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CMCCE: combinatorial multi-compartment centrifugal electrospinning system 

CES: centrifugal electrospinning system        ES: electrospinning 

CO-ES: co-axial electrospinning              OM: optical microscopy  

SEM: scanning electron microscopy           FM: fluorescence microscopy  

FTIR: fourier transform infrared spectroscopy   FFT: fast Fourier transform  

EE: encapsulation efficiency                 PVP: polyvinyl pyrrolidone 

PS: polystyrene                            PCL: polycaprolactone  

TPU: thermoplastic polyurethane             DMAc: N,N-dimethylformamide  

DCM: dichloromethane                     EtOH: ethanol  

TE-HCl: hydrochloride                      PBS: phosphate buffer saline 
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Abstract 

    Multi-faceted technological advances in fiber science have proven to be invaluable 

in several emerging biomaterial and biomedical engineering applications. In the last 

decade, notable fiber engineering advances have been demonstrated ranging from 

co-axial flows (for micron and nano-scaled layering), non-concentric flows (for Janus 

composites) and even 3D printing (for controlled alignment). The ES process is however 

limited, both for commercial impact (low production rates) and also in its facile 

capability to deliver reliable mimicry of numerous biological tissues which comprise 

blended and aligned fibers (e.g. tendons and ligaments). In the technological advance 

demonstrated here, a combinatorial multi-compartment centrifugal electrospinning 

(CMCCE) system is developed and demonstrated. A proof-of-concept enabling multiple 

formulation solution hosting (including combinatorial grading) in a single centrifugal 

electrospinning system (CES) comprising one spinneret is shown. Using this process, 

controlled blending and tuning of resulting fibrous membrane properties (contact angle 

and active release behavior) via aligned and phased fiber mat composition is 

demonstrated. In addition, the CMCCE process is capable of replicating production rates 

of recently developed centrifugal electrospinning systems (~120 g/h), while potentially 

permitting better mimicry of naturally occurring fibrous tissue blends. It is envisaged the 

advance in technology will be ideally suited to engineer synthetic fibrous biomaterials 

with greater host surface replication and will fulfil production rate requirements for the 

industrial sector. 

  

Key words: centrifugal electrospinning; multi-compartment; composition; combinatorial; 

fiber.  
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1. Introduction 

    The last two decades have experienced a multi-faceted re-emergence in fiber science 

[1, 2]. Much of this progress is directly attributed to advances in other distinctly separate 

fields (e.g. biomedical engineering, environment, energy and pharmaceutical sciences) 

[3-6]. Several intrinsic features of fibrous materials and resulting bulk systems (surface, 

macro-scale morphology and geometrical bundling or patterning) have propelled them as 

ideal platforms to address numerous global challenges [7-9]. This, in turn, has driven the 

development of fiber engineering or yielding methods; providing opportunities to scale 

down in fiber size, mass produce at the ambient environment, in lieu alignment during 

forming and to host a wide range of functional, sensitive or active materials within their 

filamentous structure [10, 11]. Co-axial electrospinning (CO-ES), centrifugal 

electrospinning (CES), fiber printing (2D and 3D) rotary jet-spinning are notable 

advances within this remit [12-14]. These developments have enabled multi-phase fiber 

composites and compartmentalization [15], ordered filamentous structures [16], Janus 

fiber systems [17] and high production rates [18]. It is noteworthy, technological advance 

is often driven by the underlying need or property requirement of an end application; and 

electrospinning (ES), and its various sister processes (i.e. electrospraying), have been 

explored in great depth for biomaterial and biomedical material purposes, primarily due 

to their facile operation, process control, ambient temperature operation and fiber size 

scalability [19, 20]. There is a clear expectation that these (and related technologies) will 

converge, enhance and diversify, as needed, over time [21].    

Engineered fibrous materials enable numerous benefits for various bio-related 

explorations and investigations. For example, fibrous structures exist naturally within the 

body as both soft and hard tissues (e.g. muscle [22, 23] comprise red type I (hard) and 

white type II (soft) fibers. Red fibers tend to have more mitochondria and greater local 

capillary density, which are more suited for endurance and slow to fatigue. White fibers 
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have high glycolytic enzymes and fast twitch properties. The two components are 

networked in muscle, which causes muscle contraction. Using this as an example, 

concept development based on biomimetics is possible (e.g. mimicking the extra cellular 

matrix). While ES has been the preferred fabrication method to show proof of concepts 

relating to fibrous biomaterials [24], there are several drawbacks which limit commercial 

impact and also real in vivo replication [25, 26]. For example, bionic tissue is a blend of 

multi-aligned fibers (e.g. cardiovascular [27], tendon [28] and ligament [29]), and the 

vast majority of ES explorations have focused on mono-fiber matrices with little to no 

orientation. Furthermore, bionic tissue inspired architectures also give rise to intricate 

surface patterning aspects, further matching real tissue functionality [30]. Together with 

naturally occurring fiber and industrial blending and alignment, these constitute towards 

vital fiber components [31]. In this regard, synthetic design, construction and engineering 

of aligned fiber blends is crucial to further advance potential biomaterial systems [32, 

33]. 

Where ES has been used to blend fibers the yield has been appreciably low [34]. 

Recent advances have, however, led to the development of CES. Here a centrifugal 

drawing force is utilized alongside the conventional electrical force to improve both yield 

and alignment. Both forces stretch and elongate the liquid polymer jet in CES to form 

fibers. CES has a broader range of ‘spinnable’ materials and is applicable for both 

conductive and nonconductive polymeric solutions [35], and process parameters include 

rotation speed, voltage and orifice size. Fiber production rates using CES (using a 

needle-less system) have reached 120 g/hr [36]. Multi-fiber blending via CES is scarce 

and conventionally a single medium hosting compartment is used. 

To improve fibrous biomaterial mimicry and aligned-blend fiber production rate in 

tandem the present work demonstrates the development of an advanced CES system 

deploying for the first time multiple media hosting compartments (exemplified using 

n=4). A combinatorial approach in material selection is shown which provides a route to 
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blend and engineer aligned mat compositions from multiple fibers. To elucidate material 

applicability further, polymers polyvinyl pyrrolidone (PVP), polystyrene (PS), 

polycaprolactone (PCL) and thermoplastic polyurethane (TPU) were used to synthesize 

multi-material stacked aligned fibers. Finally, the impact of combinatorial material 

selection is demonstrated through tuning active release rate (from blended membranes) 

and contact angle behavior, both of which are valuable properties of biomaterials 

interacting at a physiological interface. Biomaterial contact angle has significant impact 

on cellular interactions [37] and the materials surface is the first point of interaction with 

biological (host) surroundings. Thus, wettability is influenced primarily by surface 

characteristics which in turn impacts bio-interface behavior [38]. In addition, wettability 

has also been shown to modulate hydrophobicity, which is an important parameter in 

drug release from the delivery system [39]. 

 

2. Materials and Methods 

2.1. Materials and solution synthesis 

    Polyvinyl pyrrolidone (PVP, mean Mw=1.3 x106 g/mol), Polystyrene (PS, mean 

Mw=1.92 x105 g/mol), Polycaprolactone (PCL，mean Mw=8 x105 g/mol), Rhodamine B 

(mean Mw=479.01 g/mol) were purchased from Sigma-Aldrich Ltd., St Louis, USA. 

Thermoplastic polyurethane (TPU) was purchased from Solvay China Ltd., Shanghai, 

China. Acriflavine (mean Mw=259.73 g/mol) was purchased from Macklin, Shanghai, 

China. N,N-dimethylformamide (DMAc), dichloromethane (DCM) and ethanol (EtOH) 

were purchased from Sinopharm Chemical Reagent Co., Ltd, Beijing, China. Tetracycline 

hydrochloride (TE-HCl) was purchased from Amresco, USA. Phosphate buffer saline 

(PBS) was supplied by Sinopharm Chemical Reagent Co., Ltd, Shanghai, China. All 

materials were of the analytical grade and were used as received without further 

purification.  

file:///D:/æ��é��/Dict/7.0.0.1012/resultui/dict/result.html?keyword=polycaprolactone
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PVP solutions (ranging from 0 to 25 wt.%) were prepared by dissolving the polymer 

in ethanol with continuous mechanical stirring (VELP ARE heating magnetic stirrer, Italy) 

at 25 ℃ for 3h to ensure complete dissolution. PS solutions (ranging from 0 to 30 wt.%) 

were prepared by dissolving the polymer in DMAc with continuous mechanical stirring at 

50 ℃ for 6h to ensure complete dissolution. The 8 wt.% PCL solution (in DCM) was 

prepared by magnetic stirring at 50 ℃ for 6h with dichloromethane. TPU (20 wt.%) was 

dissolved in DMAc through magnetic stirring for 6h at 50 ℃. 

 

2.2. System setup 

 The complete CMCCE system is shown in Fig. 1(a). It comprises a conductive iron 

collector (wire diameter=0.5 mm, collector diameter from central spinneret point=18cm) 

and an ES rotating spinneret as shown in Fig. 1(b) which hosts individual solution 

compartments; with two detached media hosting channels displayed in the graphic. The 

spinneret is 80 mm in length and possesses upper diameter of 30 mm. The volume of 

each compartment is 2 mL with a diameter of 11 mm and 41 mm length. The 

electrospinning pore is placed on the bottom of the compartment, and the diameter of the 

pore can adjust from 0.4 mm to 0.6 mm. The spinneret system is capable of hosting 

numerous individual polymer solution compartments (or any other ESp material e.g. 

suspension, slurries and emulsions) as shown in Fig. 1(c). The collector was positioned 

around the spinning system at the perimeter, and by applying a DC voltage of 12-18 kv 

(maximum ~30 kV, 0.1 mA) (Glassman high voltage Inc. series FC, USA) and a rotation 

speed varying from 200 rpm to 400 rpm (maximum ~15000 rpm). The relationship 

between resulting fiber properties and parameters were investigated systematically. 

 

2.3.  Characterization 

2.2.1. Viscosity measurements. A Brookfield viscometer (DV2TLV, Brookfield, USA) 

was used to measure polymer solution viscosity. PVP and PS solutions were placed into 
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the sample vial and viscosity measurements were obtained suing a plate spindle system 

(CPA-41Z, 48 mm in diameter and 0.4 mm in gap distance). Viscosities were recorded 

under steady-state shear stress from 0.003 to 40 Pa at the ambient temperature (25 ℃).  

2.2.2. Optical microscopy (OM). An optical microscope (OM) (Pheonix BMC503-ICCF, 

China) was used to characterize morphology and arrangement of fibers engineered using 

CMCCE. The optical images were further processed for backlight and alignment 

analysis. . 

2.2.3. Scanning electron microscopy (SEM). Electron micrographs were obtained using a 

scanning electron microscope (Hitachi, Japan). Prior to SEM analysis, samples were 

sputter-coated (Sputter coater 108 auto, Cressington Scientific Instruments Ltd., UK) 

with Pt for 90 s at a current intensity of 25 mA. All samples were analyzed at an 

accelerating voltage of 20 kV and 500× magnification.  

2.2.4. Fluorescence microscopy (FM). Fluorescent micrographs were obtained using an 

inverted microscope (Eclipse Ti-S, Nikon, Tokyo, Japan) equipped with camera (DS-Qi2, 

Nikon, Tokyo, Japan). All samples were observed at 10× magnification. Polymer 

solutions were labeled through addition of 1 w/v.% of selected fluorescent probe 

acriflavine (green, excitation in 440 nm) or rhodamine-B (red, excitation in 540 nm ).  

2.2.5.Fourier transform infrared spectroscopy (FTIR). FTIR (IR Affinity 1, Shimadzu, 

Japan) was used to determined sample composition. Prior to analysis, samples were 

prepared using the KBr pellet pressing method. Here, 2 mg of engineered fibers were 

dispersed in 200 mg of KBr medium through grinding and were then compressed into 

transparent pellets (20 MPa). Spectra were obtained at a resolution of 4 cm−1 (over the 

4000–400 cm−1 region). 

 

2.4. Drug release behavior. 

Antibiotic release from selected aligned fibers systems was demonstrated using UV 

spectroscopy. A UV spectrophotometer (UV-2600, Shimadzu, Japan) was used to 
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generate a linear calibration curve of standard TE-HCL solutions ranging from 5-100 

µg/mL. For TE-HCL release studies, 1 mL of supernatant was removed for UV 

measurements and an equal volume of fresh release medium was added to the test 

medium. TE-HCL concentration was determined using a wavelength of 356 nm. Selected 

fibrous samples were immersed in a sealed bottle containing 100 mL of PBS at a 

temperature of 37℃ . Sample vials were agitated (200 rpm) using a HZ-8801K 

thermostatic oscillator (Taicang Science and Education Factory, China). 

 

Eqn. (1) was used to determine the cumulative release of TE-HCL ( ). 

                           % = m / M × 100                          (1) 

Where m is quantity of TE-HCL in the solution at specified time points and M is the 

maximum quantity of TE-HCL in the solution at infinite time.  

 

For encapsulation efficiency (EE) studies 50 mg of formulated drug loaded fiber was 

completely dissolved in 20 ml corresponding solvents. Thereafter the TE-HCl 

concentration was determined using UV spectrophotometry.  

 

Eqn. (2) was used to calculate the encapsulation efficiency (EE). 

                         EE%=Pt/Lt                                          (2) 

Where Pt is the quantity of TE-HCl embedded in fibers and Lt is the theoretical quantity of 

TE-HCl (from the feeding solution) incorporated into the polymeric system. 

 

2.5. Electric field analysis 

Electric field computations were performed using Comsol Multiphysics 5.2 via 

finite element method. Three-dimensional geometries of the device was developed with 

computational boundaries using COMSOL Multiphysics [40, 41]. The working distance 
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and applied voltage parameters were set to 12 cm and 18 kv, respectively. 

 

2.6. Image processing.  

ImageJ software (National Institute of Health, USA) was used to analyze 

micrographs (for mean fiber diameter) enabling statistical distribution measurements. 

Here, each experiment involved a random sample of 100 fibers. Origin software 

(OriginLab, USA) exported all data for further analysis while plotting graphs. Error bars 

were plotted to represent the mean±standard deviation. Fast Fourier transform (FFT) was 

performed using MATLAB (MathWorks, Natick,Massachusetts, USA) to determine fiber 

alignment based on binary OM micrographs to confirm the relative degree of fiber 

alignment via conversion of fiber location image into spacing frequency. 

 

3. Results and discussions 

3.1 Centrifugal electrospinning system 

    The complete CMCCE system is shown in Fig. 1(a). It comprises a collector 

(conductive iron wire (wire diameter=0.5 mm, collector diameter from central spinneret 

point=18cm) and an ES rotating spinneret as shown in Fig. 1(b) which hosts individual 

solution compartments; with two detached media hosting channels displayed in the 

graphic. The spinneret system is capable of hosting numerous individual polymer 

solution compartments (or any other ESp material e.g. suspension, slurries and emulsions) 

as shown in Fig. 1(c), although there is no restriction on compartment volume, number, 

size or orientation. In fact, the centrifugal element (force) enables utilization of non-ESp 

materials too and enhances production rates. The electric field (Fig. 1(d)) is the main 

driving force for electrically conducting (ESp) materials, and ultimately permits ‘jet’ 

formation, fiber trajectory and deposition towards the collector frame. Fig. 1(e) illustrates 

multi-fiber blending (shown using two compartments) to yield a composite fibrous 

membrane. Blended fibers have potential to overcome limitations (multi-step engineering, 
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poor biological mimicry and limited control on charged fiber interaction) often associated 

with conventional ES methods. A combinatorial approach based on compartment number 

and deployed material type provides extensive scope for composite material development 

and functional property fine-tuning. Fig. 1(f) shows a fluorescent micrograph of a fibrous 

composite engineered using CMCCE, where PS (acriflavine probe, green) and PVP 

(rhodamine-B probe, red) are spun (both solutions display separate jetting and fiber 

formation) in tandem hosting specific fluorescing materials. The impact of specific 

conventional ES process parameters (such as flow rate and ambient pressure) is reduced 

in CMCCE which enhances the overall process reliability. Furthermore, the added benefit 

of alignment, controlled blending and greater production rate are achievable.  

In this conceptual study, highly aligned fibers were generated using CMCCE 

deploying a spinneret rotational speed of 400 rpm and an applied voltage of 18 kV. For 

the initial exploration, two spinneret compartments were used. Fig. 2(a) exhibits aligned 

PS fibers possessing a mean diameter of 25.5±9.9µm. In this instance PS solution (22.5 

wt.%) was spun from both compartments. Under identical (aforementioned) conditions, 

highly aligned fibers also result when PVP solution (20 wt.%) replaces PS in both 

compartments, although there is a reduction in the mean fiber diameter (Fig. 2(b), 

12.4±4.0 µm). Membranes comprising both PS and PVP aligned fibers are generated 

when they are deployed at a 1:1 compartment ratio (Fig. 2(c)). PS fibers exhibit reduced 

light transmission compared to PVP fibers, which results in dark (PS) and bright (PVP) 

filaments as observed in optical micrographs. All membranes comprise highly aligned 

fibers with smooth surface as evidenced in electron micrographs (Fig. 2(d)-(f)). 

Individual and over-layered fluorescent micrographs are shown in Figs. 2(g)-(i). Figs. 2(g) 

and (h) show fluorescence from entrapped probe (~1 w/v.%) within PS (acriflavine probe, 

green) and PVP (rhodamine-B probe, red), respectively, indicating the presence and 

location of each fiber type. Fig. 2(i) is an over-layered fluorescent micrograph confirming 

the simultaneous engineering of PS and PVP fibers through CMCCE, while at the same 
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time clearly indicating active material retention and active carrier potential. 

Corresponding mean fiber diameter distributions and water contact angles (as in-sets) are 

shown in Figs. 2(j)-(l). PVP fibers possess smaller diameters giving rise to a clear 

bi-modal fiber distribution in the blended composite system. Differences in PS 

(hydrophobic) and PVP (hydrophilic) fibrous membrane hydrophobicity is as one would 

expect (100.9±0.7° and 47.6±1.0°, respectively), and the impact of a blended system 

shows a medium contact angle (67.9 ± 0.6°), which combines the 

hydrophilic-hydrophobic property of both materials, indicating a method to modulate 

surface wettability. Furthermore, compartment solution allocation and individual polymer 

solution concentration are other parameters which can further optimize contact angle 

behavior which is crucial for cell bio-interface applications such as bionic tissue 

development [42]. 

 

3.2. Congruence and parametric control 

    In this study, two polymeric solutions were used simultaneously as separate 

compartments within the hosting CES spinneret. The relationship between two 

simultaneously jetting and (eventually) adjacently forming and aligned fibrous materials 

was explored. Therefore, establishing a quantifiable model to deduce viable process 

parameters (e.g. solution viscosity, rotation speed, applied voltage) becomes vital. Fig. 

3(a) demonstrates the relationship between solution viscosity and process polymer 

solution concentration; as importantly maps onto this relationship are key fiber forming 

zones. As demonstrated in a previous study [36], a critical polymer concentration must be 

reached for pristine fiber production, denoted as entanglement concentration (T). This is 

identified as the intersection point between good (pristine fibers exhibiting near uniform 

morphology) and poor fiber (fibers displaying beaded and other irregular inconsistencies 

such as varying diameter along a fibers’ axial length) production as shown in Fig. 3(a). 

Therefore, critical polymer loading concentrations for selected solutions were determined 
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to be 19 wt.% for PVP (in EtOH) and 24 wt.% for PS (in DMAc). The critical 

concentration can also be approximated using a viscosity plot and by identifying the 

sharp shift in viscosity as a function of polymer concertation [36]. When the polymer 

concentration in solution is low, chain entanglement is not sufficient to promote chain 

overlap, which means fiber formation is not achievable or is poor [43]. When the solution 

concentration reaches and surpasses (T) value, intermolecular forces enable pristine fiber 

formation. In the current study, the explored PVP concentration ranged from 16 to 24 

wt.% and from 20 to 27.5 wt.% for PS polymer.  

Once the minimal polymer concentration was determined process parameters (such 

as spinneret rotation speed and the applied voltage) were investigated. For this, identical 

spinneret and compartments were used (materials, geometry, volume and orientation). Fig. 

3(b) illustrates the relationship between applied voltage and deployed rotation speed for 

fiber production. In the first instance, PVP solution (19 wt.%) was subjected to numerous 

preliminary experiments to determine minimum working parameters for fiber formation. 

This boundary was determined experimentally and is shown as the black curve; 

indicating process viability at 10.0 kV and 100 rpm to 6.0 kV and 400 rpm. Numerical 

parametric adjustments to these values must be above this curve in order to yield aligned 

PVP fibers. The red curve is the operational boundary (minimal process parameters) for 

24 wt.% PS solution. Here the process viability was between 18.5 kV and 100 rpm to 12 

kV and 400 rpm. The shaded zone in Fig. 3(b) appears above both curves and is the 

optimal blended aligned fiber-engineering region for both simultaneously jetting polymer 

solutions. The combinatorial parametric relationship also suggests a compensating effect 

exists. At a comparatively low applied voltage, higher rotation speeds enable fiber 

formation and vice versa. In addition, orifice diameter can be used to modulate fiber 

formation and this was explored using two orifice diameters.  

The relationship between parametric control and fiber diameter was investigated 

further. A selection of PS (range 20-27.5 wt.%) and PVP (16-24 wt.%) solutions with 
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varying concentrations were deployed according to the determined critical viscosity 

values. An increase in PS solution concentration leads to a reduction in fiber diameter as 

shown in Fig. 3(c). For PS, deploying a polymer solution concentration of 20, 22.5, 25 

and 27.5 wt.%, yields fibers with mean diameters of 13.0±4.9, 25.5±9.9, 22.6±4.0 and 

18.4±3.8 µm, respectively. For the last three concentrations, the size reduction could be 

ascribed to greater polymeric concentrations impacting reduced solvent and solvent 

evaporation rates resulting in finer fibers [44]. A clear trend, however, is observed in 

resulting fiber diameter with increasing PVP solution concentration. Mean fiber 

diameters were 45.5±14.4, 27.8±5.9, 12.4±4.0, 10.4±3.0 and 16.0±4.6 µm for 16, 18, 20, 

22 and 24 wt.% PVP solution concentrations, respectively. An anomaly for the 24 wt.% 

solution is ascribed to deviation in critical viscosity. Fig. 3(d) illustrates the impact of 

compartment orifice size (media ejecting point during CMCCE) on resulting fiber 

diameter. PS fiber diameter decreased from 52.9±11.3 to 22.6±4.1 µm and a similar trend 

was observed for PVP polymer (i.e. 46.4±12.9 to 12.4±4.0 µm) when the orifice diameter 

was reduced from 0.6 to 0.4 mm. A reduction in the compartment orifice leads to greater 

fiber uniformity and facilities finer fiber formation.  

    For spinneret rotating speeds, mean fiber diameters of PS were 11.5±4.2, 20.2±6.7 

and 22.6±4.0 µm (rotational speeds of 200, 300 and 400 rpm, respectively) as shown in 

Fig. 3(e). A similar trend is observed for PS fibers. Increasing the rotation speed leads to 

coarser fiber engineering. A greater rotation speed accelerates liquid ejection from the 

compartments orifice. This in turn leads to an increased fiber diameter. Fig. 3(f) 

demonstrates the impact of applied voltage on fiber diameter. Mean PS fiber diameters 

are 38.5±6.6, 37.0±13.5, 29.7±7.6, 26.0±8.8, 22.6±4.0 µm at an applied voltage of 12, 

13.5, 15, 16.5 and 18 kV, respectively. An increase in applied voltage provides an 

enhanced electrical force, contributing towards fiber elongation, thus decreasing fiber 

diameter. However, mean fiber diameters for PVP formulations are 9.9±4.9, 14.7±3.8, 

7.3±2.1, 11.0±3.5, 12.4±4.0 µm at an applied voltage of 12, 13.5, 15, 16.5 and 18 kV, 
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respectively. An increase in mean fiber diameter is observed when the electrical field was 

increased from 12 to 13.5 kV, although a reduction was observed thereafter. This anomaly 

is explained due to solution viscosity. The selected PVP solution has a viscosity of 7044 

mPa·s, which is higher than the selected PS solution (2039 mPa·s). The impact of 

centrifugal force is more pronounced on media with lower viscosity.  

 

3.3. FTIR spectroscopy  

    FTIR was used to confirm PVP and PS fiber blends, focusing in the 4000-400 cm-1 

region. Spectra for PVP, PS, TE-HCl, PVP & TE-HCl, PS & TE-HCl, PS & PVP & 

TE-HCl are displayed in Fig. 4(a). For PS, bands at 2922 cm-1 are assigned to asymmetric 

stretching vibrational modes of the CH2 group, and the band at 1600 cm-1 is due to C-C 

stretching vibrational mode for the phenyl group [45]. Characteristic absorption peaks at 

1658 and 1288 cm-1 are observed for PVP, which are assigned to C=O and C-N vibrations, 

respectively [46]. The spectra for TE-HCl shows two characteristic IR regions; at 1460 

cm-1 (OH bending) and 1250–1200 cm-1 (C-C stretching and bending, N-H bending and 

C-N stretching). Compared to pristine polymers, spectra for mats prepared using PVP & 

TE-HCL, PS & TE-HCL, PS & PVP & TE-HCL exhibit characteristic peaks for the 

active at 1460 and 1228 cm-1 [30]. No other absorption bands were detected in resulting 

drug-fibrous samples, confirming no new chemical bond formation or significant 

intermolecular interactions arising within blended fibers. 

 

3.4. In vitro drug release study 

Drug release behavior from various aligned fibrous systems was investigated. Three 

fibrous drug loaded samples (PVP, PS and PS & PVP) were prepared using CMCCE 

under optimized working conditions (400 rpm and 18kV). Active release behavior was 

evaluated in vitro (PBS, pH=7.4) at ambient conditions (37 ℃). In addition, a PS 

solution concertation of 22.5 wt.% was selected (compartmental ejecting orifice =0.6 
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mm). PVP samples were prepared using a 20 wt.% solution (compartmental orifice=0.4 

mm). The drug encapsulation efficiency of PVP, PS and PS & PVP was 98.8±1.1, 96.3

±0.9, 97.1±1.5, respectively. All three samples show high active entrapment (>95%), 

indicating the CMCCE process is also economical in terms of efficiency. 

Near complete TE-HCL release from PVP fibers (97.9±1.9%) was achieved in 30 

minutes, while release from PS matrices only reached 8.9±1.9% at the same time 

interval, which approximately doubles (18.3±1.2 %) at 48 h (Fig. 4(b)). Fibrous blends 

exhibited a moderate release rate, accompanied by a rapid onset release (65±1.7 % at 10 

min) and then a sustained phase (70.0±1.2 % for the following 48 hrs). Due to the highly 

water soluble nature of PVP, spun fibers dissolved simultaneously in PBS ensuring rapid 

active release. In contrast, PS is hydrophobic, and so composites of this and PVP provide 

a method to control active release; ideally suited for potential medicated fibrous device 

development (e.g. sustained wound dressing). For example, rapid active release is 

capable of killing bacteria at the wound site, and subsequent sustained release is ideal to 

inhibit bacterial growth [47]. In addition, numerous studies have shown cell growth (and 

therefore tissue repair) is enhanced using aligned fibers. 

 

3.5. Fiber ratio regulation 

    A method to regulate the ratio of PS and PVP as blended fibers is demonstrated 

using a spinneret capable of hosting two or more formulated compartments. In this 

instance, the spinneret is shown to host four compartments, providing increased fiber 

production rate and improved blend integrity and control. While the compartment is 

adjustable, material selection adds to the possibilities of CMCCE. In the first instance a 

combinatorial selection (using two polymeric solutions i.e. PVP and PS) provides 

increased output and controlled fibrous composite gradient ratio blending. Fibrous 

blended mats comprising various PVP ratios (low to high as 1:1, 2:1, 3:1) are shown 

using gray-scale histogram scans (Figs. 5(a)-(c)). Fig. 5(a) shows composite fibers 
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generated using a 1:1 ratio. PS fibers are observed as relative dark filaments, whilst PVP 

fibers appear closer to transparent. The gray-scale histogram scans were processed using 

a normalized background and image intensification. Here, lower gray values (yellow bar) 

correspond to darker regions (PS fibers) and higher values (red bar) correspond to lighter 

regions (PVP fibers) in histograms for micrographs. Increasing PVP compartments from 

1 to 2 to 3 in the hosting spinneret, leads to an increase in the red histogram detection bar 

(gray-scale) as shown in Figs. 5(b) and (c). In addition, by comparing histograms for all 

groups, it is evident that PVP fiber quantity varies depending on the initial compartment 

ratio. This demonstrates an important and facile route to control fibrous mat production 

rate in general, and fiber composition in lieu. 

 

3.6. Diversity of material combination 

    To elucidate further mat complexity and compositional fiber integration using 

CMCCE; a series of experiments were performed using a range of polymers with variable 

hydrophobic properties. Using the example shown in Figs. 6(a)-(g), samples comprising 

PCL, PS, PVP and TPU fibers, are prepared individually or integrated as a co-polymer 

blended system, Figs. 6(a)-(d) show optical micrographs of spun PCL, PS, PVP, and TPU 

mats, respectively. Fibers exhibit near uniform size distributions and appreciable 

alignment. FFT analysis (based on optical micrographs) appearing as insets in 

micrographs, show significant intensities indicating ordered fiber orientation. Fig. 6(e) 

shows aligned PCL, PVP fiber blends, Fig. 6(f) shows aligned PS-PVP blended fibers, 

and Fig. 6(g) shows aligned TPU and PVP fiber systems, which again indicates an 

excellent route to prepare multi-aligned fibers with varying surface and size properties.  

 

4. Conclusions 

    In summary, we present a directional advance in engineering blended and multi- 

aligned fibers using multiple compartments and a modified spinneret making use of 
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electrical and centrifugal forces. This method provides an opportunistic approach to 

prepare aligned fibrous matrices comprising two or more materials. Although a 

combinatorial system (for PS/PVP) was exemplified and quantified, the system is 

applicable to almost any polymeric material providing the viscoelastic properties are 

known. The present work demonstrates a promising low-cost and facile approach for 

large-scale production of stacked and blended fibers, with current explorations exhibiting 

implications in drug delivery, tissue engineering, food technology and smart functional 

material fabrication. The current proof of concept will now focus on the development and 

advancement of specific biomaterial applications. 
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Figures captions 

Fig. 1. Schematic of the centrifugal electrospinning system and fabricated fibers. (a) Schematic 

diagram of the complete CMCCE system. (b) Schematic diagram of the hosting spinneret 

detached from two compartments. (c) Spinneret hosting four compartments in a 3:1 ratio (d) 

Computational detail (EFM) of two individual jets (each from their respective solution 

compartments) emerging under an applied electric field. (e) Illustration of a composite material 

resulting from CMCCE and (f) fluorescent micrograph of a blended system comprising PVP 

(rhodamine-B) and PS (acriflavine) (CMCCE conditions deployed 400 rpm, 18 kV). 

Fig. 2. Optical, electron and fluorescent micrographs of aligned fibers obtained using different 

materials. (a)(d)(g) PS, (b)(e)(h) PVP and (c)(f)(i) both PS and PVP solutions, respectively. 

Corresponding fiber diameter distribution and water contact angles are shown in (j)(k)(l), 

respectively. 

Fig. 3. The analysis of working parameters. (a) Relationship between viscosity and polymer 

concentration, with fiber quality zones mapped on plot surface. (b) Depiction of viable working 

voltage and rotation speed for PS and PVP polymer compartments. Mean PS and PVP fiber 

diameter distribution modulated using various working parameters: (c) solution concentration (d) 

compartment orifice size (e) spinneret rotation speed and (f) applied voltage. 

Fig. 4. Study on the biomedical properties of the fabricated fibers. (a) FTIR spectra of (Ⅰ) 

TE-HCL (Ⅱ) PS (Ⅲ) PVP (Ⅳ) PS & TE-HCL (Ⅴ) PVP & TE-HCL (Ⅵ) PS & PVP & TE-HCL. (b) 

cumulative TE-HCL release from PS, PVP, PS & PVP fibrous samples over time. 

Fig. 5. Ratio control. Optical micrographs and gray scale analysis of fibers with different ratio of 

PS and PVP by using different number of working solution tubes: (a) 1 PS tube: 1 PVP tube. (b) 1 

PS tube: 2 PVP tubes. (c) 1 PS tube: 3 PVP tubes. 

Fig. 6. Material type control. Optical micrographs and FFT analysis of fibers fabricated using 

CMCCE (400 rpm and 18 kV) from material (a) PCL (b) PS (c) PVP (d) TPU. Blended fibers 

produced from combined materials (e) PCL and PVP (f) PS and PVP (g) TPU and PVP.  
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