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Abstract 

This paper presents the misestimation of temperature when observations from a kappa distributed plasma 

are analyzed as a Maxwellian. One common method to calculate the space plasma parameters is by fitting the 

observed distributions using known analytical forms. More often, the distribution function is included in a 

forward model of the instrument’s response, which is used to reproduce the observed energy spectrograms for a 

given set of plasma parameters. In both cases, the modeled plasma distribution fits the measurements to estimate 

the plasma parameters. The distribution function is often considered to be Maxwellian even though in many 

cases the plasma is better described by a kappa distribution. In this work we show that if the plasma is described 

by a kappa distribution, the derived temperature assuming Maxwell distribution can be significantly off. More 

specifically, we derive the plasma temperature by fitting a Maxwell distribution to pseudo-data produced by a 

kappa distribution, and then examine the difference of the derived temperature as a function of the kappa index. 

We further consider the concept of using a forward model of a typical plasma instrument to fit its observations. 

We find that the relative error of the derived temperature is highly depended on the kappa index and occasionally 

on the instrument’s field of view and response. 

 

1. Introduction 

Several instruments observe the plasma in a wide range of space environments. Typical plasma 

instruments obtain the energy spectrograms of the plasma, i.e.,, they measure the rate of particles (C/s) entering 

the detection system as a function of energy (E). It is often useful and desirable to derive the fluid properties of 

the observed plasma for further scientific analysis. Space plasma fluid parameters can be quantified from 

instrument’s observations using several techniques. Each technique is chosen based on the plasma environment 

and the characteristics of the instrument, such as, the Field Of View (FOV) and the angular resolution. The 

specific analytical form of the velocity or the energy distribution is required in order to apply some of the plasma 

parameter derivation techniques. 

The two types of distribution functions that are commonly used to describe space plasma populations are 

the kappa and Maxwell distributions of velocities (Livadiotis 2015a). Maxwell distributions have been observed 

in space plasmas (e.g., Hammond et al. 1996). Although Maxwell distributions are often used in space science 

because they fit well the “core” of the observed distributions, numerous studies have shown that kappa 

distributions (or combinations thereof) are frequently observed (Shizgal 2007; Livadiotis and McComas 2009, 
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2013a; Pierrard and Lazar 2010; Livadiotis 2015a; and references therein). Kappa distributions are characterized 

by their high energy tail which is not always clearly observed because of the low plasma intensities in the high 

energy range. Nevertheless, many analyses used successfully kappa distributions to describe observations in 

several plasma environments, where the Maxwell distribution clearly fails to describe the high energy tails of the 

observed distributions: solar wind (e.g., Maksimovic et al. 1997; 2005; Pierrard et al. 1999; Chotoo et al. 2000; 

Mann et al. 2002; Marsch 2006; Zouganelis et al. 2008; Štverák et al. 2009; Livadiotis and McComas 2013b; 

Yoon 2014; Heerikhuisen et al 2015; Pierrard and Pieters 2015), planetary magnetospheres (e.g., Christon 1987; 

Collier and Hamilton 1995; Jurac et al. 2002; Pisarenko et al. 2002; Kletzing et al. 2003; Mauk et al. 2004; 

Schippers et al. 2008; Dialynas et al. 2009; Ogasawara et al. 2012; Carbary et al. 2014; Qureshi et al. 2015; 

Stepanova and Antonova 2015), the outer heliosphere and the inner heliosheath (e.g., Decker and Krimigis 2003; 

Decker et al. 2005; Heerikhuisen et al 2008; 2010; Zank et al. 2010; Livadiotis et al. 2011; 2012; 2013; 

Livadiotis and McComas 2011a; 2012), and other various plasma-related analyses (e.g., Milovanov and Zelenyi 

2000; Saito et al. 2000; Yoon et al. 2006; Raadu and Shafiq 2007; Livadiotis 2009; Tribeche et al. 2009; 

Hellberg et al. 2009; Livadiotis and McComas 2009; Baluku et al. 2010; Livadiotis and McComas 2010a; 2010b; 

Le Roux et al. 2010; Eslami et al. 2011; Livadiotis and McComas 2011b; Kourakis et al. 2012; Livadiotis and 

McComas 2013c; Livadiotis 2014; 2015b; 2015c; 2016a; 2016b; Randol and Christian 2014; Varotsos et al. 

2014; Liu et al. 2015; Fisk and Gloeckler 2015; Viñas et al. 2015). In addition, several physical mechanisms that 

can be applied in different plasma environments, successfully explain the observed deviation from Maxwell 

distribution. For example, it has been shown that kappa distribution can be generated from velocity-space 

diffusion processes (Hasegawa et al. 1985), pick-up ions (Livadiotis & McComas 2011a), Langmuir turbulence 

(Yoon 2012), etc. Besides their empirical successful usage and their extraction from different mechanisms, 

kappa distributions are naturally exported (Milovanov and Zelenyi 2000; Leubner 2000; Livadiotis and 

McComas 2009; Livadiotis 2015a) from the foundations of Tsallis non-extensive Statistical mechanics (Tsallis 

1988; 2009; Tsallis et al. 1999). 

The benefit of the kappa distribution is that it can successfully describe plasmas that are out of thermal 

equilibrium while Maxwell distribution, as a limiting case of kappa distribution, describes only plasmas that are 

in thermal equilibrium. In cases where the plasma parameters are derived from a method that uses a specific type 

of the distribution function, the wrong selection of the distribution may lead to significant misestimation of the 

plasma parameters; especially, of the plasma temperature. 

In this paper we examine two methods that are widely used to derive the plasma properties from 

observations, that is (i) direct fitting of the distribution function, where an analytical expression of the 

distribution function is used (e.g., Paschmann and Daly 1998; Wilson et al. 2012a); and (ii) forward modeling, 

which is used to fit the plasma instrument’s observations with an expression that involves, among others, the 

distribution function and the instrument's response function (e.g., Richardson 1987; 2002; Wilson et al. 2008; 

Elrod et al. 2012; Wilson et al. 2012b; 2013; Livi et al. 2014; Nicolaou et al. 2014; 2015a; 2015b; Elliott et al. 

2016). In both methods we examine here, the form of the distribution function has to be defined before its 
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application to the data. For the purposes of this study, we simulate the plasma measurements for fixed plasma 

parameters. Then each method is applied to derive the plasma temperature which is then compared to the plasma 

temperature that is set in the simulations. The derived temperature misestimation is quantified as a function of 

several parameters, including some characteristics of the instrument that is used for the plasma measurements. 

This paper is organized as follows: In section 2 we describe the two methods we investigate: (i) direct fitting and 

(ii) forward modeling. In section 3 we present our results using simulated measurements, while in section 4 we 

summarize and discuss the conclusions. 

 

2. Methods of plasma parameters derivation 

In general, the choice of the method to be used is based usually on the available measurements and/or the 

instrument’s characteristics. In this section we present the two methods we investigate. 

 

2.1 Fitting of the distribution function 

There are cases, depending on the plasma environment and the instrument’s characteristics, where the 

energy spectrograms C(E) can be directly converted to the energy distribution function f(E) or the velocity 

distribution function )(uf


 of the observed plasma (e.g., Paschmann and Daly 1998; Wilson et al. 2012a). In 

those cases we can get the plasma parameters by taking the statistical moments of the distribution function (by 

numerical integration) or by fitting the observed distribution. For example, the first-order moment (the mean) 

gives the bulk velocity, the second-order moment around the mean, leads to the temperature, etc. On the other 

hand, these parameters, the bulk velocity and the temperature, can be derived by fitting a distribution function to 

the data. In order to fit the observations, we need to specify the analytical expression of the distribution as a 

function of the plasma parameters. As mentioned previously, the most common energy distribution functions 

that are used to describe space plasma are the kappa distribution 
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denoting the energy of the particle in the reference frame that moves with the bulk speed. In the above, 
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 , T, and n are the plasma bulk energy, temperature, and density respectively; kB is the Boltzman 

constant; the variable ω reads the angle between a plasma particle velocity and the flow vector. The kappa index 

κ is (i) characteristic of the state of plasma indicating a measure of its “thermodynamic distance” from thermal 

equilibrium (Livadiotis and McComas 2010a), and (ii) interwoven with the statistical correlation between the 

energy of the particles (Livadiotis 2015a; 2015c). The Maxwell distribution describes the special case when the 

kappa value of the distribution is infinity (thermal equilibrium); the other extreme state, where kappa approaches 

its minimum value (κ→3/2), describes the furthest state from thermal equilibrium called "the anti-equilibrium" 

that is the specific state of the system where the kappa index tends to its lowest value (κ→3/2) (e.g., Livadiotis 

and McComas 2010a; 2013a; Livadiotis 2015a). 

The plasma parameters (e.g., the density, temperature, and kappa index) can be determined from the 

fitting of analytical distribution functions to observed datasets. 

 

2.2 Fitting of the forward modeling 

There are cases where the distribution function of the plasma is not directly derived from the instrument's 

spectrograms. In those cases, a forward modeling of the instrument's response is used to fit the observed energy 

spectrograms for specific set of the plasma parameters (e.g., Richardson 1987; 2002; Wilson et al. 2008; Elrod et 

al. 2012; Wilson et al. 2012b; 2013; Livi et al. 2014; Nicolaou et al. 2014; 2015a; 2015b; Elliott et al. 2016). 

Such models predict the observed counts that will be observed, for specific plasma conditions and taking into 

account the instrument’s characteristics and response. Typical plasma instruments give the number of counts for 

discrete energy steps. The general expression for the counts measured at each energy step C(E) is 
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where the solid angle Ω comprises both the polar and azimuth angles (ϑ,φ), integrated over the whole FOV of the 

instrument; the channel energy range ΔΕ is defined by the geometric characteristics of the instrument. The factor 

R is characteristic of the instrument, a function of the instrument’s aperture, efficiency and response that can be 

determined through the instrument’s calibration. The time resolution of the instrument is denoted by Δt. For an 

electrostatic analyzer type of instruments the energy resolution ΔΕ/Ε (or, Eln ) is constant and in cases where 

it is small enough such we can rewrite Eq.(5) as 
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For both methods described above, the choice of the distribution function affects the determination of the plasma 

parameters and especially the plasma temperature. 

For the purposes of this study, we model observations of plasma that is described by a kappa distribution 

and fixed plasma parameters. We then quantified the miss-estimation of the plasma temperature when the plasma 
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parameters are derived using the methods described above but with a Maxwellian distribution instead of a kappa 

distribution. 

 

3. Results 

Each method is examined as it is applied on simulated measurements of plasma with fixed parameters. In 

this section we present for each method, the misestimation of the plasma temperature as a function of several 

parameters. 

 

3.1. Temperature error when direct fitting is applied 

We firstly consider the case where the observed plasma is described by kappa distribution and the 

parameters are calculated by direct fitting of an analytical expression to the observed distribution. We would like 

to show how someone can misestimate the plasma temperature by fitting Maxwell distribution to the data instead 

of kappa distribution. A proper fitting of distribution to the data is achieved using the chi-square minimization 

technique. If the plasma is described by a kappa distribution, then only the core of the distribution will be well-

fitted by the Maxwellian distribution, leading to a misestimation of the plasma temperature (Livadiotis and 

McComas 2009; 2013a). To show that we rewrite Eq.(1) as 
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which leads to a Maxwell distribution, 
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We make it clear that the condition TkB2

3)(    means that, for any given kappa index and 

temperature, that is, for any value of the product TkB2

3)(  , there is always a range of energy that the 

approximation is satisfactory, and that is TkB2

3)(   . Given the Taylor expansion 
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then, the relative error of keeping just the first term in (8) is: 

Relative Error ≡ 2
nd

 term / 1
st
 term ~ 

TkB)(2
2

3
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For example, let κ~2, eV10~BTk  and keV1~
2

2
1

0 bumE


 which corresponds to km/s440~bu in the case we 

study the distribution function of protons; hence, relative error ~ 100 ε/E0. For having relative error <1, we need 

ε<E0/100 or 10/bb uuu 


; e.g., for km/s440~bu , we have km/s480km/s400  u , where the core is 

well approximated by a Maxwellian velocity distribution with the temperature given by (10). In order to 

demonstrate that, in Figure 1, we show two cases of kappa distributions fitted by Maxwellian distributions and 

the relative error given above, as a function of energy. It is shown that there is an energy range for which the 

Maxwellian approach of the distribution’s “core” is valid, even for small kappa (κ→2) indices and for relatively 

cold plasma (T→10eV), which are respectively the lowest kappa and temperature we examine in this study. As 

expected, for larger kappa the relative error is quite small within a wider range of energies. 
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Figure 1 a) (top) Kappa distribution for κ=2, E0=1keV, T=10eV and a Maxwellian fit to the distribution’s “core” 

and (below) the relative error of keeping just the first term of the expansion in  (8), as a function of energy. The 

green and red dashed lines indicate where the relative error is 0.5 and 1 respectively. b) The same plots for κ=5, 

E0=1keV, T=10eV. In this case, the distribution’s “core” is wider and the relative error is significantly smaller 

within a wide range of energies. In both cases though, there is a reasonable range where the distribution’s core 

can be approached by a Maxwellian distribution with temperature given by (10).   

 

Assuming then, that the plasma distributions are fitted with a Maxwellian expression instead of a kappa 

distribution and the fitting algorithm is forced to find the best fit near the distribution’s maximum where the 

statistical error is small (assuming Poisson statistics for the measurements), it is shown that the misestimation of 

the temperature is given by Eq.(10). It is directly noticeable that the derived temperature approaches the actual 

plasma temperature when this is in thermal equilibrium, κ→∞, but it is significantly off when the plasma 

approaches the furthest state from thermal equilibrium, the anti-equilibrium, where, κ, approaches its lowest 

value of 3/2 (Livadiotis 2015a). In order to demonstrate the temperature misestimation in practice, we run 

multiple fits of different kappa distributions using a Maxwell distribution model. We consider the distribution 

along the direction of the bulk speed (ω=0°) and we fit the highest counts which are near the distribution’s 

maximum (the “core” of the distribution), since those data-points are statistically more significant. In the upper 

panel of Figure 2 we show few examples of a Maxwell fit to kappa distributions. For all the presented examples 

the bulk energy of the distributions is E0=1 keV while the density is adjusted such us all of the compared 

distributions have the same maximum value. We then examine the derived from fitting Maxwellian temperature 

(TM,F)  as a function of the kappa index and for several plasma temperatures (T). The plots of the derived TM,F as 

a function of kappa index for each plasma temperature are shown in the lower panel of Figure 2. On each plot 

we draw also the curve of Eq. (10) which gives the theoretically misestimated temperature (TM).  In Table 1 the 

reader can find the derived TM,F values as a function of kappa for each T, while a straight comparison is made 

with the theoretically expected value (TM). We see that the derived from fitting TM,F follows very well the 

theoretically derived curve, especially at higher kappa values. Note that, we do not examine cases for κ<2, 

because as we approach the limit of κ→3/2, the distribution’s core shifts to very low energies (e.g., see 

Fig.1 in Livadiotis 2014) and practically there is no reasonable energy range to fit a Maxwellian (in 

such a case we would have TM→0). 
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Figure 2 The Maxwell distribution (blue dashed line) is fitted to kappa distribution (black solid line) for kappa 

index (a) κ=2, (b) κ=5 and (c) κ=10. For the presented examples we consider the distribution along the bulk 

velocity direction (ω=0°). Τhe bulk energy is E0=1 keV and the temperature is T=100 eV/kB, while the density is 

adjusted, such us, all the distributions have the same maximum value (arbitrarily chosen to be 1000). The 

mistaken temperature as derived by Maxwell fit to the kappa distribution is shown as a function of the kappa 

index for plasma temperature (d) T=10 eV/kB, (e) T=100 eV/kB and (f) T=1000eV/kB respectively. The solid blue 

line depicts the analytical model of TM given by Eq.(10), while the dots show the temperature derived by fitting a 

Maxwellian (TM,F). We demonstrate that the formula of Livadiotis and McComas (2009; 2013) provides 

correctly the misestimation on temperature. 

 

Plasma Temperature T=10eV 

 

Plasma Temperature T=100eV 

 

Plasma Temperature T=1000eV 
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(eV) 
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2 1.71 1.67 2.67 2 17.11 16.67 2.68 2 171.16 166.67 2.69 

3 3.83 3.75 2.01 3 38.25 37.50 2.01 3 382.55 375.00 2.01 

4 5.08 5.00 1.56 4 50.80 50.00 1.61 4 508.04 500.00 1.61 

5 5.91 5.83 1.35 5 59.11 58.33 1.31 5 591.14 583.33 1.34 

6 6.50 6.43 1.12 6 65.02 64.29 1.14 6 650.21 642.86 1.14 

7 6.94 6.88 0.97 7 69.43 68.75 0.99 7 694.38 687.50 1.00 
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8 7.29 7.22 0.87 8 72.86 72.22 0.88 8 728.65 722.22 0.89 

9 7.56 7.50 0.80 9 75.60 75.00 0.80 9 756.01 750.00 0.80 

10 7.78 7.73 0.73 10 77.83 77.27 0.72 10 778.35 772.73 0.73 

11 7.97 7.92 0.65 11 79.69 79.17 0.66 11 796.94 791.67 0.67 

12 8.13 8.08 0.61 12 81.26 80.77 0.61 12 812.66 807.69 0.62 

13 8.26 8.21 0.57 13 82.60 82.14 0.56 13 826.13 821.43 0.57 

14 8.38 8.33 0.52 14 83.77 83.33 0.53 14 837.78 833.33 0.53 

15 8.48 8.44 0.50 15 84.79 84.38 0.49 15 847.97 843.75 0.50 

16 8.57 8.53 0.46 16 85.69 85.29 0.46 16 856.96 852.94 0.47 

17 8.65 8.61 0.44 17 86.49 86.11 0.44 17 864.94 861.11 0.44 

18 8.72 8.68 0.42 18 87.20 86.84 0.42 18 872.07 868.42 0.42 

19 8.78 8.75 0.39 19 87.85 87.50 0.39 19 878.50 875.00 0.40 

20 8.84 8.81 0.37 20 88.43 88.10 0.38 20 884.31 880.95 0.38 

 

Table 1 The derived temperature TM,F as a function of κ for the examples shown in Figure 2. For straight 

comparison with the theory we show the expected value (TM ) as calculated from equation (8) and the difference 

of the derived and expected value normalized to the expected one. 

 

3.2 Temperature error when forward modeling is applied 

In many cases the distribution function f(E) cannot be directly constructed from the observations. In those 

cases we can develop a forward model of the instrument’s response and reproduce the observed spectrograms for 

specific plasma parameters (for details, see: Wilson et al. 2008; Elrod et al. 2012; Wilson et al. 2012b, 2013; 

Nicolaou et al. 2014; 2015a; 2015b). The formula to get the observed counts for an instrument with FOV=(θ2-

θ1)×(φ2-φ1) and energy resolution ΔΕ/Ε=const is given by Eq.(5) which can be approximated by Eq.(6) for small 

ΔΕ/Ε. 

In the case of forward modeling is not so trivial to find an analytical expression for the energy at 

spectrogram’s maximum, the behavior of C(E) near its maximum and the temperature misestimation when a 

Maxwell distribution is used instead of a kappa. However, in the Appendix we derive the equations that could be 

solved to calculate the energy at the spectrogram’s maximum in the simplified case where the FOV of the 

modeled instrument is very narrow and the response of the instrument is not depended on the energy. We show 

that even in this simplified case, the energy of the spectrogram’s maximum is not a function of the plasma 

temperature only but it depends also on the plasma flow vector. In order to demonstrate the differences of the 

spectrograms in the case of kappa and Maxwell distribution under the same plasma parameters, we simulate the 

spectrograms for both distributions and we plot them in the same window. We do this test for two different 

plasma temperatures and three kappa indices. Our results are shown in Figure 3. 
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Figure 3 The counts are depicted as a function of energy for a modeled instrument and plasma described by a 

kappa distribution (black solid line), and considering Maxwell distribution for the same plasma parameters (blue 

dashed line). For all the examples the bulk energy is E0=1 keV and the counts are normalized to the maximum 

counts obtained by the kappa distribution model. 

 

We further want to examine in detail the temperature miss-estimation in cases where the Maxwell 

distribution is used in the instrument’s response model which is used to derive the plasma parameters of plasma 

that is actually described by a kappa distribution. For this purpose we simulate spin-angle spectrograms of 
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plasma that is assumed to be described by kappa distribution. We simulate spectrograms for several plasma 

temperatures, several kappa indexes and several hypothetical FOVs of the instrument. We further consider the 

general case where the instrument is spinning. The spin axis is always considered the symmetry axis of the FOV 

(see Figure 4). In the cases of spinning instruments, we need to study the spin-angle spectrograms. In a spin-

angle spectrogram, the x-axis is the spin-phase angle of the instrument, y-axis is the energy, or energy per charge 

the color represents the counts (McComas et al. 2007; Nicolaou et al. 2014; 2015a; 2015b).  We normalize each 

modeled spectrogram such as its maximum value is 1000 counts for any set of plasma parameters we examine. 

This is done for more fair treatment among the different spectrograms, since the statistical error of each data-

point is the square root of its value. Then those spectrograms are fitted with the forward modeling formula Eq.(6) 

for a Maxwell distribution in order to derive the plasma parameters. For each fitting, we record the plasma 

temperature and the reduced chi-squared value which defines the goodness of the fitting. An example of a 

simulated and a fitted spectrogram is shown in Figure 5. 

 

Figure 4 The hypothetical instrument we use in our study. The light blue shaded area and the green arc represent 

the angular FOV in azimuth and elevation angle respectively. The FOV is symmetric by the y-axis which is the 

spin-axis of the instrument. The angle between the plasma flow direction (red arrow) and the spin-axis is denoted 

by α. 
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Figure 5 (a) a modeled spectrogram and (b) a Maxwellian fitted spectrogram of plasma described by a kappa 

distribution and flow direction parallel to the instrument’s spin axis. Panels (c) and (d) show the corresponding 

spectrograms for the case where the plasma flow vector is 60° apart from the spin axis. 

 

In order to demonstrate the temperature misestimation when the forward modeling method is used to 

derive the plasma parameters we calculate the ratio of the derived temperature (TM,F) over the plasma 

temperature (T) as a function of kappa index, for several T and FOV when the particle beam is directed parallel 

to the instrument’s spin axis. We also examine the reduced chi-square value of each fit which is a straight 

indication the fit strength. Our results are shown in Figure 6. In order to examine any dependence of the results 

on the beam orientation, we performed the same calculations considering four different beam orientations for 

one set of FOV and T. The corresponding results are shown in Figure 7. 
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Figure 6 (Left column) Ratio of the estimated temperature by using the forward model (TM.F) over the plasma 

temperature (T), depicted as a function of the kappa index (κ), and for several plasma temperatures and 

instrument’s FOV. (Right column) The reduced chi-square of the forward model fitting for each panel of the left 

column. 

 
Figure 7 (Left) Ratio of the estimated temperature by using the forward model (TM,F) over the plasma 

temperature (T) as a function of kappa index (κ), for several directions of the plasma bulk velocity. (Right) 

Reduced chi-square as a function κ for the examined plasma velocity directions. 

 

4. Discussion and Conclusions 

Diagnostics of laboratory or space plasma systems indicate that the velocity (or the energy) distribution of 

plasma particles is well described by a kappa distribution function (see references in introduction). This study 

shows that the plasma temperature can be significantly misestimated when the parameters of a kappa distributed 

plasma population, of any species, are derived with a Maxwell distribution instead of a kappa distribution 

function. 

This study examined two methods that are widely used for the plasma parameters derivation: (i) the 

method of direct fitting of the distribution function, and (ii) forward modeling of the instrument’s response to 

simulate energy spectrograms. For the first case, an analytical expression of the plasma temperature 

misestimation was derived and was verified with several examples. It is concluded that, under this method, the 

temperature misestimation is a direct function of the kappa index and it is independent of on the plasma 

temperature itself or the instrument’s characteristics. For example, for any plasma temperature we examine, the 

derived temperature is underestimated by a factor of ~0.17 for κ~2 and it is underestimated only by a factor of 

0.88 for κ~20 (see Table 1 and Figure 2). When the kappa distribution is fitted with a Maxwellian, the density 
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of the plasma is misestimated as well, leading to the misestimation of other parameters, such as, the plasma 

thermal pressure. According to (9), the fitted Maxwellian will have normalization constant



ATknC 2

3

)(
2

B


 , 

which will be misunderstood as the normalization constant of a typical Maxwellian given by (2) with T=TM. 

Thus, the density will be underestimated by a factor of 
2

3











MT

T
A

 that corresponds to a factor of ~0.44 for κ~2 

and to a factor of ~0.9 for κ~20. The thermal pressure for space plasmas, TnkP b , will also be 

underestimated (e.g. by a factor of ~0.075 for κ~2), but interestingly, the polytropic index of the plasma (γ) will 

be not. Note that the polytropic index is usually calculated from the slope of   constnT  )log(1)log(  . Since 

both n and T are misestimated by a constant factor (for specific κ) the slope in the above expression is not 

changing. 

 

For the second method, the temperature misestimation was demonstrated with several examples of direct 

fitting modeled spectrograms. Our conclusions are the following: 

(i) The misestimation of the plasma temperature, as well as the goodness of the fitting measured by the 

reduced chi-square, are highly dependent on the kappa index. The temperature misestimation is worst for 

smaller kappa index. For example, we show cases where the temperature is misestimated by a factor of 

~0.3 (for κ~2) but it is estimated very close to its actual value (for κ~15). 

(ii) For the plasma temperature range examined here, the ratio TM,F/T is closer to 1 for hotter plasma, but the 

fitting is noticeably worse (higher chi square value for higher temperatures). 

(iii) There is a rather strong correlation between the derived temperatures and the instrument’s FOV. The 

dependence is significant for low kappa indices for which the fitting is not good. Interestingly we see 

that the derived temperatures are closer to their actual values for larger FOV but on the other hand the 

chi-squares increase. 

(iv) The orientation of the particle beam seems to affect the derived temperatures for the cases where the 

fitting is weak. 

 

We firstly quantified the misestimation of temperature as a function of kappa index (section3 and 

appendix). It is shown that the misestimation is larger for smaller kappa index. Note that when the kappa index is 

high (κ>10), for all the examples presented, the TM,F over T ratio and the chi-square value are approximately 

unity and all the data-points of Figures 6 and 7 pretty much converge to a single-data point.   

In hotter plasmas, more particles shift to the higher energies (c.f., Figure 2(b) in Livadiotis and 

McComas 2010a). The energy and the angular spread of the particle beam increase with increasing 

temperature. Thus, for hotter plasmas, there are more data-points used in the fitting analysis. Those additional 

points, due to the distribution’s spread, are located further away from the distribution’s core (maximum), thus 
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are not well characterized by the Maxwellian form, shown in Eq.(10). This is our explanation why the fitting 

gets worse for hotter plasma as commented above (see (ii)). The fact that the derived temperatures are slightly 

higher for hotter plasma is probably due to the fact that we need hotter Maxwellian to fit the points that are 

spread further from the distribution’s core. 

As the FOV increases the instrument observes bigger part of the plasma, thus bigger part of the particle 

distribution which deviates from the Maxwellian form. That is the main reason probably why the chi-square 

values are higher when the FOV is increased, in the cases of low kappa index (κ<~5) as mentioned in (iii). In the 

other hand, when the kappa index is high (κ<5) we notice that the fitting is slightly better for larger FOV. Keep 

in mind though that for higher kappa index, the Maxwellian spectrogram becomes better approximation for our 

modeled spectrograms. The strength of the fit may increase when a bigger part of the distribution is taken into 

account for each data point and when the Maxwellian distribution is a good approximation. 

In addition, as mentioned in (iv), the orientation of the beam affects the derived temperatures and the chi-

square values when the fitting is weak. When the beam is parallel to the spin axis, then the core of the 

distribution is inside the FOV for all the spin angles. That means we need to fit more data-points, and when our 

model uses wrong distribution, the fitting will be weaker.  

We remind the reader that in all the cases presented here the chi-square value, which measures the 

goodness of the fitting, is proportional to the temperature misestimation. Large misestimation of the temperature 

is always accompanied with large chi-square values. What we really want to carry out from this study is that 

using the wrong distribution the plasma temperature can be significantly misestimated. In those cases, which are 

always characterized by weak fitting, the instrument’s characteristics and the plasma parameters themselves have 

their own contribution to the misestimation of the temperature. A modeler should take into account that one of 

the reasons that are responsible for a weak fitting could be the choice of the wrong distribution. In any case, 

when there is evidence in the observations, that the plasma distribution deviates from the Maxwellian (high 

energy tail), a kappa distribution should be tested. 

Lastly, we would like to note that the results of this study are for specific plasma conditions, specific 

instrument model and for normalized spectrograms to a specific maximum value (see section 2). Although the 

actual values of our results could be different for different instrument or spectrogram normalization, we believe 

that this study alarms the modelers about the overall dependence of the temperature misestimation on several 

parameters.  
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Appendix A: Energy at the spectrogram’s maximum 

In the simplified case, where the instrument’s FOV is very narrow and its response is not a function of 

energy and direction, then Eq.(6) becomes 

 );()( 2  EfEC  .  (A1) 

In order to find the energy at the spectrogram’s maximum, we calculate the energy for which the first derivative 

of (A1) is zero, 0/)(  EEC , leading to 
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If the observed plasma is described by the kappa distribution, we substitute Eq.(7) and use Eq.(4) in Eq.(A1) that 

gives the observed counts maximum, which now becomes 

the quadratic equation 

 0])[(2cos)3()1( 0B2
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For small bulk energies, i.e., TkE B2
3

0 )(   , 
max0 EE  , the maximum is given by 

)1/()(2
2
3

Bmax  TkE . If we model the instrument’s response assuming a Maxwell distribution, we obtain 

the above again Eq.(A2) but for κ→∞, i.e., 

 02cos Bmax0max  TkEEE   .  (A4) 

and for small bulk energies, the maximum is given by TkE Bmax 2 . Even in this simplified case which we 

demonstrate here, the location of the spectrogram’s peak varies as a function of all the plasma parameters. 


