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Abstract

Background and objective: In computational neuroimaging, brain par-

cellation methods subdivide the brain into individual regions that can be used

to build a network to study its structure and function. Using anatomical or

functional connectivity, hierarchical clustering methods aim to offer a meaning-

ful parcellation of the brain at each level of granularity. However, some of these

methods have been only applied to small regions and strongly depend on the

similarity measure used to merge regions. The aim of this work is to present a

robust whole-brain hierarchical parcellation that preserves the global structure

of the network.

Methods: Brain regions are modeled as a random walk on the connectome.

From this model, a Markov process is derived, where the different nodes rep-

resent brain regions and in which the structure can be quantified. Functional

or anatomical brain regions are clustered by using an agglomerative informa-

tion bottleneck method that minimizes the overall loss of information of the

structure by using mutual information as a similarity measure.

Results: The method is tested with synthetic models, structural and func-

tional human connectomes and is compared with the classic k-means. Results

show that the parcellated networks preserve the main properties and are con-

sistent across subjects.

Conclusions: This work provides a new framework to study the human

connectome using functional or anatomical connectivity at different levels.
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1. Introduction

The human brain contains an extraordinary network of roughly one hun-

dred billion neurons capable of sharing and processing information efficiently.

The connectome models these connections as a graph, where nodes represent

brain areas and edges represent structural or functional connections [1, 2]. To5

define the nodes, parcellation methods are used to subdivide the brain cortex

into different regions according to a predefined criterion (i.e., cytoarchitecture,

structure, function...).

Atlas-based parcellation methods subdivide the brain by employing a three-

dimensional anatomical template [3]. This template can be based on cytoarchi-10

tecture, electrophysiological observations, cortical curvature patterns [4], struc-

tural or functional connectivity profiles [5], among others. A limitation of these

methods is the lack of individuality as they are based on a sample dataset as

opposed to the subject.

On the other hand, connectivity-based parcellation methods subdivide the15

brain into spatially coherent regions of homogeneous connectivity by grouping

grey-matter voxels according to the similarity of their connectivity patterns [3],

obtained from diffusion magnetic resonance imaging (dMRI) or functional mag-

netic resonance imaging (fMRI). The more popular methods are based on the

k -means approach [6, 7, 8], which groups voxels into k non-overlapping clus-20

ters using a similarity measure. The main issues with these methods are the

definition of the number of clusters a priori and the reliance on initial random

sampling, as it has been shown that iterative repetitions of the same method

may lead to different results [9]. To overcome these limitations, and assuming

that brain networks have hierarchical properties [10, 11], several hierarchical25

clustering methods that compute a parcellation at each level in the hierarchy

have been proposed [12, 13, 14, 15]. These methods obtain brain parcellations
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at multiple granularities without the need to define the number of clusters.

Connectivity-based methods are strongly dependent on the similarity mea-

sure used by the algorithm. Gorbach et al. [13] proposed a hierarchical method30

that clusters voxels using the mutual information between tractograms, and ob-

tained promising results for specific regions of the brain. The use of mutual

information as a similarity measure is, therefore, an effective solution to group

voxels. However, Gorbach et al’s method [13] assumes that the whole cluster

can be represented by only one tractogram.35

1.1. Our approach

In this paper, we present a hierarchical parcellation method that preserves

the structure of brain network with no need to define representative tractograms.

We model brain networks as a random walk on the connectome by using the

structural or functional connectivity matrix. From this model, we quantify the40

brain structure. Brain regions are clustered by applying a bottom-up hierar-

chical method based on the information bottleneck using a control process [16].

We evaluate the parcellation method by using synthetic, structural, and func-

tional brain networks at different scales. The robustness of the method is tested

by doing multiple-subject comparisons with the resulting vector of hierarchical45

clusters.

2. Method

In this section, we propose a new method to parcellate the brain. First,

we introduce a brain model based on a Markov process. Then, we describe

the parcellation method, which uses the information bottleneck-based method.50

Additionally, we describe a measure based on mutual information which is used

to perform pairwise group comparisons.

2.1. Markov process-based brain model

A brain network can be modeled as a graph with a pair of sets G = (V,E),

where V represents the set of v brain regions, denoted by {V1, . . . , Vv}, and55
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E the set of e edges between two nodes of V , that denotes their anatomical or

functional connectivity. This graph can be represented by a connectivity matrix

C with v × v elements, where Cij gives the connectivity weight between node i

and node j.

In this paper, we propose to model a brain network as a Markov process60

X = {X0, X1, . . . , Xt, Xt+1, . . .}, which represents a random walk of a particle

moving from one brain region to another. From this model, we can define a

probability density function p(Xt) = {p(xt1), . . . , p(xti), . . . , p(x
t
v)}, where p(xti)

represents the probability that a particle takes the value xi (i.e. the particle is

in the brain region i) at state Xt (i.e. at time step t). This particle randomly65

moves from a node xi to node xj according to the connectivity or probability

defined in the transition probability matrix, whose elements are given by

p(xt+1
j |xti) =

Cij

Ci
, (1)

where Cij = Cji,∀i, j and Ci =
∑

i Cij is the total weight of the edges emanating

from node xi. The transition probability p(xt+1
j |xti) defines the probability of

being in node xj after visiting node xi. Note that the transition probability70

depends only on the current state and not on the previous ones.

The transition probabilities can be used to define the transition distribution

from each node xi, which is given by

p(Xt+1|xti) = {p(xt+1
1 |xti), . . . , p(xt+1

j |xti), . . . , p(xt+1
v |xti)}

= {Ci1

Ci
, . . . ,

Cij

Ci
, . . . ,

Civ

Ci
}. (2)

This distribution represents the overall probability of a particle to be in a

different node after visiting node xi.75

The probability of being in node xi can be defined by a stationary distribu-

tion [17]. In this case, for undirected brain networks, the stationary distribution

is given by

p(xi) =
Ci

CT
, (3)

where CT =
∑

i

∑
j Cij is twice the sum of the weights of all the edges [17].

The stationary distribution, p(Xt) = {p(x1), . . . , p(xi), . . . , p(xv)}, defines the80
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probability of a particle to be in each of the nodes. Note that the stationary

distribution of a node is proportional to the total weight of the edges emanating

from that node.

2.2. Mutual information as a measure of brain structure

Mutual information (MI) is a well-known measure that quantifies the shared85

information between two different variables X and Y defined as

I(X;Y ) = H(X)−H(X|Y )

=
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
, (4)

where H(X) = −
∑

x∈X p(x) log p(x) is the Shannon entropy of X and measures

the uncertainty of the variableX, andH(X|Y ) = −
∑

y∈Y p(y)
∑

x∈X p(x|y) log p(x|y)

is the conditional entropy and measures the average uncertainty associated with

X if we know the outcome of Y . In our approach, we use the MI measure to90

quantify the shared information or similarity between two states of a Markov

chain, i.e. I(Xt;Xt+1).

For a stationary Markov chain, the MI between consecutive states, I(Xt;Xt+1),

coincides with the excess entropy [18, 19], which is a measure of system struc-

ture. We use this measure to quantify the structure of the networks. High95

values of MI will indicate that there is a high correlation between consecutive

states and, therefore, that the brain is highly structured. Mutual information

can also be seen as the difference between the uncertainty of the states without

any prior knowledge and the uncertainty of the states when the past is known

(or information gained when the previous node is known). Therefore, the higher100

the MI, the less random the connections.

2.3. Parcellation method

The goal of our parcellation method is to cluster the brain regions, repre-

sented as different states of a Markov chain, by minimizing the loss of infor-

mation when two regions are merged, the effect of which is to maintain the105
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overall structure. The agglomerative information bottleneck method, proposed

by Thisby et al. [20], clusters a random variable X depending on a random

variable Y by minimizing the loss of mutual information. Gorbach et al. [13]

used this method to preserve the maximum information between the represen-

tative tractogram and all the tractograms that belonged to the same cluster.110

However, in our brain model, we want to preserve the maximum information

between brain regions, represented as consecutive states (Xt and Xt+1) of a

Markov process X instead of two different variables X and Y . In this case,

when two nodes of the Markov process are merged, both Xt and Xt+1 are mod-

ified. Due to this limitation, the classic agglomerative information bottleneck115

method cannot be used. Thus, we use the extended version of the algorithm

presented in [16], which takes this fact into consideration and enables to cluster

a random variable X depending on a Markov process.

The method starts by assigning each node (or brain region) to a different

cluster, with a total of v clusters. In the first step, the loss of mutual information120

due to a possible merge of every pair of nodes (xi,xj) is calculated. The MI loss

is computed as the difference of mutual information between two consecutive

states I(Xt;Xt+1), when nodes xi and xj belong to different clusters, and the

mutual information I(X̂t; X̂t+1) when nodes xi and xj have been merged into

a single node x̂ [16] as follows125

δI
îj

(X) = I(Xt;Xt+1)− I(X̂t; X̂t+1)

= 2p(x̂)JS (xi, xj)− p(x̂, x̂)I(X̃t; X̃t+1), (5)

where p(x̂) = p(xi) + p(xj), p(x̂, x̂) =
∑

m=i,j

∑
n=i,j p(xm, xn), and JS (xi, xj)

is the Jensen-Shannon divergence [21] between p(Xt+1|xti) and p(Xt+1|xtj), which

is defined as

JS (xi, xj) = H
(
p(Xt+1|x̂t)

)
− p(xi)

p(x̂)
H
(
p(Xt+1|xti)

)
− p(xj)

p(x̂)
H
(
p(Xt+1|xtj)

)
, (6)

where p(Xt+1|x̂t) =
∑

k=i,j
p(xk)
p(x̂) p(Xt+1|xtk).
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The term I(X̃t; X̃t+1) is given by130

I(X̃t; X̃t+1) =
∑

m=i,j

∑
n=i,j

p(x̃m, x̃n) log
p(x̃m, x̃n)

p(x̃m)p(x̃n)
, (7)

where p(x̃m, x̃n) = p(xm,xn)
p(x̂,x̂) , p(x̃m) =

∑
n=i,j

p(xm,xn)

p(x̂,x̂) , and p(x̃n) =

∑
m=i,j

p(xm,xn)

p(x̂,x̂) .

Next, the method finds and clusters the pair of nodes (xi,xj) with a minimum

loss of information δI
îj

(X). In other words, it merges the states that preserve

the maximum information of the whole network.

After each merge, the MI loss of the new cluster x̂ and any other cluster135

has to be calculated. This is performed using Equation 5. Note that, when two

nodes are merged, the connectivity probability function p(Xt+1|xtk) of each node

xk changes, since the two nodes (xi,xj) become a single node x̂. Due to this

fact, the MI loss of the other states has to be recomputed to take into account

the information lost by the new cluster. The merge of nodes (xi, xj) leads to140

a variation of the MI loss of nodes (xk, xl). As shown in [16], this variation is

given by

∆δI îj
k̂l

(X̂) = −2p(x̂
k̂l
, x̂

îj
)I(X̃ k̂l

t ; X̃ îj
t+1), (8)

where p(x̂
k̂l
, x̂

îj
) =

∑
m=k,l

∑
n=i,j p(m,n), and I(X̃ k̂l

t ; X̃ îj
t+1) is defined as

I(X̃ k̂l
t ; X̃ îj

t+1) =
∑

m=k,l

∑
n=i,j

p(x̃m, x̃n) log
p(x̃m, x̃n)

p(x̃m)p(x̃n)
. (9)

Note that, it is much more efficient to compute Equation 8 than Equation 5.

As a result, a new matrix of MI loss is obtained. The algorithm repeats the145

described process until all the regions have been clustered. Fig. 1 shows a

graphical diagram of the main steps of the method.

2.4. Group comparison

An important desirable property of clustering algorithms is the consistency

of results across subjects. To quantify the similarity of different parcellations,150

we use the normalized mutual information (NMI) [22] which has been used in

similar studies [23]. NMI calculates the shared information between a pair of

7



Figure 1: Diagram showing the main steps of the method. The input is a low-scale segmen-

tation of the brain which is modeled as a Markov process. First, the loss of information for

each possible pair of regions is calculated. Then, the method searches for the minimum value

and the corresponding regions are merged. The loss of information is updated and the search

is repeated. As a result, a whole-brain hierarchical parcellation is obtained.

clusterings and can be seen as a distance value of results obtained from different

subjects. The NMI of two discrete random variables A and B can be defined as

NMI(A,B) =
I(A;B)√
H(A)H(B)

. (10)

The measure takes values between 0 and 1, taking the value 0 if and only if155

A and B are independent. In our case, A and B are vectors of regions corre-

sponding to two different results of the method, where each value corresponds

to the index of the cluster that the region has been assigned. The comparison

is done for a particular number of clusters. Note that, A and B refer to two

different brain parcellations, and thus, I(A;B) is not related to the measure160
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used by the proposed parcellation method.

3. Materials

In this section, the datasets used to perform the experiments are described in

detail. We used synthetic model networks with small-world properties to test the

properties of the parcellated brain networks. In addition, we analyzed human165

structural and functional datasets to characterize the clustered connectivity

patterns and evaluate the consistency of the method across subjects.

3.1. Synthetic modular small-world networks

Brain networks have been shown to exhibit small-world properties [24, 25,

26, 27, 28]. We used the Brain Connectivity Toolbox (BCT) [29] to generate170

binary directed networks with small-world properties employing the function

makeeven CIJ. A set of 40 networks with 2048 nodes, 700,000 edges and 8 mod-

ules and a second set of 40 networks with 1024 nodes, 287,000 edges and 7

modules were created. A random weight was assigned to each edge of the net-

work. The weighted undirected networks were obtained by copying the elements175

above the diagonal to below the diagonal.

3.2. Structural connectome

As structural networks we used the normalized whole-brain structural con-

nection matrices created from dMRI tractography at 5 different scales [30],

corresponding to 83, 129, 234, 463 and 1015 cortical and subcortical regions of180

interest. These matrices were created from 10 subjects, all males aged 22±1.3

years old. Edge weights were calculated by dividing the number of fibers within

a region by the average of the region surface and by the average length of the

fibers. The average matrices were calculated from the 10 subjects for each scale.

3.3. Functional connectome185

The functional connectivity network used in this work was generated using

the Automated Anatomical Labeling (AAL) atlas [31] which contains the cere-

brum divided into 45 regions for each hemisphere. This atlas has been used
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in recent studies such as [32, 33, 34] and it is included in the BrainNet viewer

(version 1.52) [35]. The surface volume template was from the ICBM152 (Inter-190

national Consortium from Brain Mapping). Data were created from 198 healthy

subjects (76 males and 122 females), aging from 18 to 26 years old. The func-

tional matrices were built by first parcellating the brain with the AAL atlas

and the mean fMRI time courses were calculated for each pair of nodes using

Pearson’s correlation coefficients [35].195

4. Results and discussion

To evaluate how the proposed method preserves the overall properties of the

networks, we used standard well-known global (one value per network) and local

(one value per node) network measures. Additionally, we calculated the mutual

information of the networks as described in Section 2.2 to quantify the struc-200

ture. As standard global measures, we calculated the density, which is defined

as the fraction of connections of the nodes versus all possible connections, the

assortativity coefficient, which measures if nodes highly connected tend to be

connected with nodes also highly connected, the modularity, which is defined

as the strength of division in which the network can be subdivided into non-205

overlapping modules, and the small-world index, which tests if the network has

small-world properties by considering the clustering coefficients and the char-

acteristic path lengths. As standard local measures, we calculated the degree,

which is defined as the number of links connected to the node, the strength,

which is the sum of the weights, and the clustering coefficient, which is defined210

as the fraction of neighbors of a node that are also connected to each other.

Standard measures were calculated using the BCT toolbox. For comparison

purposes, we provide the results obtained employing the classic k-means method

by clustering the network using the correlation between brain regions (distance

measure = 1-joint probability). We tested the robustness of the method by215

comparing the results across subjects.
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4.1. Synthetic modular small-world networks

In the first experiment, we considered the 40 synthetic networks with small-

world properties and 2048 nodes created with the BCT toolbox. We applied

the classic k-means algorithm and the proposed method to obtain 40 clustered220

networks with 1024 nodes. We compared the results with the original networks

and also with the second set of 40 synthetic networks with 1024 nodes, which

we used as a reference. Results are shown in Table 1.

Table 1: Values of standard measures for the 40 synthetic model networks with 2048 and 1024

nodes compared to the values of the clustered networks with 1024 nodes obtained by using

the classic k-means algorithm and the proposed method (mean ± STD)

Measure Original 2048 Original 1024 k-means Clustered 1024

MI 2.86±9.54x10−4 2.14±0.002 2.24±0.002 2.27±0.002

Density 0.17±9.91x10−5 0.27±3.35x10−4 0.27±3.93x10−4 0.27±3.67x10−4

Assortativity 0.003x±0.002 1.38x10−4±0.002 0.02±0.007 5.43x10−4±0.002

Modularity 0.61±0.028 0.32±0.013 0.58±0.043 0.62±0.007

Small-world 2.97±0.005 1.16±0.003 1.47±0.004 1.53±0.004

Degree 341.81±9.05 280.85±11.29 283.88±39.47 281.09±14.41

Strength 170.94±7.01 140.41±7.43 340.99±89.95 341.01±20.61

Clustering
0.29±0.013 0.19±0.006 0.59±0.089 0.57±0.03

coefficient

As expected, the MI was higher with our approach, as it was optimized by

the method. Although the results obtained were similar to the original network225

with 2048 nodes, some differences could be appreciated. For instance, the den-

sity was slightly higher, and the small-world index and the degree were slightly

lower, due to the fact that, after clustering, connections within the same cluster

were not counted. However, these measures were similar to the original net-

work with 1024 nodes. On the other hand, the clustered networks had a higher230

strength because it was preserved when two nodes were clustered. Interest-

ing properties were found with the modularity and the assortativity measures.

While the modularity with our method was similar to the original network, it
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was slightly lower using k-means. Additionally, while the assortativity was sim-

ilar to the original network with 1024 nodes using our method, it was higher235

with k-means. These values showed that while the k-means failed in preserving

these characteristics, our method was able to provide a network with more sim-

ilar values. The clustering coefficient was higher using both k-means and our

method, probably due to the increase in number of edges per node.

4.2. Structural connectome240

In the following experiment we used the average structural connectome from

the 10 subjects. We applied our method to the group-average connectivity ma-

trix with 1015 partitions to obtain a clustered network of 83 regions, which we

compared with the corresponding anatomical parcellation of 83 regions and the

results of the k-means method. Results are shown in Table 2. In this case, as245

in the synthetic model networks, similar values were achieved for the anatom-

ical parcellation and the clustered parcellation, which indicates that the main

properties of the network were preserved. As expected, the mutual information

value was higher, since this is the aim of the method. The assortativity mea-

sure, which is used to measure if nodes are connected to nodes with a similar250

connectivity pattern, was similar with our method but not with k-means, which

indicates that the k-means network was more random.

In order to further evaluate the resulting brain parcellations, the 3D volumes

of the group average anatomical parcellation with 1015 regions and with 83 re-

gions are shown in Fig. 2(a) and Fig. 2(b), respectively. The results obtained255

with the proposed method by clustering the original network with 1015 regions

into 83 regions are shown in Fig. 2(c). Differences in the generated parcella-

tions could be appreciated. The network obtained with the proposed approach

had higher mutual information than the anatomical parcellation, therefore the

resulting networks provided more information about the structure. It is worth260

mentioning that regions tended to cluster with neighboring regions, although no

spatial restrictions were used in the proposed method. A good clinical study to

investigate such differences at various levels is required, which is out of the scope
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Table 2: Values of the standard network measures for the anatomical parcellation compared

to values obtained from the clustered network using our method and k-means algorithm. All

networks have a total of 83 nodes. For local measures the mean ± standard deviation is given.

Measure Anatomical 83 k-means 83 Clustered 83

MI 2.53 2.71 3.16

Density 0.57 0.57 0.62

Assortativity -0.037 0.03 -0.036

Modularity 0.45 0.49 0.56

Small-world 0.40 0.42 0.32

Degree 47.13±15.15 46.38±12.91 50.96±12.02

Strength 0.01±0.001 0.01±0.003 0.01±0.002

Clustering
2.44x10−4±6.95x10−5 1.16x10−4±3.52x10−5 1.25x10−4±2.49x10−5

coefficient

of this work. However, with these results, we show that the proposed method

may provide useful parcellations to study properties of the network such as the265

overall structure at different levels.

Additionally, we provide the dendrogram corresponding to the hierarchical

clustering of the structural connectome with 83 regions in Fig. 3. As an ex-

ample, we show the connectogram of the last four regions at the bottom of

the dendrogram, corresponding to the right hemisphere banks superior tempo-270

ral (Fig. 4(a)), right hemisphere transverse temporal (Fig. 4(b)), right hemi-

sphere superior temporal (Fig. 5(a)) and the right hemisphere middle temporal

(Fig. 5(b)). Due to the high density of the nodes, the connectograms only show

the connections with values higher than 10−3. As it can be seen in the dendro-

gram of Fig. 3, the first step of the method merges the banks of the superior275

temporal sulcus of the right hemisphere with the right hemisphere transverse

temporal gyrus. As it can be seen in Fig. 4(a) and (b), both are connected

to the right hemisphere superior temporal gyrus and the banks of the superior

temporal sulcus does not have strong connections. Thus, the merge of these two

regions provides the minimum loss of mutual information. These two clustered280

regions are latter merged with the right hemisphere superior temporal gyrus
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(a) Anatomical (b) Anatomical (c) Clustered

N = 1015 N = 83 N = 83

Figure 2: (a) Anatomical parcellation with 1015 regions; (b) Anatomical parcellation with 83

regions; (c) Clustered parcellation obtained by clustering (a) into 83 regions.

and the right hemisphere middle temporal gyrus. These three regions have a

very similar connectivity pattern (see Fig. 4(a) and Fig. 5(a) and (b)), hence,

merging these regions the network is simplified, as one region can predict the

other, thus, the loss of information is minimum and the structure is preserved.285

4.3. Functional connectome

In the last experiment, we show the applicability of the proposed method to

functional data. In this case, we used the functional matrix with 90 partitions

corresponding to the AAL atlas described in Section 3.3. Fig. 6, which was
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Figure 3: Dendrogram of the hierarchical clustering parcellation obtained from an anatomical

segmentation with 83 regions. The two volumes at the bottom correspond to the parcellations

obtained after 15 and 45 steps, respectively.

generated with BrainNet [35], shows the resulting volumes along with the con-290

nectivity matrix, after applying the clustering. As can be seen in the images,

the method tended to join the same area from the left and the right hemi-
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(a)

(b)

Figure 4: Connectogram of the original structural network with 83 anatomical partitions. In

red, the connections of (a) the right hemisphere banks superior temporal and (b) the right

hemisphere transverse temporal. 16



(a)

(b)

Figure 5: Connectogram of the original structural network with 83 anatomical partitions. In

red, the connections of (a) the right hemisphere superior temporal and (b) the right hemisphere

middle temporal. 17



sphere. This was due to the similarity of the connection pattern in both areas.

Thus, joining both regions the functionality of the whole-brain remained similar

while the network was summarized. For a lower number of clusters, the method295

tended to merge areas belonging to the same lobe. As can be seen in the matri-

ces shown in Fig. 6, the general structure of the network was preserved for all

the cases.

4.4. Group comparison

To evaluate the consistency of the results, Fig. 7 shows the average NMI300

values and standard deviation of the pairwise comparison between the different

parcellations obtained from the structural connectome of 10 subjects. Initially,

there is a one-to-one correspondence between the parcellations, therefore NMI

= 1. Then, due to accumulated error, the NMI slowly degrades in each step

of the method, as each subject region becomes clustered in a slightly different305

order. As expected, when the number of clusters is small, the NMI degrades

quicker, having more random behavior and a greater accumulated error. As it

can be seen from the NMI values in Fig. 7, the results are consistent across

subjects, with less variability when the number of clusters is high.

Although it is still unclear which level gives the best representation, this310

measure can be used to provide a threshold for the minimum number of regions

to consider when taking into account the desired similarity across subjects. For

example, if a NMI of 0.8 is preferred, only parcellations with a minimum of 300

regions should be considered.

4.5. Final discussion315

In this paper, we show a proof of principle demonstration of a new parcel-

lation method that provides robust and reproducible results using dMRI and

fMRI data. Although a further investigation with clinical data is required,

the proposed approach provides a new framework which may be of interest in

studying the structure and function of complex brain networks.320
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Original

90 clusters 70 clusters 60 clusters 50 clusters

40 clusters 30 clusters 20 clusters 10 clusters

Figure 6: Illustrative example of the results obtained with the functional connectome. The

method takes as input the original network with 90 clusters. This figure shows the results for

70, 60, 50, 40, 30 20 and 10 clusters.

Hierarchical clustering methods were proposed to overcome some of the lim-

itations of connectivity-based methods such as the k-means algorithm, by merg-

ing only one region at each step, resulting in a tree structure. As we have shown,

the proposed method leads to clustered networks with similar network metrics

to the original networks but with a higher MI. We have seen that our method325
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Figure 7: All possible NMI pairwise comparison for each level between the pacellations ob-

tained from 10 subjects (mean value ± standard deviation).

performs better than the k-means method, with the advantage of a hierarchical

solution. One limitation of our method is that it does not guarantee a global

optimum, as the proposed greedy algorithm only takes into account the local

loss of information. The information bottleneck method has been used before

to parcellate the brain. Gorbach et al. [13] presented an information-based par-330

cellation method able to cluster brain regions with promising results. However,

Gorbach’s method assumes that there is a prototype that represents the whole

cluster and adds a new parameter to control the sensitivity of the uncertainty

which may affect the result of the method. In this work, by using an extended

version of the bottleneck method, we eliminate the need to define a representa-335

tive tractogram that defines the connectivity pattern of the cluster and no extra

parameters are used.

5. Conclusions

In this paper, we describe a robust whole-brain hierarchical parcellation

method that preserves the global structure of the network. A Markov model340

is defined by modeling a brain network as a random walk on the connectome.

Using this model, the mutual information is used to quantify the structure of a
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network. Brain regions are clustered by employing the information bottleneck

method which minimizes the loss of information between connectivity profiles

when two regions are merged into the same cluster. The method is tested on345

synthetic model network with small-world properties, structural and functional

human connectomes. We use the normalized mutual information to compare

the results at different scales. From our tests, we show that the method is able

to create summarized brain networks that preserve the brain structure and are

consistent across subjects. With this work, we provide a new approach that350

could improve the understanding of the human connectome structure. Future

work should focus on the variability of the results using different anatomical

atlases for initialization and also include cases with large-scale lesions. A multi-

modal version of the method is being studied.

Acknowledgments355

This work was supported by the Catalan Government (Grant No. 2014-SGR-

1232) and by the Spanish Government (Grant No. TIN2013-47276-C6-1-R ).

References

[1] P. Hagmann, From diffusion MRI to brain connectomics, Ph.D. thesis,

EPFL, Lausanne, 2005.360

[2] O. Sporns, G. Tononi, R. Kötter, The human connectome: a structural

description of the human brain, PLoS Comput. Biol. 1 (2005).

[3] M.A. de Reus, M.P. van den Heuvel, The parcellation-based connectome:

limitations and extensions, Neuroimage 80 (2013) 397–404.

[4] R.S. Desikan, F. Ségonne, B. Fischl, B.T. Quinn, B.C. Dickerson,365

D. Blacker, R.L. Buckner, A.M. Dale, R.P. Maguire, B.T. Hyman, M.S.

Albert, R.J. Killiany, An automated labeling system for subdividing the

human cerebral cortex on MRI scans into gyral based regions of interest,

Neuroimage 31 (2006) 968–80.

21



[5] R.C. Craddock, G.A. James, P.E. Holtzheimer, X.P. Hu, H.S. Mayberg, A370

whole brain fMRI atlas generated via spatially constrained spectral clus-

tering, Hum. Brain Mapp. 33 (2012) 1914–1928.

[6] A. Anwander, M. Tittgemeyer, D.Y. von Cramon, A.D. Friederici, T.R.
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