
Concurrent Data Structures Linked in Time
(Artifact)∗

Germán Andrés Delbianco1, Ilya Sergey2, Aleksandar Nanevski3, and
Anindya Banerjee4

1 IMDEA Software Institute, Madrid, Spain and
Universidad Politécnica de Madrid, Spain
german.delbianco@imdea.org

2 University College London, United Kingdom
i.sergey@ucl.ac.uk

3 IMDEA Software Institute, Madrid, Spain
aleks.nanevski@imdea.org

4 IMDEA Software Institute, Madrid, Spain
anindya.banerjee@imdea.org

Abstract
This artifact provides the full mechanization in
FCSL of the developments in the companion paper,
“Concurrent Data Structures Linked in Time”. In
the latter, we propose a new method, based on
a separation-style logic, for reasoning about con-
current objects with such linearization points. We
embrace the dynamic nature of linearization points,
and encode it as part of the data structure’s auxil-
iary state, so that it can be dynamically modified
in place by auxiliary code, as needed when some
appropriate run-time event occurs. We illustrate
the method by verifying (mechanically in FCSL) an
intricate optimal snapshot algorithm due to Jayanti,
as well as some clients.

FCSL is the first completely formalized frame-

work for mechanized verification of full functional
correctness of fine-grained concurrent programs. It
is implemented as an embedded domain-specific lan-
guage (DSL) in the dependently-typed language of
the Coq proof assistant, and is powerful enough to
reason about programming features such as higher-
order functions and local thread spawning. By in-
corporating a uniform concurrency model, based on
state-transition systems and partial commutative
monoids, FCSL makes it possible to build proofs
about concurrent libraries in a thread-local, compo-
sitional way, thus facilitating scalability and reuse:
libraries are verified just once, and their specifica-
tions are used ubiquitously in client-side reasoning.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs, D.2.4
Software/Program Verification, F.1.2: Parallelism and concurrency, D.1.3 Concurrent Programming
Keywords and phrases separation logic, linearization points, concurrent snapshots, FCSL
Digital Object Identifier 10.4230/DARTS.3.2.4
Related Article Germán Andrés Delbianco, Ilya Sergey, Aleksandar Nanevski and Anindya Banerjee,
“Concurrent Data Structures Linked in Time”, in Proceedings of the 31st European Conference on
Object-Oriented Programming (ECOOP 2017), LIPIcs, Vol. 74, pp. 8:1–8:30, 2017.
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.8
Related Conference European Conference on Object-Oriented Programming (ECOOP 2017), June
18-23, 2017, Barcelona, Spain

∗ This research is partially supported by EPSRC grant EP/P009271/1, the ERC consolidator grant Mathador–
DLV–724464, and the US National Science Foundation (NSF). Any opinion, findings, and conclusions or
recommendations expressed in the material are those of the authors and do not necessarily reflect the views
of NSF.

© Germán Andrés Delbianco and Ilya Sergey and Aleksandar Nanevski and Anindya Banerjee;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. 3, Issue 2, Artifact No. 4, pp. 4:1–4:4
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/DARTS.3.2.4
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.8
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/darts
http://www.dagstuhl.de


4:2 Concurrent Data Structures Linked in Time (Artifact)

1 Scope

The scope of this artifact is to provide the full mechanization of the developments described in the
companion paper, “Concurrent Data Structures Linked in Time”. The mechanization consists in
the development of the infrastructure to implement the “linking in Time” technique as an FCSL
library, the implementation of Jayanti’s snapshot object in FCSL, together with the verification of
the library methods and the clients presented in the paper. Moreover, for completeness sake, we
have bundled this new development together with previous case studies in FCSL. Finally, if you
are interested in finding out more details about the implementation of FCSL [3, 2] and several
previous case studies [5, 4, 6], we encourage you to check the FCSL reference manual [1].

2 Content

This artifact extends the previous release of FCSL with the Coq source files mechanizing the
proofs of the developments presented in the associated research paper. For the sake of brevity, we
list only the new contributions, and refer the reader to the FCSL user manual for details about
previous case studies and the development of FCSL.

Folder: Examples/Relink The folder Examples/Relink contains the main case study of the
Linking in Time technique for verifying concurrent data structures with non-fixed linearization
points introduced in the paper. It consists of several files implementing the verification in
FCSL of Jayanti’s single writer/single scanner snapshot construction:

jayanti_snapshot.v — Preliminaries. Lemmas for reasoning about coloring patterns of
histories, and other history invariants.
jayanti_ghoststate.v — Implementation of the auxiliary state for the snapshot object,
its transitions, invariants and associated invariant preservation proofs.
jayanti_concurroid.v — Implementation of the FCSL concurrent resource —a.k.a. con-
curroid for the snapshot.
jayanti_actions.v — FCSL atomic actions for the snapshot object concurrent resource.
jayanti_stability.v — Assertions used in the proof outline of the main methods and
proofs of their stability under FCSL transitions.
jayanti_library.v — Implementation and verification of the atomic commands (auxiliary
code) and the snapshot library (i.e. scan and write procedures).
jayanti_clients.v —Verification of the clients of the snapshot data structure, as presented
in Section 4 of the paper.

In the sequel, we relate the different parts of the development with their corresponding
presentation in the paper:
The files jayanti_ghoststate.v and jayanti_concurroid.v define the invariants described
in Section 5, together with the implementation of the concurrent resource for the snapshot
object. Moreover, in the later file, there is also the implementation of the auxiliary code
functions (a.k.a transitions in FCSL jargon) from Section 6. The proof of the 2-state invariants
from Invariant 1, and those from Invariant 2, together with the definitions of the main assertions
(e.g. the stable order Ω) are carried out in jayanti_stability.v. The verification of the
write and scan files, as presented in Section 7, are carried our in the file jayanti_library.v.
Finally, the clients in Section 4 are implemented and verified in jayanti_clients.v. We refer
the reader to the descriptions in the README.md file of the project and the FCSL manual for
further detail.



G.A. Delbianco and I. Sergey and A. Nanevski and A. Banerjee 4:3

Folder: Core Two new libraries were added to the Core of existing FCSL libraries: a new library
for relinkable histories, added to histories.v and an extended theory of algebraic surgery
operations for lists, which were necessary to prove the properties of the relink operation. The
latter is implemented in seq_extras.v

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). The latest version of this artifact is
available also on the FCSL project website: http://software.imdea.org/fcsl.

4 Tested platforms

The artifact is known to work on any platform running Oracle VirtualBox version 51 with at least
5 GB of free space on disk and at least 4 GB of free space in RAM. Alternatively, FCSL can be
built from the sources available from the project’s webpage. The latter can be done in any system
capable of installing and executing Coq v.8.5pl32 and Ssreflect 1.6.3

5 License

GPLv3 (https://www.gnu.org/licenses/gpl)

6 MD5 sum of the artifact

95b0fc97f64958028ef3d1b31a4ffa4e

7 Size of the artifact

2.75 GB

References
1 Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, ,

Anindya Banerjee, and Germán Andrés Delbianco.
FCSL: Fine-grained concurrent separation logic.
http://software.imdea.org/fcsl/.

2 Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey,
Anindya Banerjee, and Germán Andrés Delbianco.
Mechanized verification of fine-grained concur-
rent programs in fine-grained concurrent sepa-
ration logic: User manual and code commen-
tary. http://software.imdea.org/fcsl/papers/
fcsl-manual.pdf.

3 Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey,
and Germán Andrés Delbianco. Communicating
state transition systems for fine-grained concurrent
resources. In Zhong Shao, editor, Programming
Languages and Systems - 23rd European Sympo-
sium on Programming, ESOP 2014. Proceedings,

volume 8410 of LNCS, pages 290–310. Springer,
2014. doi:10.1007/978-3-642-54833-8_16.

4 Ilya Sergey, Aleksandar Nanevski, and Anindya
Banerjee. Mechanized verification of fine-grained
concurrent programs. In David Grove and Steve
Blackburn, editors, Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2015, pages 77–
87. ACM, 2015. doi:10.1145/2737924.2737964.

5 Ilya Sergey, Aleksandar Nanevski, and Anindya
Banerjee. Specifying and verifying concurrent al-
gorithms with histories and subjectivity. In Jan
Vitek, editor, Programming Languages and Sys-
tems - 24th European Symposium on Program-
ming, ESOP 2015. Proceedings, volume 9032 of
LNCS, pages 333–358. Springer, 2015. doi:10.
1007/978-3-662-46669-8_14.

1 https://www.virtualbox.org/
2 https://coq.inria.fr/coq-85
3 https://math-comp.github.io/math-comp/

DARTS

http://software.imdea.org/fcsl
https://www.gnu.org/licenses/gpl
http://software.imdea.org/fcsl/
http://software.imdea.org/fcsl/papers/fcsl-manual.pdf
http://software.imdea.org/fcsl/papers/fcsl-manual.pdf
http://dx.doi.org/10.1007/978-3-642-54833-8_16
http://dx.doi.org/10.1145/2737924.2737964
http://dx.doi.org/10.1007/978-3-662-46669-8_14
http://dx.doi.org/10.1007/978-3-662-46669-8_14
https://www.virtualbox.org/
https://coq.inria.fr/coq-85
https://math-comp.github.io/math-comp/


4:4 Concurrent Data Structures Linked in Time (Artifact)

6 Ilya Sergey, Aleksandar Nanevski, Anindya Baner-
jee, and Germán Andrés Delbianco. Hoare-style
specifications as correctness conditions for non-
linearizable concurrent objects. In Eelco Visser
and Yannis Smaragdakis, editors, Proceedings of

the 2016 ACM SIGPLAN International Confer-
ence on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2016,
pages 92–110. ACM, 2016. doi:10.1145/2983990.
2983999.

http://dx.doi.org/10.1145/2983990.2983999
http://dx.doi.org/10.1145/2983990.2983999

	Scope
	Content
	Getting the artifact
	Tested platforms
	License
	MD5 sum of the artifact
	Size of the artifact

