi-

librium distribution function should satisfy the following relations

∑ 

f eq 
i 

= ρ, (10)

∑ 

f eq 
i 

v iα = ρu α, (11)

∑ 

f eq 
i 

(v 2 i + η2 
i ) = ρ[(D + I) T + u 

2 ] , (12)

∑ 

f eq 
i 

v iαv iβ = ρ(δαβT + u αu β ) , (13)

∑ 

f eq 
i 

(v 2 i + η2 
i ) v iα = ρu α[(D + I + 2) T + u 

2 ] , (14)

∑ 

f eq 
i 

v iαv iβv iχ= ρ(u αδβχ + u βδχα + u χδαβ ) T + ρu αu βu χ , (15)

∑ 

f eq 
i 

(v 2 i + η2 
i ) v iαv iβ = ρδαβ [(D + I + 2) T + u 

2 ] T 

+ ρu αu β [(D + I + 4) T + u 

2 ] , (16)

where η2 
i 

is employed to describe internal energies in extra de-

grees of freedom, with ηi = ηa for 5 ≤ i ≤ 8 and ηi = 0 for the oth-

ers. 

In fact, Eqs. (10) –(16) can be uniformly written as M × f 
eq = ̂

 f eq .

In Eqs. (10) –(12) , f 
eq 
i 

can be replaced by f i , from which we can

calculate physical quantities ( ρ , u , T ). Whereas replacing f 
eq 
i 

with

f i results in the imbalance between the left and right sides of

Eqs. (13) –(16) . These differences are just departures of high order

kinetic moments of the distribution function from their equilib-

rium counterparts, i.e., ˆ f ne 
i 

= 

ˆ f i − ˆ f 
eq 
i 

. The departures can be uti-

lized to probe the nonequilibrium states from various points of

view. Note that ˆ f ne 
i 

= 0 for 1 ≤ i ≤ 4 due to the conservation laws,

hence the parameters ˆ S 1 , ˆ S 2 , ˆ S 3 and 

ˆ S 4 do not play any role.

While ˆ f ne 
i 

may be nonzero for i ≥ 5 in nonequilibrium state. To

be specific, ˆ f ne 
5 

( ̂  f ne 
7 

) is the departure of energy in the x ( y ) di-

rection from its equilibrium state; ˆ f ne 
5 

, ˆ f ne 
6 

, and 

ˆ f ne 
7 

are linked

with the viscous stress tensor; ˆ f ne 
8 

, ˆ f ne 
9 

, ˆ f ne 
10 

, ˆ f ne 
11 

, ˆ f ne 
12 

, and 

ˆ f ne 
13 

refer to the departures of energy fluxes from their equilibrium

counterparts; ˆ f ne 
14 

, ˆ f ne 
15 

, and 

ˆ f ne 
16 

are related to fluxes of energy

flux from their equilibrium counterparts. The nonequilibrium ef-

fect ˆ f ne 
i 

, multiplied by its amplification factor ˆ S i , plays an essen-

tial role in the evolution of fluid systems. It is clear that ˆ f ne 
i 

in

Eq. (A.1) has a strong effect with large ˆ S i . Actually, those depar-

tures are calculated conveniently in each iteration of the com-

puting process. Moreover, the dynamic viscosity μ, thermal con-

ductivity κ , and Prandtl number Pr are functions of ˆ S i . Specif-

ically, μ = ρT / ̂  S μ, κ = ( D + I + 2 ) ρT / (2 ̂  S κ ) , and Pr = 

ˆ S κ/ ̂  S μ, for

ˆ S μ = 

ˆ S 5 = 

ˆ S 6 = 

ˆ S 7 and 

ˆ S κ = 

ˆ S 8 = 

ˆ S 9 , see Appendix A . In contrast, all

the amplification factors are identical in the SRT model, i.e., Pr = 1 ,

which is only a special case of the MRT model. 

It can be found that discrete Boltzmann equation is in a simple

form and its algorithm is easy to code. In contrast, the NS equa-

tions depend upon both the first-order and second-order partial

derivatives of velocities ( u x , u y ) with respect to x or y , which are

nonlinear terms relatively difficult to be treated with [40] . More-

over, it often needs to solve the Poisson equation based on global

data transfer in NS method, while all spatio-temporal information

communication is local in DBM that is suitable for massively par-

allel computing. In addition, the DBM provides an efficient tool to

study detailed nonequilibrium effects and/or rarefied effects of gas

flows beyond NS equations by capturing the departures of kinetic

moments from their equilibrium counterparts [40,43] . Finally, it is
asy to have a proper kinetic boundary condition for DBM to de-

cribe the velocity slip and the flow characteristics in the Knudsen

ayer that cannot be well described by traditional hydrodynamic

odels [43] . 

. Validation and verification 

For validation and verification purposes, four benchmark tests

re performed. (i) The chemical reaction in a free falling box is

imulated to verify the effects of external force and chemical re-

ction. (ii) The simulation of a detonation wave is carried out to

emonstrate the DBM in the case with violent chemical heat re-

ease. Additionally, we assess the spatial and temporal convergence

f the numerical results. (iii) To verify the DBM for adjustable spe-

ific heat ratios and Prandtl numbers, we simulate Couette flow.

oreover, it is demonstrated that the nonequilibrium information

rovided by the DBM coincides with its analytical solution. (iv)

inally, a typical two-dimensional benchmark, shock reflection, is

imulated successfully. Besides, it is demonstrated in the first two

ests that the discrete velocity model D2V16 has higher efficiency

nd better robustness than D2V24 [41] . Note that the second or-

er Runge–Kutta scheme is adopted for the time derivative, while

he second order nonoscillatory and nonfree-parameter dissipation

ifference scheme [44] is employed for the space derivative in

q. (1) . It is preferable to set �t ≤ 1 / Max ( ̂  S i ) due to the explicit

cheme for the time derivative, where Max ( ̂  S i ) denotes the maxi-

um among ˆ S i . The relation between the time step �t and space

tep �x = �y should satisfy convergence conditions. Additionally,

ariables and parameters used in this paper are expressed in non-

imensional forms, i.e., the widely accepted LB units [45,46] . 

.1. Reaction in a free falling box 

First of all, we simulate the exothermic chemical reaction in

 free falling box, see Fig. 2 (a). Initially, the box is evenly filled

ith premixed chemical reaction with released heat Q = 1 . 0 , den-

ity ρ = 1 . 0 , temperature T = 2 . 0 , velocity u = 0 , and acceleration

 = (0 , 140) . The reaction is ignited uniformly, hence we adopt

nly one mesh grid, i.e., N x = N y = 1 , and the space step �x =
y = 10 −5 , time step �t = 10 −6 . In addition, the specular reflec-

ion boundary conditions are imposed. There are two purposes of

his simulation. One is to validate the simulation results in the

ase with both the external force and chemical reaction taken into

ccount. The other is to compare D2V16 with D2V24 constructed

n Ref. [41] . The parameters (v a , v b , ηa ) = (1 . 7 , 3 . 7 , 3 . 3) is adopted

or D2V16, and (v a , v b , v c , ηa , ηb , ηc ) = (1 . 2 , 1 . 9 , 2 . 7 , 3 . 5 , 0 . 1 , 2 . 0) is

hosen for D2V24. For both D2V16 and D2V24 models, the collision

arameters are ˆ S i = 10 5 except ˆ S 5 = 

ˆ S 6 = 

ˆ S 7 = 2 × 10 4 . Correspond-

ngly, the Prandtl number Pr = 

ˆ S κ/ ̂  S μ = 5 , with 

ˆ S μ = 

ˆ S 5 = 

ˆ S 6 = 

ˆ S 7 ,

nd 

ˆ S κ = 

ˆ S 8 = 

ˆ S 9 . The specific heat ratio is γ = (I + 4) / (I + 2) =
 . 4 . 
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Fig. 3. Sketch of the initial configuration for detonation. 

Fig. 4. Pressure profiles in the evolution of the detonation wave at times, t 1 = 0 . 25 , 

t 2 = 0 . 30 , t 3 = 0 . 35 , and t 4 = 0 . 40 , respectively. 
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Fig. 2 (b) displays the evolution of physical quantities ( ρ , u y ,

 ), where E is the sum of internal energy and chemical heat. The

quares are for D2V16 results, triangles for D2V24 results, and lines

or exact solutions. In the process of chemical reaction in the free

alling box, the chemical reactant changes into the product and the

hemical heat is released, with the conservation of total mass, mo-

entum and energy. Obviously, both D2V16 and D2V24 provide

umerical results ρ = 1 . 0 and E = 6 . 0 , which equal the exact so-

utions precisely. And the flow velocity simulated by either D2V16

r D2V24 coincides the exact u = g t . Consequently, both D2V16

nd D2V24 are satisfactory. Moreover, on a personal computer, the

omputing time is 1.3 s for D2V16, and 2.4 s for D2V24. Clearly,

2V16 requires less RAM and shorter computing time than D2V24.

.2. Detonation wave 

In order to test the present DBM under the condition with vio-

et chemical heat release, we target the detonation wave. The ini-
ig. 5. Profiles of the detonation wave: (a) density ρ , (b) velocity u x , (c) temperature T

espectively 
ial configuration is 

(ρ, T , u x , u y , λ) L = (1 . 38837 , 1 . 57856 , 0 . 57735 , 0 , 1) 

(ρ, T , u x , u y , λ) R = (1 , 1 , 0 , 0 , 0) 
(17) 

here the suffix L indexes the left part, 0 ≤ x ≤ 0.05, and R the

ight part 0.05 < x ≤ 1, see Fig. 3 . The inflow or outflow con-

ition is adopted in the x direction, the period condition is

mployed in the y direction. The parameters are I = 3 , Q = 1 ,

(v a , v b , ηa ) = (1 . 7 , 3 . 7 , 3 . 3) , �t = 10 −5 , �x = �y = 10 −4 , and N x ×
 y = 10 , 0 0 0 × 1 . The collision parameters are ˆ S i = 10 5 except ˆ S μ

i.e., ˆ S 5 , ˆ S 6 , ˆ S 7 ) = 2 × 10 4 . 

The detonation wave travels from left to right with speed v s .

he chemical reactant is in front of the detonation wave with

= 0 , and it changes into the product after the wave with λ =
 . Fig. 4 illustrates the propagation of pressure at time instants,

 1 = 0 . 25 , t 2 = 0 . 30 , t 3 = 0 . 35 , and t 4 = 0 . 40 , respectively. It can

e obtained in Fig. 4 that the speed of the detonation wave is

 s = 2 . 062 . Compared with the theoretical value v s = 2 . 06395 , the

rror is only 0.09%, which is satisfactory. 

The physical quantities ( ρ , u x , T, p ) firstly increase in the com-

ression zone, then reduce in the rarefaction zone, and finally level

ff after the detonation wave. Their profiles at time t 4 = 0 . 40 are

lotted in Fig. 5 (a)–(d). Squares are for numerical results and lines

re for Zeldovich–Neumann–Doering (ZND) solutions [2] . Simula-

ion results behind the detonation wave are ( ρ , u x , T, p ) = (1.38907,

.577593, 1.57737, 2.19109). Compared with the analytical solutions

 ρ , u x , T, p ) = (1.38837, 0.57735, 1.57856, 2.19162), the relative dif-

erences are (0.05%, 0.04%, 0.08%, 0.02%), respectively. Obviously,

he numerical and analytical results coincide well in Fig. 5 . The tiny

ifferences between them are due to the fact that the ZND theory

gnores the viscosity and heat conduction, and the von Neumann

eak is assumed as a strong discontinuity which is not a truth.

he DBM considers the viscosity, heat conduction as well as other

onequilibrium effects. Note that, with the decrease of collision pa-

ameters, the nonequilibrium effects are enhanced, and the differ-

nces between the DBM and analytical solutions become large [41] .

To compare the numerical robustness of D2V16 and D2V24

41] , the aforementioned detonation wave is simulated by us-

ng the D2V24 as well. The parameters are (v a , v b , v c , ηa , ηb , ηc ) =
(3 . 5 , 4 . 0 , 5 . 0 , 4 . 0 , 0 . 0 , 3 . 0) for D2V24. The other parameters are the

ame as those for D2V16. Fig. 6 exhibits the pressure profile at

ime t = 0 . 028 . The solid (dotted) line stands for D2V16 (D2V24).
 , and (d) pressure p . Squares and lines refer to numerical and analytical results, 
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Fig. 6. Comparison between simulation results of D2V16 and D2V24. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Sketch of the initial configuration for Couette flow. 
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Obviously, D2V16 gives a smooth profile around the detonation

front, while D2V24 gives an oscillating profile. This nonphysical os-

cillation is soon amplified and results in the stop of the simulation

program. Moreover, further tests demonstrate that D2V16 is capa-

ble of simulating the detonation wave for Mach number Ma > 100.

However, it is difficult and even impossible to use D2V24 to simu-

late such high-Mach systems. 

Next, let us assess the spatial and temporal convergence of the

DBM results. The spatial convergence is proved considering several

values of the space step, �x = �y = 5 × 10 −6 , 1 × 10 −5 , 2 × 10 −5 ,

4 × 10 −5 , 8 × 10 −5 , 1 . 6 × 10 −4 , with fixed time step �t = 1 × 10 −6 .

The relative difference of the minimum value of ˆ f ne 
5 

around the

detonation wave is chosen as the numerical error. Fig. 7 (a) illus-

trates the numerical error versus space step. The squares stand for

the DBM results and the line for the fitting function, ln ( error ) =
k ln (�x ) + 10 . 2446 , with the slope k = 2 . 16164 . It is near the exact

value k = 2 since the space derivative is solved at the second order

level. 

In a similar way, the temporal convergence is demonstrated

considering several values of the time step, �t = 5 × 10 −7 , 1 ×
10 −6 , 2 × 10 −6 , 4 × 10 −6 , 8 × 10 −6 , 1 . 6 × 10 −5 , with fixed space

step �x = �y = 1 . 6 × 10 −4 . Fig. 7 (a) illustrates the numerical

error versus time step. The fitting function takes the form,

ln ( error ) = k ln (�t) + 15 . 6137 with k = 2 . 06822 . The slope is close

to the exact one k = 2 because the second order scheme is used

for the time derivative. 

3.3. Couette flow 

To verify the DBM for various values of the specific heat ratio γ
and Prandtl number Pr , we simulate Couette flow. The velocities of

the upper and lower walls are u = u 0 e x and 0, respectively. Here e x 
is the unit vector in the x direction, and u 0 = 0 . 1 . The distance be-

tween the two walls is H = 0 . 2 . The initial flow field is set as ( ρ , u ,

T ) = (1, 0, 1). The viscous shear stress transmits momentum into

the fluid and changes the flow velocity distribution, see Fig. 10 .
Fig. 7. Numerical errors versus space (a) and time steps (b). The square
hen the field reaches steady, the temperature is different for var-

ous γ or Pr , see Fig. 9 . The space step is �x = �y = 10 −3 , the

ime step �t = 5 × 10 −5 , and the parameters ( v a , v b , ηa ) = (1.1, 1.7,

.3). Periodic boundary conditions are employed for the left and

ight boundaries, and the nonequilibrium extrapolation method is

pplied to the top and bottom boundaries. The sketch of the initial

onfiguration for Couette flow is shown in Fig. 8 . 

Fig. 9 illustrates the temperature T versus y when the Couette

ow reaches equilibrium. Fig. 9 (a) shows the cases with γ = 1 . 3 ,

.5, 1.8, and fixed Pr = 1 . 0 ; Fig. 9 (b) shows the cases with Pr = 0 . 5 ,

.0, 2.0, and fixed γ = 1 . 5 . The collision parameter ˆ S μ is 2 × 10 3 for

r = 0 . 5 , 1 × 10 3 for Pr = 1 . 0 , and 5 × 10 2 for Pr = 2 . 0 , the other

ollision parameters ˆ S i are 1 × 10 3 . The symbols represent DBM re-

ults, the lines denote the corresponding analytical solutions, 

 = T 1 + (T 2 − T 1 ) 
x 

H 

+ 

μ

2 κ
u 

2 
0 

x 

H 

(
1 − x 

H 

)
, (18)

here T 1 (= 1 . 0 ) and T 2 (= 1 . 0 ) are temperatures of the lower and

pper walls, respectively. Obviously, the numerical results agree

ell with the analytical solutions. Fig. 10 exhibits the horizontal

elocity u x (a) and nonequilibrium quantity ˆ f ne 
6 

(b) versus y in the

ase with γ = 1 . 5 and Pr = 0 . 5 . The squares, circles, triangles, and

iamonds stand for DBM results at times t 1 = 0 . 05 , t 2 = 1 , t 3 = 5 ,

nd t 4 = 30 , respectively. In panel (a), the lines are for the analyt-

cal solutions, 

 = 

y 

H 

u 0 + 

2 

π
u 0 

∞ ∑ 

n =1 

[
(−1) n 

n 

exp 

(
−n 

2 π2 μt 

ρH 

2 

)
sin 

(
nπy 

H 

)]
. (19)

learly, the numerical and analytical results coincide well with

ach other. Hence, the DBM has the capability of capturing the

ow field in the dynamic process of the Couette Flow. In panel (b),

he lines stand for the analytical solutions 

ˆ f ne 
6 = −μ

(
∂ u x 

∂y 
+ 

∂ u y 

∂x 

)
. (20)

t can be found that the DBM results are in good agreement with

he analytical values. That is to say, the DBM could describe the

onequilibrium behaviours accurately. 
s stand for the DBM results and the line for the fitting function. 
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Fig. 9. Temperature distribution of steady Couette flow: (a) γ = 1 . 3 (squares), 1.5 (circles), 1.8 (triangles), and fixed Pr = 1 . 0 , (b) Pr = 0 . 5 (squares), 1.0 (circles), 2.0 (triangles), 

and fixed γ = 1 . 5 . The symbols indicate DBM results and the lines denote analytical solutions. 

Fig. 10. Distribution of u x (a) and ˆ f ne 
6 (b) along y in the evolution of Couette flow at various times: t 1 = 0 . 05 (squares), t 2 = 1 (circles), t 3 = 5 (triangles), and t 4 = 30 

(diamonds), respectively. The symbols stand for numerical results, the lines for analytical solutions. 

Fig. 11. Density contour of steady regular shock reflection on a wall. 
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.4. Shock reflection 

For the purpose of verifying the model for two dimensional sys-

ems, we use a typical benchmark: regular shock reflection. The

omputational domain is a rectangle. The reflecting surface is im-

osed on the bottom, the supersonic outflow is adopted for the

ight boundary, and the Dirichlet conditions are utilized on the top

nd left boundaries, i.e., 

(ρ, T , u x , u y ) 0 ,y,t = (1 , 0 . 5 , 2 , 0) 
(ρ, T , u x , u y ) x, 0 . 1 ,t = (1 . 25 , 0 . 56 , 1 . 9 , −0 . 173205) 

(21) 

he interesting readers refer to Ref. [41] for more details of the ini-

ial configuration. The parameters are N x × N y = 300 × 100 , �x =
y = 10 −3 , �t = 5 × 10 −6 , I = 2 , ( v a , v b , ηa ) = (1.7, 2.9, 3.0). The

ollision parameters are ˆ S μ = 1 . 8 × 10 5 , and 2 × 10 5 for the others.

ig. 11 exhibits the density contour of the steady regular shock re-

ection. Theoretically, the angle between the incident shock wave

nd the wall is φ = π/ 6 while the DBM gives the angle φ =
rcTan (0 . 1 / 0 . 173) . The relative difference between them is only

.1%, which is satisfying. 

. Conclusions 

We present an MRT DBM for compressible flows, taking both

hemical reaction and external force into account. The specific

eat ratio as well as the Prandtl number are flexible. This model

ecovers the reactive NS equations in the hydrodynamic limit.
eanwhile, thermodynamic nonequilibrium effects are dynami- 

ally taken into account through considering the departures of ki-

etic moments from their equilibrium counterparts. In fact, the

onequilibrium effects together with their relaxation parameters

lay a crucial role in fluid systems. 

Compared with a previous MRT DBM where 24 discrete veloc-

ties (and kinetic moments) are employed to couple the chemical

eaction with fluid flows [41] , our model requires only 16 discrete

elocities (and kinetic moments) and thus less computing efforts.

ompared to another MRT DBM with the incorporation of only a

onventional force term [37] , our model introduces a new form for

oth force and reaction terms, which are physically more general.

n this paper, we also demonstrate that the present model provides

igh computational efficiency, physical fidelity, and numerical ro-

ustness 
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ppendix A 

The elements of matrix f eq take the form 

ˆ f 
eq 
1 

= ρ,

ˆ f 
eq 
2 

= ρu x , ˆ f 
eq 
3 

= ρu y , ˆ f 
eq 
4 

= ρ[(D + I) T + u 2 ] , ˆ f 
eq 
5 

= ρ(T + u 2 x ) ,

ˆ f 
eq 
6 

= ρu x u y , ˆ f 
eq 
7 

= ρ(T + u 2 y ) , 
ˆ f 
eq 
8 

= ρu x [(D + I + 2) T + u 2 ] , ˆ f 
eq 
9 

=
u y [(D + I + 2) T + u 2 ] , ˆ f 

eq 
10 

= 3 ρu x T + ρu 3 x , 
ˆ f 
eq 
11 

= ρu y T + ρu 2 x u y ,

ˆ f 
eq 
12 

= ρu x T + ρu x u 
2 
y , 

ˆ f 
eq 
13 

= 3 ρu y T + ρu 3 y , 
ˆ f 
eq 
14 

= ρ[(D + I + 2) T +
 

2 ] + ρu 2 x [(D + I + 4) T + u 2 ] , ˆ f 
eq 
15 

= ρu x u y [(D + I + 4) T + u 2 ] ,

ˆ f 
eq 
16 

= ρ[(D + I + 2) T + u 2 ] + ρu 2 y [(D + I + 4) T + u 2 ] . The elements

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100002858
https://doi.org/10.13039/501100004147
https://doi.org/10.13039/501100000266
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of matrix M read M 1 i = 1 , M 2 i = v ix , M 3 i = v iy , M 4 i = v 2 
i 

+ η2 
i 
,

M 5 i = v 2 
ix 
, M 6 i = v ix v iy , M 7 i = v 2 

iy 
, M 8 i = (v 2 

i 
+ η2 

i 
) v ix , M 9 i =

(v 2 
i 

+ η2 
i 
) v iy , M 10 i = v 3 

ix 
, M 11 i = v 2 

ix 
v iy , M 12 i = v ix v 2 iy 

, M 13 i = v 3 
iy 

,

M 14 i = (v 2 
i 

+ η2 
i 
) v 2 

ix 
, M 15 i = (v 2 

i 
+ η2 

i 
) v ix v iy , M 16 i = (v 2 

i 
+ η2 

i 
) v 2 

iy 
. 

Let us introduce quantities ˆ E = Mv M 

−1 , ˆ f = Mf , ˆ A = MA , ˆ F =
MF , ˆ R = MR . Then the first nine elements of ˆ F and 

ˆ R are obtained,

i.e., ˆ F 1 = 0 , ˆ F 2 = ρa x , ˆ F 3 = ρa y , ˆ F 4 = 2 ρu x a x + 2 ρu y a y , ˆ F 5 = 2 ρu x a x ,
ˆ F 6 = ρu x a y + ρu y a x , ˆ F 7 = 2 ρu y a y , ˆ F 8 = 2 ρu x 

(
u x a x + u y a y 

)
+ ρa x u 

2 +
ρa x ( D + I + 2 ) T , ˆ F 9 = 2 ρu y 

(
u x a x + u y a y 

)
+ ρa y u 

2 + ρa y ( D + I + 2 ) T ,

ˆ R 1 = 0 , ˆ R 2 = 0 , ˆ R 3 = 0 , ˆ R 4 = 2 ρλ′ Q, ˆ R 5 = ρ 2 λ′ Q 
D + I , ˆ R 6 = 0 , ˆ R 7 =

ρ 2 λ′ Q 
D + I , ˆ R 8 = ( D + I + 2 ) ρu x 

2 λ′ Q 
D + I , ˆ R 9 = ( D + I + 2 ) ρu y 

2 λ′ Q 
D + I , which

are necessary in the following Chapman-Enskog analysis. 

Multiplying Eq. (1) by M leads to 

∂ ̂  f 

∂t 
+ ∇ ·

(
ˆ E ̂

 f 

)
= −ˆ S 

(
ˆ f − ˆ f eq 

)
− ˆ A + ̂

 F + 

ˆ R , (A.1)

Substituting the variables’ expansion, ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

ˆ f i = 

ˆ f (0) 
i 

+ 

ˆ f (1) 
i 

+ 

ˆ f (2) 
i 

+ · · ·
∂ 

∂t 
= 

∂ 

∂ t 1 
+ 

∂ 

∂ t 2 
+ · · ·

∇ = ∇ 1 ⇔ 

∂ 

∂ r α
= 

∂ 

∂ r 1 α
ˆ A i = 

ˆ A 1 i , ˆ F i = 

ˆ F 1 i , ˆ R i = 

ˆ R 1 i , 

(A.2)

into Eq. (A.1) gives 

 f ( 0 ) = ̂

 f eq , (A.3)

(
∂ 

∂ t 1 
+ ̂

 E · ∇ 1 

)
ˆ f ( 0 ) = −ˆ S ̂ f ( 1 ) − ˆ A + ̂

 F + 

ˆ R , (A.4)

∂ 

∂ t 2 
ˆ f ( 0 ) + 

(
∂ 

∂ t 1 
+ + ̂

 E · ∇ 1 

)
ˆ f ( 1 ) = −ˆ S ̂ f ( 2 ) , (A.5)

with f (k ) 
i 

= O(ε k ) , ∂ /∂ t k = O(ε k ) , ∂ /∂ r 1 α = O(ε) , A 1 i = O(ε) , F 1 i =
O(ε) , R 1 i = O(ε) , l = 1 , 2, ���, and r α = x, y . Here ε corresponds to

the Knudsen number. 

From Eqs. (A.3) to (A.4) , we obtain 

∂ ˆ f eq 
1 

∂ t 1 
+ 

∂ ˆ f eq 
2 

∂ x 1 
+ 

∂ ˆ f eq 
3 

∂ y 1 
= − ˆ S 1 ̂  f ( 

1 ) 
1 

+ 

ˆ F 1 + 

ˆ R 1 , (A.6)

∂ ˆ f eq 
2 

∂ t 1 
+ 

∂ ˆ f eq 
5 

∂ x 1 
+ 

∂ ˆ f eq 
6 

∂ y 1 
= − ˆ S 2 ̂  f ( 

1 ) 
2 

+ 

ˆ F 2 + 

ˆ R 2 , (A.7)

∂ ˆ f eq 
3 

∂ t 1 
+ 

∂ ˆ f eq 
6 

∂ x 1 
+ 

∂ ˆ f eq 
7 

∂ y 1 
= − ˆ S 3 ̂  f ( 

1 ) 
3 

+ 

ˆ F 3 + 

ˆ R 3 , (A.8)

∂ ˆ f eq 
4 

∂ t 1 
+ 

∂ ˆ f eq 
8 

∂ x 1 
+ 

∂ ˆ f eq 
9 

∂ y 1 
= − ˆ S 4 ̂  f ( 

1 ) 
4 

+ 

ˆ F 4 + 

ˆ R 4 , (A.9)

∂ ˆ f eq 
5 

∂ t 1 
+ 

∂ ˆ f eq 
10 

∂ x 1 
+ 

∂ ˆ f eq 
11 

∂ y 1 
= − ˆ S 5 ̂  f ( 

1 ) 
5 

+ 

ˆ F 5 + 

ˆ R 5 , (A.10)

∂ ˆ f eq 
6 

∂ t 1 
+ 

∂ ˆ f eq 
11 

∂ x 1 
+ 

∂ ˆ f eq 
12 

∂ y 1 
= − ˆ S 6 ̂  f ( 

1 ) 
6 

+ 

ˆ F 6 + 

ˆ R 6 , (A.11)

∂ ˆ f eq 
7 

∂ t 1 
+ 

∂ ˆ f eq 
12 

∂ x 1 
+ 

∂ ˆ f eq 
13 

∂ y 1 
= − ˆ S 7 ̂  f ( 

1 ) 
7 

+ 

ˆ F 7 + 

ˆ R 7 , (A.12)

∂ ˆ f eq 
8 

∂ t 1 
+ 

∂ ˆ f eq 
14 

∂ x 1 
+ 

∂ ˆ f eq 
15 

∂ y 1 
= − ˆ S 8 ̂  f ( 

1 ) 
8 

− ˆ A 8 + 

ˆ F 8 + 

ˆ R 8 , (A.13)
∂ ˆ f eq 
9 

∂ t 1 
+ 

∂ ˆ f eq 
15 

∂ x 1 
+ 

∂ ˆ f eq 
16 

∂ y 1 
= − ˆ S 9 ̂  f ( 

1 ) 
9 

− ˆ A 9 + 

ˆ F 9 + 

ˆ R 9 . (A.14)

rom Eqs. (A.3) to (A.5) , we get 

∂ ˆ f eq 
1 

∂ t 2 
+ 

∂ ˆ f ( 
1 ) 

1 

∂ t 1 
+ 

∂ ˆ f ( 
1 ) 

2 

∂ x 1 
+ 

∂ ˆ f ( 
1 ) 

3 

∂ y 1 
= − ˆ S 1 ̂  f ( 

2 ) 
1 

, (A.15)

∂ ˆ f eq 
2 

∂ t 2 
+ 

∂ ˆ f ( 
1 ) 

2 

∂ t 1 
+ 

∂ ˆ f ( 
1 ) 

5 

∂ x 1 
+ 

∂ ˆ f ( 
1 ) 

6 

∂ y 1 
= − ˆ S 2 ̂  f ( 

2 ) 
2 

, (A.16)

∂ ˆ f eq 
3 

∂ t 2 
+ 

∂ ˆ f ( 
1 ) 

3 

∂ t 1 
+ 

∂ ˆ f ( 
1 ) 

6 

∂ x 1 
+ 

∂ ˆ f ( 
1 ) 

7 

∂ y 1 
= − ˆ S 3 ̂  f ( 

2 ) 
3 

, (A.17)

∂ ˆ f eq 
4 

∂ t 2 
+ 

∂ ˆ f ( 
1 ) 

4 

∂ t 1 
+ 

∂ ˆ f ( 
1 ) 

8 

∂ x 1 
+ 

∂ ˆ f ( 
1 ) 

9 

∂ y 1 
= − ˆ S 4 ̂  f ( 

2 ) 
4 

. (A.18)

dding Eqs. (A .6) –(A .9) and (A .15) –(A .18) results in the following

quations, 

∂ ˆ f eq 
1 

∂t 
+ 

∂ ˆ f eq 
2 

∂x 
+ 

∂ ˆ f eq 
3 

∂y 
= 

ˆ F 1 + 

ˆ R 1 , (A.19)

∂ ˆ f eq 
2 

∂t 
+ 

∂ 

∂x 

(
ˆ f eq 
5 

+ 

ˆ f ( 
1 ) 

5 

)
+ 

∂ 

∂y 

(
ˆ f eq 
6 

+ 

ˆ f ( 
1 ) 

6 

)
= 

ˆ F 2 + 

ˆ R 2 , (A.20)

∂ ˆ f eq 
3 

∂t 
+ 

∂ 

∂x 

(
ˆ f eq 
6 

+ 

ˆ f ( 
1 ) 

6 

)
+ 

∂ 

∂y 

(
ˆ f eq 
7 

+ 

ˆ f ( 
1 ) 

7 

)
= 

ˆ F 3 + 

ˆ R 3 , (A.21)

∂ ˆ f eq 
4 

∂t 
+ 

∂ 

∂x 

(
ˆ f eq 
8 

+ 

ˆ f ( 
1 ) 

8 

)
+ 

∂ 

∂y 

(
ˆ f eq 
9 

+ 

ˆ f ( 
1 ) 

9 

)
= 

ˆ F 4 + 

ˆ R 4 . (A.22)

sing the expressions of ˆ f 
eq 
i 

, ˆ F 
eq 

i 
, ˆ R 

eq 
i 

, and Eqs. (A .10) –(A .14) , we

btain the NS equations, 

∂ρ

∂t 
+ 

∂ j α
∂ r α

= 0 , (A.23)

∂ j α
∂t 

+ 

∂ p 

∂ r α
+ 

∂ 

∂ r β

(
ρu αu β + P αβ

)
= ρa α, (A.24)

∂ξ

∂t 
+ 

∂ ( ξ + 2 p ) u α

∂ r α
− 2 

∂ 

∂ r β

[
κβ

∂T 

∂ r β
−P αβu α

]
= 2 ρu αa α + 2 ρλ′ Q , 

(A.25)

here j α = ρu α is the momentum in α direction, and ξ = (D +
) ρT + ρu 2 is twice the total energy, with 

 xx = −ρT 

ˆ S 5 

(
2 

∂ u x 

∂x 
− 2 

D + I 

∂ u x 

∂x 
− 2 

D + I 

∂ u y 

∂y 

)
= 

ˆ f ( 
1 ) 

5 
, (A.26)

 xy = P yx = −ρT 

ˆ S 6 

(
∂ u x 

∂y 
+ 

∂ u y 

∂x 

)
= 

ˆ f ( 
1 ) 

6 
, (A.27)

 yy = −ρT 

ˆ S 7 

(
2 

∂ u y 

∂y 
− 2 

D + I 

∂ u x 

∂x 
− 2 

D + I 

∂ u y 

∂y 

)
= 

ˆ f ( 
1 ) 

7 
, (A.28)

x = 

(
D + I 

2 

+ 1 

)
ρT 

ˆ S 8 
, (A.29)

y = 

(
D + I 

2 

+ 1 

)
ρT 

ˆ S 9 
, (A.30)

hich reduce to 

 αβ = −μ

(
∂ u α

∂ r β
+ 

∂ u β

∂ r α
− 2 

3 

∂ u χ

∂ r χ
δαβ

)
− μB 

∂ u χ

∂ r χ
δαβ, (A.31)
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[  
= 

(
D + I 

2 

+ 1 

)
ρT 

ˆ S κ
, (A.32) 

or ˆ S 5 = 

ˆ S 6 = 

ˆ S 7 = 

ˆ S μ and 

ˆ S 8 = 

ˆ S 9 = 

ˆ S κ , where μ = ρT / ̂  S μ is the

ynamic viscosity, κ = ( D + I + 2 ) ρT / (2 ̂  S κ ) is the thermal conduc-

ivity. With the definitions of specific heat at constant pressure

 p = (D + I + 2) / 2 and specific heat at constant volume c v = (D +
) / 2 , we obtain the flexible specific heat ratio γ = c p /c v = (D + I +
) / (D + I) and Prandtl number Pr = c p μ/κ = 

ˆ S κ/ ̂  S μ. 

eferences 

[1] Chu S , Majumdar A . Opportunities and challenges for a sustainable energy fu-

ture. Nature 2012;488:294–303 . 
[2] Law CK . Combustion physics. Cambridge University Press, Cambridge; 2006 . 

[3] Ju Y . Recent progress and challenges in fundamental combustion research. Adv
Mech 2014;44:1–72 . 

[4] Nagnibeda E , Kustova E . Non-equilibrium reacting gas flows: kinetic theory of

transport and relaxation processes. Springer, Berlin; 2009 . 
[5] Succi S . The lattice Boltzmann equation for fluid dynamics and beyond. New

York: Oxford University Press; 2001 . 
[6] Higuera FJ , Succi S , Benzi R . Lattice gas dynamics with enhanced collisions. EPL

(Europhys Lett) 1989;9(4):345 . 
[7] Montessori A , Prestininzi P , La Rocca M , Falcucci G , Succi S . Lattice kinetic

approach to non-equilibrium flows. In: AIP conference proceedings, 1738. AIP

Publishing; 2016. p. 090 0 05 . 
[8] Zhang Y , Qin R , Emerson DR . Lattice Boltzmann simulation of rarefied gas

flows in microchannels. Phys Rev E 2005;71(4):047702 . 
[9] Tang GH , Zhang YH , Emerson DR . Lattice Boltzmann models for nonequilib-

rium gas flows. Phys Rev E 2008;77(4):046701 . 
[10] Meng J , Zhang Y , Shan X . Multiscale lattice Boltzmann approach to modeling

gas flows. Phys Rev E 2011;83(4):046701 . 

[11] He X , Luo L-S . Lattice Boltzmann model for the incompressible Navier–Stokes
equation. J Stat Phys 1997;88(3):927–44 . 

[12] Benzi R , Sbragaglia M , Succi S , Bernaschi M , Chibbaro S . Mesoscopic lattice
Boltzmann modeling of soft-glassy systems: theory and simulations. J Chem

Phys 2009;131(10):104903 . 
[13] Li Q , Luo KH , Kang Q , He Y , Chen Q , Liu Q . Lattice Boltzmann methods for

multiphase flow and phase-change heat transfer. Prog Energy Combust Sci

2016;52:62–105 . 
[14] Lai H , Ma C . A new lattice Boltzmann model for solving the coupled viscous

burgers equation. Physica A 2014;395:445–57 . 
[15] Schmieschek S , Narváez A , Harting J . Multi relaxation time lattice Boltzmann

simulations of multiple component fluid flows in porous media. In: High per-
formance computing in science and engineering ’12. Springer; 2013. p. 39–49 . 

[16] Liang H , Li QX , Shi BC , Chai ZH . Lattice Boltzmann simulation of three-dimen-
sional Rayleigh-Taylor instability. Phys Rev E 2016;93(3):033113 . 

[17] Ponce Dawson S , Chen S , Doolen GD . Lattice Boltzmann computations for re-

action-diffusion equations. J Chem Phys 1993;98(2):1514–23 . 
[18] Zanette DH . Interplay of reaction and transport in a perfect fluid. Phys Rev E

1994;50(2):1171 . 
[19] Qian YH , Orszag SA . Scalings in diffusion-driven reaction a + b → c: numerical

simulations by lattice BGK models. J Stat Phys 1995;81(1):237–53 . 
20] Weimar JR , Boon JP . Nonlinear reactions advected by a flow. Physica A

1996;224(1-2):207–15 . 

[21] Tian Z , Xing H , Tan Y , Gu S , Golding SD . Reactive transport LBM model for CO 2 
injection in fractured reservoirs. Comput Geosci 2016;86:15–22 . 
22] Succi S , Bella G , Papetti F . Lattice kinetic theory for numerical combustion. J
Sci Comput 1997;12:395–408 . 

23] Filippova O , Hänel D . A novel numerical scheme for reactive flows at low mach
numbers. Comput Phys Commun 20 0 0;129:267–74 . 

[24] Yu H , Luo LS , Girimaji SS . Scalar mixing and chemical reaction simulations us-
ing lattice Boltzmann method. Int J Comput Eng Sci 2002;3:73–87 . 

25] Yamamoto K , Takada N , Misawa M . Combustion simulation with lattice Boltz-
mann method in a three-dimensional porous structure. Proc Comb Inst

2005;30:1509–15 . 

26] Lee T , Lin C , Chen LD . A lattice Boltzmann algorithm for calculation of the
laminar jet diffusion flame. J Comput Phys 2006;215:133–52 . 

[27] Chiavazzo E , Karlin IV , Gorban AN , Boulouchos K . Efficient simulations of de-
tailed combustion fields via the lattice Boltzmann method. Int J Numer Meth-

ods Heat Fluid Flow 2011;21:494–517 . 
28] Chen S , Mi J , Liu H , Zheng C . First and second thermodynamic-law analyses of

hydrogen-air counter-flow diffusion combustion in various combustion modes.

Int J Hydrogen Energy 2012;37:5234–45 . 
29] Succi S , Filippova O , Smith G , Kaxiras E . Applying the lattice Boltzmann equa-

tion to multiscale fluid problems. Comput Sci Eng 2001;3(6):26–37 . 
30] Furtado K , Yeomans J . Lattice Boltzmann simulations of phase separation in

chemically reactive binary fluids. Phys Rev E 2006;73(6):066124 . 
[31] Ashna M , Rahimian MH , Fakhari A . Extended lattice Boltzmann scheme for

droplet combustion. Phys Rev E 2017;95(5):053301 . 

32] Falcucci G , Succi S , Montessori A , Melchionna S , Prestininzi P , Barroo C ,
et al. Mapping reactive flow patterns in monolithic nanoporous catalysts. Mi-

crofluid Nanofluid 2016;20(7):1–13 . 
[33] Falcucci G , Amati G , Krastev VK , Montessori A , Yablonsky GS , Succi S . Het-

erogeneous catalysis in pulsed-flow reactors with nanoporous gold hollow
spheres. Chem Eng Sci 2017;166:274–82 . 

34] Scagliarini A , Biferale L , Mantovani F , Pivanti M , Pozzati F , Sbragaglia M ,

et al. Front propagation in Rayleigh-Taylor systems with reaction. In: J Phys
Conf Ser, 318. IOP Publishing; 2011. p. 092024 . 

[35] Biferale L , Mantovani F , Sbragaglia M , Scagliarini A , Toschi F , Tripiccione R .
Reactive Rayleigh-Taylor systems: front propagation and non-stationarity. EPL

(Europhys Lett) 2011;94(5):54004 . 
36] Chen F , Xu A , Zhang G , Li Y , Succi S . Multiple-relaxation-time lattice Boltz-

mann approach to compressible flows with flexible specific-heat ratio and

Prandtl number. EPL (Europhys Lett) 2010;90(5):54003 . 
[37] Chen F , Xu A , Zhang G . Viscosity, heat conductivity, and Prandtl number effects

in the rayleigh–taylor instability. Front Phys 2016;11(6):114703 . 
38] Yan B , Xu A , Zhang G , Ying Y , Li H . Lattice Boltzmann model for combustion

and detonation. Front Phys 2013;8(1):94–110 . 
39] Lin C , Xu A , Zhang G , Li Y . Polar coordinate lattice Boltzmann kinetic modeling

of detonation phenomena. Commun Theor Phys 2014;62(5):737 . 

40] Lin C , Xu A , Zhang G , Li Y . Double-distribution-function discrete Boltzmann
model for combustion. Combust Flame 2016;164:137–51 . 

[41] Xu A , Lin C , Zhang G , Li Y . Multiple-relaxation-time lattice Boltzmann kinetic
model for combustion. Phys Rev E 2015;91(4):043306 . 

42] Cochran SG , Chan J . Shock initiation and detonation in one and two dimen-
sions. Lawrence Livermore National Laboratory Report; 1979. UCID–18024 . 

43] Zhang Y , Xu A , Zhang G , Chen Z . Discrete Boltzmann method with maxwell–
type boundary condition for slip flow. Commun Theor Phys 2018;69(1):77–85 .

44] Zhang H , Zhuang F . NND schemes and their applications to numerical simula-

tion of two-and three-dimensional flows. Adv Appl Mech 1991;29:193–256 . 
45] Watari M . Finite difference lattice Boltzmann method with arbitrary spe-

cific heat ratio applicable to supersonic flow simulations. Physica A
2007;382(2):502–22 . 

46] Gan Y , Xu A , Zhang G , Li Y . Lattice Boltzmann study on Kelvin-Helmholtz insta-
bility: roles of velocity and density gradients. Phys Rev E 2011;83(5):056704 . 

http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0003
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0003
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0005
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0005
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0011
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0011
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0011
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0018
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0018
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0022
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0022
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0022
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0022
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0023
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0023
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0023
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0024
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0024
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0024
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0024
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0025
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0025
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0025
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0025
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0028
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0028
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0028
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0028
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0028
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0029
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0029
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0029
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0029
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0029
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0030
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0030
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0030
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0031
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0031
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0031
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0031
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0033
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0037
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0037
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0037
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0037
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0042
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0042
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0042
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0043
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0043
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0043
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0043
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0043
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0044
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0044
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0044
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0045
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0045
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0046
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0046
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0046
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0046
http://refhub.elsevier.com/S0045-7930(18)30068-9/sbref0046

	MRT discrete Boltzmann method for compressible exothermic reactive flows
	1 Introduction
	2 Discrete Boltzmann method
	3 Validation and verification
	3.1 Reaction in a free falling box
	3.2 Detonation wave
	3.3 Couette flow
	3.4 Shock reflection

	4 Conclusions
	 Acknowledgements
	 Appendix A
	 References


