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Abstract

Background

Fabry disease (FD) results from X-linked inheritance of a mutation in the GLA gene, encoding

for alpha galactosidase A, and is characterized by heterogeneous clinical manifestations. Two

phenotypes have been described “Classic” and “late onset” which cannot be predicted exclu-

sively by genotype. The latter has been considered an attenuated form of the disease often

affecting a single organ system commonly the heart. Recent studies have demonstrated that

cardiac outcomes are similar in patients with classic and late onset mutations. In this study we

investigate the relationship between clinical heterogeneity and plasma lyso-Gb3 in a large sin-

gle centre cohort of N215S patients and compare this to patients with other mutations.

Methods

In this single-centre, retrospective, cross-sectional study we analysed a cohort of 251 FD

patients: 84 N215S mutation (37 males) and 167 non-N215S mutations (58 males). The

Mainz severity score index (MSSI) was used as an index of overall disease severity. Cardiac

function and morphology were assessed by electrocardiogram and echocardiogram. Left

ventricular mass was calculated using the Devereux formula and the left ventricular mass

index (LVMI) calculated to adjust for height (g/m2.7). The presence of white matter lesions

was assessed by cerebral MRI or computed tomography (CT). GFR was measured by

radio-isotope (chromium-EDTA) method and adjusted for patient height (ml/min/m2.7), and

urinary protein quantification was undertaken by 24 hour urine collection. Plasma globotriao-

sylsphingosine (lyso-Gb3) was analysed prior to ERT in 84 patients.

Results

N215S patients showed later symptom onset (males: p< 0.0001, females: p<0.03), later

development of left ventricular hypertrophy (LVH) (median survival without LVH: 41 (non-

PLOS ONE | https://doi.org/10.1371/journal.pone.0193550 April 5, 2018 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Lavalle L, Thomas AS, Beaton B, Ebrahim

H, Reed M, Ramaswami U, et al. (2018) Phenotype

and biochemical heterogeneity in late onset Fabry

disease defined by N215S mutation. PLoS ONE 13

(4): e0193550. https://doi.org/10.1371/journal.

pone.0193550

Editor: Tatsuo Shimosawa, The University of

Tokyo, JAPAN

Received: December 4, 2017

Accepted: February 13, 2018

Published: April 5, 2018

Copyright: © 2018 Lavalle et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data are available

upon request since the dataset contains

anonymized individual data of patients, which given

the rarity of the condition may disclose patients’

identity. Data requests should go with agreement

of the consultant and lead nurse, who constitute

our database supervising board. Data requests will

be reviewed on individual basis, and must contain a

sound scientific question. The contact information

for the data access committee is: Lysosomal

Storage Disorders Unit, Royal Free Hospital, Pond

https://doi.org/10.1371/journal.pone.0193550
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0193550&domain=pdf&date_stamp=2018-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0193550&domain=pdf&date_stamp=2018-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0193550&domain=pdf&date_stamp=2018-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0193550&domain=pdf&date_stamp=2018-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0193550&domain=pdf&date_stamp=2018-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0193550&domain=pdf&date_stamp=2018-04-05
https://doi.org/10.1371/journal.pone.0193550
https://doi.org/10.1371/journal.pone.0193550
http://creativecommons.org/licenses/by/4.0/


N215S) vs. 64 (N215S) years, p< 0.0001), later development of proteinuria (median survival

without proteinuria 43 (non-N215S) vs 71 years (N215S), p< 0.0001), later occurrence of

cerebrovascular events (stroke/ Transient Ischaemic Attacks (TIA); median survival without

stroke: 74 years (non-N215S) vs. not reached (N215S), p< 0.02), later decline in renal func-

tion to GFR <60 ml/min/1.73m2 (median survival: 56 (non-N215S) vs. 72 (N215S) years, p<
0.01), and greater overall survival (median survival 81 (N215S) vs. 66 (non-N215S) years,

p< 0.0006). Lyso-Gb3 was found to be less elevated in N215S compared to non-N215S

male and female patients. However, the N215S population eventually reached an overall

severity measured by MSSI comparable to the non-N215S without equivalent elevation of

lyso-Gb3 (means: 6.7 vs. 74.3 nmol/L, p < 0.001). In addition, N215S patients showed

strong correlations between lyso-Gb3 levels and LVMI, GFR, and MSSI. These associations

became stronger when we investigated individuals’ life time exposure to lyso-Gb3 (calcu-

lated as [lyso-Gb3]*age): MSSI (r2 = 0.88, p< 0.0001), LVMI (r2 = 0.59, p< 0.005), and GFR

(r2 = 0.75, p = 0.0001).

Conclusion

These results demonstrate that the N215S mutation results in a late onset phenotype involv-

ing the heart and other organs. Correlations between clinical manifestations and plasma

lyso-Gb3 variations in this group suggest a Fabry-relevant disease mechanism for the het-

erogeneity observed in this group.

Introduction

Fabry disease (OMIM 301500; FD) is an X-linked metabolic disorder caused by mutations in

the GLA gene [1], of which over 900 mutations (HGMD1 July 2017) have been reported.

The disease is characterized by deficient activity of α-Galactosidase A (α-Gal A) [1], and pro-

gressive multisystem deposition of its glycosphingolipid substrates [1, 2], including globotriao-

sylceramide (Gb3) and the deacylated form, globotriaosylsphingosine (lyso-Gb3) [3]. The

accumulation process begins during fetal development [4] occurring in every organ [1], with

particular deposition described in endothelial and smooth vascular muscle cells, leading to

microvascular dysfunction [5]. Mutations of the GLA gene can be classified into three groups

according to the resulting effect on the α-Gal A activity [6]: variants which result in an enzyme

activity below 10% of normal in males (nonsense and certain missense mutations) [7], variants

with residual enzymatic activity in the range of 15–30% (missense and certain splice GLA vari-

ants) [8] and variants which code for enzymes whose residual activity is not significantly

reduced (normally about 35–40% of normal in males), also referred as non-pathogenic vari-

ants [6, 9]. Two phenotypes are distinguished “Classic” and “Later Onset”. The former has tra-

ditionally been associated with males and is characterized by an early onset, usually childhood,

presenting with: periodic pain crisis (acroparesthesias), vascular cutaneous lesions (angiokera-

tomas), corneal and lenticular opacities, perspiration abnormalities, progressive proteinuric

renal insufficiency, cardiac disease and cerebrovascular events. It is usually associated with

mutations which result in very low (<1%) residual enzyme activity. The non-classic phenotype

or later onset form, commonly involves a single organ system (usually cardiac or renal), and is

generally associated with preservation of greater enzyme activity e.g. missense mutations [10].
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This classification cannot be predicted exclusively by GLA variant as some mutations display

both phenotypes [11, 12].

Clinical features of Fabry disease display significant heterogeneity in both men and women

[1, 12]; heterozygous females have variable disease manifestations because of random X chro-

mosome inactivation [10] and can manifest the full spectrum and severity of the disease as

males, though on average a decade later [13]. Furthermore, variability in the clinical expression

of the same mutation within members of a single pedigree and of unrelated pedigrees has been

described [14, 15, 16]. It is possible that, as in other conditions, some of the heterogeneity is

due to different genetic and immunological back ground or environmental profiles [17].

Plasma and urine Gb3 have been used as biomarkers of disease progression and treatment

response [18, 19]. However, changes in Gb3 during the first year of therapy did not predict

renal response [20]. More recently lyso-Gb3 has been proposed to better reflect the differences

in phenotype of Fabry patients [21, 22]. Indeed, plasma lyso-Gb3 has been reported to be of

greatest value in classical males with minimum elevation in females and later onset patients

[23], and particularly higher in male patients with severe mutations, such as frame-shift or

nonsense mutations [24]. As a non-invasive alternative, urinary lyso-Gb3 has also proved to be

useful for diagnostics and has shown close correlation with genotype [25].

The N215S mutation is an A-to-G transition in codon 215 of exon 5, which causes the sub-

stitution of an asparagine by a serine (N215S) [26]. This mutation results in an obliteration of a

functional N-glycosylation consensus site, but the enzyme is expressed at -5%-25% of normal

activity in various tissues and cultured cells from affected patients [27]. In fact, it was first iden-

tified in an Italian patient as an atypical variant, who at age 42 had none of the classical Fabry

manifestations (angiokeratoma, acroparesthesias, corneal or lenticular opacities, hypohidrosis,

or renal insufficiency) but only manifestations confined to the heart [27]. Subsequently the

N215Smutation was found to be common among atypical variants, presenting with either

mild disease manifestations or asymptomatic [27, 28, 29]. Patients characterized in the rela-

tively small study of 26 patients by Oder et al. lacked clinical manifestations commonly indica-

tive of Fabry classical phenotype such as acroparesthesias, cerebrovascular events, chronic

kidney disease (CKD), or angiokeratoma.

Despite the apparently isolated manifestations, cardiac outcomes for N215S patients and

other cardiac variants are similar to that of classic patients [15, 30], and some N215S patients

have shown more severe manifestation. Indeed, Oder et al. reported 3 out of 10 index subjects

were diagnosed by renal glomerular biopsy after developing proteinuria of unknown origin.

Furthermore, even though this mutation is predominantly associated with the later onset car-

diac disease, heterogeneity in the phenotype is observed.

In an attempt to understand if this heterogeneity of severity and clinical manifestations is

related to the Gb3 degradative pathway or other genetic or environmental factors we have

tested the variation against circulating levels of lyso-Gb3 in a large single centre cohort of 87

N215S patients and compared this with other mutations. Our hypothesis therefore being that

variation correlating with lyso-Gb3 implicates a Fabry-related disease mechanism.

Materials and methods

The study received ethical approval by the Royal Free Hospital Ethics Committee and patients

gave written, informed consent.

Data collection

Retrospective case notes review was undertaken for all patients. Data was collected from base-

line assessments regarding the route to diagnosis (family screening or index case), presenting
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symptom, baseline symptoms and baseline organ function. Screening of high risk populations,

specifically cardiology clinics, was carried out. Family trees were constructed to determine the

number of affected family members identified in each pedigree.

Decision making regarding the initiation of enzyme replacement therapy was undertaken

according to national guidelines current at the time of baseline assessment.

Follow up data was collected regarding critical organ complications including: death,

stroke, pacemaker/ implantable cardiac defibrillator (ICD) insertion and development of renal

impairment or end stage renal failure (ESRF).

Baseline assessments of organ function

Baseline assessment for the purposes of this study was defined as the date of initial comprehen-

sive assessment of disease status undertaken at a specialist centre. Prior to the mid-1990s, few

UK patients had a comprehensive assessment of their disease status (e.g. cardiac, renal and

neurological function) and therefore in patients diagnosed prior to 1999 there is a lapse in

time between date of diagnosis and baseline assessment. All baseline assessments were per-

formed prior to initiation of Enzyme Replacement Therapy (ERT). A cross-sectional analysis

of organ involvement at the time of baseline assessment was performed. This approach was

taken so that this was not influenced by any effects of ERT on either organ manifestations or

circulating lyso-Gb3 levels.

Cardiac function and morphology were assessed by electrocardiogram (ECG), and echocar-

diogram. Left ventricular mass was calculated using the Devereux formula [31] and the left

ventricular mass index (LVMI) calculated to adjust for height (g/m2.7). Increased LVMI was

defined as�48 g/m2.7 in females and�50 g/m2.7 in males. For assessment of proportion of

patients with LVH both ECG and echocardiograms were considered, however, for Kaplan-

Meyer analysis only LVMI by echocardiogram was included. Arrhythmia encompassed Wolf-

Parkinson-White syndrome, supraventricular tachycardia, atrial fibrillation, ventricular fibril-

lation, non-sustained ventricular tachycardia, ventricular tachycardia and paroxysmal atrial

fibrillation. Conduction abnormalities included long QT, short PR, and conduction blocks.

Quantification of urinary protein was undertaken by 24 hour urine collection and glomeru-

lar filtration was measured by radio-isotope (chromium-EDTA) method, adjusted for patient

height (ml/min/m2). CKD was staged according to the Renal Association, UK.

The presence of white matter lesions (WML) was assessed by cerebral MRI or computed

tomography (CT), and all images were reviewed by a neuroradiologist.

Calculation of severity scores

Disease severity scores at baseline were calculated utilising the Mainz severity score index

(MSSI) [32]. As severity increases with age, the baseline overall severity score was an age

adjusted score, calculated by subtracting the calculated score from the predicted score for the

patient’s age, as previously published [33].

We classified patients according to clinical severity, based on the MSSI, into “mild”

(MSSI < 20), “moderate” (MSSI 20–40) and “severe” (MSSI > 40) phenotypes.

Measurement of plasma enzyme activity and mutational analysis

All patients had mutational analysis performed and measurements of, either plasma or leuko-

cyte, enzyme activity [34]. For mutational analysis, initial screening for abnormal exons was

performed on leucocyte DNA by high resolution melt curve analysis. Sanger sequencing was

then performed on abnormal exons to identify the causative mutation.

Heterogeneity in Fabry disease
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Measurement of plasma Globotriaosylsphingosine

Samples for analysis of plasma lyso-Gb3 concentration were available for 169 patients (84

prior to commencement of ERT and 85 during ERT).

Plasma lyso-Gb3 levels were measured at the laboratory of Genetic Metabolic Diseases in

the Academic Medical Centre using an (adjusted) tandem mass spectrometry method with

glycine labelled as an internal standard [35].

In order to calculate life time exposure to lyso-Gb3 ([Lyso-Gb3]�age) we multiplied a

patient’s lyso-Gb3 level by age at time of diagnosis.

Statistical analysis

Statistical analysis was performed using Excel 2010, Microsoft1 and GraphPad Prism version

5 (GraphPad1). For comparisons between two groups, t-tests were used for normally distrib-

uted data, Mann-Whitney U test if the data was not normally distributed and Fisher’s exact

test to compare between proportions. Retrospectively collected data on events (development

of stroke or transient ischaemic attack (TIA), development of stage III CKD (GFR <60ml/

min/1.73m2), presence of WML, development of proteinuria, development of left ventricular

mass indexed to height (LVMI)� 50g/m2.7 in males and� 48g/ m2.7 in females, and death)

were used to assess the event free survival by using Kaplan-Meyer curves. Survival time was

defined as the interval described in years between birth and event or last follow-up. A p value

<0.05 was considered significant.

Results

Demographics

The cohort comprised 251 patients (95 male (37.8%) (current age: 15–87, median age 52

years), 156 female (62.2%) (current age: 12–90, median age 47 years)) from 96 different family

pedigrees. Population characteristics are given in Table 1. Fifty-nine different mutations were

identified. 67 patients (43 male, 24 female) were index cases and 184 (52 male, 132 female)

were diagnosed on family screening. Eighty-four patients (33.5%) from 29 pedigrees (30.2%)

had the N215Smutation. Most of these patients have been diagnosed in the 21st Century, with

only 3/84 patients (3.6%) of patients diagnosed prior to 2000 having the N215S mutation com-

pared to 81/84 (96.4%) diagnosed 2000 onwards. 22/43 (51.2%) of index males had the N215S
mutation.

Index case presenting symptoms

N215S index males had a significantly older age of symptom onset compared to those with

non-N215S mutations (median age 57 years vs. 9 years, p<0.0001, Fig 1B), as well as age of

diagnosis (median age 58 years vs. 23 years, p<0.0001; Fig 1A).

First signs and symptoms among index cases included: (1) Cardiac: shortness of breath, pal-

pitations, syncope, abnormal ECG, chest pain, fatigue, murmur, cardiomegaly found on

screening, and cardiac arrest. (2) Renal: proteinuric CKD, haematuria, hypertension, renal fail-

ure, proteinuria during pregnancy, and persistent proteinuria post pregnancy. (3) Dermato-

logical: rash and angiokeratomas. (4) Neurological: pain, migraine, and TIA. (5) Strokes:

single episodes and recurrent strokes. (6) Ophthalmological: sore eye, cornea verticillata, and

eye deposits. (7) Gastrointestinal: irritable bowel syndrome (IBS) (Table 1).

The N215S mutation presented predominately with later onset cardiac manifestations in

males. In 18 out of 22 index N215S patients the initial disease manifestations were cardiac,

either symptomatic (syncopal episodes, palpitations or chest pain) or the incidental finding of
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Table 1. Demographics.

Parameters N215S non-N215S

Overall N = 84 N = 167

Males Females Males Females

N (%) 37 (44.1) 47 (55.9) 58 (34.7) 109 (65.3)

Age (years) at diagnosis

Mean (SD) 51.1 (19.2) 38.3 (16.1) 26.1 (16.4) 34.5 (16.8)

Median (range) 58 (13–74) 36 (11–78) 23 (1–65) 34 (4–75)

Age (years) of symptoms onset

N (missing) 241 (0) 142 (0) 533 (0) 594 (4)

Mean (SD) 51.7 (14.5) 36.8 (21.6) 13.2 (12.6) 25.1 (16.4)

Median (range) 57 (7–73) 28.5 (13–66) 9 (1–57) 18 (5–61)

Index cases, n (%) 22 (59.5) 2 (4.3) 21 (36.8) 22 (20.2)

First signs & symptoms:

Cardiac, n (%) 18 (81.8) 1 (50) 3 (14.3) 3 (13.6)

Renal, n (%) 2 (9.1) 1 (50) 1 (4.8) 1 (4.6)

Dermatological, n (%) - - 2 (9.5) 3 (13.6)

Neurological, n (%) - - 15 (71.4) 6 (27.3)

Stroke, n (%) - - - 4 (18.2)

Ophthalmological, n (%) - - - 4 (18.2)

Gastrointestinal, n (%) 2 (9.1) - - 1 (4.6)

Leukocyte α-Gal A

(normal range = 33–134 nmol/mg protein/hr)

N (missing) 15 (22) 14 (33) 31 (26) 47 (62)

Median (range) 7.0 (2.1–14) 49 (7–73) 2.3 (0.1–8.3) 33 (7.9–88)

Plasma α-Gal A

(normal range = 4–21.9 nmol/ml/hr)

N (missing) 36 (1) 46 (1) 49 (8) 102 (7)

Median (range) 0.2 (0–0.6) 4 (1.9–7.4) 0.1 (0–1.1) 3.7 (0.4–12.6)

Overall severity (current),

N (missing) 35 (2) 43 (4) 49 (8) 94 (15)

Mild (MSSI < 20), n (%) 13 (37.1) 41 (95.4) 8 (16.3) 65 (69.2)

Moderate (MSSI = 20–40), n (%) 21 (60) 2 (4.7) 35 (71.4) 27 (28.7)

Severe (MSSI� 40), n (%) 1 (2.9) - 6 (12.3) 2 (2.1)

Overall severity (baseline),

N (missing) 37 (0) 46 (1) 53 (5) 103 (6)

Mild (MSSI < 20), n (%) 19 (51.4) 42 (91.3) 6 (11.3) 73 (70.9)

Moderate (MSSI = 20–40), n (%) 17 (46) 4 (8.7) 45 (84.9) 29 (28.2)

Severe (MSSI� 40), n (%) 1 (2.7) - 2 (3.8) 1 (1)

Age adjusted score

N (missing) 37 (0) 46 (1) 55 (2) 105 (4)

Mean (SD) -5 (5.7) -2.1 (5.4) 7.6 (0.9) 4.8 (7.1)

Median (range) -6 (-13.9–6.5) -2.5 (-11.7–9.2) 8.6 (-9.5–21.6) 3.7 (-7.6–20.9)

Currently on ERT, n (%) 33 (89.2) 11 (23.4) 56 (98.2) 62 (56.9)

Agalsidase alfa, n (%) 30 (90.9) 10 (90.9) 50 (87.7) 58 (93.6)

Agalsidase beta, n (%) 2 (6.1) 1 (9.1) 6 (10.5) 4 (6.5)

α-Gal A = alpha-galactosidase A; ERT = enzyme replacement therapy; Patients were stratified according to clinical severity, based on the Mainz Severity Score Index

(MSSI), into “mild” (MSSI < 20), “moderate” (MSSI 20–40) and severe (MSSI > 40) phenotypes. Number of patients with no symptoms prior to diagnosis: 1. N = 13, 2.

N = 33, 3.N = 4, 4. N = 46.

https://doi.org/10.1371/journal.pone.0193550.t001
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LVH during pre-operative assessments or insurance medicals (7 patients) (Table 1). In two

N215S index males the initial symptoms were of IBS, with the diagnosis being made following

subsequent development of cardiac manifestations. Two N215S male index cases presented at

a significantly younger age (25 and 38 years) with ESRF. In contrast, acroparesthesia and/or

angiokeratoma were the commonest initial symptoms in non-N215S index males, occurring in

17 out of 21 patients (81%, p<0.0001). In three the initial symptoms were cardiac (onset aged

32, 44, and 50 years) and one proteinuria (initially noted age 29).

Both groups attained similar overall severity scores, but at different ages. Mild N215S
patients (MSSI < 20) were significantly older compared to non-N215S (mean age: 36.6, n = 19

vs. 29.5 yeas, n = 6, p = 0.005). Moderate (MSSI = 20–40) and severe (MSSI� 40) patients were

also older in the N215S group (63.7 years (n = 17) vs. 35.6 years (n = 45) p< 0.0001 and 71

(n = 1) vs. 29.7 years (n = 2), p = ns, respectively).

Females accounted for over 50% of index cases in the non-N215S population compared

with only two (8.3%) in N215S patients (p = 0.0004), one presenting with proteinuria in preg-

nancy aged 25 years and the other with cardiac hypertrophy aged 68. Whilst non-N215S
women were diagnosed, on average, 8.4 years after males (means: 34.5 vs. 26.1 years,

p = 0.002), N215S women were diagnosed 12.8 years before males with the same mutation

(means: 38.3 vs. 51.1 years, p< 0.002) due to family screening of younger generations. Only

non-N215S females reached severe overall MSSI severity scores (MSSI� 40), both at baseline

and during follow-up (Table 1).

Whilst similar proportions of male patients were on ERT (N215S: 33/37, 89.2% vs. non-
N215S: 56/58, 96.6%), only 11/47, 23.4% of N215S females were on treatment compared to

62/109, 56.9% in the non-N215S group (p = 0.0001). Indeed, N215S females received the least

proportion of any concomitant medication when compared to the rest of the cohort (Table 2).

Follow up and survival

Baseline assessments were performed on a total of 95 males (index and screening) at a mean age

of 26.1 years in non-N215S males (n = 58) and 51.1 years in N215S (n = 37), p<0.0001. The

mean age at latest follow up for non-N215S males was 44.1 years (range 20–65, n = 51) and 56.3

years for N215Smales (range 18–82, n = 35). There were 10 deaths amongst male FD patients, 7

in non-N215S males (3 cardiac related, 3 stroke and 1 malignancy; mean age 48.3 years) and 3

N215Smales (all cardiac; mean age 75.7 years). Only 2 females passed away during the follow

up, one carrying the G361R mutation (cardiac death, aged 77) and the other harboured a H46Y

Fig 1. (A) Age at diagnosis for males N215S (n = 37), males non-N215S (n = 58) and females N215S (n = 47), females

non-N215S (n = 109). (B) Age at symptom onset for males N215S (n = 24), males non-N215S (n = 53) and females

N215S (n = 14), females non-N215S (n = 59); ns = not significant.

https://doi.org/10.1371/journal.pone.0193550.g001
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Table 2.

Parameters N215S non-N215S

Overall N = 84 N = 167

Males Females Males Females

N (%) 37 (44.1) 47 (55.9) 58 (34.7) 109 (65.3)

Risk factors for cardiovascular disease

Smoking history, n (%) 15 (40.5) 8 (17) 7 (12.1) 19 (17.4)

Obesity (�35 km/m2), n (%) 3 (8.1) 1 (2.1) - 5 (4.6)

Diabetes mellitus, n (%) 5 (13.5) 3 (6.4) 1 (1.7) 3 (2.8)

Fabry related symptoms

General

Hypertension, n (%) 13 (35.1) 7 (14.9) 8 (13.8) 19 (17.4)

Tortuous vessels, n (%) 3 (8.1) 2 (4.3) 14 (24.1) 15 (13.8)

Acroparestesia, n (%) 8 (21.6) 7 (14.9) 47 (81) 51 (46.8)

Angiokeratoma, n (%) 9 (24.3) 5 (10.6) 44 (75.9) 33 (30.3)

CNS

Brain imaging changes (MRI / CT), n (%) 19 (51.4) 13 (27.7) 29 (50) 40 (36.7)

Cerebrovascular event, n (%) 3 (8.1) 1 (2.1) 11 (19) 16 (14.7)

Cardiac

LVH, n (%) 17 (46) 4 (8.5) 22 (37.9) 24 (22)

Arrhythmia, n (%) 11 (29.7) 0 (0) 3 (5.2) 13 (11.9)

Conduction abnormalities, n (%) 11 (29.7) 8 (17) 10 (17.2) 17 (15.6)

LVMI, n (missing) 31 (6) 40 (7) 49 (9) 82 (27)

Mean (SD) 58.2 (22.7) 33 (16.3) 53.1 (20.2) 42.7 (15.9)

Median (range) 50.6 (27.6–105.3) 29.3 (9.8–94.4) 48.6 (23.2–129) 38 (18.2–94.6)

Remodelling, n (missing) 25 (12) 31 (16) 35 (26) 68 (41)

Normal1, n (%) 7 (28) 24 (77.4) 14 (40) 43 (63.2)

Concentric2, n (%) 5 (20) 4 (12.9) 9 (25.7) 7 (10.3)

Concentric hypertrophy3, n (%) 11 (44) 3 (9.7) 10 (28.6) 16 (23.5)

Eccentric hypertrophy4, n (%) 2 (8) - 2 (5.7) 2 (2.9)

Permanent pacemaker, n (%) 7 (18.9) 1 (2.1) 2 (3.5) 1 (0.9)

Implantable cardioverter-defibrillator, n (%) 6 (16.2) 0 (0) 3 (5.2) 2 (1.8)

Renal

Proteinuria, n (%) 12 (32.4) 3 (6.4) 23 (39.7) 21 (19.3)

CKD stages, n (missing) 37 (0) 41 (6) 49 (9) 99 (10)

1(> 90 mL/min/1.73m2) 16 27 25 57

2(60–89 mL/min/1.73m2) 13 13 16 32

3A(45–59 mL/min/1.73m2) 4 0 4 5

3B(30–44 mL/min/1.73m2) 1 1 3 4

4 (>15–29 mL/min/1.73m2) 1 - 1 1

5(<15 mL/min/1.73m2 or on dialysis) 2 - - -

Concomitant medication

ARB/ACE therapy any time, n (%) 17 (46) 6 (12.8) 27 (46.6) 33 (30.3)

ß blocker therapy any time, n (%) 12 (32.4) 3 (6.4) 6 (10.4) 15 (13.8)

Antiplatelet therapy any time, n (%) 19 (51.4) 9 (19.2) 22 (37.9) 32 (29.4)

Anticoagulant therapy any time, n (%) 4 (10.8) 0 (0) 3 (5.2) 8 (7.3)

Statins therapy any time, n (%) 20 (54.1) 8 (17) 15 (25.9) 25 (22.9)

Anticoagulant therapy includes warfarin; antiplatelet therapy includes aspirin, dipyridamole, and clopidogrel; Brain imaging changes were assessed through magnetic

resonance imagining (MRI) and computed tomography (CT), they include white matter lesions (WML), infarcts, vessels dissection and tortuosity. CNS = central

nervous system; LVH = left ventricular hypertrophy, assessed through echocardiogram (>48 g/m2.7 in females and >50 g/m2.7 in males); CKD = chronic kidney disease;

LVMI = left ventricular mass indexed to height. 1. Normal LVMI + RWT� 42%. 2. Normal LVMI + RWT� 42%. 3. Increased LVMI + RWT� 42%. 4. Increased

LVMI + RWT�42%. [36]. Proteinuria: >150 g/24hs. Arrhythmia included Wolf-Parkinson-White syndrome, supraventricular tachycardia, atrial fibrillation,

ventricular fibrillation, non-sustained ventricular tachycardia, ventricular tachycardia and paroxysmal atrial fibrillation. Conduction abnormalities included long QT,

short PR and conduction blocks.

https://doi.org/10.1371/journal.pone.0193550.t002
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mutation (she had a stroke at 65 years old). Overall, survival was significantly greater in N215S
males than non-N215S males (Fig 2F, median survival 81 vs. 66 years, p< 0.0006). However, we

did not find significant differences in overall survival amongst females (Fig 2L).

Cardiac manifestations (Table 2)

Cardiac evaluation at baseline included ECG and echocardiogram (LVH defined as an

LVMI> 48 g/m2.7 in females and> 50 g/m2.7 in males). 29 patients were missing echocardio-

gram at baseline (9 males, 20 females).

24 (28.6%) N215S patients (20 males, 4 females) and 49 (29.3%) non-N215S (23 males, 26

females) had LVH on echocardiogram. 1 male non-N215S had LVH by voltage criteria (LVMI

data missing). Furthermore, 2 male N215S patients and 3 non-N215S (1 male, 2 females) were

found to have LVH at baseline but their LVMI data was not available.

Of the 6 patients one presented with ESRF at age 25, two teenagers had conduction ab-

normalities on ECG and showed no symptoms, 1 required an ICD after developing a Non-

Sustained Ventricular Tachycardia (NSVT) with pre-syncope, and 1 had acroparesthesia, gas-

trointestinal symptoms and a few WML on brain MRI. Only 4 N215S females had developed

LVH at baseline and they were aged 68, 72, 78 and 42 years old. Cardiac hypertrophy was pres-

ent in all except for 8 male non-N215S patients (R301Q (aged 14), A143T (aged 1), P205T (aged

3), exon 1 deletion (aged 13), c.700_702 del GAT deletion (aged 27), G361R (aged 11), L372P
(aged 19), and R49L (aged 28)). The patients with c.700_702 del GAT deletion, L372P, and R49L
have subsequently developed conduction abnormalities. However, only 30/109 of non-N215S
female patients exhibited cardiac hypertrophy, at a mean age of 43.3 (range 10–75) years old.

Most males exhibited concentric hypertrophy with no difference between mutation groups

(Table 2). On echocardiogram, there were no differences in LVMI magnitude between muta-

tion groups (Fig 3A). However, Kaplan-Meier survival analysis demonstrated that the develop-

ment of a LVMI over 50g/m2.7 in males occurred at a younger age for the non-N215S
population (median survival: 41 vs. 64 years, p< 0.0001, Fig 2E). Females described a similar

Fig 2. Kaplan-Meier survival analyses. A-F Males; G-L Females. (A, G) Stroke or Transient ischaemic attack (TIA),

(B, H) stage III chronic kidney disease (GFR<60ml/min/1.73m2), (C, I) White matter lesions (WML), (D, J)

Proteinuria (defined as a protein excretion of over 150g/24hs), (E, K) Left ventricular mass by echocardiogram indexed

to height (LVMI)� 50g/m2.7 in males and� 48g/ m2.7 in females, and (F, L) Overall survival, during follow-up, by

gender and mutation status. The small vertical lines represent censored data (follow-up until the vertical line without

development of an event).

https://doi.org/10.1371/journal.pone.0193550.g002
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disposition (50 vs. 72 years, p = 0.003) (Fig 2K). 13 (29.7%) N215Smen have had ICD or per-

manent pacemakers (PPM) inserted for arrhythmias at a median age of 69 years (range 51–

79), whereas only 5 (8.8%) non-N215S men required one at a median age of 56 years (range

47–59, Table 2). Only 4 women required an ICD or PPM inserted, 1 N215S aged 63 years old

and 3 non-N215S (aged 60, 64, and 72 years old, Table 2).

As potential contributory factors, 15 (40.5%) N215S men had smoking history compared to

only 7 (12.1%) classic men. Furthermore, 5 (13.5%) N215S men had type 2 diabetes compared

to only 1 (1.8%) non-N215S man (Table 2). In the case of females, similar proportions had

smoking history, 6.4% of N215S and 2.8% of non-N215S are diabetic and, of note, 5 non-N215S
patients had a BMI over 35 kg/m2 compared to only 1 N215S woman (Table 2). Hypertension

was more common in N215S males (35.1% vs. 13.8%, p<0.03 Table 2), however, in females it

predominated in the non-N215S group (17.4% vs. 14.9%, p = not significant, Table 2).

Beta blockers and statins therapies were more prevalent amongst N215S males, whereas

angiotensin converting enzyme inhibitors (ACEI) / angiotensin receptor blockers (ARB) were

in non-N215S males. However, for females, all of these four concomitant medications were

more common in the non-N215S population (Table 2).

Renal manifestations

Similar proportions of non-N215S (23/58, 39.7%) and N215S (12/37, 32.4%) males had protein-

uria at baseline (Table 2), but proteinuria developed at an earlier age in non-N215S males

(median survival without development of proteinuria: 43 vs 71 years, p< 0.0001, Fig 2D). Two

N215Smales with proteinuria had diabetes as a potential contributory factor compared to only

1 non-N215S man (Table 2). There were no significant differences in GFR at baseline (Fig 3B),

yet, survival curve analysis revealed that stage II CKD (GFR <60ml/min/1.73m2) is developed

at a significantly younger age in non-N215S males (median survival: 56 vs. 72 years, p< 0.01,

Fig 2B). Progression to stage 5 CKD (GFR <15ml/min/1.73m2) occurred in 2 N215S, all of

whom had marked persistent proteinuria.

The three index males whose initial disease manifestations were renal (2 N215S, 1 non-
N215S) have all had or are awaiting renal transplants. One further non-N215S male patient

was diagnosed on family screening having been symptomatic with acroparesthesia since age 7,

had a GFR of 33 at diagnosis aged 34 and has progressed to end stage renal disease (ESRD).

The other N215S patient was diagnosed on family screening aged 73, but had a history of

Fig 3. Quantification of: (A) Left ventricular mass indexed to height (LVMI) for males N215S (n = 35), males non-
N215S (n = 51) and females N215S (n = 40), females non-N215S (n = 96). (B) Glomerular filtration rate (GFR) for

males N215S (n = 37), males non-N215S (n = 50) and females N215S (n = 41), females non-N215S (n = 99).

https://doi.org/10.1371/journal.pone.0193550.g003
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proteinuria of undefined aetiology first detected at age 56 and a partial nephrectomy many

years previous for tuberculosis.

Amongst females, proteinuria was more common in the non-N215S group (19.3% vs. 6.4%,

p = not significant, Table 2) and Kaplan-Meier analysis demonstrated that it also develops ear-

lier in this group (median survival: 70 years vs. not reached -N215S-, p = 0.03, Fig 2J). Further-

more, there were no differences on GFR at baseline between mutation groups (Fig 3B). Non-
N215S females also developed stage II CKD (GFR<60ml/min/1.73m2) at an earlier age but

this age difference was not significant (70 vs. 72 years old, Fig 2H).

Cerebrovascular manifestations

Cerebrovascular events (stroke/TIA) were more common in non-N215S males (11/58, 19%)

than N215Smales (3/37, 8.1%, p = not significant, Table 2) and occurred at a younger age

(median survival: 61 years vs. not reached -N215S-, p< 0.0001, Fig 2A). In the case of females,

non-N215S had more cerebrovascular events (stroke/TIA) compared to N215S (14.7% vs.

2.1%, p< 0.03, Table 2) and these occurred earlier in life (median survival: 74 years vs. not

reached -N215S-, p< 0.02, Fig 2G). Cerebral WML were found in similar proportions of non-
N215S (29/58, 50%) and N215S (19/37, 51.4%) males but were found at a significantly younger

age in non-N215S (median age 44 vs. 66 years, p<0.0001, Fig 2C). Females described a compa-

rable distribution to males, but with no significant differences amongst mutation groups

(Table 2, Fig 2I).

Relationship of disease manifestations to enzyme activity

Males with the N215S mutation had a significantly lower baseline age-adjusted FOS-MSSI

severity score (mean score -5 vs. +7.6, p<0.0001) and higher leukocyte α-Gal A activity (7.0 vs

2.32 nmol/mg protein/hr, p< 0.0001). They also showed a trend towards higher plasma

enzyme activity compared to non-N215S (0.25 vs. 0.17 nmol/ml/hr, p = 0.07).

Despite the same GLA mutation, there was marked variation in enzyme activity amongst

N215S patients, with enzyme activity correlating weakly with overall disease severity (r2 =

0.136, p<0.03, n = 36, see Fig 4E), but not with LVMI or GFR (Fig 5 and S1 Fig).

α-Gal A activity was higher in females regardless of GLA variant (means: 4.04 vs 0.21 nmol/

mg protein/hr, p< 0.0001) and demonstrated weak correlation with severity in the non-N215S
females only (data not shown).

Fig 4. Correlation analyses: (1) Plasma globotriaosylsphingosine (Lyso-Gb3) and plasma α-Gal A activity for males

N215S (A; n = 13), males non-N215S (B; n = 9), females N215S (C; n = 25), and females non-N215S (D; n = 36). (2) Age

adjusted severity score (AAS) and plasma α-Gal A activity for males N215S (E; n = 36), males non-N215S (F; n = 48),

females N215S (G; n = 45), and females non-N215S (H; n = 98); ns = not significant.

https://doi.org/10.1371/journal.pone.0193550.g004
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Ageing

There were no significant correlations for neither gender, between either leukocyte or plasma

α-Gal A activity and age (S2 Fig). In univariate regression analyses, we found that MSSI signifi-

cantly correlated with age, LVMI and GFR for the N215S patients but not the non-N215S
patients (Table 3).

Plasma Globotriaosylsphingosine (lyso-Gb3)

Lyso-Gb3 was found to be elevated in both N215S and non-N215S compared with historical

controls for both males and females (Table 4). At baseline, in untreated patients, lyso-Gb3 was

higher in the non-N215S males and females than N215S males and females, respectively.

Female non-N215S lyso-Gb3 was also higher than male or female N215S. Significant heteroge-

neity was noted in lyso-Gb3 levels in all groups (Table 4). On average, lyso-Gb3 was lower in

Fig 5. Correlation analyses: red = females; blue = males: (A) Glomerular filtration rate (GFR) and plasma α-Gal A

activity for males (n = 36) and females (n = 40). (B) GFR and leukocyte α-Gal A activity for males (n = 15) and females

(n = 14). (C) Left ventricular mass indexed to height (LVMI) and plasma α-Gal A activity for males (n = 30) and

females (n = 32). (D) LVMI and leukocyte α-Gal A activity for males (n = 14) and females (n = 14); Data shown for

N215S group (non-N215S: S1 Fig); ns = not significant.

https://doi.org/10.1371/journal.pone.0193550.g005

Table 3. Univariate linear regression analyses.

N215S non-N215S

Univariate analysis Univariate analysis

Lyso-Gb3] r2 = 0.61 p< 0.003 r2 = 0.15 p = ns

MSSI Age r2 = 0.73 p = 0.0002 r2 = 0.13 p = ns

[Lyso-Gb3]�age r2 = 0.88 p< 0.0001 r2 = 0. 35 p = ns

[Lyso-Gb3] r2 = 0.52 p< 0.01 r2 = 0.05 p = ns

LVMI Age r2 = 0.40 p< 0.03 r2 = 0.25 p = ns

[Lyso-Gb3]�age r2 = 0.59 p< 0.005 r2 = 0.02 p = ns

[Lyso-Gb3] r2 = 0. 33 p< 0.05 r2 < 0.01 p = ns

GFR Age r2 = 0.74 p = 0.0002 r2 = 0.25 p = ns

[Lyso-Gb3]�age r2 = 0.75 p = 0.0001 r2 = 0.26 p = ns

MSSI = Mainz Severity Score Index; GFR = Glomerular filtration rate; LVMI = left ventricular mass indexed to height; Lyso-Gb3 = Globotriaosylsphingosine (nmol/L);

Age is expressed in years; [LysoGb3]�age = Life exposure to Lyso-Gb3 (nmolyr/L).

https://doi.org/10.1371/journal.pone.0193550.t003
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the ERT- treated group for both N215S and others compared to their untreated counterparts

(Table 4). Lyso-Gb3 levels were significantly lower in both, treated (5.8 vs 28.9 nmol/L, p<

0.0001) and untreated (4.6 vs. 34.4 nmol/L, p< 0.004) women, regardless of GLA variant (data

not shown).

The N215S population reached an overall severity measured by MSSI comparable to the

non-N215S without equivalent elevation of lyso- Gb3 (Fig 6A–6D).

Older male N215S patients showed higher plasma lyso-Gb3 levels, and exhibited a signifi-

cant association between plasma lyso-Gb3 levels and age (r2 = 0.34, p = 0.04, Fig 7), not seen

for the non-N215S group (S3 Fig). Conversely, lower levels of plasma lyso-Gb3 were found in

the non-N215S patients in the same age group (Fig 7 and S3 Fig) likely due to a survivor effect

or milder forms. Both age and lyso-Gb3 demonstrated a significant correlation with MSSI,

LVMI and GFR (26, 27) (Table 3). However, in univariate linear regression analyses, life time

exposure to lyso-Gb3 levels (calculated as [lyso- Gb3]�age) showed a stronger significant posi-

tive correlations with MSSI (r2 = 0.88, p< 0.0001, Fig 6A) and LVMI (r2 = 0.59, p< 0.005, Fig

6I), and a negative one with GFR (r2 = 0.75, p = 0.0001, Fig 6E). No similar correlations were

seen for the non-N215S group (Fig 6B, 6F and 6J).

Table 4. Plasma Lyso-Gb3 quantification.

N215S non-N215S

Overall N = 84 N = 167

Males Females Males Females

N (%) 25 (43.1) 33 (56.9) 39 (23.4) 72 (43.1)

Lyso-Gb3 (nmol/L)

ERT naïve, n (%) 13 (52) 26 (78.8) 9 (23.1) 36 (50)

Mean (SD) 6.7 (2.1) 1.5 (0.9) 74.3 (42.2) 6.8 (4.6)

Median (range) 6.6 (3–9.8) 1.2 (0.4–4.1) 77.4 (20.9–126.9) 6 (0.4–16.5)

During ERT, n (%) 12 (48) 7 (21.2) 30 (76.9) 36 (50)

Mean (SD) 6.3 (3.3) 1.7 (1.5) 37.9 (21.3) 6.7 (3.4)

Median (range) 4.9 (2.6–13.6) 1.1 (0.4–4.9) 33.8 (1.4–113.2) 5.9 (0.4–16.7)

Lyso-Gb3 = Globotriaosylsphingosine. Upper reference limit Lyso-Gb3 = 0.6.

https://doi.org/10.1371/journal.pone.0193550.t004

Fig 6. Correlation analyses: Life time exposure to Lyso-Gb3 ([Lyso-Gb3]�age) and: clinical severity, (MSSI) for: (A)

N215Smales (n = 13), (B) non-N215S males (n = 9), (C) N215S females (n = 26), and (D) non-N215S females (n = 36);

baseline GFR for: (E) N215Smales (n = 13), (F) non-N215S males (n = 9), (G) N215S females (n = 26), and (H) non-
N215S females (n = 33); LVMI for: (I) N215Smales (n = 12), (J) non-N215S males (n = 9), (K) N215S females (n = 23),

and (L) non-N215S females (n = 34); ns = not significant.

https://doi.org/10.1371/journal.pone.0193550.g006
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In the case of females, we found strong correlations in the N215S group between life time

exposure to lyso-Gb3 and MSSI (r2 = 0.62, p< 0.0001, Fig 6C) and LVMI (r2 = 0.71, p<

0.0001, Fig 6K). However, the non-N215S group showed significant but weak correlations

between life time exposure to lyso-Gb3 and the clinical parameters (MSSI: r2 = 0.42, p<

0.0001, Fig 6D; GRF: r2 = 0.26, p< 0.003, Fig 6H; LVMI: r2 = 0.14, p = 0.03, Fig 6L). No signifi-

cant correlation was noted between plasma lyso-Gb3 and α-Gal A activity, plasma (Fig 4) or

leukocyte (data not shown).

Through this analysis four groups could be distinguished (Fig 8) with distinct relationships

between plasma lyso-Gb3 and plasma enzyme activity, for example males who despite not

showing a significant difference in enzyme activities had different plasma lyso-Gb3 concentra-

tions (means: 6.7 vs. 74.3 nmol/L, p< 0.001, Table 4).

Discussion

The diagnosed prevalence of Fabry disease in the UK has increased substantially over the last

17 years since enzyme replacement therapy became available. This is in part due to raised

awareness and screening of high risk populations, including those found to have unexplained

left ventricular hypertrophy. In this cohort of 251 Fabry patients, 33.5% (84) were found to

have the N215S mutation, which has been described in association with a later onset cardiac

phenotype. Many of the pertinent index cases were referred from cardiology clinics with sub-

sequent diagnosis of family members due to cascade screening, however, some patients pre-

sented in ESRF. At present it is unclear if these pedigrees are distinct or in fact one family as a

result of a founder effect in the UK. Further haplotype analysis is required to confirm this.

We have compared the clinical and biochemical phenotype of this group of patient to the

rest of our cohort who harbour non-N215S mutations in the GLA gene. 59 different mutations

comprised the latter mutation group including deletions, nonsense, and missense mutations

(see S1 Table). N215S patients exhibited a distinct phenotype with significantly later symptom

onset than patients with other mutations. Primary presenting symptoms were cardiac disease

but in some cases renal failure. Males and females displayed higher levels of leukocyte enzyme

Fig 7. N215S correlation analyses: Plasma globotriaosylsphingosine (Lyso-Gb3) and age for males (blue; n = 13)

and females (red; n = 26).

https://doi.org/10.1371/journal.pone.0193550.g007
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activity and lower levels of lyso-Gb3 than non-N215S counterparts. Kaplan-Meyer analysis

revealed that N215S patients develop cardiac hypertrophy and proteinuria at an older age, and

have a greater overall survival. Indeed, N215S men exceeded the general population life expec-

tancy for over 1.9 years, whereas non-N215S patients was reduced compared to the general

population by 13.1 years [37]. This fact might explain some of the severity found in the N215S
population, who might acquire more disease burden as a result of ageing.

Patients who harboured non-N215S mutations, and in particular those associated with the

classical phenotype, mainly presented with acroparesthesias and angiokeratomas and rarely

cardiac or renal involvement. They also showed an earlier decline in renal function to GFR

<60 ml/min/1.73m2 and an earlier occurrence of cerebrovascular events (stroke/TIA).

There were no differences in LVMI between mutation groups at baseline, however, at the

time of the first assessment the mean age was 25 years older in the N215S males. N215S males

reached similar total MSSI scores to that of non-N215S males but, on average, 25.5 years later.

Fig 8. Correlation analyses: Plasma globotriaosylsphingosine (Lyso-Gb3) and plasma α-Gal A activity for males

N215S (blue; n = 13), males non-N215S (orange; n = 9) and females N215S (purple; n = 26), females non-N215S
(green; n = 36).

https://doi.org/10.1371/journal.pone.0193550.g008
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Males with N215S attained similar overall MSSI scores and degree of LVMI to non-N215S
males despite higher residual enzyme activity and lower plasma lyso-Gb3 levels. Liao et al.

reported similar differences in lyso-Gb3 levels between classical and late onset patients, and

similar associations between lyso-Gb3, age and LVMI in their Taiwanese patients carrying the

late onset mutation IVS4 + 919G>A [38]. This may suggest that the heart is more sensitive

than other organs to the effects of lyso-Gb3. With manifestations occurring at lower levels of

lyso-Gb3 in patients with relatively higher leucocyte activities of α-Gal A, lyso-Gb3 may play a

direct role in FD pathogenesis. However, storage alone cannot explain the myocardial remod-

elling found on these patients [39]. Other studies have suggested a pro-proliferative effect of

lyso-Gb3 on smooth muscle cells [3] and a cumulative effect on human podocytes [40], induc-

ing the expression and production of extracellular matrix proteins via TGF-β1 [41] and

Notch1 pathway [42].

Plasma lyso-Gb3 levels appeared to be useful to differentiate between phenotypes in males,

however N215S males and classical females had similar lyso-Gb3 levels [21, 43]. Despite having

on average only 9% plasma lyso-Gb3 of the non-N215S patients, the plasma lyso-Gb3 levels of

N215Smales showed strong correlations with LVMI, GFR and MSSI. Indeed, these associa-

tions became even stronger when we investigated the individual’s life time exposure to lyso-

Gb3, considering the impact of age.

Our results demonstrated that both age and lyso-Gb3 are major factors influencing N215S
patients’ clinical outcomes and overall disease severity (measured by MSSI), LVMI and GFR. Fur-

thermore, for N215S patients, strong significant correlations of clinical manifestations with life

time exposure to lyso-Gb3 suggests that the cumulative exposure is crucial for the disease progres-

sion. Contrary to previous suggestions [23, 44] this finding supports the utility of lyso-Gb3 and its

age related function in prediction of disease severity in newly diagnosed late onset patients.

None of the correlations between plasma lyso-Gb3 and clinical manifestations found in

N215S patients were evident for non-N215S male patients, consistent with the results of Rom-

bach et al. who investigated these associations in 37 classic male Fabry patients [43]. The

absence of these associations might indicate that above certain levels of lyso-Gb3 in plasma,

higher concentrations are not predictive of the degree of disease severity.

Lower levels of plasma lyso-Gb3 were found in treated patients, implying an effect of ERT;

however, this is a cross-sectional analysis and could reflect a treatment bias therefore further

longitudinal studies are required.

N215S index cases were mostly males, and women were generally diagnosed through cas-

cade screening. Regardless of the mutation, female patients showed higher enzyme activity,

lower lyso-Gb3 levels, and received, proportionally, less treatment (either ERT or concomitant

medications). The ratio of females to males in our N215S cohort is only 1.3 to 1 which is lower

than the expected 2 to 1 for an X-linked disease, and may suggest that N215S female patients

are underdiagnosed due to their mild phenotype. Even in classic men clinical diagnosis of FD

can be difficult due to frequent misinterpretation of early symptoms, and often patients pres-

ent with a long consultation history. Hsu et al. reported that cardiac disease can progress

silently, without showing significant clinical symptoms [45]. Family screening is therefore key

to identifying asymptomatic individuals in order to provide appropriate genetic counselling

prognostication and monitoring.

Strengths and limitations

This is a cross sectional baseline study of a large number of patients with a single mutations

compared to other patients without that mutation in our cohort all investigated and

managed according to a common protocol. We identify a number of strengths including the
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standardised follow up and completeness of the genotyping and clinical data. A further

strength is that we have chosen to compare the N215S cohort of patients to our total cohort of

non-N215S patients including the full range of genotypes some of which are also late onset

thereby avoiding the bias of selecting only mutations previously described to have classic phe-

notype. We report data prior to the initiation of therapy for clinical parameters in all patients

however a limitation is that lyso-Gb3 at baseline was only available for a subset in which the

analysis is performed. Similarly, whilst genotyping was available in all patients a full profile of

enzyme activities was not available for every patient. For the small number of patients diag-

nosed prior to 1999 there is a lapse in time between date of diagnosis and baseline assessment

as patient were not immediately seen in the specialist centre.

We present event and survival follow up for the genotype-defined cohorts as a whole and

have not further analysed by exposure to enzyme replacement therapy which was outside of

the scope of this study. After baseline assessment similar proportions of male N215S patients v

non-N215S patients were in receipt of ERT although a smaller proportion of N215S females

were on treatment reflecting their overall milder phenotype which would have been a con-

founder in any analysis of ERT response. Similarly, the sample size lacked the necessary power

to detect statistically significant differences in ERT effect by genotype.

According to our local protocols, during the majority of the follow up period echocardiog-

raphy with its potential limitations of variability rather than MRI was used to measure LVMI.

Conclusion

Patients with the N215Smutation exhibit a distinct phenotype with later onset but not exclu-

sively cardiac manifestations, with some patients presenting with renal disease. Contrary to

previous reports, lyso-Gb3 is an important parameter in the assessment of patients with the

N215Smutation. In particular severity and clinical manifestations correlated with life time

exposure to plasma lyso-Gb3 in the N215S group and may prove useful in prognostication and

therapeutic decision making.
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33. Hughes DA, Ramaswami U, Barba Romero MÁ, Deegan P; FOS Investigators. Age adjusting severity

scores for Anderson-Fabry disease. Mol Genet Metab. 2010; 101:219–227. https://doi.org/10.1016/j.

ymgme.2010.06.002 PMID: 20691627

34. Morgan SH, Rudgc P, Smith SJM, Bronstein AM, Kendall BE, Holly E, et al The neurological complica-

tions of Anderson-Fabry disease (alpha-galactosidase A deficiency)—investigation of symptomatic and

presymptomatic patients. Q J Med. 1990; 75:491–504. PMID: 2167495

35. Gold H, Mirzaian M, Dekker N, Joao Ferraz M, Lugtenburg J, Codée JD, et al Quantification of globo-

triaosylsphingosine in plasma and urine of fabry patients by stable isotope ultraperformance liquid chro-

matography-tandem mass spectrometry. Clin Chem. 2013; 59:547–556. https://doi.org/10.1373/

clinchem.2012.192138 PMID: 23237761

36. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al; American Society of

Echocardiography’s Nomenclature and Standards Committee; Task Force on Chamber Quantification;

American College of Cardiology Echocardiography Committee; American Heart Association; European

Association of Echocardiography, European Society of Cardiology. Recommendations for chamber

quantification. Eur J Echocardiogr. 2006. https://doi.org/10.1016/j.euje.2005.12.014

37. National life tables, UK: 2013–2015. Office for National Statistics. 2016, 26 Sep. Available from: https://

www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/

bulletins/nationallifetablesunitedkingdom/20132015

38. Liao HC, Huang YH, Chen YJ, Kao SM, Lin HY, Huang CK, et al. Plasma globotriaosylsphingosine

(lysoGb3) could be a biomarker for Fabry disease with a Chinese hotspot late-onset mutation (IVS4

+919G>A). Clin Chim Acta. 2013. https://doi.org/10.1016/j.cca.2013.09.008

39. Seydelmann N, Wanner C, Störk S, Ertl G, Weidemann F. Fabry disease and the heart. Best Pract Res

Clin Endocrinol Metab. 2015. https://doi.org/10.1016/j.beem.2014.10.003

40. Tøndel C, Bostad L, Larsen KK, Hirth A, Vikse BE, Houge G, et al. Agalsidase benefits renal histology

in young patients with Fabry disease. J Am Soc Nephrol. 2013. https://doi.org/10.1681/ASN.

2012030316

41. Sanchez-Niño MD, Sanz AB, Carrasco S, Saleem MA, Mathieson PW, Valdivielso JM, et al Globotriao-

sylsphingosine actions on human glomerular podocytes: implications for Fabry nephropathy. Nephrol

Dial Transplant. 2011. https://doi.org/10.1093/ndt/gfq306

42. Sanchez-Niño MD, Carpio D, Sanz AB, Ruiz-Ortega M, Mezzano S, Ortiz A. Lyso-Gb3 activates

Notch1 in human podocytes. Hum Mol Genet. 2015. https://doi.org/10.1093/hmg/ddv291

43. Arends M, Wanner C, Hughes D, Mehta A, Oder D, Watkinson OT, et al. Characterization of Classical

and Nonclassical Fabry Disease: A Multicenter Study. J Am Soc Nephrol. 2017. https://doi.org/10.1681/

ASN.2016090964

44. Rombach SM, Dekker N, Bouwman MG, Linthorst GE, Zwinderman AH, Wijburg FA, et al. Plasma glo-

botriaosylsphingosine: diagnostic value and relation to clinical manifestations of Fabry disease. Biochim

Biophys Acta. 2010. https://doi.org/10.1016/j.bbadis.2010.05.003

45. Hsu TR, Hung SC, Chang FP, Yu WC, Sung SH, Hsu CL, et al. Later Onset Fabry Disease, Cardiac

Damage Progress in Silence: Experience with a Highly Prevalent Mutation. J Am Coll Cardiol. 2016.

https://doi.org/10.1016/j.jacc.2016.09.943

Heterogeneity in Fabry disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0193550 April 5, 2018 20 / 20

http://www.ncbi.nlm.nih.gov/pubmed/2173254
https://doi.org/10.1161/CIRCGENETICS.116.001691
https://doi.org/10.1161/CIRCGENETICS.116.001691
http://www.ncbi.nlm.nih.gov/pubmed/2936235
https://doi.org/10.1111/j.1399-0004.2004.00219.x
https://doi.org/10.1111/j.1399-0004.2004.00219.x
https://doi.org/10.1016/j.ymgme.2010.06.002
https://doi.org/10.1016/j.ymgme.2010.06.002
http://www.ncbi.nlm.nih.gov/pubmed/20691627
http://www.ncbi.nlm.nih.gov/pubmed/2167495
https://doi.org/10.1373/clinchem.2012.192138
https://doi.org/10.1373/clinchem.2012.192138
http://www.ncbi.nlm.nih.gov/pubmed/23237761
https://doi.org/10.1016/j.euje.2005.12.014
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/bulletins/nationallifetablesunitedkingdom/20132015
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/bulletins/nationallifetablesunitedkingdom/20132015
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/bulletins/nationallifetablesunitedkingdom/20132015
https://doi.org/10.1016/j.cca.2013.09.008
https://doi.org/10.1016/j.beem.2014.10.003
https://doi.org/10.1681/ASN.2012030316
https://doi.org/10.1681/ASN.2012030316
https://doi.org/10.1093/ndt/gfq306
https://doi.org/10.1093/hmg/ddv291
https://doi.org/10.1681/ASN.2016090964
https://doi.org/10.1681/ASN.2016090964
https://doi.org/10.1016/j.bbadis.2010.05.003
https://doi.org/10.1016/j.jacc.2016.09.943
https://doi.org/10.1371/journal.pone.0193550

