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At a Glance Commentary 

Scientific Knowledge on the Subject: Oscillatory breathing during wakefulness predicts mortality in patients with 

heart failure but the responsible mechanism is unclear. Associations with increased chemosensitivity and circulatory 

delay suggest instability of the chemoreflex feedback loop, but oscillatory patterns are often irregular which illustrates 

that our knowledge is incomplete.  

 

What This Study Adds to the Field: Our study provides the mechanism of daytime ventilatory oscillations in heart 

failure: Ventilatory oscillations occur due to a chemoreflex resonance or “ringing” effect, whereby a reduced stability 

(increased loop gain)—due to increased chemosensitivity and delay—paradoxically enhances biological noise as it is 

propagated around the feedback loop, yielding stronger and more regular oscillations as stability is reduced. Our work 

may facilitate clinical measurement and interpretation of the oscillatory breathing that precedes sudden death in 

advanced heart failure. 
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Abstract 

Rationale: In patients with chronic heart failure, daytime oscillatory breathing at rest is associated with high 

mortality risk. Experimental evidence, including exaggerated ventilatory responses to carbon dioxide (CO2) 

and prolonged circulation time, implicates the ventilatory control system and suggests feedback instability 

(loop gain>1) is responsible. However, daytime oscillatory patterns often appear remarkably irregular versus 

classical instability (Cheyne-Stokes respiration), suggesting our mechanistic understanding is limited.  

Objective: We propose that daytime ventilatory oscillations generally result from a chemoreflex resonance, 

whereby spontaneous biological variations in ventilatory drive repeatedly induce temporary and irregular 

ringing effects. Importantly, the ease with which spontaneous biological variations induce irregular 

oscillations (resonance “strength”) rises profoundly as loop gain rises towards 1. We test this hypothesis 

through a comparison of mathematical predictions against actual measurements in patients with heart failure 

and healthy controls.  

Methods: In 25 patients with chronic heart failure and 25 controls, we examined spontaneous oscillations in 

ventilation and separately quantified loop gain using dynamic inspired CO2 stimulation.  

Measurements and Main Results: Resonance was detected in 24/25 heart failure patients and 18/25 

controls. With increased loop gain—consequent to increased chemosensitivity and delay—the strength of 

spontaneous oscillations increased precipitously as predicted (r=0.88), yielding larger (r=0.78) and more 

regular (interpeak interval S.D., r=−0.68) oscillations (p<0.001 for all, both groups combined).  

Conclusions: Our study elucidates the mechanism underlying daytime ventilatory oscillations in heart 

failure, and provides a means to measure and interpret these oscillations to reveal the underlying 

chemoreflex hypersensitivity and reduced stability that foretells mortality in this population.  

250/250 words 
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INTRODUCTION 

The presence of daytime ventilatory oscillations is a powerful prognostic indicator of mortality in patients 

with chronic heart failure, independent of ejection fraction and peak oxygen consumption (1-6), but the 

underlying pathogenesis remains unclear. The feedback system controlling ventilation is strongly implicated 

based on evidence that patients with oscillatory ventilation exhibit hypersensitive ventilatory chemoreflexes 

and increased circulatory delays (5, 7, 8) and evidence that ventilatory oscillations are suppressed by 

interventions that improve stability (lowered loop gain) namely reducing chemoreflex sensitivity, increasing 

cardiac output or clamping alveolar carbon dioxide (CO2) levels (5, 9-13). These findings have led to the 

prevailing view that feedback instability is responsible (7, 13-16), rather than a central pacemaker (17, 18). 

Yet there is a broad spectrum of irregular oscillatory patterns observed in patients during wakefulness, many 

of which differ substantially from the remarkably consistent periodic cycles of apnea and crescendo-

decrescendo hyperpnea (Cheyne-Stokes respiration) manifest during sleep and in computer models of 

feedback instability (16, 19). Thus, an alternative explanation for daytime ventilatory oscillations is needed.  

According to prevailing theory, a hypersensitive and delayed ventilatory feedback system will yield 

ventilatory oscillations when the critical tipping-point for instability is exceeded (loop gain >1), but when the 

system is fundamentally stable oscillations should be damped away (loop gain <1, see Methods—Theory and 

Online Supplement Fig. E1-2) (7, 14, 16, 20). Yet the instability theory has a critical weakness that precludes 

its general applicability: Even stable feedback systems (loop gain <1) manifest a resonance or “ringing” 

effect whereby random biological disturbances (e.g. intrinsic neural variability, sighs, and behavioral effects) 

repeatedly disturb the feedback loop, promoting temporary overshoot and undershoot oscillations with 

imprecise timing and amplitude (21-24). We propose that this concept underlies the pathogenesis of daytime 

ventilatory oscillations in patients with heart failure.  

Here we assess whether ventilatory oscillations that occur during wakefulness are the consequence of a 

resonance in the chemoreflex feedback loop regulating ventilation. First we describe and illustrate the 

concept of resonance as applicable to ventilatory oscillations. Subsequently, we assess daytime ventilatory 

oscillations in patients with heart failure and controls to test the hypothesis that the oscillatory behavior 

depends precisely on the stability (loop gain) of the ventilatory chemoreflex system (see Methods—Theory). 

Concordance with theory is taken to support chemoreflex resonance as the mechanism responsible. 

Preliminary data have been presented in abstract form (25). 
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METHODS 

Theoretical Basis of Resonance 

The concepts of loop gain (i.e. stability) and resonance are well established, but the concept that loop gain 

precisely determines the strength of the resonance and the ensuing oscillatory nature of breathing under 

normal (stable) conditions has not been detailed previously (see Online Supplement for details).  

The stability of the chemoreflex feedback loop is determined by its loop gain, the ratio of the compensatory 

ventilatory feedback response that opposes a ventilatory disturbance (see conceptual model, Fig. 1A). An 

isolated ventilatory disturbance provided to a stable system (loop gain = 0.8; Fig. 1B) yields a oscillatory 

“ringing” effect at a particular frequency before gradually damping out. Yet an ongoing disturbance at this 

frequency (akin to a child being pushed on a swing) produces ventilatory fluctuations that are considerably 

larger than the disturbance itself (Fig. 1C). The ease by which ventilation fluctuates as a result of a 

disturbance (26-30) is determined by loop gain according to:  

T = 1/(1−loop gain)  (Equation 1) 

where T defines the strength of the resonance and the strength of the ensuing oscillations. As loop gain rises 

towards 1 (i.e. the threshold for instability), feedback profoundly amplifies disturbances: For example, for a 

loop gain of 0.5, disturbances are doubled by the feedback system (T=2); when loop gain is 0.8, disturbances 

are 5-fold greater than they would have been without feedback (T=5, Fig. 1C)   

Simulated ventilatory oscillations. To illustrate the oscillatory characteristics that occur in the presence of 

spontaneous biological variations or “noise” (31), we examined a simple model system at various levels of 

loop gain (Fig. 2). Note the distinct emergence of irregular oscillatory patterns (Fig. 2A) that bare a 

remarkable resemblance to ventilatory patterns observed in heart failure (13, 32, 33) and controls with 

experimentally-raised loop gain (34) (see Results).  

Importantly, we now recognize that as loop gain rises, a stronger resonance occurs that can be quantitatively 

identified as a stronger peak in the power spectrum of ventilation (Fig. 2B), ultimately yielding larger and 

more regular oscillations.  

Methodological Approach 

Our primary objective was to test whether oscillatory strength—namely amplitude relative to biological 

noise (i.e. T)—is uniquely related to the loop gain of the ventilatory control system according to Equation 1. 

Loop gain was measured separately using dynamic inspired CO2 (see below) during wakefulness. We also 

assessed whether larger amplitude, more regular oscillations are associated with a higher loop gain, and 

whether the spectral profile of oscillations matches that expected of a resonance.  

Participants 

Page 5 of 64



For Review
 O

nly

 

5 

Twenty-five patients with an established clinical diagnosis of chronic heart failure (any left ventricular 

ejection fraction) and twenty-five controls without heart failure were studied. Participants attended as part of 

larger ongoing prospective studies investigating the stabilizing mechanisms of acetazolamide and oxygen 

and the causes of sleep apnea (interventions were not given before/during this study). Inclusion required the 

absence of severe comorbidities including lung, kidney and liver diseases. Participants taking medications 

affecting respiratory control (including opioids, benzodiazepines, barbiturates, acetazolamide, theophylline, 

indomethacin, pseudoephedrine) were excluded. Participants provided written informed consent and 

approval was granted by the Partners’ Institutional Review Board. Details are provided in the Online 

Supplement.  

Procedure 

Participants were examined by a physician before study procedures. Measures were made in the morning 

(7am-12pm) to minimize potential time of day effects. Participants were instrumented with a sealed nasal 

mask to facilitate measurement of ventilation (heated pneumotachograph and pressure transducer; Hans-

Rudolph Model 3700, Kansas City, MO, USA; Validyne Engineering Corp., Model MP45-14-871, 

Northridge, CA, USA; ventilation = tidal volume × respiratory rate). Absence of mask leak was confirmed 

by forced expiration against a closed exhalation port. A thin catheter was placed through a port in the mask 

to measure intranasal CO2 tension (PCO2; Vacumetrics Inc., Model 17625, Ventura, CA, USA) enabling 

assessment of inspired PCO2 and end-tidal PCO2 (a surrogate for alveolar and arterial PCO2). 

Electroencephalography (C3-A2, O2-A1) was performed to document wakefulness. Participants lay supine, 

and were instructed to relax, keep their eyes open and mouth closed (confirmed via visual assessment) and 

watched television as a distraction. Ventilation was recorded without interruption for 20 min to assess 

spontaneous ventilatory oscillations (see below). Participants were subsequently connected to a non-

rebreathing circuit for measurement of their chemoreflex stability (i.e. loop gain) using inspired CO2. For 

each procedure, a period of acclimation was provided to ensure ventilation and end-tidal PCO2 settled to an 

equilibrium before proceeding. Signals were sampled at 125 Hz (Power 1401 and Spike2, Cambridge 

Electronic Design Limited, Cambridge, UK); breath-by-breath respiratory signals were resampled at 4 Hz for 

further analyses. 

Ventilatory Oscillations 

To quantify the oscillatory nature of ventilation during spontaneous breathing, we performed spectral 

analysis and fit a physiological equation that describes the spectral profile of a resonance (Fig. 2B; one-

compartment delayed feedback stimulated by noise, see Online Supplement). This analysis revealed a single 

parameter, T, a measure of the oscillatory strength (amplitude / background noise) that is theoretically related 
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to loop gain (Equation 1). The peak-to-peak amplitude and irregularity (interpeak interval S.D.) of 

ventilatory oscillations were also quantified (see Online Supplement).  

Chemoreflex Stability 

Loop gain was quantified using dynamic inspired CO2 stimulation using a modified method employing 

pulsatile CO2 stimuli. 7% inspired CO2 was administered for a duration of 0.5 min, every 3 min for a total of 

30 min (10 pulses) that has the equivalent effect of stimulating ventilation at 5 frequencies simultaneously 

(0.33, 0.67, 1, 1.33, 1.67 cycles/min). Chemosensitivity (∆ventilation/∆alveolar PCO2), CO2 damping or 

plant gain (∆alveolar PCO2/∆ventilation) and accompanying delays were calculated at each frequency to 

determine loop gain (chemosensivity×plant gain, see Online Supplement). 

Statistics 

Linear regression assessed the relationship between the oscillatory strength (T, spectral analysis) and the 

underlying loop gain (CO2 stimulation). Oscillatory strength was first transformed (1−1/T,
 
reflecting the 

estimated loop gain) before statistical analysis; transformed data became normally distributed and 

correlations with putative physiological determinants became linear, as expected by theory. Fisher F-tests 

compared the resonance model of the power spectrum versus the biological noise model without resonance 

within individuals; a significant improvement over noise confirmed the presence of a resonance (i.e. T 

significantly >1). Student’s t-tests compared variables between heart failure and controls; general linear 

models compared variables adjusted for age, sex, and BMI (see Online Supplement for matched 

comparisons). Determinants of loop gain, including chemoreflex sensitivity and delay, were quantified at a 

common frequency (1 cycle/min) for regression analyses; multiple regression results were summarized by 

presenting the improvement in the model r
2
 with the inclusion of each determinant in a sequential manner 

(forward stepwise). Unless specified otherwise, loop gain refers to the value at the natural frequency. 

Statistical significance was accepted at p<0.05. 
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RESULTS 

Characteristics 

Participant characteristics are detailed in Table 1. The heart failure population exhibited a range of severities 

of left ventricular ejection fraction (ejection fraction range: 15-67%; two individuals had preserved ejection 

fraction). All heart failure patients were on optimal medical therapy per attending cardiologist. 

Chemoreflex Stability 

Assessment of chemoreflex feedback control of ventilation is detailed in Table 2. Patients with heart failure 

exhibited stable ventilatory control systems during wakefulness (loop gain range: 0.10-0.84) and exhibited a 

71% higher loop gain than controls (p=0.003, adjusted for age, sex, BMI).  

Ventilatory Oscillations 

Example traces. Ventilatory patterns during spontaneous breathing in 5 patients with heart failure are shown 

in Fig. 3A. Note the profound, irregular oscillations bear a remarkable resemblance to the ventilatory 

oscillations emerging from feedback amplification of 1/f noise (Fig. 3A versus Fig. 2A).  

Resonance model. The resonance model closely fit the measured spectral profile of ventilatory oscillations 

for each participant (see examples in Fig 3B and summary data in Table 3). The presence of a significant 

resonance was observed in 24/25 patients with heart failure and 18/25 controls (Fisher F-test, comparing 

resonance to biological noise without feedback). Participants without a significant resonance (ventilatory 

variability resembled noise) tended to have a lower loop gain (see Online Supplement). 

We observed a notable concordance between the oscillatory strength (T) seen using spectral analysis and the 

underlying loop gain taken from CO2 stimulation (Fig. 4A), as expected from theory (Equation 1). That is, 

the underlying loop gain accurately explains the oscillatory nature of ventilation. Importantly, this 

association enabled loop gain to be estimated accurately from spontaneous oscillations (estimated loop gain 

= 1−1/T; Fig. 4A).  

Consistent with prediction, increasing loop gain was associated with oscillations that were larger (Fig. 4B) 

and had less irregular timing (smaller S.D. of interpeak interval, Fig. 4C).  

The period of spontaneous oscillations was also associated with the measured natural cycling period 

(1/[natural frequency] based on CO2 stimulation, r=0.75, p<0.001) consistent with feedback resonance.  

Determinants of Reduced Stability and Oscillations 

Linear regression models included the four loop gain determinants shown in Table 2.  

Determinants of chemoreflex stability. Across all participants, increased loop gain was explained by an 

increase in chemoreflex sensitivity (univariate r
2
=0.42, p<0.001), chemoreflex delay (univariate r

2
=0.14; 
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multiple regression ∆r
2
=0.24, p<0.001), and plant gain (i.e. reduced lung volume; univariate r

2
<0.01; 

multiple regression ∆r
2
=0.13, p<0.001).  

Determinants of ventilatory oscillations. A stronger resonance (T, spectral analysis) was associated with 

increased chemoreflex sensitivity (univariate r
2
=0.36, p<0.001), plant gain (univariate r

2
<0.01; multiple 

regression ∆r
2
=0.15, p<0.001) and circulatory delay (univariate r

2
=0.07; multiple regression ∆r

2
=0.14, 

p<0.001). The presence/absence of heart failure explained a minor additional component (∆r
2
=0.03, 

p<0.001) suggesting that factors relating to heart failure beyond the determinants reported had a minor 

independent impact. Oscillatory amplitude and irregularity were also explained by chemoreflex sensitivity 

and delays (Online Supplement).  
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DISCUSSION 

Our study elucidates the mechanism underlying daytime ventilatory oscillations, a key predictor of mortality 

in patients with heart failure (1-6). We found that reduced stability (increased loop gain)—consequent to 

increased chemosensitivity, delay and plant gain—yields stronger oscillations precisely as expected based on 

the theoretical concept of resonance (Equation 1). Specifically, the chemoreflex feedback system regulating 

ventilation paradoxically enhances biological noise near the frequency of periodic breathing, to yield 

overshoot and undershoot ventilatory oscillations. These ventilatory oscillations in heart failure are typically 

irregular (Fig. 3A), and conform to a model of feedback resonance in 96% of patients (Fig. 3B). As loop gain 

rises towards 1, oscillations become larger and more regular (Figs. 2 and 4), yielding prominent periodic 

breathing despite being classed as a ‘stable system’ according to classical criteria (loop gain<1). In contrast 

with current understanding, the more extreme conditions of feedback instability are therefore not necessary 

for ventilatory oscillations to occur in heart failure (7, 13-16). Overall, our data are remarkably consistent 

with chemoreflex resonance as the predominant mechanism responsible. Our work therefore provides the 

field with a validated framework for interpreting and quantifying the broad range of oscillatory ventilatory 

behaviors seen commonly in patients with heart failure. 

Comparison with Available Evidence 

By linking the clinical pattern of ventilatory oscillations to the function of the chemoreflex feedback system 

that regulates ventilation, we provide a unifying explanation for a host of previous empirical findings. 

Observational studies consistently demonstrate associations between daytime oscillatory breathing in heart 

failure and factors that promote a less stable feedback regulation of ventilation, namely increased 

chemosensitivity and circulatory delay (7, 8, 12). Interventions that diminish feedback act to suppress 

oscillations, seen as a reduced variability and the disappearance of a peak in the power spectrum of 

ventilation (5, 9-11, 13). In healthy subjects and animals breathing spontaneously, experimental studies have 

demonstrated associations between ventilatory fluctuations and prior swings in ventilation and PCO2, which 

are dependent on intact chemosensitivity (22, 26, 35). Modeling studies have also suggested that a stronger 

chemoreflex response or higher loop gain yields quasi-oscillations in the presence of biological noise (24), 

although a quantitative relationship between oscillatory behavior and reduced stability had not been proposed 

or tested experimentally until now. Taken together with the current study, the available evidence now 

overwhelmingly implicates chemoreflex feedback regulation in the ventilatory oscillations observed.  

Physiological Insights 

Our study experimentally links the nature of ventilatory oscillations to the underlying structure of the 

chemoreflex control system regulating ventilation. Several key insights can be drawn from our work:  
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Based on the concept of resonance, some degree of ventilatory oscillations must occur as a necessary side-

effect of homeostatic regulation. Specifically, a greater chemoreflex sensitivity will more completely 

suppress a long-term or steady-state disturbance to ventilation (e.g. a change in respiratory mechanics or 

metabolic rate), but will yield a greater amplification of biological noise at its characteristic frequency (see 

Fig. 2B, see also Online Supplement). The greater circulatory delay that occurs in heart failure will increase 

the amplification at the resonance, but also moves the resonance to a lower frequency where biological noise 

is greater. 

Oscillations result from chemoreflex feedback across a stability-instability continuum. Individuals with very 

low loop gain (e.g. 0<loop gain≤0.25) exhibit a pattern resembling biological noise. Those with normal loop 

gain (0.25<loop gain≤0.5) exhibit weak and irregular oscillations. Patients with elevated loop gain (0.5<loop 

gain≤1) manifest stronger and more regular oscillations (Fig. 3). Finally, consistent periodic breathing occurs 

in the most extreme cases when the threshold for instability is breached (loop gain>1).  

When loop gain is below 1, the magnitude of biological noise plays a key role in the pathogenesis of 

oscillatory breathing. For example, patients i and iii have quite similar loop gains but patient i has 2-fold 

larger oscillations due to increased noise (see Figs. 2 and 3). Consequently, ventilatory fluctuations can be 

larger as a consequence of increased loop gain or increased noise. Thus, two distinct phenotypes of excessive 

ventilatory variability can be described: those driven largely by hypersensitive chemoreflex feedback 

(normal biological noise levels) and those with increased biological noise i.e. ataxic opioid-induced 

ventilatory fluctuations (36) or ventilatory fluctuations in rapid-eye movement sleep (37).  

The concept of resonance has important implications for periodic breathing during sleep, known as central 

sleep apnea, which is also a strong prognostic marker of mortality in heart failure (1). Although sleep 

diminishes chemosensitivity per se, ventilatory oscillations become even more prominent (9). Key 

contributing factors include changes to state (sleep-wake transitions, arousals) and upper-airway patency 

(e.g. swings in dilator muscle tone) (38). Insofar as arousals and changes to upper-airway patency are tied to 

PCO2, such effects effectively raise loop gain by exacerbating changes in ventilation per change in PCO2. 

However, to the extent that arousals and upper airway effects are random, they provide an additional source 

of biological variability that will act to promote oscillatory breathing with maximum impact in those with 

elevated loop gain. Diminishing these disturbances with hypnotics/CPAP can indeed improve central sleep 

apnea (39). Such disturbances may also explain residual events after loop gain is lowered to stable levels 

with intervention (40).  

The concept also has implications for obstructive sleep apnea, a condition characterized by irregular 

ventilatory oscillations due to a combination of increased upper airway collapsibility and reduced ventilatory 

stability (41). Interestingly, reducing loop gain can improve obstructive sleep apnea severity even when the 
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control system is strictly stable before intervention (41), potentially due to damping of chemoreflex 

resonance effects. 

Clinical Implications 

In patients with heart failure, increased chemosensitivity and consequent ventilatory oscillations are 

harbingers of the neurohumoral derangement that ultimately predisposes to mortality (42, 43). On this basis, 

a simple means to quantify reduced stability, as distinct from increased biological noise, may have clinical 

utility. Importantly, the current work enables a quantitative identification of the propensity to instability in 

individual patients from spontaneous breathing, without intervention. We and others have used spontaneous 

breathing to quantify stability (26, 41, 44, 45), but the use of a single variable to estimate stability without 

intervention has not been validated to date. Our approach may help 1.) recognize the predisposition to 

Cheyne-Stokes respiration during wakefulness or sleep, 2.) provide a means to titrate medications or screen 

those at high risk of sudden cardiac death, 3.) assess the impact of novel therapies designed to reduce 

chemosensitivity. However, further investigation is warranted.  

Limitations  

Detailed mechanisms. Our study does not attempt to elucidate the specific chemoreceptors responsible for 

the ventilatory oscillations observed. Peripheral and central chemoreceptor systems may both contribute to 

the dynamic response measured with CO2 stimulation, although available evidence suggests an essential role 

for the carotid body chemoreceptors in the ventilatory oscillations and mortality in heart failure (46-49).  

Hypoxic chemosensitivity may also play a role (8), so including it in a measure of loop gain may further 

improve the associations observed. We also did not seek to elucidate the main source of ventilatory noise. 

Sources may be either extrinsic (e.g. behavioral inputs, neural variability external to chemoreflex feedback) 

or intrinsic (e.g. neural variability at the level of respiratory pattern generator or within chemoreceptor 

circuits in the medulla). The precise details of ventilatory disturbances were not under investigation: the 

essential point is that biological variability acts to disturb ventilation across a broad frequency range in all 

individuals. 

End-tidal PCO2 as an estimate of alveolar and arterial PCO2. End-tidal PCO2 is used ubiquitously in 

ventilatory control studies of patients with and without heart failure to reflect breath-to-breath changes to 

alveolar and arterial PCO2. We note that particular care was taken to ensure a sufficient plateau such that 

end-tidal PCO2 reflected alveolar levels (see Online Supplement). Moreover, we excluded patients with lung 

disease; nonetheless, the difference between end-tidal and arterial PCO2 may be considerable in some 

patients with heart failure (e.g. via subclinical pulmonary congestion). We note, however, that a constant 

discrepancy between these two variables will have no impact on the values of loop gain measured as this 

calculation depends on relative PCO2 changes rather than the absolute value. 
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Non-linearities. The resonance concept employed here can be considered a linear simplification of more 

general nonlinear behavior. We note that spectral analysis of the oscillation traces revealed subtle higher 

harmonics at multiples of the natural frequency (i.e. not explained by the linear resonance model) in 3/25 

patients with heart failure and 0/25 controls, consistent with the absence of nonlinear effects except in 

extreme cases (see patients ii and iv in Fig. 3, note smaller peaks not explained by the red model trace; see 

Online Supplement).  

Conclusions 

Using a combination of mathematical modeling and direct measurement in patients with heart failure, our 

study demonstrates that daytime breathing oscillations in heart failure are readily explained by a potent 

resonance or “ringing” effect due to the chemoreflex feedback system regulating ventilation. Reduced 

stability—consequent to increased chemosensitivity and delay—leads to a greater amplification and 

propagation of biological noise around the feedback loop, yielding transient overshoot and undershoot 

oscillations that become profound as stability is reduced. We may now decipher oscillatory characteristics to 

more readily detect and interpret the otherwise covert increases in chemoreflex sensitivity that are known to 

occur with advanced heart failure and foretell mortality.  
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TABLES 

 

Table 1: Patient Characteristics  

 

Characteristics 
Heart failure  

N=25 

Controls  

N=25 

Male:Female 23:2 15:10† 
Age, years 61±13 53±13 
Body mass index (kg/m2) 31±7 32±7 
Systolic dysfunction (Y:N) 23:2 - 
Left-ventricular ejection fraction (%) 38±15 60±3‡§ 
New York Heart Association class (I:II:III), N 3:13:8 - 
Medications, N (%)   

Beta-blockers 24 (96) 0 (0)† 
Loop diuretics 17 (68) 0 (0)† 
ACEi or AT2R blockers 23 (92) 2 (8)† 
Spironolactone 9 (36) 0 (0)† 
Digoxin 6 (24) 0 (0)† 

 

Values are mean±S.D. 
†
p<0.05 (Fisher exact test). 

‡
Measured in a subset of 5/26 

controls (and all participants with heart failure). 
§
p<0.001 heart failure vs. controls 

(Student’s t-test). ACEi=angiotensin-converting enzyme inhibitor. AT2R=angiotensin 

type II receptor.  

 
 

Table 2. Chemoreflex stability  

 

Characteristics 
Heart failure  

N=25 

Controls  

N=25 

Summary   
Loop gain 0.43±0.21 0.25±0.09*** 
 (range: 0.10-0.84) (range: 0.06-0.45) 
Natural frequency (cycles/min) 1.33±0.39 1.85±0.51*** 
 (range: 0.78-2.57) (range: 1.15-2.63) 

Loop gain determinants‡:   
Chemoreflex sensitivity (L/min/mmHg)§ 0.59±0.24 0.48±0.20† 

Plant gain (mmHg/L.min)§ 0.89±0.21 0.99±0.23 
Chemoreflex delay (s)|| 18.2±4.6 13.8±3.3** 
Plant delay (s)|| 7.9±1.4 8.2±1.6 

 

Values are mean±S.D. 
**

p<0.01, 
***

p<0.001 heart failure versus controls. 
†
Non-significant trend 

(p=0.08). 
‡
Values are reported for 1 cycle/min oscillations. §Chemoreflex sensitivity or controller 

gain describes the change in ventilation in response to a 1 mmHg oscillation in alveolar PCO2. Plant 

gain describes the change in alveolar PCO2 caused by a 1 L/min oscillation in ventilation. 
||Chemoreflex delay describes the phase shift between alveolar PCO2 and ventilation (delay = phase 

lag / 360° × 60) (7). This value reflects the lung-to-chemoreceptor circulation time plus additional 

time lags due to mixing of CO2 in the blood and tissues. Likewise, plant delay describes the phase 

shift between ventilation and alveolar PCO2 due to CO2 mixing in the lungs. Values are presented in 

units of time rather than phase to facilitate interpretation.   
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Table 3. Ventilatory oscillations 

 

Characteristics 
Heart failure 

N=25 

Controls 

N=25 

Power spectral analysis of feedback amplification*   
Oscillatory strength, T 1.7 [1.2] 1.4 [0.2]††† 
 (range: 1.2-11.3) (range: 1.1-2.4) 
Estimated loop gain, 1−1/T 0.46±0.19 0.29±0.11††† 
Estimated natural frequency (cycles/min) 1.7±0.5 2.5±0.6††† 
Significant resonance detected‡ (Y:N) 24:1 18:7§ 

Time-domain analysis   
Amplitude (%mean) 47 [44] 34 [23]† 
Inter-peak interval S.D. (%mean) 26±8 33±6†† 

 

Values are mean±S.D. or median[75th minus 25th percentile]. *A resonance model was fit to the ventilation 

power spectrum to summarize the data. The general model is given by y=Sd(f)/|1−LG(f)|2 where the noise 

component Sd(f) is assumed to conform to a power law (Sd(f)=βf−α where α=exponent, β=offset, f=frequency) 

and the chemoreflex influence is described by the simplest possible model (LG(f)=−ke−i2πfδ/(1+i2πfτ) where 

k=gain, τ=time-constant, δ=delay) (41, 50). 
†p<0.05, ††p<0.01, †††p<0.001. ‡Fisher F-test compared the 

resonance model (feedback stimulated by biological noise) to noise (without feedback) for each individual. 
§p<0.05 Fisher exact test. 
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Figure Legends 

Figure 1. Concept of chemoreflex resonance and the relationship with loop gain. (A) Feedback model for the chemoreflex 

regulation of ventilation. (B) In a stable system, a temporary disturbance that raises ventilation—thereby lowering alveolar CO2 

and later eliciting a reflex reduction in ventilatory drive—ultimately yields a resonance or “ringing” effect characterized by 

successive overshoot/undershoot fluctuations that damp out over time. Note that each feedback response (overshoot/undershoot) is 

~0.8 times smaller than the prior deflection in ventilation (loop gain = 0.8). (C) In the same system, an ongoing disturbance is 

amplified to yield 5-fold swings in ventilation even though feedback is stable (T=5, see Equation 1). 

 

Figure 2. Simulated chemoreflex oscillations. (A) A biological disturbance (top signal) is applied to ventilation for chemoreflex 

systems with increasing loop gain (reduced stability). Tidal breaths are drawn to faciliate comparison with ventilatory oscillations 

seen in patients with heart failure. (B) Spectral view of signals in panel A illustrates how biological noise is amplified by the 

system in a particular range of frequencies (near 1 cycle/min). In theory, the strength of the oscillation (T = amplitude / noise, 

vertical arrows) at the frequency of periodic breathing (“natural” cycle frequency), is determined by loop gain (Equation 1).  Note 

also that slower disturbances are inhibited (reduced power at lower frequencies) as expected of homeostatic feedback (see Online 

Supplement). 

 

Figure 3. Daytime ventilatory oscillations in patients with heart failure. (A) Ventilation data from 5 patients (i-v) are shown 

superimposed on ventilatory flow waveforms. (B) Corresponding power spectra are shown. Note the close fit of the resonance 

model (red lines, shading denotes S.E.M.) to spectral data (blue bars). In theory, the strength of oscillations (amplitude/noise, T) is 

determined by the chemoreflex stability. Patients i-ii exhibited strong yet irregular overshoot-undershoot ventilatory oscillations. 

Patient iii exhibited modest oscillations following a transient disturbance (sigh breaths). Patient iv exhibited strong yet periodic 

oscillations consistent with instability (loop gain near 1). To the eye, patient v exhibited no overt oscillatory behavior in (A), but 

spectral analysis reveals a weak oscillation (B). Amplitude in the scaling bar represents ventilation (tidal volume × respiratory 

rate). 

 

Figure 4. Reduced chemoreflex stability explains ventilatory oscillations in patients with heart failure. With increasing loop 

gain, oscillations became stronger relative to biological noise (A), larger in amplitude (B) and more regular (C). (A) Notably, the 

strength of oscillations (spectral height relative to background noise, T) closely matched that predicted from the loop gain of the 

chemoreflex system regulating ventilation (solid black line, Equation 1). Accordingly the estimated loop gain from the spectra 

closely matched the measured loop gain (error=0.03±0.09, mean±S.D.). Shading in (C) denotes 95% prediction interval of 

simulated data. Solid circles denote heart failure and open circles denote controls. Patients i-v from Fig. 2 are denoted. 
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Figure 1. Concept of chemoreflex resonance and the relationship with loop gain. (A) Feedback model for the 
chemoreflex regulation of ventilation. (B) In a stable system, a temporary disturbance that raises 

ventilation—thereby lowering alveolar CO2 and later eliciting a reflex reduction in ventilatory drive—

ultimately yields a resonance or “ringing” effect characterized by successive overshoot/undershoot 
fluctuations that damp out over time. Note that each feedback response (overshoot/undershoot) is ~0.8 

times smaller than the prior deflection in ventilation (loop gain = 0.8). (C) In the same system, an ongoing 
disturbance is amplified to yield 5-fold swings in ventilation even though feedback is stable (T=5, see 

Equation 1).  
Figure 1  
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Figure 2. Simulated chemoreflex oscillations. (A) A biological disturbance (top signal) is applied to 
ventilation for chemoreflex systems with increasing loop gain (reduced stability). Tidal breaths are drawn to 
faciliate comparison with ventilatory oscillations seen in patients with heart failure. (B) Spectral view of 
signals in panel A illustrates how biological noise is amplified by the system in a particular range of 

frequencies (near 1 cycle/min). In theory, the strength of the oscillation (T = amplitude / noise, vertical 
arrows) at the frequency of periodic breathing (“natural” cycle frequency), is determined by loop gain 
(Equation 1).  Note also that slower disturbances are inhibited (reduced power at lower frequencies) as 

expected of homeostatic feedback (see Online Supplement).  

Figure 2  
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Figure 3. Daytime ventilatory oscillations in patients with heart failure. (A) Ventilation data from 5 patients 
(i-v) are shown superimposed on ventilatory flow waveforms. (B) Corresponding power spectra are shown. 
Note the close fit of the resonance model (red lines, shading denotes S.E.M.) to spectral data (blue bars). In 

theory, the strength of oscillations (amplitude/noise, T) is determined by the chemoreflex stability. Patients 
i-ii exhibited strong yet irregular overshoot-undershoot ventilatory oscillations. Patient iii exhibited modest 

oscillations following a transient disturbance (sigh breaths). Patient iv exhibited strong yet periodic 
oscillations consistent with instability (loop gain near 1). To the eye, patient v exhibited no overt oscillatory 
behavior in (A), but spectral analysis reveals a weak oscillation (B). Amplitude in the scaling bar represents 

ventilation (tidal volume × respiratory rate).  
Figure 3  
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Figure 4. Reduced chemoreflex stability explains ventilatory oscillations in patients with heart failure. With 
increasing loop gain, oscillations became stronger relative to biological noise (A), larger in amplitude (B) and 
more regular (C). (A) Notably, the strength of oscillations (spectral height relative to background noise, T) 

closely matched that predicted from the loop gain of the chemoreflex system regulating ventilation (solid 
black line, Equation 1). Accordingly the estimated loop gain from the spectra closely matched the measured 
loop gain (error=0.03±0.09, mean±S.D.). Shading in (C) denotes 95% prediction interval of simulated data. 

Solid circles denote heart failure and open circles denote controls. Patients i-v from Fig. 2 are denoted.  
Figure 4  

630x211mm (96 x 96 DPI)  

 

 

Page 23 of 64



For Review
 O

nly

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Online Supplement 
 

 

Resonance as the Mechanism of Daytime Periodic Breathing  

in Patients with Heart Failure 
 

 

Scott Sands*, Yoseph Mebrate, Bradley Edwards, Shamim Nemati, Charlotte Manisty, Akshay Desai,  

Andrew Wellman, Keith Willson, Darrel Francis, James Butler, Atul Malhotra 

 

 

*Corresponding author. e-mail: sasands@partners.org 
 

 

The following supplemental data are provided: 

 

METHODS 

Background on Instability and Resonance 

Linking Loop Gain and Resonance  

Resonance as a Compulsory Feature of Negative Feedback 

Simulations 

Terminology 

Data Analysis 

Ventilatory Oscillations 

Chemoreflex Stability: Summary 

Chemoreflex Stability: Details 

RESULTS  

Ventilatory Oscillations 

Determinants of Ventilatory Oscillations 

Reduced versus Preserved Ejection Fraction 

Sensitivity Analyses 

Matched Comparisons between Heart Failure and Controls 

Table E1 

Table E2 

MATLAB Source Code 

REFERENCES 

 

 

Page 24 of 64



For Review
 O

nly

*Loop gain describes the magnitude of the response to a ventilatory disturbance for any given frequency f; thus loop gain is formally 

denoted LG(f). LG(f) also encapsulates the phase or time lag in the response to a disturbance. At the natural frequency fn the opposing 

response is half a cycle behind the disturbance. Loop gain at this frequency LGn determines stability. 

E2 

METHODS 

Background on Instability and Resonance 

Instability. The stability of chemoreflex 

feedback loop controlling ventilation is 

determined by its loop gain, the ratio of the 

compensatory ventilatory response that opposes 

a ventilatory disturbance (see conceptual 

model, Fig. 1A main manuscript)*.  

Consider the feedback response to a sinusoidal 

change in ventilation: If the change in 

ventilation occurs slowly, the ventilatory 

response will oppose the sinusoidal deflection 

(Fig. E1A). At a higher frequency—consequent 

to the circulation delay—the feedback response 

will arrive counter-effectively in phase with the 

next deflection in ventilation (Fig. E1B).  

If, at the characteristic natural frequency, the size of the feedback response is smaller than the disturbance (loop 

gain <1) (Fig. E2A) the system is stable and oscillations will damp out. When loop gain exceeds 1, such that the 

response is greater than the disturbance, the system is unstable, yielding Cheyne-Stokes respiration (E1-3) (Fig. 

E2B). 

 

Fig. E2. Feedback instability. The feedback response (red) to a sinusoidal disturbance (blue) at the natural frequency is 

determined by loop gain (y/v). (A) For example, if the response (red line) is smaller than the disturbance (blue line), i.e. loop gain 

<1, then the system is stable. Note that oscillations which follow a transient disturbance progressively decay. (B) If the response 

is greater than the disturbance, i.e. loop gain >1, then the system is unstable. Hence, a small transient disturbance d will result in 

progressive oscillatory growth until Cheyne-Stokes respiration occurs (see Supplemental Methods—Simulations for details). 

Fig. E1. Feedback promotes 

oscillations at particular 

frequencies. Consider a 

feedback loop with a delay 

eliciting a feedback response 

(red) to oppose a ventilatory 

deflection (blue). (A) For slow 

disturbances (5 min period, top), 

the response effectively inhibits 

the disturbance. (B) For a faster 

disturbance (1 min period), the 

same delay causes the feedback 

response to occur half a cycle 

too late, acting to promote rather 

than inhibit the disturbance. The 

response occurs precisely in 

phase with the disturbance at the 

system’s characteristic natural 

frequency 
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*Equation 1 is derived by recognizing that ventilatory deflections v are the sum of the disturbance d and the feedback response y 

(v=y+d), and that the feedback response itself is the result of the system acting on the ventilatory deflection (y=LG(f)×v) such that 

v=LG(f)×v+d. Rearranging to find T(f) = |v/d| reveals that T(f) = 1/|1−LG(f)|.  

E3 

Resonance. Now consider the feedback system acting to oppose an ongoing disturbance such that the observed 

ventilatory fluctuation is the sum of the disturbance and the feedback response. The size of the resultant swings 

in ventilation relative to the swings in the underlying disturbance are given by (E4-6):  

T=1/|1−loop gain|  (Equation 1) 

where T is the transmissibility or “chemoreflex amplification”*.  

Importantly, T varies considerably with the frequency of the disturbance (Fig. E3A): At frequencies where T<1, 

disturbances are inhibited by the system to promote homeostasis (E4, E6). However, at frequencies where T>1, 

disturbances are paradoxically amplified by the system. That is, fluctuations are larger (by factor T) because of 

the presence of feedback versus its absence. The frequency range where T>1 is defined as a resonance (red 

region, Fig. E3). T, when measured at the natural frequency, indicates the strength of the resonance and the 

ensuing oscillations. 

Linking Loop Gain and Resonance  

Here we note explicitly that the same single variable that determines stability—loop gain at the natural 

frequency—also determines the strength of the resonance T at the natural frequency (E7) when breathing is 

stable. Consequently, as loop gain rises towards 1, the feedback system more powerfully amplifies disturbances 

into oscillations (Fig. E3A,B). We also show that this phenomenon is an expected feature of all delayed 

feedback regulatory systems (see below). On this basis, the strength of the resonance, and in turn loop gain, can 

be inferred by examining the spectral profile of spontaneous oscillations (see Figs. 2, 3A, 4A).  

 

 

 

 

Fig. E3. Chemoreflex amplification versus frequency. (A) 

Disturbances are suppressed (green) or amplified (red) by the 

chemoreflex feedback system depending on frequency. The degree 

of amplification (transmissibility T) reflects the underlying loop 

gain. For example, a loop gain of 0.5 yields 2-fold amplification 

(T=2) and a loop gain of 0.8 yields 5-fold amplification (T=5). (B) 

At the natural frequency, T increases hyperbolically as loop gain 

approaches 1 (Equation 1) yielding a stronger resonance as the 

system becomes less stable. Note also, in panel A, that an increased 

gain improves the inhibition of low frequency (persistent) 

disturbances at the cost of a stronger resonance. This trade-off is 

sometimes referred to as the water-bed effect. 
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E4 

Resonance as an expected feature of all delayed negative feedback systems  

Mathematical proof of resonance. To our knowledge, it has not been shown that all feedback systems with a 

delay must exhibit a resonance (frequency range or ranges with transmissibility>1). Consider a general stable 

feedback loop X(f) with an additional delay δ, where loop gain is given by LG(f)=X(f).e
−i2πfδ

. This examination 

reveals that there is always some natural frequency f=fn at which the phase of the loop (φLG=φX−2πfδ mod 2π) 

equals zero. That is, there is no feature of the system X(f)—constrained physically to finite causal functions—

that can counteract the linearly decreasing phase of the delay. In the vicinity of the natural frequency (where 

transmissibility>1 because loop gain [LGn] is real and positive), disturbances are necessarily amplified despite 

the system being fundamentally stable (0<LGn<1).  

Mathematically, the existence of a natural frequency fn (at which transmissibility>1) is compulsory when there 

is some frequency at which the feedback response is in phase with the disturbance at the system input, that is, 

there is a solution to phase φLG=0 (mod 2π). Consider a general feedback system, denoted X(f), to which we add 

a delay δ such that the overall feedback system loop gain is given by LG(f)=X(f)e
−sδ

 (where s is the complex 

Laplace variable; for frequency analysis s=i2πf). The phase of this general feedback system is given by 

φLG=φX−2πfδ. To find a natural frequency fn, we solve for phase = 0: 

02XLG =δπ−ϕ=ϕ f  (mod 2π) (Equation E1) 

The following provides proof that no component of X can provide a phase advance, e.g. negative delay, that can 

prevent a zero phase crossing without violating causality. If X is a causal system, a sharp signal (e.g. impulse) is 

applied at the input, the corresponding wave front at the output must occur at or after the time that the impulse 

occurs; i.e. this response latency or front delay of X (δX) must not be negative. Equivalently, δX can be 

expressed in terms of the phase φx, as: 

0
d

d
lim

2

1 X
X ≥

ϕ

π

−
=δ

∞→ ff
 (Equation E2) 

Eq. E2 illustrates that the phase φx can not increase indefinitely at high frequencies without violating causality. 

Thus, the combination of Eqs. S1 and S2 show that the phase of any system φX can not offset the negative phase 

of the additional delay (−2πfδ).  

Hence, there will always be at least one frequency at which phase equals zero (φLG = 0; response is in phase 

with the disturbance; Eq. E1 is satisfied), such that transmissibility>1 and thus disturbances are paradoxically 

amplified. The frequency band neighboring this frequency (fn) describes the region of resonance 

(transmissibility >1) in which amplification of disturbances necessarily occurs.  

The tradeoff between negative feedback suppression and positive feedback amplification (water-bed effect). 

A necessary consequence of homeostatic feedback (i.e. transmissibility<1 at low frequencies to maintain long 

term equilibrium) is that more sensitive negative feedback inhibition in one frequency range 

(transmissibility<1) necessarily yields a greater magnitude of feedback amplification at the resonance/s 

(transmissibility>1). This inherent trade-off follows from the Bode sensitivity theorem (E8, E9) which states 

that the fractional increases and decreases in transmissibility about 1 must integrate to zero (note similar areas 

under and over the curve in Fig. E3). 
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Mathematically, it can be shown for virtually all delayed feedback systems, that the integral of log(T) across all 

frequencies (0 to ∞), known as Bode’s sensitivity integral, is equal to zero (E8, E9). More generally, for a stable 

system it can be shown that:  

( )LGslim
4

1
d Tlog 

s
0

e ×=
∞→

∞

∫ f  (Equation E3) 

For the general delayed system LG=X(f)e
−sδ

, this integral equals zero for any system response X(f) that is 

bounded at large f (i.e. the feedback response to a high frequency disturbance is not infinite). This is true for all 

physically realisable (finite, real-world) systems such as those governed by differential equations of any finite 

order, including the first-order delayed system examined here.  

Consequently, the existance of a frequency range where disturbances are suppressed (T<1) necessitates that 

there must be a range where disturbances are amplified (T>1). Quantitatively, the fractional inhibition of 

disturbances (across all f from 0 to ∞) is precisely offset by the fractional amplification of disturbances at other 

frequencies. That is, a greater strength of negative feedback, or a broader frequency range of its operation, 

mathematically necessitates a greater degree (strength or range) of feedback amplification at other (typically 

higher) frequencies. 

Non-linearities. Strictly speaking, the concept of loop gain is most accurately applied in a linear system, or a 

system that is linearizable with due consideration of important non-linear features. However, we note that in all 

participants we examined, the linear feedback model captured the essence of the resonance. Moreover, we argue 

that the existence of non-linearities does not preclude the general expectation that stable feedback regulation 

will yield resonance and emergent oscillations. For example, feedback incorporating curvi-linearity (e.g. Hill 

equation (E10)), hysteresis (feedback response to a rising input is shifted relative to the response to a falling 

input (E11)), more-than-additive or less-than additive interactions can each be shown to exhibit feedback-

induced quasi-oscillations similar to those in linear systems. 

Simulations 

To illustrate feedback amplification conceptually, we employ a simple 

mathematical model ventilatory control system (one compartment with 

circulatory delay), in which loop gain is known exactly (Figs. 1, 2, E2-4) (E2, 

E12). This system has been employed extensively in the analysis of ventilatory 

control (E1, E2, E12-16) and other systems (E10, E15, E17, E18). The model 

system used has a loop gain given by LG(f)=−k/(1+sτ).e
−sδ

 where k=gain, 

τ=time constant, δ=delay, s=i2πf. In the time domain, the behavior of the system 

is determined by the differential equation τ.dy/dt+y=kv(t–δ) where v describes 

the fluctuations in the controlled variable (i.e. ventilation) and y describes the 

fluctuations in the feedback response; v(t) and y(t) are functions of time. 

Simulations were performed using MATLAB (Mathworks, Natick MA, USA). We employed a ratio of δ/τ = 2 

(25 s delay, 12.5 s time constant) for all simulations to capture the increased circulatory delay in heart failure 

and approximate the time constant of the lung (E1, E19). Sinusoidal disturbances (Fig. 1C) were provided at the 

natural frequency of the system (fn). Biological noise (power law 1/f disturbances, Fig. 2A) were simulated by 

filtering 0.25 Hz white noise (typical 4 s breath duration); S.D.=25% of mean for Fig. 2A. To raise loop gain (at 

Fig. E4. Simulations were 

performed using a first-order 

feedback system (open-loop 

step-response shown).  
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the natural frequency, LGn), we increased the feedback gain coefficient (k) which proportionally raises loop 

gain while maintaining constant natural frequency. Summarized interpeak interval data showing that increased 

loop gain yields a more regular oscillatory period (Figs. E5 and 4C) was taken from >5000 min of simulations. 

95% prediction intervals (Fig. 4C) were based on >500 10-min windows of simulated time-series data (~10 

interpeak intervals per window). The analytic solution for the power spectrum of v (Sv) was used for Fig. 2B, 

which matched the mean simulated results. 

 

 

 

Fig. E5. Interpeak intervals of simulated data. 

Reduced stability yields a more regular 

oscillatory period (reduced S.D. of interpeak 

interval, σT).  

 

 

 

 

 

 

 

 

Terminology  

Our use of the term biological noise does not imply the absence of a useful physiological function. The term 

noise is used to describe the cumulative impact of a host of external or intrinsic sources of stochastic/arrhythmic 

variability in ventilation.  

In contrast to common usage in control systems engineering, we take loop gain, LG(f), to be inherently negative 

at low frequencies. Engineering applications incorporate a separate inverting element which has no biological 

equivalent. For example, in the ventilatory control system, where loop gain is defined as the product of the 

controller (∆ventilation/∆PCO2) and plant (∆PCO2/∆ventilation), the plant is inherently negative at low 

frequencies (slowly lowering ventilation increases PCO2). Since the controller is inherently positive at low 

frequencies (slowly increasing PCO2 increases ventilation), the overall feedback response is inherently negative 

or inhibitory at low frequencies. Consequences for the formulation of our results versus engineering notation 

include 1.) the replacement of LG by –LG throughout, and 2.) the definition of the natural frequency as the 

(lowest) frequency at which phase of LG(f) equals 0 rather than −180° (mod 360°).  

Data Analysis 

To upsample ventilation to 4 Hz we employed the sample-and-hold method. Linear interpolation was used for 

PCO2 signals.  
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Ventilatory Oscillations  

To characterize ventilatory oscillations, uninterrupted spontaneous ventilation was measured during supine 

quiet wakefulness for 20 min. The power spectrum of ventilation was calculated (Welch method, see below) 

and a resonance model was fit to the ventilation spectrum as follows: Feedback systems disturbed by noise 

exhibit a spectrum that follows the general form y=Sd|1−LG(f)|
−2

; here we employ the first-order delayed 

feedback system model in combination with a power-law disturbance given by Sd=βf
−α 

(Fig. 2). This resonance 

model was fit to ventilatory spectra (least squares on logarithmic scale) in the range f=0.1–6 cycles/min 

(capturing relevant fluctuations between 10 min and 10 s in period). A single parameter, Tn, was taken from the 

model fit to characterize the oscillatory behavior. Of note, Tn
2

, is the spectral peak (at fn) divided by the 

background noise. Tn is expected to relate uniquely to loop gain according to Equation 1. 

A recognizable feature of quasi-oscillations from the resonance mechanism is the variability of oscillatory 

timing; truly periodic oscillations should have negligible variability. Oscillations are also expected to become 

larger as stability is reduced. Hence, we calculated the variability of the interpeak interval; oscillatory peaks in 

ventilation were located using a subject specific sliding time window of width=1/fn (0.5±0.2 min; fn taken from 

power spectral analysis). Amplitude and phase were identified by finding the best-fit cosine (with fixed 

frequency fn) for each windowed data segment using Fourier integration. Peaks were located at the time when 

phase=0 indicating the presence of a peak in the center of the window. The s.d. of interpeak interval (σT) was 

normalized using the mean interpeak interval (Figs. E5 and 4C). The ventilation time series in Figs 2 and 3 were 

low-pass filtered for visual presentation of oscillations (cutoff = 4fn) but not for spectral analysis. 

In the current study we considered that disturbances to ventilatory control were applied to ventilation rather than 

PCO2. However, we note that the transmissibility T(f) for ventilation is the same as the transmissibility for 

PCO2. Thus, just as for ventilation, resonance effects are expected to transform random changes in PCO2 (i.e. 

due to changes in cardiac output) to yield oscillations in PCO2 depending on loop gain.  

Chemoreflex Stability: Summary  

To measure the loop gain of the ventilatory control system, LG(f), 0.5-min pulses of 7% inspired CO2 (in a 

background of 21% O2, remainder N2) were applied every 3 min (Fig. E6). The inspiratory arm of a low-

resistance non-rebreathing valve (Hans Rudolph) was connected via inspiratory tubing (22 mm diameter) to a 

three-way control valve (Hans Rudolph) in an adjacent anteroom allowing the inspiratory line to be switched 

inconspicuously from room air to a Douglas bag containing the inspired CO2 (100 L reservoir) at atmospheric 

pressure. Inspired PCO2 and end-tidal PCO2 were measured from the intranasal CO2 waveform at end-

inspiration and end-expiration respectively. All end-tidal PCO2 data were verified for quality based on the 

presence of an end-tidal plateau.  

In the frequency domain, the CO2 pulses provided stimulation at 5 frequencies of interest f=1/3, 2/3, 1, 4/3, 5/3 

cycles/min. At these frequencies, Fourier transfer analysis yielded estimates of the components of LG: the 

controller (effect of alveolar PCO2 swings on ventilation; C(f) = ∆VE/alveolar PCO2) and the plant (effect of 

ventilatory swings on alveolar PCO2; P(f) = ∆alveolar PCO2/∆VE
*
), where LG(f) = C(f) × P(f). To estimate the 

characteristics of the plant in the presence of inspired CO2, changes in the rate of CO2 excretion at the airway 

due to the combined effect of inspired PCO2 and ventilation were expressed as an equivalent fluctuation in 

ventilation (∆VE
*
); see below. To characterize the plant, ventilation was corrected for deadspace 
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([VT−0.15]/breath duration). To interpolate LG(f) between measured frequencies, models of the controller 

(delayed, 1-compartment) and plant (2-compartment lung model) were fit to the Fourier transfer-function data 

for the controller and plant (least squares minimization).  

For all frequency-based analyses (power spectral density, transfer ratios, coherence) the Welch method was 

applied: Data were divided into 4 segments overlapping by 75% and windowed (raised cosine, Hann). Precise 

frequencies of CO2 stimulation were identified using the peaks in the inspired PCO2 power spectra (close to 

0.33, 0.67, 1, 1.33, 1.67 cycles/min; Fig. E6D). Frequencies with coherence<0.5 were excluded from analysis.  

Causality between the fluctuations in CO2 and the associated fluctuations in ventilation were confirmed by 

determining the signal-to-noise ratio for CO2 and ventilation at each stimulated frequency: The background 

noise was estimated at frequencies between each harmonic. The signal-to-noise ratios for PACO2 and VE (at 1 

cycle/min, Table S2) were presented to indicate that the majority of the measured oscillatory behavior was 

attributable to the CO2 stimulus provided rather than inherent oscillatory behavior. 

Chemoreflex Stability: Details  

Our modified method to measure the loop gain (LG) of the ventilation-PCO2 feedback control system combines 

advantages of previous approaches that utilize inspired CO2 to measure loop gain and ventilatory stability: 

pseudo-random binary stimulation (PRBS) and single or multiple-breath (dynamic) CO2 tests (E20-22). The 

concept of estimating loop gain using inspired CO2 is well established (E21, E23-25).  

Our approach, like PRBS stimulation, quantifies loop gain by providing dynamic CO2 stimuli. Mathematical 

models are then fit to the ventilation and CO2 data to quantify the plant and controller components of the 

feedback loop to yield loop gain (controller × plant; see example in Fig. E6A) (E21, E23-25). For the current 

study, a large signal-to-noise ratio was essential so that the changes in ventilation and PCO2 due to the 

stimulation would clearly dominate any possible non-feedback related (i.e. inherent) fluctuations at each 

frequency of stimulation. Hence, we employed periodic pulses of inspired CO2 to stimulate the control system at 

specified frequencies (details below).  

By concentrating stimulation and analysis at specified frequencies, we can be confident that the changes in 

PCO2 caused the changes to ventilation; that is, the induced changes are large compared with existing 

background fluctuations. With sufficient stimulation at specified frequencies, the modified method enables 

determination of the system phase, which is considered unreliable with PRBS (E23). Phase measurement is 

essential for determining the natural frequency fn of the system and thus loop gain at this frequency (LGn).  

Theoretical basis. A periodic rectangular pulse waveform (Fig. E2B) can be decomposed into the sum of 

sinusoids with frequencies fx and amplitudes ax given by: 

fx = xf1  and  )xWsin(
A2

a 1x fπ
π

=  (Equation E4) 

where 1/f1 is the period of the pulse waveform, A is the amplitude of the pulse, W is the duration of the pulse 

(on time), and x denotes the x
th

 frequency component (harmonic). For example, when inspired CO2 is delivered 

every 1/f1=3 min, the control system becomes stimulated at frequencies of 1/3, 2/3, 1, 4/3, and 5/3 cycles/min. 

We chose this combination of stimulation to encompass the typical cycling period of ~1 min in patients with 
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heart failure and periodic breathing (E2, E19, E20, E26, E27). The stimulus duration of W=0.5 min was chosen 

to maximize the amplitude at 1 cycle/min.  

Quantification of plant gain. Here we provide derivation of the equation (Eq. E8) used to calculate the plant 

via Fourier analysis, modified very slightly from Ghazanashah and Khoo (E23) to include second-order effects 

(interactive effects of changing PICO2 and ventilation). First we re-derive an established relationship describing 

the plant of the ventilatory control system (E1) using perturbation analysis (Eqs. E5,6), and then confirm that 

this equation can be recovered in the presence of inspired CO2 using Eq. E8. 

The transport of CO2 into the lung by the pulmonary circulation and out of the lung by ventilation is given by 

the following mass balance differential equation (E1, E2, E13, E28): 

)PICOPACO(V)PACOPvCO(Q
dt

dPACO
V 22E22

2
L −−−β= &  (Equation E5a) 

where VL is lung volume, Q&  is pulmonary blood flow (cardiac output), β describes the capacitance of the blood 

for CO2 relative to air, PvCO2 is the partial pressure of CO2 in the blood entering the lungs via the pulmonary 

artery, PACO2 is the partial pressure of CO2 in the lungs. Using perturbation analysis, we break up dynamic 

variables (PACO2 and VE) into components reflecting the mean level ( 2ACOP ) and the fluctuating component 

(∆PACO2), where 222 PACOACOPPACO ∆+=  and EEE VVV ∆+= . PICO2 equals zero under normal 

conditions.  Equating the dynamic components, noting that 2E PACOV ∆∆  is negligible for small perturbations, 

and moving to the frequency domain yields the standard equation for plant gain (E1): 


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2   (Equation E6) 

where s=i2πf, f is the oscillatory frequency under consideration, ∆PACO2 and ∆VE are redefined as frequency 

domain variables, and the time-constant of the plant is given by )VQ/(V EL +β=τ & .  

Repeating the standard perturbation analysis but now accounting for non-zero inspired CO2, such that 

222 PICOICOPPICO ∆+= , and considering that the second-order term ∆VE(∆PACO2−∆PICO2) is no longer 

negligible (when ventilation and PICO2 fluctuate together during CO2 stimulation) yields the following 

expression (contrast with Eq. E6): 
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Finally the plant is recovered by multiplying both sides by resting
2ACOP  to yield:  
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VV I

I
∆−

−
∆=∆   (Equation E8) 

Note that ∆VE
*
 contains terms that act on ∆VE as correction factors for the impact of inspired CO2. Moreover, 

since Eq. E8 relies only on assumptions regarding CO2 excretion via the airway, which is directly measured, 

this relationship does not depend on the specific plant structure. That is, Eq. E8 can be shown to be valid for 

more complex plant models including the two-compartment lung model used in the current study.  
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Controller and plant model topology. To determine loop gain at the natural resonant frequency in human 

subjects, we fit models to the controller and plant data to provide a measure of gain and phase at frequencies 

between those stimulated. The topologies chosen for the physiological data were: 

s
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=   (Equation E9) 
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=   (Equation E10) 

where s=i2πf. Physiologically, the controller function (Eq. E9) represents a proportional-plus-differential 

controller located within in a single homogenous compartment (time constant, τ1) that receives a supply of 

arterial CO2 which is delayed by δ relative to PCO2 at the lung (PACO2). The proportional component (k1) 

represents the steady-state hypercapnic ventilatory response; the differential component (k2s) represents an 

additional component that captures the ventilatory response to the rate of rise in PCO2; this component greatly 

improved the fit to the data in 4/50 participants (all heart failure patients) who exhibited a progressively larger 

controller response at higher versus lower frequencies (also seen in other physiological reflex systems (E29-

32)). For the remaining patients, k2 was negligible and set to 0. The plant function (Eq. E10) represents two 

parallel compartments, a form commonly used to describe gas exchange in the lung (E33). The use of a two 

compartment plant was confirmed to be necessary in the far majority of individuals based on the removal of 

systematic bias in the model residuals compared to a single compartment model (where k4=0).  
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Fig. E6. Measuring ventilatory stability using CO2 stimulation. (A) Schematic of the ventilation–PCO2 feedback loop illustrating 

the use of inspired CO2 to measure the controller (∆PACO2→∆VE) and the plant (∆VE
*
→∆PACO2, *ventilation corrected for PICO2; 

M describes how inspired CO2 acts on the plant, see Eq. E8). (B) A rectangular pulse wave of inspired PCO2 (PICO2) stimulates the 

feedback system at multiple frequencies (harmonics) simultaneously. 5 harmonics are shown (f1 to f5) whose sum (grey) is 

superimposed on the original pulse wave (black). The sinusoidal harmonics of PICO2, PACO2 and VE are used to measure the 

magnitude and phase relationships between VE and PACO2 (controller and plant) and thus loop gain. (C to E) Example loop gain data 

in a patient with heart failure (Patient i in Figs. 3-4). (C) Ensemble average time-series of the inspired CO2 pulses illustrating the 

impact on PACO2 and VE. Note the secondary undershoot in PACO2 and VE that almost yields apnea. (D) Spectral density of data in C 

showing the harmonic frequencies (shaded) at which the controller and plant are quantified. (E) Controller and plant (magnitude and 

phase) data. Black lines illustrate the model fit (Eqs. E9-10) to the empirical data (dots). Loop gain is the product of the controller and 

plant. The natural frequency fn is the frequency f at which phase = 0. LGn is the value of loop gain at fn. The circulatory latency δ is 

proportional to the slope of the phase plot at high f. Shading in C and E denote 95%CI. 
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RESULTS 

Ventilatory Oscillations 

The presence of a resonance (T>0, model fit to power spectra) became more convincingly significant with 

increased loop gain (p-values, log-transformed for normality, were inversely associated with loop gain 

measured with CO2 stimulation; r=−0.53, p<0.001). The resonance was significant (p<0.05 Fisher F-test) in all 

individuals with loop gain>0.4 (N=11/11 heart failure, 3/3 controls). Participants without a significant 

resonance (ventilatory variability resembled noise) tended to have a lower loop gain than those with a 

significant resonance (0.24±0.05 vs 0.36±0.20, p=0.002). 

Determinants of Ventilatory Oscillations  

Oscillatory amplitude was associated with increased chemoreflex sensitivity (univariate r
2
=0.55, p<0.001) and 

circulatory delay (univariate r
2
=0.06; multiple regression ∆r

2
=0.14, p<0.001). The irregularity of oscillatory 

timing (S.D. of interpeak interval) was inversely associated with chemoreflex sensitivity (univariate r
2
=0.16, 

p=0.006), circulatory delay (univariate r
2
=0.08, p=0.048; multiple regression ∆r

2
=0.12, p=0.005), and plant gain 

(univariate r
2
<0.01; multiple regression ∆r

2
=0.06, p=0.049). Including presence/absence of heart failure did not 

improve these associations, suggesting that no factor relating to heart failure beyond the determinants reported 

was associated with ventilatory oscillations.  

Inclusion of age, sex and BMI in linear regression models did not impact the statistical findings, and these 

factors did not significantly contribute to the oscillatory nature of breathing (strength, amplitude, timing). 

Reduced versus Preserved Ejection Fraction  

Excluding the two patients with heart failure and preserved ejection fraction (HFpEF) also had no impact on the 

statistical findings. Aside from their ejection fractions, the two patients with HFpEF did not appear to have 

particularly unusual ventilatory control parameters with respect to the remainder of the heart failure group: 

They were ranked 8/25 and 23/25 in terms of delay, 9/25 and 2/25 for chemosensitivity, and 7/25 and 10/25 in 

terms of loop gain (instability). Note that one of the two HFpEF patients had a relatively normal delay (rank 

23/25) but a more severely elevated chemosensitivity (rank 2/25) ultimately culminating in a higher-than-

average loop gain (rank 10/25). The specific mechanisms involved in the increased chemosensitivity and delays 

are likely to be different in HFpEF versus heart failure with reduced ejection fraction (e.g. left atrial distension 

rather than left ventricular distension). However, in principle, increased loop gain (via increased 

chemosensitivity and delay) is a common physiological pathway to instability applicable to patients with 

reduced ejection fraction and those with HFpEF.   

Sensitivity Analyses  

For measurement of the inter-peak interval S.D. (σT), alternative use of a fixed window width for the population 

of between 1–2 cycles/min did not affect the relationship between σT and loop gain. Use of a spectral model 

based on a second-order delayed feedback system LG(f)=−ke
−sδ

/(1+sτ1)/(1+sτ2) did not affect the relationship 

between the strength of oscillations T (spectral analysis) and true loop gain. In those with large oscillations a 

minor improvement in the fit using the second order model could be seen. Results of regression analyses 
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examining the determinants of ventilatory oscillations were similar when exclusively patients with heart failure 

were examined. 

Matched Comparisons between Heart Failure and Controls 

We observed several differences in patients with heart failure versus controls including increased loop gain, 

lower natural frequency and greater chemoreflex delay (Table 2), as well as a greater strength, amplitude and 

irregularity of ventilatory oscillations (Table 3). These differences remained significant after adjusting for age, 

sex and BMI (general linear model).  

As an alternative to linear adjustment, we repeated group comparisons using a subset of controls (N=16) that 

were better matched to patients with heart failure for age (controls versus heart failure: 58.3±10.9 vs. 61.1±13.2 

years, p>0.4), sex (13M:4F vs 23M:2F, p>0.2), and BMI (30.5±3.3 vs 30.9±7.4 kg/m
2
, p>0.8). To make up the 

subset of matched controls, the youngest 6 women and the youngest 2 men were excluded from the original 

control group (15M:10F). We found that all statistical differences remained between heart failure and controls 

for loop gain (p=0.004), natural frequency (p=0.001), chemoreflex delay (p=0.004), and the strength (p=0.004), 

amplitude (p=0.047) and irregularity (p=0.01) of ventilatory oscillations. Mean values in the control group 

remained unchanged (<5% vs whole group) for each variable.  

More stringent matching on sex (by excluding all female controls except the oldest, 13M:1F vs 23M:2F, p>0.9) 

also provided similar statistical results (e.g. loop gain: p=0.004, strength of oscillations: p=0.004), although the 

difference in the amplitude of ventilatory oscillations became non-significant (p=0.08; mean difference 

remained unchanged) consequent to the reduced statistical power. 

 

Table E1: Data Quality Metrics for Chemoreflex Stability 

Characteristics 
Heart failure  

N=25 

Controls  

N=25 

Number of Inspired CO2 Pulses 10±2 10±2 

PACO2 Signal-to-noise ratio 52[51] 35[58] 

Ventilation Signal-to-noise ratio 12[15] 12[16] 

Chemoreflex Coherence (PACO2→ventilation) 0.91±0.08 0.87±0.13 

Plant Coherence (ventilation*→PACO2) 0.98±0.02 0.97±0.04 

 

Values are presented as mean±S.D. or median[75th minus 25th percentile]. Signal-to-noise ratio and coherence 

data are presented for 1 cycle/min. These data indicate that the far majority of the fluctuations observed were 

caused by the administration of dynamic inspired CO2. Signal-to-noise is the power spectral density measured at 

1 cycle/min relative to the background noise, where background noise is estimated from the nadir power 

immediately above and below 1 cycle/min (typically at 0.83 and 1.17 cycles/min). Coherence is a value ranging 

from 0 to 1 that represents the fractional contribution of the input to the output, and is analogous to the R2. 

Ventilation* represents the combined effect of ventilation and inspired CO2 on alveolar PCO2 (PACO2).  
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Table E2: Additional Data for Ventilatory Oscillations 

Characteristics 
Heart failure 

N=25 

Controls 

N=25 

System parameters*   
Gain, k (unitless) 1.7±1.3 1.5±1.2 
Time constant, τ (min) 0.34±0.23 0.35±0.28 
Delay, δ (min) 0.20±0.07 0.13±0.05*† 

Noise characteristics   
Offset, β (L2/min2/Hz) 2.0[0.8-13.9] 1.2[0.4-6.4] 
Exponent, α 0.7±0.4‡ 0.7±0.3‡ 

Data quality    

Duration of recording (min) 20±5 19±6 

Goodness of fit||, r2 0.56±0.17 0.49±0.16 

 

Values are mean±S.D. or median[25th-75th percentile]. *Chemoreflex resonance model equation is given 

by y=Sd(f)/|1−LG(f)|2 where Sd(f)=βf−α and LG(f)=−ke−i2πfδ/(1+i2πfτ); Sd(f) describes the disturbance 

(noise) and LG(f) describes the feedback system.  
†p<0.001. ‡The power law exponent was significantly 

greater than zero (gaussian or white noise) for both groups (p<10−8) indicating that disturbances increase 

in amplitude with lower frequency. ||Goodness of fit was measured on a logarithmic scale.   
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MATLAB Source Code: Resonance Model to Estimate Loop Gain 

 

function [LGfromPSDdata,Sv,F,Sd_model,Sv_model,CIdata,CIparameters] = 
LGfromPSD_beta(v1,dT,order,plotf,Tnmin,Tnmax,Fmin,Fmax) 
  
%Provides power spectral analysis of a time series (for example ventilation) and decomposes the spectrum into  
%a biological noise component [Sd_model], and  
%a feedback system component (first or second order delayed system) 
%where Sv_model=|T|^2.Sd_model and T=1/(1-LG). 
  
%INPUTS 
%v1=equispaced time series (e.g. minute ventilation) 
%dT=sampling interval 
%order is 1 or 2; use 1 by default 
%plotf is a flag to show figures 
%Tnmin and Tnmax place contraints on min and max cycle period (seconds), use 20 and 90 as defaults. 
%min frequency for model fit, specified in Hz, use 1/600 as default. 
%max frequency for model fit, specified in Hz, use 1/10 as default. 
  
%OUTPUTS 
%LGfromPSDdata = [LGnmodel Tnmodel gain tau1 delay beta alpha tau2 Rsq], describes model parameters 
%Sv is power spectral density (PSD) 
%F is frequency 
%Sv_model is the model PSD that is best fit to Sv 
%Sd_model is the 1/f noise component of the model PSD 
%CIdata,CIparameters describe the confidence intervals of the model fit and parameters 
  
% Version: Beta 
% 
% --------------------------------------------- 
% Scott A. Sands Ph.D 
% 
% Sleep Disorders Program  
% Brigham and Women's Hospital and Harvard Medical School 
% Boston, MA  02115 
% 
% File created: May 5, 2012 
% Last updated: July 5, 2016  
%     
% Copyright © [2012] Scott A. Sands, Brigham and Women's Hospital, Inc.  
% 
% THE AUTHORS RETAIN ALL RIGHTS TO THIS SOFTWARE. THIS SOFTWARE IS BEING  
% MADE AVAILABLE ONLY FOR SCIENTIFIC RESEARCH PURPOSES. THE SOFTWARE SHALL  
% NOT BE USED FOR ANY OTHER PURPOSES, AND IS BEING MADE AVAILABLE WITHOUT  
% WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO  
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  
% THE AUTHORS AND ITS AGENTS SHALL NOT BE LIABLE FOR ANY CLAIMS, LIABILITIES,  
% OR LOSSES RELATING TO OR ARISING FROM ANY USE OF THIS SOFTWARE. 
  
T0 = dT*length(v1); 
calforplot=60; %plots are in cycles/min, while input data are provided in sec. 
  
clear i j 
  
if 1 %find Sv 
    foverlap = 0.75; No_of_windows = 4; 
    fr_segment_ideal = 1/(1+(No_of_windows-1)*(1-foverlap)); T0_segment_ideal = fr_segment_ideal*T0;  
    nfft = floor(T0_segment_ideal/dT); noverlap= ceil(foverlap*nfft)+1; nwindow = hann(nfft); 
    T0_segment = nfft*dT; df = 1/T0_segment; 
    [Sv,F] = pwelch(detrend(v1),nwindow,noverlap,nfft,1/dT); 
end 
  
%Fmin=1/600; Fmax=1/10; %10 min to 10 sec 
Sv(F<Fmin|F>=Fmax)=[];  
F(F<Fmin|F>=Fmax)=[];  
  
%% Find best-fit feedback amplification model 
  
%defaults 
lower=[1   0.01  0      -0.1  5  2]; %delay, gain, beta (noise coefficient), alpha (noise exponent), tau1, tau2 
(used in second order model) 
upper=[100 12 1000000   5   45 1000]; 
start=[10  0.01  Sv(1) 1    20 45]; 
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if order==1 
    lower(6)=[]; 
    upper(6)=[]; 
    start(6)=[]; 
end 
  
x=start; 
  
Sv_data=[F Sv]; 
LGnmin=0; LGnmax=1; 
coninfo=[Tnmin Tnmax LGnmin LGnmax] 
OPTIONS = optimset('TolX',1e-17,'TolFun',1e-17,'MaxIter',1e17,'MaxFunEvals',1000,'Algorithm','interior-
point','Display','off'); 
clear X FVAL 
s=j*2*pi*F; 
for i=1:2 
    start1 = start; 
    try 
        [X(i,:),FVAL(i),EXITFLAG,OUTPUT] = fmincon(@(x) 
LGfromPSD1(x,Sv_data),start1,[],[],[],[],lower,upper,@(x) LGfromPSD1_con(x,Sv_data,coninfo,1),OPTIONS); 
        delay=X(i,1); gain=X(i,2); beta=X(i,3); alpha=X(i,4); tau1=X(i,5); 
        if length(X(i,:))==6, tau2=X(i,6); else tau2=0; end 
        LGvsFmodel_temp=-gain*exp(-delay*s)./(s*tau1+1)./(s*tau2+1); 
        LGnmodel=interp1(F,abs(LGvsFmodel_temp),interp1(unwrap(angle(LGvsFmodel_temp)),F,0)); 
    catch me %this will happen if start values give LGn>1 or Tn outside constraints 
        FVAL(i)=Inf; 
    end 
end 
[~,i]=min(FVAL(2:end)) 
X2=X(i+1,:); 
delay=X2(1); gain=X2(2); beta=X2(3); alpha=X2(4); tau1=X2(5); 
if length(X2)==6 
    tau2=X2(6); 
else 
    tau2=0; 
end 
LGvsFmodel=-gain*exp(-delay*s)./(s*tau1+1)./(s*tau2+1); 
absT=abs(1./(1-LGvsFmodel)); Sv_model=(beta*F.^-alpha).*absT.^2; Sd_model=(beta.*F.^-alpha); 
angle_LG = unwrap(angle(LGvsFmodel)); 
Fnmodel=interp1(angle_LG,F,0); 
LGnmodel=interp1(F,abs(LGvsFmodel),Fnmodel); 
  
%get 95% CI  
if 1 
parameters=X2; 
    clear modelY_ modelY1 modelY2 f_ f1 f2 parametersX1 parametersX2 
    dX=0.000000001; 
    for i=1:length(parameters) 
        parametersX1=parameters; 
        parametersX2=parameters; 
        parametersX1(i)=parameters(i)+dX; 
        parametersX2(i)=parameters(i)-dX; 
        [modelY_]=LGfromPSD2(parameters,F); 
        [modelY1(:,i)]=LGfromPSD2(parametersX1,F); 
        [modelY2(:,i)]=LGfromPSD2(parametersX2,F); 
        JACOBIAN = (-0.5)*(modelY2-modelY1)/dX; 
        RESIDUAL = (modelY_-log10(Sv)); 
    end 
end 
  
[log10modelYout,delta] = nlpredci(@LGfromPSD2,F,parameters,RESIDUAL,'Jacobian',JACOBIAN); 
upperSEM = 10.^(log10modelYout+delta/1.96); 
lowerSEM = 10.^(log10modelYout-delta/1.96); 
modelYout = 10.^log10modelYout; 
CIdata=[lowerSEM upperSEM]; 
CIparameters = nlparci(parameters,RESIDUAL,'jacobian',JACOBIAN); 
  
Err=sum((log(Sv_model)-log(Sv)).^2); 
SStot=sum((log(Sv)-mean(log(Sv))).^2); 
Rsq=1-Err/SStot; 
  
Tnmodel = 1/Fnmodel; 
  
Sdn=interp1(F,Sd_model,Fnmodel); 

Page 39 of 64



For Review
 O

nly

E17 

Svn=interp1(F,Sv_model,Fnmodel); 
  
%% Plot 
if plotf 
    facecolorx=[0.8 0.8 1]; 
    figure100=figure(); 
    set(figure100,'Color',[1 1 1],'PaperPosition',[0.25 2.5 8 16]); 
    
hha1=subplot(2,2,1,'Parent',figure100,'TickDir','out','FontName','Arial','XScale','log','YScale','log','XMinorTi
ck','on','XLim',60*[min(F)-df*0.55,max(F)+df/2]); 
    box(hha1,'off'); 
    hold(hha1,'all'); 
    hh1=bar(60*F,Sv,... 
        'FaceColor',facecolorx,... 
        'EdgeColor','none',... 
        'BaseValue',10^(floor(log10(min(Sv_model)))-1),... 
        'ShowBaseline','off',... 
        'BarWidth',1); 
    plot(60*[Fnmodel Fnmodel],[Sdn Svn],'k:'); 
    title(['LGn=' num2str(LGnmodel,2) '; Tn=' num2str(Tnmodel,2) '; G=' num2str(gain,3) '; D=' num2str(X2(1),2) 
'; tau1,2=' num2str(X2(5),2) ',' num2str(tau2,2)],'FontSize',7); 
    xlabel('Frequency (cycles/min)'); 
    ylabel('Power Spectrum [log scale]'); 
    
hha2=subplot(2,2,3,'Parent',figure100,'TickDir','out','FontName','Arial','XScale','linear','YScale','linear','XM
inorTick','on','XLim',60*[min(F)-df*0.55,max(F)+df/2]); 
    box(hha2,'off'); 
    hold(hha2,'all'); 
    hh3=bar(60*F,Sv,... 
        'FaceColor',facecolorx,... 
        'EdgeColor','none',... 
        'BaseValue',0,... 
        'BarWidth',1); 
    xlabel('Frequency (cycles/min)'); 
    ylabel('Power Spectrum'); 
     
    axes(hha1); 
    hold('on'); 
    filly=[upperSEM' fliplr(lowerSEM')]; 
    fillx=[F' fliplr(F')]; 
    fill1 = fill(fillx*calforplot,filly,[1 0.5 0.5],'linestyle','none'); 
    hhn=plot(F*calforplot,Sd_model,'parent',hha1,'linewidth',2,'color',[0 0 0]);   
    hhx=plot(F*calforplot,Sv_model,'parent',hha1,'linewidth',2,'color',[0.9 0 0]); 
     
    hhx=stairs((F-df/2)*calforplot,Sv,'Parent',hha1,'color',[0.5 0.5 0.9]); 
    axes(hha2); 
    fill1 = fill(fillx*calforplot,filly,[1 0.5 0.5],'linestyle','none'); 
    hhn=plot(F*calforplot,Sd_model,'parent',hha2,'linewidth',2,'color',[0 0 0]);   
    hhx=plot(F*calforplot,Sv_model,'parent',hha2,'linewidth',2,'color',[0.9 0 0]); 
     
    if 1 %Add T to the plots... 
        
hha3=subplot(2,2,2,'Parent',figure100,'TickDir','out','FontName','Arial','XScale','log','YScale','linear','XMino
rTick','on','XLim',60*[0 2.5]); 
        hh5=plot(60*F,(Sv_model./Sd_model).^0.5,'r'); 
        box(hha3,'off'); 
        set(hha3,'Color','none','XLim',[0 5]); 
         
        set(hha1,'Position',[0.13 0.58 0.77 0.34]); 
        set(hha2,'Position',[0.13 0.11 0.77 0.34]);  
        set(hha3,'Position',[0.51 0.30 0.35 0.14]);  
        ylabel('T'); 
        xlabel('Frequency (cycles/min)'); 
    end 
end 
%% 
  
LGfromPSDdata=[LGnmodel Tnmodel gain tau1 delay beta alpha tau2 Rsq] 
  
function [SSE,Rsq] = LGfromPSD1(x,Sv_data) 
delay=x(1); 
gain=x(2); 
beta=x(3); 
alpha=x(4); 
tau1=x(5); 
if length(x)==6 
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    tau2=x(6); 
end 
F=Sv_data(:,1); 
Sv=Sv_data(:,2); 
s=j*2*pi*F; 
if length(x)==6 
    LGvsFmodel=-gain*exp(-delay*s)./(s*tau1+1)./(s*tau2+1); 
else 
    LGvsFmodel=-gain*exp(-delay*s)./(s*tau1+1); 
end 
absT=abs(1./(1-LGvsFmodel)); 
Svmodel=(beta*F.^-alpha).*absT.^2; 
SSE=sum(((log10(Svmodel)-log10(Sv))).^2); 
SStot=sum(((log10(Sv)-mean(log10(Svmodel)))).^2); 
  
Rsq=1-SSE/SStot; 
  
function [log10Svmodel] = LGfromPSD2(x,F) 
%Reframed function for 95%CI 
delay=x(1); 
gain=x(2); 
beta=x(3); 
alpha=x(4); 
tau1=x(5); 
if length(x)==6 
tau2=x(6); 
end 
s=j*2*pi*F; 
if length(x)==6 
LGvsFmodel=-gain*exp(-delay*s)./(s*tau1+1)./(s*tau2+1); 
else 
LGvsFmodel=-gain*exp(-delay*s)./(s*tau1+1); 
end 
absT=abs(1./(1-LGvsFmodel)); 
Svmodel=(beta*F.^-alpha).*absT.^2; 
log10Svmodel=log10(Svmodel); 
  
  
function [c,ceq]=LGfromPSD1_con(x,Sv_data,coninfo,enable) 
if enable 
    delay=x(1); 
    gain=x(2); 
    tau1=x(5); 
    if length(x)==6 
        tau2=x(6); 
    end 
    F=Sv_data(:,1); 
    s=j*2*pi*F; 
    if length(x)==6 
        LGvsFmodel=-gain*exp(-delay*s)./(s*tau1+1)./(s*tau2+1); 
        phase=pi-atan(2*pi*tau1*F)-atan(2*pi*tau2*F)-2*pi*delay*F; 
    else 
        LGvsFmodel=-gain*exp(-delay*s)./(s*tau1+1); 
        phase=pi-atan(2*pi*tau1*F)-2*pi*delay*F; 
    end 
    Fn=interp1(phase,F,0,'linear'); 
    Tn=1/Fn; 
    LGn=interp1(F,abs(LGvsFmodel),Fn,'linear'); 
    c(1)=coninfo(1)-Tn; 
    c(2)=Tn-coninfo(2); 
    c(3)=coninfo(3)-LGn; 
    c(4)=LGn-coninfo(4); 
else 
    c=[]; 
end 
ceq=[]; 
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At a Glance Commentary 
Scientific Knowledge on the Subject: Oscillatory breathing during wakefulness predicts mortality in patients with 

heart failure but the responsible mechanism is unclear. Associations with increased chemosensitivity and circulatory 
delay suggest instability of the chemoreflex feedback loop, but oscillatory patterns are often irregular which illustrates 

that our knowledge is incomplete.  
 

What This Study Adds to the Field: Our study provides the mechanism of diurnaldaytime ventilatory oscillations in 

heart failure: Ventilatory oscillations occur due to a chemoreflex resonance or “ringing” effect, whereby a reduced 

stability (increased loop gain)—due to increased chemosensitivity and delay—paradoxically enhances leads to 

paradoxical amplification of biological noise as it is propagated around the feedback loop, yielding stronger , larger 
and more regular oscillations as stability is reduced. Our work may facilitate clinical measurement and interpretation 

of the oscillatory breathing that precedes sudden death in advanced heart failure.  

  

Page 45 of 64



For Review
 O

nly

main manuscript, marked-up 

 

2 

Formatted: Space After:  3 pt

Abstract 

Rationale: In patients with chronic heart failure, diurnaldaytime oscillatory breathing at rest is an ominous 

sign ofassociated with high high risk of mortality risk. Empirical Experimental evidence, e—including 

exaggerated ventilatory responses to carbon dioxide (CO2) and prolonged circulation time, —implicates the 

ventilatory control system and suggests that feedback instability (loop gain>1) is responsible. However, 

diurnaldaytime oscillatory patterns often can appear remarkably irregular versus differ markedly from 

classical instability (Cheyne-Stokes respiration), suggesting our mechanistic understanding is limited.  

Objective: We propose that diurnaldaytime ventilatory oscillations generally result from manifest 

consequent to a chemoreflex resonance, whereby  or “ringing” effect, a mechanism by which spontaneous 

biological variations in ventilatory drive repeatedly induce temporary and irregular ringing effects. 

Importantly, the ease with which spontaneous biological variations induce irregular oscillations (resonance 

“strength”) rises profoundly as loop gain rises towards 1. We test this hypothesis through a comparison of 

mathematical predictions against actual measurements in patients with heart failure and healthy controls. 

biological disturbances are paradoxically amplified as they propagated around a stable chemoreflex feedback 

loop (loop gain <1). We test the hypothesis that the magnitude of the resonance T depends uniquely on the 

system stability (T=1/|1−loop gain|); concordance with theory is taken to support resonance as the 

mechanism responsible.  

Methods: In 25 patients with chronic heart failure and 25 controls, we examined spontaneous oscillations in 

ventilation and separately quantified loop gain using dynamic inspired CO2 stimulation.  

Measurements and Main Results: A clear rResonance was detected observed in 24/25 heart failure patients 

and 18/25 controls. With reduced stabilityincreased loop gain—consequent to increased chemosensitivity 

and delay—the magnitude strength of spontaneous oscillations resonance increased precipitously as 

predicted (r=0.88), to yielding larger (r=0.78) and more regular oscillations (interpeak interval S.D. of 

interpeak interval, r=−0.68; p<0.001 for all) oscillations (p<0.001 for all, both groups combined).  

Conclusions: Our study elucidates the mechanism underlying diurnaldaytime ventilatory oscillations in 

patients with heart failure, and provides a means to measure and interpret these ventilatory oscillations 

during wakefulness to reveal the underlying chemoreflex hypersensitivity and reduced stability that foretells 

mortality in heart failurethis population.  

250/250 words 
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INTRODUCTION 

The presence of diurnaldaytime ventilatory oscillations is a powerful prognostic indicator of mortality in 

patients with chronic heart failure, independent of cardiac functionejection fraction and peak oxygen 

consumption (1-6), but the underlying pathogenesis remains unclear. The feedback system controlling 

ventilation is strongly implicated based on evidence that patients with oscillatory ventilation exhibit 

hypersensitive ventilatory chemoreflexes and increased circulatory delays (5, 7, 8) and evidence that 

ventilatory oscillations are suppressed by interventions that improve stability (lowered loop gain) namely 

reducing chemoreflex sensitivity, increasing cardiac output or clamping alveolar carbon dioxide (CO2 ) 

levels (5, 9-13). These findings have led to the prevailing view that that feedback instability is responsible (7, 

13-16), rather than a central pacemaker (17, 18). Yet there is a broad spectrum of irregular oscillatory 

patterns observed in patients during wakefulness, many of which differ substantially from the remarkably 

consistent -periodic cycles of apnea and crescendo-decrescendo hyperpnea (Cheyne-Stokes respiration) 

manifest during sleep and in computer models of feedback instability (16, 19). Thus, an alternative 

explanation for diurnaldaytime ventilatory oscillations is needed.  

According to prevailing theory, a hypersensitive and delayed ventilatory feedback system will yield 

ventilatory oscillations when the critical tipping-point for instability is exceeded (loop gain >1), but when the 

system is fundamentally stable oscillations should be damped away (loop gain <1, see Methods—Theory and 

Online Supplement Fig. S1E1-2) (7, 14, 16, 20). Yet the instability theory has a critical weakness that 

precludes its general applicability: Even stable feedback systems (loop gain <1) manifest a resonance or 

“ringing” effect whereby random biological disturbances (e.g. intrinsic neural variability, sighs, and 

behavioral effects) repeatedly disturb are propagated around the feedback loop, promoting temporary . 

Consequently, prominent overshoot and undershoot oscillations occur with imprecise timing and amplitude 

(21-24). We propose that this concept underlies the pathogenesis of diurnaldaytime ventilatory oscillations in 

patients with heart failure.  

Here we assess whether ventilatory oscillations that occur during wakefulness are the consequence of a 

resonance in the chemoreflex feedback loop regulating ventilation. First we describe and illustrate the 

concept of resonance as applicable to ventilatory oscillations. Subsequently, we assess diurnaldaytime 

ventilatory oscillations in patients with heart failure and controls to test the hypothesis that the oscillatory 

behavior depends precisely on the stability (loop gain) of the ventilatory chemoreflex system (see Methods—

Theory). Concordance with theory is taken to support chemoreflex resonance as the mechanism responsible. 

Preliminary data have been presented in abstract form (25). 
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METHODS 

Theoretical Basis of Resonancey  

The concepts of loop gain (i.e. stability) and resonance are well established, but the concept that loop gain 

precisely determines the strength of the resonance and the ensuing oscillatory nature of breathing under 

normal (stable) conditions has not been detailed previouslyThe interrelated engineering concepts of 

instability and resonance  are summarized briefly here(see Online Supplement for details):.  

 

Instability. The stability of the chemoreflex feedback loop is determined by its loop gain, the ratio of the 

compensatory ventilatory feedback response that opposes a ventilatory disturbance (see conceptual model, 

Fig. 1A).  AConsider the response to an isolated ventilatory disturbance provided to a stable system  

sinusoidal change in ventilation (loop gain = 0.8; Fig. 1B) yields a oscillatory (Fig. 1B): If the change in 

ventilation occurs slowly, the ventilatory response will oppose the sinusoidal deflection. At a higher 

frequency—consequent to the circulation delay—the feedback response will arrive counter-effectively in 

phase with the deflection in ventilation. “ringing” effect at a particular frequency before gradually damping 

out. Yet At this characteristic natural frequency, the system will be unstable if loop gain exceeds 1, yielding 

Cheyne-Stokes respiration (8, 15, 17). 

Resonance. Now consider an ongoing external disturbance at this frequency that perturbs a stable 

chemoreflex feedback loop (akin to a child being pushed on a swing), ) produces ventilatory fluctuations that 

are considerably larger than the disturbance itself (Fig. 1C). Tsuch that swings in ventilation are the result of 

the disturbance plus the feedback response. The degree ease by which to which ventilation fluctuates as a 

result of a disturbance (26-30) is determined by loop gain given by the chemoreflex amplification or 

transmissibility (28-31)according to:  

T = 1/(|1−loop gain| )  (Equation 1) 

where T defines the strength of the resonance and the strength of the ensuing oscillations. Notably, T varies 

considerably with the frequency of the disturbance (Fig. 1C): At frequencies where T<1, disturbances are 

inhibited by the system to promote homeostasis (28, 30). However, at frequencies where T>1, disturbances 

are paradoxically amplified by the system. That is, fluctuations are larger (by factor T) because of the 

presence of feedback versus its absence. The frequency range where T>1 is defined as a resonance.  

Importantly, the same single variable that determines stability (loop gain) also determines the degree to 

which disturbances are amplified at the natural frequency (31). Consequently, aAs loop gain rises towards 1 

(i.e. the threshold for the tipping point for instability),  (i.e. 1.0), the feedback system profoundly amplifies 

disturbances into oscillations at its natural frequency.: For example, for a loop gain of 0.5, disturbances are 
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doubled by the feedback system (T=2); when loop gain is 0.8, disturbances are 5-fold greater than they 

would have been without feedback  yields 2-fold amplification (T=2, using Equation 1) and a loop gain of 

0.8 yields 5-fold amplification(T=5,  (T=5); see Fig. 1C-E).  A resonance is an expected feature of all 

delayed regulatory systems (see Online Supplement).  

Simulated ventilatory oscillations. To illustrate the oscillatory characteristics that emerge occur in the 

presence of spontaneous biological variations or “noise” (31)consequent to resonance, we examined 

disturbed a simplified simple model system (Fig. 1C-F) with biological noise (i.e. power inversely 

proportional to frequency) (31, 32) at various levels of loop gain (Fig. 2). Note the distinct emergence of 

irregular oscillatory patterns (Fig. 2A) that bare a remarkable resemblance to ventilatory patterns observed in 

heart failure (13, 32, 33) and controls with experimentally-raised loop gain (34) (; see Results).  

Importantly, we now recognize that Aas loop gain rises, the system manifests a stronger resonance occurs 

that can be quantitatively identified as a stronger peak in the power spectrum of ventilation (Fig. 2B), 

ultimately yielding , recognized larger and more regular oscillationsas a more pronounced peak in the power 

spectrum of ventilation (Fig. 2B) and, equivalently, as a greater regularity of oscillatory timing (Fig. 2C).  

Methodological Approach 

Our primary objective was to test whether oscillatory strength—namely amplitude relative to biological 

noise (i.e. observed resonance strength, T)—is uniquely related to the loop gain of the ventilatory control 

system according to Equation 1. Loop gain was measured separately using dynamic inspired CO2 (see 

below) during wakefulness. We also assessed whether larger amplitude, more regular oscillations are 

associated with a higher loop gain, and whether the spectral profile of oscillations matches that expected of a 

resonance.  

Participants 

Twenty-five patients with clinically-definedan established clinical diagnosis of chronic heart failure (any left 

ventricular ejection fraction) and twenty-five controls without heart failure were studied.  Participants 

attended as part of larger ongoing prospective studies investigating the stabilizing mechanisms of 

acetazolamide and oxygen and the causes of sleep apnea (interventions were not given before/during this 

study). Inclusion required the absence of severe comorbidities including lung, kidney and liver diseases. 

Participants taking medications affecting respiratory control (including opioids, benzodiazepines, 

barbiturates, acetazolamide, theophylline, indomethacin, pseudoephedrine) were excluded. Participants 

provided written informed consent and approval was granted by the Partners’ Institutional Review Board. 

Details are provided in the Online Supplement.  
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Procedure 

Participants were examined by a physician before study procedures. Measures were made in the morning 

(7am-12pm) to minimize potential time of day effects. Participants were instrumented with a sealed nasal 

mask to facilitate measurement of ventilation (heated pneumotachograph and pressure transducer; Hans-

Rudolph Model 3700, Kansas City, MO, USA; Validyne Engineering Corp., Model MP45-14-871, 

Northridge, CA, USA; ventilation = tidal volume × respiratory rate). Absence of mask leak was confirmed 

by forced expiration against a closed exhalation port. A thin catheter was placed through a port in the mask 

to measure intranasal CO2 tension (PCO2; Vacumetrics Inc., Model 17625, Ventura, CA, USA) enabling 

assessment of inspired PCO2 and end-tidal PCO2 (a surrogate for alveolar and arterial PCO2)., inspired PCO2 

and end-tidal PCO2 (surrogate for alveolar PCO2)Electroencephalography (C3-A2, O2-A1) was performed to 

document wakefulness. P. Participants lay supine, maintained wakefulness and nasal breathing. and were 

instructed to relax, keep their eyes open and mouth closed (confirmed via visual assessment) and watched 

television as a distraction. Ventilation was recorded without interruption for 20 min to assess spontaneous 

ventilatory oscillations (see below). Participants were subsequently connected to a non-rebreathing circuit for 

measurement of their chemoreflex stability (i.e. loop gain) using inspired CO2. For each procedure, a period 

of acclimation was provided to ensure ventilation and end-tidal PCO2 settled to an equilibrium before 

proceeding. Signals were sampled at 125 Hz (Power 1401 and Spike2, Cambridge Electronic Design 

Limited, Cambridge, UK); breath-by-breath respiratory signals were resampled at 4 Hz for further analyses. 

 

Ventilatory oscillationsOscillations 

To quantify the oscillatory nature of ventilation during spontaneous breathing, we performed standard 

spectral analysis and fit a physiological equation that describes the spectral profile of a simple resonance 

(Fig. 2B; one-compartment delayed feedback system stimulated by noise, Fig. 2B, see Online Supplement). 

This analysis revealed a single parameter, T, a measure of the oscillatory strength of ventilatory oscillations 

(amplitude / background noise) that is theoretically related to loop gain (Equation 1). The peak-to-peak 

amplitude and irregularity (interpeak interval S.D.) of ventilatory oscillations were also quantified (see 

Online Supplement).  

Chemoreflex stabilityStability 

Loop gain was quantified using dynamic inspired CO2 stimulation using a modified method employing 

pulsatile CO2 stimuli. 7% inspired CO2 was administered for a duration of 0.5 min, every 3 min for a total of 

30 min (10 pulses) that has the equivalent effect of to stimulateing ventilation at 5 frequencies of interest 

simultaneously (0.33, 0.67, 1, 1.33, 1.67 cycles/min). Chemosensitivity (∆ventilation/∆alveolar PCO2), CO2 
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damping or plant gain (∆alveolar PCO2/∆ventilation) and accompanying delays were calculated at each 

frequency to determine loop gain (chemosensivity×plant gain, see Online Supplement). 

Statistics 

Linear regression assessed the relationship between the oscillatory strength (T, spectral analysis) and the 

underlying loop gain (CO2 stimulation). Oscillatory strength was first transformed (1−1/T,
 
reflecting the 

estimated loop gain) before statistical analysis; transformed data became normally distributed and 

correlations with putative physiological determinants became linear, as expected by theory. Fisher F-tests 

compared the resonance model of the power spectrum versus the biological noise model without resonance 

within individuals; a significant improvement over noise confirmed the presence of a resonance (i.e. T 

significantly >1). Student’s t-tests compared variables between heart failure and controls; general linear 

models compared variables adjusted for age, sex, and BMI (see Online Supplement for matched 

comparisons). Determinants of loop gain, including chemoreflex sensitivity and delay, were quantified at a 

common frequency (1 cycle/min) for regression analyses; multiple regression results were summarized by 

presenting the improvement in the model r
2
 with the inclusion of each determinant in a sequential manner 

(forward stepwise). Unless specified otherwise, loop gain refers to the value at the natural frequency. 

Statistical significance wais taken accepted at p<0.05. 
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RESULTS 

Characteristics 

Participant characteristics are detailed in Table 1. The heart failure population exhibited a range of severities 

of left ventricular systolic dysfunctionejection fraction (ejection fraction range: 15-67%; two individuals had 

preserved systolic functionejection fraction). All heart failure patients and were on optimal medical therapy 

per attending cardiologist. 

Chemoreflex Stability 

Assessment of chemoreflex feedback control of ventilation is detailed in Table 2. Patients with heart failure 

exhibited stable ventilatory control systems during wakefulness (loop gain range: 0.10-0.84) and exhibited a 

71% higher loop gain than controls (p=0.003, adjusted for age, sex, BMI).  

Ventilatory Oscillations 

Example traces. Ventilatory patterns during spontaneous breathing in 5 patients with heart failure are shown 

in Fig. 3A. Note the profound, irregular oscillations bear a remarkable resemblance to the ventilatory 

oscillations emerging from feedback amplification of 1/f noise (Fig. 3A versus Fig. 2A).  

Resonance model. The resonance model closely fit the measured spectral profile of ventilatory oscillations 

for each participant (see examples in Fig 3B and summary data in Table 3). The presence of a significant 

resonance was observed in 24/25 patients with heart failure and 18/25 controls (Fisher F-test, comparing 

resonance to biological noise without feedback). Participants without a significant resonance (ventilatory 

variability resembled noise) tended to have a lower loop gain (see Online Supplement). 

We observed a notable concordance between the oscillatory strength (T) seen using spectral analysis and the 

underlying loop gain taken from CO2 stimulation (Fig. 4A), as expected from theory (Equation 1). That is, 

the underlying loop gain accurately explains the oscillatory nature of ventilation. Importantly, Thethis 

association enabled loop gain to be accurately estimated accurately from spontaneous oscillations (estimated 

loop gain = 1−1/T; Fig. 4A).  

Consistent with prediction, increasing loop gain was associated with oscillations that were larger (Fig. 4B) 

and had less irregular timing (smaller S.D. of interpeak interval, Fig. 4C).  

The period of spontaneous oscillations was also associated with the measured natural cycling period 

(1/[natural frequency] based on CO2 stimulation, r=0.75, p<0.001) consistent with feedback resonance.  

Determinants of Reduced Stability and Oscillations 

Linear regression models included the four loop gain determinants shown in Table 2.  
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Determinants of chemoreflex stability. Across all participants, increased loop gain was explained by an 

increase in chemoreflex sensitivity (univariate r
2
=0.42, p<0.001), chemoreflex delay (univariate r

2
=0.14; 

multiple regression ∆r
2
=0.24, p<0.001), and plant gain (i.e. reduced lung volume; univariate r

2
<0.01; 

multiple regression ∆r
2
=0.13, p<0.001).  

Determinants of ventilatory oscillations. A stronger resonance (T, spectral analysis) was associated with 

increased chemoreflex sensitivity (univariate r
2
=0.36, p<0.001), plant gain (univariate r

2
<0.01; multiple 

regression ∆r
2
=0.15, p<0.001) and circulatory delay (univariate r

2
=0.07; multiple regression ∆r

2
=0.14, 

p<0.001). The presence/absence of heart failure explained a minor additional component (∆r
2
=0.03, 

p<0.001) suggesting that factors relating to heart failure beyond the determinants reported had a minor 

independent impact. Oscillatory amplitude and irregularity were also explained by chemoreflex sensitivity 

and delays (Online Supplement).  
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DISCUSSION 

Our study elucidates the mechanism underlying diurnaldaytime ventilatory oscillations, a key predictor of 

mortality in patients with heart failure (1-6). We found that reduced stability (increased loop gain)—

consequent to increased chemosensitivity, delay and plant gain—yields stronger oscillations precisely as 

expected based on the theoretical concept of resonance (Equation 1). Specifically, the chemoreflex feedback 

system regulating ventilation paradoxically enhances biological noise that perturbs ventilation near the 

frequency of periodic breathing, to yield a continuum of overshoot and undershoot ventilatory oscillations. 

These ventilatory oscillations in heart failure are typically irregular (Fig. 3A), and conform to a model of 

feedback resonance in 96% of patients (Fig. 3B). As loop gain rises towards unity1, oscillations become 

larger and more regular (Figs. 2 and 4), yielding prominent periodic breathing despite stability being classed 

as a ‘stable system’ according to classical criteria (loop gain<1). In contrast with current understanding, 

Thus, the more extreme conditions of feedback instability are therefore not necessary for ventilatory 

oscillations to occur in heart failure, in contrast with current understanding (7, 13-16). Overall, our data are 

remarkably consistent with chemoreflex resonance as the predominant mechanism responsible. Our work 

therefore provides the field with a validated framework for interpreting and quantifying the broad range of 

oscillatory ventilatory behaviors seen commonly in patients with heart failure. 

Comparison with Available Evidence 

By linking the clinical pattern of ventilatory oscillations to the function of the chemoreflex feedback system 

that regulates ventilation, we provide a unifying explanation for a host of previous empirical findings. 

Observational studies consistently demonstrate associations between diurnaldaytime oscillatory breathing in 

heart failure and factors that promote a less stable feedback regulation of ventilation, namely increased 

chemosensitivity and circulatory delay (7, 8, 12). Interventions that diminish feedback act to suppress 

oscillations, seen as a reduced variability and the disappearance of a peak in the power spectrum of 

ventilation (5, 9-11, 13). In healthy subjects and animals breathing spontaneously, experimental studies have 

demonstrated correlated associations between spontaneous ventilatory fluctuations and prior swings in 

ventilation and PCO2, which are dependent on intact chemosensitivity (23, 27, 38, 39)(22, 26, 35). Modeling 

studies have also suggested that a stronger chemoreflex response or higher loop gain yields quasi-oscillations 

in the presence of biological noise (24), although a quantitative relationship between oscillatory behavior and 

with reduced stability had not been proposed or tested experimentally until now. Taken together with the 

current study, the available evidence now overwhelmingly implicates chemoreflex feedback regulation in the 

ventilatory oscillations observed.  

Physiological Insights 
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Our study experimentally links the nature of ventilatory oscillations to the underlying structure of the 

chemoreflex control system regulating ventilation. Several key insights can be drawn from our work:  

Based on the concept of resonance, some degree of ventilatory oscillations must occur as a necessary side-

effect of homeostatic regulation. Specifically, a greater chemoreflex sensitivity will more completely 

suppress a long-term or steady-state disturbance to ventilation (e.g. a change in respiratory mechanics or 

metabolic rate), but will yield a greater amplification of biological noise at its characteristic frequency (see 

Fig. 12B, see also  Online Supplement). The greater circulatory delay that occurs in heart failure will 

increase the amplification at the resonance, but also moves the resonance to a lower frequency where 

biological noise is greater (36). 

Oscillations result from chemoreflex feedback across a stability-instability continuum. , from Individuals 

with very low loop gain (e.g. 0<loop gain≤0.25) exhibit a pattern resembling biological noise in those with 

minimal chemoreflex feedback (low loop gain). Those with normal loop gain (0.25<loop gain≤0.5) exhibit 

weak , to and irregular oscillations . in those with reduced stability Patients with elevated loop gain 

(0.5<loop gain≤1) manifest stronger and more regular oscillations ((higher loop gain, Fig. 3). Finally, , to 

consistent periodic breathing occurs in the most extreme cases when the threshold for instability is breached 

(loop gain>1).  

Notably, wWhen loop gain is below 1, the magnitude of biological noise plays a key role in the pathogenesis 

of oscillatory breathing. For example, patients i and iii have quite similar loop gains but patient i has 2-fold 

larger oscillations due consequent to increased noise (see Figs. 2 and ,3),. Consequently, ventilatory 

fluctuations can be larger as a consequence of increased loop gain or increased noise. Thus, two distinct 

phenotypes of excessive ventilatory variability can be described: those driven largely by hypersensitive 

chemoreflex feedback (normal biological noise levels) and those with normal chemoreflexes but increased 

biological noise such asi.e. ataxic opioid-induced ventilatory oscillations fluctuations (36) or ventilatory 

fluctuations in rapid-eye movement sleep (37).  

The concept of resonance has important implications for periodic breathing during sleep, known as central 

sleep apnea, which is also a strong prognostic marker of mortality in heart failure (1). Although sleep 

diminishes chemosensitivity per se, ventilatory oscillations become even more prominent (9). Key 

contributing factors include changes to state (sleep-wake transitions, arousals) and upper-airway patency 

(e.g. swings in dilator muscle tone) (38). Insofar as arousals and changes to upper-airway patency are tied to 

PCO2, such effects effectively raise loop gain by exacerbating changes in ventilation per change in PCO2. 

However, to the extent that arousals and upper airway effects are random, they provide an additional source 

of biological variability that will act to promote oscillatory breathing with maximum impact in those with 

elevated loop gain. Diminishing these disturbances with (42)(1)instabilityhudgelhypnotics/CPAP can indeed 
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improve central sleep apnea (39). Such disturbances may also explain residual events after loop gain is 

lowered to stable levels with intervention (40).  in(41)(42) 

The concept also has implications for obstructive sleep apnea, a condition characterized by irregular 

ventilatory oscillations due to a combination of increased upper airway collapsibility and reduced ventilatory 

stability (41). Interestingly, reducing loop gain can improve obstructive sleep apnea severity even when the 

control system is strictly stable before intervention (41), potentially due to damping of chemoreflex 

resonance effects. 

 

Clinical Implications 

In patients with heart failure, increased chemosensitivity and consequent ventilatory oscillations are 

harbingers of the neurohumoral derangement that ultimately predisposes to mortality (42, 43). On this basis, 

a simple means to quantify reduced stability, as distinct from increased biological noise, may have clinical 

utility. Importantly, the current work enables a quantitative identification of the propensity to instability in 

individual patients from spontaneous breathing, without intervention. We and others have used spontaneous 

breathing to quantify stability (26, 41, 44, 45), but the use of a single variable to estimate stability without 

intervention has not been validated to date. Our approach may help 1.) recognize the predisposition to 

Cheyne-Stokes respiration during wakefulness or sleep, 2.) provide a means to titrate medications or screen 

those at high risk of sudden cardiac death, 3.) assess the impact of novel therapies designed to reduce 

chemosensitivity. However, Ffurther investigation is warranted.  

Limitations  

Detailed mechanisms. Our study does not attempt to elucidate the specific chemoreceptors responsible for 

the ventilatory oscillations observed. Peripheral and central chemoreceptor systems may both contribute to 

the dynamic response measured with CO2 stimulation, although available evidence suggests an essential role 

for the carotid body chemoreceptors in the ventilatory oscillations and mortality in heart failure (46-49).  

Hypoxic chemosensitivity may also play a role (8), so including it in a measure of loop gain may further 

improve the associations observed. We also did not seek to elucidate the main source of ventilatory noise. 

Sources may be either extrinsic (e.g.  behavioral inputs, neural variability external to chemoreflex feedback) 

or intrinsic (e.g. neural variability at the level of respiratory pattern generator or within chemoreceptor 

circuits in the medulla). The precise details of ventilatory disturbances were not under investigation: the 

essential point is that biological variability acts to disturb ventilation across a broad frequency range in all 

individuals. 
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End-tidal PCO2 as an estimate of alveolar and arterial PCO2. End-tidal PCO2 is used ubiquitously in 

ventilatory control studies of patients with and without heart failure to reflect breath-to-breath changes to 

alveolar and arterial PCO2. We note that particular care was taken to ensure a sufficient plateau such that 

end-tidal PCO2 reflected alveolar levels (see Online Supplement). Moreover, we excluded patients with lung 

disease; nonetheless, the difference between end-tidal and arterial PCO2 may be considerable in some 

patients with heart failure (e.g. via subclinical pulmonary congestion). We note, however, that a constant 

discrepancy between these two variables will have no impact on the values of loop gain measured as this 

calculation depends on relative PCO2 changes rather than the absolute value. 

 

Non-linearities. The resonance concept employed here can be considered a linear simplification of more 

general nonlinear behavior. We note that spectral analysis of the oscillation traces revealed subtle higher 

harmonics at multiples of the natural frequency (i.e. not explained by the linear resonance model) in 3/25 

patients with heart failure and 0/25 controls, consistent with the absence of nonlinear effects except in 

extreme cases (see patients ii and iv in Fig. 3, note smaller peaks not explained by the red model trace; see 

Online Supplement).  

Conclusions 

Using a combination of mathematical modeling and direct measurement in patients with heart failure, our 

study demonstrates that diurnaldaytime breathing oscillations in heart failure are readily explained by a 

potent resonance or “ringing” effect due to the chemoreflex feedback system regulating ventilation. Reduced 

stability—consequent to increased chemosensitivity and delay—leads to a greater amplification and 

propagation of biological noise around the feedback loop, yielding transient overshoot and undershoot 

oscillations that become profound as stability is reduced. We may now decipher oscillatory characteristics to 

more readily detect and interpret the otherwise covert increases in chemoreflex sensitivity that are known to 

occur with advanced heart failure and foretell mortality.  
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TABLES 

 

Table 1: Patient Characteristics  

 

Characteristics 
Heart failure  

N=25 

Controls  

N=25 

Male:Female 23:2 15:10† 
Age, years 61±13 53±13 
Body mass index (kg/m2) 31±7 32±7 
Systolic dysfunction (Y:N) 23:2 - 
Left-ventricular ejection fraction (%) 38±15 60±3‡§ 
New York Heart Association class (I:II:III), N 3:13:8 - 
Medications, N (%)   

Beta-blockers 24 (96) 0 (0)† 
Loop diuretics 17 (68) 0 (0)† 
ACEi or AT2R blockers 23 (92) 2 (8)† 
Spironolactone 9 (36) 0 (0)† 
Digoxin 6 (24) 0 (0)† 

 

Values are mean±S.D. 
†
p<0.05 (Fisher exact test). 

‡
Measured in a subset of 5/26 

controls (and all participants with heart failure). 
§
p<0.001 heart failure vs. controls 

(Student’s t-test). ACEi= angiotensin-converting enzyme inhibitor. 

AT2R=angiotensin type II receptor.  

 
 

Table 2. Chemoreflex stability  

 

Characteristics 
Heart failure  

N=25 

Controls  

N=25 

Summary   
Loop gain 0.43±0.21 0.25±0.09*** 
 (range: 0.10-0.84) (range: 0.06-0.45) 
Natural frequency (cycles/min) 1.33±0.39 1.85±0.51*** 
 (range: 0.78-2.57) (range: 1.15-2.63) 

Loop gain determinants‡:   
Chemoreflex sensitivity (L/min/mmHg)§ 0.59±0.24 0.48±0.20† 

Plant gain (mmHg/L.min)§ 0.89±0.21 0.99±0.23 
Chemoreflex delay (s)|| 18.2±4.6 13.8±3.3** 
Plant delay (s)|| 7.9±1.4 8.2±1.6 

 

Values are mean±S.D. 
**

p<0.01; , 
***

p<0.001 heart failure versus controls. 
†
Non-significant trend 

(p=0.08). 
‡
Values are reported for 1 cycle/min oscillations. §Chemoreflex sensitivity or controller 

gain describes the change in ventilation in response to a 1 mmHg oscillation in alveolar PCO2. Plant 

gain describes the change in alveolar PCO2 caused by a 1 L/min oscillation in ventilation. 
||Chemoreflex delay describes the phase shift between alveolar PCO2 and ventilation (delay = phase 

lag / 360° × 60) (7). This value reflects the lung-to-chemoreceptor circulation time plus additional 

time lags due to mixing of CO2 in the blood and tissues. Likewise, plant delay describes the phase 

shift between ventilation and alveolar PCO2 due to CO2 mixing in the lungs. Values are presented in 

units of time rather than phase to facilitate interpretation.   
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Table 3. Ventilatory oscillations 

 

Characteristics 
Heart failure 

N=25 

Controls 

N=25 

Power spectral analysis of feedback amplification*   
Oscillatory strength, T 1.7 [1.2] 1.4 [0.2]††† 
 (range: 1.2-11.3) (range: 1.1-2.4) 
Estimated loop gain, 1−1/T−1 0.46±0.19 0.29±0.11††† 
Estimated natural frequency (cycles/min) 1.7±0.5 2.5±0.6††† 
Significant resonance detected‡ (Y:N) 24:1 18:7§ 

Time-domain analysis   
Amplitude (%mean) 47 [44] 34 [23]† 
Inter-peak interval variability, S.D. (%mean) 26±8 33±6†† 

 

Values are mean±S.D. or median[75th− minus 25th percentile]. *A resonance model was fit to the ventilation 

power spectrum to summarize the data. The general model is given by y=Sd(f)/|1−LG(f)|2 where the noise 

component Sd(f) is assumed to conform to a power law (Sd(f)=βf−α where α=exponent, β=offset, f=frequency) 

(50) and the chemoreflex influence is described by the simplest possible model (LG(f)=−ke−i2πfδ/(1+i2πfτ) 

where k=gain, τ=time-constant, δ=delay) (41, 50). 
†p<0.05, ††p<0.01, †††p<0.001. ‡Fisher F-test compared the 

resonance model (feedback stimulated by biological noise) to noise (without feedback) for each individual. 
§p<0.05 Fisher exact test. 
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Figure Legends 

Figure 1. Model Concept of chemoreflex resonance and the relationship with loop gain. (A) Conceptual Feedback model of 

for the chemoreflex feedback regulation of ventilation: v=variable of interest, d=disturbance. (B) In a stable <I think explain the 

axes and some more background>system, a temporary disturbance that raises ventilation—thereby lowering alveolar CO2 and later 

eliciting a reflex reduction in ventilatory drive—ultimately yields a resonance or “ringing” effect characterized by successive 

overshoot/undershoot fluctuations that damp out over time. Note that each feedback response (overshoot/undershoot) is ~0.8 times 

smaller than the prior deflection in ventilation (loop gain = 0.8). (C) In the same systems, a(B) Time delays transform feedback 

inhibition into feedback amplification at higher frequencies: A loop with a delay elicits a response (red) to oppose a ventilatory 

deflection (blue). For slow disturbances, the response opposes the disturbance (top). For faster disturbances (bottom), the delay 

provides a substantial phase shift; at the natural frequency (phase=0º) disturbances are amplified rather than suppressed. (C) 

Disturbances are suppressed (green) or amplified (red) by the chemoreflex system depending on frequency (Equation 1). The 

degree of amplification (transmissibility T) reflects the underlying loop gain. Amplification profile is shown for a basic feedback 

system (D) that is stable as indicated by the decaying response to a transient disturbance (E). (F) Despite stability, an ongoing n 

ongoing sinusoidal disturbance applied at the natural frequency is amplified to yield 2-fold and 5-fold swings in ventilation even 

though feedback is stable (T=5, see Equation 1) for loop gains of 0.5 and 0.8 (Equation 1).  

 

Figure 2. Simulated chemoreflex oscillations. (A) A biological disturbance (power inversely related to frequency, top signal) is 

applied to ventilation for chemoreflex systems with increasing loop gain (reduced stability). Tidal breaths are drawn to faciliate 

comparison with ventilatory oscillations seen in patients with heart failure. (B) Spectral view of signals in panel A illustrates ing 

amplification ofhow biological noise is amplified by the system in a particular range of frequencies (near 1 cycle/min). In 

principletheory, the strength of the oscillation at the natural frequency (T = amplitude / noise, vertical arrows) at the frequency of 

periodic breathing (“natural” cycle frequency), is determined by loop gain (see Equation 1).  Note also that slower disturbances are 

inhibited (reduced power at lower frequencies) as expected of homeostatic feedback (see Online Supplement).(C) Reduced 

stability also yields a more regular oscillatory period (reduced S.D. of interpeak interval, σT). Simulations were performed using 

the simplified model in Fig. 1. 

 

Figure 3. DiurnalDaytime ventilatory oscillations in patients with heart failure. (A) Ventilation data from 5 patients (i-v) are 

shown superimposed on ventilatory flow waveforms. (B) Corresponding power spectra are shown. Note the close fit of the 

resonance model (red lines, shading denotes S.E.M.) to spectral data (blue bars). In theory, the strength of oscillations 

(amplitude/noise, T) is determined by the chemoreflex stability. Patients i-ii exhibited strong yet irregular overshoot-undershoot 

ventilatory oscillations. Patient iii exhibits exhibited modest oscillations following a transient disturbance (sigh breaths). Patient iv 

exhibits exhibited strong yet periodic oscillations consistent with instability (loop gain near 1). To the eye, Patient patient v 

exhibits exhibited no overt oscillatory behavior in (A), but spectral analysis reveals a weak oscillation (B). Amplitude in the 

scaling bar represents ventilation (tidal volume × respiratory rate). 

 

Figure 4. Reduced chemoreflex stability explains ventilatory oscillations in patients with heart failure. With increasing loop 

gain, oscillations become became stronger relative to biological noise (A), larger in amplitude (B) and more regular (C). (A) 

Notably, the strength of oscillations (spectral height relative to background noise, T) closely matches matched that predicted from 

the loop gain of the chemoreflex system regulating ventilation (solid black line, Equation 1). Accordingly the estimated loop gain 

from the spectra closely matches matched the measured loop gain (error=0.03±0.09, mean±S.D.). Shading in (C) denotes 95% 

prediction interval of simulated data. Solid circles denote heart failure and open circles denote controls. Patients i-v from Fig. 2 are 

denoted. 
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