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Abstract 

Although researchers have identified genetic alterations that contribute to development of 

esophageal adenocarcinoma, we know little about features of patients or environmental 

factors that mediate progression of chronic acid biliary reflux to Barrett’s esophagus and 

cancer. Increasing our understanding of the mechanisms by which normal squamous 

epithelium progresses to early-stage invasive cancer will help formulate rational surveillance 

guidelines and allow us to divest resources away from patients at low risk of malignancy. We 

review the cellular and genetic alterations that occur during progression of Barrett’s 

esophagus, based on findings from clinical studies and mouse models of disease. We review 

the features of the luminal and mucosal microenvironment of Barrett’s esophagus that 

promote, in a small proportion of patients, development of esophageal adenocarcinoma. 

Markers of clonal evolution might be used to determine patient risk for cancer and set 

surveillance intervals. 

 

Keywords: EAC, BE, metaplasia, biomarker 
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Although esophageal adenocarcinoma (EAC) is rare in many parts of the world, its incidence 

has increased 4%–10% each year in developed countries since the 1970s
1
. Median survival 

times are short, chiefly because most patients are diagnosed with advanced-stage disease 

that is not curable
2
. EAC prevalence therefore closely follows its incidence. Barrett’s 

esophagus (BE), defined as the replacement of the squamous epithelial lining native to the 

esophagus by metaplastic columnar epithelium, is a well-established risk factor for EAC
3
. 

Acid biliary reflux from the stomach leads to development of BE, the initial step in 

progression to EAC, which can be tracked by histologic and genetic changes
4
.  

 The increase in EAC incidence appears to be a result of the increased prevalence of 

BE
5
. The exact population prevalence of BE is difficult to establish, because this disease does 

not produce symptoms and because of the weak association between reflux complaints and 

BE
6
. Furthermore the operative definition of BE is not consistent among expert guidelines, 

so the true prevalence is unclear
7
. Notwithstanding these caveats, population estimates of 

BE range from 1% to 5%
8, 9

.  

Retrospective population-based studies found that rates of progression from BE to 

cancer to range from 0.10% to 0.13% per year 
10, 11

, indicating that BE is mostly a long-term 

benign condition
12

.  Many patients in surveillance programs are therefore needlessly 

exposed to the risks and negative effects of routine screening. The flip side to this argument 

is that BE is an under-diagnosed condition, because more than 85% of patients with newly 

diagnosed EAC have no history of either BE or heartburn complaints
6, 13

. For this reason, the 

clinical return (and cost-benefit) of BE surveillance programs are subject to scrutiny. Trials 

such as the British Barrett’s Oesophagus Surveillance Study and the BarrettNET registry (in 

Munich, Germany), comprising more than 5000 patients to be followed for more than 10 

years, aim to compare all-cause and disease-specific mortality between patients who have 

been randomly assigned to groups that will undergo endoscopic surveillance every 2 years 

vs patients with a more conservative clinical follow up. Hopefully findings from these studies 

will provide some guidance on this issue
14

. The sample size and length of follow up of these 

trials are a clear indication of the complexity and magnitude of this endeavor.  

 In BE, the inflammatory microenvironment and somatic genomic alterations in stem 

cell populations are believed to mediate progression to EAC. We review the mechanisms by 

which these factors promote carcinogenesis based on findings from clinical studies
15-19

 and 
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mouse models of BE
20, 21

. The adaptive nature of BE indicates that forces of natural selection 

act on tissue-specific stem cells, causing changes that lead to tumorigenesis.  

 

Progression From Reflux Esophagitis to BE, Based on Histology 

The seemingly straightforward histopathologic definition of BE as a metaplastic condition 

whereby the native squamous epithelium of the distal esophagus is replaced with columnar 

epithelium belies an altogether far more complex microscopic process. Biopsies from 

patients contain a range of columnar phenotypes. Despite emphasis on the cellular 

composition of the epithelium, the BE segment is organized, like all mucosal layers of the 

gastrointestinal tract, into a quasi-repetitive arrangement of glands. Every gland is 

maintained by a unique population of stem cells and can therefore be thought of as a 

singularly evolving unit within the mucosal sheet. These metaplastic glandular units have a 

variety of appearances. However, morphologies of the various types of glandular units do 

not vary within or among patients—they often resemble gland types found elsewhere in the 

gastrointestinal tract, either in healthy individuals or patients with gastrointestinal disease.  

 The gland phenotype most commonly associated with BE has a mixed epithelial 

lining comprising scattered goblet cells against a background of columnar cells with 

properties that are indistinguishable from gastric foveolar cells (Figure 1A and B). This dual 

pattern of epithelial differentiation is reflected in its mucin core peptide and expression 

pattern of trefoil factor (TFF), with goblet cells producing the intestinal type mucin (mucin 2, 

oligomeric mucus/gel-forming, MUC2) as well as TFF3, whereas foveolar cells produce the 

gastric type mucin (MUC5AC) and TFF1
22

. These MUC proteins contain abundant 

oligosaccharide side-chains, which allow these proteins to bind copious amounts of water 

after secretion into the gut lumen. These MUC proteins further self-aggregate, which creates 

a visco-elastic gel that coats the underlying epithelium
23

. This peculiar pattern of mixed 

gastric and intestinal lineage differentiation has been widely described as specialized 

epithelium or specialized metaplasia, or, simply, intestinal metaplasia. Older publications 

referred to this as type II or type III incomplete intestinal metaplasia—terms that are now 

obsolete
24

.  

 In crypts in the small intestine and colon, stem cells reside strictly at the base of the 

gland and move up along the crypt (and villus) as they differentiate and mature. In BE 

glands, alternatively, the stem cell compartment is located about one-third up the height of 
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the gland; mature cell lineages show bidirectional flow from this stem cell compartment 

towards the lumen as well as towards the base of the gland. This was demonstrated in a 

study of patients with EAC scheduled for esophageal resection. Patients were given an 

infusion of a thymidine analogue at different timepoints before surgery
22

. Tracing the 

distribution of this indelible label in daughter cell populations confirmed bi-directional 

migration within BE glands and showed that cell migration toward the glandular base 

compartment of the gland occurred much more slowly than toward the superficial crypt 

compartment of the gland. The label had been all but lost from the superficial crypt 

population in little over a week, whereas non-dividing cells that contained the thymidine 

analogue were detected for as long as 10 weeks after label infusion in the gland base 

population
25

.  

The mucous base of the BE gland is lined by a population of columnar cells that 

express MUC6 and also secrete bicarbonate (HCO3
–
). This buffers the caustic refluxate and, 

together with the mucinous gel that covers the metaplastic mucosa, protects the lining of 

the distal esophagus. It is important to be aware of this functional compartmentalization to 

understand the unique functional properties of the BE gland
26

.  

 Expression of LGR5, a marker of stem cells, about one-third up the height of the 

gland provides support for this location of the stem cell niche
22

. LGR5 mRNA is detected at 

the junction of the MUC5AC+ and TFF1+ cells and the MUC6+ and TFF2+ cells, the origin of 

the bidirectional cell flux and site of maximum proliferative activity (shown by 

immunohistochemical analysis for Ki-67, see Figure 1). These observations help us to 

understand the cells and their functions in the BE gland. It is important to note that this bi-

directional compartmentalization is not unique to the metaplastic esophagus —it resembles 

the basic architecture of the pyloric gland in the normal gastric antrum.  

 There are a small numbers of other gland types, which together constitute the 

metaplastic mosaic of the columnar esophagus (see Figure 2). Best studied of these is the 

cardiac gland (also transitional gland or non-goblet columnar gland). In essence, the 

epithelial lining and bidirectional architecture of the cardiac-type gland are identical to those 

of the BE gland, except for an absence of goblet cells in these glands. This makes the cardiac 

gland the simplest, in terms of differentiated epithelial cell types, of all BE gland types. The 

cardiac gland contains only MUC5AC+ and TFF1+ foveolar cells along the superficial crypt 

compartment and MUC6+ and TFF2+ cells along the mucous base. These glands have been 
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studied extensively, because they are the type most commonly found in biopsies of patients 

with short-segment BE and in biopsies from patients with columnar metaplasia of the neo-

distal esophagus following esophageal resection. This gland type may be the earliest 

detected during development of BE. It is also indistinguishable, in terms of glandular 

architecture and cell composition, from reparative glands (known as pseudo-pyloric 

metaplasia) found in, for example, terminal ileitis in patients with Crohn’s disease. 

 The remaining gland types are variations on a theme. The cardiac type gland may 

show oxyntic differentiation in the form of scattered parietal cells, at which point the gland 

is essentially comparable to similar glands found in the transitional mucosa of the gastric 

incisura or gastric pylorus (see Figure 2). Contrary to common belief, parietal cells are not 

restricted to corpus mucosa and are abundant in normal pyloric mucosa
27

. Mature chief cells 

are also found in these glands, which contain the complete complement of cell types 

normally found in the gastric body and fundus, although the irregular packing of these 

glands indicates that this is non-native, post-inflammatory mucosa. In many patients, these 

glands are found in the context of anatomic features of the esophagus such as submucosal 

gland complexes, so these fundic-type glands develop as part of the metaplastic mosaic. It is 

important to determine whether these metaplastic oxyntic glands develop from cardiac 

glands and, if so, whether they are true stem-cell derived metaplasias or a manifestation of 

varying levels of oxyntic gland differentiation. Varying levels of differentiation of these 

archetypal gastric glands have important implications for the temporal dynamics of 

glandular metaplasia in the atrophic stomach.  

 Some glands have mature intestinal differentiation, with Paneth cells at the base and 

enterocytes along the superficial crypt compartment (Figure 2). These are the only glands 

that completely lack gastric mucin core proteins; they are also the most rare of gland types 

described. However, tissues from some patients have high levels of Paneth cell 

differentiation.  

 Remarkably, the distribution of these gland phenotypes is not random—they appear 

in recurrent temporal and spatial patterns along the BE segment. Intestinal phenotypes are 

found more proximally at the squamo-columnar junction, whereas cardiac and 

oxyntocardiac gland phenotypes are proportionally more common around the gastro-

esophageal junction 
28-30

. For example, Harrison et al found that intestinal differentiation 

was almost twice as common in proximal biopsies taken near the squamo-columnar junction 
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compared to the biopsies collected from the gastro-esophageal junction, with a clear 

stepwise gradient in between
29

. The density of glands containing intestinal differentiation 

correlates with the pH gradient along the BE segment; the less acidic the local average pH 

(closer to the squamo-columnar junction) the higher the proportion of glands with goblet 

cell differentiation
31

.  

The functional significance of this spatial distribution of gland phenotypes is unclear. 

We proposed that this distribution in gland types could result from local selection for cells 

that can survive in the harsh environment of the acid biliary refluxate at the distal 

esophagus
26

. The soluble component of bile acids, which acts as a detergent and solubilizes 

lipid cell membranes through micelle formation, could be responsible for this environment. 

Studies of bile salt solubility found it to be greatest at intermediate luminal pH ranges seen 

most proximally, whereas bile acids are insoluble and therefore incapable of forming 

micelles at lower pH ranges in the distal esophagus
31, 32

. In vitro studies have shown that 

solubilized duodenal bile salts are a strong inducer of CDX2 expression and goblet cell 

differentiation
33-35

. The pH gradient along the BE segment could therefore create a 

proximal–distal gradient of bile salt solubility, which could determine the relative proportion 

of specific gland phenotypes along the length of the esophagus.  

Temporal analysis of gland phenotype distribution is complicated because, in most 

patients, the BE segment is static over time and does not expand (or contract) despite years, 

or in some cases decades, of endoscopic follow-up evlaluations
36

—even in patients with 

continued esophageal exposure to acid biliary reflux
37

. However, patients that have 

undergone cardia-esophagectomy because of esophageal cancer lose normal sphincter 

function, which provokes severe gastro-esophageal reflux. Consequently, about half of 

these patients develop columnar mucosa in the remnant distal esophagus de novo. 

Longitudinal studies found that the length of columnar mucosa increases over time 

and histopathologic analyses demonstrated that the glandular phenotype changes from 

purely cardiac-type mucosa to BE glands, with intestinal differentiation
38-40

. These 

observations indicate that the mucous cardiac-type gland is the earliest gland phenotype 

that develops in the reflux-damaged distal esophagus; it might change to either an intestinal 

(goblet cells and Paneth cells) or gastric (parietal and chief cells) lineage differentiation 

(Figure 2). In support of this model, some studies have shown cardiac type glands to 

undergo early intestinalization, with submaximal levels of villin and CDX2 expression
41, 42

. 
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Studies have shown clonal ancestry of canonical specialized BE glands and non-intestinalized 

cardiac-type glands—these various phenotypes do not develop independently, but arise via 

phenotypic variation within glands derived from a common ancestor
18

.  

Progression from cardiac-type glands to intestinalized epithelium was demonstrated 

in a mouse model of BE (EBV-L2-IL1B mice). These mice overexpress interleukin 1 beta (IL1B) 

in the esophageal and squamous forestomach epithelium, and develop spontaneous 

esophagitis that progresses to metaplasia at the gastro-esophageal junction and 

adenocarcinoma with older age
20

. Addition of bile acids (0.2% deoxycholic acid) to their 

drinking water accelerates onset of intestinal metaplasia and tumorigenesis. Metaplastic 

esophageal tissues from these mice have increased levels of TFF2, CCKBR, MUC5AC, CDX2, 

and K19, compared to esophageal tissues of control mice. In EBV-L2-IL1B mice, bile acids 

lead to demethylation of gene promotor regions, leading to increased expression of IL6, 

CDX2, and Notch
43, 44

, promoting commitment to the intestinal cell lineage. The earliest 

morphologic manifestation of glandular differentiation in the distal esophagus therefore 

appears to be the simple cardiac-type gland, which can evolve with time into either an 

intestinal or gastric cell glandular phenotype.  

 What promotes columnar transformation of the distal esophagus when acid biliary 

reflux first hits the naïve squamous mucosa of the distal esophagus? This is a question of 

great contention and one on which opinion is sharply divided. Several models have been 

proposed, but 2 models that have (arguably) been studied most. The transdifferentiation 

model proposes that squamous stem cells with chronic exposure to the corrosive effects of 

acid-biliary reflux slowly change their differentiation lineage, downregulating the native 

squamous expression program and upregulating a columnar cell expression program via 

upregulation of lineage-determining factors such as SOX9
34, 45, 46

. Support for this model 

comes from a trial of patients with reflux successfully treated with proton pump inhibitors 

(PPIs) who discontinued acid suppression for 2 weeks
47

. In this relatively short time period, 

all patients had progressive symptoms—some with severe erosive (Los Angeles Grade C) 

reflux esophagitis. Biopsies from non-eroded areas were infiltrated by large numbers of 

lymphocytes, so inflammatory cells might contribute to pathogenesis. 

 In the chronic wounding model, continuous micro-trauma, due to caustic reflux, 

erodes small patches of squamous epithelium, which are repaired by the wound-healing 

process (see Figure 3). This response activates proliferation of nearby epithelial progenitors 
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to cover the epithelial defect. Wounding at the squamo-columnar junction elicits 

proliferation of squamous and columnar progenitors on either side of the epithelial defect. 

This is recognizable as a thin layer of undifferentiated epithelial cells covering a fresh wound 

bed (Figure 3A). Although this is essentially a stereotypical wound healing response, 

exposure to reflux promotes selection for phenotypes best adapted to the harsh 

environment, such as mucin-producing columnar progenitors. With recurrent bouts of reflux 

and ulceration, the columnar epithelium expands, progressively replacing the distal 

esophageal squamous epithelium (Figure 3B-F).  

 Lineage tracing experiments in mouse models of BE indicate that metaplastic lesions 

originate from stem cells in the gastric cardia
20, 28, 48

, which over time expand proximally into 

the squamous esophagus, replacing squamous epithelia (Figure 4). This progression 

associates with development of dysplasia in the mice. Expansion seems to occur first in the 

cardia, presumably in response to inflammatory cytokines, in contrast to esophageal injury 

without reflux, leading to squamous lineage regeneration through Ker15-negative cells
49

. 

The esophageal microenvironment and signaling pathways regulate tissue regeneration and 

cell fate decisions. In summary, a pool of stem cells in a niche at the gastro-esophageal 

junction (labeled by LGR5
19

, CCK2R
50

, and CAR4
21

 in mice) expands and, with the 

development of genomic instability, enters a phase of clonal evolution that proceeds over a 

period of years and, in some patients, resulting in EAC.  

 It is not clear whether cyclic wounding and expansion occurs within a short time 

period or progresses over many months or years. Progressive widening of the lower 

esophageal sphincter, due to slowly increasing abdominal pressure and increased reflux, 

might progressively erode the distal esophageal epithelium over many years. There is some 

(indirect) evidence for this from studies of patients
51

. For example, in carefully executed 

studies analyzing esophageal reflux by detailed pH and manometry measurements across 

the lower esophageal sphincter, McColl et al found that, in patients with a large waist 

circumference, acid reflux extends more proximally into the lower esophageal sphincter. 

Importantly, this correlated with a longer zone of cardiac-type columnar mucosa at the 

gastro-esophageal junction
52

. Furthermore, in some patients, the histologic 

squamocolumnar junction can actually move distally, covering the gastric cardia. Derakhshan 

et al observed this phenomenon in a patient with long-standing atrophic gastritis and 

pernicious anemia who underwent gastrectomy because of an incipient gastric cancer. The 
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resection specimen clearly showed a collar of squamous epithelium, which occupied the 

anatomic cardia
53

. Given the atrophic gastritis, the most parsimonious explanation is that in 

this case, due to continuous erosion of the friable gastric mucosa, the squamous epithelium 

outcompeted native glands in the proximal stomach.  

  

A Permissive Environment for Esophageal Carcinogenesis 

Identification of environmental factor that contribute to carcinogenesis might facilitate 

patient risk stratification for surveillance programs (see 
54

 for review)—especially because 

reasons for the rapid increase in incidence of BE and EAC are unclear
55

. Environmental 

factors might partially explain the increased incidence,
56

 given that BE is rare in children and 

adolescents
57

 and life style changes appear to mediate the increase in BE incidence in the 

Far East
58

. Risk factors for GERD, BE, and EAC overlap, and include obesity, tobacco use
59, 60

, 

alcohol consumption
61

, and stress levels
62, 63

. Male sex and older age are consistently 

identified as covariates and this association persists irrespective of ethnic background and 

nationality
64, 65

. The most proximate risk factor for BE and EAC likely is chronic reflux and 

associated conditions such as hiatal hernia or esophagitis
66

. The effects of chronic reflux are 

likely to vary among patients, provoking in some individuals an inflammatory 

microenvironment promotes cancer development.  

 Drugs such as PPIs, non-steroidal anti-inflammatory drugs (NSAIDs), and statins also 

affect risk of BE and progression to EAC
67-69

. PPIs are used routinely to treat patients with 

reflux symptoms and promote esophagitis healing
70

. Although epidemiologic studies have 

found PPIs to reduce the risk of BE progression
71

, no randomized placebo-controlled trials 

have shown PPIs to have chemopreventive effect. There has been some inconsistency with 

regard to the effects of PPIs on risk of progression risk; some studies reported decreased 

risk
72

 and others reported increased risk of progression
73, 74

. Reports of increased risk of 

esophageal cancer in patients taking PPIs could result from bias in reporting or indicate that 

micro-environmental changes cause competitive release of incipient neoplastic clones. A 

study in the EBV-LR-IL1B mouse model of BE found PPI-induced hypergastrinemia and 

genetic hypergastrinemia to increase development of columnar metaplasia of the esophagus 

and accelerate progression to dysplasia
50

. In patients, PPIs also induce secondary 

hypergastrinemia
75, 76

; when patients with BE were treated with PPIs and stratified according 
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to gastrin levels, those with the highest levels of gastrin were at increased risk of dysplasia 

or EAC
77

. 

 The increasing incidence of BE and EAC have also been associated with improved 

sanitation and the consequent decrease in gastric Helicobacter pylori, mainly in the West
78, 

79
. Although the inverse correlation between EAC incidence and H pylori infection may relate 

strictly to decreased acid output (hypochlorhydria) and reflux
80

, H pylori colonization also 

significantly alters the native gastric flora and the esophageal flora. The bacterial 

community of the normal esophagus
81

 changes in patients with reflux-related disorders and 

BE 
82, 83

 or patients receiving PPI therapy
84

.  

 The common denominator of these environmental factors (constitutional, diet, and 

drug-related) is that they affect the local BE micro-environment. In some individuals, the 

combination of esophageal inflammation and genetic factors could promote BE progression 

and carcinogenesis. 

 

Inflammation Promotes Esophageal Carcinogenesis 

The tissue microenvironment promotes some of the earliest events in esophageal tumor 

development (Figure 4). Tissue-specific stem cells are believed to retain their 

undifferentiated state through physical proximity with a dedicated niche 
85, 86

. Stem cell 

proliferation and differentiation at the gastro-esophageal junction could be regulated by 

signaling pathways that are active throughout the mammalian gut, such as the Wnt, Notch, 

bone morphogenetic protein, and hedgehog pathways
87

. We discussed how chronic 

wounding in a harsh environment can induce cephalad expansion of columnar epithelia into 

the esophagus, but little is known about the mechanisms of this process and subsequent 

tumorigenesis.  

Inflammatory cells release signaling molecules that promote and accelerate tissue 

healing, but simultaneously establish a carcinogenic microenvironment, by increasing local 

tissue concentrations of mutagenic oxygen and nitrogen species
88, 89

. Studies in mouse 

models have provided evidence for the interaction between the inflammatory 

microenvironment and tumor-initiating stem cells. Induction of IL1B and IL6 by bile acids 

leads to inflammation and activates gastric cardia stem cells, which promote columnar-like 

metaplasia of the distal esophagus and cell changes that result in dysplasia
20

. Inflammation 

could also lead to progression of BE by altering the tissue-specific stem cell niche (Figure 4). 
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It will be a challenge to characterize the cells and signaling pathways involved in these 

processes, but increasing our understanding these mechanisms could lead to development 

of chemopreventive agents such as NSAIDs.  

 IL1b, IL6, and IL8, are upregulated in BE—particularly at the cardia
90

. In mice, 

expression of IL1B induces chronic inflammation and dysplastic changes that require IL6. 

These cytokines are upregulated in different types of preneoplastic tissues and tumor 

microenvironments, in association with activation of nuclear factor (NF)-κB and are involved 

in development of BE and EAC
20

. Inflammatory cytokines including interferon gamma (IFNG), 

Il1B, IL6, and IL8, are expressed by epithelial cells in response to acid and bile reflux and 

attract inflammatory cells including tumor-associated macrophages, neutrophil 

granulocytes, myeloid-derived suppressor cells, immature myeloid cells,
91

 mast cells, and 

adaptive immune T and B cells
92

. Activation of a T-helper (Th) 1 cell response, characterized 

by production of IFNG, has been associated with acid reflux-induced esophagitis
90, 93

. This 

Th1 response found in esophagitis can change to a Th2 profile as BE is established. This shift 

is associated with an increase in IL4-producing Th2 cells and local increases in IL6. Finally, 

increases in inflammatory and anti-inflammatory cytokines, but fewer T cells, were found in 

EAC biopsies, compared with non-tumor tissues, indicating mixed inflammatory profile at 

this advanced disease of stage
94

. 

 Progression from ulcerative esophagitis to BE might therefore be accompanied by a 

shift in cytokine expression patterns. Myeloid and dendritic cells are recruited during 

esophageal progression of metaplasia to dysplasia and carcinoma. In the mouse model of 

BE, IL1B induces columnar metaplasia, in part, through recruitment of immature myeloid 

cells
20

. Furthermore, a CDX2-dependent reduction in a subpopulation of immature myeloid 

cells with immune suppressor properties prevents dysplasia
95

. Epithelial CDX2 might 

therefore protect against disease progression by limiting the production of the immature 

myeloid cells. Cardia and esophageal tissues from EBV-L2-IL1B mice given bile acids to 

accelerate BE development have a shift in myeloid phenotype towards granulocytic 

differentiation. Mixed acute (granulocytic) and chronic (IL1B) inflammatory responses might 

therefore accelerate carcinogenesis
20

. In mice, a myeloid subtype of the CD11b+Ly6G+ 

granulocyte lineage, tumor-associated neutrophils, support tumor growth by producing 

nitric oxide, angiogenic factors, and matrix-degrading enzymes
96, 97

. 
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 The tumor stroma contains mesenchymal cells, which might increase proliferation of 

nearby epithelial cells or recruit and polarize cells of the adaptive and innate immune 

system into those that promote tumorigenesis 
98, 99

. There is evidence from preclinical and 

clinical studies that mesenchymal cells contribute to the development of gastrointestinal 

cancers
100-102

 and are associated with  gene expression patterns that increase inflammation 

103
.  

 The composition of the human microbiome changes with and affects many human 

diseases, including cancer development
104

. The esophagus contains a complex but 

conserved population of resident microbes, with an estimated 140 bacterial species—95 of 

which have been identified
81

. The esophageal microbiome changes in patients with reflux-

related disorders or BE, compared to healthy individuals 
82

. Esophageal microbial diversity 

decreases and community composition is altered in patients with EAC, including decreased 

Gram-negative (Veillonella, Megasphaera, and Campylobacter) and Gram-positive taxa 

(Granulicatella, Atopobium, Actinomyces, and Solobacterium) and increased Lactobacillus 

fermentum. However, researchers found no significant differences in the microbiomes of 

samples of BE or EAC compared to healthy esophageal tissue 
105

. There is no clear evidence 

that 1 particular species contributes to progression of BE. However, given the differences in 

species composition between patients with vs without EAC, a small community of microbial 

species might contribute to carcinogenesis, or could simply result from it. In either case, 

distinct microbial ecotypes be biomarkers of patients at risk.  

 The World Health Organization has classified H pylori as a class I carcinogen because 

of its role in gastric adenocarcinoma development. It is estimated that over half of the 

world’s population is infected with H pylori
106

. There are however well-documented 

disparities in global H pylori prevalence and the inverse correlation between regional gastric 

cancer risk and EAC risk
6
. Given that H pylori infection provokes chronic atrophic gastritis and 

hypochlorhydria, it is thought that H pylori can decrease the effects of environmental risk 

factors, such as chronic reflux, to decrease EAC risk.  

 Patients with BE who are infected with H pylori have slower rates of aneuploidy and a 

non-significant trend towards lower incidence of EAC
107

. The composition of the gastric 

microbiome might therefore affect carcinogenesis in the distal esophagus. In patients with 

reflux esophagitis, the microbiomes of the esophagus and the stomach, particularly the 

pyloric antrum, overlap in microbial composition
107

. Streptococcus and Prevotella species 
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dominate the upper gastrointestinal tract, but the ratio of these species has also been 

associated with waist-to-hip ratio and hiatal hernia length. There could be interactions 

among modifiable risk factors. Importantly, in addition to a possible direct genotoxic effect 

on the junctional epithelium, an esophageal barrier defect can lead to translocation of non-

pathogenic bacteria, which affects immune homeostasis by shifting the balance towards 

tumor-promoting immune responses, similar to the proposed effects of bile acids.  

 Bacterial products are sensed by receptors such as the toll-like receptors and NOD-

like receptors. Activation of these pathways leads to the production of chemokines, 

inflammatory cytokines, and anti-microbial peptides
108, 109

. Wnt activation leads to barrier 

defects that cause aberrant expression and mislocalization of tight junction proteins, 

including occludin and claudins in epithelial cells, and downregulate production of 

protective mucins, which occurs during esophageal carcinogenesis
110

. Bacterial invasion of 

the esophagus and gut in general could induce an inflammatory response that involves 

upregulation of cytokines such as IL17 and IL23, which promote tumor development
111

. 

 

Progression of BE to EAC  

The cell intrinsic and extrinsic microenvironments of BE inevitably contribute to clonal 

evolution in BE tissues that sometimes leads to the development of EAC. Studying BE is a 

good way to study carcinogenesis in general, because biopsies are collected from patients 

over long time periods and provide records of changes that occur during tumorigenesis (see 

Figure 5A-C). 

 Analyses of genomic heterogeneity in BE have provided support for the clonal origin 

of the metaplasia. Genotype analyses of biopsies from the Seattle Barrett’s Esophagus 

cohort have found the BE segments to contain clonal alterations at the CDKN2A (chr 9p) 

locus (encodes p16) 
112

. Genome-wide copy number analyses indicated that large-scale 

somatic mutations at fragile sites also tended to be clonal across the segment
113

. Although 

these large clones could have been formed by expansion of late-arising mutant clones, 

through an already established BE esophagus segment, a more parsimonious explanation is 

that the founder BE cells had already acquired these genomic changes. 

 Except for the few founder lesions, BE tissues that do not progress to cancer acquire 

few alterations to genome structure (copy-number alterations or loss of heterozygosity 

events)
113

. By contrast, BE that progresses to EAC during surveillance frequently develop 
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genomic instability
113

, often mediated by TP53 inactivation, leading to genome doubling
15

 

followed by the rapid development of EAC. Single nucleotide alterations (SNAs), on the other 

hand, appear to accrue continually in benign and dysplastic tissue; except for the TP53 and 

SMAD4 genes, genic SNAs are not stage specific
114

. Moreover, apart from TP53 and SMAD4 

genes, there is no compelling evidence that cells with SNAs have a selective advantage, and 

consequently the BE segment is clonally mosaic, formed of a patchwork of genetically 

distinct lineages
15, 115

.  

 BE appears to arise from a clone with a stable genome, and thereafter, cells with 

genome structural alterations (large-scale losses, gains, and rearrangements in the genome) 

but not SNAs, are selected. In most patients, there is no evidence of ongoing important 

evolution, so BE can be thought of as an evolutionarily indolent condition (Figure 5 D and E). 

It is plausible that the initial BE lesion is well-adapted to the microenvironment, such that 

slight alterations to the genotype or phenotype of BE cells (or glands)—those changes 

mediated by most SNAs—are not sufficiently advantageous to expand. In contrast, 

alterations in chromosome structure could cause changes in cell phenotypes—they are 

associated with dysplasia after all
15, 113

 —and be selected. Consistent with the concept that 

few clones undergo strong positive selection, a longitudinal study of 195 patients with BE 

found that the level of clonal diversity across the entire BE segment (as measured by single-

cell genetic analysis of endoscopic brush specimens) to be typically fairly constant over 

time—no single clone came to dominate the segment over an average of almost 4 years of 

follow up
116

. 

 These evolutionary dynamics have important ramifications for the development of 

biomarkers to predict EAC development. Changes in genome structure are more likely to 

identify patients at risk for progression than SNAs alone. More importantly, the level of 

clonal diversity across a BE segment could be used as a marker of risk for EAC, with higher 

diversity associated with increased risk
117

. Because the level of clonal diversity does not 

change over time, the baseline level of diversity indicates a similar level of cancer risk to 

measurements made years later
116

. Moreover, the typical time it takes for a new clone to 

form and grow to a detectable size could be used to set surveillance intervals. 

 

Future Directions 
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A method to identify patients with BE most likely to progress to EAC would allow us to 

allocate resources on those at risk and avoid unnecessary procedures for those at low risk. 

Increasing our understanding of the pathogenesis of BE, including its clonal origin and early 

stages of progression to EAC, could lead to identification of biomarkers of risk. There are 

multiple competing models for the early development of BE and each of these has gained 

significant traction in recent years. This is an exciting field of research and an integrated 

approach will allow us to advance more rapidly. Evidence from studies of patients and 

mouse models indicates a sequence of changes in gland phenotypes, first initiated through a 

wounding and competitive replacement scenario. Lineage tracing data from a mouse model 

of BE corroborates this sequence of events. Genetic screens and new mouse models are 

needed to determine the features of patients, the immune response, and the luminal 

microenvironment that determine risk of BE development and subsequent carcinogenesis 
49

.  
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Figure legends 

Figure 1 The Specialized BE Gland  

A) Standard H&E-stained section of BE metaplasia showing goblet cells (arrowheads) along 

the superficial crypt compartment of the gland and mucous cells (arrows) lining the base of 

the gland. B) Cartoon of the glands shown in A. The goblet and foveolar cells are shown in 

pink, whilst the mucous base cells are shown in azure, and the gland’s stem cells are shown 

in magenta.  

 

Figure 2. Gland Phenotypes in the Metaplastic Mosaic of the BE mucosa  

The top row shows photomicrographs of representative gland types in H&E-stained sections. 

The constituent cells of the various glands are indicated (details in the main text). The lower 

half of the panel shows cartoons of the various gland types with main cell types as shown 

below. The non-goblet columnar gland is the simple mucous gland of cardiac mucosa and it 

is the first gland of columnar metaplasia in the distal esophagus. Over time this pioneer 

gland may change and follow different lines of differentiation, along either gastric or 

intestinal pathways. Together these gland phenotypes constitute the metaplastic mosaic of 

BE mucosa. 

 

Figure 3 Models of Wounding and Competitive Replacement for Development of BE  

A) Low power overview (left) of the squamo-columnar junction in a BE segment. The 

columnar and squamous epithelia are indicated. Note the submucosal gland complexes, 

which confirm that this represents bona fide columnar metaplasia of the distal esophagus. 

High-power view of the squamocolumnar junction (right). The stroma shows granulation 

features indicative of recent epithelial denudation. The overlying epithelium is a single layer 

of proliferative, undifferentiated epithelium covering this defect. The squamous and 

columnar epithelium can be clearly identified on either end. This undifferentiated 

epithelium may derive from either squamous or columnar epithelial progenitors, but the 

corrosive acid-biliary reflux micro-environment will drive secondary selection for 

phenotypes best adapted to this harsh ecology thus favoring mucin-producing columnar 

progenitors. Lineage tracing experiments in mouse models (see also Figure 4) indicate that 

this undifferentiated layer of epithelium is clonally derived from the adjacent columnar 

epithelium. B) The squamocolumnar junction coincides with the anatomic junction of 
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stomach and esophagus. C) Chronic acid-biliary reflux damages and progressively erodes the 

native squamous epithelium leading to an ulcerative defect. D) This defect is covered with a 

single layer of undifferentiated epithelium as shown in A. E) Following selection, the 

epithelial progenitors mature as mucous glands. F) With time these mucous glands undergo 

various lines of differentiation, either intestinal (shown) or gastric, depending on the local 

micro-environment. With recurrent bouts of reflux and ulceration, the columnar epithelium 

expands, progressively replacing the distal esophageal squamous epithelium. 

 

Figure 4 Inflammation and the Luminal Niche Promote Expansion of Columnar Progenitors 

from Proximal Stomach  

A) The squamocolumnar junction coincides with the anatomic junction of stomach and 

esophagus. Stem cells within glands in the proximal stomach are indicated in orange B) Acid 

biliary reflux, possibly in conjunction with dysbiosis in the luminal niche, promote expansion 

of columnar progenitors. The reparative epithelium carries the clonal mark of glands within 

the proximal stomach. This situation mimics the lineage tracing data obtained from a mouse 

model of BE. Inflammation is indicated. C) With time this reparative epithelium matures as 

columnar glands through secondary selection for mucin-producing phenotypes. 

 

Figure 5 Dynamic Equilibrium and Clonal Stasis During Carcinogenesis 

A) A BE lesion shown in the distal esophagus. B) Endoscopic view of the BE segment 

(endoscopy picture courtesy of Rehan Haidry). C) The BE segment is a mosaic of glandular 

clones, which expand and contract over time. Subclones are visualized as colored patches 

within the BE segment. D) A diagram of the unfolded esophagus showing a BE segment 

(left). Every gland within the segment is maintained by a unique population of stem cells and 

can be thought of as a singularly evolving unit within the mucosal sheet. These gland units 

are shown as hexagons. Patches of colored hexagons denote subclones within the clonally 

derived BE segment. These clonal patches may contract or expand over time and the overall 

pattern is therefore consistent with dynamic equilibrium (middle). On rare occasions, some 

clones are transformed and contribute to tumorigenesis (right). E) Clonal abundance and 

diversity within the BE segment over time. The y-axis shows the clone size within the 

segment and the x-axis shows time. The parent clone to take hold within the segment has 

alterations at the CDKN2A locus and fragile-site alterations. From this parent clone, 
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subclones arise that can recede or expand over time. One clone sustains a biallelic mutation 

in TP53, which promotes chromosomal instability and progression to EAC.  
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