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Abstract  

Polymeric nanofibers with smooth, rough and porous surfaces were prepared by using pressurized 

gyration which is a novel method to produce nanofibers, utilizing the combination of centrifugal spinning 

and solution blowing. Series of fibers were prepared by using Polyacrylonitrile (PAN),Poly(methyl 

methacrylate)(PMMA) and 50:50 PAN-PMMA polymer solutions without pressure and 0.2 MPa working 

pressure. The surface morphology of the nanofibers were analysed using scanning electron microscopy 

and thermal properties were studied using thermogravimetry and hot stage microscopy. Nanofibers with 

a smooth surface were generated at 0.2 MPa working pressure and those with a rough surface were 

generated without any working pressure. Porous PAN nanofibers were prepared by using PMMA as a 

sacrificial polymer. The 50:50 PAN-PMMA blend fibers were subjected to heat treatment to obtain porous 

fibers. The less thermally stable PMMA decomposes when heating, generating pores on the surface of 

the PAN fibers. The porous nanofibers have a higher surface area to volume ratio compared to smooth 

fibers, and these fibers could be useful in a variety of applications such as tissue engineering , filtering 

and purification.  
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1. Introduction  

Nanofibers have attracted significant interest recently and have been used in different applications such as filter systems, 

biological sensors, scaffolds, transport media and textiles. These fibers possess unique characteristics such as high surface 

area to volume ratio, high rate of adsorption, low density and high surface volume 1. The surface of the nanofibers can be 

functionalized in order to obtain the desired activity2, 3 by using techniques such as vapour-phase atomic layer deposition 

treatment and surface grafting 3. Their surface area can be further increased by introducing pores 4 and dimples 5 on the 

surface of the nanofibers. Single step fabrication of nanofibers with rough or porous surface is quite challenging in 

comparison to fibers with smooth surfaces as the processing parameters of conventional methods such as electrospinning, 

template synthesis, phase separation etc. are not able to easily modify the surface morphology of the fibers. Currently porous 

nanofibers are produced by controlling the spinning environment, the solution parameters and using sacrificial 

polymer/material4, 6, 7. Previous reports have shown that porous nanofibers have superior activity in terms of protein 

adsorption, cell proliferation, ultrafiltration 8-10 and electrical conductivity in comparison to fibers with smooth surfaces. 

Leong et al,11 have shown that nanofibers with roughened and porous surfaces were able to adsorb 80% more protein than 

fibers with smooth surfaces. Zamani et al,12 have compared the growth and proliferation of nerve cell on roughened and 

smooth surfaces, and found that porous and roughened surfaces showed higher cell adhesion.  

Nanofibers can be prepared by using various techniques such as phase separation 13, template synthesis 14, self-assembly 15 

and electrospinning16, 17. Among these techniques electrospinning is the most popular technique, but it has crucial 

disadvantages such as low production rate, utilization of very high voltage (kV range) and sensitivity to dielectric constant of 

the polymer solution. Further, during electrospinning the polymer jet carries a surface charge induced by the high voltage, 

and this charge persists until at least the jet meets the fiber collector. Therefore, it is harder to modify the surface of the fiber 

during fabrication. The above-mentioned limitations demand a novel cost effective technique to fabricate nanofibers with 

high production rate. Recently discovered pressurised gyration is a simple and cost effective technique which can generate 

nanofibers at high production rate 18. Since 2013, this technique has been widely used to prepare nanofibers from various 

polymers for different applications such as drug delivery and tissue engineering18-21.  The pressurized gyration has been 

further developed  as infusion gyration 22 and pressurized melt gyration 23 to cater for a  wider variety of solutions as well as 

to polymer melts. In infusion gyration the polymer solution is fed to the gyration vessel at a constant rate using a syringe 

pump instead of placing the polymer solution in the gyration vessel. This allows continues production of fibers. In the melt 

gyration, polymer granules are placed in the gyration vessel. Then while gyrating the temperature of the gyration vessel is 

increased by using an external heating gun until the polymer melts. Fibers from melt gyration are more suitable for 

biomedical application as this process does not utilise solvents. There is scope to increase the diameter and height of the 

gyration vessel to sustain higher working pressure and rotation speed. The fiber yield can be increased by increasing the 

number of pin-hole outlets and their diameter.  This work is currently in progress in our laboratory.  

The pressurised gyration method utilizes centrifugal spinning and solution blowing simultaneously to produce nanofibers. 

The gyration set up consist of a rotary aluminium vessel which contain of a series of pin-hole type orifices (0.5 mm in 

diameter) on its circumference and the top of the vessel is connected to a gas cylinder which is capable of producing pressure 

up to 3 × 105 Pa, and at the bottom to a DC motor – which is used to rotate the vessel, and to a speed controller to set the 

rotation speed up to a maximum of  36000 rpm. The polymer solution is placed in the vessel and, during gyration, when the 

centrifugal force exceeds the surface tension of the polymer solution a jet is ejected through each orifice. The polymer jet 

stretches due to centrifugal force and pressure difference, and travels through the air and is deposited on the collector. 

During jetting, the solvents evaporate and solid nanofibers are formed. The fiber formation during the gyration process can 

be explained by the Rayleigh−Taylor instability 24 of the polymer solution jet emerging from the orifice of the gyration 

vessel. The fiber diameter and morphology can be changed by varying the polymer concentration, rotation speed of the 

vessel and the working pressure18-21. Recent work showed that this technique is also able to produce microbubbles by 

carefully controlling the rotation speed and applied pressure25.   

Polymer blending is one of the most widely used methods to generate porous nanofibers 26-29. In this work, two immiscible 

polymers, polyacrylonitrile (PAN) and polymethylmethacrylate (PMMA) have been used to generate porous nanofibers. 

PAN is a well-known polymer used in various applications such as water treatment 30, drug delivery 31, 32 and many other 

biomedical applications 33. Also PAN has  good film forming properties and is used as a precursor to produce carbon 

nanofibers 34 . PAN nanofibers were previously prepared by using other fabricating techniques like electrospinning 35-37 and 

centrifugal spinning 38, 39. PMMA is a thermoplastic polymer widely used in different fields such as biomedical 40-42, water 

purification 43 and textiles 44. PMMA was selected as the pore forming agent in this study due to its low thermal stability. 

Upon decomposition, PMMA does not produce any carbon residues but only volatile compounds 45. Porous PAN fibers have 

been previously obtained by several researchers using PMMA as the sacrificial polymer 7, 46, 47.  
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The aim of this work was to produce nanofibers with different surface morphologies, such as smooth, rough and porous 

using pressurized gyration.  There is no recorded literature on gyrospun fibers with different surface morphologies and these 

fibers could be used in a wide range of applications, spanning textiles to the biomedical engineering. It should be noted that 

in the present work there was no dedicated attempt to study the internal structure of the fiber and investigations were focused 

on the fiber surface. 

2. Materials and methods 

2.1 Materials 

Polyacrylonitrile (Mw 150 000 g/mol), Poly(methylmethacrylate) (Mw 120 000 g/mol) and N,N-dimethylformamide (DMF) 

were obtained from Sigma- Aldrich (Gillingham, UK). All reagents were analytical grade and were used as received. 

2.2 Preparation of spinning solutions 

DMF was selected as the solvent for this study as both PAN and PMMA show good solubility in DMF, and DMF rapidly 

evaporates during the forming process. 4%, 8% and 10% (w/v) PAN solutions were prepared by dissolving the appropriate 

amount of PAN in DMF and mixing using a magnetic stirrer for 48 hours. The polymer solutions were labelled as S1, S2 and 

S3 respectively. 30 % (w/v) PMMA solutions were prepared by dissolving the required amount of polymer in DMF while 

stirring for 24 hours. The resultant solution was labelled as S4. A separate spinning solution was prepared by mixing an 

equal amount of PAN and PMMA in DMF under stirring for 48 hours. The total polymer content of the solution was 20% 

(w/v), and it was labelled as S5. 

 

2.3 Pressurised gyration process  

A schematic diagram of the gyration apparatus is shown in Figure 1. The rotary aluminium cylindrical vessel (∼ 60 mm in 

diameter and ∼35 mm in height) contains 24 orifices on its face, each having a diameter of 0.5 mm. During the gyration 

process, 4 ml of the polymer solution was placed in the vessel and spun at 36000 rpm. Two different sets of PAN fibers were 

prepared, one without any applied pressure and the other with 0.2 MPa applied pressure. The fibers were collected using a 

rod - collector placed 100 mm way from the vessel. All the spinning experiments were carried out under ambient condition 

(22 ± 3 °C and relative humidity 40 ± 3%).  

 

2.4 Fiber characterisation  

2.4.1 Scanning electron microscopy (SEM) 

The fiber morphology was assessed using a scanning electron microscope (Quanta 200 FEG ESEM, FEI, Hillsborough, OR, 

USA). Prior to imaging, the samples were coated with 20 nm of gold under argon using a Quorum Q150T turbo-pumped 

sputter coater. All the SEM images were taken at an acceleration voltage of 5 kV. The average fiber diameter was 

determined by measuring the diameter of  more than 50 fibers captured by SEM images  in using ImageJ software (National 

Institute of Health, Bethesda, MD, USA). The fiber diameters of the generated fibers are given in Table 1. 

2.4.1 Hot stage microscopy  

Hot stage microscopy was carried out using a LeicaDML52 microscope with a x10 magnification lens connected to a Mettler 

Toledo FP90 hot stage. Each sample was placed on a microscope slide, contained with a cover-slip and heated at 5 0C min -1 

from 37 0C to 300 0C. Resulting thermal events were recorded in real time using Studio86 Design capture software (version 

4.0.1).  

 2.4.2 Thermogravimetric analysis (TGA) 

Thermogravimetric analysis were carried out for PMMA, PAN, 50:50 PMMA-PAN blend fibers under nitrogen at a flow 

rate of 50 ml min-1 using a TA Instruments SDT Q600 Analyzer at a heating rate of 10 ˚C min-1, from ambient temperature 

to 600 ˚C using a platinum sample pan. 
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2.5 Heat treatment  

S3 and S5 fibers were subjected to heat treatment in a standard  carbolite tube furnace. Initially, all the samples were heated 

at a 2 0C min -1 up to 300 0C in air, and subsequently temperature was increased to 400 0C under nitrogen (99.99% purity) at 

a 2 0C min -1. The heat treated fibers were imaged using the SEM to study their surface morphology.  

3. Results and discussion  

3.1 Fiber morphology 

In this work rotation speed, which is one of the two main process control parameters of gyration spinning was kept constant 

at 36000 rpm. The other parameter, applied working pressure was varied between 0 – 0.2 MPa. Initially, S1 – S3 solutions 

were spun without any applied pressure at 36000 rpm. Without any applied pressure, solution S1 (4% (w/v PAN) was unable 

to produce any fibers and only polymer droplets formed (Figure 2a). However when increasing the pressure up to 0.2 MPa, 

some short length fibres (410±130 nm) were produced as shown in Figure 3a1. But even at 0.2 MPa, most of the S1 solution 

sprayed out as droplets. This is because at a low polymer concentration (S1) there is insufficient chain entanglements to 

produce continuous fibers. However, it is clear from the experimental observation that the applied pressure helps to generate 

fibers at low concentration by enhancing chain entanglement as well as by jet elongation. The high speed air flow creates 

turbulence in the rotating vessel and forcefully pushes the polymer solution through the orifices. Without applied pressure it 

is only the centrifugal force that pushes the polymer solution out of the orifices, and this is not sufficient to produce 

continues fibers with low concentration solutions. Higher magnification SEM images of S1 fibers shows that these fibers 

have a smooth surface (Figure 3a1). 

Both S2 and S3 were able to produce fibers without any applied pressure although, some droplets were also generated. 

Interestingly, the surface of these fibers contained a  rough surface (Figure 2b1, 2c1) in comparison to fibers produced under 

0.2 MPa applied pressure (Figure 3b1, 3c1). This is because, without any pressure, the solvent (DMF) evaporates under 

normal atmospheric conditions. When pressure is applied, the high speed air flow increases the rate of DMF evaporation 

from the polymer jet, creating fibers with smooth surfaces. However, it was evident that the fiber production rate at 0 MPa is 

considerably low in comparison to that obtained at 0.2 MPa. The diameter of the fibers produced under pressure was 520 

±180and 450 ±150 nm for samples from solution S2 and S3, respectively.  

S4 solution was spun at 36000 rpm at 0 MPa and 0.2 MPa. Similar to PAN fibers, the PMMA fibers obtained at 0 MPa 

contained a rough surface (Figure 2d1) while the fibers obtained with 0.2MPa had a smooth surface (Figure 3d1). The 

average fiber diameter of the S4 fibers was 290 ±80 nm. Thus, S4 fibers were smaller in diameter in comparison to S2 and 

S3 fibers. A similar observation was recorded in the centrifugal spinning work of Lu et al 47 ., who made porous carbon 

fibers by using PAN and PMMA. The fibers produced without any applied pressure from S5 contained rough surfaces, as 

shown in Figure 2e1. S5 fibers generated using 0.2 MPa applied pressure also had rough surfaces (Figure 3e1), and fiber 

diameter was bimodally distributed. It seems that the blended polymer solution S5 also generated individual PAN and 

PMMA fibers, in addition to blend fibers. The thinner fibers shown in Figure 3e1 can be attributed to PMMA while the 

thicker fibers are likely to be PAN fibers, based on fiber diameter of individual fibers. The surface tension of the PAN 

solutions  are lower in comparison to PMMA 45. Due to this surface tension difference, the blend polymer solution can form  

islands in the microstructure 45. The lower surface tension component (PAN) forms the continuous phase and the higher 

surface tension component (PMMA) forms droplets. Due to the centrifugal force and  applied pressure these PMMA droplets 

get stretched and elongated when extruded through the orifices in the gyration vessel. Elongated PMMA droplets are present 

on the surface of the PAN fibers creating a rough surface on blend fibers even at 0.2 MPa applied pressure. These 

observations clearly demonstrate that most spinning solutions were able to produce fibers with rough surfaces without any 

pressure in the gyration process. Compared to electrospinning an added advantage in the pressurized gyration is that, the 

polymer jet is charge-free. This allows production of fibers with a smooth surface or a rough surface upon demand by 

varying working pressure.   

 

3.2 Thermal behaviour   

Hot stage microscopy was performed in order to observe the thermal behaviour of the fibers. Figure 4a1 –a3 shows the 

thermal behaviour of the S3 fibers. When the temperature increased S3 fibers start to shrink. The cyclization of nitrile groups 

in PAN occurs in the 250 to 300 0C temperature range 34 and this could be the reason for shrinkage of fibers at a higher 

temperature. A similar observation was reported by Sarvaranta 48. Even at 300 0C it is evident that S3 fibers were present on 

the glass slide (Figure 4a3). Similarly S4 fibers were heated up to 300 0C and their thermal behaviour was investigated. The 

glass transition temperature (Tg) of commercial grade PMMA varies from 85 to 165 0C 49, 50. It was observed that between 
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150 to 175 0C, S4 fibers showed bending and stretching movements and at 300 0C all the S4 fibers decomposed, and there 

was no fibers were visible under the microscope (Figure 4c3). S5 blended fibers, showed more interesting thermal behaviour 

under hot stage microscopy (see video included as supporting data). When heating S5 fibers, at 150 – 175 0C some fibers 

started to show bending and stretching movements, while other fibers did not  show any movements. It is very clear from the 

video data that the fibers did not show any bending and stretching movements after 250 0C. Also, it is evident from the SEM 

image of S5 fibers that gyration resulted in the production of both thin and thick fibers. Therefore, we can assign the moving 

fibers to  PMMA  that where individually spun during the gyration process. These PMMA fibers in the S5 sample cannot be 

visualized after 250 0C, and the remaining fibers show shrinkage due to decomposition of PMMA in the fibers and well as 

due to cyclization of their nitrile groups. 

 The thermal decomposition behaviour of the fabricated fibers were investigated using TGA. PAN fibers (S3) showed a 

sharp weight loss in the 300 - 450 ˚C temperature range. When heating the PAN fibers, volatile by-products such as CO2, 

HCN, water vapour are produced51, 52 leading to a weight loss. Pure PMMA fibers (S4) start to decompose at 250 ˚C. After 

250 ˚C, S4 fibers undergo an intrinsic degradation process incorporating depolymerizaton, random scission and side group 

elimination with the creation of volatile compounds. Previous reports show that PMMA degrades to its monomer over a 

narrow temperature window (250  - 400 ˚C) without leaving any carbon residue 53. Therefore, no residue of PMMA is 

present after 400 ˚C. This was visualized in the hot stage microscopy experiment with S4 fibers.  

In S5 blend fibers, the weight loss mainly occurred in two temperature ranges: 225 - 300 ˚C and 300 - 475 ˚C. The first 

weight loss can be attributed to the cyclization of nitrile group in PAN and the second weight loss corresponds to PMMA 

decomposition. When PMMA decomposes, volatile degradation products (e.g monomers) and residual solvents penetrate 

through the PAN shell and evaporate at the surface of the PAN fibers.  

 

3.3 Heat Treated fibers  

S3 and S5 fiber were subjected to heat treatment. The SEM images of the heat treated fibers are given in Figure 6. It is clear 

from Figures 6a and 6a1 that heat treated S3 fibers have smooth surfaces and  heat treated S5 fibers have pores on the 

surface of the fibers. Even though S3 fibers produce volatile products while heating, this gas release does not alter the 

surface morphology of S3 fibers. It is quite clear from Figure 3e1 that as-spun S5 blended fibers have elongated PMMA 

droplets on the surface of the fiber. After heat treatment, those elongated PMMA droplets disappear due to PMMA 

decomposition while creating similar shape pores on the surface of the fibers.  

4. Conclusions 

Polymeric nanofibers with smooth, rough and porous surfaces were produced using pressurized gyration. It was uncovered 

that the applied pressure playing a major role in the gyration process to generate fibers with different surface morphologies. 

The PAN, PMMA and 50:50 PAN-PMMA blend fibers produced with 0 MPa working pressure gave fibers with rough 

surfaces, while the fibers produced using 0.2 MPa had smooth surfaces except for the blend fibers. In these blend fibers, the 

matrix seems to be  PAN, while PMMA was present as isolated islands throughout the fibers. Porous fibers were produced 

by heating 50:50 PAN-PMMA blend fibers. During the heating process, the less thermally stable PMMA decomposed 

completely leading to the formation of pores evenly distributed on the fiber surface. The porous and rough surface fibers 

have higher surface area in comparison to the fibers with smooth surfaces. These fibers with variable surface morphology 

could be used in a wider range of applications compared with conventional smooth fibers, spanning textiles to tissue 

engineering.  
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Table 1. Diameter of fibers made from each formulation using 0.2 MPa working pressure. The rotation speed was kept 

constant at 36000 rpm 

 

Fiber sample 

 

 

Fiber diameter (nm) 

 

 

 

S1 

 

 

410 ±130 

 

 

 

S2 

 

520 ±180 

 

 

S3 

 

450 ±150 

 

 

S4 

 

290 ±80 

 

 

S5 

 

580 ±260 
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Figure 1.  Schematic diagram of pressurized gyration apparatus 
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(d) (d1) 

  

(e) (e1) 

Figure 2. (a) Optical micrograph of the droplets formed from S1 solution. Scanning electron micrographs  of the gyrospn 

fibers made without the applied pressure: (b – e ) S2,S3,S4 and S5 fibers at x 10000 magnification and (b1 – e1) ) S2,S3,S4 

and S5 fibers at x 100000 magnification. 
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(c) (c1) 
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(d) (d1) 

 

 

(e) (e1) 

 

Figure 3. Scanning electron micrographs of fibers made using 0.2 MPa applied pressure. (a – e ) S1,S2,S3,S4 and S5 fibers 

at x 10000 magnification and (a1 – e1) ) S1,S2,S3,S4 and S5 fibers at x 100000 magnification. 
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(a1) (a2) (a3) 

   

(b1) (b2) (b3) 

   

(c1) (c2) (c3) 

Figure 4. A sequence of hot stage microscopy (also see video included in supplementary data)  images ( magnification x10)  

of S3,S5 and S4 fibers at 37 ˚C (a1,b1,c1), 175 ˚C (a1,b1,c1), 300 ˚C  (a1,b1,c1), respectively. 
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Figure 5.   Thermogravimetric trace of  fibers:  S3 (PAN), S4 (PMMA) and S5 (PAN-PMMA blend fibers) 
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(a) (a1) 

  

(b) (b1) 

 

Figure 6. Scanning electron micrographs of heat treated S3 fibers (a- x20000, a1 - x100000) and S5 fibers (b- x20000, b1 - 

x100000) 
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